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We obtain an explicit method to compute the cd-index of the lattice of regions
of an oriented matroid from the ab-index of the corresponding lattice of flats. Since
the cd-index of the lattice of regions is a polynomial in the ring Z(c, 2d), we call
it the c-2d-index. As an application we obtain a zonotopal analogue of a conjecture
of Stanley: among all zonotopes the cubical lattice has the smallest c-2d-index coef-
ficient-wise. We give a new combinatorial description for the c-2d-index of the cubi-
cal lattice and the cd-index of the Boolean algebra in terms of all the permutations
in the symmetric group Sn . Finally, we show that only two-thirds of the :(S)'s of
the lattice of flats are needed for the c-2d-index computation. � 1997 Academic Press

1. INTRODUCTION

The cd-index is an efficient way to encode the flag f-vector of a convex
polytope. The generalized Dehn�Sommerville equations describe all the
linear relations that hold among the entries of the flag f -vector, while the
cd-index encodes the flag f-vector and removes the linear redundancies.
For instance, the flag f-vector of a convex polytope of dimension n has 2n

entries, whereas the corresponding cd-index has only Fn entries. Here Fn is
the n th Fibonacci number, where F0=F1=1.

Originally suggested by Fine and developed by Bayer and Klapper [2],
the cd-index is defined for all Eulerian posets. Recall that a poset is
Eulerian if its Mo� bius function satisfies +(x, y)=(&1) \(x, y). Observe that
face lattices of convex polytopes are Eulerian posets.

Not very much is known about computing the cd-index. Purtill [21]
gave recursion formulas for the cd-index of the Boolean algebra and the
cubical lattice, that is, the face lattice of the cube. He also gave a com-
binatorial description of the coefficients of the cd-index of the Boolean

article no. TA972797

79
0097-3165�97 �25.00

Copyright � 1997 by Academic Press
All rights of reproduction in any form reserved.

* E-mail: billera�math.cornell.edu.
- E-mail: jrge�math.cornell.edu.
� E-mail: readdy�math.cornell.edu.



File: 582A 279702 . By:DS . Date:15:09:97 . Time:09:18 LOP8M. V8.0. Page 01:01
Codes: 3473 Signs: 3023 . Length: 45 pic 0 pts, 190 mm

algebra in terms of Andre� permutations, a permutation class first studied
by Foata and Schu� tzenberger [12, 13]. Purtill also defined signed Andre�
permutations to obtain a similar result concerning the cd-index of the
cubical lattice. Many authors have continued to work on understanding the
cd-index of the simplex and the n-dimensional cube; see [10, 11, 16, 17].

The cd-index is also understood for simplicial polytopes, and more
generally, for Eulerian simplicial posets. Stanley [24] expressed the
cd-index of a simplicial polytope in terms of its h-vector and certain
cd-polynomials 88 n

i . Hetyei [16] proved a conjecture of Stanley which gives
a combinatorial interpretation of the cd-polynomials 88 n

i , whereas a short
recursion for the 88 n

i was found in [11]. Cubical polytopes, more generally
Eulerian cubical posets, have been studied in [9].

In this paper we will consider oriented matroids. The lattice of regions
of an oriented matroid is an Eulerian poset, thus it is natural to ask how
to compute its cd-index. We provide here an answer to this question.

The lattice of flats of a matroid describes the combinatorial structure of
the matroid. Zaslavsky [30] showed that the lattice of flats of an oriented
matroid completely determines the f-vector of the lattice of regions, while
Bayer and Sturmfels [3] showed that it completely determines the flag
f-vector. Our work describes this relation explicitly. Namely, let 9(L) be
the ab-index of the lattice of flats. We compute the cd-index of the lattice
of regions by replacing every occurrence of ab in a } 9(L) by 2d and
replacing each of the remaining letters by c. Observe that every d in the
cd-index has a factor of 2 associated with it. Thus the cd-index is naturally
written in terms of c and 2d, and hence it is called the c-2d-index.

The proof of the main theorem is based upon recasting in terms of
ab-indexes a result relating the number of chains in the lattice of regions of
an oriented matroid to the Mo� bius function of its associated lattice of flats
(see [7, Proposition 4.6.2] or Proposition 6.1). In order to apply Proposi-
tion 6.1 we need to use the fact that the ab-index is a coalgebra homomor-
phism; see [11]. We review the coalgebra techniques of [11] in Section 4
and then develop the necessary tools in Section 5 so that we can interpret
the identity in Proposition 6.1 in terms of the ab-index. By these techniques
we obtain the explicit relation between the ab-index of the lattice of flats
and the c-2d-index of the lattice of regions.

A special class of oriented matroids are realizable oriented matroids.
They correspond to hyperplane arrangements in the sense that the lattice
of regions of a realizable oriented matroid is isomorphic to the face
lattice of its corresponding hyperplane arrangement. Every hyperplane
arrangement has a corresponding zonotope, and the lattice of faces of
the hyperplane arrangement is anti-isomorphic to the face lattice of
this zonotope. Hence we have a method to compute the c-2d-index of a
zonotope.
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It was conjectured by Stanley [25] that coefficient-wise the cd-index of
an n-dimensional convex polytope is greater than or equal to the cd-index
of the n-simplex. More generally, he conjectured that the cd-index of a
Gorenstein* lattice of rank n is greater than or equal to the cd-index of the
Boolean algebra of rank n. As a corollary of our result we obtain the
zonotopal analogue of this conjecture: the c-2d-index of the lattice of
regions of an oriented matroid of rank n is coefficient-wise greater than or
equal to the c-2d-index of the arrangement consisting of the coordinate
hyperplanes. That is, among all zonotopes of dimension n, the n-dimen-
sional cube has the smallest c-2d-index.

As one easy application of our main result, we obtain a natural way to
compute the c-2d-index of the cubical lattice in terms of all permutations
in the symmetric group Sn . This avoids having to use restricted classes of
permutations, such as signed Andre� permutations and signed simsun per-
mutations. As a consequence, we find a straightforward way to compute
the cd-index of the Boolean algebra in terms of all permutations in the
symmetric group.

Finally, in the last section we show that not all of the :(S)'s of the lattice
of flats are needed to compute the c-2d-index of the oriented matroid.
Surprisingly we only need two-thirds of the :(S)'s. We give an explicit
description of this essential set of :(S)'s.

2. DEFINITIONS

In this paper we will consider graded posets of rank greater than or
equal to one, that is, posets P having a minimal element 0� and a maximal
element 1� so that 0� {1� . Moreover, there is a rank function \ such that
\(0� )=0. For x�y define \(x, y) to be equal to \( y)&\(x) and the inter-
val [x, y] to be the set [z : x�z�y]. Observe that [x, y] is a graded
poset of rank \(x, y).

