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Abstract

We show how a simplicial complex arising from the WDVV (Witten-Dijkgraaf-Verlinde-
Verlinde) equations of string theory is the Whitehouse complex. Using discrete Morse theory,
we give an elementary proof that the Whitehouse complex ∆n is homotopy equivalent to a
wedge of (n − 2)! spheres of dimension n − 4. We also verify the Cohen-Macaulay property.
Additionally, recurrences are given for the face enumeration of the complex and the Hilbert
series of the associated pre-WDVV ring.

1 Introduction

The moduli space of smooth n-pointed stable curves of genus g, denoted Mg,n, was introduced by
Deligne, Mumford and Knudsen [6, 16, 21] to give a natural compactification of Mumford’s [20]
moduli space of nonsingular curves of genus g. A new construction of the genus 0 case is due to
Keel [14] using blowups. Keel also gives the presentation for the generators and relations of the
cohomology ring of M0,n.

The Associativity Equations in physics, also known as the WDVV Equations [18, Section 0.2],
are a system of partial differential equations due to Witten, Dijkgraaf, Verlinde and Verlinde [7,
9, 34]. Their solutions are generating functions Φ having coefficients which encode “potential”
or “free energy” and are related to understanding quantum gravity via the topological quantum
theory approach [33].

In [17] Kontsevich and Manin determine the potential function Φ in the case of Fano mani-
folds. Underlying their work is the need to construct Gromov-Witten classes. These are linear
maps between the cohomology of a projective algebraic manifold and the cohomology of the moduli
space Mg,n. Kontsevich and Manin develop a cohomological field theory in terms of the Gromov-
Witten class language and the language of operads. From this theory and Keel’s presentation,
they derive all the linear relations between homology classes of boundary strata of any codimen-
sion [17, Sections 6 and 7]. Since Keel’s presentation and the splitting axiom for the Gromov-Witten
classes [18, equations (0.3) and (0.4)]) imply the WDVV equations (see [17] for details), it is natural
to refer to the cohomology ring given by Keel’s presentation as the WDVV ring.

In a previous paper, the author studied an analogue of the WDVV ring [22]. This ring, known
as the Losev-Manin ring, arises instead from the Commutativity Equations of physics [19]. Like
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the WDVV ring, the defining ideal for the Losev-Manin ring is composed of linear and quadratic
relations. Since the quadratic relations determine the interesting behavior of the Losev-Manin ring,
it is again natural to take a closer look at the quadratic relations defining the WDVV ring. We call
this new ring the pre-WDVV ring.

In this paper we show the pre-WDVV ring can be realized as the Stanley-Reisner ring of the
Whitehouse complex ∆n. This is a well-studied complex which goes back to work of Boardman [4].
See Section 2 for further references. As a result, many of our results are rediscoveries, but with
simpler proofs. Since our overall goal is to find a natural combinatorial object corresponding to
the minimal generators of the WDVV ring, we expect our current approach to better lead to its
understanding.

In Section 3 we study the links of faces in the Whitehouse complex via a forest representation of
the faces. We then describe five injective maps which map ∆n onto ∆n+1. As new results, this allows
us to deduce recurrences for the face vectors and Hilbert series of ∆n. In Section 4 we construct a
Morse matching on the complex to give an elementary proof that the Whitehouse complex ∆n is
homotopy equivalent to a wedge of (n−2)! spheres of dimension n−4; see Theorem 4.7. In Section 5
we again return to the geometric description of the links of faces in ∆n to give an elementary proof
that the Whitehouse complex is Cohen-Macaulay. In the last section we indicate some work in
progress about the related WDVV ring.

2 Definitions and notation

Throughout we will assume familiarity with basic poset terminology and combinatorial concepts.
An excellent reference for the uninitiated is Stanley’s text [25].

