Theory of partial differential equations MWF 9-9:50am CB343 Spring 2013 Instructor: Russell Brown Office: POT741 Phone: 257-3951 russell.brown@uky.edu Office Hours: MWF 10-11 and by appointment.

Homework 6, due on 29 March 2013

1. Let $J: W_0^{1,2}(U) \to W^{-1,2}(U)$ be the map used in the proof of Theorem 2, Lecture 17 and defined by

$$\langle J(u), v \rangle = \int_U uv \, dx.$$

The adjoint is naturally defined as a map $J^*: W^{-1,2}(U)^* \to W^{-1,2}(U)$. But if we let $I: W_0^{1,2}(U) \to W^{-1,2}(U)^*$ be the isomorphism given by $I(u)(v) = \langle v, u \rangle$, we may consider $J^* \circ I: W_0^{1,2}(\Omega) \to W^{-1,2}(\Omega)$. Give a simple description of the map $J^* \circ I$.

Hint: This is really easy, once you figure out what the problem asks.

- 2. Evans #4. Hint: Consider the form $B(u, v) = \int_U \nabla u \cdot \nabla v \, dx$. This form is not coercive on $W^{1,2}(U)$. However, if ∂U is C^1 , then the form is coercive on the subspace $W^{1,2}(U) \cap \{u : \int u \, dx = 0\}$. Why? Note the standing assumption that ∂U is smooth which appears at the beginning of the problem section of Chapter 6.
- 3. Evans, #6.
- Read section 6.3 on regularity for weak solutions of elliptic equations.

March 20, 2013