
Theory of partial differential equations Instructor: Russell Brown
MWF 9-9:50am Office: POT741
CB343 Phone: 257-3951
Spring 2013 rbrown@uky.edu

Office Hours: WF1-2pm
and by appointment.

The goal of this assignment is to dip your toe into the mathematical research
literature. Be careful, or you might be swept away!!

Below is a list of suggested papers. Read one of the following papers and un-
derstand enough to fill a 40–50 minute talk. You should be able to state the main
question considered in the paper and the author’s solution. Give a sketch of the proof.

You may select another paper which covers original research in mathematics. All
selections should be discussed with Brown before being finalize. I plan to schedule
presentations during dead week and ask that the class plan to attend most of the
presentations.

• Select paper in consultation with Brown, 1 February.

• February and March, read paper and meet occasionally to discuss questions.

• April write draft lecture notes and have a fellow student and Brown give sug-
gestions.

• Dead week, 24–28 April. Presentations.
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