Let V be a finite vertex set. A simplicial complex ∆ is a collection of subsets of V called faces
satisfying ∅ ∈ V and {v} ∈ ∆ for all v ∈ V , and if F ⊆ G ∈ ∆ then F ∈ ∆. The dimension
of a face F ∈ ∆ is given by |F | − 1. A face F in ∆ is a facet if there is no face in ∆ strictly
containing F , while a simplicial complex is pure if all the facets have the same dimension. The link
of a face F in the complex ∆ is defined to be link∆(F ) = {G ⊆ V : F ∩G = ∅ and F ∪G ∈ ∆}.
Finally, for ∆ and Γ two simplicial complexes having disjoint vertex sets V and W , the join of ∆
and Γ, denoted ∆ ∗ Γ, is the simplicial complex on the vertex set V ∪W consisting of the faces
∆ ∗ Γ = {F ∪G : F ∈ ∆ and G ∈ Γ}.

For completeness, we give the physicist’s definition of the WDVV ring [18, Section 0.10] based
on Keel’s presentation [14, Theorem 1]. Let n ≥ 3 and let k be a field of characteristic zero. We
say σ is a stable 2-partition of {1, . . . , n} if σ is an unordered partition of the elements {1, . . . , n}
into two blocks σ = S1/S2 with |Si| ≥ 2. Denote by Pn the set of stable 2-partitions of {1, . . . , n}.
For each σ ∈ Pn, the element xσ corresponds to a cohomology class of H∗(M0,n), that is, the
cohomology ring of the moduli space of n-pointed stable curves of genus zero. Throughout it will
be convenient for fixed σ to think of xσ as simply an indeterminate. For σ = S1/S2 and τ = T1/T2

from the index set Pn, let a(σ, τ) be the number of nonempty pairwise distinct sets among Si ∩ Tj ,
where 1 ≤ i, j ≤ 2. Define the ideal In in the polynomial ring k[xσ : σ ∈ Pn] by:

1. (linear relations) For i, j, k, l distinct:

Rijkl =
∑
ijσkl

xσ −
∑
kjτil

xτ , (2.1)
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where the summand ijσkl means to sum over all stable 2-compositions σ = S1/S2 with the
elements i, j ∈ S1 and the elements k, l ∈ S2.

2. (quadratic relations) For each pair σ and τ with a(σ, τ) = 4,

xσ · xτ (2.2)

The WDVV ring (or Associativity ring) Wn is defined to be the quotient ring Wn = k[xσ : σ ∈
Pn]/In.

Rather than working with the complex associated with the the entire WDVV ring, we now
consider the pre-Associativity or pre-WDVV ring defined by taking the WDVV ring modulo the
quadratic relations only. More formally, the pre-WDVV ring Rn is defined to be Rn = k[xσ : σ ∈
Pn]/Jn, where Jn is the ideal generated by the quadratic relations (2.2) of In.

Keel’s presentation of the cohomology ring of the moduli space M0,n has twice as many variables
as he instead indexes the cohomology classes by subsets S of {1, . . . , n}. However, Keel makes the
further requirement that xS = xS , where S is the complement of S taken with respect to {1, . . . , n},
making his variables correspond to stable 2-partitions. Hence, it is natural to think of the variables
xσ for σ ∈ Pn to be indexed instead by subsets S ⊆ {2, . . . , n} having cardinality satisfying
2 ≤ |S| ≤ n− 2. See [14, Theorem 1].

Based upon Keel’s presentation, we next construct a simplicial complex intimately related to
the pre-WDVV ring. Fix an integer n ≥ 3. Let ∆n be the simplicial complex with vertex set
Vn = {S ⊆ {2, . . . , n} : 2 ≤ |S| ≤ n − 2}. A subset F ⊆ Vn is a face if for all S, T ∈ F either
S ⊆ T , S ⊇ T or S ∩ T = ∅.

Observe that the complex ∆n is described by its minimal non-faces, and that each minimal
non-face has cardinality 2. Also, a set S in the vertex set of ∆n corresponds to a stable 2-partition
S/S, where the complement is taken with respect to the set {1, . . . , n}. Hence the condition of
being a face F corresponds to a(σ, τ) < 4 for all S, T ∈ F where σ = S/S and τ = T/T .

