Lecture 01: Integrate by parts

Russell Brown

Department of Mathematics University of Kentucky

Question 1.

Find the value of A in the expression below. Enter your answer as text.

$$\int x^2 e^x dx = x^2 e^x - 2xe^x + Ae^x.$$

Enter your answer as text.

Question 1.

Find the value of A in the expression below. Enter your answer as text.

$$\int x^2 e^x dx = x^2 e^x - 2x e^x + A e^x.$$

Enter your answer as text.

$$\int x^2 e^x dx = x^2 e^x - 2xe^x + 2e^x.$$

Thus, A = 2.

Question 2.

Find the anti-derivative

$$\int 5x \sin(2x) \, dx.$$

Let
$$u = 5x$$
 and $dv = \sin(2x) dx$

A
$$-\frac{5}{2}x\cos(2x) + \frac{5}{4}\sin(2x) + C$$

B
$$\frac{5}{2}x\cos(2x) - \frac{5}{4}\sin(2x) + C$$

$$C - \frac{5}{2}x\cos(2x) - \frac{5}{4}\sin(2x) + C$$

$$\frac{5}{2}x\cos(2x) + \frac{5}{4}\sin(2x) + C$$

 E None of the above +C

Question 2.

Find the anti-derivative

$$\int 5x \sin(2x) dx.$$

Let
$$u = 5x$$
 and $dv = \sin(2x) dx$

A
$$-\frac{5}{2}x\cos(2x) + \frac{5}{4}\sin(2x) + C$$

B
$$\frac{5}{2}x\cos(2x) - \frac{5}{4}\sin(2x) + C$$

$$C - \frac{5}{2}x\cos(2x) - \frac{5}{4}\sin(2x) + C$$

D
$$\frac{5}{2}x\cos(2x) + \frac{5}{4}\sin(2x) + C$$

E None of the above +C

A.

With our choice of u and dv, we have du = 5dx and $v = -\frac{1}{2}\cos(2x)$. Thus, we obtain

$$\int 5x \sin(2x) dx = -\frac{5}{2}x \cos(2x) + \frac{1}{2} \int 5 \cos(2x) dx$$
$$= -\frac{5}{2}x \cos(2x) + \frac{5}{4} \sin(2x) + C.$$