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Abstract

This paper surveys recent results for flag enumeration of
polytopes, Bruhat graphs, balanced digraphs, Whitney strati-
fied spaces and quasi-graded posets.

1 Introduction

In this paper we describe recent developments regarding chain enu-
meration and the cd-index which involve algebra, graph theory and
topology. The first is a non-homogeneous cd-index for Bruhat graphs
due to Billera and Brenti [3]. One motivation for studying the cd-
index of Bruhat graphs is that the cd-index of the interval [u, v]
determines the Kazhdan–Lusztig polynomial Pu,v(q); see [3, Sec-
tion 3]. These polynomials arise out of Kazhdan and Lusztig’s study
of the Springer representations of the Hecke algebra of a Coxeter
group [22, 23], and have many applications, including to Verma mod-
ules and to the algebraic geometry and topology of Schubert varieties.
See section 5 for further discussion.

The second recent development is the theory of balanced graphs,
due to Ehrenborg and Readdy [15]. This theory relaxes the graded,
poset and Eulerian requirements for chain enumeration in graded
posets. Bruhat graphs are a special case of balanced graphs, and the
theory simplifies the proof techniques from using quasi-symmetric
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theory to edge labelings in the graphs. In the case a balanced graph
has a linear edge labeling, the authors conjecture the cd-index has
nonnegative coefficients.

The third development is both a topological and poset theoretic
generalization of flag enumeration. Ehrenborg, Goresky and Readdy
have extended the theory of face incidence enumeration of polytopes,
and more generally, chain enumeration in graded Eulerian posets, to
that of Whitney stratified spaces and quasi-graded posets [12]. Whit-
ney stratifications occur naturally for real and complex algebraic sets,
analytic sets, semi-analytic sets and for quotients of smooth mani-
folds by compact group actions. It is important to point out that,
unlike the case of polytopes, the coefficients of the cd-index of Whit-
ney stratified manifolds can be negative. It is hoped that by applying
topological techniques to stratified manifolds, a tractable interpre-
tation of the coefficients of the cd-index will emerge. This may
ultimately explain Stanley’s non-negativity results for spherically
shellable posets [34] and Karu’s results for Gorenstein* posets [21].
Additionally, the program of determining inequalities for flag vectors
of polytopes is expanded in the Whitney stratified setting.

2 Polytopes and face enumeration

A convex polytope in n-dimensional Euclidean space Rn is the con-
vex hull of k points x1, . . . , xk in Rn, that is, the intersection of all
convex sets containing these points. Throughout we will assume all
of the polytopes we work with are convex. For general references on
polytopes, see [9, 18, 38].

One can also define a polytope as the bounded intersection of a
finite number of half-spaces in Rn. These two descriptions can be seen
to be equivalent by Fourier–Motzkin elimination [38]. A polytope is
n-dimensional if it is homeomorphic to a closed n-dimensional ball
Bn = {(x1, . . . , xr) : x21 + · · ·+ x2n ≤ 1, xn+1 = · · · = xr = 0} in Rr.

Given a polytope P in Rn with supporting hyperplane H, that
is, P ∩H 6= ∅, P ∩H+ 6= ∅ and P ∪H− = ∅, where H+ and H− are
the half open regions determined by the hyperplane H, then we say



P ∩H is a face. Observe that a face of a polytope is a polytope in
its own right.

For an n-dimensional convex polytope the f -vector is (f0, . . . , fn−1),
where fi enumerates the number of i-dimensional faces. It satisfies
the Euler–Poincaré relation [30]:

f0 − f1 + f2 − · · ·+ (−1)n−1 · fn−1 = 1− (−1)n. (2.1)

Equivalently,
n∑

i=−1
(−1)ifi = 0, (2.2)

where f−1 denotes the number of empty faces (= 1) and fn = 1
counts the entire polytope.

Example 2.1. The n-dimensional simplex ∆n. The n-dimensional
simplex is the convex hull of any n + 1 affinely independent points
in Rn. Equivalently, it can be described as the convex hull of the n+1
points e1, e2, . . . , en where ei is the ith unit vector (0, . . . , 0, 1, 0, . . . , 0) ∈
Rn+1. It is convenient to intersect this polytope with the hyperplane
x1 + · · · + xn+1 = 1 so that it lies in Rn. Its f -vector has entries
fi =

(
n+1
i+1

)
, for i = 0, . . . , n − 1. This is an example of a simplicial

polytope, that is, a polytope where all of its facets ((n−1)-dimensional
faces) are combinatorially equivalent to the (n− 1)-dimensional sim-
plex.