The complex ∆n coincides with Boardman’s space of fully grown n-trees [4]. This space was
rediscovered by Whitehouse in her thesis [32] and independently by Culler and Vogtmann [5]. In
the literature it is commonly referred to as the Whitehouse complex. The Whitehouse complex
also has connections with phylogenetic trees. See the work of Billera, Holmes and Vogtmann [2].

Recall for a finite simplicial complex ∆ with vertex set V the Stanley-Reisner ring k[∆] is
defined to be k[∆] = k[xv : v ∈ V ]/I(∆), where I(∆) is the ideal generated by the non-faces of
the complex ∆; see [26]. Using this terminology, we immediately have the following result.

Proposition 2.1 The pre-WDVV ring Rn is the Stanley-Reisner ring of the Whitehouse com-
plex ∆n, that is, Rn = k[∆n].

3 Facial structure

We now proceed with a more formal study of the Whitehouse complex ∆n which will lead to
understanding its topology. In particular, as new results we derive recurrences for its face f -vector
and h-vector.
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Figure 1: The forest representation of the face F = {{2, 3, 4}, {5, 6}, {5, 6, 7}} in ∆8.
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Figure 2: The maps A and B applied to the face F = {{2, 3, 4}, {5, 6}, {5, 6, 7}} in ∆8.

Observe the complex ∆3 consists of the empty set. It will be convenient to view this complex as
a (−1)-dimensional sphere. The complex ∆4 consists of 3 isolated vertices, while the complex ∆5

is the Peterson graph. Note the two last examples are homotopy equivalent to the wedge of two
0-dimensional spheres, respectively, the wedge of six 1-dimensional spheres.

Each face F of ∆n can be described by a forest. The leaves of the forest are 2, . . . , n. The
internal nodes are the elements of the face F . The cover relation of the forests is defined as follows:
For S, T ∈ F , we say S covers T if S ⊃ T and there is no U ∈ F such that S ⊃ U ⊃ T . Moreover,
S ∈ F covers a leaf i ∈ {2, . . . , n} if there is no U ∈ F such that i ∈ U ⊂ S. (Here we use ⊂ and ⊃
to mean strict containment and reverse containment, respectively.) See Figure 1 for the example
F = {{2, 3, 4}, {5, 6}, {5, 6, 7}}. From the forest representation it is straightforward to see that the
complex ∆n is pure of dimension n− 4.

We have the following results about the links of faces in the complex ∆n.

Lemma 3.1 Let T be a vertex of the Whitehouse complex ∆n. Then

link∆n(T ) ∼= ∆|T |+1 ∗∆n−|T |+1,

where ∗ denotes the join operation.
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Figure 3: The maps C and D applied to the face F = {{2, 3, 4}, {5, 6}, {5, 6, 7}} and set S = {5, 6, 7}
in ∆8.

Proof: First observe that for T a vertex of ∆n, the link of T consists of all faces that contain T .
Each face in the link∆n(T ) can be described as a forest on the elements {2, . . . , n}. In a given
forest, the element T is an internal node. One can choose the structure beneath T in the forest
in ∆|T |+1 ways. To build the rest of the forest, treat the tree built by T as a leaf. Then one sees
there are n− 1− |T |+ 1 elements available. The resulting structure has the form ∆n−|T |+1. Hence,
link∆n(T ) ∼= ∆|T |+1 ∗∆n−|T |+1. 2

Iterating Lemma 3.1 gives the following more general result.

Proposition 3.2 Let F be a face of the Whitehouse complex ∆n. Then

link∆n(F ) ∼= ∆c+1 ∗
∏
T∈F

∆c(T )+1,

where
∏

denotes taking the join operation ∗ among the factors, c is the number of components in
the forest representation of F , and c(T ) is the number of children the node T has in the forest
representation of F .

We introduce five maps A,B,C,D,E : ∆n → ∆n+1 which together map ∆n onto ∆n+1. For
a face F ∈ ∆n define

A(F ) = F and B(F ) = F ∪ {{2, . . . , n}}.

