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Abstract

The flag vector contains all the face incidence data of a polytope, and in the poset setting,
the chain enumerative data. It is a classical result due to Bayer and Klapper that for face
lattices of polytopes, and more generally, Eulerian graded posets, the flag vector can be written
as a cd-index, a non-commutative polynomial which removes all the linear redundancies among
the flag vector entries. This result holds for regular CW complexes.

We relax the regularity condition to show the cd-index exists for Whitney stratified manifolds
by extending the notion of a graded poset to that of a quasi-graded poset. This is a poset
endowed with an order-preserving rank function and a weighted zeta function. This allows us to
generalize the classical notion of Eulerianness, and obtain a cd-index in the quasi-graded poset
arena. We also extend the semi-suspension operation to that of embedding a complex in the
boundary of a higher dimensional ball and study the simplicial shelling components.
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1 Introduction

In this paper we extend the theory of face incidence enumeration of polytopes, and more generally,
chain enumeration in graded Eulerian posets, to that of Whitney stratified spaces and quasi-graded
posets.

The idea of enumeration using the Euler characteristic was suggested throughout Rota’s work
and influenced by Schanuel’s categorical viewpoint [33, 40, 41, 42]. In order to carry out such
a program that is topologically meaningful and which captures the broadest possible classes of
examples, two key insights are required. First, the notion of grading in the face lattice of a polytope
must be relaxed. Secondly, the usual zeta function in the incidence algebra must be extended to
include the Euler characteristic as an important instance.

Recall an Eulerian poset is a graded partially ordered set (poset) P such that every nontrivial
interval satisfies the Euler–Poincaré relation, that is, the number of elements of even rank equals
the number of elements of odd rank. Equivalently, the Möbius function is given by µ(x, y) =
(−1)ρ(y)−ρ(x), where ρ denotes the rank function. Another way to state this Eulerian condition is
that the inverse of the zeta function ζ(x, y) (where ζ(x, y) = 1 if x ≤ y and 0 otherwise), that is, the

1



Möbius function µ(x, y), is given by the function (−1)ρ(y)−ρ(x) · ζ(x, y). Families of Eulerian posets
include (a) the face lattice of a convex polytope, (b) the face poset of a regular cell decomposition
of a homology sphere, and (c) the elements of a finite Coxeter group ordered by the strong Bruhat
order. In the case of a convex polytope the Eulerian condition expresses the fact that the link of
each face has the Euler characteristic of a sphere.

The f -vector of a convex polytope enumerates, for each non-negative integer i, the number fi
of i-dimensional faces in the polytope. It satisfies the Euler–Poincaré relation. The problem of
understanding the f -vectors of polytopes harks back to Steinitz [49], who completely described
the 3-dimensional case. For polytopes of dimension greater than three the problem is still open.
For simplicial polytopes, that is, each i-dimensional face is an i-dimensional simplex, the f -vectors
satisfy linear relations known as the Dehn–Sommerville relations. Furthermore, the f -vectors of
simplicial polytopes have been completely characterized by work of McMullen [37], Billera and
Lee [7], and Stanley [44].

The flag f -vector of a graded poset counts the number of chains passing through a prescribed
set of ranks. In the case of a polytope, it records all of the face incidence data, including that of the
f -vector. Bayer and Billera proved that the flag f -vector of any Eulerian poset satisfies a collection
of linear equalities now known as the generalized Dehn–Sommerville relations [2]. These linear
equations may be interpreted as natural redundancies among the components of the flag f -vector.
Bayer and Klapper removed these redundancies by showing that the space of flag f -vectors of
Eulerian posets has a natural basis consisting of non-commutative polynomials in the two variables
c and d [3]. The coefficients of this cd-index were later shown by Stanley to be non-negative in
the case of spherically-shellable posets [46]. Other milestones for the cd-index include its inherent
coalgebraic structure [19], its appearance in the proofs of inequalities for flag vectors [5, 15, 17, 32],
its use in understanding the combinatorics of arrangements of subspaces and sub-tori [6, 23], and
most recently, its connection to the Bruhat graph and Kazhdan–Lusztig theory [4, 22].

In this article we extend the cd-index and its properties to a more general situation, that
of quasi-graded posets and Whitney stratified spaces. A quasi-grading on a poset P consists of
a strictly order-preserving “rank” function ρ : P −→ N and a weighted zeta function ζ̄ in the
incidence algebra I(P ) such that ζ̄(x, x) = 1 for all x ∈ P . See Section 2. A quasi-graded poset
(P, ρ, ζ̄) will be said to be Eulerian if the function (−1)ρ(y)−ρ(x) · ζ̄(x, y) is the inverse of ζ̄(x, y)
in the incidence algebra of P . This reduces to the classical definition of Eulerian if (P, ρ, ζ̄) is a
ranked poset with the standard zeta function ζ.

We show that Eulerian ζ̄ functions exist on most posets (Proposition 3.2). Let P be a poset
with a strictly order-preserving “rank” function ρ. Choose ζ̄(x, y) arbitrarily whenever ρ(y)− ρ(x)
is odd. Then there is a unique way to assign values to ζ̄(x, y) whenever ρ(y) − ρ(x) is even such
that (P, ρ, ζ̄) is an Eulerian quasi-graded poset. Theorem 4.2 states that the cd-index is defined
for Eulerian quasi-graded posets. This result is equivalent to the flag f̄ -vector of an Eulerian
quasi-graded poset satisfies the generalized Dehn–Sommerville relations (Theorem 4.3).

Additional properties of quasi-graded posets are discussed in Sections 3, 4 and 5. The Alexander
duality formula has a natural generalization to Eulerian quasi-graded posets (Theorem 3.7 and
Corollary 3.8). The ab-index and the cd-index of the Cartesian product P ×B1 of a quasi-graded
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poset P and the Boolean algebra B1 is given (Proposition 5.2). The ab-index of the Stanley
product of two quasi-graded posets is the product of their ab-indexes (Lemma 5.3). The “zipping”
operation (see [39]) can be defined for quasi-graded posets and the resulting ab-index is calculated
(Proposition 5.8). Furthermore, the Eulerian property is preserved under the zipping operation
(Theorem 5.9). Merging strata in a Whitney stratified manifold, the geometric analogue of poset
zipping, is established later in Section 13.

Eulerian ranked posets arise geometrically as the face posets of regular cell decompositions
of a sphere, whereas Eulerian quasi-graded posets arise geometrically from the more general case
of Whitney stratifications. A Whitney stratification X of a compact topological space W is a
decomposition of W into finitely many smooth manifolds which satisfy Whitney’s “no-wiggle”
conditions on how the strata fit together. See Section 6. These conditions guarantee (a) that X
does not exhibit Cantor set-like behavior and (b) that the closure of each stratum is a union of
strata. The faces of a convex polytope and the cells of a regular cell complex are examples of
Whitney stratifications, but in general, a stratum in a stratified space need not be contractible.
Moreover, the closure of a stratum of dimension d does not necessarily contain strata of dimension
d− 1, or for that matter, of any other dimension. Natural Whitney stratifications exist for real or
complex algebraic sets, analytic sets, semi-analytic sets and for quotients of smooth manifolds by
compact group actions.

The strata of a Whitney stratification (of a topological space W ) form a poset, where the order
relation A < B is given by A ⊂ B. Moreover, this set admits a natural quasi-grading which is
defined by ρ(A) = dim(A) + 1 and ζ̄(A,B) = χ(link(A) ∩ B) whenever A < B are strata and
χ is the Euler characteristic. See Definition 6.9. This is the setting for our Euler-characteristic
enumeration.

Theorem 6.10 states that the quasi-graded poset of strata of a Whitney stratified set is Eulerian
and therefore its cd-index is defined and its flag f̄ -vector satisfies the generalized Dehn–Sommerville
relations. The background and results needed for this proof are developed in Sections 7, 8 and 9.

It is important to point out that, unlike the case of polytopes, the coefficients of the cd-index
of Whitney stratified manifolds can be negative. See Examples 6.1, 6.14, 6.15 and 6.16. It is
our hope that by applying topological techniques to stratified manifolds, we will yield a tractable
interpretation of the coefficients of the cd-index. This may ultimately explain Stanley’s non-
negativity results for spherically shellable posets [46] and Karu’s results for Gorenstein* posets [32].

One may also ask what linear inequalities hold among the entries of the weighted f̄ -vector of
a Whitney stratified manifold, equivalently, what linear inequalities hold among the coefficients of
the cd-index? See the concluding remarks for further details.

In his proof that the cd-index of a polytope is non-negative, Stanley introduced the notion of
semisuspension. Given a polytopal complex that is homeomorphic to a ball, the semisuspension
adds another facet whose boundary is the boundary of the ball. The resulting spherical CW complex
has the same dimension, and the intervals in its face poset are Eulerian [46].

It is precisely the setting of Whitney stratified manifolds, and the larger class of Whitney
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stratified spaces, which is critical in order to study face enumeration of the semisuspension in higher
dimensional spheres and more general topologically interesting examples. In Sections 10 and 11
the nth semisuspension and its cd-index are studied. In Theorem 11.4, by using the method of
quasi-graded posets, we are able to give a short proof (that completely avoids the use of shellings)
of a key result of Billera and Ehrenborg [5] that was needed for their proof that the n-dimensional
simplex minimizes the cd-index among all n-dimensional polytopes.