A poset L is a lattice if every pair of elements x, y has a unique greatest
lower bound x 7 y, called the meet, and a unique least upper bound x 6 y,
called the join. A ranked lattice L is called semi-modular if it satisfies the
following inequality:

\(x)+\( y)�\(x 7 y)+\(x 6 y),

for all x, y # L. A lattice is atomic if all of its elements can be written as a
join of atoms. A lattice which is both semi-modular and atomic is a
geometric lattice.

The Mo� bius function +(x, y) is defined for x, y # P such that x�y by
+(x, x)=1 and �x�z�y +(x, z)=0 for x<y. We denote +(0� , 1� ) by +(P).
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Let P be a graded poset of rank n+1. For S a subset of [1, ..., n] let PS

be the subposet of P defined as PS=[x # P : \(x) # S, x=0� , or x=1� ]. Let
:(S) be the number of maximal chains in PS . That is, :(S) is the number
of chains in P whose ranks correspond to the set S. Define ;(S) by the
equation

;(S)= :
T�S

(&1) |S&T | } :(T ). (1)

Then we have that ;(S)=(&1)|S|+1 } +(PS); see Equation (34) in [23,
Section 3.12].

Let a and b be two non-commutating variables. For a subset S of
[1, ..., n] define uS to be the ab-monomial u1 } } } un where ui=a if i � S and
ui=b if i # S. The ab-index 9(P) of a poset P of rank n+1 is defined by

9(P)=:
S

;(S ) } uS , (2)

where the sum ranges over all subsets S of [1, ..., n]. Observe that 9(P) is
a homogeneous polynomial of degree n.

An alternative definition of the ab-index is given by assigning weights to
each chain in P. For a chain c=[0� =x0<x1< } } } <xk=1� ] define the
weight of the chain c to be the product wt(c)=w1 } } } wn , where

wi={b
a&b

if i # [\(x1), ..., \(xk&1)],
otherwise.

Hence the weight of the chain c is given by

wt(c)=(a&b) \(x0 , x1)&1 } b } (a&b) \(x1 , x2)&1 } b } } } b } (a&b) \(xk&1 , xk)&1.

Then the ab-index is given by

9(P)=:
c

wt(c), (3)

where c ranges over all chains c in the poset P.
A poset P is called Eulerian if the Mo� bius function satisfies +(x, y)=

(&1) \(x, y). When P is Eulerian the ab-index of P can be written in terms
of the non-commutating variables c=a+b and d=a } b+b } a. This
observation is due to Fine, see [2]; for an elementary proof, see [24]. In
[4] it was observed that when P is the lattice of regions of an oriented
matroid M, then the ab-index of P can be written as a polynomial with
integer coefficients in the non-commuting variables c and 2 } d. When 9(P)
is written in terms of c and 2d, we call 9(P) the c-2d-index.
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Let Z(a, b) be the ring of polynomials in the variables a and b, and let
the degree of a and b be 1. Let Z(c, 2d) denote the subring of Z(a, b)
spanned by the elements c=a+b and 2d=2ab+2ba and let Z(c, 2d) +

denote c-2d-polynomials without constant coefficient.
For a poset P let P* denote the dual poset. The poset P* has the same

underlying set as P but with the order relation x�P* y if x�P y. Similarly
for an ab-monomial v=v1 v2 } } } vn let v*=vn } } } v2v1 . By linearity we extend
this operation to be an involution on Z(a, b). Since c*=c and 2d*=2d,
the involution restricts to Z(c, 2d) by reading the c-2d-monomial back-
wards. Observe we have for a graded poset P that 9(P*)=9(P)*.

The important function we will work with is |, which we now describe.

Definition 2.1. Define a linear function | : Z(a, b) � Z(c, 2d) as
follows: For an ab-monomial v we compute |(v) by replacing each
occurrence of ab in the monomial v with 2d, then replacing the remaining
letters with c's. Extend this definition by linearity to ab-polynomials.

The function | takes an ab-polynomial of degree n into a c-2d-polynomial
of degree n. As an example

|(aaa+3 } aba+5 } aab+3 } abb)=c3+3 } 2d } c+5 } c } 2d+3 } 2d } c
=c3+6 } 2d } c+5 } c } 2d.

3. THE MAIN THEOREM FOR ORIENTED MATROIDS

Form a poset from the set [+, &, 0] by the order relations 0<+,
0<&, and + and & are incomparable. If E is a finite set then the
set [+, &, 0]E is also a poset. Observe that this poset does not have a
maximal element. An element of [+, &, 0]E is called a sign vector.

An oriented matroid M on the set E is a collection of sign vectors from
[+, &, 0]E, called covectors, which satisfies the covector axioms of an
oriented matroid; see [7, Definition 4.1.1]. We refer the reader to [7,
Chapter 4] for more details on oriented matroids. Observe that the covec-
tors form a subposet of the poset [+, &, 0]E. Let T denote the poset of
covectors with a maximal element 1� adjoined. The poset T is a lattice
which we call the lattice of regions. The coatoms of T correspond to the
topes in the hyperplane arrangement; hence we use the notation T to
denote this lattice.

The lattice of regions of an oriented matroid is isomorphic to the face
lattice of a regular cell decomposition of a sphere of dimension \(T )&2.
In fact, an interval [x, y] in the lattice of regions is isomorphic to the face
lattice of a regular cell decomposition of a sphere of dimension \(x, y)&2.
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Moreover, these cell decompositions are shellable. See Theorem 4.3.3
and Corollary 4.3.7 in [7] for more details. These results imply that the
lattice of regions of an oriented matroid is an Eulerian poset; see [7,
Corollary 4.3.8].

Underlying every oriented matroid there is a matroid. Any matroid can
be described by its lattice of flats, which is a geometric lattice. We denote
the lattice of flats of an oriented matroid M by L. It follows from Bayer
and Sturmfels [3, Theorem 3.4] that the ab-index of the lattice of regions
T depends only on the lattice L. Our main theorem will show this
dependency in an explicit manner.

As an example of an oriented matroid, consider a linear hyperplane
arrangement H=[He]e # E in Rn. Assume that �e # E He=[0], that is, the
collection H is essential. For each hyperplane He choose a normal vector
ue . The hyperplane arrangement H cuts Rn into cones. Let a partial order
on the set of cones be given by the cone C is less than or equal to the cone
C$ if the closure of C is contained in the closure of C$. If we adjoin a maxi-
mal element to this poset then it is isomorphic to the lattice of regions of
the corresponding oriented matroid M. A cone C corresponds to the sign
vector x if xe=sign(ue } x) for a vector x in the relative interior of the
cone C.

