1 Lecture 38: The fundamental theorems of cal-
culus.

e The second part of the fundamental theorem of calculus.
e Differentiating integrals.

e Recovering a function from its rate of change.

1.1 Differentiating integrals.

Theorem 1 (FTC II) Assume f is continuous on an open interval I and a is in I.
Then the area function
/ 1)

The most of important consequence of FTC I is that any continuous function has
an anti-derivative. We will also work exercises where we apply FTC II to differentiate
functions defined by integrals.

Proof. Write

is an anti-derivative of f and thus A’ =

A(m—l—h
o [
We will show
t = [ () = 1)
o fldt= ().

The reader should write out a similar argument for the limit from the left.
If f is continuous, then f has maximum and minimum values M}, and m;, on the
interval [x,z 4+ h]. Using the order property of the integral,

1 x+h
< E/ F(t)dt < M,

As h tends to 0, we have limy, o+ M}, = limy, o+ my, = f(z) since f is continuous. It

follows that
hligl+ h / /().

Ezxample. Find
a) L [ sin(t?) dt
b) L'(x)if L(z) = [{" ;dt
c) L [%sin(t?) dt

Is the function L(x) = [{ 1 dt increasing or decreasing? Is the graph of L concave
up or concave down?



Solution. Part a) is a straightforward application of the second part of the funda-
mental theorem. The function sin(z?) is continuous everywhere and thus we have

d T
%/0 sin(#?) dt = sin(z?).
Part b) is also straightforward,
d (=1 1
KR
de J1 t x
Taking another derivative, we find that

d? 1
— —dt = —1/22.
dx2/1 t /@

Thus this function is concave down for z > 0.

A second approach is to use FTC I to see that [{ 7 dt = In(z) — In(1) and then
apply the differentiation rules to compute the derivative. Note that we could not use
this approach in the first example since we do not know an anti-derivative for sin(z?).

Finally, part ¢) requires us to use the properties of the integral to put it in a form
where we can use FTC II. We can write

x 0 x z2 x
/ sin(t%) dt :/ sin(tQ)dt+/ sin(t?) dt = —/ sin(t?) dt+/ sin(t?) dt.
2 2 0 0 0
Now applying FTC II and using the chain rule for the first integral gives

d

%(— /Ox sin(t?) dt + /Ox sin(t?) dt) = —2x sin(z*) + sin(z?).

Our second example shows that it is necessary to assume that f is continuous in

FTC II.
Ezxample. Let f be the function given by
0, T <2
Find F(z) = [§ f(z)dz and determine where F is differentiable.
Solution. We have that the integral is given by
0, T <2
F(x)_{(x—Q), x>0
It is pretty clear that F is differentiable everywhere except at 2. At 2, we can compute
the left and right limits of the difference quotient and find
F(2 —F(2 F(2 —F(2
LOE@EW-FER) L FR4h) - )
h—0~ h h—0+ h

Thus F”(2) does not exist.
The graph of F' below confirms this. 1

=1.
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1.2 The net change theorem

Since F'is always an anti-derivative of F”, one consequence of part I of the fundamental
theorem of calculus is that if F” is continuous on the interval [a, b], then

/b F'(t)dt = F(b) — F(a).

This is really FTC I again, but is called the net change theorem in the text. Thus
the integral is a tool that helps recover the net change of a function from the rate
of change. Another formulation is that if we know the initial value of f at a and
the rate of change over the interval [a, b], then we can find f(b). This idea has many
applications.

Ezxample. An object falls with constant acceleration —g, at t = 1 its height is A; and
its velocity is v;. Find its position at all times.

Solution. By the net change theorem,

v(t)—v(l):/1tgds:—g-t—|—g=—g-(t—1).

Thus v(t) = —g - (t — 1) + v;. Applying the net change theorem again we have the
height at time tlme t, h(t) is

t 1
h(t) — h(1) = /1—g~(3—1)+v1d82(—59-32+g-3—|—v1-s)|221



1, 1
= 9t Fgttuttog—g-un

1
= —59-(t2—2t+1)+v1-(t—1)

_ _;g.(t_1)2+vl-(t—1).

Thus 1
h(t) :§g-(t—1)2+vl~(t—1)+h1.
1

Note this gives a different version of the equations for a falling object from Chapter
3.

Ezample. Suppose that a particle moves so that its velocity at time ¢ is v(t) = sin(t).
Find the change in position in the interval [0, 27]. Find the total distance traveled
in the interval [0, 27].

Solution. The key conceptual point is to observe that the particle changes direction
during the interval [0, 27], thus we expect that the total distance travelled will be
greater than the change in displacement.

To do the calculations, we first compute the change in displacement by FTC I/the
Net Change Theorem p(27) —p(0) = [ v(t) dt. In this problem, we have v(t) = sin(t)
and thus the change in position is

27
/ sin(t) dt = — cos(t)[|3™ = 0.
0

To find the distance travelled, we need to compute the areas above and below the
t axis and add, rather than subtract, them to get the total distance travelled. Since
the velocity v(t) = sin(t) is positive on the interval [0, 7] and negative on the interval
[7,27], we have that the total distance travelled is

s 2m
/ sin(t) dt — / sin(t) dt = — cos(t)[_, + cos(t)[77 = 4.
0 s
1

To give a less familiar example, suppose we have a rope whose thickness varies
along its length. Fix one end of the rope to measure from and let m(z) denote the
mass in kilograms of the rope from 0 to x meters along the rope. If we take the
derivative, ¥ = lim, o (m(z + h) — m(x))/h, then this represents mass per unit
length (or linear density) of the rope near x and the units are kilograms/meter. If we

integrate this linear density and observe that m(0) = 0, then we recover the mass

z dm
m(x) :/0 %daj.

This is another example of the net change theorem.
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