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MATH AND MAGIC

RICHARD EHRENBORG AND MARGARET A. READDY

1. Chapter I: Gilbreath’s Principle

1.1. Introduction to cards. Like many magic tricks, we begin with a stan-
dard deck of cards. Each card has two “decorations”, namely, a denomina-
tion from the set

{A, 2, 3, . . . , 9, 10, J,Q,K},
where A indicates an Ace, J a Jack, Q a Queen and K a King, and a suit
from the set

{♣,♦,♥,♠},
where ♣ is a club, ♦ is a diamond, ♥ is a heart, and ♠ is a spade. There
are 13 denominations and 4 suits, so the total number of cards in a standard
deck is 13 · 4 = 52 cards.

A riffle shuffle, or simply, a shuffle, is the result of splitting a deck cards
into two piles and taking cards randomly from each pile to form a new pile.
As an example, if we have a deck of 5 cards {A,B,C,D,E} split into piles
ABC and DE, there are 10 possible shuffles of these two piles, namely

ABCDE,ABDCE,ADBCE,DABCE,ABDEC,

ADBEC,DABEC,ADEBC,DAEBC,DEABC.

In mathematics, the sum of all possible ways to shuffle two words is called
the shuffle product.

Definition 1.1. For two words x = x1 · · ·xm = x′xm and y = y1 · yn = y′yn
the shuffle product of x and y is

x� y = (x′ � y)xm + (x� y′)yn.

1.2. Gilbreath’s First Principle. We are now ready to perform our first
magic trick.

Magic Trick 1.2 (Pairs of Cards). The magician shows a standard deck of
52 cards to the audience. Audience members are allowed to cut the deck,
that is, removing some cards from the top of the deck and replacing them
on the bottom of the deck in the same order. The magician cuts the deck
of cards and then shuffles the deck of cards once. The magician announces,

Date: April 4, 2025.
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“I am going to show a pair of cards. What is the probability that the two
cards have different colors?”

The audience realizes since the number of black cards in the deck equals
the number of red cards in the deck, there are four possibilities, namely
two red cards, two black cards, a red card and black card, and finally, a
black card and a red card. Label these as {RR,BB,RB,BR}. Thus the
probability that a pair of cards has different colors is 2 out of 4, which equals
1/2, and the same color is 2 out of 4, again equaling 1/21.

The magician shows a pair of cards. They are two different colors. The
magician shows the next pair of cards. Again, they have different colors.
Notice since there are still the same number of red and black cards in the
deck, the probability of having a pair with different colors is still 1/2. The
magician continues to handout to show pairs of cards. Each pair of cards
has different colors, despite the fact one quarter of the time pairs should be
two red cards and 1/4 of the time the pairs should be two black cards.

This magic trick is known as Gilbreath’s First Principle. It is due to
Norman Gilbreath in 1958 [6].

In order to perform this trick, which is really mathematics in disguise,
you need to prepare the deck.

Preparation

(1) Arrange the deck so that the cards are alternating red and black.
(2) When you cut the deck in preparation to perform one riffle shuffle,

the bottom cards of the two piles must be different.

In Exercise 1.1 you will study the case when the bottom cards of the two
piles to be shuffled are the same.

Some observations:

Lemma 1.3. Given a deck of 2n cards which has the alternating property,
the following holds:

(1) Cutting the deck has no effect on the alternating property.
(2) In order to guarantee Magic Trick 1.16 to work, the bottom cards of

the two piles to be shuffled must have different colors.

1 Here we are actually lying. The probability that a pair has different colors is
P (RR or BB) = 2 · 26·25

52·51 = 25
51

≈ 0.4902 and P (RB or BR) = 2 · 26·26
52·51 = 26

51
≈ 0.5098 So

there is a slightly large chance of selecting a pair of cards having two different colors than
a pair having the same color.
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Proof. Suppose the deck is arranged from top to bottom as

B1, R1, B2, R2, · · · , Bn, Rn.
Cutting the deck so that the top pile of the cut has an even number 2j of
cards and replacing these 2j cards at the bottom results in the deck

B2j+1, R2j+1, . . . , Bn, Rn, B1, R1, · · · , Bj , Rj .
Note the result is still a deck which has the alternating property. Similarly,
cutting the deck so that the top pile has an odd number 2j+1 of cards means
that the bottom pile of the cut also has an odd number of cards. Hence the
top card of the bottom pile of the cut has its bottom card having a different
color than the top card of the original deck. Moving the top pile of the cut
beneath the bottom pile thus preserves the alternating property.

Part (2) of the lemma is left as an exercise. �

In mathematical terms, cutting the deck is known as a cyclic permutation.
We will soon discuss what this means.

In Exercise 1.1 you will study the case when the bottom cards of the two
piles to be shuffled are the same.