In 1906 Steinitz [36] completely characterized the f -vectors of
3-dimensional polytopes.

Theorem 2.2 (Steinitz). For a 3-dimensional polytope, the f -vector
is uniquely determined by the values f0 and f2. The (f0, f2)-vector of
every 3-dimensional polytope satisfies the following two inequalities:

2(f0 − 4) ≥ f2 − 4 and f0 − 4 ≤ 2(f2 − 4).

Furthermore, every lattice point in this cone has at least one 3-
dimensional polytope associated to it.

For polytopes of dimension greater than three the problem of
characterizing their f -vectors is still open.



Open question 2.3. Characterize f -vectors of n-dimensional poly-
topes where n ≥ 4.

The f -vectors of simplicial polytopes have been completely charac-
terized by work of McMullen [27], Billera and Lee [5] and Stanley [33].
This characterization, known as the g-theorem, involved a geomet-
ric construction of Billera and Lee [5] for the sufficiency proof, and
tools from algebraic geometry for Stanley’s necessity proof [33]. In
particular, this required the Hard Lefschetz Theorem. We include
Björner’s reformulation of the g-theorem as stated in [18, section
10.6]:

Theorem 2.4 (The g-theorem). (Billera–Lee; Stanley)
The vector (1, f0, . . . , fn−1) is the f -vector of an n-dimensional sim-
plicial polytope if and only if it is a vector of the form g ·Mn, where
Mn is the ([n/2] + 1)× (n+ 1) matrix with nonnegative entries given
by

Mn =

((
n+ 1− j
n+ 1− k

)
−
(

j

n+ 1− k

))
0≤j≤n,0≤k≤n

, (2.3)

and g = (g0, . . . , g[n/2]) is an M -sequence, that is, a nonnegative

integer vector with g0 = 1 and gk−1 ≥ ∂k(gk) for 0 < k ≤ n/2. The
upper boundary operator ∂k is given by

∂k =

(
ak − 1

k − 1

)
+

(
ak−1 − 1

k − 2

)
+ · · ·+

(
ai − 1

i− 2

)
(2.4)

where the unique binomial expansion of a positive integer m is

m =

(
ak
k

)
+

(
ak−1
k − 1

)
+ · · ·+

(
ai
i

)
, (2.5)

with ak > ak−1 > · · · ai ≥ i > 0. For a given polytope P the vector
g = g(P ) is determined by the f -vector, respectively h-vector, as
gk = hk − hk−1 for 0 < k ≤ n/2 with g0 = 1.

3 Flag vectors

One would like to keep track of not just the number of faces in a
polytope, but also the face incidences. We encode this with the



S fS hS us c3 10 · dc 6 · cd

∅ 1 1 aaa 1 0 0
{0} 12 11 baa 1 10 0
{1} 18 17 aba 1 10 6
{2} 8 7 aab 1 0 6
{0, 1} 36 7 bba 1 0 6
{0, 2} 36 17 bab 1 10 6
{1, 2} 36 11 abb 1 10 0
{0, 1, 2} 72 1 bbb 1 0 0

Table 1: The flag f - and flag h-vectors, ab-index and cd-index of
the hexagonal prism. The sum of the last three columns equals the
flag h column, showing the cd-index of the hexagonal prism is c3 +
10 · dc + 6 · cd.

flag f -vector (fS), where S ⊆ {0, . . . , n − 1}. More formally, for
S = {s1 < · · · < sk} ⊆ {0, . . . , n− 1} , define fS to be the number of
flags of faces

fS = #{F1 ( F2 · · · ( Fk}

where dim(Fi) = si. Observe that for an n-dimensional polytope the
flag f -vector has 2n entries. It also contains the f -vector data.

The flag h-vector (hS)S⊆{0,...,n−1} is defined by the invertible re-
lation

hS =
∑

T⊆{0,...,n−1}

(−1)|S−T |fT . (3.1)

Equivalently, by the Möbius Inversion Theorem

fS =
∑

T⊆{0,...,n−1}

hT . (3.2)

See Table 1 for the computation of the flag f - and flag h-vectors of
the hexagonal prism. Observe that the symmetry of the flag h-vector
reduces the number of entries we have to keep track of by half. This
is true in general.



