MA575 MWF 9-9:50pm CB 343 Fall 2006

Due Thursday, 5 October 2006.

Our exam will be on 13 October 2006. The examination will cover through Chapter 4/Lecture 16.

For the exam, you should be prepared to state a definition, state and prove a theorem, solve a problem and give an example.

- 1. Find $l.u.b. \mathbf{R}$ and $l.u.b. \emptyset$.
- 2. Omitted.
- 3. (Beals, page 44) The Fibonacci sequence is the sequence $\{F_n\}$ defined by $F_1 = F_2 = 1$ and

$$F_{n+2} = F_{n+1} + F_n \tag{1}$$

for N = 3, 4, ...

- (a) Find values of r so that the sequence $F_n = r^n$ satisfies (1).
- (b) Suppose that x_n and y_n satisfy (1) and a and b are complex numbers. Show that $z_n = ax_n + by_n$ satisfies (1).
- (c) Find a, b, r, and s so that

$$F_n = ar^n + bs^n, \qquad n = 1, 2, \dots$$

- 4. (Beals, p. 48) Suppose that a series $\sum_{n=1}^{\infty} x_n$ has $x_1 \ge x_2 \ge x_3 \dots$ and $x_n \ge 0$ for all n. Show that if $\sum x_n$ converges, then $\lim_{n\to\infty} nx_n = 0$.
- 5. Suppose that $\{x_n\}_1^\infty$ is a sequence with positive terms. Show that $\lim_{n\to\infty} x_n = \infty$ if and only if $\lim_{n\to\infty} 1/x_n = 0$.
- 6. (Beals, page 53) Determine if the following series converge. You may use the integral test, if necessary.

(a)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1 \cdot 3 \cdot 5 \dots (2n-1)}{2 \cdot 4 \cdot 6 \dots (2n)}$$

(c)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \dots (2n)}{1 \cdot 3 \cdot 5 \dots (2n+1)}$$

Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

(d)
$$\sum_{n=1}^{\infty} (n^{1/n} - 1)$$

Additional questions

- 1. (Beals) Suppose that $\{x_n\}_{n=1}^{\infty}$ is a bounded real sequence and $b = \limsup_{n \to \infty} x_n$. Show that there is a monotone sequence converging to b.
- 2. Find the value of the series $\sum_{n=1}^{\infty} \frac{1}{n^3}$.
- 3. This problem gives another way to define the sum of a series with non-negative terms. Consider a series Σx_n with $s = \sum_{n=1}^{\infty} x_n$. For a finite set $A \subset \mathbf{N}$ we define the sum $\sigma_A = \sum_{n \in A} x_n$. Then, we put $\sigma = l.u.b.\{\sigma_A : A \text{ is a finite subset of } \mathbf{N}\}$. If $\sum_{n=1}^{\infty} x_n$ is a series with $x_n \geq 0$ show that the series converges if and only if σ is finite. If the case that the series converges, show that $s = \sigma$.
- 4. Let $\{x_n\}$ and $\{y_n\}$ be bounded sequences and suppose that $x_n \leq y_n$ for every n. Can you show that

$$\limsup x_n \le \liminf y_n?$$