Theorem 1.4 (Gilbreath’s First Principle). Suppose you have a deck of 2n
cards consisting of n black cards and n red cards. The deck is arranged so
that the cards are alternating by color. Then

i Cutting the deck several times does not change the alternating prop-
erty.

ii Cutting the deck in two piles where the bottom cards have different
colors and then shuffling the cards once results in a deck where every
two cards dealt from the top of the deck results in a pair of cards
having two different colors.

1.3. Permutations, cards and shuffles. Many card tricks involve the use
of group theory, so it will be useful to introduce the concept of a permutation.
A permutation π of the elements {1, . . . , n} is a bijection from the elements
1 through n to itself. In two-line notation, one can write a permutation π as

π =

(
1 2 · · · n
π1 π2 · · · πn

)
,

where πi = π(i) for i = 1, . . . , n. Since the top line of two-line notation
is always the same, it is customary to omit this line and simply write
π = π1π2 · · ·πn, known as one line notation. A third way to represent a
permutation is to use a directed graph on the elements {1, 2, . . . , n}, where
we draw an edge from the element i to πi. See Figure 1 for an example.

Example 1.5. There are 3! = 6 permutations of the three element set
{1, 2, 3}, namely 123, 132, 213, 231, 312, 321. One can verify the following
result.
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Figure 1. Directed graph representation of the permutation
π = 526143.

Lemma 1.6. There are n! permutations of the n element set {1, 2, . . . , n}.

Proof. Begin by simply noting that there are n ways to select the image of
1 under π, that is, the value of π(1). Next, there are n − 1 ways to select
the image of 2 under π as we already used up one of the n original values.
In general, once the values of π1, . . . , πk are selected from {1, . . . , n}, there
are n − k elements remaining from the set {1, . . . , n} from which we can
choose the value πk+1, namely, {1, . . . , n}− {π1, . . . , πk}. Overall, this gives
n · (n− 1) · · · 2 · 1 = n! permutations. �

Notice that for 10 cards there are 10! = 3, 628, 800 permutations of this
deck, whereas for 52 cards there are

52! = 80658175170943878571660636856403766975289505440883277824000000000000

permutations.

Just as we can compose two functions, we can compose two permutations.
Let π = π1 · · ·πn and σ = σ1 · · ·σn be two permutations of an n element
set. Then (π ◦ σ)(i) = πσi . See Figure ?? for an example. The set of
all permutations on an n elements set with the operation of composition is
known as the symmetric group on n elements. It is denoted by Sn.

Now that we have the language of permutations, we can easily describe
other types of shuffles.

Given a deck of 2n cards labeled from top to bottom with 0 through 2n−1,
that is, card i appears in position i for i = 0, . . . , 2n−1, a perfect outshuffle is
one where the deck is split precisely in half, where the left-hand deck consists
of cards labeled 0 through n− 1 and the right-hand deck labeled n through
2n − 1. The two decks are shuffled in an alternating fashion, with the card
labeled x (and thus originally in position x), where 0 ≤ x ≤ n − 1 (the top
half of the deck) goes to position 2x, and the cards in the bottom half of the
deck, that is, labeled x for n ≤ x ≤ 2n− 1 goes to position 2x− (2n− 1).
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Example 1.7. A perfect outshuffle of a deck of 8 cards is as follows:

0 0 0
1 4 4
2 0 4 1 1
3 −→ 1 5 −→ 5 −→ 5
4 2 6 2 2
5 3 7 6 6
6 4 3
7 7 7

Example 1.8. Suppose you have a deck of n cards labeled {1, . . . , n} where
the top card is labeled 1, the second card from the top is labeled 2, continuing
in this fashion until the bottom card is labeled n. Fix j where 1 ≤ j ≤ n.
Deal the top j cards face down into a second pile. This gives two piles which
look like this:

j + 1
... j

...

n− 1 2

n 1

Use these two decks to perform one riffle shuffle. This is called a Gilbreath
shuffle. We will return to this in Section 1.5.

At this point, one would like to know how many perfect outshuffles does
it take until the deck is returned to its original order? Again, suppose we
have a deck with 2n cards. Again, we label the cards and positions of the
cards as 0 through 2n − 1. Cut the deck in half and perform exactly one
perfect outshuffle. In general, note that a card appearing in the top half of
the deck in position x, where 0 ≤ x ≤ n− 1, goes to position 2x. For a card
from the bottom half of the deck in position x, where n ≤ x ≤ 2n− 1, goes
to position 2x− (2n− 1).

We would like to encode this rule using modular arithmetic. In order to
do this, for the moment, please forget about the bottom card (in position
2n − 1) since it never moves under the operation of a perfect outshuffle.
Combining the two rules we see that a card in position x 6= 2n − 1 goes to
position 2x modulo 2n− 1, that is,

x 7−→ 2x mod 2n− 1.