Theorem 3.1 (Stanley). For an n-dimensional polytope, and more
generally, an Eulerian poset of rank n,

hS = hS ,

where S denotes the complement of S with respect to {0, 1, . . . , n−1}.

Recall a partially ordered set P , or poset for short, consists of a
finite number of elements with a partial order ≤ which is reflexive
(x ≤ x for all elements x ∈ P ), antisymmetric (if x ≤ y and y ≤ x
then x = y), and transitive (x ≤ y and y ≤ z implies x ≤ z). Unless
stated otherwise the posets we will work with have unique minimal
and maximal elements, denoted by 0̂ and 1̂ respectively. A poset P
with unique minimal and maximal elements is graded if any saturated
chain of elements from 0̂ to x, that is, c = {0̂ = x0 ≺ x1 ≺ · · · ≺
xk = x} has the same length for a fixed element x ∈ P . We call this
length the rank of x, denoted ρ(x) and the rank of a graded poset is
ρ(1̂).

In important subclass of graded posets are the Eulerian posets.
These satisfy the condition that µ(x, y) = (−1)ρ(x,y), where ρ(x, y) =
ρ(y) − ρ(x) and the Möbius function is defined by µ(x, x) = 1 and
µ(x, y) = −

∑
x≤z<y µ(x, z). Equivalently, in every non-trivial in-

terval the number of elements of even rank equals the number of
elements of odd rank. Important families of Eulerian posets include
the face lattice of a convex polytope, the face poset of a regular cell
decomposition of a homology sphere and the (strong) Bruhat order
on a Coxeter group.

4 The ab-index and cd-index

In this section we describe the cd-index, a compact encoding of the
flag vector data of a polytope.

The ab-index of an n-dimensional polytope P is defined by

Ψ(P ) =
∑
S

hS · uS ,



where the sum is taken over all subsets S ⊆ {0, . . . , n − 1} and
uS = u0u1 . . . un−1 is the non-commutative monomial encoding the
subset S by

ui =

{
a if i /∈ S,
b if i ∈ S.

Observe the resulting ab-index is a noncommutative polynomial of
degree n in the noncommutative variables a and b.

We now introduce another change of basis. Let c = a + b and
d = ab + ba be two noncommutative variables of degree 1 and 2,
respectively. The following result was conjectured by J. Fine and
proven by Bayer–Klapper for polytopes, and Stanley for Eulerian
posets [2, 34].

Theorem 4.1 (Bayer–Klapper, Stanley). For the face lattice of a
polytope, and more generally, an Eulerian poset, the ab-index Ψ(P )
can be written uniquely in terms of the noncommutative variables
c = a + b and d = ab + ba, that is, Ψ(P ) ∈ Z〈c,d〉.

The resulting noncommutative polynomial is called the cd-index.

Prior to the introduction of the cd-index, Bayer and Billera de-
termined all the linear relations which hold among the flag f -vector
entries [1], known as the the generalized Dehn–Sommerville relations:

k−1∑
j=i+1

(−1)j−i−1fS∪{j} = (1− (−1)k−i−1) · fS . (4.1)

Here i ≤ k − 2, the elements i and k are elements of S ∪ {−1, n},
and the subset S contains no integer between i and k. Observe that
the Euler-Poincaré relation follows if we take S = ∅, i = −1 and
k = n. Besides showing the existence of the cd-index for Eulerian
posets, Bayer and Klapper proved that the cd-index removes all of
the linear redundancies holding among the flag vector entries [2].
Hence the cd-monomials form a natural basis for the vector space of
ab-indexes of polytopes.

The cd-index did not generate very much excitement in the math-
ematical community until Stanley’s proof of the nonnegativity of its
coefficients [34].



Theorem 4.2 (Stanley). The cd-index of the face lattice of a poly-
tope, more generally, the augmented face poset of any spherically-
shellable regular CW -sphere, has nonnegative coefficients

Stanley’s result opened the door to the following question.

Open question 4.3. Give a combinatorial interpretation of the co-
efficients of the cd-index.

In his dissertation, Purtill’s gave an interpretation of the cd-index
coefficients for the n-dimensional simplex and the n-dimensional cube
respectively in terms of simsun and signed simsun permutations [32].
See also [19]. Ehrenborg and Readdy introduced coalgebraic tech-
niques to describe how the cd-index changes under geometric op-
erations applied to a polytope [14]. These techniques have lead
to new results regarding flag vector inequalities. See the conclud-
ing remarks for details. More recently for each cd-monomial Karu
gave a sequence of operators on sheaves of vector spaces to show
the non-negativity of the coefficients of the cd-index for Gorenstein*
posets [21].

