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The Manin ring is a family of quadratic algebras describing pointed stable curves
of genus zero whose homology gives the solution of the Commutativity Equations.
This solution was first observed by the physicist Losev. We show the Manin ring
is the Stanley–Reisner ring of the standard triangulation of the n-cube modulo a
system of parameters. Thus, the Hilbert series of the Manin ring is given by the
Eulerian polynomial. One can also view the Manin ring as the Stanley–Reisner ring
of the dual of the permutahedron modulo a system of parameters. Furthermore,
we develop a �n-analogue of the Manin ring. In this case the signed Manin ring is
the Stanley–Reisner ring of the barycentric subdivision of the n-cube (equivalently,
the dual of the signed permutahedron) modulo a system of parameters and its
Hilbert series is the descent polynomial of augmented signed permutations. © 2001

Academic Press

1. INTRODUCTION

There are some very exciting developments and connections being made
between the areas of physics and mathematics. One such example is the
solutions to the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) Equations
or Associativity Equations of physics [3, 4, 24]. Witten [25] recast an enu-
merative problem in algebraic geometry involving a space of genus zero
algebraic curves into a generating function whose coefficients have the
physical meaning of “potential” or “free energy.” Quantum field theorists
were thus able to discover the solutions of the Associativity Equations.
These solutions, also known as Frobenius manifolds, were later verified
mathematically [12–14].
Losev and Manin [17] showed the solutions to the Commutativity

Equations (the pencils of formal flat connections) correspond to the
homology of a family of pointed stable curves of genus zero, denoted �Ln.
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Their work parallels that of the solutions to the Associativity Equations.
The Losev–Manin solution of the Commutativity Equations required veri-
fying the dimension of �Ln is n!. Again, the solutions had been anticipated
by string theorists [15, 16].
In this paper we determine the Hilbert series of this family of commu-

tative quadratic algebras which we call the Manin ring and hence conclude
the dimension result. We also give a combinatorial description of this alge-
bra as well as a �n-analogue. The techniques we use are familiar to com-
binatorialists, but do not seem as well-known in the commutative algebra
community. It is our hope that this paper will remedy this deficiency and at
the same time give insight to develop and study new interesting quadratic
algebras.
Recall for � a simplicial complex with vertex set V ���, the Stanley–

Reisner ring k��� is the polynomial ring in the variables xv for v ∈ V ���
modulo the ideal of non-faces of �. Stanley used this ring to prove the
Upper Bound Theorem for simplicial spheres [20]. In the case that a sim-
plicial complex is shellable, and hence, having Stanley–Reisner ring which
is Cohen–Macaulay, Kind and Kleinschmidt [11] gave necessary and suffi-
cient conditions for �θ0� 	 	 	 � θd� to be a linear system of parameters. Addi-
tionally, they exhibited an explicit basis for the Stanley–Reisner ring of �
modulo a system of parameters which comes from the shelling.
Using the Kind–Kleinschmidt characterization, we show the Manin ring

�Ln is the familiar Stanley–Reisner ring of the standard triangulation of
the n-cube modulo a system of parameters. As this simplicial complex is
shellable, it is then a straightforward matter to compute the Hilbert series
of the associated ring. We do this in Section 3.
In Section 4 we give a �n-analogue of the Manin ring, denoted �L±

n .
Geometrically this signed Manin ring is the Stanley–Reisner ring of the
barycentric subdivision of the n-cube modulo a system of parameters. As
in the case of the Manin ring, we again compute the associated Hilbert
series. It would be interesting to see if this signed analogue has any physical
meaning as was known for the Commutativity Equation solutions [15, 16].
In the last section of the paper we suggest some possible directions of
generalization.

