MA677 MWF 10-10:50pm CB 345 Fall 2007 Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

The following problems will be due on 26 November 2007.

- 1. #16, page 191 of Wheeden and Zygmund.
- 2. Let \mathcal{B} denote the Banach space \mathbf{R}^2 with the norm $||x|| = |x_1| + 2|x_2|$. If $v \in \mathbf{R}^2$, then it is clear that $\lambda_v(x) = v_1 x_1 + v_2 x_2$ lies in the dual of \mathcal{B} . Find the norm of λ_v in the dual space \mathcal{B}^* .
- 3. Let *B* be a Banach space over **C** with norm $\|\cdot\|$. The Hahn-Banach theorem tells us that if $\ell: V \to \mathbf{C}$ is a linear map on a subspace *V* of *B* and $|\ell(f)| \leq C ||f||$ for all $f \in V$ and some $C < \infty$, then we may find an extension $\tilde{\ell}: B \to \mathbf{C}$ so that $|\tilde{\ell}(f)| \leq C ||f||$ for all $f \in B$.
 - (a) Consider $L^1(\mathbf{R})$ and $L^{\infty}(\mathbf{R})$ with respect to Lebesgue measure. Use the Hahn-Banach theorem to show that the dual of $L^{\infty}(\mathbf{R})$ is not $L^1(\mathbf{R})$. To do this define $\delta : C_c(\mathbf{R}) \to \mathbf{C}$ by $\delta(\phi) = \phi(0)$ and use the Hahn-Banach theorem to construct an extension $\tilde{\delta} : L^{\infty}(\mathbf{R}) \to \mathbf{C}$.
 - (b) Show that we cannot find a function in L^1 so that

$$\delta(\phi) = \int_{\mathbf{R}} f(x)\phi(x) \, dx.$$

Hint: Suppose such an f exists and show that f must vanish a.e.

(c) (Extra credit) Show that there are uncountably many different extensions of δ to L^{∞} .

November 14, 2007