In Section 12 we establish the Eulerian relation for the nth semisuspension (Theorem 12.1).
This implies one cannot develop a local cd-index akin to the local h-vector Stanley devised in [45]
to understand the effect of subdivisions on the h-vector.

In Section 14 the cd-index of the nth semisuspension of a non-pure shellable simplicial complex
is determined. The cd-index of the shelling components is shown to satisfy a recursion involving
a derivation which first appeared in [19]. By relaxing the notion of shelling, we furthermore show
that the shelling components satisfy a Pascal type recursion. This yields new expressions for the
shelling components and illustrates the power of leaving the realm of regular cell complexes for that
of Whitney stratified spaces.

We end with open questions and comments in the concluding remarks.

2 Quasi-graded posets and their ab-index

Recall the incidence algebra of a poset is the set of all functions f : I(P )→ C where I(P ) denotes
the set of intervals in the poset. The multiplication is given by (f ·g)(x, y) =

∑
x≤z≤y f(x, z) ·g(z, y)

and the identity is given by the delta function δ(x, y) = δx,y, where the second delta is the usual
Kronecker delta function δx,y = 1 if x = y and zero otherwise. A poset is said to be ranked if every
maximal chain in the poset has the same length. This common length is called the rank of the
poset. A poset is said to be graded if it is ranked and has a minimal element 0̂ and a maximal
element 1̂. For other poset terminology, we refer the reader to Stanley’s treatise [48].

We introduce the notion of a quasi-graded poset. This extends the notion of a ranked poset.

Definition 2.1. A quasi-graded poset (P, ρ, ζ̄) consists of

(i) a finite poset P (not necessarily ranked),

(ii) a strictly order-preserving function ρ from P to N, that is, x < y implies ρ(x) < ρ(y) and

(iii) a function ζ̄ in the incidence algebra I(P ) of the poset P , called the weighted zeta function,
such that ζ̄(x, x) = 1 for all elements x in the poset P .

Observe that we do not require the poset to have a minimal element or a maximal element. Since
ζ̄(x, x) 6= 0 for all x ∈ P , the function ζ̄ is invertible in the incidence algebra I(P ) and we denote
its inverse by µ̄. See Lemma 3.4 for an expression for the inverse.
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For x ≤ y in a quasi-graded poset P = (P, ρ, ζ̄), the rank difference function is given by
ρ(x, y) = ρ(y) − ρ(x). We say that a quasi-graded poset (P, ρ, ζ̄) with minimal element 0̂ and
maximal element 1̂ has rank n if ρ(0̂, 1̂) = n. The interval [x, y] is itself a quasi-graded poset
together with the rank function ρ[x,y](w) = ρ(w)− ρ(x) and the weighted zeta function ζ̄.

Example 2.2. The classical example of a quasi-graded poset is (P, ρ, ζ), where P is a graded poset
with rank function ρ and we take the weighted zeta function to be the usual zeta function ζ in the
incidence algebra defined by ζ(x, y) = 1 for all intervals [x, y] ⊆ P . Here the inverse of the zeta
function is the Möbius function, denoted by µ(x, y).

Let (P, ρ, ζ̄) be a quasi-graded poset with unique minimal element 0̂ and unique maximal ele-
ment 1̂. The assumption of a quasi-graded poset having a 0̂ and 1̂ will be essential in order to define
its ab-index and cd-index. For a chain c = {x0 < x1 < · · · < xk} in the quasi-graded poset P ,
define ζ̄(c) to be the product

ζ̄(c) = ζ̄(x0, x1) · ζ̄(x1, x2) · · · ζ̄(xk−1, xk). (2.1)

Similarly, for the chain c define its weight to be

wt(c) = (a− b)ρ(x0,x1)−1 · b · (a− b)ρ(x1,x2)−1 · b · · ·b · (a− b)ρ(xk−1,xk)−1,

where a and b are non-commutative variables each of degree 1. The ab-index of a quasi-graded
poset (P, ρ, ζ̄) is

Ψ(P, ρ, ζ̄) =
∑
c

ζ̄(c) · wt(c), (2.2)

where the sum is over all chains starting at the minimal element 0̂ and ending at the maximal
element 1̂, that is, c = {0̂ = x0 < x1 < · · · < xk = 1̂}. When the rank function ρ and the
weighted zeta function are clear from the context, we will write the shorter Ψ(P ). Observe that if
a quasi-graded poset (P, ρ, ζ̄) has rank n+ 1 then its ab-index is homogeneous of degree n.

The ab-index depends on the rank difference function ρ(x, y) but not on the rank function itself.
Hence we may uniformly shift the rank function without changing the ab-index. Later we will use
the convention that ρ(0̂) = 0.

A different approach to the ab-index is via the flag f - and flag h-vectors. We extend this route
by introducing the flag f̄ - and flag h̄-vectors. Let (P, ρ, ζ̄) be a quasi-graded poset of rank n + 1
having a 0̂ and 1̂ such that ρ(0̂) = 0. For S = {s1 < s2 < · · · < sk} a subset of {1, . . . , n}, define
the flag f̄ -vector by

f̄S =
∑
c

ζ̄(c), (2.3)

where the sum is over all chains c = {0̂ = x0 < x1 < · · · < xk+1 = 1̂} in P such that ρ(xi) = si
for all 1 ≤ i ≤ k. The flag h̄-vector is defined by the relation (and by inclusion–exclusion, we also
display its inverse relation)

h̄S =
∑
T⊆S

(−1)|S−T | · f̄T and f̄S =
∑
T⊆S

h̄T . (2.4)
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For a subset S ⊆ {1, . . . , n} define the ab-monomial uS = u1u2 · · ·un by ui = a if i 6∈ S and ui = b
if i ∈ S. The ab-index of the quasi-graded poset (P, ρ, ζ̄) is then given by

Ψ(P, ρ, ζ̄) =
∑
S

h̄S · uS ,

where the sum ranges over all subsets S. Again, in the case when we take the weighted zeta function
to be the usual zeta function ζ, the flag f̄ and flag h̄-vectors correspond to the usual flag f - and
flag h-vectors.

Using Lemma 3.4 we have the next statement.

Lemma 2.3. For a quasi-graded poset (P, ρ, ζ̄) of rank n+1 with minimal and maximal elements 0̂
and 1̂, the weighted Möbius function µ̄(0̂, 1̂) is given by

µ̄(0̂, 1̂) = (−1)n+1 · h̄{1,...,n}.

We now give two recursions for the ab-index.

Proposition 2.4. Let (P, ρ, ζ̄) be a quasi-graded poset where µ̄ is the inverse of ζ̄. The following
two recursions hold for computing the ab-index of an interval [x, z]:

Ψ([x, z], ρ, ζ̄) = ζ̄(x, z) · (a− b)ρ(x,z)−1

+
∑
x<y<z

Ψ([x, y], ρ, ζ̄) · b · ζ̄(y, z) · (a− b)ρ(y,z)−1, (2.5)

Ψ([x, z], ρ, ζ̄) = −µ̄(x, z) · (a− b)ρ(x,z)−1

−
∑
x<y<z

Ψ([x, y], ρ, ζ̄) · a · µ̄(y, z) · (a− b)ρ(y,z)−1. (2.6)

Proof. Using the chain definition of the ab-index and conditioning on the largest element y < z in
the chain c, we obtain the recursion (2.5). Multiplying equation (2.5) by a − b on the right and
moving the term Ψ([x, z], ρ, ζ̄) · b to the right-hand side, we obtain

Ψ([x, z], ρ, ζ̄) · a = ζ̄(x, z) · (a− b)ρ(x,z) +
∑
x<y≤z

Ψ([x, y], ρ, ζ̄) · b · ζ̄(y, z) · (a− b)ρ(y,z). (2.7)

Define three functions f , g and h in the incidence algebra of P by

f(x, y) =

{
Ψ([x, y], ρ, ζ̄) · a if x < y,

1 if x = y,
g(x, y) =

{
Ψ([x, y], ρ, ζ̄) · b if x < y,

1 if x = y,

and
h(x, y) = ζ̄(x, y) · (a− b)ρ(x,y).
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Equation (2.7) can then be written as f = g ·h where the product is the convolution of the incidence
algebra. Observe that h is invertible with its inverse given by h−1(x, y) = µ̄(x, y) · (a−b)ρ(x,y). By
expanding the equivalent relation g = f · h−1, we obtain

Ψ([x, z], ρ, ζ̄) · b = µ̄(x, z) · (a− b)ρ(x,z) +
∑
x<y≤z

Ψ([x, y], ρ, ζ̄) · a · µ̄(y, z) · (a− b)ρ(y,z). (2.8)

By moving the term Ψ([x, z], ρ, ζ̄) · a to the left-hand side of equation (2.8) and canceling a factor
of b− a on the right, we obtain recursion (2.6).

Equation (2.6) is an alternative recursion for the ab-index which may be viewed as dual to (2.5).
As a remark, the two recursions in Proposition 2.4 contain the boundary condition Ψ([x, z], ρ, ζ̄) =
ζ̄(x, z) · (a− b)ρ(x,z)−1 = −ζ̄(x, z) · (a− b)ρ(x,z)−1 for x covered by z.

