Lecture 06: Numerical integration

Russell Brown

Department of Mathematics University of Kentucky

Brown (University of Kentucky)

Question 1.

Find the exact value of the integral

$$\int_1^2 \frac{1}{x} \, dx.$$

٠

Type the name corresponding to the correct answer.

John 3/4 Paul 1/2 George In(2) Ringo 0.693

(B)

Question 1.

Find the exact value of the integral

$$\int_{1}^{2} \frac{1}{x} dx.$$

Type the name corresponding to the correct answer.

John 3/4 Paul 1/2 George In(2) Ringo 0.693

From the Fundamental Theorem of Calculus, we have $\int_{1}^{2} \frac{1}{x} dx = \ln(|x|)|_{x=1}^{2} = \ln(2) - \ln(1) = \ln(2)$. The decimal 0.693 is an approximation to the right answer.

4 15 14 15 15

< 6 b

Question 2.

Find the right sum R_4 for the integral

$$\int_{1}^{2} x \, dx.$$

Enter the exact answer as a fraction or decimal.

Image: A matrix and a matrix

Question 2.

Find the right sum R_4 for the integral

$$\int_{1}^{2} x \, dx.$$

Enter the exact answer as a fraction or decimal. We have four equal intervals of width 1/4. The right sum is

$$R_4 = \frac{1}{4}(\frac{5}{4} + \frac{6}{4} + \frac{7}{4} + 8/4) = 26/16 = 13/8 = 1.625.$$

The original version of this question was not worded correctly, so full credit was given for all numerical responses.

The Sec. 74

Question 3.

Use the error estimate for the trapezoid rule to find the smallest value of N for which we know that

$$|T_N - \int_1^4 \frac{1}{x} \, dx| \le 0.01.$$

Enter *N* as your answer.

Question 3.

Use the error estimate for the trapezoid rule to find the smallest value of N for which we know that

$$|T_N - \int_1^4 \frac{1}{x} \, dx| \le 0.01.$$

Enter *N* as your answer.

N = 22. We continue to have $|f''(x)| \le 2$ for $1 \le x \le 4$. From the error estimate we have

$$|E_{T}| \leq \frac{2 \cdot 3^{3}}{12N^{2}} = \frac{9}{2N^{2}}$$

Solving the inequality, $\frac{9}{2N^2} \le \frac{1}{100}$ we obtain $N^2 \ge 450$. The smallest positive integer that satisfies this inequality is N = 22 since $\sqrt{450} \approx 21.2$.

★ ∃ > < ∃ >