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Homology of Newtonian Coalgebras

RICHARD EHRENBORG AND MARGARET READDY

Given a Newtonian coalgebra we associate to it a chain complex. The homology groups of this
Newtonian chain complex are computed for two important Newtonian coalgebras arising in the
study of flag vectors of polytopes: R〈a, b〉 and R〈c, d〉. The homology of R〈a, b〉 corresponds
to the homology of the boundary of the n-crosspolytope. In contrast, the homology of R〈c, d〉
depends on the characteristic of the underlying ring R. In the case the ring has characteristic 2, the
homology is computed via cubical complexes arising from distributive lattices. This paper ends with
a characterization of the integer homology of Z〈c, d〉.
c© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

This paper introduces homological algebra to Newtonian coalgebras. Newtonian coalgebras
were first introduced by Joni–Rota [13] and then studied systematically by Hirschhorn–
Raphael [12] for the polynomial ring k[x]. For more recent work, we refer to Aguiar’s
papers [1, 2].

The renaissance of Newtonian coalgebras has been its connection with studying the diffi-
cult question of characterizing face incidence information of polytopes. Beginning in [11],
Ehrenborg and Readdy first introduced the ideas of coalgebras to polytopal theory. Their main
result is that the cd-index, a noncommutative polynomial which encodes polytopal face inci-
dence data without linear redundancies, is in fact a coalgebra homomorphism. As one con-
sequence, geometric operations on a polytope can be expressed as derivation operations on
the cd-index. With Billera, Ehrenborg and Readdy continued this line of work by character-
izing the flag vector data of polytopes arising from central hyperplane arrangements [8]. The
power of Newtonian coalgebras was again exploited when Billera and Ehrenborg [7] settled
the Stanley conjecture for Gorenstein∗ lattices [16] in the case of polytopes.

For A a Newtonian coalgebra, the central object we will work with is the Newtonian chain
complex Nn(A); see (2.2). The two interesting cases we consider are when A is R〈a,b〉, the
Newtonian coalgebra generated by the two noncommutative variables a and b, and R〈c,d〉,
the Newtonian subalgebra generated by the variables c = a + b and d = ab + ba. Both are
geometrically motivated as they arise in the seminal coalgebraic study of flag vectors [11].
Surprisingly, the problem of determining the homology of their respective Newtonian chain
complexes reduces to computing the homology of well-known objects.

The homology of the Newtonian algebra R〈a,b〉 case corresponds to the reduced homology
of the boundary of the crosspolytope. For the R〈c,d〉 case, the behavior of the homology
groups is dependent on the underlying ring R. When the element 2 is a unit in the ring R,
the Newtonian chain complex Nn(R〈c,d〉), abbreviated Cn(R), is the direct sum of chain
complexes corresponding to the reduced homology of simplices of various dimensions. The
case when the ring R has characteristic 2 is quite different. The corresponding topological
objects are then cubical complexes built from distributive lattices. By a theorem of Kalai and
Stanley (see Theorem 4.3), these cubical complexes are contractible and thus only have zeroth
homology.

The next important ring to consider is the integers. By first considering Z4 we are able to
obtain the homology groups for Nn(Z〈c,d〉) = Cn(Z) using homological algebra techniques.
However, even more can be obtained. Namely, in Theorem 5.2 we describe how the image of
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the boundary map ∂i+1 is contained in the kernel of ∂i , thus giving a larger understanding of
the chain complex.

We hope that this paper will spur interest in Newtonian coalgebras and their homology
groups.

2. PRELIMINARIES ON NEWTONIAN COALGEBRAS

Let R be a commutative ring with unit. Let A be an R-module with a coassociative
coproduct � : A −→ A ⊗ A, that is, � satisfies (� ⊗ id) ◦ � = (id ⊗ �) ◦ �. Define
a map dn : A⊗n −→ A⊗(n+1) by

dn =
∑

i+ j=n−1

(−1)i · id⊗i ⊗�⊗ id⊗ j .

