MA575 MWF 9-9:50pm CB 343 Fall 2006 Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

Homework 6. Due Monday, 6 November 2006.

1. (Beals p. 66) Define a function $d_p(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n$ by

$$d_p(x,y) = (\sum_{j=1}^n |x_j - y_j|^p)^{1/p}.$$

If we identify points $x = (x_1, x_2)$ in \mathbb{R}^2 with complex numbers by $x = x_1 + ix_2$, then it is easy to see that $d_2(x, y) = |x - y|$ and thus, d_2 is a metric (Beals, Chapter 2D, Proposition 2.14 or Lecture 5, Proposition 4).

- (a) Prove that d_1 is a metric on \mathbf{R}^2 .
- (b) Find constants A > 0 and B > 0 so that

$$A d_1(x, y) \le d_2(x, y) \le B d_1(x, y).$$

2. Let d_1 and d_2 be two metrics defined on a set X. We say that d_2 is the master of d_1 if for each $\epsilon > 0$ there is an $\eta > 0$ so that for all x and y in X, $d_2(x, y) < \eta$ implies $d_1(x, y) < \epsilon$.

If d_1 is the master of d_2 and d_2 is the master of d_1 , then we say the d_2 and d_1 are equivalent metrics.

- (a) Let $\{x_n\}_{n=1}^{\infty}$ be a sequence and suppose that d_2 is the master of d_1 . If $\{x_n\}$ converges in the metric space (X, d_2) , show that $\{x_n\}$ converges in the metric space (X, d_1) .
- (b) Show that the standard metric on **R**, d(x, y) = |x y| and the metric d'(x, y) = |x y|/(1 + |x y|) are equivalent.
- 3. Let x be a point in a metric space X and r > 0. Prove that the set $F = \{y : d(x, y) \le r\}$ is closed and that the set $G = \{y : d(x, y) > r\}$ is open.
- 4. (Beals, p. 81) Prove that the union of two compact sets is again compact.
- 5. (Beals, p. 81) Prove that a compact set in a metric space is, like, totally bounded.
- 6. Let A be a subset of a metric space (X, d). We may define distance from a point $x \in X$ to the set A by

$$d_A(x) = \inf\{d(x, y) : y \in A\}.$$

Prove that $cl(A) = \{x : d_A(x) = 0\}.$

- 7. Suppose that a sequence $\{x_n\}$ has limit x. Prove that the set $\{x, x_1, x_2, \ldots\}$ is compact.
- 8. Let A be a subset of a metric space. Do we have $(int(A^c))^c = cl(A)$?
- 9. (Beals, p. 84) Let $\{x_n\}$ be a sequence in metric space and suppose that $\sum_{n=1}^{\infty} d(x_n, x_{n+1})$ is finite, prove that the sequence $\{x_n\}$ is Cauchy.
- 10. (Beals, p. 84) (Banach fixed point theorem) Suppose that X is a metric space. A function $f: X \to X$ is a *contraction* if there is constant θ with $0 \le \theta < 1$ so that

$$d(f(x), f(y)) \le \theta d(x, y), \qquad x, y \in X.$$

Show that if X is complete, then a contraction has a unique fixed point. A fixed point is a solution of the equation f(x) = x. Hint: Define a sequence by choosing x_0 and then putting $x_{n+1} = f(x_n)$.

Additional questions

- 1. If $\lim_{n\to\infty} d(x_n, x_{n+1}) = 0$ is the sequence $\{x_n\}$ a Cauchy sequence?
- 2. Let $\{x_n\}$ be a sequence with $x_n < 0$ for every n. If $\lim_{n\to\infty} x_n = x$, must we have x < 0?
- 3. Prove that the metric d_p defined in problem 1, is a metric if $1 \le p < \infty$.
- 4. For the metrics d_p defined in problem 1, find $d_{\infty}(x, y) = \lim_{p \to \infty} d_p(x, y)$. Show that d_{∞} is a metric.
- 5. If $z \in F$ and F is a closed set in a metric space, is z a limit point of F?
- 6. If F is a finite subset of a metric space, is F closed?

October 27, 2006