We end this section with the essential result that the ab-index of a quasi-graded poset is a
coalgebra homomorphism. Define a coproduct ∆ : Z〈a,b〉 −→ Z〈a,b〉 ⊗ Z〈a,b〉 by ∆(1) = 0,
∆(a) = ∆(b) = 1⊗ 1 and for an ab-monomial u = u1u2 · · ·uk

∆(u) =

k∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·uk.

The coproduct ∆ extends to Z〈a,b〉 by linearity. It is straightforward to see that this coproduct is
coassociative. The coproduct ∆ first appeared in [19].

Theorem 2.5. Let (P, ρ, ζ̄) be a quasi-graded poset. Then the following identity holds:

∆(Ψ(P, ρ, ζ̄)) =
∑

0̂<x<1̂

Ψ([0̂, x], ρ, ζ̄)⊗Ψ([x, 1̂], ρ, ζ̄).

The proof is the same as in the case of a graded poset [19], and hence is omitted. One way to
formulate this result is to say that the ab-index is a coalgebra homomorphism from the linear span
of quasi-graded posets to the algebra Z〈a,b〉.

3 Eulerian posets and Alexander duality

We define a quasi-graded poset to be Eulerian if for all pairs of elements x ≤ z we have that∑
x≤y≤z

(−1)ρ(x,y) · ζ̄(x, y) · ζ̄(y, z) = δx,z. (3.1)

In other words, the function µ̄(x, y) = (−1)ρ(x,y) · ζ̄(x, y) is the inverse of ζ̄(x, y) in the incidence
algebra. In the case ζ̄(x, y) = ζ(x, y), we refer to relation (3.1) as the classical Eulerian relation.
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If x is covered by z, that is, there is no element y such that x < y < z, then the Eulerian
condition states that either the rank difference ρ(x, z) is odd or the weighted zeta function ζ̄(x, z)
equals zero. This statement will be generalized in Proposition 3.2 below. Similar to Lemma 3.1
in [20] and Exercise 3.174c in [48], we will first need the following lemma.

Lemma 3.1. Let (P, ρ, ζ̄) be a quasi-graded poset with 0̂ and 1̂ of odd rank n such that every proper
interval of P is Eulerian. Then (P, ρ, ζ̄) is an Eulerian quasi-graded poset.

Proof. For any function f in the incidence algebra I(P ) satisfying f(x, x) = 1 for all x, we have

f(0̂, 1̂) + f−1(0̂, 1̂) = −
∑

0̂<y<1̂

f(0̂, y) · f−1(y, 1̂) = −
∑

0̂<y<1̂

f−1(0̂, y) · f(y, 1̂).

Applying this relation to the case when f = ζ̄ gives

ζ̄(0̂, 1̂) + ζ̄−1(0̂, 1̂) = −
∑

0̂<y<1̂

ζ̄(0̂, y) · (−1)ρ(y,1̂) · ζ̄(y, 1̂)

=
∑

0̂<y<1̂

(−1)ρ(0̂,y) · ζ̄(0̂, y) · ζ̄(y, 1̂)

= −ζ̄(0̂, 1̂)− ζ̄−1(0̂, 1̂).

Here we are using that ρ(0̂, y) + ρ(y, 1̂) = n which is odd. Hence ζ̄−1(0̂, 1̂) = (−1)n · ζ̄(0̂, 1̂), that is,
ζ̄−1(x, z) = (−1)ρ(x,z) · ζ̄(x, z) for all x ≤ z and thus the quasi-graded poset (P, ρ, ζ̄) is Eulerian.

Proposition 3.2. Let P be a poset with an order-preserving rank function ρ. Choose the values of
ζ̄(x, z) arbitrarily when the rank difference ρ(x, z) is odd, and let

ζ̄(x, z) = −1/2 ·
∑
x<y<z

(−1)ρ(x,y) · ζ̄(x, y) · ζ̄(y, z), (3.2)

for x < z when ρ(x, z) is even. Then (P, ρ, ζ̄) is an Eulerian quasi-graded poset.

Proof. Lemma 3.1 guarantees that every odd interval is Eulerian and equation (3.2) guarantees
that every even interval is Eulerian.

Example 3.3. Let C be the n element chain C = {x1 < x2 < · · · < xn} with the rank function
ρ(xi) = i. The number of intervals of odd rank in this poset is given by bn/2c · dn/2e. Hence
we have bn/2c · dn/2e degrees of freedom in choosing a weighted zeta function ζ̄ in order for the
quasi-graded poset (C, ρ, ζ̄) to be Eulerian.

The next lemma is well-known. See for instance [18, Lemma 5.3]. Since the incidence algebra
of a finite poset with n elements is a subalgebra of all n× n matrices, this lemma is an instance of
the identity (I +A)−1 =

∑
k≥0(−1)k ·Ak; see [48, Section 3.6].
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Lemma 3.4. Let P be a poset with minimal element 0̂ and maximal element 1̂. Let f be a function
in the incidence algebra I(P ) such that f(x, x) = 1 for all x in P . Then the inverse function of f
in the incidence algebra I(P ) can be computed by

f−1(0̂, 1̂) =
∑

0̂=x0<x1<···<xk=1̂

(−1)k · f(x0, x1) · f(x1, x2) · · · f(xk−1, xk).

Lemma 3.4 implies the next result.

Lemma 3.5. Let P be a poset with 0̂ and 1̂. Let y be an element of P such that 0̂ < y < 1̂ and
let Q be the subposet P − {y}. Suppose f is a function in the incidence algebra of P satisfying
f(x, x) = 1 for all x ∈ P . Then

(f |Q)−1(0̂, 1̂) = f−1(0̂, 1̂)− f−1(0̂, y) · f−1(y, 1̂).

Iterating this lemma gives the following proposition.

Proposition 3.6. Let P be a poset with 0̂ and 1̂, and let Q and R be two subposets of P such that
Q ∪ R = P and Q ∩ R = {0̂, 1̂}. Assume f is a function in the incidence algebra I(P ) satisfying
f(x, x) = 1 for all x ∈ P . Then

(f |Q)−1(0̂, 1̂) =
∑

0̂=y0<y1<···<yk=1̂
yi∈R

(−1)k−1 · f−1(y0, y1) · f−1(y1, y2) · · · f−1(yk−1, yk).

We now apply this result to Eulerian quasi-graded posets.

Theorem 3.7 (Alexander duality for quasi-graded posets). Let (P, ρ, ζ̄) be an Eulerian quasi-
graded poset with 0̂ and 1̂ of rank n+ 1. Let Q and R be two subposets of P such that Q ∪R = P
and Q ∩R = {0̂, 1̂}. Then

(ζ̄|Q)−1(0̂, 1̂) = (−1)n · (ζ̄|R)−1(0̂, 1̂).

Proof. Directly we have

(ζ̄|Q)−1(0̂, 1̂) =
∑

0̂=y0<y1<···<yk=1̂
yi∈R

(−1)k−1 · µ̄(y0, y1) · · · µ̄(yk−1, yk)

=
∑

0̂=y0<y1<···<yk=1̂
yi∈R

(−1)k−1 · (−1)ρ(y0,y1) · ζ̄(y0, y1) · · · (−1)ρ(yk−1,yk) · ζ̄(yk−1, yk)

= (−1)n ·
∑

0̂=y0<y1<···<yk=1̂
yi∈R

(−1)k · ζ̄(y0, y1) · · · ζ̄(yk−1, yk)

= (−1)n · (ζ̄|R)−1(0̂, 1̂).
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Complementary pairs of posets can be constructed using rank selection.

Corollary 3.8. Let (P, ρ, ζ̄) be an Eulerian quasi-graded poset of rank n + 1 with 0̂ and 1̂. Then
the symmetric relation

h̄S = h̄S (3.3)

holds for all subsets S ⊆ {1, 2, . . . , n}.

Proof. Let PS be the S rank-selected quasi-graded subposet {x ∈ P : ρ(x) ∈ S} ∪ {0̂, 1̂}. We have
the following string of equalities:

h̄S = (−1)|S|−1 · (ζ̄|PS )−1(0̂, 1̂) = (−1)n−|S|−1 · (ζ̄|PS )−1(0̂, 1̂) = (−1)|S|−1 · (ζ̄|PS )−1(0̂, 1̂) = h̄S .

4 The cd-index and quasi-graded posets

Bayer and Billera determined all the linear relations which hold among the flag f -vector of (classical)
Eulerian posets, known as the generalized Dehn–Sommerville relations [2]. Bayer and Klapper
showed that the space of flag f -vectors of Eulerian posets has a natural basis expressed by the
cd-index [3]. Since the degree of c is 1 and the degree of d is 2, the dimension of the span of flag
f -vectors of Eulerian posets of rank n+ 1 is given by the Fibonacci number Fn, where F0 = F1 = 1
and Fn = Fn−1 +Fn−2. Stanley later gave a more elementary proof of the existence of the cd-index
for Eulerian posets and showed the coefficients are non-negative for spherically-shellable posets [46].

Theorem 4.1 (Bayer–Klapper). For the face lattice of a polytope, more generally, any graded
Eulerian poset P , its ab-index Ψ(P ) can be written uniquely as a polynomial in the non-commutative
variables c = a + b and d = ab + ba of degree one and two, respectively.

Generalizing the classical result of Bayer and Klapper for graded Eulerian posets, we have the
analogue for quasi-graded posets.