For S ∈ F define

C(F, S) = {T ∪ {n+ 1} : S ⊆ T, T ∈ F} ∪ {T : S 6⊆ T, T ∈ F}

and
D(F, S) = C(F, S) ∪ {S}.

Finally, for 2 ≤ i ≤ n define

E(F, i) = {{i, n+ 1}} ∪ {T ∪ {n+ 1} : i ∈ T, T ∈ F} ∪ {T : i 6∈ T, T ∈ F}.
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Figure 4: The map E(F, 7) where F = {{2, 3, 4}, {5, 6}, {5, 6, 7}} in ∆8.

Informally speaking, the A map adds the element n + 1 to the set diagram of the face F whereas
the B map creates a new set consisting of the entire set diagram of the face F and then adds the
element n+1. The C map selects a set S from the face F and adds the element n+1 to it, whereas
the D map selects a set S from the face F and creates a new set consisting of the set S and the
element n + 1. The E map replaces an element i with the set consisting of i and n + 1. For F a
face of dimension i the maps A and C leave the dimension of F unchanged while the maps B, D
and E each increase the dimension by one.

It is easily seen that all of these maps are injective and that ∆n+1 is a disjoint union of their
images. See Figures 2, 3 and 4 for an example of each of these maps.

Observe that for fixed i the image of E(F, i) as F runs over all faces F in the complex ∆n is
the link of the vertex {i, n+ 1} in ∆n+1 which is isomorphic to ∆n. Hence we can decompose the
face poset of the complex ∆n+1 into the images of the five maps A, B, C, D and E. In turn, the
image of E further decomposes into n − 1 copies of the face poset of ∆n. It is straightforward to
see each of the n− 1 copies of the ∆n in the face poset of ∆n+1 is an upper order ideal.

From the maps we have just defined, we can give a recurrence for the number of faces in the
Whitehouse complex.

Theorem 3.3 Let fn,i denote the number of faces in the Whitehouse complex ∆n having dimen-
sion i. Then fn,i satisfies the recursion

fn,i = (i+ 2) · fn−1,i + (n+ i− 1) · fn−1,i−1,

where −1 ≤ i ≤ n− 4 and fn,−1 = 1.

Proof: Easily fn,−1 = 1 for all n ≥ 3, as there is one (−1)-dimensional face in ∆n, namely the
empty set. To show the recurrence, note that a face having dimension i has i+ 1 sets occurring in
its set representation. The maps A,B,C,D and E each either leave the number of sets unchanged
or increase the number by one. Since they map ∆n−1 bijectively onto ∆n, we can build all the
i-dimensional faces in ∆n. First, we take a face from ∆n−1 that has i+ 1 sets. The A map simply
adds the element n in 1 way, while the C map adds it in the number of sets ways, that is, i + 1
ways . Overall we have constructed (i + 2) · fn−1,i new faces in ∆n. The other way to build an
i-dimensional face is to take a face from ∆n−1 having i sets and add the element n in such a way to
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n (1− t)n−3 · H(Rn)
3 1
4 1 + 2t
5 1 + 8t+ 6t2

6 1 + 22t+ 58t2 + 24t3

7 1 + 52t+ 328t2 + 444t3 + 120t4

8 1 + 114t+ 1452t2 + 4400t3 + 3708t4 + 720t5

Table 1: The Hilbert series of the pre-WDVV ring Rn for 3 ≤ n ≤ 8.

increase the number of sets. The B map does this in 1 way, the D map in number of sets ways, that
is, i ways, and the E map does this in n− 2 ways. Hence we have constructed (n+ i− 1) · fn−1,i−1

new faces in ∆n, and the recurrence holds. 2

Corollary 3.4 The Whitehouse complex ∆n is pure of dimension n − 4 with (2n − 5)!! = (2n −
5) · (2n− 7) · · · 3 · 1 facets.

This corollary can be found in [24] and [30].