Then we have the following lemma.

LEMMA 2.1. The identity dn+1 ◦ dn = 0 holds, that is, d is a boundary map.

PROOF. By linearity it is enough to prove that dn+1 ◦dn applied to an element x1 ⊗· · ·⊗ xn

is equal to zero. This follows from the fact that � is coassociative. �

Using the boundary map d we obtain a chain complex. The natural question to consider is
to compute the homology of this chain complex. Our interest will be to do this in the case
when A is a Newtonian coalgebra.

DEFINITION 2.2. An R-module A is a Newtonian coalgebra if A has an associative
product µ : A ⊗ A −→ A with unit 1 and coassociative coproduct � : A −→ A ⊗ A
such that

� ◦ µ = (µ⊗ id) ◦ (id ⊗�)+ (id ⊗ µ) ◦ (�⊗ id). (2.1)

In what follows we only consider Newtonian algebras A that have grading A = ⊕
n≥0 An

such that A0 is isomorphic to the ring R, Ai · A j ⊆ Ai+ j and �(An) ⊆ ⊕
i+ j=n−1 Ai ⊗ A j .

The Newtonian coalgebras that we are interested in are R〈a,b〉 and R〈c,d〉. The first
Newtonian coalgebra R〈a,b〉 is generated by two noncommutative variables a and b such that
�(a) = �(b) = 1⊗1. The second Newtonian coalgebra R〈c,d〉 is a Newtonian subcoalgebra
of R〈a,b〉 where we set c = a + b and d = a ·b + b ·a. Then R〈c,d〉 is generated by the two
noncommutative variables c and d such that �(c) = 2 · 1 ⊗ 1 and �(d) = c ⊗ 1 + 1 ⊗ c.

From [11, Lemma 2.2 and Corollary 3.2] we have the two following lemmas.

LEMMA 2.3. Let R〈a,b〉 = ⊕
n≥0 An be the grading of R〈a,b〉. Then the kernel of the

coproduct� : An −→ ⊕
i+ j=n−1 Ai ⊗ A j is generated by the element (a − b)n.

LEMMA 2.4. Let R〈c,d〉 = ⊕
n≥0 An be the grading of R〈c,d〉. Then the kernel of the

coproduct � : An −→ ⊕
i+ j=n−1 Ai ⊗ A j is 0 if n is odd and is generated by the element

(c2 − 2d)n/2 if n is even.

Let Wn,i (A) denote

Wn,i (A) =
⊕

j1+···+ jn−i+1=i

A j1 ⊗ · · · ⊗ A jn−i+1 .

Observe that dn+1−i maps Wn,i to Wn,i−1. Thus setting ∂i = dn+1−i , we have the Newtonian
chain complex

Nn(A) : 0 −→ Wn,n(A)
∂n−→ Wn,n−1(A)

∂n−1−→ · · · ∂2−→ Wn,1(A)
∂1−→ Wn,0(A) −→ 0. (2.2)
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Let Hi(Nn(A)) denote the i th homology group of this chain complex, that is,

Hi(Nn(A)) = ker(∂i )/im(∂i+1).

The tensor ring, T (A), of the Newtonian coalgebra A is the direct sum

T (A) =
⊕

i≥1

A⊗i .

If A is generated by k elements x1, . . . , xk , it will be convenient to view the tensor ring
generated by the k + 1 elements x1, . . . , xk,⊗. Thus it is natural to consider monomials
in these k + 1 variables. Moreover, let ⊗ be a generator of degree 1, that is, the degree of
an element y1 ⊗ y2 ⊗ · · · ⊗ yk is given by deg(y1) + deg(y2) + · · · + deg(yk) + k − 1.
Let Tn(A) consist of all homogeneous elements of T (A) of degree n. Then Tn(A) is the
direct sum of all the components appearing in the Newtonian chain complex Nn(A), that is,
Tn(A) = ⊕

k Wn,k(A).

