MA677 MWF 10-10:50pm CB 345 Fall 2007 Instructor: Russell Brown Office: POT741 Phone: 859 257 3951 russell.brown@uky.edu

The following problems will be due on 5 October.

- 1. Suppose X is a separable Hilbert space and $A \subset X$ is a set that satisfies ||x y|| = 1 for $x, y \in A$ and $x \neq y$. Show that A is at most countable.
- 2. Let p satisfy $1 and suppose that f is in <math>L^p(E)$. Define

$$g(x) = \begin{cases} f(x), & |f(x)| \le M\\ 0, & |f(x)| > M \end{cases}$$

For which q do we have $g \in L^q(E)$?

3. (Riemann Lebesgue Lemma) Suppose that f is in $L^1([0, 2\pi])$. Prove that

$$\lim_{k \to \infty} \int_0^{2\pi} f(x) e^{-ikx} \, dx = 0.$$

Hint: We know this holds if f is in L^2 . Can you approximate an L^2 function by an L^1 function?

4. Let $\{f_k\}$ be a sequence in $L^p(E)$. We say that the sequence $\{f_k\}$ converges weakly to f if

$$\lim_{k \to \infty} \int f_k g \, dx = \int f g$$

for all g in $L^{p'}$. Suppose that $\{f_k\}$ converges to f in L^p . Show that $\{f_k\}$ converges weakly to f.

5. Suppose that $\{f_k\}$ is a sequence in L^2 and that f_k converges weakly to f. Show that if $||f_k||$ converges to $||f||_2$, then we have that $\{f_k\}$ converges in L^2 .

Can you find an example where $\{f_k\}$ converges weakly to 0, but $||f_k||_2 = 1$ for all k?

October 2, 2007