MA676 MWF 2-2:50pm CB 347 Spring 2007 Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

Exercise set 5.

- 1. If Z is of measure zero in **R**, what can you say about the measure of $\mathbf{R} \times Z$?
- 2. (Stein, p. 42) (Borel-Cantelli lemma) Suppose $\{E_k\}_{k=1}^{\infty}$ is a countable sequence of measurable subsets of \mathbf{R}^n . Let $E = \limsup_{k \to \infty} E_k = \bigcap_{j=1}^{\infty} (\bigcup_{k=j}^{\infty} E_k)$.
 - (a) Show that E is measurable.
 - (b) If

$$\sum_{k=1}^{\infty} |E_k| < \infty.$$

Prove that |E| = 0.

3. Can you find a sequence of measurable sets $E_1 \supset E_2 \supset E_3 \dots$ so that we do not have

$$\lim_{j \to \infty} |E_j| = |E|?$$

Here, $E = \bigcap_{j=1}^{\infty} E_j$.

4. Prove that if E_1 and E_2 are measurable, then

$$|E_1 \cup E_2| = |E_1| + |E_2| - |E_1 \cap E_2|.$$

How does this generalize to three sets?

- 5. (Rudin) (Challenging) Can you find a σ -algebra which consists of a countably infinite number of sets?
- 6. (Wheeden and Zygmund) Define the inner measure of a set E by

$$|E|_i = \sup\{|F| : F \subset E, F \text{ is closed}\}.$$

Show that for a set E with $|E|_e < \infty$, E is measurable if and only if $|E|_e = |E|_i$.

Problem set 5.

The problems will be due on Wednesday, 21 February 2007.

1. (Stein, p. 41) Suppose that $A \subset B \subset C$ and that A and C are measurable. If $|A| = |C| < \infty$, show that B is measurable.

- 2. Let C be the σ -algebra generated by the closed sets. Show that C = B where B is the Borel σ -algebra.
- 3. If $E_j \subset \mathbf{R}$ is Lebesgue measurable for j = 1, 2 show that the set $E_1 \times E_2$ is Lebesgue measurable in \mathbf{R}^2 . Hint: Use that a set E is of measurable if and only if $E = H \cup Z$ where H is an F_{σ} .

May 1, 2007