3. HOMOLOGY OF ab-POLYNOMIALS

THEOREM 3.1. The homology of the Newtonian chain complex Nn(R〈a,b〉) vanishes
everywhere except for the top homology, which is spanned by (a − b)n.

FIRST PROOF. Observe that we are interested in monomials of length n in the two vari-
ables a and b and in the tensor sign ⊗. These monomials are in bijection with the faces of
the boundary of the n-dimensional crosspolytope. For instance, the 2n monomials in a and b
correspond with the 2n facets of the crosspolytope and the term 1⊗· · ·⊗1 corresponds to the
empty face. Also the boundary map of the chain complex corresponds to the geometric boun-
dary map under this bijection. Hence, the question of computing the homology of R〈a,b〉n

is equivalent to computing the relative homology of the boundary of the crosspolytope. This
homology vanishes everywhere but in the top homology, where it is one-dimensional. This
top homology group is the kernel of �, which is determined in Lemma 2.3. �

SECOND PROOF. This proof works under the assumption that the element 2 is a unit in
the ring R. Begin by making a change of basis into c/2 = (a + b)/2 and e = a − b, that is,
R〈a,b〉 = R〈c/2, e〉. Observe that�(c/2) = 1⊗1 and�(e) = 0. For S a subset of {1, . . . , n}
let Vn,k,S be the subspace of Wn,k(R〈c/2, e〉) spanned by the

( |S|
n−k

)
monomials where e

appears in every position not in the set S. Hence we have the direct sum decomposition
Wn,k(R〈c/2, e〉) = ⊕

S Vn,k,S . Moreover, the boundary map ∂k : Wn,k(R〈c/2, e〉) −→
Wn,k−1(R〈c/2, e〉) restricts to a map ∂k : Vn,k,S −→ Vn,k−1,S . Hence associated with the
subset S we have the chain complex

Mn,S: 0 −→ Vn,n,S
∂n−→ Vn,n−1,S

∂n−1−→ · · · ∂2−→ Vn,1,S
∂1−→ Vn,0,S −→ 0.

For the Newtonian chain complex Nn(R〈a,b〉) we have the decomposition Nn(R〈a,b〉) =⊕
S Mn,S .

Observe that Mn,S is isomorphic to the chain complex that computes the reduced homology
of an (|S| − 1)-dimensional simplex. This reduced homology vanishes everywhere except
when S is the empty set. In this case the homology is one-dimensional and is generated by
en = (a − b)n . �

Let R〈a1, . . . , ak〉 denote the Newtonian coalgebra on noncommutative polynomials in the
variables a1, . . . , ak such that �(ai ) = 1 ⊗ 1. Similar to Theorem 3.1 we have the following
result, the proof of which we omit.
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THEOREM 3.2. The homology of the Newtonian chain complex Nn(R〈a1, . . . , ak〉) van-
ishes everywhere except for the top homology, which is spanned by the (k − 1)n elements of
the form (ai1+1 − ai1) · · · (ain+1 − ain ), where 1 ≤ i j ≤ k − 1.

4. HOMOLOGY OF cd-POLYNOMIALS

We now begin the study of the homology of the Newtonian coalgebra R〈c,d〉. Since the
homology varies for different rings R, let us introduce the notation that Cn(R) stands for the
Newtonian chain complexNn(R〈c,d〉). Similarly, let Cn denote the Newtonian chain complex
Nn(Z〈c,d〉). In this section we obtain the homology groups of Cn(R) when 2 is invertible in
R or the ring R has characteristic 2. In the next section we compute the homology groups for
the case R is the integers.

THEOREM 4.1. Let R be a ring such that 2 is a unit in R. When n is odd the homology of
the Newtonian chain complex Cn(R) vanishes everywhere. When n is even the homology of
Cn(R) vanishes everywhere except for the top homology, which is spanned by (c2 − 2d)n/2.

