MA575 MWF 9-9:50pm CB 343 Fall 2006 Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

Due Friday, 22 September 2006

- 1. (Beals p. 33) Suppose that $x_1 = 1$ and $x_{n+1} = 1 + 1/x_n$. Prove that the sequence converges and find its limit.
- 2. (Beals p. 35) For each of the following sequences $\{x_n\}_1^\infty$ determine $y_n = l.u.b.\{x_k : k \ge n\}$ and $z_n = g.l.b.\{x_k : k \ge n\}$ and then find $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$.
 - (a) $x_n = (-1)^n + \frac{1}{n}$
 - (b) $x_n = (-1)^n \frac{1}{n}$
 - (c) $x_n = (-1)^n (1 + \frac{1}{n})$
- 3. (Rudin, page 81) Fix a positive number α and choose $x_1 > \sqrt{\alpha}$. For $n \ge 2$, define x_n by the recursion formula

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right).$$

- (a) Prove that x_n decreases monotonically and that $\lim_{n\to\infty} x_n = \sqrt{\alpha}$.
- (b) Put $\epsilon_n = x_n \sqrt{\alpha}$ and show that

$$\epsilon_{n+1} = \frac{\epsilon_n^2}{2x_n} < \frac{\epsilon_n^2}{2\sqrt{\alpha}}, \qquad n = 1, 2 \dots$$

(c) Show that we have

$$\epsilon_{n+1} < 2\sqrt{\alpha} \left(\frac{\epsilon_1}{2\sqrt{\alpha}}\right)^{2^n}.$$

- (d) The above procedure allows us to approximate $\sqrt{\alpha}$ quickly and efficiently. Use the above results to give an estimate for the errors ϵ_4 and ϵ_5 when $\alpha = 2$ and $x_1 = 3/2$. The best solutions will not require the use of a calculator.
- 4. Suppose that $\{a_n\}$ and $\{b_n\}$ are bounded real sequences.
 - (a) Prove that $\limsup_{n \to \infty} (a_n + b_n) \le \limsup_{n \to \infty} a_n + \limsup_{n \to \infty} b_n$.
 - (b) Show by example that strict inequality may occur in the result in part (a).
 - (c) Is it possible to have strict inequality if one of the sequences, say $\{a_n\}$ is convergent?

- 5. (Beals p. 38) Suppose that $\{z_n\}$ is a complex sequence with limit z. Define w_n to be the arithmetic mean of the first n terms in the sequence z_n , $w_n = \frac{1}{n} \sum_{j=1}^n z_j$. Show that $\lim_{n\to\infty} w_n = z$. Hint: You may reduce to the case z = 0 by replacing z_n by $z_n z$.
- 6. Can you find a sequence $\{z_n\}$ which is not convergent, but so that the sequence of means $\{w_n\}$ defined in the previous exercise are convergent?

Additional questions. (Not to be collected.)

- 1. Show that if z and w are complex numbers, then $||z| |w|| \le |z w|$.
- 2. If z_n is a convergent sequence, can one prove that $|z_n|$ is a convergent sequence?
- 3. If z_n^2 is a convergent sequence, can one prove that z_n is a convergent sequence?