Professor Readdy Math 322 Fall 2024

Review for the Second Exam $(\S3.1 \text{ through } \S4.7)^1$

 1. Cofactor definition of determinant: Compute
 $\begin{vmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{vmatrix}$

2. **Properties of determinants:** Suppose $|M| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = -4$. Find the determinant of each

of the following matrices. In each case, be sure to explain how you are getting your answer.

(a)
$$A = \begin{bmatrix} c & b & a \\ f & e & d \\ i & h & g \end{bmatrix}$$
.
(b)
$$B = M^3$$

(c)
$$C = (2M)^{-1}$$
.

3. More properties:

- (a) Is the matrix in problem 1 invertible?
- (b) Give an example of a 3×3 matrix B whose determinant is 322
- (c) Give an example of a 3×3 matrix C with $|CC^T| = 2$.

4. Cramer's rule, matrix inverse and volume:

- (a) Use Cramer's rule to solve $A\mathbf{x} = \mathbf{b}$, where $A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$
- (b) Find the area of the parallelogram with vertices (-1, 0), (0, 5), (1, -4) and (2, 1)
- (c) Find the area of the parallelepiped with vertices (-1, 0, 4), (0, 5, 4), (1, -4, 4) and (2, 1, 4)

5. Miscellaneous determinant questions:

True or False. Justify your answer.

- (a) If A and B are $n \times n$ matrices with det A = 2 and det B = 3 then det (A + B) = 5.
- (b) det $AA^T \ge 0$.
- (c) If $A^3 = 0$ then det A = 0.
- (d) Any system of n linear equations and n variables can be solved by Cramer's rule.

6. Two more determinant questions:

(a) Use row operations to show $\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (b-a)(c-a)(c-b).$

(b) Prove the determinant of an $n \times n$ upper triangular matrix is the product of the diagonal entries.

¹The exam is Friday, November 22, 2024 9:00 am - 9:50 am in our classroom.

7. Vector spaces and subspaces:

Determine if the given set V is a subspace of the vector space W, where

(a) $V = \{\text{polynomials of degree at most } n \text{ with } p(0) = 0\}$ and $W = \{\text{polynomials of degree at most } n\}$.

(b)
$$V = \left\{ \begin{bmatrix} x \\ y \end{bmatrix} : x \ge 0, y \ge 0 \right\}$$
 and $W = \mathbb{R}^2$.

- (c) V = span of any two fixed vectors **a** and **b** in \mathbb{R}^3 and $W = \mathbb{R}^3$.
- (d) V = the set of all vectors in \mathbb{R}^2 with integer coefficients and $W = \mathbb{R}^2$.

(e) $V = \{ all diagonal n \times n matrices with real entries \}$ and $W = all n \times n matrices with real entries.$

8. Null space, column space, basis, linear independent sets Suppose a matrix A is row equivalent to the following matrix:

$$\left[\begin{array}{rrrrrr} 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right]$$

- a. The $\operatorname{Col}(A)$ is a subspace of \mathbb{R}^a (find a).
- b. The Row(A) is a subspace of \mathbb{R}^b (find b).
- c. The null space of A is a subspace of \mathbb{R}^c (find c).
- d. The dimension of the column space, row space and nullspace of A is...

9. Null space, column space, basis, linear independent sets

(a) Find a basis for the null space, column space and row space of the matrix $A =$	1	3	1	4
	2	7	3	9
	1	5	3	1
	1	2	0	8

(b) Let $M_{2\times 2}$ be the vector space of all 2×2 matrices. Define $T: M_{2\times 2} \to M_{2\times 2}$ by $T(A) = A^T$.

- (i) Show T is a linear transformation.
- (ii) What is the range of T?
- (iii) Describe the kernel of T.
- (c) Find a basis for all those V in Exercise 7 which are subspaces.

10. **Pivots:**

Give four reasons why pivots are important. You may state relevant theorems to support your argument.

11. Coordinate systems:

(a) Use coordinate vectors to verify the polynomials $1 + 2t^2$, $4 + t + 5t^2$ and 3 + 2t are linearly dependent in \mathbb{P}_2 the vector space of polynomials of degree at most 2.

(b) Show the ordered set $\mathcal{B} = \{1 - t^2, t - t^2, 2 - t + t^2\}$ is a basis for \mathbb{P}_2 . Find the coordinate vector of $p(t) = 1 + 3t - 6t^2$ relative to this basis. What polynomial does $[1, 2, 3]_{\mathcal{B}}^T$ correspond to?

12. Dimension of a vector space:

(a) State the dimension of each of the subspaces in problem 7.