Recall the h-vector of a (d−1)-dimensional simplicial complex ∆ is the vector (h0, . . . , hd) where
hk =

∑k
i=0(−1)k−i

(d−i
k−i
)
· fd−1,i−1. The Hilbert series of the Stanley-Reisner ring of ∆ is thus given

by H(k[∆]) = (h0 + h1 · t+ · · ·+ hd · td)/(1− t)d. See [26]. Using the expression for the h-vector in
terms of the f -vector and Theorem 3.3, we obtain the following identity.

Corollary 3.5 The h-vector of the Whitehouse complex ∆n satisfies the recurrence

hn,k = (k + 1) · hn−1,k + (2n− k − 5) · hn−1,k−1,

where 0 ≤ k ≤ n− 3.

The Hilbert series of the pre-WDVV ring Rn for 3 ≤ n ≤ 8 (and thus the h-vector values for the
Whitehouse complex ∆n) are displayed in Table 1.

4 Morse matching and the topology of ∆n

R. Forman devised a discrete version of Morse theory to study the topology of simplicial complexes,
and more generally, CW-complexes. We give a brief overview of this. More details can be found
in [10]. We then describe a Morse matching of the Whitehouse complex and verify its homotopy
type.

Let P be an arbitrary poset. Begin by orienting all of the edges in the Hasse diagram of P ,
that is, the cover relations of P , downwards. Next, form a matching M on the elements of P .
Reverse the orientation of the edges in the matching to be upwards. Such a matching M is a Morse
matching if the resulting directed graph is acyclic. An unmatched element of P is called critical.

For a simplicial complex ∆ the face poset P is the poset formed by taking the faces of the
complex as elements and ordering them by inclusion. The face poset is ranked with the rank of an
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element x ∈ P given by i if |x| = i. In the case we do not wish to include the empty face in the
face poset, we denote the resulting face poset by P .

The following is Forman’s result [10].

Theorem 4.1 For a simplicial complex ∆ with face poset P , let M be a Morse matching of P .
For i ≥ 0 let ui denote the number of critical i-dimensional simplices. Then ∆ is homotopy
equivalent to a CW-complex consisting of ui i-cells, where i ≥ 0.

As it will be convenient for us to include the empty face in our matching, we will use the
following corollary of Forman’s theorem.

Corollary 4.2 Let ∆ be a simplicial complex having Morse matching on the face poset P with
exactly m critical k-dimensional simplices. Then ∆ is homotopy equivalent to a wedge of m k-
dimensional spheres.

There is a straightforward criterion to determine when a matching is a Morse matching.

Lemma 4.3 For a ranked poset P to determine a given matching M is a Morse matching, it is
enough to verify the Morse condition on the elements that are in the matching M from adjacent
ranks in P .

Proof: We first show it is enough to check the Morse acyclicity condition on elements from ranks
i and i+ 1 in the poset P for i fixed. As it is impossible to construct a cycle composed entirely of
edges oriented downward, any cycle in P must include at least two elements from the matching M .
So suppose x and y are two elements from the matching of ranks i and i+ 1 with the edge oriented
from x to y. If the edge x → y is in a cycle, then the edge y → z following this one cannot have
ρ(z) = i + 1 (and hence, pointing upwards) since the element y is already matched. Similarly, if
the edge x → y is in a cycle, then the edge w → x proceeding this one cannot have ρ(w) = i − 1
since x is already matched. Hence we have shown if there is a cycle in P , all the elements are from
adjacent ranks. Finally, if we have a cycle in P on adjacent ranks, the edges in the cycle alternate
pointing upwards and downwards, implying every other edge is from the matching M and hence
all the elements in the cycle are elements of M . 2

What follows is a result which will be helpful when we construct a Morse matching of the
Whitehouse complex.

Lemma 4.4 Let P be a ranked poset which is the disjoint union of a lower order ideal L and an
upper order ideal U . If M1 is a Morse matching of L and M2 is a Morse matching of U , then
M1 ∪M2 is a Morse matching of P .