PROOF. We use the observation R〈c,d〉 = R〈c/2, e2〉. Now use the second proof of
Theorem 3.1. Pick the chain complexes corresponding to the sets S where the complement
of S is the disjoint union of pairs of consecutive elements. �

COROLLARY 4.2. For p an odd prime number the homology of the Newtonian chain
complex Cn(Zp) is given by

Hi(Cn(Zp)) ∼=
{

Zp if i = n and n is even,
0 otherwise.

To every poset P we can associate a cubical complex C(P) by letting the vertices of C(P) be
the elements of the poset and the faces of C(P) be the intervals in the poset that are isomorphic
to boolean algebras. A finite meet-semilattice is called meet-distributive if [x, y] is an interval
in P with x equal to the meet of the coatoms in [x, y] implies the interval [x, y] is isomorphic
to a boolean algebra. The most natural examples of finite meet-distributive meet-semilattices
are finite distributive lattices.

Kalai and Stanley [15, Exercise 3.19b] proved the following topological result.

THEOREM 4.3. Let P be a finite meet-distributive meet-semilattice. Then the associated
cubical complex C(P) is collapsible and in fact contractible.

We next consider the characteristic 2 case.

THEOREM 4.4. Let R be a ring such that 2 = 0. The homology of the Newtonian chain
complex Cn(R) is given by Hk(Cn(R)) ∼= R, where 0 ≤ k ≤ n. Moreover, the homology group
Hk(Cn(R)) is generated by any c⊗-monomial with k c’s and (n − k)⊗’s.

PROOF. For 0 ≤ s ≤ n let Vn,k,s be the subgroup of Wn,k(R〈c,d〉) generated by monomials
consisting of 2s −k c’s, k −s d’s and n −k ⊗’s. That is, we have the direct sum decomposition
Wn,k(R〈c,d〉) = ⊕

s Vn,k,s .
Since 2 = 0 we have that �(c) = 0, that is, the coproduct only acts on d. Hence if a

monomial m consists of x c’s, y d’s and z ⊗’s, then the boundary map of m consists of a
sum of monomials with x + 1 c’s, y − 1 d’s and z + 1 ⊗’s. Thus the chain complex Cn(R)
decomposes as a direct sum of the following chain complexes:

Mn,s : 0 −→ Vn,n,s
∂n−→ Vn,n−1,s

∂n−1−→ · · · ∂2−→ Vn,1,s
∂1−→ Vn,0,s −→ 0.

Thus we have Cn(R) = ⊕
s Mn,s .
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FIGURE 1. The distributive lattice L5,2 associated with 2 c’s and 3 ⊗’s. Observe that the three squares
in the lattice correspond to the monomials dd⊗, d ⊗ d and ⊗dd.

Let Ln,s be the set of monomials consisting of s c’s and n − s ⊗’s. Define a partial order on
Ln,s by uc ⊗ v is covered by u ⊗ cv. See Figure 1 for the case when n = 5 and s = 2. The
poset Ln,s is a distributive lattice. In fact, it is the lattice of lower order ideals of a product of
an (s)-element chain with an (n − s)-element chain.

Let w be a monomial in c’s, d’s and ⊗’s having i d’s. Write w as the product u1du2d · · ·
dui+1. Let F(w) be the i -dimensional cubical face in C(Ln,s) associated to the interval
between u1c ⊗ u2c ⊗ · · · c ⊗ ui+1 and u1 ⊗ cu2 ⊗ c · · · ⊗ cui+1. Observe that F is a bijection
between monomials and faces. Moreover, the boundary of the face F(w) is F applied to each
monomial in ∂(w). Thus the homology of the chain complexMn,s is equal to the homology of
the cubical complex C(Ln,s). However this homology is shifted, that is, the zeroth homology
of the cubical complex appears as the (n − s)th homology group of Mn,s .