The intersection lattice of the hyperplane arrangement H is the lattice
on the set of subspaces [�e # S He : S�E ] ordered by reversed inclusion.
Thus Rn is the minimal element and [0] is the maximal element; the hyper-
planes in the arrangement are the atoms. Note the intersection lattice of the
hyperplane arrangement H is isomorphic to the lattice of flats L of the
underlying matroid M.

Associated to the essential hyperplane arrangement H is an n-dimen-
sional zonotope Z, the Minkowski sum of the normals to the hyperplanes
in H; see [7]. The face lattice L(Z) of the zonotope Z is anti-isomorphic
to the lattice of regions of the corresponding oriented matroid M, that is,
L(Z)=T*.

Since the lattice of regions T is an Eulerian poset, it has a cd-index. In
fact, the lattice T has a c-2d-index and the following theorem shows how
to compute its c-2d-index.

Theorem 3.1. Let M be an oriented matroid, T the lattice of regions
of M, and L the lattice of flats of M. Then the c-2d-index of T is given by

9(T )=|(a } 9(L))*.

For example, consider the hyperplane arrangement in R3 with the four
hyperplanes x=0, y=0, z=0 and x+y+z=0. The corresponding
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intersection lattice L has rank 3, and it is straightforward to compute its
ab-index,

9(L)=:(<) } aa+(:(1)&:(<)) } ba+(:(2)&:(<)) } ab

+(:(1, 2)&:(1)&:(2)+:(<)) } bb

=aa+3 } ba+5 } ab+3 } bb.

(Note that throughout we will omit the brackets in expressions involving
:'s and ;'s.) Hence we obtain the c-2d-index of the lattice of regions by

|(aaa+3 } aba+5 } aab+3 } abb)*=(c3+6 } 2d } c+5 } c } 2d)*

=c3+6 } c } 2d+5 } 2d } c.

As a consequence of Theorem 3.1 we have the following four corollaries.

Corollary 3.2. Let H be an essential hyperplane arrangement and let
L be the intersection lattice of H. Let Z be the zonotope that corresponds
to H. Then the c-2d-index of the zonotope Z is given by

9(Z)=|(a } 9(L)).

Since the sum of the coefficients of the ab-index of a poset P is the
number of maximal chains of P, we obtain the following corollary.

Corollary 3.3. The sum of the coefficients of the c-2d-index of the
lattice of regions is equal to the number of maximal chains in the lattice of
flats.

The rank of the oriented matroid is defined to be the rank of the lattice
of regions minus one, that is, \(T )&1.

Corollary 3.4. Let M be an oriented matroid of even rank n. Then the
coefficient of (2d)n�2 in the c-2d-index of the lattice of regions is given by the
value ;(1, 3, ..., n&1) of the lattice of flats L.

One may also use Theorem 3.1 to find an expression for the f-vector of
a zonotope in terms of the ;-invariant of the corresponding lattice of flats,
obtaining an equivalent version of Zaslavsky's Corollary 5.5 [30] (which
is in terms of the : invariant).

Corollary 3.5. For an oriented matroid M of rank n+1, let fk(T )
denote the number of k-dimensional faces in the dual to the associated lattice
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of regions T (the dual (n+1)-dimensional zonotope, in the realizable case).
Then for 0�k�n,

fk(T )=2 \1+ :
n

m=k+1

;(k+1, ..., m)+ :
n

m=k

;(k, ..., m)+ ,

where ;=;L , the ;-invariant of the corresponding lattice of flats, and where
we take ;(0, ..., m)=0.

4. COALGEBRA TECHNIQUES

In order to prove our main theorem we will be using the fact that the
ab-index may be viewed as a coalgebra homomorphism. We develop briefly
this idea in this section. For greater detail we refer the reader to [11].

Let P denote the integer span of the set of all isomorphism types of
graded posets of rank greater than or equal to 1. On the space P introduce
a coproduct by

2(P)= :
0� <x<1�

[0� , x]�[x, 1� ].

The Sweedler notation of coproducts is to write 2(P)=�P P(1)�P(2) ; see
[28]. This coproduct is coassociative, hence the linear map 2k&1: P � P�k

is defined by

2k&1(P)= :
0� =x0<x1< } } } <xk=1�

[x0 , x1]�[x1 , x2]� } } } �[xk&1 , xk].

Similarly, the Sweedler notation for 2k&1 is 2k&1(P)=�P P(1)� } } } �P(k) .
There is a natural coproduct on the ring Z(a, b) . For a monomial

v=v1 } } } vn let

2(v)= :
n

i=1

v1 } } } vi&1�vi+1 } } } vn ,

and extend 2 to the ring Z(a, b) by linearity. The coproduct 2 on Z(a, b)
is coassociative. When the degree of a monomial v is less than k, we have
that 2k(v)=0. Also observe that 2 satisfies the Newtonian condition [18]:

2(u } v)=:
u

u(1)�u(2) } v+:
v

u } v(1) �v(2) . (4)
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We remark that neither P nor Z(a, b) has an augmentation (counit).
Hence they are not coalgebras in the classical sense.

We may extend the map 9 by linearity to the space P. From [11,
Proposition 3.1] we have the following proposition.

Proposition 4.1. ([11]). The linear map 9 : P � Z(a, b) is a coalgebra
homormophism, that is, for a poset P we have

2(9(P))=:
P

9(P(1))�9(P(2)).

This result is important since it allows us to obtain information about the
ab-index of intervals [0� , x] and [x, 1� ] by knowing only the ab-index of the
entire poset. More generally, let f1 , ..., fk be linear maps on Z(a, b). Then
by coassociativity of the coproduct and Proposition 4.1 we may compute

:
0� =x0<x1< } } } <xk=1�

f1(9([x0 , x1])) } } } fk(9([xk&1 , xk]))

by knowing only the ab-index 9(P) of the entire poset P, rather than the
ab-index of each of the intervals in the poset. That is, the previous expres-
sion is equal to

:
v

f1(v(1)) } } } fk(v(k)),

where v=9(P).

5. THE THREE FUNCTIONS }, ', AND .

We will now introduce certain linear functions on the ring Z(a, b).
These functions will be important in giving Proposition 6.1 an interpreta-
tion in terms of the ab-index, which will imply our main theorem. We begin
by defining two linear functions A, B : Z(a, b) � Z by defining them on an
ab-monomial v by

A(v)={1
0

if v=ak for some k�0,
otherwise,

and

B(v)={1
0

if v=bm for some m�0,
otherwise.
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Observe that A and B are ring homomorphisms. Next, define the linear
function E : Z(a, b) � Z by

E(v)={1
0

if v=bmak for some m, k�0,
otherwise.