2. DEFINITIONS

We now review some elementary concepts in commutative algebra which
can be found in [23]. Throughout �n� will denote the set �n� = 	1� 	 	 	 � n
.
Let k be a field of characteristic zero and let A = ⊕

i≥0Ai be a standard
graded k-algebra, that is, A is generated by a finite number of degree 1
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homogeneous elements. The Hilbert series is defined to be

��A� = ∑
i≥0

dimk�Ai� · ti	

A basic result of Noether’s is the existence of a system of parameters.
Namely, for A a standard graded k-algebra, there exists a finite number of
homogeneous degree 1 elements θ0� 	 	 	 � θd which are algebraically inde-
pendent over k. Furthermore, there exists a finite number of homogeneous
elements η1� 	 	 	 � ηs such that for all x ∈ A,

x =
s∑
i=1
ηi · pi�θ0� 	 	 	 � θd�� (2.1)

where pi is a polynomial in the θ0� 	 	 	 � θd depending on x. The elements
θ0� 	 	 	 � θd are called a (linear) system of parameters, abbreviated s.o.p. An
s.o.p. is regular if for some choice of homogeneous elements η1� 	 	 	 � ηs
the representation in (2.1) is unique, while a standard k-algebra is Cohen–
Macaulay if some (equivalently, every) s.o.p. is regular.
The Stanley–Reisner ring or face ring of a finite simplicial complex � on

the vertex set V ��� is the quotient ring

k��� = k�xv  v ∈ V ����/I����
where I��� is the face ideal generated by all squarefree monomials
xv1 · · ·xvj satisfying the condition that the vertices v1� 	 	 	 � vj do not lie on
a common face of �.
Consider the n-cube Cn as �0� 1�n. The standard triangulation of the

n-cube, denoted ��Cn�, is the triangulation induced by cutting �0� 1�n with
the

(
n
2

)
hyperplanes xi = xj , 1 ≤ i < j ≤ n. The resulting triangulation

gives n! simplices of dimension n.
The Stanley–Reisner ring of the triangulated n-cube is given by k���Cn�� =

k�yt  t ⊆ �n��/I���Cn��, where the ideal I���Cn�� is generated by the
degree 2 monomials yt · yu with the vertices t and u not lying on the
same facet of ��Cn�. Alternatively, one can think of the triangulated n-
cube as being the Boolean algebra Bn, that is, the lattice of all subsets
of �n� ordered with respect to inclusion. The n-dimensional simplices of
��Cn� correspond to maximal chains in the Boolean algebra. More for-
mally, the maximal chain c  � = P0 ⊂ P1 ⊂ · · · ⊂ Pn−1 ⊂ Pn = �n� in
the Boolean algebra Bn corresponds to the facet F spanned by the vertices
V �F� = 	P0� 	 	 	 � Pn
. Thus the Stanley–Reisner ring is simply the polyno-
mial ring having variables the 2n elements of the Boolean algebra and the
face ideal is generated by pairs of non-comparable elements in the poset.
Let F1� 	 	 	 � Fs be a linear ordering of the facets of a pure simplicial

complex � of dimension d and set �j = �F1 ∪ · · · ∪ �Fj . Such a linear ordering
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of the facets is called a shelling order, or shelling, if �k−1 ∩ Fk is pure and
�d − 1�-dimensional for 2 ≤ k ≤ s. If such a facet order exists, we say � is
shellable. Given a shelling order, for a facet Fk the restriction R�Fk� is the
minimal new face added in the kth shelling step, that is, R�Fk� = min	F ∈
�k  F /∈ �k−1
.
Given a facet F ∈ ��Cn� with corresponding maximal chain c  � =