Theorem 4.2. For an Eulerian quasi-graded poset (P, ρ, ζ̄) its ab-index Ψ(P, ρ, ζ̄) can be written
uniquely as a polynomial in the non-commutative variables c = a+b and d = ab+ba. Furthermore,
if the function ζ̄ is integer-valued then the cd-index only has integer coefficients.

Proof. Adding equations (2.5) and (2.6) in Proposition 2.4 and recalling that µ̄(x, y) = (−1)ρ(x,y) ·
ζ̄(x, y), we obtain an expression for 2·Ψ([x, z], ρ, ζ̄) in terms of the ab-index of smaller intervals [x, y]
and the ab-polynomials (1− (−1)k) · (a− b)k−1 and (b− (−1)k · a) · (a− b)k−1. Using Stanley’s
observation that these two ab-polynomials can be written as cd-polynomials [46], and considering
the two cases when k is odd and when k is even separately, the result follows.

If ζ̄ is integer-valued then it is clear that the ab-index only has integer coefficients. Finally, the
fact that the cd-index only has integer coefficients follows from [22, Lemma 3.5].
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Theorem 4.2 gives a different proof of Corollary 3.8 since any cd-polynomial when expressed in
the variables a and b is symmetric in a and b.

A different way to express the existence of the cd-index is as follows.

Theorem 4.3. The flag f̄ -vector of an Eulerian quasi-graded poset of rank n + 1 satisfies the
generalized Dehn–Sommerville relations. More precisely, for a subset S ⊆ {1, . . . , n} and i, k ∈
S ∪ {0, n+ 1} with i < k and S ∩ {i+ 1, . . . , k − 1} = ∅, the following relation holds:

k∑
j=i

(−1)j · f̄S∪{j} = 0. (4.1)

The relations in Theorem 4.3 reduce to the classical Dehn–Sommerville relations [12, 43] for
Eulerian simplicial posets. See [38] for results related to the classical Dehn–Sommerville relations.

The next result asserts that if the cd-index exists for every interval in a quasi-graded poset
then the poset itself is Eulerian.

Proposition 4.4. Let (P, ρ, ζ̄) be a quasi-graded poset such that the ab-index of every interval can
be expressed in terms of c and d. Then the quasi-graded poset (P, ρ, ζ̄) is Eulerian.

Proof. Let [x, y] be an interval of rank k+1. For an ab-monomial m and q(a,b) a non-commutative
polynomial in the variables a and b, let [m]q(a, b) denote the coefficient of m in q(a,b). We have

µ̄(x, y) = (−1)k+1 · h̄{1,...,k}([x, y])

= (−1)k+1 · [bk]Ψ([x, y])

= (−1)k+1 · [ak]Ψ([x, y])

= (−1)k+1 · h̄∅([x, y])

= (−1)k+1 · ζ̄(x, y),

where the third equality follows from expanding the cd-polynomial Ψ([x, y]) in terms of a’s and b’s.
The resulting identity is the Eulerian relation (3.1).

5 Poset operations

In this section we extend some standard poset operations to quasi-graded posets.

Given a quasi-graded poset (P, ρP , ζ̄P ), its dual is the quasi-graded poset (P ∗, ρP ∗ , ζ̄P ∗), where
the partial order satisfies x ≤P ∗ y if y ≤P x, the weighted zeta function is given by ζ̄P ∗(x, y) =
ζ̄P (y, x), and the rank function is ρP ∗(x) = −ρP (x). When the poset P has a minimal and maximal
element, we prefer to use the rank function ρP ∗(x) = ρP (1̂) − ρP (x) in order that the minimal
element in P ∗ has rank 0.
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Let ∗ also denote the involution on Z〈a,b〉 that reverses each monomial. Then for a graded
quasi-graded poset P we have that Ψ(P ∗, ρP ∗ , ζ̄P ∗) = Ψ(P, ρP , ζ̄P )∗.

The Cartesian product of two quasi-graded posets (P, ρP , ζ̄P ) and (Q, ρQ, ζ̄Q) is the triple (P ×
Q, ρ, ζ̄) where the rank function is given by the sum ρ((x, y)) = ρP (x) + ρQ(y) and the weighted
zeta function is the product ζ̄((x, y), (z, w)) = ζ̄P (x, z) · ζ̄Q(y, w).

It is straightforward to verify the following result.

Proposition 5.1. If two quasi-graded posets (P, ρP , ζ̄P ) and (Q, ρQ, ζ̄Q) are both Eulerian then so
is their Cartesian product.

One important case is the Cartesian product with the Boolean algebra B1. The geometric
motivation is that taking the Cartesian product of the face lattice of a polytope with B1 corresponds
to taking the pyramid of the polytope. To do this, define the derivation G : Z〈a,b〉 → Z〈a,b〉
by G(a) = ba and G(b) = ab. Observe that G restricts to a derivation on cd-polynomials by
G(c) = d and G(d) = cd. Also define the operator Pyr by Pyr(w) = w · c + G(w). These two
operators first appeared in [19].

Proposition 5.2. Let P be a quasi-graded poset with 0̂ and 1̂. Then the ab-index of the Cartesian
product of P with the Boolean algebra B1 is given by

Ψ(P ×B1) = b ·Ψ(P ) + Ψ(P ) · a +
∑
x∈P

0̂<x<1̂

Ψ([0̂, x]) · ab ·Ψ([x, 1̂]), (5.1)

Ψ(P ×B1) = Pyr(Ψ(P )). (5.2)

Proof. The proof follows the same outline as in [19, Proposition 4.2]. Consider a chain c = {(0̂, 0̂) =
(x0, y0) < (x1, y1) < · · · < (xk, yk) = (1̂, 1̂)} in P ×B1. Let i be the smallest index such that yi = 1̂
and let x = xi. Assume that 0̂ < x < 1̂. Notice that the element (x, 0̂) may or may not be in the
chain c. Let c′ denote the chain c−{(x, 0̂)} and let c′′ denote the chain c∪{(x, 0̂)}. The ab-weights
of the chains are respectively given by

w(c′) = w[0̂,x](c1) · (a− b) · b · w[x,1̂](c2),

w(c′′) = w[0̂,x](c1) · b · b · w[x,1̂](c2),

where c1 and c2 are the chains obtained by restricting the chain c to the interval [(0̂, 0̂), (x, 0̂)] ∼=
[0̂, x], respectively [(x, 1̂), (1̂, 1̂)] ∼= [x, 1̂]. Let (w, 0̂) be the element preceding (x, 0̂) in the chain
c′′. Since the weighted zeta function is multiplicative and ζ̄B1(0̂, 1̂) = 1 we have ζ̄((w, 0̂), (x, 1̂)) =
ζ̄((w, 0̂), (x, 0̂)). Thus we conclude that the two chains c′ and c′′ have the same ζ̄-weight given by
the product ζ̄(c′) = ζ̄(c′′) = ζ̄(c1) · ζ̄(c2). Summing over all chains c1 and c2 and over all elements x,
we obtain the summation expression in (5.1). The other two terms on the right-hand side of (5.1)
follow from the two cases x = 0̂ and x = 1̂.

The proof of the second identity follows the same outline as the proof of Theorem 5.2 in [19],
using that the ab-index is a coalgebra homomorphism. See Theorem 2.5.
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The Stanley product of two quasi-graded posets (P, ρP , ζ̄P ) and (Q, ρQ, ζ̄Q) with minimal and
maximal elements is the triple (R, ρ, ζ̄). The poset R is described by R = (P − {1̂}) ∪ (Q − {0̂})
with the partial order given by x ≤P∗Q y if (i) x ≤P y and x, y ∈ P − {1̂}; (ii) x ∈ P − {1̂} and
y ∈ Q − {0̂}; or (iii) x ≤Q y and x, y ∈ Q − {0̂}. The rank function ρ is given by ρ(x) = ρP (x)
if x ∈ P − {1̂} and ρ(x) = ρQ(x) + ρP (0̂, 1̂) − 1 if x ∈ Q − {0̂}. Finally, the weighted zeta
function is given by ζ̄(x, y) = ζ̄P (x, y) if x, y ∈ P − {1̂}; ζ̄(x, y) = ζ̄Q(x, y) if x, y ∈ Q − {0̂}; or
ζ̄(x, y) = ζ̄P (x, 1̂) · ζ̄Q(0̂, y) if x ∈ P − {1̂} and y ∈ Q− {0̂}.

If c = {0̂ = x0 < x1 < · · · < xp < y1 < y2 < · · · < yq = 1̂} is a chain in the product
P ∗ Q then each xi ∈ P and each yj ∈ Q. Let cP and cQ denote the two restricted chains
cP = {0̂ = x0 < x1 < · · · < xp < 1̂}, respectively cQ = {0̂ < y1 < y2 < · · · < yq = 1̂}. Note that
the zeta weight of the chains is multiplicative, that is, ζ̄(c) = ζ̄P (cP ) · ζ̄Q(cQ). Thus summing over
all chains yields the next result.

Lemma 5.3. The ab-index is multiplicative with respect to the Stanley product of quasi-graded
posets, that is, for two quasi-graded posets P and Q:

Ψ(P ∗Q) = Ψ(P ) ·Ψ(Q).

Recall the up set U(x) of an element x from a poset P is the set U(x) = {v ∈ P : x < v}.