Notice we can think of this map as combining two physical phenomena:
multiplying each card location spreads the cards out, and then performing
modulus 2n− 1 interleaves the top half of the cards with the bottom half.

The problem of determining the number of perfect outshuffles that brings
the deck back to its original order reduces to finding the smallest exponent



6 RICHARD EHRENBORG AND MARGARET A. READDY

k ≥ 1 such that

2k ≡ 1 mod 2n− 1.

In order to determine k, we need some number theory. For a positive integer
n, Euler’s totient function, or simply the Euler phi function, denoted ϕ(n),
counts the number of integers in the set {1, . . . , n} that are relatively prime
to n. Recall two integers a and b are relatively prime if their greatest common
divisor is 1, that is, gcd(a, b) = 1. Notice that if p is a prime number then
ϕ(p) = p− 1.

We now establish some properties of the Euler phi function.

Lemma 1.9. The Euler phi function satisfies the following properties:

i. It is a multiplicative function, that is, if gcd(a, b) = 1 then

ϕ(a · b) = ϕ(a) · ϕ(b).

ii. For p a prime and k ≥ 1

ϕ(pk) = pk−1 · (p− 1)

iii.

ϕ(n) = n ·
∏
p|n

(
1− 1

p

)
,

where the product is over all primes p that divide n.

Proof. Rather than showing part i directly, we will illustrate it in the special
case of n = 15. Arrange the integers 1 through 15 in a table, where the rows
indicate the congruence classes modulo 3 and the columns modulo 5.

0 1 2 3 4

0 15 6 12 3 9
1 10 1 7 13 4
2 5 11 2 8 14

Notice the integers rows 1 and column 1 of this chart, corresponding to
being equivalent to 0 mod 3 and 0 mod 5, are not relatively prime to 15.
In contrast, the remaining integers occurring in the 2 × 4 submatrix are
relatively prime to 15. Hence ϕ(15) = 2 · 4 = ϕ(3)ϕ(5).

To show ii, we instead show ϕ(pk) = pk − pk−1. Arrange the integers 1
through pk as follows:

1, 2, 3, . . . , p− 1, pp+ 1, p+ 2, p+ 3, . . . , 2p− 1, 2p . . . , . . . , pk−1 · p− 1, pk−1 · p
Notice the integers in the right-hand column are {p, 2p, . . . , pl−1 · p}, which
are each divisible by p. There are pk−1 such integers. The pk−pk−1 remaining
integers are not divisible by p, that is, they are relatively prime to p. Hence
varphi(pk) = pk − pk−1 = pk−1(p− 1), as claimed.
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n ϕ(n)
1 1
2 1
3 2
4 2
5 4
6 2
7 6
8 4
9 6
10 4
11 10
12 4
13 12
14 6
15 8
16 8
17 16
18 6
19 18
20 8

Table 1. Values of the Euler phi function ϕ(n) for 1 ≤ n ≤ 20.

To show iii, let n = pe11 · · · p
ek
k be a prime factorization of n, where

p1, . . . , pk are distinct primes, and the exponents satisfy ei ≥ 1 for i =
1, . . . , k, Since the integers pe11 , . . . , p

ek
k are relatively prime, we have

ϕ(n) = ϕ(pe11 ) · ϕ(pe22 ) · · ·ϕ(pekk )

=
k∏
i=1

pei−1i (pi − 1)

=

k∏
i=1

pei−1i · pi
(

1− 1

pi

)

= n ·
k∏
i=1

(
1− 1

pi

)
= n ·

∏
p|n

(
1− 1

p

)
Here we have used the fact the integers pe11 , . . . , p

ek
k are relatively prime and

applied part i and then part ii. �

We recall Euler’s theorem



8 RICHARD EHRENBORG AND MARGARET A. READDY

n ϕ(n) n ϕ(n)
1 1 11 10
2 1 12 4
3 2 13 12
4 2 14 6
5 4 15 8
6 2 16 8
7 6 17 16
8 4 18 6
9 6 19 18
10 4 20 8

Table 2. Values of the Euler phi function ϕ(n) for 1 ≤ n ≤ 20.

Theorem 1.10 (Euler). Assume a and m are relatively prime integers.
Then

aϕ(m) ≡ 1 mod m,

where ϕ(·) is the Euler phi-function.

Corollary 1.11. The smallest power of k where 2k ≡ 1 mod 2n − 1 is a
divisor of ϕ(2n− 1).

Example 1.12. We consider the case where we have a deck of 2n = 52
cards and determine how many perfect outshuffles to return the deck to the
original order. We have

ϕ(2n− 1) = ϕ(51) = ϕ(3 · 17) = 2 · 16 = 32.

The divisors of 32 are 1, 2, 4, 8, 16 and 32. But 24 = 16 6≡ 1 mod 51.
However,

28 = 256 ≡ 5 · 51 + 1 ≡ 1 mod 51.