The three functions A, B, and E are related by the following lemma.

Lemma 5.1. For all elements v # Z(a, b) we have

2 } E(v)=A(v)+B(v)+:
v

B(v(1)) } A(v(2)).

Proof. Since both sides are linear in v, it is enough to prove it for an
ab-monomial v. Indeed, if v is of the form u } ab } u$ then both sides are
equal to zero. On the other hand, for v of the form bmak, it reduces to
checking that 2=/(k=0)+/(m=0)+/(k>0)+/(m>0). K

Note that for a graded poset P we have that A(9(P))=1 and
B(9(P))=(&1) \(P) } +(P).

Lemma 5.2. Let P be a graded poset. Then

:
0� �x�1�

(&1) \(x) } +(0� , x)=2 } E(9(P)).

Proof. Let v be the ab-index of the poset P, that is, v=9(P). Then we
obtain

:
0� �x�1�

(&1) \(x) } +(0� , x)=1+(&1) \(P) } +(P)+ :
0� <x<1�

(&1) \(x) } +(0� , x)

=A(9(P))+B(9(P))+ :
0� <x<1�

B(9([0� , x]))

=A(9(P))+B(9(P))+:
P

B(9(P(1))) } A(9(P(2)))

=A(v)+B(v)+:
v

B(v(1)) } A(v(2))

=2 } E(v). K

If P is a poset of rank n+1, notice that

E(9(P))= :
n

i=0

;P(1, ..., i).
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In terms of the :'s we may write this as

E(9(P))=:
S

(&1)n&|S| } :(S ),

where S ranges over all subsets of [1, ..., n] such that max(S _ [0])#
n mod 2.

As a side remark, we may compute the characteristic polynomial /(P; q)
of a poset P using a similar technique. Recall that the characteristic poly-
nomial is defined by

/(P; q)= :
0� �x�1�

+(0� , x) } q \(x, 1� ).

Let E� : Z(a, b) � Z[q] be given by

E� (v)={(&1)m } qk

0
if v=bmak for some m, k�0,
otherwise.

Then by a proof similar to that of Lemma 5.2 (with A� (ak)=qk+1, B� (bm)=
(&1)m+1 and (q&1) } E� (v)=A� (v)+B� (v)+�v B� (v(1)) } A� (v(2)), we can
obtain

Proposition 5.3. The characteristic polynomial of a poset P is related to
its ab-index by

/(P; q)=(q&1) } E� (9(P)).

We now define three linear functions }, ', and . from Z(a, b) to
Z(a, b) that will be very useful for us. The linear function } is defined on
ab-monomials by

}(v)={(a&b)k

0
if v=ak for some k�0,
otherwise.

Similarly, ' is defined on ab-monomials by

'(v)={2 } (a&b)m+k

0
if v=bmak for some m, k�0,
otherwise.

Observe that the functions } and ' correspond to the functions A(v) and
2 } E(v) respectively, that is, we have the relations }(v)=A(v) } (a&b)deg(v)

and '(v)=2 } E(v) } (a&b)deg(v). Hence for a poset P we have

}(9(P))=A(9(P)) } (a&b) \(P)&1, (5)

'(9(P))=2 } E(9(P)) } (a&b) \(P)&1. (6)
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To define the third function ., we begin to define .k : Z(a, b) �
Z(a, b) for k�1 by

.k(v)=:
v

}(v(1)) } b } '(v(2)) } b } } } b } '(v(k)).

When deg(v)<k&1, we obtain .k(v)=0. Hence the sum �k�1 .k(v) is
always finite, so we define .(v)=�k�1 .k(v). Notice that the three linear
maps }, ', and . are all degree-preserving, that is, for a monomial v of
degree n, we have }(v), '(v), and .(v) are homogeneous of degree n.
Moreover, these three maps satisfy the following functional equation.

Lemma 5.4.

.(v)=}(v)+:
v

.(v(1)) } b } '(v(2)).

Proof. We have .1(v)=}(v). Since the coproduct is coassociative, we
obtain for k�2 that

.k(v)=:
v

}(v(1)) } b } } } b } '(v(k&1)) } b } '(v(k))

=:
v \:

v(1)

}(v(1, 1)) } b } } } b } '(v(1, k&1))+ } b } '(v(2))

=:
v

.k&1(v(1)) } b } '(v(2)).

Now summing over k�1 we get the desired equality. K

Lemma 5.4 enables us to compute values of the function .. For instance,
we have that .(1)=1, .(a)=c, and .(a } b)=2d since .(a } b)=}(a } b)+
.(a) } b } '(1)+.(1) } b } '(b)=0+c } b } 2+1 } b } 2 } (a&b)=2d.

The main result of this section is that the function . is related to the
function | (see Definition 2.1) in the following manner.

Proposition 5.5. For an ab-monomial v which begins with the letter a we
have

|(v)=.(v).

Observe that the proposition does not hold for monomials that begin with
the letter b. For instance, |(b)=c, but .(b)=2 } b.

The proof of this proposition will follow with the help of the following
two lemmas.
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Lemma 5.6. Let v be a nonconstant ab-monomial and let x be either a or
b. Assume that the monomial v } x does not end with ab. Then

.(v } x)=.(v) } c.

Proof. The conditions in the statement say that either x=a or that
x=b and v ends with b. In both cases it is easy to check that the two
equalities }(v } x)=}(v) } (a&b) and '(v } x)='(v) } (a&b) hold.

By the Newtonian condition (4) we have

2(v } x)=v�1+:
v

v(1) �v(2) } x.

Hence by Lemma 5.4 we obtain that

.(v } x)=}(v } x)+.(v) } b } '(1)+:
v

.(v(1)) } b } '(v(2) } x)

=}(v) } (a&b)+.(v) } b } 2+:
v

.(v(1)) } b } '(v(2)) } (a&b)

=.(v) } (a&b)+.(v) } b } 2

=.(v) } (a+b)

=.(v) } c. K

Lemma 5.7. Let v be a nonconstant ab-monomial. Then

.(v } a } b)=.(v) } 2d.

Proof. Observe that }(v } a } b)=0 and '(v } a } b)=0. By the Newtonian
condition (4) we have

2(v } a } b)=v } a�1+v�b+:
v

v(1) �v(2) } a } b.