By Theorem 4.3 we know that the cubical complex C(Ln,s) is collapsible to a point. Thus
this cubical complex has the same homology as a point and this homology is generated by
one of its vertices. Hence the (n − s)th homology of Mn,s is generated by any monomial
with s c’s and n − s ⊗’s. By direct summing the chain complexes over 0 ≤ s ≤ n, the result
follows. �

We now have the immediate corollary.

COROLLARY 4.5. The homology of the Newtonian chain complex Cn(Z2) is given by
Hk(Cn(Z2)) ∼= Z2 for 0 ≤ k ≤ n.

We now turn our attention to the ring Z4.
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THEOREM 4.6. The homology of the Newtonian chain complex Cn(Z4) is given by

Hi(Cn(Z4)) ∼=
{

Z4 if i = n,
Z2 if 0 ≤ i < n.

PROOF. Tensor product the exact sequence 0 −→ Z2 −→ Z4 −→ Z2 −→ 0 with the
chain complex Cn to obtain the following exact sequence of chain complexes:

0 −→ Cn(Z2)
φ−→ Cn(Z4)

ψ−→ Cn(Z2) −→ 0.

By the zig-zag lemma, we have the following exact sequence of homology groups:

· · · −→ Hi+1(Cn(Z2))
∂∗−→ Hi(Cn(Z2))

φ∗−→ Hi(Cn(Z4))
ψ∗−→ Hi(Cn(Z2))

∂∗−→ Hi−1(Cn(Z2)) −→ · · · (4.3)

where ∂∗ is induced by the boundary map in Cn(Z4). Let us determine the map ∂∗ : Hi+1
(Cn(Z2)) −→ Hi(Cn(Z2)). By Corollary 4.5 we know that both groups are isomorphic
to Z2. The homology in Hi+1(Cn(Z2)) is generated by m = ci+1⊗n−i−1 ∈ Vn,i+1(Z2).
We can lift m to Vn,i+1(Z4) to obtain ci+1⊗n−i−1. Applying the boundary map ∂ gives
2 · ∑

i1+i2=i ci1 ⊗ ci2⊗n−i−1 in Vn,i (Z4). Lastly, this element can be lifted to Vn,i (Z2) to
obtain ∂∗(m) = ∑

i1+i2=i ci1 ⊗ ci2 ⊗n−i−1. If i is even then ∂∗(m) is a sum of an odd number
of generators of the homology group Hi(Cn(Z2)) ∼= Z2. Thus ∂∗(m) is a generator and we
conclude that ∂∗ is the identity map. When i is odd the argument follows the same outline and
we obtain that ∂∗ is the zero map.

Next consider the exact sequence (4.3) when i is even. By exactness at Hi(Cn(Z2)), we
have that im(ψ∗) ∼= Z2. Thus ψ∗ is surjective. By the exactness at Hi(Cn(Z2)), we know that
ker(φ∗) ∼= Z2. Hence φ∗ is the zero map, that is, im(φ∗) ∼= 0. By the exactness at Hi(Cn(Z4)),
we have that ψ∗ is injective and hence ψ∗ is an isomorphism. We conclude that Hi(Cn(Z4))

is isomorphic to Z2. A similar argument holds when i is odd. �

5. INTEGER HOMOLOGY OF cd-POLYNOMIALS

In this section we complete our analysis of the Newtonian chain complex Cn = Cn(Z) by
computing its homology.

THEOREM 5.1. The homology of the Newtonian chain complex Cn is given by

Hi(Cn) ∼=
{

Z if i = n and i is even,
Z2 if 0 ≤ i < n and i is even,
0 if i is odd.