Hence eight perfect outshuffles suffices to return a deck of 52 cards back to
its original state.

Let us repeat this with a smaller deck.

Example 1.13. We next consider the case of a deck of 2n = 26. We have

ϕ(2n− 1) = ϕ(25) = ϕ(r2) = 4 · 5 = 20.

The divisors of 20 are 1, 2, 4, 5, 10 and 20. Note 210 = 1024 ≡ 1025−1 ≡ −1
mod 25. But Euler’s theorem implies 220 ≡ 1 mod 25. Hence with a deck of
26 cards one has to perform 20 perfect outshuffles to return it to the original
deck order.

1.4. More shuffles.

Example 1.14. Backwards perfect outshuffle

Example 1.15. Perfect inshuffle.
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1.5. Gilbreath’s Second Principle.

Magic Trick 1.16 (Types of Cards). The magician shows a standard deck
of 52 cards to the audience. Audience members are allowed to cut the deck,
that is, removing some cards from the top of the deck and replacing them
on the bottom of the deck in the same order. The magician then asks for
a number x between 1 and 52. The magician deals the top x cards off the
top of the deck into a second pile, and then performs one riffle shuffle with
the two piles of cards. The magician repeatedly deals off four cards from the
top of the deck and shows them to the audience. Every time there are four
cards, each of a different suit.

To analyze this card trick, let us first see what dealing cards off the top
of the deck does. Let us try this with cards labeled from top to bottom with
1 through 10. This gives

1 10
2 9
3 8
... −→

...
8 3
9 2
10 1

Observe this reverses the order of the cards. Let us next perform a Gilbreath
shuffle with a deck of n cards labeled 1 through n. Fix j with 1 ≤ j ≤ n.
Deal the top j cards face down onto a second deck. This gives

j + 1
j + 2 j

...
...

n− 1 2
n 1

Notice that this preserves the order of the cards if you now view them as
being arranged on an arc stretching from the right-hand side to the left-hand
side.

We now explain the trick. First, pre-arrange the order of the deck by
type, alternating club, diamond, heart, spade, club, diamond, heart, spade,
etc. Notice that if we deal 52 or 0 cards the trick works trivially. Next deal
j cards face down where 0 < j < 52. Notice we can view the cards as being
on an arc. Begin to shuffle the two decks. This corresponds to taking cards
from either deck randomly. Convince yourself that the first four cards will
have different type. Removing them is equivalent to removing an interval
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of length 4 from the original deck. Since any interval of length 4 from the
deck has one of each type, we are left with a smaller deck where the trick
holds by induction on the size of the deck. (Here we need the deck to have
4n cards.)

Example 1.17. We illustrate this with a deck of size 12 with 3 types of
cards, say A, B and C. Dealing 5 cards gives

C2

A3

B3 B2

C3 A2

A4 C1

B4 B1

C4 A1

Turn the two decks sideways as

C4B4A4C3B3A3C2 | B2A2C1B1A1

Here the line indicates where the tops of the two decks were. Shuffling the
cards so that C2, A3 and B3 are the top three cards corresponds to the
window

C4B4A4C3B3A3C2 | B2A2C1B1A1

Other windows:

C4B4A4C3B3A3C2 | B2A2C1B1A1

C4B4A4C3B3A3C2 | B2A2C1B1A1

C4B4A4C3B3A3C2 | B2A2C1B1A1

Need to say something more about the window...

Theorem 1.18 (Gilbreath’s Second Principle). Suppose you have a deck
of d = kn cards consisting of n cards of each of the k types. The deck is
arranged so that the cards are alternating by type. Then

i. Cutting the deck several times does not change the alternating prop-
erty.

ii. Dealing j cards face down, where 0 ≤ j ≤ kn and then shuffling the
cards once results in a deck where every k cards dealt from the top of
the deck results in a set of k cards having exactly one of each of the
k types.

In Exercise 1.6 you will be asked explain how Gilbreath’s first principle is
an instance of Gilbreath’s second principle.
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1.6. Perfect inshuffles. We would like to next study the case of how many
perfect inshuffles are needed to return a deck to its original order.

Let us look at the case of 6 cards.

Example 1.19. For a deck of 6 cards, one perfect inshuffle looks as follows.
Note we show splitting the deck into two equal halfs and then performing
one riffle shuffle. The top card of the original deck now goes inside the deck,
and as well the bottom card of the deck moves inside the deck.

1 4 4
2 1 1
3 1 4 5 5
−→ 2 5 −→ 2 −→ 2

4 3 6 6 6
5 3 3
6

To study this, let us add a card at the top of the deck labeled “0” and a
card at the bottom labeled “∗”. With this new deck, perform one perfect
outshuffle.