Hence by Lemma 5.4 we have

.(v } a } b)=}(v } a } b)+.(v } a) } b } '(1)+.(v) } b } '(b)

+:
v

.(v(1)) } b } '(v(2) } a } b)

=.(v } a) } b } 2+.(v) } b } 2 } (a&b).
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But by Lemma 5.6 we have .(v } a)=.(v) } (a+b). So

.(v } a } b)=.(v) } ((a+b) } b } 2+b } 2 } (a&b))

=.(v) } 2 } (a } b+b } a)

=.(v) } 2d. K

Proof of Proposition 5.5. The proof is by induction on the length of v.
It is easy to compute that |(a)=c=.(a) and |(ab)=2d=.(ab).

It follows from the definition of | that it satisfies the same recursions
which are given for . in Lemmas 5.6 and 5.7. Thus we conclude that
|(v)=.(v) for all monomials v that begin with the letter a. K

Similar to Proposition 5.5, we have for any monomial v that .(b } v)=
2b } |(v).

6. PROOF OF THE MAIN THEOREM

For an oriented matroid M let T be the lattice of regions and L be the
lattice of flats. Let L� be the lattice L with a new minimal element 0�
adjoined. For a sign vector x define the zero set as z(x)=[e # E : xe=0].
The zero set of a covector of the oriented matroid is a flat in the underlying
matroid. Hence by extending the map z by z(1� )=0� , z is a function from T
to L� . We will view z as a function from the dual lattice T*. Then z is a
surjective, order, and rank preserving map from T* to L� .

Figure 1 illustrates the lattice L� corresponding to the hyperplane
arrangement of the coordinate axes in R2, together with the dual of the
associated lattice of regions. The map z takes elements in the right lattice

Fig. 1. The lattice L� and the lattice T*, the dual of the lattice of regions.
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surjectively to elements of the same rank in the left lattice. Here 9(L)=
a+b and 9(T*)=|(a } 9(L))=c2+2d. This is the c-2d-index of the
square, which is the associated zonotope of this arrangement.

Since z is an order preserving map, z maps a chain from the lattice T*
to a chain in the lattice L� . The following proposition describes the car-
dinality of the inverse image of a chain in L� ; see [7, Proposition 4.6.2].

Proposition 6.1. ([7]). For a chain c=[0� =x0<x1< } } } <xk=1� ] in
L� , the cardinality of its inverse image is given by

|z&1(c)|= `
k&1

i=1

:
xi�y�xi+1

(&1) \(xi , y) } +(xi , y).

Observe that each interval of the form [xi , y] belongs to L, and hence is
a geometric lattice. Recall the sign of the Mo� bius function of a geometric
lattice is positive or negative depending on whether its rank is even or odd,
respectively, so (&1) \(xi , y) } +(xi , y)=|+(xi , y)|.

Proof of Theorem 3.1. By Lemma 5.2 we may rewrite Proposition 6.1
as

|z&1(c)|= `
k&1

i=1

2 } E(9([xi , xi+1]))

=A(9([x0 , x1])) } `
k&1

i=1

2 } E(9([xi , xi+1])),

since A(9([x0 , x1]))=1, as noted earlier.
Now we can compute the ab-index of the lattice T* by summing over

chains c in the lattice L� . Here k denotes the length l (c) of the chain c. The
fact that k depends on c will be suppressed in the notation. Observe that
we are multiplying non-commutative terms, hence the product >k

i=j ui

denotes uj } uj+1 } } } uk . We now have by (3)

9(T*)=:
c

|z&1(c)| } wt(c)

=:
c

A(9([x0 , x1])) } `
k&1

i=1

2 } E(9([xi , xi+1])) } wt(c)

=:
c

A(9([x0 , x1])) } (a&b) \(x0 , x1)&1

} `
k&1

i=1

b } 2 } E(9([xi , xi+1])) } (a&b) \(xi , xi+1)&1

=:
c

}(9([x0 , x1])) } `
k&1

i=1

b } '(9([xi , xi+1])),
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where the last equality follows from equations (5) and (6). Restricting this
sum to chains of length k, we may rewrite it in terms of the coproduct on
posets. Let v=9(L� ). Then

:
c : l (c)=k

}(9([x0 , x1])) } `
k&1

i=1

b } '(9([xi , xi+1]))

=:
L�

}(9(L� (1))) } `
k

i=2

b } '(9(L� (i)))

=:
v

}(v(1)) } `
k

i=2

b } '(v(i))

=.k(v).

This holds since 9 is a coalgebra homomorphism; see the discussion after
Proposition 4.1. Observe that 9(L� )=a } 9(L), which easily follows from
(3), the chain definition of the ab-index. If we now sum over all lengths k
of chains, we obtain

9(T*)= :
k�1

.k(9(L� ))

=.(9(L� ))

=.(a } 9(L))=|(a } 9(L)),

which is the desired expression. K

7. APPLICATIONS OF R-LABELINGS OF GEOMETRIC LATTICES

When a poset P admits an R-labeling, there is a combinatorial interpreta-
tion of ;(S ) and thus of 9(P) [6, Theorem 2.7], [23, Theorem 3.13.2].
Stanley showed that every semi-modular lattice admits an R-labeling [22],
[23, Example 3.13.5]. This leads to a combinatorial interpretation of the
ab-index of a geometric lattice and hence an interpretation of the
c-2d-index of the lattice of regions of an oriented matroid. It also enables
one to compute these indices in certain cases.

Recall that an edge-labeling * of a locally finite poset P is a map which
assigns to each edge in the Hasse diagram of P an element from some poset
4. For us 4 will always be a linearly ordered set. If y covers x in P, then
we denote the label on the edge (x, y) by *(x, y). A maximal chain
x=x0<x1< } } } <xk=y in an interval [x, y] in P is called rising if the
labels are weakly increasing with respect to the order of the poset 4, that
is, *(x0 , x1)�4 *(x1 , x2)�4 } } } �4 *(xk&1 , xk). An edge-labeling is called
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an R-labeling if for every interval [x, y] in P there is a unique rising
maximal chain in [x, y].

Let P be a poset of rank n+1 with R-labeling *. For a maximal chain
c=[0� =x0<x1< } } } <xn+1=1� ] let *(c) denote its list of labels, that is,
*(c)=(*(x0 , x1), ..., *(xn , xn+1)). Let the descent set of a list of labels
*=(*1 , ..., *n+1) be the set D(*)=[i : *i>4 *i+1]. Observe that D(*) is a
subset of the set [1, ..., n]. We also let the descent of a maximal chain c,
D(c), be the set D(*(c)).