5 Bruhat graphs

Another family of Eulerian posets is formed by taking the (strong)
Bruhat order on a Coxeter group [37]. Hence any interval has a
cd-index which is homogeneous of degree one more than the length
of the interval. By removing the adjacent rank assumption on the
cover relation of the Bruhat order, a directed graph known as the
Bruhat graph is obtained which in effect allows algebraic “short cuts”
between elements.

More formally, let (W,S) be a Coxeter system, whereW denotes a
(finite or infinite) Coxeter group with generators S and `(u) denotes
the length of a group element u. Let T be the set of reflections,
that is, T = {w · s · w−1 : s ∈ S,w ∈ W}. The Bruhat graph
has the group W as its vertex set and its set of labels Λ is the
set of reflections T . The edges and their labeling are defined as



follows. There is a directed edge from u to v labeled t if u · t = v and
`(u) < `(v). The underlying poset of the Bruhat graph is called the
(strong) Bruhat order. It is important to note that every interval of
the Bruhat order is Eulerian, that is, every interval [x, y] has Möbius
function given by µ(x, y) = (−1)ρ(y)−ρ(x), where ρ denotes the rank
function. For a more complete description of Coxeter systems, see
Björner and Brenti’s text [7].

Using the fact that the generalized Dehn–Sommerville relations
hold for coefficients of polynomials arising in Kazhdan–Lusztig poly-
nomials [8, Theorem 8.4] and quasisymmetric functions, Billera and
Brenti show that the Bruhat graph has a non-homogeneous cd-
index [3].

Theorem 5.1 (Billera–Brenti). For an interval [u, v] in the Bruhat
order, where u < v, the following three conditions hold:

(i) The interval [u, v] in the Bruhat graph has a cd-index Ψ([u, v]).

(ii) Restricting the cd-index Ψ([u, v]) to those terms of degree `(v)−
`(u)− 1 equals the cd-index of the graded poset [u, v].

(iii) The degree of a term in the cd-index Ψ([u, v]) is less than or
equal to `(v)−`(u)−1 and has the same parity as `(v)−`(u)−1.

For an alternate proof using labelings of balanced graphs, see [15].

Billera and Brenti also show the important connection with Kazhdan–
Lusztig polynomials [3, Theorem 3.3].

Theorem 5.2 (Billera–Brenti). For an interval [u, v] in the Bruhat
order, the Kazhdan–Lusztig polynomial can be explicitly computed
from the cd-index Ψ([u, v]) of the interval [u, v] in the Bruhat graph.

See also Brenti’s work on computing the Kazhdan–Lusztig poly-
nomial using lattice paths, as well as Morel’s follow-up paper [8, 29].



6 Bruhat and balanced graphs

In this section we describe a graph theoretic framework for flag enu-
meration. The notion of a labeled acyclic digraph was introduced
in [15] in order to model poset structure in this more general setting.

Let G = (V,E) be a directed, acyclic and locally finite graph
with multiple edges allowed. Recall that an acyclic graph does not
have any directed cycles and the property of a graph being locally
finite requires that there are a finite number of paths between any
two vertices. Each directed edge e has a tail and a head, denoted
respectively by tail(e) and head(e). View each directed edge as an
arrow from its tail to its head. A directed path p of length k from
a vertex x to a vertex y is a list of k directed edges (e1, e2, . . . , ek)
such that tail(e1) = x, head(ek) = y and head(ei) = tail(ei+1) for
i = 1, . . . , k − 1. We denote the length of a path p by `(p).

Since the graph is acyclic, it does not have any loops. Further-
more, the acyclicity condition implies there is a natural partial order
on the vertices of G by defining the order relation x ≤ y if there is a
directed path from the vertex x to the vertex y. It is straightforward
to verify that this relation is reflexive, antisymmetric and transitive.
It allows us to define the interval [x, y] to be the set of all vertices z
in V (G) such that there is a directed path from x to z and a directed
path from z to y. We view the interval [x, y] as the vertex-induced
subgraph of the digraph G, where the edges have the same labels as
in the digraph G. The locally finite condition is now equivalent to
that every interval [x, y] in the graph has finite cardinality.

