MA/CS 321:001 MWF 11:00-11:50 FB 213 Fall 2004 TOPICS COVERED. Instructor: Russell Brown Office: POT741 Phone: 257-3951 russell.brown@uky.edu

- Horner's method.
- Polynomial interpolation. Lagrange form, Newton form, uniqueness and divided differences.
- Error estimates for polynomial interpolation. Proof and applications. You do not need to memorize the statements of the theorems I and II on error in polynomial interpolation. You should be familiar with the steps in the proof.
- Computing derivatives. Using extrapolation to improve error bounds.
- Simpson's rule, trapezoid rule. Error estimates. You do not need to memorize the error estimates.

Some suggestions.

- Study your lecture notes.
- Study your homework and solutions.
- Be sure that you understand the reasoning used.
- If needed, the four theorems on error, two for polynomial interpolation, one for the trapezoid rule and one for Simpson's rule, will be provided for you on the exam.
- You should know the basics of Taylor series and computer arithmetic from the first part of the course.

SAMPLE PROBLEMS

1. Give the value that ff(2) returns where ff is the matlab function:

```
function u = ff(x)
u = 0;
for k=1:4
    u = (k+1) + x*u
end
```

- 2. Write out the Lagrange form of the interpolating polynomial, p_2 for the values f(1) = 2, f(3) = 0 and f(5) = 0. Find $\int_1^5 p_2(x) dx$.
- 3. Suppose that we use an interpolating polynomial of degree n, $p_n(x)$ with equally spaced nodes to approximate $\cos(3x)$ on [0, 1]. How many nodes do we need to ensure that $|\cos(x) p_n(x)| \le 10^{-3}$?
- 4. Suppose that all derivatives of f exist on the interval [a, b]. If f(a) = f'(a) = f(b) = f'(b) = 0, find the largest index k for which we can prove that there is a ξ in (a, b) so that $f^{(k)}(\xi) = 0$.

Let k be the index you found above. Can you find an example of a function which satisfies the conditions in the first part of this problem and where $f^{(k+1)}(\xi)$ is not zero? Hint: Try a polynomial on [0, 1] where the k + 1st derivative is constant.

- 5. Can you find a polynomial which satisfies p(0) = 1, p'(0) = 2 and p(1) = 3?
- 6. Find the polynomial of lowest degree which satisfies p(0) = 1, p(1) = 2, p(3) = 4 and p(5) = 6.
- 7. Complete the divided difference table and write out the Newton form of the interpolating polynomial for the following table.

- 8. State the uniqueness theorem for polynomial interpolation.
- 9. Find a value of α so that

$$\frac{f(x+h) - f(x-2h)}{h}$$

approximates $\alpha f'(x)$ as $h \to 0$. Suppose that all derivatives of f exist. Find an expression for the error.

10. Can you find α and β so that

$$\frac{\alpha f(x+3h) + \beta f(x+h) - f(x-2h)}{4h} = f'(x) + O(h)?$$

Hint: Expand everything on the left in a Taylor series.

11. Suppose that

$$\phi(h) = L + \sum_{j=1}^{\infty} a_j h^{3j}.$$

Can you find a combination of $\phi(h)$ and $\phi(-h)$ which approximates L with an error term of the form $O(h^6)$?

Can you find a combination of $\phi(h)$ and $\phi(h/2)$ which approximates L with an error term of the form $O(h^6)$?

12. Use Simpson's rule with n = 4 to approximate

$$\int_{1}^{2} \cos(x) \, dx$$

13. Criticize the following argument.

Let f be a differentiable function on [-1, 1]. By the mean-value theorem, $f(x) = f(0) + f'(\xi)x$. Thus, we can integrate and obtain that

$$\int_{-1}^{1} f(x) \, dx = \int_{-1}^{1} f(0) \, dx + f'(\xi) \int_{-1}^{1} x \, dx = 2f(0).$$

14. How many subintervals do we need to use the trapezoid rule to approximate

$$\int_{1}^{2} \frac{1}{x} dx$$

with an error of at most 10^{-3} .

15. Answer the previous question for Simpson's rule.

October 29, 2004