Example 1.20. For a deck of 6 cards, add a new top card labeled “0” and a
new bottom card labeld “∗”. Next, perform a perfect outshuffle. We obtain

0 0 0
1 4 4
2 0 1 1
3 1 4 5 5
−→ 2 5 −→ 2 −→ 2

4 3 6 6 6
5 ∗ 3 3
6 ∗ ∗

Noticethatifweignorethecardslabeled

0and*, weexactlyobtaintheresultofperformingaperfectinshuffleontheoriginal6cards.

Using this observation, we make the following claim.

Lemma 1.21. Given a deck of an even number n cards, performing one
perfect inner shuffle is the same as adding two extra cards 0 and ∗ to the
original deck, with 0 at the top and ∗ at the bottom, performing one perfect
outer shuffle, and then removing the two extra cards.

Using Lemma 1.21, let us determine the smallest integer k such that k
perfect inner shuffles returns a deck of n cards back to the original order.
For a deck with n = 6 cards, adding two extra cards gives 8 cards. We have
ϕ(8 − 1) = ϕ(7) = 6, so we need to check the divisors of 6, that is, 1, 2, 3
and 6. Easily
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21 = 2 6≡ 1 mod 7

22 = 4 6≡ 1 mod 7

23 = 8 ≡ 1 mod 7

One can easily verify this small case.

We next consider the case of a deck with 52 cards. Adding the two extra
cards gives 54 cards, so we compute ϕ(54− 1) = ϕ(53) = 52, as 53 is prime.
The divisors of 52 = 22 · 13 are 1, 2, 4, 13, 26 and 52. We have

21 = 2 6≡ 1 mod 53

22 = 4 6≡ 1 mod 53

24 = 16 6≡ 1 mod 53

213 = 2 · (26)2 ≡ 2 · (11)2 ≡ 2 · 15 ≡ 30 6≡ 1 mod 53

226 = (213)2 ≡ (30)2 ≡ 900 ≡ −1 mod 53

252 = (226)2 ≡ (−1)2 ≡ 1 mod 53

Unlike the case of perfect outer shuffles, for a deck with 52 cards it takes 52
perfect inner shuffles to return the deck back to the original order!

1.7. A note on primes. In this section we review a few facts about prime
numbers.

Corollary 1.22. In order to determine whether or not an integer n is prime,
it is enough to test divisibility of n by all prime numbers p with p ≤

√
n.

Lemma 1.23. If the integer n can be factored as n = a · b with a ≤ b then
a ≤
√
n.

Proof. We provide a proof by contradiction. We are given that

n = a · b,

where a and b are two integers and a ≤ b. We claim that a ≤
√
n. If not,

assume on the contrary that a >
√
n. Multiplying the inequality a ≤ b by a

gives

a · a ≤ a · b (1.1)

But then the strict inequality
√
n < a would imply

(
√
n)2 = n < a2 ≤ a · b = n,

that is, n < n, which is impossible. Thus it must be that a ≤
√
n, as

claimed. �
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Example 1.24. Let determine whether or not n = 53 is prime. It is enough
to only check for divisors that are at most 7 since 49 < 53 < 64 and taking
the squareroot gives the bound

7 =
√

49 <
√

53 <
√

64 = 8.

Clearly 2 is not a divisor as 53 is odd, and 3 is not a divisor as the sum of
the digits of 53 are not divisible by 3. Also 53 is not divisible by 5 as its
units place is not a 0 or 5. Finally, 7 does not divide 53, so 53 is a prime
number.
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Chapter 1 Exercises

Exercise 1.1. a. Explain why Trick ?? will not work if the two piles of
cards to be shuffled have the same color bottom card.
b. What can you do to save the trick in part a?
c. Assuming you have an odd number of alternating cards, explain when the
trick will work. (Hint: you need to be a very talented card shuffler.)

Exercise 1.2. Show that if C = c1c2 · · · cm is a deck consisting of m cards
and D = d1d2 · · · dn is a deck consisting of n cards then there are

(
m+n
m

)
ways to shuffle these two decks together.

Exercise 1.3. a. Show the shuffle product of two words is commutative,
that is, if x = x1 · · ·xm and y = y1 · · · yn then x� y = y� x.
b. Show the shuffle product is associative, that is, x� (y� z) = (x� y)� z.

Exercise 1.4. Compute the number of perfect outshuffles needed to return
a deck of 2n cards to the original order for n = 1, . . . , 10. Which sized deck
would make a good trick? Which a bad trick?

Exercise 1.5. Devise a magic trick where you will ultimately show 12 cards
at a time and guess the suit and denomination of the 13th card.

Exercise 1.6. Explain how Gilbreath’s first principle is an instance of
Gilbreath’s second principle.

Exercise 1.7. Something about computing π ◦ π and σ ◦ τ for a number of
permutations.