P0 ⊂ · · · ⊂ Pn = �n� in the Boolean algebra Bn, let πi denote the
unique element in the set difference Pi − Pi−1 for 1 ≤ i ≤ n. Then
π�F� = π1 · · ·πn ∈ Sn is the permutation representation of the facet F .
For π = π1 · · ·πn a permutation in the symmetric group Sn, the number
of descents of π, denoted des�π�, is the number of indices i such that
πi > πi+1. The descent set of π, denoted Des�π�, is the set of indices i
such that πi > πi+1.
A shelling order for the triangulated n-cube is to take the facet order

given by the lexicographic order inherited by the permutation representa-
tion of each facet. For the 3-cube this shelling order is given in Table I.
Observe there is one restriction of size 0, four of size 1, and one of size 2.
In general, a result due to Björner on EL-labelings [1] implies the facet
restriction R�Fi� depends on the descent set of the permutation π�F�.
More specifically, if π�Fi� = π1 · · ·πn and Des�π�Fi�� = 	s1� 	 	 	 � sk
 with
s1 < · · · < sk then R�Fi� = 	T1� 	 	 	 � Tk
� where Ti = 	π1� 	 	 	 � πsi
.
One well-known example of shellable objects is due to Bruggesser and

Mani, namely the boundary complex of a convex polytope [2]. Implicit from
Hochster’s work [10] is the result that if a simplicial complex is shellable
then its Stanley–Reisner ring is Cohen–Macaulay.
Let � be a pure shellable simplicial complex of dimension d and

θ0� 	 	 	 � θd be homogeneous degree 1 elements from k��� of the form
θi =

∑
v∈V ���mi� v · xv with mi� v ∈ k. Let M denote the matrix of the linear

forms θi, that is, M = �mi� v�0≤i≤d� v∈V ���. For F a facet of �, let M�F
denote the matrix formed by restricting the θi to the variables xv for v ∈ F .
Observe that M�F is a square matrix of order d + 1.

TABLE I
Shelling Restrictions for the 3-Cube Using the Lexicographic Shelling Order

Facet Fi π�Fi� R�Fi�
F1 = 	�� 	1
� 	1� 2
� 	1� 2� 3

 123 �
F2 = 	�� 	1
� 	1� 3
� 	1� 2� 3

 132 		1� 3


F3 = 	�� 	2
� 	1� 2
� 	1� 2� 3

 213 		2


F4 = 	�� 	2
� 	2� 3
� 	1� 2� 3

 231 		2� 3


F5 = 	�� 	3
� 	1� 3
� 	1� 2� 3

 312 		3


F6 = 	�� 	3
� 	2� 3
� 	1� 2� 3

 321 		3
� 	2� 3
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A beautiful result of Kind and Kleinschmidt [11] characterizes linear
systems of parameters for shellable simplicial complexes.

Theorem 2.1 (Kind–Kleinschmidt). Let � be a pure shellable simplicial
complex of dimension d with shelling order F1� 	 	 	 � Fs. Let θ0� 	 	 	 � θd be
homogeneous degree 1 elements in k��� and let M be the matrix of the θi’s.
Then

(a) The elements θ0� 	 	 	 � θd are a linear system of parameters for k���
if and only if the matrix M�F is invertible for any facet F ∈ �.

(b) A basis for k���/�θ0� 	 	 	 � θd� is given by the facet restriction mono-
mials, that is,

ηi =
∏

v∈R�Fi�
xv� 1 ≤ i ≤ s	

In the case that a standard graded k-algebra is Cohen–Macaulay, the
Hilbert series has an explicit form.

Theorem 2.2 [23, p. 35]. Let A be a Cohen–Macaulay standard graded
k-algebra with an s.o.p. �θ0� 	 	 	 � θn� and let η1� 	 	 	 � ηs be homogeneous ele-
ments of A which form a k-basis for A/�θ0� 	 	 	 � θn�. Then

��A� =
∑s
i=1 t

degηi

�1− t�n+1 	

Returning to the example, the Hilbert series of the Stanley–Reisner ring
of the triangulated 3-cube is ��k���C3��� = �1+ 4t + t2�/�1− t�3. In gen-
eral, the numerator of ��k���Cn��� is the Eulerian polynomial, that is, the
degree n polynomial having the coefficient of ti equal to the number of
permutations in the symmetric group having exactly i descents. This defi-
nition of the Eulerian polynomial differs slightly from the usual one which
instead has each term having degree one more than we have stated. For a
general reference on the Eulerian numbers and the Eulerian polynomial,
we refer the reader to [21].
Putting all of these results together, we have the following theorem which

is also a consequence of work of Hetyei [8].