We next relax the notions of R-labeling and the ab-index of a
poset. Let Λ be a set with a relation ∼, that is, there is a subset
R ⊆ Λ×Λ such that for i, j ∈ Λ we have i ∼ j if and only if (i, j) ∈ R.
A labeling of G is a function λ from the set of edges of G to the set Λ.
Let a and b be two non-commutative variables each of degree one.
For a path p = (e1, . . . , ek) of length k, where k ≥ 1, we define the
descent word u(p) to be the ab-monomial u(p) = u1u2 · · ·uk−1, where

ui =

{
a if λ(ei) ∼ λ(ei+1),
b if λ(ei) 6∼ λ(ei+1).



Observe that the descent word u(p) has degree k − 1, that is, one
less than the length of the path p. The ab-index of an interval [x, y]
is defined to be

Ψ([x, y]) =
∑
p

u(p), (6.1)

where the sum is over all directed paths p from x to y.

An analogue of the coalgebraic groundwork for flag enumeration
in posets holds for labeled acyclic digraphs [15, Corollary 3.4].

Theorem 6.1 (Ehrenborg–Readdy). The ab-index of a labeled acyclic
digraph is a coalgebra homomorphism from the linear span of bounded
labeled acyclic digraphs to the polynomial ring Z〈a,b〉.

The following result gives three equivalent statements which im-
ply the (non-homogeneous) ab-index of an acyclic digraph can be
written as a (non-homogeneous) cd-index [15, Theorem 4.7].

Theorem 6.2 (Ehrenborg–Readdy). For a labeled acyclic digraph
G, the following three statements are equivalent:

(i) For every interval [x, y] in the digraph G and for every non-
negative integer k, the number of rising paths from x to y of
length k is equal to the number of falling paths from x to y of
length k.

(ii) For every interval [x, y] in the digraph G and for every even
positive integer k, the number of rising paths from x to y of
length k is equal to the number of falling paths from x to y of
length k.

(iii) The ab-index of every interval [x, y] in the digraph G, where
x < y, is a polynomial in Z〈c,d〉.

Definition 6.3. A labeled acyclic digraph G is said to be balanced
if it satisfies condition (i) in Theorem 6.2. Such a labeling is called
a balanced labeling or B-labeling for short.

An edge labeling linear if the underlying relation (Λ,∼) is that
of a linear order.
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Figure 1: Two balanced directed graphs where the relation on the
labeled set Λ = {1, 2, 3} is the natural linear order. Their respective
cd-indexes are 2 · c + 3 and 5 · d. These two examples show that
the cd-index of a graph is not necessarily homogeneous and that the
coefficient of the c-power term is not necessarily 1.

Theorem 6.4 (Ehrenborg–Readdy). Let u be a non-zero cd-polynomial
with non-negative coefficients. Then there exists a bounded balanced
labeled acyclic digraph G where the relation on the set of labels is a
linear order and which satisfies Ψ(G) = w.

Theorem 6.4 (see [15, Theorem 8.1]) motivates the following con-
jecture.

Conjecture 6.5 (Ehrenborg–Readdy). The cd-index of a bounded
labeled acyclic digraph G with a balanced linear edge labeling is non-
negative.

7 Euler flag enumeration

Polytopes are examples of regular decompositions of the n-dimensional
sphere. In this section we extend the idea of flag enumeration of
polytopes to decompositions of more general manifolds. We will see
the face poset of such a manifold is an instance of the more general
quasi-graded posets. In all cases, we can extend the flag enumeration
theory.

We begin with a modest example.



Example 7.1. Consider the non-regular CW -complex Ω consisting
of one vertex v, one edge e and one 2-dimensional cell c such that the
boundary of c is the union v ∪ e, that is, boundary of the complex Ω
is a one-gon. Its face poset is the four element chain F (Ω) = {0̂ <
v < e < c}. This is not an Eulerian poset. The ab-index of Ω is a2.
Note that a2 cannot be written in terms of c and d.

Observe that the edge e is attached to the vertex v twice. Hence
it is natural to change the value of f01 to 2. The ab-index becomes
Ψ(Ω) = a2 + b2 and hence its cd-index is Ψ(Ω) = c2 − d.

The motivation for the value 2 in Example 7.1 is best expressed
in terms of the Euler characteristic of the link. The link of the
vertex v in the edge e is two points whose Euler characteristic is
2. In order to view this example in the right topological setting,
we review the notion of a Whitney stratification. For more details,
see [10, 16, 17, 24].

