
1 Lecture 8: Interpolating polynomials.

1.1 Horner’s method

Before turning to the main idea of this part of the course, we consider how to evaluate
a polynomial.

Recall that a polynomial is an expression of the form

n∑
k=0

akx
k.

A naive program to evaluate this expression is

function p = polyval(a,x)

[rows cols] = size(a)

n = cols

p = 0

for k = 1:n

p = p + a(k)*(x^(k-1))

end

Note that since matlab indexes arrays from 1 to n, we end up with a polynomial of
degree n − 1,

anx
n−1 + . . . + a1.

This function uses n − 1 multiplications and n − 1 applications of the exponential
function x^k. As mentioned earlier in this class, this does not seem right because we
use the complicated exponential function in order to evaluate a simpler polynomial.
We can eliminate the exponential function by writing

function p = polyval(a,x)

[rows cols] = size(a)

n = cols

t = x

p = a(1)

for k = 2:n

p = a(k)*t + p

t = x*t

end

Note that this simplifies the program to only use 2n − 2 multiplications.
However, there is a slightly simpler way that is known as Horner’s method. This

is also the procedure behind synthetic division. To understand this last method,



observe that if pk(x) = anx
k + an−1x

k−1 + . . . + an−k, then we may set pk+1(x) =
x ∗ pk(x) + an−k−1 and simplifying we obtain that

pk+1 = anx
k+1 + an−1x

k + . . . + an−kx + an−k−1.

Thus the matlab function

function p = polyval(a,x)

%Use Horner to evaluate the polynomial

%a(1)x^(n-1) + a(2) x^(n-2) + ...+ a(n)

[rows cols] = size(a)

n = cols;

p = a(1);

for k = 2:n

p = p*x + a(k);

end

will return the value of

a(1)xn−1 + a(2)xn−2 + . . . + a(n).

This will require only n − 1 multiplications and may help to explain why matlab’s
built-in function polyval uses a(1) as the coefficient of the highest order term.

Exercise. Can you adapt this method to evaluate expressions of the form

n∑
k=0

ak(t1 · t2 . . . tk)?

Note that if ak = 1 for k = 0 . . . n, t0 = 1 and tk = x/k for k = 1 . . . n, this will give
a Taylor polynomial for the exponential function.

1.2 The interpolation problem.

Throughout this section, we are given a finite set of points in the plane, {(x0, y0), (x1, y1), . . . ,
(xn, yn)} and we ask if we can find a polynomial of degree n, pn so that pn(xk) = yk,
k = 0 . . . n. If such a polynomial exists, then we say that pn is an interpolating poly-
nomial for these points. The x coordinates are called the nodes. Note that we must
that the nodes are n + 1 different values in order for this to be possible: we cannot
expect to find a polynomial for p(x) takes two different values at one value of x. If the
values yk = f(xk) for some function f , we will speak about interpolating the function
f at the nodes x0 . . . xk

Why do we care? We list several applications of polynomial interpolation.



• This provides one way to approximate a general function by a simpler func-
tion. When we study numerical integration, we will see that we can produce
useful integration rules by interpolating a function by a polynomial, integrating
the polynomial and decreeing that the result is an approximate value for the
function.

• One can view interpolation as a means of data compression. Rather than store
a large table of values, say the value of sin(x) for all possible machine numbers
x (there are about 264 machine numbers!), we may store a few values and then
use an interpolating polynomial to compute the rest. Or, even better, we would
store a program to compute values of the interpolating polynomial. This is not
so far from what was done until the 1970’s when every advanced mathematics
textbook contained tables of values of trigonometric functions and students were
trained to use linear interpolation to compute sin x for angles that were not on
the table. It is also not so far from what goes on inside a chip today.

• Interpolating polynomials can also help in manipulating functions in other ways.
To approximate a derivative when we only have a few points, we can interpolate
and then differentiate the polynomial. To find the inverse, we can compute a
few pairs (xk, f(xk)) and then interpolate the pairs (f(xk), xk).

• Still we must be careful. High degree interpolating polynomials do not always
approximate the function very well. Thus, there are other techniques for ap-
proximating functions that we will need to study in the future.

Whenever we consider a new problem, we should ask: Does the problem have at
least one solution? Does it have more than one solution? To answer the first of these
questions, we recall a fundamental fact from algebra: A nonzero polynomial of degree
n has at most n roots. This is because for each root, r, we may find a factor (x − r)
and since the degree is n and a polynomial of can only have n such factors.