Lemma 5.4. Let (P, ρ, ζ̄) be a quasi-graded poset with two elements x and y such that ρ(x) = ρ(y),
U(x) = U(y) and ζ̄(x, v) = ζ̄(y, v) for all elements v in the joint up set. Let (Q, ρQ, ζ̄Q) be the
quasi-graded poset defined by

(i) Q = P − {x, y} ∪ {w},

(ii) Q inherits the order relation from P with the new relations u < x or u < y implies u <Q w,
and x < v (hence y < v) implies w <Q v.

(iii) Q inherits the rank function from P with the new value ρQ(w) = ρ(x),

(iv) Q inherits the weighted zeta function from P with the new values ζ̄Q(u,w) = ζ̄(u, x) + ζ̄(u, y)
and ζ̄Q(w, v) = ζ̄(x, v).

Then the ab-indexes of (P, ρ, ζ̄) and (Q, ρQ, ζ̄Q) are equal, that is, Ψ(P, ρ, ζ̄) = Ψ(Q, ρQ, ζ̄Q).

The proof follows by straightforward chain enumeration.

The other operation we need for quasi-graded posets is zipping. This was originally developed
by Reading for Eulerian posets [39]. For our purposes we are considering the dual situation with
respect to Reading’s original notion.

Definition 5.5. A zipper in a quasi-graded poset (P, ρ, ζ̄) consists of three elements x, y and z
such that

(i) ρ(x) = ρ(y) = ρ(z) + 1,
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(ii) the element z is only covered by x and y,

(iii) for all v > z with ρ(v) > ρ(x) we have ζ̄(x, v) = ζ̄(y, v) = ζ̄(z, v),

(iv) ζ̄(z, x) = ζ̄(z, y) = 1.

As a consequence of condition (iii), the elements x and y in a zipper have the same up set.

The next step is to zip the zipper.

Definition 5.6. Let (P, ρ, ζ̄) be a quasi-graded poset with zipper x, y and z. The zipped quasi-
graded poset Q consists of the elements Q = P − {x, y, z} ∪ {w} such that the poset Q inherits the
partial order relation from P together with the following new relations: if u <P x or u <P y then
u <Q w and if x <P v or y <P v then w <Q v. The rank function of Q is also inherited from P
with the new value ρQ(w) = ρ(x). Finally, the weighted zeta function has the new values

ζ̄Q(w, v) = ζ̄(x, v) and ζ̄Q(u,w) = ζ̄(u, x) + ζ̄(u, y)− ζ̄(u, z).

Observe that we use the fact ζ̄(u, v) = 0 if u 6≤ v. Hence the last relation implies that ζ̄Q(u,w) =
ζ̄(u, x) if u < x and u 6< y, and vice-versa, with the roles of x and y exchanged. Similarly,
ζ̄Q(u,w) = ζ̄(u, x) + ζ̄(u, y) if u < x, u < y but u 6< z.

Example 5.7. As a remark, we do not need (the dual of) Reading’s original condition that x∧y = z
in the definition of a zipper since we do not require the weighted zeta function of a zipped quasi-
graded poset ζ̄Q to always be equal to 1. As a concrete example, consider the face lattice of the
2-gon with vertices v1 and v2 and edges e1 and e2. This poset is the rank 3 butterfly poset and it
is Eulerian with the weighted zeta function ζ̄ equal to the zeta function ζ. The triple e1, e2 and v1

is a zipper. After zipping we obtain the length 3 chain Q = {0̂ ≺ v2 ≺ w ≺ 1̂}. The weighted
zeta function for Q is given by ζ̄Q(v2, w) = 2 and 1 everywhere else. It is easily checked that the
resulting poset is Eulerian.

Proposition 5.8. Let (P, ρ, ζ̄) be a quasi-graded poset with minimal and maximal elements. As-
sume that P has a zipper x, y and z. Then the ab-indexes of the zipped poset (Q, ρQ, ζ̄Q) and of
the interval ([0̂, w], ρQ, ζ̄Q) are given by

Ψ(Q) = Ψ(P )−Ψ([0̂, z]) · d ·Ψ([z, 1̂]), (5.3)

Ψ([0̂, w]) = Ψ([0̂, x]) + Ψ([0̂, y])−Ψ([0̂, z]) · c. (5.4)

Proof. We begin by summing the weights of chains from P which go through the elements x, y
and z. The chains that contain z (and possibly x, y or neither) are enumerated by

Ψ([0̂, z]) · (2 · bb + b(a− b)) ·Ψ([z, 1̂]). (5.5)
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Here we use that ζ̄(x, v) = ζ̄(y, v) = ζ̄(z, v). The chains in P that contain x but not z are
enumerated by

ζ̄(0̂, x) · (a− b)ρ(x)−1 · b ·Ψ([x, 1̂]) +
∑

0̂<u<x
u6=z

Ψ([0̂, u]) · b · ζ̄(u, x) · (a− b)ρ(u,x)−1 · b ·Ψ([x, 1̂]). (5.6)

Similarly, the chains in P through y which do not contain z are enumerated by

ζ̄(0̂, y) · (a− b)ρ(y)−1 · b ·Ψ([y, 1̂]) +
∑

0̂<u<y
u6=z

Ψ([0̂, u]) · b · ζ̄(u, y) · (a− b)ρ(u,y)−1 · b ·Ψ([y, 1̂]). (5.7)

Finally, we enumerate the chains in the poset Q through the new element w:

ζ̄Q(0̂, w)·(a−b)ρQ(w)−1 ·b·Ψ([w, 1̂])+
∑

0̂<u<w

Ψ([0̂, u])·b·ζ̄Q(u,w)·(a−b)ρQ(u,w)−1 ·b·Ψ([w, 1̂]). (5.8)

Adding (5.6) and (5.7) and subtracting (5.8) gives

ζ̄(0̂, z) · (a− b)ρ(z) · b ·Ψ([x, 1̂]) +
∑

0̂<u<z

Ψ([0̂, u]) · b · ζ̄(u, z) · (a− b)ρ(u,z) · b ·Ψ([x, 1̂])

= Ψ([0̂, z]) · (a− b) · b ·Ψ([x, 1̂]). (5.9)

The chains that jump from u to x where u 6< y cancel with the corresponding chains jumping
from u to w. A similar cancellation occurs with the roles of x and y exchanged. Hence the
difference Ψ(P )−Ψ(Q) is given by the sum of (5.5) and (5.9).

For the interval [0̂, w] in the poset Q we have

Ψ([0̂, w]) = ζ̄Q(0̂, w) · (a− b)ρ(w)−1 +
∑

0̂<u<w

Ψ([0̂, u]) · b · ζ̄Q(u,w) · (a− b)ρ(u,w)−1

= ζ̄(0̂, x) · (a− b)ρ(x)−1 +
∑

0̂<u<x
u6=z

Ψ([0̂, u]) · b · ζ̄(u, x) · (a− b)ρ(u,x)−1

+ ζ̄(0̂, y) · (a− b)ρ(y)−1 +
∑

0̂<u<y
u6=z

Ψ([0̂, u]) · b · ζ̄(u, y) · (a− b)ρ(u,y)−1

− ζ̄(0̂, z) · (a− b)ρ(z) −
∑

0̂<u<z

Ψ([0̂, u]) · b · ζ̄(u, z) · (a− b)ρ(u,z)

= Ψ([0̂, x])−Ψ([0̂, z]) · b + Ψ([0̂, y])−Ψ([0̂, z]) · b−Ψ([0̂, z]) · (a− b),

where in the second and third equality the computations are taking place in the original poset P .
This is the desired expression.

Theorem 5.9. For quasi-graded posets the zipping operation preserves the Eulerian property.

Proof. Consider an interval [u, v] in the zipped poset Q, where P is the original quasi-graded poset
with zipper x, y and z. First we claim that this interval has a cd-index. There are four cases to
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consider. (i) If w does not belong to the interval [u, v] then [u, v] is the same as in the original
poset P and hence is Eulerian. (ii) If u = w then [w, v] is isomorphic to [x, v] and is Eulerian. (iii)
If v = w then the interval [u,w] has a cd-index by equation (5.4). (iv) Finally, if u < w < v then
the interval [u, v] has a cd-index by equation (5.3). In each case the interval has a cd-index and
by Proposition 4.4 we conclude that the poset Q is Eulerian.

6 Whitney stratified sets

We begin with a modest example.

Example 6.1. Consider the non-regular CW complex Ω consisting of one vertex v, one edge e and
one 2-dimensional cell c such that the boundary of c is the union v ∪ e, that is, boundary of the
complex Ω is a one-gon. Its face poset is the four element chain F (Ω) = {0̂ < v < e < c}. This is
not an Eulerian poset. The classical definition of the ab-index, in other words, using ζ̄(x, y) = 1
for all x ≤ y, yields that the ab-index of Ω is a2. Note that a2 cannot be written in terms of c
and d.

Observe that the edge e is attached to the vertex v twice. Hence it is natural to change the
value of ζ̄(v, e) to be 2 and to keep the remaining values of ζ̄(x, y) to be 1. The face poset F (Ω) is
now Eulerian, its ab-index is given by ζ̄(Ω) = a2 + b2 and hence its cd-index is ζ̄(Ω) = c2 − d.

The motivation for the value 2 in Example 6.1 is best expressed in terms of the Euler character-
istic of the link. The link of the vertex v in the edge e is two points whose Euler characteristic is 2.
In order to view this example in the right topological setting, we review the notion of a Whitney
stratification. For more details, see [14], [26], [27, Part I §1.2], and [35].