Definition 7.2. Let W be a closed subset of a smooth manifold M
which has been decomposed into a finite union of locally closed subsets

W =
⋃
X∈P

X.

Furthermore suppose this decomposition satisfies the condition of the
frontier:

X ∩ Y 6= ∅ ⇐⇒ X ⊆ Y .

This implies the closure of each stratum is a union of strata, and it
provides a partial ordering for the index set P:

X ⊆ Y ⇐⇒ X ≤P Y.

This decomposition of W is a Whitney stratification if

1. Each X ∈ P is a (locally closed, not necessarily connected)
smooth submanifold of M .

2. If X <P Y then Whitney’s conditions (A) and (B) hold: Sup-
pose yi ∈ Y is a sequence of points converging to some x ∈ X
and that xi ∈ X converges to x. Also assume that (with re-
spect to some local coordinate system on the manifold M) the



secant lines `i = xiyi converge to some limiting line ` and the
tangent planes TyiY converge to some limiting plane τ . Then
the following inclusions hold:

(A) TxX ⊆ τ and (B) ` ⊆ τ.

Whitney’s conditions A and B ensure there is no fractal behavior
and no infinite wiggling. A crucial result is that the links are well-
defined in a Whitney stratification. See [12].

Recall the incidence algebra of a poset is the set of all functions
f : I(P ) → C where I(P ) denotes the set of intervals in the poset.
The multiplication is given by (f · g)(x, y) =

∑
x≤z≤y f(x, z) · g(z, y)

and the identity is given by the delta function δ(x, y) = δx,y, where
the second delta is the usual Kronecker delta function δx,y = 1 if
x = y and zero otherwise. For other poset terminology, we refer the
reader to Stanley’s text [35].

We introduce the notion of a quasi-graded poset. This extends
the notion of a ranked poset.

Definition 7.3. A quasi-graded poset (P, ρ, ζ̄) consists of

(i) a finite poset P (not necessarily ranked),

(ii) a strictly order-preserving function ρ from P to N, that is, x <
y implies ρ(x) < ρ(y) and

(iii) a function ζ̄ in the incidence algebra I(P ) of the poset P , called
the weighted zeta function, such that ζ̄(x, x) = 1 for all ele-
ments x in the poset P .

Observe that we do not require the poset to have a minimal element
or a maximal element. Since ζ̄(x, x) 6= 0 for all x ∈ P , the function ζ̄
is invertible in the incidence algebra I(P ) and we denote its inverse
by µ̄.

For a chain c = {0̂ = x0 < x1 < · · · < xk = 1̂} in the face poset
of a Whitney stratified space, define

ζ̄(c) = χ(c1) · χ(linkx2(x1)) · · ·χ(linkxk−1
(xk)),



where χ denotes the Euler characteristic.

The usual approach for the ab-index of polytopes and Eulerian
posets is via the flag f - and flag h-vectors. We extend this route by
introducing the flag f̄ - and flag h̄-vectors. Let (P, ρ, ζ̄) be a quasi-
graded poset of rank n + 1 having a 0̂ and 1̂ such that ρ(0̂) = 0.
For S = {s1 < s2 < · · · < sk} a subset of {1, . . . , n}, define the flag
f̄ -vector by

f̄S =
∑
c

ζ̄(c), (7.1)

where the sum is over all chains c = {0̂ = x0 < x1 < · · · < xk+1 = 1̂}
in P such that ρ(xi) = si for all 1 ≤ i ≤ k. The flag h̄-vector is
defined by the relation (and by inclusion–exclusion, we also display
its inverse relation)

h̄S =
∑
T⊆S

(−1)|S−T | · f̄T and f̄S =
∑
T⊆S

h̄T . (7.2)

The ab-index of the quasi-graded poset (P, ρ, ζ̄) is then given by

Ψ(P, ρ, ζ̄) =
∑
S

h̄S · uS ,

where the sum ranges over all subsets S. Again, in the case when
we take the weighted zeta function to be the usual zeta function ζ,
the flag f̄ and flag h̄-vectors correspond to the usual flag f - and
flag h-vectors.

