Theory of partial differential equations MWF 9-9:50am CB343 Spring 2013 Instructor: Russell Brown Office: POT741 Phone: 257-3951 russell.brown@uky.edu Office Hours: MWF 10-11 and by appointment.

Homework 1, due on Wednesday, 16 January 2013

1. Suppose that X and Y are normed linear spaces and that $T: X \to Y$ is a linear map. Show that T is continuous if and only if there is a constant C so that $||Tx||_Y \leq C ||x||_X$.

Is this true if T is not linear?

- 2. Can you find a (real) linear map $T : \mathbf{R}^n \to \mathbf{R}$ that is not continuous?
- 3. Let $\phi : [0,1] \to [0,1)$ be a continuous function with $\phi(0) = 0$ and $\phi(x) > 0$ if x > 0. Suppose that $U = ((-1,0) \times (-1,1)) \cup ([0,1) \times (-1,0)) \cup V$ where $V = \{(x,y) : 0 \le x < 1, \phi(x) < y < 1\}.$
 - Fix $\beta > 0$ and let $f(x, y) = \begin{cases} x^{1+\beta}, & (x, y) \in V \\ 0, & U \setminus V \end{cases}$
 - (a) Show that $f \in C^1(\overline{U})$.
 - (b) If f is in $C^{0,\alpha}(\overline{U})$ for some $\alpha > 0$, what does this tell us about ϕ ?
 - (c) Conclude that the inclusion $C^1(\overline{U}) \subset C^{0,\alpha}(\overline{U})$ may fail for any α in (0,1].
- 4. If $U \subset \mathbf{R}^n$ is convex, bounded, and open, show that $C^1(\overline{U}) \subset C^{0,1}(\overline{U})$.
- 5. Speculate as to what assumption on U implies the inclusion

$$C^1(\bar{U}) \subset C^{0,1}(\bar{U}).$$

According to problem (3), we have this containment in a convex domain. Can you give a more general assumption that also gives this containment?

- 6. Let $f(x) = (2 \log |x|)^{\alpha}$ in $B(0, 1) \subset \mathbf{R}^n$.
 - (a) Show that for $n \ge 2$, the ordinary derivative of f in $B(0,1) \setminus \{0\}$ coincides with the weak derivative.
 - (b) For which α is f in $W^{1,n}(B(0,1))$?

Week 1.

• Banach spaces, Evans, Appendix D, page 719.

- Hölder spaces, Evans, §5.1
- Weak derivatives, Sobolev spaces, $\S5.2$

January 14, 2013