A subset S of a topological space M is locally closed if S is a relatively open subset of its
closure S. Equivalently, for any point x ∈ S there exists a neighborhood Ux ⊆ S such that the
closure Ux ⊆ S is closed in M . Another way to phrase this is a subset S ⊂ M is locally closed if
and only if it is the intersection of an open subset and a closed subset of M .

Definition 6.2. Let W be a closed subset of a smooth manifold M which has been decomposed into
a finite union of locally closed subsets called strata:

W =
⋃
X∈P

X.

Furthermore suppose this decomposition satisfies the condition of the frontier:

X ∩ Y 6= ∅ ⇐⇒ X ⊆ Y .

This implies the closure of each stratum is a union of strata, and it provides the index set P with
the partial ordering:

X ⊆ Y ⇐⇒ X ≤P Y.

This decomposition of W is a Whitney stratification if
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1. Each X ∈ P is a (locally closed, not necessarily connected) smooth submanifold of M .

2. If X <P Y then Whitney’s conditions (A) and (B) hold: Suppose yi ∈ Y is a sequence of
points converging to some x ∈ X and that xi ∈ X converges to x. Also assume that (with
respect to some local coordinate system on the manifold M) the secant lines `i = xiyi converge
to some limiting line ` and the tangent planes TyiY converge to some limiting plane τ . Then
the following inclusions hold:

(A) TxX ⊆ τ and (B) ` ⊆ τ.

Remark 6.3. For convenience we will henceforth also assume that W is pure dimensional, meaning
that if dim(W ) = n then the union of the n-dimensional strata of W forms a dense subset of W .
Strata of dimension less than n are referred to as singular strata.

Local structure of stratified sets. Lemmas 6.4 and 6.6 below are “standard” but the proofs
(which we omit) involve the full strength of Thom’s first isotopy lemma; see [14, 26, 27, 35, 36, 50].

Let A,A′ ⊂ M be smooth submanifolds. They are said to be transverse in M at a point
x ∈ A ∩A′ if TxA+ TxA

′ = TxM . The submanifolds A,A′ are said to be transverse (in M) if they
are transverse at every point of their intersection.

Two Whitney stratified subsets W,W ′ ⊂ M are said to be transverse at a point x ∈ W ∩W ′
if the stratum A of W that contains x is transverse at the point x to the stratum A′ of W ′ that
contains x. The Whitney stratified sets W,W ′ are said to be transverse if they are transverse at
every point, that is, if every stratum A of W is transverse to every stratum A′ of W ′. In this case,
the intersection W ∩W ′ is Whitney stratified with strata of the form A∩A′ where A is a stratum
of W and A′ is a stratum of W ′.

Transversality is an open condition: if A ≤P B and if A′ ≤P ′ B′ are strata of W,W ′ respectively
and if A is transverse to A′ at a point x ∈ A ∩ A′ then there exists a neighborhood U ⊂ M of the
point x such that W ∩U is transverse to W ′∩U , in other words, the following four conditions hold:
(i) A is transverse to A′ at every point y ∈ A ∩ A′ ∩ U , (ii) A is transverse to B′ at every point
y ∈ A ∩ B′ ∩ U , (iii) B is transverse to A′ at every point y ∈ B ∩ A′ ∩ U and (iv) B is transverse
to B′ at every point y ∈ B∩B′∩U . Transversality is also a dense condition: two compact Whitney
stratified subsets W,W ′ ⊂ Rn of Euclidean space may be made transverse by moving one of them
by a translation, say, W ′ →W ′+a, where the vector a ∈ Rn may be chosen to be arbitrarily small.

Let W be a Whitney stratified closed subset of a smooth manifold M . Let X be a stratum
of W and let x ∈ X. Let Nx ⊂M be a normal slice to X at x, that is, a smooth submanifold of M
that is transverse to X, with Nx ∩X = {x} (so that dim(Nx) + dim(X) = dim(M)). Let Bε(x) be
a closed ball (with respect to some local coordinate system for M) of radius ε centered at x. If ε is
chosen sufficiently small then

1. the boundary ∂Bε(x) is transverse to Nx,

2. the intersection ∂Bε(x) ∩Nx is transverse to every stratum of W .
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Consequently the intersection

linkW (X,x) := Nx ∩ ∂Bε(x) ∩W

is Whitney stratified by its intersection with the strata of W . The link is well-defined in the
following sense.

Lemma 6.4. Assume the stratum X is connected. Let x′ ∈ X, let N ′x′ be a choice of normal slice
to X at the point x′ and let B′ε′(x

′) be a choice of closed ball centered at x′. Then for ε, ε′ sufficiently
small the intersections

linkW (X,x) := Nx ∩ ∂Bε(x) ∩W and linkW (X,x′) := N ′x′ ∩ ∂B′ε′(x′) ∩W

are homeomorphic by a homeomorphism ψ that is smooth on each stratum such that ψ(x) = x′.

We may therefore refer to “the” link of the stratum X by choosing a point x ∈ X and writing
linkW (X) = linkW (X,x). If X ⊂ Y are strata of W and if x ∈ X then we write

linkY (X) = Nx ∩ ∂Bε(x) ∩ Y

for the intersection of the link of X with the stratum Y, and similarly for linkY (X). These inter-
sections are also independent of the same choices as described above.

The link is preserved under transverse intersection in the following sense. Let P ⊂ M be a
smooth submanifold that is transverse to every stratum of W . Let X be a stratum of W and let
x ∈ X ∩ P . Then there is a stratum-preserving homeomorphism that is smooth on each stratum,

linkP∩W (P ∩X,x) ∼= linkW (X,x). (6.1)

This follows from Lemma 6.4 by choosing the normal slice Nx to be contained in P . With this
choice, linkP∩W (P ∩X,x) = linkW (X,x).

Remark 6.5. The “top” stratum, or largest stratum of a Whitney stratified set W need not be
connected. Normally, one requires that the singular strata of a Whitney stratified set W should be
connected. However it is possible to allow disconnected singular strata provided

(i) that the condition of the frontier continues to hold, and

(ii) that the links L1, L2 of any two connected components A1, A2 of a singular stratum A are
isomorphic, meaning that there is a stratum preserving homeomorphism h12 : L1 −→ L2 that
is smooth on each stratum.

(Here, the stratification of Li is the natural one given by the intersection of Li with the strata
of W , for i = 1, 2.)

Lemma 6.6. Let W ⊂M be a Whitney stratified closed subset of a smooth manifold M . Let X be a
stratum of W and let x ∈ X. Then there exists a basis Bx for the neighborhoods of x in W such that
every neighborhood U ∈ Bx has a local product structure, that is, there exists a stratum-preserving
homeomorphism

U ∼= Rdim(X) × cone(linkW (x)) (6.2)

that is smooth on each stratum which takes the basepoint {x} to {0} × {cone point}.
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It follows that a Whitney stratification of a closed set W ⊂M is locally trivial: if x, y ∈ X and
if Bx,By denote the corresponding bases of neighborhoods of x and y (respectively) then for any
Ux ∈ Bx and any Uy ∈ By there is a stratum-preserving homeomorphism

h : Ux −→ Uy (6.3)

that is smooth on each stratum such that h(x) = y.

Remark 6.7. Complex algebraic, complex analytic, real algebraic, real analytic, semi-algebraic,
semi-analytic, and sub-analytic sets all admit Whitney stratifications [13, 28, 29, 30, 34, 36, 50, 51].
The existence of Whitney stratifications, together with the local triviality theorems, constitute one
of the great triumphs of stratification theory because they provide a deep understanding of the
local structure of the singularities of algebraic and analytic sets. In particular they say that these
sets do not exhibit fractal or Cantor set-like behavior.

Remark 6.8. An example of an algebraic set W with a decomposition into smooth manifolds that
is not locally trivial is provided by Whitney’s cusp. See [35, Example 2.6] and [52]. It is the variety
x3 + y2 = x2z2. It can be decomposed into two smooth manifolds as follows. The “small stratum”
is the line x = y = 0, and all the rest is the “large stratum”. This decomposition is not locally
trivial at the origin, although it satisfies Whitney’s condition (A) everywhere. Thus, condition
(A) does not suffice to guarantee local triviality of the stratification. Whitney guessed (correctly)
that requiring condition (B) would restore local triviality. Indeed the above decomposition fails
condition (B) at the origin. To restore condition (B) it is necessary to refine the stratification by
declaring the origin to be a third stratum. The resulting decomposition is locally trivial.

We next state the key definition for developing face incidence enumeration for Whitney stratified
spaces.

Definition 6.9. Let W be a Whitney stratified closed subset of a smooth manifold M . Define the
face poset F = F(W ) of W to be the quasi-graded poset consisting of the poset of strata P adjoined
with a minimal element 0̂. The rank function is given by

ρ(X) =

{
dim(X) + 1 if X > 0̂,

0 if X = 0̂,

and the weighted zeta function is

ζ̄(X,Y ) =

{
χ(linkY (X)) if X > 0̂,

χ(Y ) if X = 0̂.

Theorem 6.10. Let W be Whitney stratified closed subset of a smooth manifold M . Then the face
poset of W is an Eulerian quasi-graded poset.