Our interest in R-labelings stems from the following result of Bjo� rner
and Stanley; see [6, Theorem 2.7]:

Proposition 7.1. Let P be a graded poset that admits an R-labeling.
Then ;(S ) is equal to the number of maximal chains c with descent set S.

From this result we obtain the following corollary, which was observed
in [10].

Corollary 7.2. Let P be a graded poset of rank n+1. Let * be an
R-labeling of P, and let M be the multiset of all lists of labels of maximal
chains of P. Then the ab-index of P is given by

9(P)= :
* # M

uD(*)=:
c

uD(c) ,

where the second sum is over all maximal chains c of the poset P.

An R-labeling of a geometric lattice L can be obtained as follows; see
[23, Example 3.13.5]. Let 4 denote the set of atoms of L and let there be
a total ordering on the atoms. Let the label on the edge x<y be described
by

*(x, y)=min[a # 4 : x 6a=y].

Observe that with this R-labeling two different chains will have two dif-
ferent lists of labels. Hence the multiset M of lists of labels is really a set
in this case.

For a list of labels *=(*1 , ..., *n+1), call a position i a peak if
*i&1<4 *i>4 *i+1. Observe that a peak corresponds to the factor ab in the
ab-monomial uD(*) . Thus |(a } uD(*)) may be computed by augmenting the
list of labels * with an initial label *0 defined to be smaller than any other
label, then assigning the weight 2d to the peaks in the list and the weight
c to the other positions i�n. As an example, we have that if *=(2, 5, 3,
1, 4, 7, 6), then |(a } uD(*))=c } 2d } c2 } 2d, since there are peaks at the 2nd
and the 6th positions in *, reading from left to right.

From Theorem 3.1 and Corollary 7.2 we have the following corollary.
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Corollary 7.3. Let M be an oriented matroid, T its lattice of regions,
and L its lattice of flats. Let M be the set of label lists of the geometric
lattice L. Then the c-2d-index of T* is given by

9(T )*= :
* # M

|(a } uD(*)).

Proposition 7.4. Let L be a geometric lattice of rank n. Then for all
S�[1, ..., n&1] we have ;L(S )�;Bn

(S ). Hence the ab-index 9(L) is coef-
ficient-wise greater than or equal to the ab-index of the Boolean algebra Bn .

Proof. The geometric lattice L corresponds to a matroid on the set of
atoms. Suppose that the atoms a1 , ..., an form a base for this matroid. Then
we have that the subposet P of L consisting of all elements of the form
aI=�i # I ai , where I�[1, ..., n], is isomorphic to the Boolean algebra Bn .

Choose a linear order on the atoms of L so that the atoms a1<
a2< } } } <an form an initial segment in the order. We now have an
R-labeling of the geometric lattice L that corresponds to this linear order.
This R-labeling has the property that if we restrict our attention to the sub-
poset P, the labels in P is the standard R-labeling of the Boolean algebra.

Let S be a subset of [1, ..., n&1]. Now we have ;L(S) is the number of
maximal chains in L with descent set S. This set of maximal chains con-
tains all maximal chains in P with descent set S. The number of such
chains is ;P(S)=;Bn

(S), and so ;Bn
(S)�;L(S). K

The hyperplane arrangement [x # Rn : xi=0] where i=1, ..., n, has the
lattice of flats (the intersection lattice) to be the Boolean algebra Bn .
Moreover, the corresponding zonotope is the n-dimensional cube. Hence
by combining Theorem 3.1 and Proposition 7.4, we have the following
interesting corollary.

Corollary 7.5. Let T be the lattice of regions of an oriented matroid
M of rank n. Then the c-2d-index 9(T ) is coefficient-wise greater than or
equal to the c-2d-index of the dual of the cubical lattice, 9(Cn)*.

Corollary 7.6. Among all zonotopes of dimension n, the n-dimensional
cube has the smallest c-2d-index.

We may view this corollary as the analogue for zonotopes of the following
conjecture:

Conjecture 7.7 (Stanley [25]). The cd-index of a convex polytope is
coefficient-wise greater than or equal to the cd-index of the simplex of the
same dimension. More generally, the cd-index of a Gorenstein* lattice is
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coefficient-wise greater than or equal to the cd-index of the Boolean algebra
of the same rank.

8. THE CUBICAL LATTICE AND THE BOOLEAN ALGEBRA

In this section we will apply our results to the cubical lattice. As a conse-
quence we will obtain new formulas for the c-2d-index of the cubical lattice
and the cd-index of the Boolean algebra. These identities will imply results
for simsun and Andre� permutations.

Recall that the cubical lattice Cn is the face lattice of a zonotope (the
n-cube). The corresponding lattice of flats is the Boolean algebra Bn . The
labels of a maximal chain in Bn is a permutation of the elements 1, 2, ..., n.
Let Sn denote the symmetric group on n elements. Hence by Corollary 7.3
we have the following proposition.

Proposition 8.1. The c-2d-index of the cubical lattice Cn is given by

9(Cn)= :
? # Sn

|(a } uD(?)).

For instance, when n=3 we have

? |(a } uD(?)) ? |(a } uD(?))

(1, 2, 3) c3 (2, 3, 1) c } 2d
(1, 3, 2) c } 2d (3, 1, 2) 2d } c
(2, 1, 3) 2d } c (3, 2, 1) 2d } c

So 9(C3)=c3+2 } c } 2d+3 } 2d } c=c3+4 } cd+6 } dc.
Proposition 8.1 gives an explicit combinatorial interpretation for the

c-2d-index of the n-dimensional cube. Using this interpretation we find a
similar combinatorial interpretation for the cd-index of the simplex.

Proposition 8.2. The cd-index of the Boolean algebra Bn is given by

9(Bn)=
1

2n&1 } :
? # Sn

|(uD(?)).

Proof. Recall that P is the integer span of all graded posets. Define a
linear function H : P � P by H(B1)=0 and for a poset P of rank greater
than or equal to 2 by

H(P)=:
a

[a, 1� ],
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where the sum ranges over all atoms a of the poset P. Similarly, define
a linear function h : Z(a, b) � Z(a, b) by h(1)=0, h(a } u)=u, and
h(b } u)=u. By the chain definition (3) of the ab-index we obtain that
9(H(P))=h(9(P)) for all posets P.

Observe that h(c } u)=2 } u and h(d } u)=c } u. Hence the linear function
h on Z(a, b) restricts to a linear function from cd-polynomials to cd-poly-
nomials. Moreover, by considering the three cases v=1, v=a } u, and
v=b } u, it is now easy to prove

h(|(a } v))=2 } |(v).