Theorem 2.3. Let θ0� 	 	 	 � θn be an s.o.p. of k���Cn��, the Stanley–
Reisner ring of the triangulated n-cube. The Hilbert series of the quotient ring
k���Cn��/�θ0� 	 	 	 � θn� is given by

��k���Cn��/�θ0� 	 	 	 � θn�� =
∑
π

tdes �π��

where the sum is over all permutations π in the symmetric group Sn.
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3. THE MANIN RING �Ln
Let n be an integer greater than or equal to 2 and let the index set

Nn consist of all ordered pairs of sets s = �s1� s2� with s1∪̇s2 = �n� and
s1 �= �� �n�. Let the ideal In be generated by:

(1) The linear relations

λ�i� j� = ∑
�s1� s2�

x�s1∪	i
�s2∪	j
� − x�s1∪	j
�s2∪	i
��

where i �= j are fixed integers satisfying 1 ≤ i� j ≤ n, and the ordered pairs
�s1 ∪ 	i
� s2 ∪ 	j
� and �s1 ∪ 	j
� s2 ∪ 	i
� belong to the index set Nn.

(2) The quadratic relations

x�s1∪	i
�s2∪	j
� · x�t1∪	j
�t2∪	i
��
where i �= j are fixed integers satisfying 1 ≤ i� j ≤ n, and the ordered pairs
�s1 ∪ 	i
� s2 ∪ 	j
� and �t1 ∪ 	j
� t2 ∪ 	i
� belong to the index set Nn.

The Manin ring, denoted �Ln, is defined by �L1 = k and for n ≥ 2 it is the
quotient

�Ln = k�xs  s ∈ Nn�/In	
Manin used the notation

∑
s�xisj − xjsi� to denote the linear relation λ�i� j�

and xisj · xjti to denote the quadratic relation for i and j fixed integers.

Proposition 3.1. The following identity holds among the differences
λ�i� j�:

λ�k� j� = λ�i� j� − λ�i� k�	
In particular, the quantity λ�i� j� can be written as a linear combination of the
n− 1 quantities λ�1� 2�� 	 	 	 � λ�1� n�.
Proof. It is enough to observe that λ�i� j� = κ�i� − κ�j�, where κ is

defined as

κ�i� = ∑
�s1�s2�

x�s1∪	i
�s2��

the sum taken over all ordered pairs �s1� s2� such that �s1 ∪ 	i
� s2� belongs
to the index set Nn.

We now introduce the 2n variables yt where t ⊆ �n�. Let yt = x�t��n�−t� for
t �= �� �n�. Define the n+ 1 linear forms

θ0 = y�� θi = λ�1� i+ 1� for 1 ≤ i ≤ n− 1� and θn = y�n�	 (3.2)

Here the relations λ�1� i+ 1� are written using the variables yt .
We now state the main lemma of this section.
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Lemma 3.2. Let M be the �n + 1� × 2n matrix of the θi given in (3.2).
Assume the columns of the matrix M are ordered using any linear extension
of the Boolean algebra Bn. Let F be a facet of the triangulated n-cube. Then

det�M�F� = �−1�π�F��
that is, the determinant of the matrix M�F is precisely the signature of the
permutation π�F�.
Proof. The variables y� and y�n� only appear in θ0, respectively θn. Thus

to compute det�M�F� it is enough to compute det�M ′�, where M ′ is the
�n − 1� × �n − 1� square submatrix formed by restricting the matrix M to
the columns labeled by the vertices of F not equal to � or �n�.
Without loss of generality, we may assume πj = 1. Observe that the

column labels of the matrix M ′ are written in increasing order according to
the size of the subset t corresponding to the variable yt . Let ei denote the
ith standard unit column vector in �n−1 and 1 denote the column vector of
all ones in �n−1. We claim the kth column of M ′ has the form

�M ′�k =



− ∑

1≤i≤k
eπi−1 if k < j,

1− ∑
1≤i≤k�
i �=j

eπi−1 if k ≥ j.