The proof of Theorem 6.10 occupies Sections 8 through 9.

We now give a few examples of Whitney stratifications beginning with the classical polygon.
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Example 6.11. Consider a two dimensional cell c with its boundary subdivided into n vertices
v1, . . . , vn and n edges e1, . . . , en. There are three ways to view this as a Whitney stratification.

(1) Declare each of the 2n + 1 cells to be individual strata. This is the classical view of an n-
gon. Here the weighted zeta function is the classical zeta function, that is, always equal to 1
(assuming n ≥ 2).

(2) Declare each of the n edges to be one stratum e = ∪ni=1ei, that is, we have the n + 2 strata
v1, . . . , vn, e, c. Here the non-one values of the weighted zeta function are given by ζ̄(0̂, e) = n
and ζ̄(vi, e) = 2.

(3) Lastly, we can have the three strata v = ∪ni=1vi, e = ∪ni=1ei and c. Now non-one values of the
weighted zeta function are given by ζ̄(0̂, v) = ζ̄(0̂, e) = n and ζ̄(v, e) = 2.

In contrast, we cannot have v, e1, . . . , en, c as a stratification, since the link of a point p in ei depends
on the point p in v chosen.

By Lemma 5.4 the cd-index of each of the three Whitney stratifications in Example 6.11 are
the same, that is, c2 + (n− 2) · d. Hence we have the immediate corollary.

Corollary 6.12. The cd-index of an n-gon is given by c2 + (n− 2) · d for n ≥ 1.

The last stratification in the previous example can be extended to any simple polytope.

Example 6.13. Let P be an n-dimensional simple polytope, that is, every interval [x, y] in the face
lattice, where 0̂ < x ≤ y, is isomorphic to a Boolean algebra. We obtain a different stratification of
the ball by joining all the facets together to one strata. By Lemma 5.4 we note that the cd-index
does not change, since the information is carried in the weighted zeta function. We continue by
joining all the subfacets together to one strata. Again the cd-index remains unchanged. In the end
we obtain a stratification where the union of all the i-dimensional faces forms the ith strata. The face
poset of this stratification is the (n+ 2)-element chain C = {0̂ = x0 < x1 < · · · < xn+1 = 0̂}, with
the rank function ρ(xi) = i and weighted zeta function ζ̄(0̂, xi) = fi−1(P ) and ζ̄(xi, xj) =

(
n+1−i
n+1−j

)
.

Again, by Lemma 5.4 we have Ψ(C, ρ, ζ̄) = Ψ(P ).

A similar stratification can be obtained for any regular polytope.

Example 6.14. Consider the stratification of an n-dimensional manifold with boundary, denoted
(M,∂M), into its boundary ∂M and its interior M◦. The face poset is {0̂ < ∂M < M◦} with
the elements having ranks 0, n and n + 1, respectively. The weighted zeta function is given by
ζ̄(0̂, ∂M) = χ(∂M), ζ̄(0̂,M◦) = χ(M) and ζ̄(∂M,M◦) = 1. If n is even then ∂M is an odd-
dimensional manifold without boundary and hence its Euler characteristic is 0. In this case the
ab-index is Ψ(M) = χ(M) · (a− b)n. If n is odd then we have the relation χ(∂M) = 2 · χ(M) and
hence the ab-index is given by Ψ(M) = χ(M) · (a− b)n + 2 · χ(M) · (a− b)n−1 · b. Passing to the
cd-index we conclude

Ψ(M) =

{
χ(M) · (c2 − 2d)n/2 if n is even,

χ(M) · (c2 − 2d)(n−1)/2 · c if n is odd.
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The next example is a higher dimensional analogue of the one-gon in Example 6.1.

Example 6.15. Consider the subdivision Ωn of the n-dimensional ball Bn consisting of a point p,
an (n−1)-dimensional cell c and the interior b of the ball. If n ≥ 2, the face poset is {0̂ < p < c < b}
with the elements having ranks 0, 1, n and n+ 1, respectively. In the case n = 1, the two elements
p and c are incomparable. The weighted zeta function is given by ζ̄(0̂, p) = ζ̄(0̂, c) = ζ̄(0̂, b) = 1,
ζ̄(p, c) = 1 + (−1)n, and ζ̄(p, b) = ζ̄(c, b) = 1. Thus the ab-index is

Ψ(Ωn) = (a− b)n + b · (a− b)n−1 + (a− b)n−1 · b + (1 + (−1)n) · b · (a− b)n−2 · b. (6.4)

When n is even the expression (6.4) simplifies to

Ψ(Ωn) = a · (a− b)n−2 · a + b · (a− b)n−2 · b

=
1

2
·
[
(a− b) · (a− b)n−2 · (a− b) + (a + b) · (a− b)n−2 · (a + b)

]
=

1

2
·
[
(c2 − 2d)n/2 + c · (c2 − 2d)(n−2)/2 · c

]
. (6.5)

When n is odd the expression (6.4) simplifies to

Ψ(Ωn) = a · (a− b)n−2 · a− b · (a− b)n−2 · b

=
1

2
·
[
(a + b) · (a− b)n−2 · (a− b) + (a− b) · (a− b)n−2 · (a + b)

]
=

1

2
·
[
c · (c2 − 2d)(n−1)/2 + (c2 − 2d)(n−1)/2 · c

]
. (6.6)

As a remark, these cd-polynomials played an important role in proving that the cd-index of a
polytope is coefficient-wise minimized on the simplex, namely, Ψ(Ωn) = (−1)n−1 ·αn, where αn are
defined in [5]. See Theorem 11.4 for a generalization of one of the main identities in [5]. See [16]
for related polynomials.

The weighted zeta function of a stratification can take negative values, as our last example
illustrates.

Example 6.16. Let M be a solid 3-dimensional torus such that its boundary is the 2-dimensional
torus T2. Consider the stratification of T2 into n points V = {v1, v2, . . . , vn} and the n-punctured
torus T2−V . Its weighted zeta function is negative on the interval [0̂,T2−V ], that is, ζ̄(0̂,T2−V ) =
χ(T2 − V ) = −n. The cd-index of this stratification of the solid torus is n · dc− n · cd.

7 Properties of the Euler characteristic

In this section we state two results involving the Euler characteristic of the boundary of a manifold
and an inclusion-exclusion expression for the Euler characteristic. Both will support results leading
to the proof of Theorem 6.10 in Section 9.
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Lemma 7.1. Let (A, ∂A) be a connected n-dimensional manifold (possibly non-orientable) with
(possibly empty) boundary. Then the Euler characteristic of the boundary is given by

χ(∂A) =
(

1− (−1)dim(A)
)
· χ(A). (7.1)

Proof. (Sketch) This follows from Poincaré duality H i(A, ∂A;Z2) ∼= Hn−i(A;Z2) and the long exact
homology sequence for the pair (A, ∂A), together with the fact that the Euler characteristic does
not depend on the coefficient field of the homology groups.

Lemma 7.2. Let X =
⋃r
i=1 Ui be an open cover of a topological space X. For any R ⊆ {1, 2, . . . , r}

let UR =
⋂
i∈R Ui. Then we have the following inclusion-exclusion formula for the Euler character-

istic:
χ(X) =

∑
φ 6=R⊆[r]

(−1)|R|+1 · χ(UR). (7.2)

Proof. (Sketch) This follows from induction and the Mayer–Vietoris theorem or equivalently, from
the Mayer–Vietoris spectral sequence.

8 Tube systems and control data

After Whitney introduced his conditions (A) and (B), René Thom, in a remarkable paper [50],
described a daring technique for proving that Whitney stratifications were locally trivial. Thom
constructed the required homeomorphism (6.2–6.3) as the time 1 continuous flow of a certain
discontinuous (but “controlled”) vector field. Although his outline was sound, there were many
serious gaps and difficulties with the exposition that were finally resolved in J. Mather’s wonderful
notes [35], which are still the best source for this material. The first step involves the construction
of “control data”, that is, a system of compatible tubular neighborhoods of the strata. Further
references for tube systems include Section 2.5 in [14], Section 2.2 in [26] and Part I, Section 1.5
in [27].

Let A be a smooth submanifold of a smooth manifold M . Let ν(A) denote the normal bundle
of A in M . Choose a smooth inner product 〈·, ·〉 on ν(A) and let ν(A)<ε = {v ∈ ν(A) : 〈v, v〉 < ε}.
This quantity may be thought of as the set of vectors whose distance squared from A is less than ε.
A tubular neighborhood of A is such a choice of inner product on the normal bundle ν(A) together
with a smooth embedding φ : ν(A)<ε −→M of the ε neighborhood of the zero section such that the
restriction of φ to the zero section is the identity map. It follows that the image TA = TA(ε) ⊂M is
an open neighborhood of A in M . The projection π : ν(A) −→ A determines a smooth projection
πA : TA −→ A and the inner product determines a smooth “tubular function” ρA : TA −→ [0, ε)
such that (πA, ρA) : TA −→ A× (0, ε) is a smooth proper submersion (and hence is a smooth fiber
bundle).
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Let W ⊂ M be a closed subset with a fixed Whitney stratification. A system of control data
on W consists of a choice of tubular neighborhood TA for each stratum A of W with the following
properties:

1. TA ∩ TB = φ unless A < B or B < A,

2. if A < B then πAπB(x) = πA(x) for all x ∈ TA ∩ TB

3. if A < B then ρAπB(x) = ρA(x) for all x ∈ TA ∩ TB

4. The mapping (πA, ρA) : W ∩ TA −→ A × (0, ε) is a stratified submersion, that is, a locally
trivial fiber bundle (with fiber linkW (A)) whose restriction to each stratum is a submersion.

