Find a pair of numbers whose sum and product are both equal to 6.

(Use symbolic notation and fractions where needed. Give your answer in the form of a comma separated list.)

The numbers are

help (fractions)

$$7, y$$
 Sum is 6
 $\frac{x+y}{x+y} = 6$
Product is 6, $x\cdot y = 6$
 $y = 6-x$ $x\cdot y = 6$
 $x(6-x) = 6$
 $6x-x^2=6$ $x^2-6x+6=0$
 $-6x+x^2=-6x+x^2$

$$\chi^{2}-6x+9+6=0+9$$
 $(\chi-3)^{2}+6-6=9-6$
 $(\chi-3)^{2}=3.$
 $\chi-3=\pm\sqrt{3}.$
 $\chi=3\pm\sqrt{3}.$
 $\chi=3+\sqrt{3}.$
 $\chi=3+\sqrt{3}.$
 $\chi=3+\sqrt{3}.$
 $\chi=3+\sqrt{3}.$

Chech. $\chi+\gamma=6.$ $\chi+\gamma=?$

Find the inverse
$$f^{-1}$$
 of $f(x)=rac{x-4}{1+5x}$

(Use symbolic notation and fractions where needed.)

Hint: Use the Two-Step method.

Solution:

$$y = \frac{x-4}{145x}$$

$$y(1+5x) = x-4$$

$$5yx + y - x = x-4-x-y$$

$$5xy - x = -4-y$$

$$x(5y-1) = -4-y$$

$$X = \frac{-4-9}{5y-1} = \frac{4+9}{1-5y}$$

$$f^{-1}(x) = \frac{4+x}{1-5x}$$
Check - Graph.
$$f(0) = -4$$
. Try $f^{-1}(-4) = 0$

Let $f(x) = x^5 + x + 8$. Find the value of the inverse function at a point.

(Use symbolic notation and fractions where needed.)

Try to solve
$$x^{5} + x + 8 = 254$$
.

Solving this equation is hand.

Hope today you are luchy,

 $f(0) = 8 \times f(1) = 10 \times f(2) = 42 \times f(3) = 243 + 3 + 8 = 254$

(1 point) local/rmb-problems/circle-bug.pg

A bug is located at the point (5,0) at time t=0 and crawls at the rate of 6 units/minute in the counterclockwise direction along the circle centered at the origin of radius 5.

Find the coordinates (x,y) which give the location of the bug after 26 minutes.

$$x =$$
 , $y =$

help (numbers)

After how many minutes will the bug first return to the location (5,0)?

minutes

Give the coordinates (x(t),y(t)) at an arbitrary time $t\geq 0$.

$$x(t) =$$
 $y(t) =$

help (formulas)

Solution:

After 26 minutes bug has moved 26.6 units. Expe 156. Location is (5 cos(\$5),55in(\$56)) After + minutes USLAPETE (5 cm(\$\frac{6}{5}),5sm(\$\frac{6}{5})).

1st returm.after.

2TT.5 minuter.

98

(1 point) local/rmb-problems/exp-alg.pg

A function f is given by the formula $f(x)=A\cdot e^{kx}$ for constants A and k. We also know that f(0)=11 and f(4)=8.

Find numerical values for the constants A and k.

$$A=$$
 , $k=$

help (numbers).

The function f is ?

Solution:

$$f(0) = 11 = A \cdot e^{k \cdot 0} = A$$

 $f(4) = 8 = A \cdot e^{k \cdot 4}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k}$
 $A = 11 \cdot 8 = 11 \cdot e^{4k$

k = 4 ln(8/11).

(1 point) Library/Union/setLimitConcepts/ur_lr_1-5_1.pg

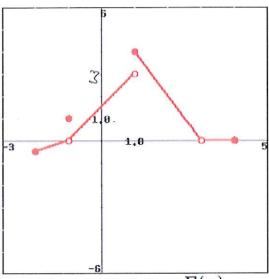
Let F be the function whose graph is shown below. Evaluate each of the following expressions.

(If a limit does not exist or is undefined, enter "DNE".)

1.
$$\lim_{x \to -1^{-}} F(x) = 0$$

2.
$$\lim_{x\to -1} F(x) =$$

3.
$$\lim_{x\to -1} F(x) = \bigcirc$$


4.
$$F(-1)=$$

5.
$$\lim_{x\to 1} F(x) = 3$$

6.
$$\lim_{x\to 1} F(x) =$$

7.
$$\lim_{x\to 1} F(x) = \bigcap K$$

8.
$$\lim_{x \to 3} F(x) =$$

The graph of y = F(x).

Evaluate the limit assuming that $\lim_{x \to 2} g(x) = 10$:

$$\lim_{x\to 2}\frac{g(x)}{x^2}=\qquad \qquad \blacksquare \blacksquare$$

Solution:

lim
$$\frac{9^{1x}}{x^2} = \lim_{x \to 2} \frac{9^{1x}}{x^2} = \frac{10}{4}$$
.
 $\frac{10}{x^2}$ $\frac{10}{x$

Thur J(x)

Lym J(x)

2 10 = 5

Lym x2

Lym x2

2 4 2

,