To see this, let v = 	π1� 	 	 	 � πk
 be the vertex of the facet F of cardinality
k. First consider the case k < j corresponding to the fact the element 1
does not belong to v. Then the variable xv appears in the relations λ�1� π1�
through λ�1� πk�, that is, θπ1−1 through θπk−1, with a coefficient of −1.
Similarly, when k ≥ j we have πj = 1. In this case the variable xv cannot
occur in λ�1� π1�� 	 	 	 � λ�1� πj−1�� λ�1� πj+1�� 	 	 	 � λ�1� πk�, hence it has a
coefficient of zero in the corresponding rows of M ′. Since πj = 1, the
variable xv can only occur in the remaining n− k rows with coefficient of
+1. Thus the matrix M ′ is of the proposed form.
It remains to prove the main result. By definition of the signature of

a permutation, we have �−1�π = det�fπ1
� 	 	 	 � fπn�, where fi denotes the

ith standard unit vector in �n and we have displayed the columns in the
determinant expression. Cyclically rotating the rows of this matrix once
(that is, rotating the ith row to the �i − 1�st row for 2 ≤ i ≤ n and the
first row to the nth), distributing the �n− 1� minus signs to all the columns
except the jth, and then switching the jth and nth columns gives

�−1�π = �−1�n−1 det�fπ1−1� 	 	 	 � fπj−1−1� fn� fπj+1−1� 	 	 	 � fπn−1�
= det�−fπ1−1� 	 	 	 �−fπj−1−1� fn�−fπj+1−1� 	 	 	 �−fπn−1�
= det�−fπ1−1� 	 	 	 �−fπj−1−1� fπn−1�−fπj+1−1� 	 	 	 � fn�	
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Adding the absolute value of all the columns except the nth to the jth
column and then expanding the determinant by the last column gives

�−1�π = det�−eπ1−1� 	 	 	 �−eπj−1−1� 1�−eπj+1−1� 	 	 	 �−eπn−1−1�
= det�M ′��

as desired.

Theorem 3.3. Let the linear forms �θ0� 	 	 	 � θn� be as in (3.2). Then
(a) The �θ0� 	 	 	 � θn� form a system of parameters for k���Cn��, the

Stanley–Reisner ring of the triangulated n-cube.

(b) �Ln = k���Cn��/�θ0� 	 	 	 � θn�, that is, the Manin ring is precisely the
Stanley–Reisner ring of the triangulated n-cube modulo a system of parameters.

Proof. Part (a) follows from Lemma 3.2 and the Kind–Kleinschmidt
result.
By Proposition 3.1 the linear relations defining the Manin ring can be

reduced to θ1� 	 	 	 � θn−1 as θ0 and θn simply kill the extra variables y�
and y�n�. For (b), it is then straightforward to check that the system of
parameters given and the face ideal coincide with the Manin relations.

By Theorems 2.3 and 3.3 we have two immediate corollaries.

Corollary 3.4. The Hilbert series of the Manin ring is given by

���Ln� =
∑
π

tdes �π��

where the sum is over all permutations π in the symmetric group Sn.

Corollary 3.5. The dimension of the Manin ring �Ln is given by
dim��Ln� = n!	

Some values of the Hilbert series of the Manin ring are given in Table II.