Exercise 1.8. Exercise on basic divisibility facts, such as:
a. n is divisible by 2 if and only if its unit digit is an even number.
b. n is divisible by 3 if and only if the sum of its digits is divisible by 3.
c. n is divisible by 5 if and only if ... .
d. n is divisible by 11 if and only if the alternating sum of its digits equals
0.
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2. Chapter II: Hummer

2.1. CATO moves.

2.2. Baby Hummer.

2.3. 10 card Hummer.
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3. Chapter III: The Blind Bartender

(This feels like CATO)

Intro to group theory?
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4. Chapter IV: Topology and Knots

4.1. The Möbius strip. Give history...

4.2. Some knot theory tricks.

4.3. Introduction to unknot and trefoil knot.

4.4. Some serious knot stuff. Reidemeister moves

Coloring argument that the unknot and trefoil knot are different.

4.5. Hanging a picture with two nails.
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5. Chapter V: A more mathematical view of knots and tangles

5.1. Real def’n of a knot.

5.2. Alexander-Conway polynomial.

5.3. The Jones polynomial.

5.4. The braid group.

5.5. The Fundamental Group of the complement of a knot.
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6. Chapter VI. Conway’s Rational Tangles.

6.1. The game. To play this game, you will need 4 people and two ropes
where each rope is 10 feet long. If possible, use two different colored ropes.

To begin the game, each person should hold the end of one rope. Do
not let go of the rope! The starting configuration is two people next to a
wall holding the first rope, and the other pair next to them (the audience)
holding the second rope. The two ropes are parallel to each other.

There are two moves:

T = Twist: From the audience’s perspective, the person on the right
nearest the wall lifts their rope over the other person on the right furthest
from the wall. The other two people do not move!

R = Rotate: Each student moves 1/4 turn clockwise.

We now need to discover the mathematics behind the twist and rotate
moves. Let us assume that T = 1. (Try this with the rope.) Then T 2 =
TT = 1 + 1 = 2. Start again at 0 and make a T twist. Can we apply just T
and R moves to undo the twist T?

Since you found out that TRT = 0, you could guess that R sends a number
to its negative. Is this true? Test this with T 2 = 1 + 1 = 2. What happens?

Now that you see that T does not send x to −x, let’s look at RT . What
happens? What about RT 2? What about RTn?

It appears that R sends 0 to either −∞ or +∞, that is, R sends the
number x to either 1/x or −1/x. Test this so see which it is.

Let’s now try to undo the following rational tangles.

Find the moves to untangle each tangle and then try them out with the
ropes.
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Initial Tangle Inverse Tangle

T RT

TT = T 2

TTT = T 3

T 4

Tn
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Fill in the blanks in this chart.

Rational Tangle Rational Number Inverse Tangle

TTRTTTRT

T 5RT 2RTRT

−1/2

−1/3

−1/4

−1/5

−3/2

−5/7

For a spectacular finish, find the tangle for −17/43 and its inverse. Twist
the tangle for −17/43, then cover the tangle with a plastic bag to preserve
the tangle. The twist the inverse tangle. Remove the bag and shake the
ropes slightly. Were you correct?

6.2. Euclid’s Algorithm. Recall that an integer q divides an integer a if
a = k · q for some integer k. This is denoted by q|a. The greatest common
divisor (gcd) of integers a and b, denoted gcd(a, b), is the largest integer that
divides both a and b.

We recall two basic properties of the gcd.

Lemma 6.1. 1. gcd(a, b) = gcd(b, a).
2. gcd(a, b) = gcd(a− b, b).

Proof. For (1), it is straightforward that the gcd is symmetric. For (2),
suppose d = gcd(a, b). Since d|a and d|b we have d|a − b. Suppose on the
contrary that d is not the largest common divisor of a− b and b, and instead
e is, with d < e. Then e|a− b an e|b implying e divides (a− b) + b = a. This
means e is a larger integer that divides both a and b, contradicting the fact
that d = gcd(a, b) �
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Euclid’s algorithm consists of the following. Given integers a and b, write
gcd(a, b) = gcd(a− b, b). If a− b = 0, then the gcd is b. Otherwise, continue
to iterate this step. If a− b < 0, then write (a, b) = gcd(b,−a).

Example 6.2. We use Euclid’s algorithm to compute the gcd of 20 and 72.

gcd(72, 20) = gcd(52, 20) = gcd(32, 20) = gcd(12, 20) = gcd(−8, 20)(6.1)

= gcd(20, 8) = gcd(12, 8) = gcd(4, 8) = gcd(−4, 4) (6.2)

= gcd(4, 4) = gcd(0, 4) = 4. (6.3)
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 2. The juggling pattern a = (1, 2, 3) with period
d = 3 and throw vector x = (0, 1, 2).