Theorem 1 (uniqueness) If we have two polynomials p and q which satisfy

p(xk) = q(xk), k = 0, . . . , n

then p(x) = q(x) for all x.

Proof. The polynomial p(x) − q(x) is of degree at most n and has n + 1 roots. The
only such polynomial is 0.

Exercise. The conclusion of the uniqueness theorem is that p and q are equal for all
x. If we write p(x) = a0 + a1x + . . . + anx

n and q(x) = b0 + b1x + . . . bnx
n, can we

conclude that aj = bj for j = 0 . . . n.



A more interesting question is: Does there exist an interpolating polynomial? One
way to think about this is to write

pn(x) = anx
n + . . . + a0.

Then the conditions

anx
n
0 + . . . a0 = y0

anx
n
1 + . . . a0 = y1

. . .

anx
n
n + . . . a0 = yn

give us a system of n + 1 equations for the n + 1 unknown coefficients. We can solve
this system if we know the determinant∣∣∣∣∣∣∣∣∣

1 x0 . . . xn
0

1 x1 . . . xn
1

1 xn . . . xn
n

∣∣∣∣∣∣∣∣∣
is nonzero. This is a well-known fact, the determinant is called the van der Monde
determinant and is nonzero when all the nodes are distinct. However, this is not the
most useful approach to finding the polynomial.

1.3 Lagrange polynomials.

One approach to finding interpolating polynomials is to first interpolate in the case
when only one of the yk’s is one and the rest are zero. We define the kth Lagrange
polynomial for the nodes {x0, . . . , xn} as the polynomial which has `k(xk) = 1 and
`k(xj) = 0 for j 6= k. This can be written simply as `k(xj) = δjk where δjk is the
Kronecker delta defined by

δjk =

{
1, j = k
0, j 6= k.

Our uniqueness theorem tells us that there can be at most one Lagrange polynomial.
We show that there is at least one by writing one down:

`k(x) = Πj 6=k
(x − xj)

(xk − xj)
.

Our assumption that the nodes are distinct tells us that we never divide by zero and
thus this formula has sense.

Exercise. How many multiplications and divisions are needed in order to evaluate
the Lagrange polynomial at one value of x?



Once we have the Lagrange polynomials, it is easy to see that interpolating poly-
nomials exist.

Theorem 2 Given n + 1 distinct nodes {x0, . . . xn} and values y0, . . . yn, we can find
an interpolating polynomial of degree n, pn which satisfies

pn(xk) = yk, k = 0 . . . n.

Proof. We may write the polynomial in the Lagrange form:

pn(x) =
n∑

k=0

`k(x)yk.

Example. Find the Lagrange polynomial for the nodes −h, 0, h. Use them to find a
polynomial for which p(0) = 2 and p(h) = p(−h) = 1.

Exercise. Use Lagrange polynomials and the method outlined above to find the
linear function which has p1(a) = ya and p1(b) = yb.

Exercise. How many multiplications does it take to evaluate the Lagrange form of
the interpolating polynomial? How many coefficients do we need to store?

1.4 Newton form of the interpolating polynomial.

In this section, we look at another form of the interpolating polynomial. This form
has the advantage that it is easy to evaluate as compared to the Lagrange form. And,
as we shall see, it is easy to compute the coefficients.

The Newton form of the interpolating polynomial is

pn(x) =
n∑

j=0

ajΠ
j−1
i=0 (x − xj). (1)

In the equation (1), the product Π−1
j=0(x − xj) is defined to be 1.

We make several observations:

• We may write this easily in nested form and thus it is easy to write a program
to evaluate this expression.

• If we only take the first k + 1 terms in pn,

pk(x) =
k∑

j=0

ajΠ
j−1
i=0 (x − xj),

then pk(xj) = pn(xj) for j = 0 . . . k. Thus we can find the coefficients a0 . . . ak

by solving a simpler interpolation problem.

Example. Write p2(x) in nested form for easy evaluation.



Solution. The solution is

p2(x) = ((x − x2) ∗ a2 + a1) ∗ (x − x1) + a0.