PROOF. The top homology, i = n, is given by Lemma 2.4. The case when i = 0 is a
straightforward calculation. By the universal coefficient theorem for homology, we have the
short exact sequence

0 −→ Hi(Cn)⊗ R −→ Hi(Cn(R)) −→ Hi−1(Cn) ∗ R −→ 0, (5.4)

where ∗ denotes the torsion product. Recall that Za ⊗ Zb ∼= Za ∗ Zb ∼= Zgcd(a,b) and
Za ⊗ Z ∼= Za . Apply (5.4) with R = Zp where p is an odd prime number. We obtain
Hi(Cn) ⊗ Zp ∼= 0. Now Hi(Cn) is a finitely generated group. However, the condition
Hi(Cn)⊗ Zp ∼= 0 implies that there are no generators of infinite order. Moreover, the order of
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every generator is relatively prime to p. Since this holds for all odd primes, we conclude that
Hi(Cn) is a direct sum of finite cyclical groups whose orders are powers of 2.

Now apply (5.4) with R = Z4. We obtain the short exact sequence

0 −→ Hi(Cn)⊗ Z4 −→ Z2 −→ Hi−1(Cn) ∗ Z4 −→ 0.

Either Hi(Cn) ⊗ Z4 ∼= Z2 or Hi(Cn) ⊗ Z4 ∼= 0. In the first case we have Hi(Cn) ∼= Z2 and
Hi−1(Cn) ∼= 0. In the second case Hi(Cn) ∼= 0 and Hi−1(Cn) ∼= Z2. Thus we have the two
implications Hi−1(Cn) ∼= 0 ⇒ Hi(Cn) ∼= Z2 and Hi−1(Cn) ∼= Z2 ⇒ Hi(Cn) ∼= 0. Now by
induction on i , where the base case is i = 1, the result follows. �

In order to get a better understanding of the homology at Wn,i when i is even, we introduce
a ring homomorphism λ from the tensor ring T (Z〈c,d〉) to Z2 by λ(1) = λ(c) = λ(⊗) = 1
and λ(d) = 0. Observe that λ restricts to the linear map λn,i : Wn,i −→ Z2.

THEOREM 5.2. Let i be a nonnegative integer less than n. At Wn,i in the Newtonian chain
complex Cn we have

im(∂i+1) = ker(∂i ) ∩ ker(λn,i ).

PROOF. Observe that λn,i ◦ ∂i+1 = 0, that is, im(∂i+1) ⊆ ker(λn,i ). Hence when i
is odd the statement is directly true since im(∂i+1) = ker(∂i ). Thus it remains to prove
ker(∂i ) ∩ ker(λn,i ) ⊆ im(∂i+1) when i is even.

Tensor product the exact sequence 0 −→ Z −→ Z −→ Z2 −→ 0 with the chain complex
Cn to obtain the following exact sequence of chain complexes:

0 −→ Cn
φ−→ Cn

ψ−→ Cn(Z2) −→ 0.

By the zig-zag lemma and Hi+1(Cn) ∼= Hi−1(Cn) ∼= 0 we have the following exact sequence
of homology groups:

0 −→ Hi+1(Cn(Z2))
∂∗−→ Hi(Cn)

φ∗−→ Hi(Cn)
ψ∗−→ Hi(Cn(Z2)) −→ 0.

Observe that all four groups are isomorphic to Z2. Since there is only one surjective map
from Z2 to itself, we know that ψ∗ is an isomorphism. (In fact, ∂∗ is also an isomorphism and
φ∗ is the zero map.)

Let w be an element of Wn,i such that w ∈ ker(∂i ) ∩ ker(λn,i ). Since λn,i counts modulo 2
the number of monomials in w that do not contain any d’s, λn,i (w) = 0 implies that ψ(w) is
a sum of an even number of generators of the homology group Hi(Cn(Z2)). However, since
Hi(Cn(Z2)) ∼= Z2, it must be that ψ(w) is mapped to the zero element in Hi(Cn(Z2)). Since
ψ∗ is an isomorphism we know that w is mapped to the zero element in Hi(Cn). In other
words, w belong to the image of ∂i+1. �

6. AN APPLICATION TO EULERIAN POSETS

As an application of the computation of the homology groups of Cn = Cn(Z), we give a
homological proof of the existence of the cd-index for Eulerian posets.