7. Chapter VI: q-counting

7.1. What is a q-analogue.

7.2. MacMahon.

7.3. Juggling. A juggling sequence is a period pattern of throwing balls
in the air and catching them. In order to talk about the mathematics of
juggling, we need to simplify things somewhat. We will first assume (i) the
juggler is one-handed and (ii) the juggler can catch and throw only one ball
at the time. This is known as simple juggling.

As an example, consider the juggling pattern a = (1, 2, 3) in Figure 2. We
think of the horizontal axis as time, where the first time point is 0. At time
zero the juggler throws the ball so that it lands 1 time unit later, then at
time 1 the juggler throws the ball so that it lands 2 time units later and
at time 2 the juggler catches and throws a ball so that it lands three time
units later. This pattern repeats itself every 3 time units, so we say this is
a period d = 3 juggling sequence.

Next consider the sequences (1, 3, 2). This is not a juggling sequence. The
problem is that at time 4 the juggler would have to catch more than one
ball, violating our requirement (i) for a simple juggling pattern the juggler
can only catch and throw one ball at a time.

In the first example there are two balls being juggled. We can now state
two results answers the questions: what is a legal simple juggling sequence
and how many balls are being juggled?

Theorem 7.1. 1. Let a = (a1, a2, . . . , ad) ∈ Zd be a sequence of d positive
integers. Then a is a simple juggling pattern of period d if

{ai + i mod d : for i = 1, . . . , d} = {0, 1, 2, . . . , d− 1}.

2. Let (a1, a2, . . . , ad) be a simple juggling pattern. Then the number n of
balls is

n =
a1 + a2 + · · ·+ an

d
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Let us now try to count all the simple juggling patterns having period d
and at most n balls. Here is the theorem

Theorem 7.2. [Buhler, Eisenbud, Graham, Wright] The number of simple
juggling patterns having period d and at most n balls is

nd.

In Figure ?? we see there are 23 = 8 such patterns. The proof of Theo-
rem 7.2 is quite difficult. Instead of counting the juggling patterns, we will
look at the number os crossings in a peeriod. For example, for a = (1, 2, 3)
there are 2 crossings in a period. So we will weight this juggling pattern by
q2. In general, for a juggling pattern a with crossa crossings, we will weight
it by qcrossa.

In Figure ?? we have indicated the number of crossings in a period and
the weight. Notice that if we add up all of the weightings of these 8 patterns
we obtain the polynomial 1 + 3q + 3q3 + q3 = (1 + q)3. Notice this factors.

Theorem 7.3 (Ehrenborg-Readdy). The sum of the weights of simple jug-
gling patterns having period d and at most n balls is

[n]d = (1 + q + · · ·+ qn−1)d.

Note that setting q = 1 in this theorem gives the nd result in Theorem 7.2.

To prove this result, we are going to use juggling cards. One can take the
picture of a juggling pattern and “push” over each crossing as far as possible
to the right so that the ball being catched drops at the last moment. In
Figure ?? we have the three juggling cards for at most 3 balls. Notice if
we arrange three copies of the card Co next to themselves, we obtain the
sequence a = (1, 1, 1). Notice that two of the paths never fall down. In
essence, two of the balls are floating in the air!

By arranging cards from this deck periodically, we will see we will obtain
all possibly simple juggling sequences of period d and at most n balls. See
Exercise? for determining the card sequences corresponding to the juggling
patterns in Figure ??.

Proof. To construct a simple juggling pattern of period d, select a card from
the deck {C0, . . . , Cn−1} for the first throw. We have n possible cards to
choose from, each having the weight q0 = 1, q1 through qn−1 respectively
since card Ci has i crossings. The other throws have similar choices which
are independent of previously made selections. Overall, the weights are

[n] · [n] · · · [n] = [n]d.

�
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References [9]

Chapter 6 Exercises

Exercise 6.1. a. Draw the cards C0 and C1 for simple juggling cards with
at most 2 balls.
b. Determine the card sequences needed to generate the simple juggling
sequences having period 3 and at most 2 balls.

Exercise 6.2. Let C0, C1, C2 be the juggling cards for at most 3 balls.
Determine the period 5 juggling sequence corresponding to the card sequence
C1C2C2C0C1.
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7. Chapter VII: Origami

7.1. Hills and Valleys. We begin by learning how to fold a hill and valley.
On a standard piece of paper, draw a point. Crease the paper from the point
to the edge of the paper to create a hill. This creates a ray from the point
to the edge of the paper. Continue to crease hills until you have created 3 to
5 hills. Next add a valley from the point to the edge of the paper. Continue
adding enough valleys until your paper can be flattened.

In origami notation, hills are denoted by solid lines and valleys by dotted
lines. See Figure ?? for an example.

Count the number of hills and valleys eminating from the point. Repeat
the experiment again with a new sheet of paper using a different number of
hills. What do you conjecture?