We describe how to find the coefficients aj in the Newton form. As before we have
n + 1 distinct nodes {x0, . . . xn} and we want to find pn, a polynomial of degree n
as in (1) so that pn(xk) = yk. If we substitute the nodes xk into pn, we obtain the
system of equations

a0 = y0

a0 + a1 ∗ (x1 − x0) = y1

a0 + a1 ∗ (x2 − x0) + a2 ∗ (x2 − x0) ∗ (x2 − x1) = y2

. . .
n∑

j=0

ajΠ
j−1
k=0(xn − xj) = yn

Note that this system is in triangular form and fairly easy to solve. If we know
a0 . . . ak, we can use the first k + 2 equations to obtain the coefficient ak+1.

Example. Find the Newton form of the interpolation polynomial for the table

x y
1 1
2 0
4 4

Solution. We are looking for a second degree polynomial of the form

p2(x) = a0 + a1(x − 1) + a2(x − 1)(x − 2).

Since p2(1) = a0, he condition p2(1) = 1 tells us a0 = 1. Then p2(2) = a0+a1(2−1) =
1 + a1 so the equation p2(2) = 0 tells us a1 = −1. To find a2 we have

p2(4) = a0 + a1 ∗ 3 + a2 ∗ 3 ∗ 2 = −2 + a2 ∗ 6 andp2(4) = 4.

which implies that a2 = 1. Thus the Newton form is

p2(x) = 1 − (x − 1) + (x − 1)(x − 2).

The above polynomial simplifies to p2(x) = (x−2)2 and it is easy to check that this is
correct. Note that the simplification is helpful for human computation. For machine
computation, we prefer to use the nested form.



1.5 Divided differences

In this section, we observe a simple way to compute the coefficients aj in the Newton
form of the interpolating polynomial. For this section, we suppose that we have
distinct nodes {x0 . . . xn} and that we have a function f . Our interpolation problem
is to find a polynomial pn(x) so that p(xk) = f(xk).

As we observed in the previous section, the coefficient ak in the Newton polynomial
depends only on the nodes (x0, . . . , xk) and the f(x0) . . . f(xk). We introduce the
notation

ak = f [x0, . . . xk].

For reasons which will become clear, we call f [x0, . . . xk] a kth divided difference of
f . The following two facts serve as a basis for inductively computing the divided
differences.

We begin with the easy bit.

Proposition 1 f [xk] = f(xk)

Exercise. Find f [x0, x1].

More interesting is the following:

Theorem 3 The divided differences satisfy

f [x1, . . . xk] − f [x0, . . . , xk−1]

xk − x0

= f [x0, . . . , xk].

Proof. Let pk interpolate f at x0 . . . xk. Let pk−1 interpolate f at x0 . . . xk−1 and let
q interpolate f at x1 . . . xk. By the definition of the divided difference, we have

• f [x0, . . . , xk] is the coefficient of xk in pk.

• f [x0 . . . xk−1] is the coefficient of xk−1 in pk−1.

• f [x1 . . . xk] is the coefficient of xk−1 in q(x).

One may verify that

r(x) = q(x) +
x − xk

xk − x0

(q(x) − pk−1(x))

interpolates f at x0 . . . xk. At x0, we have r(x0) = q(x0) − (q(x0) − pk−1(x0)) =
pk−1(x0). At x1 . . . xk, r(xj) = q(xj) for j = 1 . . . k. Thus by uniqueness,

pk(x) = q(x) +
x − xk

xk − x0

(q(x) − pk−1(x)).

Examining the coefficient of xk on each side gives the conclusion of the proposition.



These propositions are the basis of a simple scheme to compute the coefficients in
the Newton polynomial. We work through one example by hand.

Example. Find the interpolating polynomial for the values

x 1 2 4 6
y −1 0 8 64

Solution. We use the divided difference table as follows:

k x y f [xk, xk+1] f [xk, xk+1, xk+2] f [xk, . . . , xk+3]
0 1 −1 1 1 1
1 2 0 4 6
2 4 8 28
3 6 64

The coefficients ak for the Newton form of the polynomial are in the top row.

p3(x) = −1 + 1 ∗ (x − 1) + 1 ∗ (x − 1) ∗ (x − 2) + 1 ∗ (x − 1) ∗ (x − 2) ∗ (x − 4).

Which simplifies to pn(x) = (x − 2)3.

Exercise. If p5(x) is a polynomial of degree 6 and x0, . . . , x10 are distinct nodes,
explain why all the 6th order divided f [xj, . . . , xj+6] differences are zero. Explain
why all the fifth order divided differences f [xj, . . . , xj+5] are the same.

November 25, 2004