TABLE II
Values of ���Ln� for 1 ≤ n ≤ 5

���L1� = 1
���L2� = 1+ t
���L3� = 1+ 4t + t2
���L4� = 1+ 11t + 11t2 + t3
���L5� = 1+ 26t + 66t2 + 26t3 + t4
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As an aside, the permutahedron *n is the polytope formed by the con-
vex hull of the vertices �π1� 	 	 	 � πn� ∈ �n with π1 · · ·πn ∈ Sn. Since the
permutahedron is a simple polytope, its dual polytope *∗

n is a simplicial
polytope. Note that the vertices of *∗

n correspond to ordered partitions of
the elements �n� into two parts, and in general, the i-dimensional faces of
*∗
n correspond to ordered partitions of the elements �n� into i+ 2 parts. It

is now not difficult to convince oneself of the following result.

Theorem 3.6. The Manin ring �Ln coincides with the Stanley–Reisner ring
of the dual of the permutahedron modulo the n − 1 linear relations λ�1� 2�
through λ�1� n�. That is,

�Ln = k��*n�∗�/�λ�1� 2�� 	 	 	 � λ�1� n��	

4. A �n-ANALOGUE OF THE MANIN RING

We now introduce a signed analogue of the Manin ring. In order to do
this, we first review the notions of signed sets and signed permutations. Let
� ±
n denote the set of all signed subsets from the set 	±1�±2� 	 	 	 �±n
 =

	1� 1̄� 2� 2̄� 	 	 	 � n� n̄
, that is, 	a1� 	 	 	 � ak
 ∈ � ±
n if 	�a1�� 	 	 	 � �ak�
 is a k

element subset of �n�. We say σ = σ1 · · ·σn is a signed permutation if the
set 	σ1� 	 	 	 � σn
 has cardinality n and belongs to � ±

n . An augmented signed
permutation is of the form τ = σ1 · · ·σn0 where the zero element has been
adjoined to the end of the signed permutation σ , in other words, τn+1 = 0.
We denote the set of all signed permutations on n elements by S±n and
the set of all augmented signed permutations by S±n�aug. The number of
descents of τ ∈ S±n�aug, denoted des�τ�, is the number of indices i such that
τi > τi+1 for 1 ≤ i ≤ n. Finally, the signature of a signed permutation σ ∈ S±n ,
denoted �−1�σ , is the signature of the permutation π = �σ1� · · · �σn� ∈ Sn
times �−1�ε, where ε is the number of negative signs in σ .
Let ��Cn� denote the face lattice of the n-dimensional cube or cubical

lattice. The dual of the rank n cubical lattice, denoted ��Cn�∗, is sim-
ply the elements of � ±

n ordered by inclusion with a maximal element 1̂
adjoined. The maximal chains of the cubical lattice correspond to aug-
mented signed permutations in the following manner. Given a maximal
chain c  � = Q0 ⊂ Q1 ⊂ · · · ⊂ Qn < 1̂ in ��Cn�∗, let σi denote the unique
element in the set difference Qi −Qi−1 for 1 ≤ i ≤ n. The permutation rep-
resentation of the maximal chain c is the augmented signed permutation
τ = σ1 · · ·σn0. Note we will usually be working with its signed permuta-
tion σ = σ1 · · ·σn. Geometrically, the barycentric subdivision of the n-cube
gives n! · 2n number of n-simplices each corresponding to a permutation
in S±n .
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We now define an ideal using the signed variables ys for s ∈ S±n . Let I±n
be the ideal generated by:

(1) The linear relations

λ±�i� j� = ∑
s

(
ys∪	i
 + ys∪	ī


)− (
ys∪	j
 + ys∪	j̄


)
�

where i �= j are fixed positive integers satisfying 1 ≤ i, j ≤ n, and the sum
is over all signed subsets s of � ±

n not containing the elements i, ī, j, or j̄.
(2) The quadratic relations

ys · yt�
where s and t are signed subsets of � ±

n that are incomparable elements in
the dual of the cubical lattice.

(3) The relation

λ±n = ∑
s

�−1�# signs in s · ys�

where s ranges over all signed subsets of � ±
n with �s� = n.