Let P be a graded poset of rank n + 1 with rank function ρ. For S = {s1 < s2 < · · · < se}
a subset of {1, . . . , n}, define fS to be the number of chains 0̂ < x1 < x2 < · · · < xk < 1̂ in
the poset P such that ρ(xi ) = si . The 2n values fS constitute the flag f-vector of the poset.
An equivalent vector is the flag h-vector which is defined by the two equivalent relations
hS = ∑

T ⊆S(−1)|S−T | · fT and fS = ∑
T ⊆S hT . For S a subset of {1, . . . , n} define uS to be
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the ab-monomial of degree n given by uS = u1 · · · un where ui = a if i /∈ S and ui = b if
i ∈ S. The ab-index of the poset P is the ab-polynomial

�(P) =
∑

S

hS · uS .

Observe that the ab-index is homogeneous of degree n.
A graded poset is Eulerian if every interval [x, y] = {z : x ≤ z ≤ y}, where x < y,

contains the same number elements of even rank as elements of odd rank. This condition is
equivalent to that the Möbius function µ(x, y) is given by (−1)ρ(y)−ρ(x). For Eulerian posets
the following result holds. The original proof is due to Bayer and Klapper [6].

THEOREM 6.1. The ab-index of an Eulerian poset P can be written in terms of c = a + b
and d = ab + ba. In other words, for Eulerian posets the cd-index exists.

PROOF. We proceed by induction on the rank of the poset. In the case the rank of the poset
is 1, the ab-index is 1 which lies in Z〈c,d〉. Assume the result is true for Eulerian posets of
rank at most n. Let P be an Eulerian poset of rank n + 1 and let �(P) denote its ab-index.
Using that the ab-index is a Newtonian coalgebra homomorphism [11, Proposition 3.1], we
have

�(�(P)) =
∑

0̂<x<1̂

�([0̂, x])⊗�([x, 1̂]).

By the induction hypothesis we obtain that �(�(P)) ∈ Wn,n−1. Since the Eulerian poset P
consists of an even number of elements we have that λ(�(�(P))) = 0. Moreover, we have
∂n−1(�(�(P))) = 0. Thus by Theorem 5.2 we have that there is an element w ∈ Z〈c,d〉
such that �(w) = �(�(P)). However, since Hn(Z〈a,b〉n) is spanned by (a − b)n , we know
that �(P) = w + β · (a − b)n for some integer β.

If n is even then (a − b)n = (c2 − 2d)n/2 and the result follows. Hence let us assume that
n is odd. Observe that the coefficient of an in w is 1. By Philip Hall’s theorem on the Möbius
function we have that [bn]�(P) = h{1,...,n} = (−1)n+1 ·µ(P) = 1. Now consider the coeffi-
cients of an and bn in w+β ·(a − b)n . By the symmetry of c and d in terms of the variables a
and b, we know that the coefficients of an and bn in w are the same, say α. Hence comparing
coefficients we obtain that 1 = α+β and 1 = α−β. Thus β = 0 and we conclude that�(P)
belongs to Z〈c,d〉, completing the induction. �

As a remark, we could have proven the weaker statement that the coefficients of the cd-
index have the form r/2s using Theorem 4.1. Namely, use the ring R = {r/2s : r, s ∈ Z}, that
is, the integers localized at 2, in Theorem 4.1.

The first proof of the existence of the cd-index is due to Bayer and Klapper [6] using a shell-
ing argument. Stanley [16] used Möbius inversion and the fact that (a + (−1)n · b) · (a − b)n

is a cd-polynomial for all nonnegative integers n. Two similar proofs are by Aguiar [1] and
Billera and Liu [9], where Aguiar’s proof takes place in a general Newtonian coalgebra setting.
The proof by Ehrenborg [10] uses the Laplace pairing between Z〈a,b〉 and the Billera–Liu
flag algebra. Using the L-vector results of Bayer and Hetyei, a proof of the existence can be
extracted from [4]. Another proof by Bayer and Hetyei appears in [5].
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