(b) If A is a 3×5 matrix, what are the possible dimensions of the null space of A? For each possibility, find a matrix which has that nullity.

13. Change of basis:

Let $\mathcal{A} = \{1, 1+t, 1+t+t^2\}$ and $\mathcal{B} = \{1, 1-t, 2-4t+t^2\}$ be two ordered bases for \mathbb{P}_2 .

(a) Find the change of basis matrix from \mathcal{A} to \mathcal{B} .

(b) Use part (a) to find the coordinates of the vector $[x]_{\mathcal{A}} = [1, 1, 1]$ with respect to the new basis \mathcal{B} .

Prof. Readdy Review II

Very Brief Answers 1. -3 2a. 4 b. (-4)^3 c. -1/32 3. a. Yes
 b. Diag{1,1,322}
 c. Pick any 3x3 matrix C with |C| = \sqrt{2} 4. a. x_1 = -2/3, x_2 = 1/3, x_3 = 2/3, x_4 = 1/3 b. 14 c. 0

5 a. FALSE. Let A = diag{2, 1, ..., 1} and B = diag{3,1, ..., 1}. Then A+B = diag{5,2,..., 2} and det(A+B) = $5*(2^{n-1})$.

- b. TRUE. (Can you prove it?)
- c. TRUE. (Can you prove it?)
- d. FALSE. If det A = 0 (i.e., A not invertible), then you are stuck.
- a. Carefully row-reduce (or column reduce) to show this.
 b. See class notes. See class notes.

```
    a. IS a subspace
    b. NOT a subspace

7.
        c. IS a subspaced. NOT a subspacee. IS a subspace
      a. 2
b. 5
c. 5
d. 2, 2, 3
8.
```

9. a. A ~ ... ~ [1 0 -2 0] [0 1 1 0] [0 0 0 1] [0 0 0 0]

So basis for Col(A) is {columns 1. 2 & 4 of A).

Basis for Row(A) is {rows 1, 2, & 3 of row-reduced A} Basis for Nul(A) is $[2,-1,1,0]^{\rm A} T.$ b. i. Check T(A + B) = T(A) + T(B) and T(cA) = c T(A) (Easy) ii. Range(T) = all 2x2 matrices with real entries iii. ker(T) is the zero 2x2 matrix. c. For a. {t, t², .., tⁿ} For c. Assuming the vectors a and b are nonzero and linearly independent, then basis is {a,b}. If a and b are dependent and a is nonzero, then {a}. If both are zero, then no basis. For e, take the matrices {E_1, ..., E_n} with zeroes everywhere except for a 1 in the (i,i) entry of the matrix E_i. 10. You should be able to come up with many reasons... 11. a. 5(1+2t^2) -2(4+t+5t^2) +1(3+2t) = 0. b. Let's row-reduce the basis vectors and solve for the coordinates at the same time: $a(1-t^2) + b(t-t^2) + c(2-t+t^2) = 1 + 3t - 6t^2$: becomes $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -6 \end{bmatrix}$ Row-reduce: $\begin{array}{c} \text{reduce:} \\ \left[\begin{array}{c} 1 & 0 & 2 & | & 1 \right] \\ \left[\begin{array}{c} 0 & 1 & -1 & | & 3 \end{array} \right] & \sim & \dots & \left[\begin{array}{c} 1 & 0 & 0 & | & 3 \end{array}] \\ \left[\begin{array}{c} 0 & 1 & -1 & | & 3 \end{array} \right] & \sim & \dots & \left[\begin{array}{c} 0 & 1 & 0 & | & 2 \end{array}] \\ \left[\begin{array}{c} -1 & -1 & 1 & | & -6 \end{array} \right] & \qquad & \left[\begin{array}{c} 0 & 0 & 1 & | & -1 \end{array} \right] \end{array}$ Note the columns have 3 pivots, so they form a basis for P_2. The coordinates are $[3\ 2\ -1]^{T}.$ $[1\ 2\ 3]^T$ in the basis B is 7-t in the standard basis. There are many ways to do this! 12. a. a is n; b is not; c depends on the vectors -- could be 0, 1 or 2; d is not; e is n. b. If A has 0 pivots, then nullity = 5; If A has 1 pivot, then nullity = 4; If A has 2 pivots, then nullity = 3; If A has 3 pivots, then nullity = 2.

Examples are omitted.

13. a. Row reduce [B | A] to [I | B^{-1} A] where $B = \begin{bmatrix} 1 & 1 & 2 \\ 0 & -1 & -4 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$ b. Multiply B^{-1} A [1]
[1]
[1]