Define the signed Manin ring �L±
n by �L±

0 = k and for n ≥ 1 by

�L±
n = k�yt  t ∈ � ±

n �/I±n 	
By a similar argument as Proposition 3.1, we have the following result.

Proposition 4.1. The following identity holds among the differences
λ±�i� j�:

λ±�k� j� = λ±�i� j� − λ±�i� k�	
In particular, the quantity λ±�i� j� can be written as a linear combination of
the n− 1 quantities λ±�1� 2�� 	 	 	 � λ±�1� n�.
Define the n+ 1 linear forms θ±0 � 	 	 	 � θ

±
n by

θ±0 = y�� θ±i = λ±�1� i+ 1� for 1 ≤ i ≤ n− 1� and θ±n = λ±n 	 (4.3)

Lemma 4.2. Let M be the matrix of the θ±i given in (4.3), where the
columns are ordered using any linear extension of the dual of the cubical
lattice ��Cn�∗. Let F be an n-simplex of the barycentric subdivision of the
n-cube with signed permutation representation σ�F� = σ1 · · ·σn. Then

det�M�F� = �−1�σ�F��
that is, the determinant of the matrix M�F is precisely the signature of the
signed permutation σ�F� ∈ S±n .
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Proof. Let G be the facet in the triangulated n-cube corresponding to
the unsigned permutation π = �σ1� · · · �σn� and let N be the �n + 1� × 2n

matrix of the system of parameters θi given in �3	2�. Notice that the matrix
M�F is identical to the matrix N�G except in the �n+ 1� n+ 1� entry. This
entry has value �−1�ε, where ε is the number of negative signs appearing in
the signed permutation σ . By Lemma 3.2, det�N�G� = �−1�π�G� and thus
det�M�F� = �−1�ε · det�N�G� = �−1�σ .
By virtually the same proof as Theorem 3.3, we have its signed version.

Theorem 4.3. Let �θ±0 � 	 	 	 � θ±n � be given as in (4.3). Then
(a) The �θ±0 � 	 	 	 � θ±n � form a system of parameters for k�Bar�Cn��, the

Stanley–Reisner ring of the barycentric subdivision of the n-cube.

(b) �L±
n = k�Bar�Cn��/�θ±0 � 	 	 	 � θ±n �, that is, the signed Manin ring is

precisely the Stanley–Reisner ring of the barycentric subdivision of the n-cube
modulo a system of parameters.

We now state a signed analogue of Corollary 3.4. The fact that the sum
is over all augmented signed permutations again follows from the standard
EL-labeling of the cubical lattice and the aforementioned result of Björner
on EL-labelings.

Corollary 4.4. The Hilbert series of the signed Manin ring is given by

���L±
n � =

∑
τ

tdes �τ��

where the sum is over all augmented signed permutations τ ∈ S±n� aug.
Corollary 4.5. The dimension of the signed Manin ring �L±

n is given by

dim��L±
n � = 2n · n!	

The first few values of the Hilbert series of the signed Manin ring are
displayed in Table III.
The signed permutahedron *±

n is the polytope formed by taking the con-
vex hull of the vertices �σ1� 	 	 	 � σn� ∈ �n with σ1 · · ·σn ∈ S±n . Its face lattice
is the lattice of regions of the braid arrangement �n given by xi = ±xj , for
1 ≤ i < j ≤ n, and xi = 0, for 1 ≤ i ≤ n. This lattice may also be described
as the lattice of ordered signed partitions, denoted ��*±

n �. We refer the
reader to [6, Sect. 6] for a more detailed description of the ordered signed
partition lattice than the one we will give here.
The elements of ��*±

n � are ordered signed partitions Z/B̃1/ · · · /B̃k,
where Z is a (possibly empty) unsigned set called the zero set, and
B̃1� 	 	 	 � B̃k are signed non-empty sets. The order relation in the lattice is
merging two adjacent blocks. Hence the coatoms are of the form Z/B̃1