Proof: By Lemma 4.3 without loss of generality we may assume all the elements we consider here
are those elements from M1 ∪M2 of ranks i and i + 1, where i ≥ 1. As there is no element of U
matched with an element of L, all the edges from rank i+ 1 elements in U to rank i elements of L
are oriented downwards. Furthermore, as U is an upper order ideal, there is no edge between any
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rank i + 1 element in L to a rank i element of U . Hence, it is impossible to construct a cycle on
the elements of M1 ∪M2, implying the matching M1 ∪M2 is indeed a Morse matching of P . 2

We now describe a Morse matching on the face poset of the Whitehouse complex.

Proposition 4.5 Let Q be the face poset given by the images of the maps A, B, C and D applied
to the Whitehouse complex ∆n. Let M be the matching described by orienting the edges from A(F )
to B(F ) and C(F, S) to D(F, S), where S ⊆ F and F ranges over all faces of the Whitehouse
complex ∆n. Then M is a Morse matching on Q.

Proof: Assume on the contrary that we can find a cycle between rank i and i+ 1 elements of Q.
The edges oriented from a rank i to rank i+ 1 elements in this cycle are Morse matched edges. In
terms of the forest representation of a face, such an edge corresponds to the element n + 1 being
moved up one level higher in the tree. (Here we are thinking of the leaves in the forest as being
the lowest level.) In terms of the maps, such an edge corresponds to C(F, S) and D(F, S) for some
face F and subset S ⊆ F in ∆n. The final move to raise the element n+ 1 corresponds to the maps
A(F ) and B(F ). However, the path we have created cannot be continued, and more importantly,
cannot be completed to form a cycle, since the element n+1 cannot be moved any higher. Hence we
cannot construct a cycle on the elements of Q, so the matching M described is a Morse matching.
2

Corollary 4.6 The complex Q described in Proposition 4.5 is contractible.

We are now ready to prove our main result. For other proofs, see [24, 27, 30].

Theorem 4.7 The Whitehouse complex ∆n is homotopy equivalent to a wedge of (n− 2)! spheres
of dimension n− 4.

Proof: We proceed by induction on the dimension n. For n = 3, the complex ∆3 consists solely of
the empty set, so there is the trivial empty Morse matching. This complex is homotopy equivalent
to one (−1)-dimensional sphere.

Begin to construct a Morse matching on the face poset P of ∆n+1 by first orienting the edges
in the face poset Q = Im(A(∆n)) ∪̇ Im(B(∆n)) ∪̇ Im(C(∆n)) ∪̇ Im(D(∆n)) as described in Propo-
sition 4.5. The remainder of the face poset of ∆n+1 is Im(E(∆n)). Recall the image of E applied
to ∆n is isomorphic to (n − 1) copies of ∆n. By induction, we have a Morse matching in each of
these (n − 1) copies of ∆n. Each copy of ∆n is an upper order ideal in the face poset P . Hence
Lemma 4.4 applies, so we have a constructed a Morse matching on the face poset of ∆n+1. In each
of the (n− 1) copies of ∆n there are (n− 2)! critical elements. Moreover, all the critical elements
are facets of dimension (n− 3). Thus, by Corollary 4.2 the complex ∆n+1 is homotopy equivalent
to a wedge of (n− 1)! spheres each having dimension (n− 3). 2
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5 The Cohen-Macaulay property

Recall that a simplicial complex ∆ is Cohen-Macaulay if the associated Stanley-Reisner ring k[∆]
is Cohen-Macaulay [26]. In combinatorial commutative algebra Cohen-Macaulay complexes have
some very nice enumerative properties. Reisner’s Criterion [23, 26] gives a characterization of
Cohen-Macaulay simplicial complexes in terms of reduced homology of their links.

Theorem 5.1 A pure simplicial complex ∆ is Cohen-Macaulay if and only if for all faces F ∈ ∆
and for all i < dim(link(F )) we have H̃i(link(F ); k) = 0.

We have the following result about the topology of the links of the faces in the Whitehouse
complex.