There is a basic relation between the number of hills and valleys in a flat
foldable origami crease pattern.

Theorem 7.1 (Maekawa). For every flat foldable origami crease pattern, let
V (x) denote the number of valleys at a point x and H(x) denote the number
of hills at a point x. Then

|V (x)−H(x)| = 2

Proof. The proof is to to walk around the point x while the crease pattern is
folded flat. To travel completely around a given point, you (or an ant) must
travel a total of 2π radians. When you walk over a hill, the change in angle
is +π radians, and when you walk over a valley, the change is π radians.
Thus you will need 2 extra hills to complete the full circuit.

Observe that if you flip the paper over, this uniformly exchanges hills and
valleys. Thus the difference in the number of valleys and hills around a point
is, up to a sign, 2. �

Corollary 7.2. For a flat foldable origami crease pattern with V valleys
and H hills, turning the paper upside down yields a crease pattern with H
valleys and V hills.

Proof. Straightforward. �

Using the paper with valleys and hills eminating from a point, label the
2n angles

Theorem 7.3 (Kawasaki’s Theorem). For every flat foldable origami crease
pattern, let αi for 1 ≤ i ≤ 2n denote the consecutive angles formed by the
crease pattern around a fixed vertex. Then

α1 − α2 + α3 − · · · − α2n = 0.
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Furthermore, ∑
i odd

αi =
∑
i even

αi = π.

Proof. The result follows by traveling along a circle centered around the
vertex x. When the paper is folded flat one sees all of the odd-indexed
arcs have a positive direction and the even-indexed ones have the opposite
direction. Once you circumnavigate along the entire circle and return to
your initial starting point, the net sum of these signed arc lengths is zero,
hence the same result holds for their respective angles.

The second result is a direct consequence of the first. �

Theorems ?? and ?? are two of the four axioms of origami. The other
two are:

Theorem 7.4. Every flat foldable origami crease pattern is 2-colorable.

Theorem 7.5. You cannot pass a fold through another.

See [8].

*****

A walk through origami2

(1) Maekawa’s Theorem
This exercise is to practice origami mountain and valley folds. All
the folds we make will start at the center dot and end at the edge of
the paper.
Begin by creasing the paper from center to an edge. Your paper
should now have a small hill caused by the mountain fold. If you
hold the paper by this fold, it already has a curved structure.
Make 2, 3 or 4 more mountain folds in different directions in the
paper. We next wish to add valley folds from the center to an edge.
Keep on adding valley folds until you can fold up your paper flat.
You may need to add additional mountain folds to do this. (Ask an
assistant for help, if needed.)
How many mountain and how many valley folds did you need to fold
your paper flat? Compare your result with your neighbors.
The folds you made created sectors eminating from the center of the
paper. Number these angles you created clockwise starting with 1, 2,
etc. Look at the sum of the angles labeled with odd integers versus
the sum of the angles labeled with even integers. Do you observe
anything? This is known as Kawasaki’s Theorem.

2This is an excerpt of the workshop “Origami structures for technological and design
applications” held by origami scientist Robert Lang. http://langorigami.com/
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(2) Bird’s foot
Cut out the paper. Begin to fold the mountain and valley crease
pattern in the center of the bird’s foot. Straight lines are mountains
and dotted lines are valleys. (There are 4 total folds.) To reinforce
this structure, fold up each of the tab sides in half, then half again.
Then turn the two corners over to lock. Repeat with the other four
tabs. Now flex your bird’s foot.
Fold a different bird’s foot. Can you make any observations about
the bellow you have made? Could you combine two similar structures
and make them move simultaneously?

(3) Helical Yoshimura pattern
Fold mountains on the solid lines, valleys on the dotted lines. (Be
patient!) Note how you are changing the nature of the paper. The
paper will begin to form a familiar 3-dimensional structure.
Where could you use this origami?

(4) Miura-ori
Fold mountains on the solid lines, valleys on the dotted lines. (Be
patient!) Eventually this will fold flat. Pull out from two sides to
make it open. Note that unlike a rubberband which thins when you
pull it, this object grows.
Where could you use this origami?

(5) 3D Miura-ori
What do you get from this crease pattern?

(6) 7-fold twist
What do you get from this crease pattern?

(7) Cup à la Tomoko Fuse
Try this!

(8) TensionPot, Opus 695
This is a Robert Lang design. Note the curved folds.

Reference:

1. Robert J. Lang, Twists, Tilings, and Tessellations: Mathematical
Methods for Geometric Origami, CRC Press.
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8. Chapter X: Miscellaneous

9. Preliminaries

The magic in this book requires very few materials. You will need a
standard deck of cards, that is, a 52 card deck. For the rope tricks, magic
rope is the best. A less expensive alternative is to use cotton clothesline. It
is important to use cotton as otherwise some of the knots will slip.
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