Observe that H(Cn)=2n } Bn , since the cubical lattice of rank n+1 has
2n atoms and each interval [a, 1� ] in Cn is isomorphic to Bn . Applying this
relation to Proposition 8.1, we obtain

2n } 9(Bn)=h(9(Cn))

= :
? # Sn

h(|(a } uD(?)))

= :
? # Sn

2 } |(uD(?)),

which completes the proof. K

Propositions 8.1 and 8.2 give an explicit way to compute the cd-index of
the Boolean algebra and the cubical lattice. Earlier expressions of these
cd-indexes has involved Andre� and simsun permutations, and their corre-
sponding signed versions. Hence Propositions 8.1 and 8.2 can be translated
into results about these classes of permutations and their descent sets.

To avoid being lengthy, we refer the reader to the literature for the
definitions of these permutation classes and their relation to the cd-index:
for simsun permutations, see [24, 27]; for Andre� permutations, see [21];
for signed Andre� permutations, see [10, 21]; and for signed simsun per-
mutations, see [11].

Proposition 8.3. The number of simsun permutations in Sn&1 with
descent set S and the number of Andre� permutations in Sn&1 with descent set
S is equal to 2|S| &n+1 times the number of permutations in Sn with peaks at
the positions S shifted up by one.

This proposition generalizes the first equation on page 129 in [14]. Let S \
n

denote the group of signed permutations on n elements.

Proposition 8.4. The number of signed simsun permutations in S \
n&1

with descent set S and the number of signed Andre� permutations in S \
n&1 with
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descent set S is equal to 2|S| times the number of permutations in Sn with
peaks at positions S.

Let En denote the n th Euler number, that is, En is the number of alter-
nating permutations in Sn that begins with an ascent. It is well-known that
�n�0 En xn�n!=sec(x)+tan(x). Now as two corollaries we obtain:

Corollary 8.5. The number of simsun permutations in S2k with k
descents and the number of Andre� permutations in S2k with k descents is
equal to 2&k } E2k+1. This is the coefficient of dk in 9(B2k+1).

Corollary 8.6. The number of signed simsun permutations in S\
2k with

k descents and the number of signed Andre� permutations in S\
2k with k

descents is equal to 2k } E2k . This is the coefficient of dk in 9(C2k).

The first part of Corollary 8.5 is due to Sundaram [27, Proposition 1.6].
The second part of Corollary 8.6 also follows from Corollary 3.4

9. COMPUTATION OF 9(T )* FROM THE :L(S )'S

Let T be the lattice of regions of an oriented matroid and let L be the
lattice of flats. Assume we know all the values of :L(S ). Then by Eq. (1)
we may compute ;L(S ), and thus 9(L). Theorem 3.1 allows us to compute
the c-2d-index of the Eulerian poset T. As an example, consider the case
when L has rank 4. The coefficients of the c-2d-index 9(T )* are given by:

c4 : :(<),

c22d : :(3)&:(<),

c2dc : :(2, 3)&:(3),

2dc2 : :(1, 2, 3)&:(1, 3)&:(2, 3)+:(3)+:(1)&:(<),

(2d)2 : :(1, 3)&:(1)&:(3)+:(<).

Observe that :(2) and :(1, 2) do not occur in the coefficients of the c-2d-
index. That is, of the 23=8 values of :(S ), we only need 6 of them to
compute 9(T ).

The main result in this section is to demonstrate which of the :(S ) are
needed in the computation of 9(T ). In order to do this, let Pn be the
collection of subsets of [1, ..., n] described by

Pn=[<] _ [S�[1, ..., n] : S{<, max(S )#n mod 2].
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Theorem 9.1. When L has rank n+1, we only need :L(S ), where S # Pn ,
to compute 9(T ).

This theorem is a generalization of [30, Corollary 5.5], where Zaslavsky
essentially shows this for the f-vector of the lattice of regions.

As an example, consider again the case when n=3. The collection P3

consists of all subsets of [1, 2, 3] with the rank of the maximal element
having the same parity as n=3. These subsets are:

P3=[<, [1], [3], [1, 3], [2, 3], [1, 2, 3]],

which are exactly the sets that appeared in the previous calculations.
The following lemma will be useful to us in the proof of Theorem 9.1. We

may view it as a generalization of Eq. (1) and the inverse relation of
Eq. (1), namely the identity :(S )=�T�S ;(T ).

Lemma 9.2. Let S be a subset of [1, ..., n] and let V be a subset of S. Let
V� denote the complement of the set V in the set S, that is, the set S&V.
Then we have

:
V�T�S

;(T )= :
V� �T�S

(&1) |S&T | } :(T ).

Proof. The proof is a direct computation.

:
V�T�S

;(T )= :
V�T�S

:
R�T

(&1) |T&R| } :(R)

= :
R�S \ :

R _ V�T�S

(&1) |T&R|+ } :(R)

= :
R�S

/(R _ V=S ) } (&1) |S&R| } :(R)

= :
V� �R�S

(&1) |S&R| } :(R). K

Proof of Theorem 9.1. First we will prove that :(S ), where S belongs
to Pn , is necessary to compute 9(T )*. The coefficient of cn+1 is :(<), so
the empty set is necessary. Consider the c-2d-monomial w=2dcn&1.
The only ab-monomials v such that |(a } v)=w have the form bian&i,
where 1�i�n. Hence the coefficient of w in 9(T )* is given by the sum
�n

i=1 ;(1, ..., i). By Lemma 9.2, when n is even this sum can be written as

:
n�2

j=1

(;(1, ..., 2j&1)+;(1, ..., 2j))= :
n�2

j=1

:
2j # T�[1, ..., 2j]

(&1) |T | } :(T ).
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Observe that every non-empty set of Pn occurs in this double sum. There
is a similar expansion in the case when n is odd. This shows that the sets
in Pn are necessary in order to compute 9(T )*.

Let w be the c-2d-monomial w=ck0 } 2d } ck1 } 2d } } } 2d } ckr of degree n+1
and let C be the coefficient of w in 9(T*). Let P be the index set
[0, ..., k1]_ } } } _[0, ..., kr]. For p=( p1 , ..., pr) in P define the ab-
monomial v( p) by

v( p)=ak0 b } b p1 ak1&p1 } ab } b p2 ak2&p2 } ab } } } ab } b pr akr&pr.

We have now |(a } v( p))=w. The converse is also true: if v is an ab-
monomial so that |(a } v)=w, then v is equal to v( p) for some p # P. Hence
C is the sum of all the coefficients of the ab-monomials v( p) in the ab-index
9(L).

