
1 Lecture 38: The fundamental theorems of cal-

culus.

• The second part of the fundamental theorem of calculus.

• Differentiating integrals.

• Recovering a function from its rate of change.

1.1 Differentiating integrals.

Theorem 1 (FTC II) Assume f is continuous on an open interval I and a is in I.
Then the area function

A(x) =
∫ x

a
f(t) dt

is an anti-derivative of f and thus A′ = f .

The most of important consequence of FTC II is that any continuous function has
an anti-derivative. We will also work exercises where we apply FTC II to differentiate
functions defined by integrals.

Proof. Write
A(x+ h)− A(x)

h
=

1

h

∫ x+h

x
f(t) dt.

We will show

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

The reader should write out a similar argument for the limit from the left.
If f is continuous, then f has maximum and minimum values Mh and mh on the

interval [x, x+ h]. Using the order property of the integral,

mh ≤
1

h

∫ x+h

x
f(t) dt ≤Mh.

As h tends to 0, we have limh→0+ Mh = limh→0+ mh = f(x) since f is continuous. It
follows that

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

Example. Find

a) d
dx

∫ x
0 sin(t2) dt

b) L′(x)if L(x) =
∫ x
1

1
t
dt

c) d
dx

∫ x
x2 sin(t2) dt

Is the function L(x) =
∫ x
1

1
t
dt increasing or decreasing? Is the graph of L concave

up or concave down?



Solution. Part a) is a straightforward application of the second part of the funda-
mental theorem. The function sin(x2) is continuous everywhere and thus we have

d

dx

∫ x

0
sin(t2) dt = sin(x2).

Part b) is also straightforward,

d

dx

∫ x

1

1

t
dt =

1

x
, x > 0.

Taking another derivative, we find that

d2

dx2

∫ x

1

1

t
dt = −1/x2.

Thus this function is concave down for x > 0.
A second approach is to use FTC I to see that

∫ x
1

1
t
dt = ln(x) − ln(1) and then

apply the differentiation rules to compute the derivative. Note that we could not use
this approach in the first example since we do not know an anti-derivative for sin(x2).

Finally, part c) requires us to use the properties of the integral to put it in a form
where we can use FTC II. We can write∫ x

x2
sin(t2) dt =

∫ 0

x2
sin(t2) dt+

∫ x

0
sin(t2) dt = −

∫ x2

0
sin(t2) dt+

∫ x

0
sin(t2) dt.

Now applying FTC II and using the chain rule for the first integral gives

d

dx
(−

∫ x2

0
sin(t2) dt+

∫ x

0
sin(t2) dt) = −2x sin(x4) + sin(x2).

Our second example shows that it is necessary to assume that f is continuous in
FTC II.

Example. Let f be the function given by

f(x) =

{
0, x < 2
1, x ≥ 2

Find F (x) =
∫ x
0 f(x) dx and determine where F is differentiable.

Solution. We have that the integral is given by

F (x) =

{
0, x < 2
(x− 2), x ≥ 0

It is pretty clear that F is differentiable everywhere except at 2. At 2, we can compute
the left and right limits of the difference quotient and find

lim
h→0−

F (2 + h)− F (2)

h
= 0 lim

h→0+

F (2 + h)− F (2)

h
= 1.

Thus F ′(2) does not exist.
The graph of F below confirms this.
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1.2 The net change theorem

Since F is always an anti-derivative of F ′, one consequence of part I of the fundamental
theorem of calculus is that if F ′ is continuous on the interval [a, b], then∫ b

a
F ′(t) dt = F (b)− F (a).

This is really FTC I again, but is called the net change theorem in the text. Thus
the integral is a tool that helps recover the net change of a function from the rate
of change. Another formulation is that if we know the initial value of f at a and
the rate of change over the interval [a, b], then we can find f(b). This idea has many
applications.

Example. An object falls with constant acceleration −g, at t = 1 its height is h1 and
its velocity is v1. Find its position at all times.

Solution. By the net change theorem,

v(t)− v(1) =
∫ t

1
g ds = −g · t+ g = −g · (t− 1).

Thus v(t) = −g · (t − 1) + v1. Applying the net change theorem again we have the
height at time time t, h(t) is

h(t)− h(1) =
∫ t

1
−g · (s− 1) + v1 ds = (−1

2
g · s2 + g · s+ v1 · s)|ts=1



= −1

2
gt2 + gt+ v1t+

1

2
g − g − v1

= −1

2
g · (t2 − 2t+ 1) + v1 · (t− 1)

= −1

2
g · (t− 1)2 + v1 · (t− 1).

Thus

h(t) =
1

2
g · (t− 1)2 + v1 · (t− 1) + h1.

Note this gives a different version of the equations for a falling object from Chapter
3.

Example. Suppose that a particle moves so that its velocity at time t is v(t) = sin(t).
Find the change in position in the interval [0, 2π]. Find the total distance traveled

in the interval [0, 2π].

Solution. The key conceptual point is to observe that the particle changes direction
during the interval [0, 2π], thus we expect that the total distance travelled will be
greater than the change in displacement.

To do the calculations, we first compute the change in displacement by FTC I/the
Net Change Theorem p(2π)−p(0) =

∫ 2π
0 v(t) dt. In this problem, we have v(t) = sin(t)

and thus the change in position is∫ 2π

0
sin(t) dt = − cos(t)|2π0 = 0.

To find the distance travelled, we need to compute the areas above and below the
t axis and add, rather than subtract, them to get the total distance travelled. Since
the velocity v(t) = sin(t) is positive on the interval [0, π] and negative on the interval
[π, 2π], we have that the total distance travelled is∫ π

0
sin(t) dt−

∫ 2π

π
sin(t) dt = − cos(t)|πt=0 + cos(t)|2πt=π = 4.

To give a less familiar example, suppose we have a rope whose thickness varies
along its length. Fix one end of the rope to measure from and let m(x) denote the
mass in kilograms of the rope from 0 to x meters along the rope. If we take the
derivative, dm

dx
= limh→0 (m(x+ h)−m(x))/h, then this represents mass per unit

length (or linear density) of the rope near x and the units are kilograms/meter. If we
integrate this linear density and observe that m(0) = 0, then we recover the mass

m(x) =
∫ x

0

dm

dx
dx.

This is another example of the net change theorem.
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