Definition 7.4. A quasi-graded poset is said to be Eulerian if for all
pairs of elements x ≤ z we have that∑

x≤y≤z
(−1)ρ(x,y) · ζ̄(x, y) · ζ̄(y, z) = δx,z. (7.3)

In other words, the function µ̄(x, y) = (−1)ρ(x,y)·ζ̄(x, y) is the inverse
of ζ̄(x, y) in the incidence algebra. In the case ζ̄(x, y) = ζ(x, y), we
refer to relation (7.3) as the classical Eulerian relation.

Generalizing the classical result of Bayer and Klapper for graded
Eulerian posets, we have the analogue for quasi-graded posets [12,
Theorem 4.2].



S f̄S h̄S 3dc −2cd

∅ 0 0 0 0
{0} 3 3 3 0
{1} 1 1 3 −2
{2} −2 −2 0 −2
{0, 1} 2 −2 0 −2
{0, 2} 2 1 3 −2
{1, 2} 2 3 3 0
{0, 1, 2} 4 0 0 0

Table 2: The flag f̄ - and flag h̄-vectors, ab-index and cd-index of the
2-dimensional torus with an edge and one isolated vertex on it. The
sum of the last two columns equals the flag h column, showing the
cd-index is 3baa + aba− 2aab− 2bba + bba + 3abb = 3dc− 2cd.

Theorem 7.5 (Ehrenborg–Goresky–Readdy). For an Eulerian quasi-
graded poset (P, ρ, ζ̄) its ab-index Ψ(P, ρ, ζ̄) can be written uniquely
as a polynomial in the non-commutative variables c = a + b and
d = ab + ba.

Example 7.6. Consider the 2-torus with one edge with two incident
vertices on it and an isolated vertex. See Table 2 for the cd-index
computation.

The next theorem implies the existence of the cd-index for any
manifold with Whitney stratified boundary [12, Theorem 6.10]. The
proof required properties of the Euler characteristic and returning to
Mather’s idea of “tube systems and control data. See [12, Sections
7–9].

Theorem 7.7 (Ehrenborg–Goresky–Readdy). Let M be a manifold
with a Whitney stratified boundary. Then the face poset is quasi-
graded and Eulerian, with

ρ(x) = dim(x) + 1

and
ζ̄(x, y) = χ(linky(x)).



8 Concluding remarks

Knowing inequalities for the cd-index implies inequalities for the flag
h-vector and the flag f -vector. This follows from expanding the cd-
index back into the ab-index (c = a + b and d = ab + ba are each
non-negative linear combinations of monomials in a and b), then
expanding the ab-index back into the flag f -vector via equation (3.2)
(another non-negative linear combination).

Recall that Stanley proved the nonnegativity of the cd-index
for polytopes, and more generally, for spherically-shellable regular
CW -spheres. See Theorem 4.2. Stanley conjectured that for n-
dimensional polytopes, more generally, Gorenstein* lattices, the cd-
index was minimized on the simplex of the same dimension, respec-
tively Boolean algebra of the same rank. Both of these conjectures
were shown to be true. See [4, 13].

Theorem 8.1 (Billera–Ehrenborg). The cd-index of a convex n-
dimensional polytope is coefficient-wise greater than or equal to the
cd-index of the n-simplex.

Theorem 8.2 (Ehrenborg–Karu). The cd-index of a Gorenstein*
lattice of rank n is coefficient-wise greater than or equal to the cd-
index of the Boolean algebra Bn.

Open question 8.3. Find the linear inequalities that hold among
the entries of the cd-index of a Whitney stratified manifold.

This expands the program of determining linear inequalities for flag
vectors of polytopes. Since the coefficients may be negative, one must
ask what should the new minimization inequalities be. Observe that
Kalai’s convolution [20] still holds. More precisely, let M and N
be two linear functionals defined on the cd-coefficients of any m-
dimensional, respectively, n-dimensional manifold. If both M and
N are non-negative then their convolution is non-negative on any
(m+ n+ 1)-dimensional manifold.

Define an inner product on k〈c,d〉 by

〈u|v〉 = δu,v



where u and v are cd-monomials and extend by linearity. We can
use this notation to encode inequalities easily. For example,〈

d− c2|Ψ(P )
〉
≥ 0

says the for a 2-dimensional polytope the coefficient of d minus the
coefficient of c2 is nonnegative. (True, as (n− 2)− 1 ≥ 0 for n ≥ 3.)

We can now state Ehrenborg’s lifting technique [11, Theorem 3.1].

