(1 point) local/rmb-prob Let $f(x) = (x+5)^2$ one on the interval $(-\infty)$	$+\ 5$. Find the la		. •	f a so	that f is one to	
a =						
Consider f on the domain the interval $(-\infty,a]$ and let g be the inverse of						
the function f . Give the domain and the range of the function g .						
The domain is the interv	ıl				and the range is	
the interval		!!!	. help (i	nterva	ls)	
Give a formula for the function g .						
g(x) =			help (form	nulas)		

Simplify by referring to the appropriate triangle or trigonometric identity.

(Use symbolic notation and fractions where needed.)

$$\cot(\sec^{-1}(x))$$
 = help (fractions)

Hint: Generate the appropriate triangle and use the definition of a trigonometric function and its inverse.

(1 point) local/rmb-problems/exp-alg2.pg

A function f is given by the formula $f(x)=A\cdot e^{kx}$ for constants A and k. We also know that f(2)=8 and f(3)=1. Find numerical values for the constants A and k.

A =				, $k=$
			help	(numbers)
The function f is	?		<u> </u>	

A stone is tossed in the air from ground level with an initial velocity m/s . Its height at time t is $h(t)=30t-4.9t^2 \ m$.	ocity of 30			
Compute the stone's average velocity over the time interval $\left[1,3.5\right]$.				
Average velocity =				

Evaluate the limit assuming that $\lim_{x o 2} g(x) = 10$:

$$\lim_{x o 2}rac{g(x)}{x^2}=$$

Let f be defined by

$$f(x) = egin{cases} x+5, & x \leq 2 \ Ax+B, & 2 < x < 7 \ 2x+13 & 7 \leq x \end{cases}$$

Find the values of \boldsymbol{A} and \boldsymbol{B} which make \boldsymbol{f} continuous everywhere.

A =	B =	
(numbers)		

i) Decide if the following limit exists $\lim_{x \to \frac{-\pi}{4}} \frac{\sin x + 1 \cdot \cos x}{\tan x + 1}$:
YesNo
ii) If so, evaluate it. Otherwise enter DNE.
(Use symbolic notation and fractions where needed.)
limit =

Evaluate the limit:

$$\lim_{t \to 0} \frac{1 - \cos 3t}{\sin 6t} = \boxed{\qquad \qquad }$$

Find an interval (a,b) of length 1 and so that we may use the values of the expression $xe^{\frac{x}{2}}$ at the endpoints of the interval and the intermediate value theorem to show that the equation

$$xe^{rac{x}{2}}=2$$

has a solution in the interval (a,b).

a =	===	b =		
-----	-----	-----	--	---------