the yuri manin ring 165

TABLE III
Values of ���L±

n � for 0 ≤ n ≤ 4

���L±
0 � = 1

���L±
1 � = 1+ t

���L±
2 � = 1+ 6t + t2

���L±
3 � = 1+ 23t + 23t2 + t3

���L±
4 � = 1+ 76t + 230t2 + 76t3 + t4

with Z = 	i1� 	 	 	 � im
 and B̃1 = 	im+1� 	 	 	 � in
. Using the convention xī to
mean −xi, this determines the ray 0 = xi1 = · · · = xim < xim+1 = · · · = xin
in the arrangement.
Dualizing all of this, we see the dual of the signed permutahedron has

vertices corresponding to elements of the form Z/B̃1, which in turn cor-
responds to the variable yB̃1

in the signed Manin ring. In analogy to the
Manin ring, it is straightforward to verify the following result.

Theorem 4.6. The signed Manin ring �L±
n is the Stanley–Reisner ring

of the dual of the signed permutahedron modulo the n linear relations
λ±�1� 2�� 	 	 	 � λ±�1� n�� λ±n , that is,

�L±
n = k��*±

n �∗�/�λ±�1� 2�� 	 	 	 � λ±�1� n�� λ±n �	

5. CONCLUDING REMARKS

One obvious question to ask is to find other naturally occurring analogues
of the Manin ring and the Commutativity Equations. The permutahedron
and signed-permutahedron correspond respectively to the Weyl groups �n−1
and �n. In a forthcoming paper the author develops Manin-type rings aris-
ing from other Weyl groups and root systems.
Two other examples which may lead to further results are worth

mentioning. First, the notion of augmented signed permutations has a
generalization to augmented r-signed permutations which corresponds
to the r-cubical lattice; see [5]. Second, Reiner and Ziegler [19] stud-
ied the Coxeter-associahedra, a class of convex polytopes interpolating
between the permutahedron and associahedron. Can anything be said
about associahedron types of examples?
The Hetyei ring [8] is a cubical analogue of the Stanley–Reisner ring

defined for cubical polytopes, and more generally, cubical complexes. It is
an example of a ring whose defining ideal is binomial. See [18] for fur-
ther investigations by the author regarding systems of parameters of the



166 margaret a. readdy

Hetyei ring, as well as [7, 9] for the relation of the Hetyei ring with the
Ron Adin h-vector. In [22] Stanley generalizes the Hetyei ring to polytopal
complexes.
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The author thanks Richard Ehrenborg and Gábor Hetyei for their comments on an earlier
draft of this paper. Part of this work was done while the author was a Visiting Professor at
Stockholm University during the academic year 1999–2000. This work was partially supported
by NSF Grant DMS-9983660 during the summer of 2000 at Cornell University.

REFERENCES

1. A. Björner, Shellable and Cohen–Macaulay partially ordered sets, Trans. Amer. Math. Soc.
260 (1980), 159–183.

2. H. Bruggesser and P. Mani, Shellable decompositions of cells and spheres, Math. Scand.
29 (1971), 197–205.

3. R. Dijkgraaf, E. Verlinde, and H. Verlinde, Topological strings in d < 1, Nuclear Phys. B
352 (1991), 59–86.

4. R. Dijkgraaf and E. Witten, Mean field theory, topological field theory, and multi-matrix
models, Nuclear Phys. B 342 (1990), 486–522.

5. R. Ehrenborg and M. Readdy, The r-cubical lattice and a generalization of the cd-index,
European J. Combin. 17 (1996), 709–725.

6. R. Ehrenborg and M. Readdy, On flag vectors, the Dowling lattice and braid arrange-
ments, Discrete Comput. Geom. 21 (1999), 389–403.

7. J. Haglund, On the nonnegativity of the coefficients of some polynomials occurring in the
theory of cubical spheres, Ann. Sci. Math. Québec 1 (1998), 43–45.
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