Theorem 8.4 (Ehrenborg). Let u and v be two cd-monomials. Sup-
pose u does not end in c and v does not begin with c. Then the
inequality

〈H|Ψ(P )〉 ≥ 0 implies 〈u ·H · v|Ψ(P )〉 ≥ 0.

where H is a cd-polynomial such that the inequality 〈H|Ψ(P )〉 ≥ 0
holds for all polytopes P .

Corollary 8.5 (Ehrenborg). For two cd-monomials u and v the
following inequality holds for all polytopes P :

〈u · d · v|Ψ(P )〉 ≥
〈
u · c2 · v|Ψ(P )

〉
.

This corollary says the coefficient of a cd-monomial increases when
replacing a c2 with a d.

It is natural to ask the following inequality questions:

Open question 8.6. Can Ehrenborg’s lifting technique [11] be ex-
tended to stratified manifolds?

Open question 8.7. What non-linear inequalities hold among the
cd-coefficients?

Returning to Karu’s approach to show nonnegativity of the coef-
ficients of cd-index for Gorenstein* posets, we now ask the following
question.

Open question 8.8. Is there a signed analogue of Karu’s construc-
tion to explain the negative coefficients occurring in the cd-index of
quasi-graded posets?



9 Acknowledgements

The author would like to thank the Princeton University Mathemat-
ics Department where this article was written. This work was par-
tially supported by a grant from the Simons Foundation (#206001
to Margaret Readdy).

References

[1] M. Bayer and L. Billera, Generalized Dehn–Sommerville rela-
tions for polytopes, spheres and Eulerian partially ordered sets,
Invent. Math. 79 (1985), 143–157.

[2] M. Bayer and A. Klapper, A new index for polytopes, Discrete
Comput. Geom. 6 (1991), 33–47.

[3] L. J. Billera and F. Brenti, Quasisymmetric functions and
Kazhdan–Lusztig polynomials, Israel Jour. Math. 184 (2011),
317–348.

[4] L. J. Billera and R. Ehrenborg, Monotonicity of the cd-index for
polytopes, Math. Z. 233 (2000), 421–441.

[5] L. J. Billera and C. Lee, Sufficiency of McMullen’s conditions for
f -vectors of simplicial polytopes, Bull. Amer. Math. Soc. (N.S.)
2 (1980), 181-185.

[6] A. Björner, Face numbers of complexes and polytopes Proceed-
ings of the International Congress of Mathematicians 1986, Vol.
1, 2 (Berkeley, Calif., 1986), 1408-1418, Amer. Math. Soc., Prov-
idence, RI, 1987.

[7] A. Björner and F. Brenti, Combinatorics of Coxeter groups,
Springer, 2005.

[8] F. Brenti, Lattice paths and Kazhdan–Lusztig polynomials,
Jour. Amer. Math. Soc. 11 (1998), 229–259.

[9] H.S.M. Coxeter, Regular polytopes, third edition, Dover Publi-
cations, Inc., New York, 1973.



[10] A. du Plessis and T. Wall, The Geometry of Topological Sta-
bility, London Mathematical Society Monographs. New Series,
9. Oxford Science Publications. The Clarendon Press, Oxford
University Press, New York, 1995.

[11] R. Ehrenborg, Lifting inequalities for polytopes, Adv. Math. 193
(2005), 205–222.

[12] R. Ehrenborg, M. Goresky and M. Readdy, Euler flag enumer-
ation of Whitney stratified spaces, Adv. Math. 268 (2015), 85–
128.

[13] R. Ehrenborg and K. Karu, Decomposition theorem for the cd-
index of Gorenstein* posets, J. Algebraic Combin. 26 (2007),
225–251.

[14] R. Ehrenborg and M. Readdy, Coproducts and the cd-index, J.
Algebraic Combin. 8 (1998), 273–299.

[15] R. Ehrenborg and M. Readdy, Bruhat and balanced graphs,
preprint 2013. arXiv:1304.1169 [math.CO]

[16] C. G. Gibson, K. Wirthmüller, A. du Plessis and E. J. N. Looi-
jenga, Topological Stability of Smooth Mappings, Lecture Notes
in Mathematics, Vol. 552. Springer-Verlag, Berlin-New York,
1976.

[17] M. Goresky and R. MacPherson, Stratified Morse Theory,
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results
in Mathematics and Related Areas (3)], 14, Springer-Verlag,
Berlin, 1988.
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l’Académie des Sciences, Paris 117 (1893), 144–145.
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