Theorem 5.2 For F a face of the Whitehouse complex ∆n, link∆n(F ) is a wedge of (c − 1)! ·∏
T∈F (c(T )−1)! spheres of dimension n−4−|F |, where c is the number of components in the forest

representation of F and c(T ) is the number of children the node T has in the forest representation
of F .

Proof: Let (Sn)∧k denote the wedge of k n-dimensional spheres. The free join of an n-dimensional
sphere with an m-dimensional sphere satisfies Sn ∗Sm ∼= Sn+m+1. Additionally, the wedge and free
join operations are distributive over simplicial complexes, that is, (X ∧Y ) ∗Z ∼= (X ∗Z)∧ (Y ∗Z).
For a proof of this fact, see [8, Lemma 3.14]. Hence it follows that (Sn)∧k ∗ (Sm)∧l ∼= (Sn+m+1)∧k·l.
See also [3, Lemma 2.5 (ii)]. By Proposition 3.2 and Theorem 4.7 we have

link∆n(F ) ∼= (Sc−3)∧(c−1)! ∗
∏
T∈F

(Sc(T )−3)∧(c(T )−1)!

∼=
(
S|F |+c−3+

∑
T∈F (c(T )−3)

)∧(c−1)!·
∏
T∈F (c(T )−1)!

∼=
(
S−2|F |−3+c+

∑
T∈F c(T )

)∧(c−1)!·
∏
T∈F (c(T )−1)!

.

But c+
∑
T∈F c(T ) = n− 1 + |F |. Hence

link∆n(F ) ∼=
(
Sn−4−|F |

)∧(c−1)!·
∏
T∈F (c(T )−1)!

. 2

From Reisner’s Criterion and Theorem 5.2 we have the following immediate result. This can
also be found in work of Robinson-Whitehouse, Sundaram and Vogtmann [24, 27, 30].

Theorem 5.3 The Whitehouse complex ∆n is Cohen-Macaulay and hence the pre-WDVV ring Rn
is Cohen-Macaulay.

Trappmann and Ziegler [28] prove shellability of the k-tree complex. This is Hanlon’s gener-
alization of the Whitehouse tree complex corresponding to the case k = 2. In unpublished work,
Wachs independently determined shellability of the Whitehouse complex using a different shelling
order. As shellability implies Cohen-Macaulayness, this gives another proof of Theorem 5.3.
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n H(Wn)
3 1
4 1 + t
5 1 + 5t+ t2

6 1 + 16t+ 16t2 + t3

7 1 + 42t+ 127t2 + 42t3 + t4

8 1 + 99t+ 715t2 + 715t3 + 99t4 + t5

Table 2: The Hilbert series of the WDVV ring Wn for 3 ≤ n ≤ 8.

6 Concluding remarks

The author is currently studying the Hilbert series of the WDVV ring. The first few values are
given in Table 2. The symmetry follows immediately from Poincaré duality and the fact the moduli
space Mg,n is smooth and compact. It would be interesting to find a natural combinatorial object
corresponding to these values.

Vic Reiner has asked if the WDVV ring and the pre-WDVV rings are Koszul. Evidence for this
is that both rings are defined by quadratic relations and the reciprocal of the Hilbert series for each
ring has alternating coefficients. From a result of Fröberg [11], it follows that the Stanley-Reisner
ring of a simplicial complex with minimal non-faces having cardinality 2 is Koszul. This latter
result applies to the pre-WDVV ring.

Theorem 6.1 The pre-WDVV ring is Koszul.

It remains to determine if either the pre-WDVV ring or the WDVV ring are Gorenstein.

The complex of not 1-connected graphs on (n + 1) vertices is also homotopy equivalent to a
wedge of (n−2)! spheres of dimension n−4; see [1, 29]. Although the Whitehouse complex ∆n and
this complex are homotopy equivalent, they are not the same. By Corollary 3.4 the pre-WDVV
complex is pure, while the the cardinality of a facet in the complex of not 1-connected graphs on
(n+ 1) vertices ranges from bn2

4 c to
(n

2

)
.
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