Theory of partial differential equations MWF 9-9:50am CB343 Spring 2013 Instructor: Russell Brown Office: POT741 Phone: 257-3951 russell.brown@uky.edu Office Hours: MWF 10-11 and by appointment.

Test 1.

Do not discuss these questions with anyone but your instructor. Give unambiguous citations if you consult a written source.

Due Friday, 8 March 2013. But late papers will be accepted until 15 March 2013.

- 1. Fix p with $1 . Suppose that <math>\{u_k\}_{k=1}^{\infty}$ is a sequence in $W^{1,p}(U)$, that $\{u_k\}$ converges weakly in $L^p(U)$ to u and for $j = 1, \ldots, n$, $\{D_j u_k\}_{k=1}^{\infty}$ converges weakly in $L^p(U)$ to f_j . Show that u is weakly differentiable and $D_j u = f_j$.
- 2. Let $\{f_k\}$ be a bounded sequence in $L^2([0,1])$ and suppose that $\{f_k\}$ converges weakly to f. If we also have that $\lim_{k\to\infty} ||f_k||_{L^2([0,1])} = ||f||_{L^2([0,1])}$, show that $\{f_k\}$ converges to f in $L^2([0,1])$. Hint: Use the FOIL method.
- 3. Evans, p. 308, #18.
- 4. Let η be a smooth function supported in the unit ball with $\int \eta \, dx = 1$, let $\eta_{\epsilon}(x) = \epsilon^{-n} \eta(x/\epsilon)$, and let $u_{\epsilon} = \eta_{\epsilon} * u$.
 - (a) If $u \in C^{0,\beta}(\mathbf{R}^n)$ with $0 < \beta < 1$. If α is a multi-index with $|\alpha| \ge 1$, show that we have

$$\sup_{x \in \mathbf{R}^n} |D^{\alpha} u_{\epsilon}(x)| \le C \epsilon^{\beta - |\alpha|} [u]_{\beta; \mathbf{R}^n}$$

and

$$\sup_{x \in \mathbf{R}^n} |u(x) - u_{\epsilon}(x)| \le C \epsilon^{\beta} [u]_{\beta; \mathbf{R}^n}.$$

(b) Conversely, suppose that u is a function and for each $\epsilon>0$ we have $u=u_\epsilon+u^\epsilon$ with

$$\sup |Du_{\epsilon}(x)| \leq A\epsilon^{\beta-1}$$
$$\sup |u^{\epsilon}(x)| \leq A\epsilon^{\beta}.$$

Show that $[u]_{\beta;\mathbf{R}^n}$ is finite and $[u]_{\beta;\mathbf{R}^n} \leq CA$.

5. Let U be a bounded, connected, open subset of \mathbb{R}^n . What can you say about the dual of $W_0^{1,p}(U)$?

March 4, 2013