1 Lecture 39: The substitution rule.

e Recall the chain rule and restate as the substitution rule.
e u-substitution, bookkeeping for integrals.
e Definite integrals, changing limits.

e Symmetry-integrating even and odd functions.

1.1 The substitution rule.
Recall the chain rule: If F/ = f and g is differentiable, then
(Fog)(x) = F(g(x))g (x).

We can restate this as:
The substitution rule. If F is an anti-derivative of f and ¢ is a differentiable
function, then F' o g(z) is an anti-derivative of (f o g)(z)¢'(x). In other words,

Fog@) = [ flg@))g/(x) da.

1.2 w-substitution

The Leibniz notation provides a convenient way to keep track of the substitution rule.
We let
u=g(x), du = ¢'(z)dx. (1)

To evaluate the indefinite integral

[ Fo@)g' (@) da

set u = g(x) and then du = ¢'(x)dxr making these substitutions gives

[ 19(@)g' (@) dw = [ f(w)du= F(u) = F(g(x)) + C
where F'is an anti-derivative for f. In a definite integral, we need to also change the
limits when x = a, then u = g(a) and when x = b, u = g(b). Thus, we have
b , 9(b)
|| Fong@ydr = [ ) du

An example will illustrate how we use this procedure.

Ezample. Find
/235 sin(z?) da.



Solution. Set u = x? and then du = 2xdz. Making the substitutions as in (1) gives

/235 sin(2?) dr = /sinudu = cosu + C = cos(z?) + C.

Exercise. Check our answer by differentiating.

Below is a slightly more interesting example. In this example, we do not find
exactly the derivative of u = g(x) hiding in the integral. However, we may multiply
the equation du = ¢'(z)dz by a constant and still use this method.

Ezample. Find

/(1_12:C)2dl'.

Solution. In this example, we only need to substitute by the linear function u =
1 — 2z and then du = (—2)dz. In this case, we need to divide by —2 to obtain
%du = dx. Then we obtain,

1 11 1 1
—  dr=— | —du=-u"t==
/(1—2@2 SRS L L

This works because if u = g(x) and v = cg(x), then we have dv = cdu = c¢¢'(z) dz
by the constant multiple rule for differentiation.

Ezxample. Try the substitution u = sin(z) in the integral

/sin(x) dx.

Solution. 1If u = sin(x), then du = cos(z) dx or dx = @ du. Thus we obtain

/Sin(x) dr = / co:(x) du

To evaluate this integral, we would need additional work to eliminate the z. Of
course, this is not the right away to evaluate this integral since

/sin(ac) dr = —cos(z) + C.

For now, we will only multiply the equation relating dz and du by constants. 1



Example. Find the integral

sin(z) cos(z) dz

Solution. If we set u = sin(z), then du = cos(z) dx and we have

/sin(:z:) cos(x) dxr = /ud:c = ;uQ +C = ;sinz(a:) +C.

If we set u = cos(z), then du = — sin(z) dz and we have
: L, L o
/sm(m) cos(x) dx = —/udx =—ut C= 35 cos () + C.

Check these answers. Explain why we have found two different answers. 1

1.3 Definite integrals.

To evaluate definite integrals, we have a choice. We may change the limits as described
above. Another approach is to separate the steps of finding the anti-derivative and
evaluating the anti-derivative. In this approach, we would use substitution to find
the indefinite integral and then evaluate to find the definite integral.

We give a simple example where we change limits.

Ezample. Find

4
/ V2zx + 1dzx.
1

Solution. Set u = 2z + 1 and then du = 2dz. If x = 1, then v = 3 and if x = 4,
then v = 9. Thus,

4 1 /9
/\/2x+1d:c = 5/ u'? du
1 3
1

_ 2 u2/3‘

23
1
= g(93/2 — 3% =9 -3

9
3



Here is a solution following the strategy of separating the steps.

Solution. Set u = 2z + 1 and then du = 2dx. If x = 1, then v = 3 and if x = 4,
then © = 9. Thus,

1
/\/Zx—i—ldx = §/u1/2du

12 3/2
= —— C
23u +

1
= §(2$ + 1)3/2 + C.

Now that we have the anti-derivative, we may use the Fundamental Theorem of
Calculus to obtain

4 1 i
/ V2r+ldr = < (20 +1)"? = Z(972 = 3%) = 9V,
1 1

Finally, we give an example where a bit more algebra is needed.

Example. Find the anti-derivative

/x\/Q:U + 1dx.

Solution. Again, we substitute u = 2z + 1 and du = 2dz or dz = fracl2du but this

leaves an x. We solve u = 27 + 1 to express x = %(u — 1). Making the substitutions,

2
we have
1 121 1 3/2 _ ,1/2
/x\/2x+1dx:/§(u—1)u iduzz/(u —u’?) du.

Taking the anti-derivative and then replacing u by 2z + 1 gives

2 52 2y 4

1 3/2 1/2
- _ du = =
4 /(“ %) du = o5u 12

And replacing u by 2z + 1 gives

1 1
/a; VIT T de == (20 + )72 = 220 +1)"2 + C.



1.4 Quadratic expressions

We recall several anti-differentiation formulae involving inverse trig functions.

1
dx = arcsin(x) + C, / T2 dx = arctan(z) + C

1
/ V1—2?
and
dx = arcsec(z) + C.

1
/ |z|Va? —1
Often we can reduce other integrals involving quadratic expressions to one of these
by a substitution.

Example. Find the indefinite integrals

1 1
de, [ g de
/x2—|—4 ! 42 4+9%"

Solution. In the first example, let = 2u, dr = 2du. With this we have a common
factor in the denominator and obtain

1 1 2 1 1 1
/M dxr = /4@524—4 2du = Z / m du = 5 arctan(u)—l—c = 5 arctan(Zx)—i—C’.
Check your answer by differentiating!!!

For the second example, we would like a common factor in the denominator. We
may write 422 +9 = 9(52? + 1). Thus if we substitute u = 2z/3 we will obtain a
familiar integral.

dx

/ 9 +14x2 - / 9((2x/;)2 1)

Now substituting u = 2/3 or du = 2dx, we obtain

1 1 1 1
) d:(: = § / M;du = 6 arctan(u) + C = 6 arCtan(sz/S) + C

1
/9((%/3)2 +1

Ezxample. Complete the square to find

1
—dx.
/\/2x—x2 *



Solution. If we complete the square, we may write 2r — 2?2 = 1 — (22 =2z + 1) =
1 — (z — 1)%. Thus, we have

[ e = |
——dx = x.
27 — 22 1—(z—-1)2

If we substitute v = x — 1, du = dx, we obtain

1
/m

dr = x = arcsin(u) + C' = arcsin(x — 1) + C.

/ﬁd

1.5 Further topics, symmetry

The substitution u = —x gives

/Oa f(z)de = /Oa f(—u) du.

If f is odd, or even, this simplifies further.
A function is even if f(—z) = f(z). For even functions we have

_C;f(:c) dx = 2/0af(x) dx.

A function is odd if f(—z) = —f(z) and for odd functions,

/a f(x)dx = 0.

—a

Example. Find

2 1 11
/ 2P+ 2* + o+ 2de / 2% sin(2'%) dx / xd.
-9 -1 —10

April 22, 2014