Let Ki=k0+ } } } +ki&1+2 } i&1. We then have Kr+kr=n. Define the
set s( p) by

[K1 , ..., K1+p1 , K2 , ..., K2+p2 , ..., Kr , ..., Kr+pr].

It is now easy to verify that us( p)=v( p).
Consider the set [0, 1, ..., ki]. We will partition this set into hi=W(ki+1)�2X

smaller sets. When ki is odd we use the partition [0, 1] _ [2, 3] _ } } } _
[ki&1, ki], while when ki is even we use [0] _ [1, 2] _ } } } _ [ki&1, ki].
Formally, we write this as

[0, 1, ..., ki]=[ni, 1 , mi, 1] _ [ni, 2 , mi, 2] _ } } } _ [ni, hi
, mi, hi

].

The following two observations will be used later. First, mi, j is equivalent
to ki modulo 2. Second, mi, j and ni, j are equal if and only if j=1 and ki

is even. In this case we have that mi, j=ni, j=0.
We now obtain a partition of the index set P into h1_ } } } _hr pieces by

considering each partition of [0, 1, ..., ki] component-wise. Let Q be the
index set [1, ..., h1]_ } } } _[1, ..., hr]. For q=(q1 , ..., qr) # Q, let R(q) be
the subset R(q)=[ p # P : pi # [ni, qi

, mi, qi
]]. Thus the coefficient C is given

by the sum

C= :
p # P

;(s( p))= :
q # Q

:
p # R(q)

;(s( p)).

Consider an element q in the index set Q. We will prove that when we
expand the sum �p # R(q) ;(s( p)) in terms of :(T )'s we only obtain sets that
belong to Pn . For ease in notation, let mi=mi, qi

and ni=ni, qi
. Let S be the

set s(m1 , ..., mr) and V be the set s(n1 , ..., nr). The set V is contained in S
and V� =[Ki+mi : 1�i�r, ni{mi]. Observe that summing over the
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elements in R(q) corresponds to summing over the interval V�T�S in
the Boolean algebra. Hence we have by Lemma 9.2 that

:
p # R(q)

;(s( p))= :
V�T�S

;(T )

= :
V� �T�S

(&1) |S&T | } :(T ).

Let i be the index such that Ki+mi=max(V� ). If V� is the empty set we
let i=0. Hence, for i+1�j�r we have that nj=mj . This implies that
mj=0 and that kj is even. Now we obtain n=Kr+kr#Kr mod 2
and that for i+1�j�r&1 we have Kj+1=Kj+kj+2#Kj mod 2. Hence
n#Kr# } } } #Ki+1 mod 2. Moreover, if V� is non-empty, we have Ki+1=
Ki+ki+2#Ki+mi#max(V� ) mod 2.

The set [s # S : s>max(V� )] has the form [Ki+1 , Ki+2 , ..., Kr]. Consider
a non-empty set T such that V� �T�S. We have that the maximal element
of T belongs to the set [max(V� ), Ki+1 , ..., Kr]. But all the numbers in this
set are congruent to n modulo 2. This completes the proof. K

Corollary 9.3. If :(T ) occurs in the expansion of the coefficient of the
c-2d-monomial w=ck0 } 2d } ck1 } 2d } } } 2d } ckr of degree n+1, then the coef-
ficient of :(T ) is given by

(&1)n&k0&r+1&|T |.

Proof. We first claim that the term :(T ) corresponds to at most one
entry in the index set Q, as defined in the proof of Theorem 9.1. Assume
on the contrary that :(T ) appears in two different pieces, say q and q$.
Following the notation of the proof of Theorem 9.1, we have that
V� �T�S and V $�T�S$. But since q and q$ are different, without loss of
generality there is an index i such that n$i�m$i<ni<mi . We now have that
mi # S and mi � V. This implies that mi belongs to the set T. Since mi does
not belong the set S$, we obtain our desired contradiction. Hence we know
that no cancellation will occur in the expansion given in the proof of the
theorem.

The coefficient of :(T ) in the expansion is given by (&1) |S |&|T |. The
cardinality of the set S is (m1+1)+ } } } +(mr+1), which is equivalent to
k1+ } } } +kr+r modulo 2. This is equal to Kr&k0&r+1+kr=
n&k0&r&1, which proves the corollary. K

Lemma 9.4. The cardinality of Pn is W2 } 2n�3X.
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Proof. For k#n mod 2 we have that the number of sets in Pn with k as
the maximal element is 2k&1. Hence the cardinality of Pn is given by the
sum

1+2n&1+2n&3+ } } } +(2 or 1).

When n is even this evaluates to

1+
2n+1&2

4&1
=

2n+1+1
3

=�2n+1+1
3

&
1
3|=�2 } 2n

3 |.

When n is odd, a similar computation yields the same result. K

The results in this section suggest the following method to compute
9(T ) from :(S ) where S # Pn . Let :$(S )=:(S ) if S # Pn and otherwise let
:$(S )=0. Analogous to Eq. (1) let

;$(S )= :
T�S

(&1)|S&T | } :$(T ).

Let 9$(L)=�S ;$(S ) } uS . Then we obtain that 9(T )=|(a } 9$(L)).

10. CONCLUDING REMARKS

In a forthcoming paper the authors use the techniques developed in
Section 7 to give an explicit recursion for the c-2d-index of the braid
arrangements of types An and Bn . Recall the two zonotopes corresponding
to these two braid arrangements are the permutahedron and the signed
permutahedron. Similar recursions for other such families of arrangements
might be of interest.

In another forthcoming paper, the authors show that the :L(S ) for a
geometric lattice L satisfy no linear relations. Thus fully a third of the
information in 9(L) is not needed for the computation of the c-2d-index
9(T ) of its lattice of regions. On the other hand, linear inequalities on the
coefficients of the c-2d-index of T, derived from those known to hold for all
zonotopes or polytopes, imply linear relations on the :L(S ) that hold for
all orientable geometric lattices L, at least those realizable over the reals.
A question currently under investigation is whether such inequalities might
shed some light on the conjectured unimodality of the Whitney numbers of
the first and second kind for these subclasses of geometric lattices.

In the case of non-orientable geometric lattices L, one still can define the
c-2d-index 9(T ), although there is no associated lattice of regions T. In
this case, one can ask whether the coefficients of 9(T ) have any meaning
for L.
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Finally, by using the Foata�Strehl group action on the symmetric group,
[14], one may prove Proposition 8.3. This would be a bijective proof of
the proposition. Is there a similar group action on the group of signed per-
mutations such that one would obtain a bijective proof of the results in
Proposition 8.4?
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