5.3 and 5.4 #6

Write the integral as a sum of integrals without absolute values and evaluate:

$$\int_{\pi/6}^{\pi} \mid \cos x \mid \ dx =$$

Let the function ${\cal F}$ be defined by

$$F(x) = \int_{-7}^x (t+2)\!(t-10)\,e^{-t^2}\;dt.$$

Give the largest interval(s) for which F is decreasing.

Give the largest interval(s) for which ${\cal F}$ is increasing.

If there is more than one interval, separate the intervals with a comma. Enter NONE if there are no intervals.

A particle moves in a straight line with velocity $12-2t$ ft/s. Find the total displacement and total distance traveled over the time interval $[0,8]$.					
Displacement:					ft.
Distance:			===	ft.	

5.6 #2

Evaluate the indefinite integral.

(Use symbolic notation and fractions where needed.)

5.7 #10

Evaluate the indefinite integral.

(Use symbolic notation and fractions where needed.)

$$\int 4\cot(4x)dx = igg| +C$$

5.8 #4

Find the solution to $\frac{dy}{dt} = 7y$ satisfying y(1) = 2 y =

D6.1 #1

The region between the graphs of $f(x)=x^2+3$ and g(x)=-2x+3 has area square units.