Final exam 6-8 Tuez. 15 Dec.

Office hours 2-3 pm Mathsheller Tues. 15 Dec.

Review Settion.

Monday in Kastle 213
4-530

I have enjoyed this class.

Critical Point 1 =

f(x1=0 1/

Find the critical points of f(x) and use the Second Derivative Test (if possible) to determine whether each corresponds to a local minimum or maximum. Let

$$f(x) = xe^{-x^2}$$

Note: The function \exp is another name for exponential function with base e. Thus, $\exp(t) = e^t$.

You must enter your critical points in ascending order.

Critical Point 1 =		919 919	is what by the Second Derivative
Test ?	7		
Critical Point 2 =		500	is what by the Second Derivative
Test ?	• ?		
		A	
Critical	point i		c (141=0)
		V	0. (160 - 48
02 4	is mut		all and and.
			7711 2
		, 2	-21
6'(x)	= 1.8"	(+ x (-2x)e"
•			2
	1.3	2)	
	2 (1-2)	X /	

 $|-2x^2=0$

OZ 4 x= ±1/52. 2nd desiv. text. f(x1=0, f'(x1>0 V localmin. f(x1=0, f'(x)<0 ~ local maso. $f''(x) = ((1-2x^2)e^{-x^2})$ $= -4x e^{-x} + (1-2x^2)(-2x)e^{-x^2}$ $=(-6x + 4x^3)e^{-x^2}$ 1"(-1/2) K/000 local min f"(to 1 > A < 0 local max.

Shetch of graph of xe-x?

5.3 and 5.4 #6

Write the integral as a sum of integrals without absolute values and evaluate:

 $\int_{\pi/6}^{\pi} |\cos x| dx =$ Cerus 1. 42(X)

$$= \frac{\sin(x)}{\pi/2} - \frac{\pi}{2}$$

$$= \frac{\sin(\frac{\pi}{2}) - \sin(\frac{\pi}{2})}{-\sin(\frac{\pi}{2})}$$

$$= \frac{1 - \frac{\pi}{2}}{-2} - \frac{1}{2}$$

$$= \frac{1 - \frac{\pi}{2}}{2} - \frac{1}{2}$$

Let the function F be defined by

$$F(x) = \int_{-7}^x (t+2)(t-10)\,e^{-t^2}\,dt.$$

Give the largest interval(s) for which F is decreasing.

888

Give the largest interval(s) for which $oldsymbol{F}$ is increasing.

6118

If there is more than one interval, separate the intervals with a comma. Enter NONE if there are no intervals.

 $F(x) = (x+2)(x-10)e^{-x}$ Need to know of Fax1>0 F(x)>0 A particle moves in a straight line with velocity 12-2t ft/s. Find the total displacement and total distance traveled over the time interval [0,8].

Displacement:	An proposation and accommodates	ass ft	ft.
Distance:	056 666 888	ft.	

distance travelled 18 |12-26| dt

$$12-2+70 \quad 1 \left(\begin{array}{c} 12,2+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 6,7+\\ 72-36 \\ 12+7+$$

12-2+20 11 t>6 then 112-2t = -(12-2t) 24-12 Constitution of the property of

Evaluate the indefinite integral. Anti- denvir

(Use symbolic notation and fractions where needed.)

$$\int \frac{x}{\sqrt{x^2+2}} \, dx = \boxed{ \qquad \qquad | \qquad | \qquad |} + C.$$

$$u = \chi^{2} + 2, \quad du = 2 \times dx$$

$$\frac{1}{2} du = \chi dx$$

$$| \chi^{2} + 2 | \quad | \chi u = \chi dx$$

$$| \chi^{2} + 2 | \quad | \chi u = \chi dx$$

$$\frac{1}{2} | \chi^{2} + 2 | \quad | \chi u = \chi dx$$

$$= | \chi^{2} + 2 | \quad | \chi^{2} + 2 |$$

$$= | \chi u + 4 |$$

$$= | \chi^{2} + 2 | \quad | \chi^{2} + 2 |$$

$$= | \chi u + 4 |$$

Chech.

d $\sqrt{x^2+2} \stackrel{?}{=} \frac{x}{\sqrt{x^2+2}}$

Find the solution to

$$rac{dy}{dt} = 7y$$

satisfying

$$y(1)=2$$

$$y =$$

$$y(t) = Ae^{7t}$$

 $y(1) = Ae^{7t} = 2$.
 $A = 2e^{7t}$.
 $y(t) = Ae^{7t} = 2e^{7t}e^{7t} \leftarrow$
 $= 2e^{7(t-1)}$

The region between the graphs of $f(x)=x^2+3$ and g(x)=-2x+3 has area square units.