Every Whitney stratified set admits a system of control data, and we henceforth assume that control
data for W has been chosen.

Let A be a stratum of W and let Σ(A) = A−A be the closed union of strata in the closure of A.
We may assume that ρA extends to the TA − Σ(A) and takes the value ε on the boundary ∂TA
which is the image of the ε-sphere bundle in the normal bundle of A. If ε is chosen sufficiently
small then the manifold ∂TA ⊂ M is transverse to all the strata B > A (and it does not intersect
any strata C < A) so it is Whitney stratified by its intersection with the strata of W .

For each stratum A define A0 = A−
⋃
B<A TB. This is an open subset of the stratum A. The

family of lines can be used to describe a homeomorphism A0 −→ A. Moreover, A0 is naturally
the interior of a manifold with boundary (corners), A1 := A−

⋃
B<A TB ⊂ A whose boundary is a

union

∂A1 =
⋃
B<A

∂TB − ⋃
C 6=B

TC


of pieces of the sphere bundles of strata B < A. Let X be the closure of a single stratum of W .
Then the system of control data (TA, πA, ρA,Φ

A) when intersected with X gives a system of control
data for X. These notions are illustrated in Figures 1 through 3.

If A is a stratum of W and if x ∈ A then π−1
A (x) = Nx is a “normal slice” to A at x as described

in Section 6. Thus the link of the stratum A, at the point x ∈ A is (homeomorphic to) the set

link(A) = π−1
A (x) ∩ ∂TA ∩W.

For any stratum B > A the link of the stratum A in B is the (not necessarily compact, not
necessarily connected) manifold

linkB(A) = π−1
A (x) ∩ ∂TA ∩B.
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Figure 3: Manifolds with boundary

Proposition 8.1. Let B1 < B2 < · · · < Bk be a chain of strata and let πj : TBj −→ Bj be the
projection. Define

∂T (B1, B2, . . . , Bk) := ∂TB1 ∩ ∂TB2 ∩ · · · ∩ ∂TBk . (8.1)

If ε > 0 is sufficiently small then for any stratum A of W the Euler characteristic of the intersection
∂T (B1, B2, . . . , Bk) ∩A factors:

χ (∂T (B1, B2, . . . , Bk) ∩A) = χ(B1) · χ(linkB2(B1)) · χ(linkB3(B2)) · · ·χ(linkA(Bk)). (8.2)

Proof. To simplify the notation, we write π1, ρ1 rather than πB1 , ρB1 , etc. We will prove by induc-
tion on t that if ε is sufficiently small then

(a) the collection of submanifolds ∂TBi ⊂M is mutually transverse,
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(b) ∂T (B1, B2, . . . , Bk) is transverse to every stratum A of W , and

(c) the intersection ∂T (B1, B2, . . . , Bk) ∩W may be described as an iterated stratified fibration:

linkW (Bk)

∂T (B1, B2, . . . , Bk) ∩W
�

link(Bk−1) ∩Bk

∂T (B1, B2, . . . , Bk−1) ∩Bk
πt? �

link(Bk−2) ∩Bk−1

∂T (B1, B2, . . . , Bk−2) ∩Bk−1

πt−1? �

· · ·
?

link(B1) ∩B2

∂T (B1) ∩B2

? �

B1.

π1?

Consequently, for any stratum A > Bk the intersection ∂T (B1, B2, . . . , Bk) ∩ A also fibers in this
way, from which equation (8.2) follows immediately.

For k = 1, part (a) is vacuous and parts (b) and (c) are simply a restatement of property (4)
in the definition of control data.

For the inductive step, suppose we have proven (a), (b), (c) for a chain of strata B2 < B3 <
· · · < Bk. In particular,

∂T (B2, B3, . . . , Bk) ∩W −→ · · · −→ B2 (8.3)

is an iterated fibration. Consider the effect of adding a stratum B1 to the bottom of this chain. By
property (4), the mapping

(π1, ρ1) : T (B1) ∩W −→ B1 × (0, ε)

is a stratified fibration: it is a submersion on each stratum. Composing this with the tower (8.3)
gives an iterated stratified fibration

∂T (B2, B3, . . . , Bk) ∩ T (B1) ∩W −→ · · · −→ B2 ∩ T (B1) −→ B1 × (0, ε).

The projection to (0, ε) is a submersion on each stratum, which is equivalent to the statement
that for all s ∈ (0, ε) the submanifold ρ−1

1 (s) ⊂ M is transverse to every stratum in this tower.
Shrinking ε if necessary, the submanifold ρ−1

1 (ε) = ∂T (B1) is therefore transverse to every stratum
that appears in this tower. Thus, restricting to ρ−1

1 (ε) gives the desired iterated stratified fibration

∂T (B2, . . . , Bk) ∩ ∂T (B1) −→ · · · −→ B2 ∩ ∂T (B1) −→ B1.

9 The main formula

In this section we will give the proof of our main result from Section 6, that the face poset of a
Whitney stratified closed subset of a smooth manifold is indeed an Eulerian quasi-graded poset.
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Recall that we have homotopy equivalences A0 ⊂ A1 ⊂ A for a stratum A.

Proposition 9.1. Let A be a stratum of W . Then the boundary ∂A1 is a topological manifold and

χ(∂A1) =
∑
B<A

(−1)dim(B) · χ(B) · χ(linkA(B)). (9.1)

Consequently, the following identity holds:(
1 + (−1)dim(A)+1

)
· χ(A) +

∑
B<A

(−1)dim(B)+1 · χ(B) · χ(linkA(B)) = 0. (9.2)

Proof. Let us cover the boundary ∂A1 with ε-neighborhoods of the closed sets SB = ∂TB−
⋃
C 6=B TC

as B ranges over the strata B < A. By equation (7.2) of Lemma 7.2, the Euler characteristic χ(∂A1)
is an alternating sum of the Euler characteristics of the multi-intersections of these sets SB. As
observed in Section 8 such an intersection is empty unless the corresponding strata form a chain.
Let P denote the partially ordered set of strata B < A. If R ⊆ P let ∂T (R) =

⋂
B∈R SB. By

Lemma 7.2 we have
χ(∂A1) =

∑
φ 6=R⊆P

(−1)|R|+1 · χ(∂T (R) ∩A).

As observed in Proposition 8.1, the term χ(∂T (R) ∩ A) is zero unless R = (R1 < R2 < · · · < Rk)
is a chain of strata, with Rk < A, in which case the Euler characteristic is given by equation (8.2).
We will need to focus on the top element R|R| of each chain. For notational convenience let us
define

χ(R) = χ(R1) · χ(linkR2(R1)) · χ(linkR3(R2)) · · ·χ(linkRk(Rk−1)).

Then equation (8.2) gives χ(∂T (R) ∩A) = χ(R) · χ(linkA(Rk)) and we have

χ(∂A1) =
∑
R<A

(−1)|R|+1 · χ(R) · χ(linkA(R|R|)). (9.3)

If |R| > 1 then it is possible to remove the top element and obtain a smaller chain T = (T1 <
T2 < · · · < Tk−1) = (R1 < R2 < · · · < Rk−1) such that R = (T < R|R|). Let B = Rk = R|R|
denote this top element and note that Rk−1 = T|T|. Then the corresponding term in equation (9.3)
is therefore

(−1)|R|+1 · χ(T) · χ(linkB(T|T|)) · χ(linkA(B)).

If |R| = 1 then the chain R consists of a single stratum B ∈ P and the contribution from this term
is just χ(B) · χ(linkA(B)).

With this notation we are able to group together the terms involving χ(linkA(B)) as B ∈ P
varies, that is, we group terms according to the last factor in equation (8.2) to obtain

χ(∂A1) =
∑
B∈P

χ(linkA(B)) ·

(
χ(B) +

∑
T<B

(−1)|T| · χ(T) · χ(linkB(T|T|))

)
.
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By equation (9.3) the inner sum is just −χ(∂B1), so the quantity inside the parentheses is χ(B)−
χ(∂B1) = (−1)dim(B) · χ(B) by equation (7.1). Consequently

χ(∂A1) =
∑
B∈P

χ(linkA(B)) · (−1)dimB · χ(B),

which is equation (9.1). Equation (9.2) follows from equation (9.1) and Lemma 7.1.

We are now ready to give the proof of the main result from Section 6.

Proof of Theorem 6.10. Let X < Z be elements of the face poset F(P ), where we allow the possi-
bility that X = 0̂. Let W ′ := linkW (X)∩Z be the intersection of the link of X with the closure of Z.
This is again a Whitney stratified subset of M and its poset P ′ of strata is equal to the interval
[X,Z] ⊆ P because the strata of W ′ are all of the form Y ′ = Y ∩ linkW (X) where X ≤ Y ≤ Z.
The minimal element 0̂′ of P ′ corresponds to the empty stratum, that is, 0̂′ = X ∩ linkW (X) = φ.
Moreover, we claim that the weighted zeta function for W ′, denoted by ζ̄ ′, coincides with that of W
restricted to the interval [X,Z], that is,

ζ̄(X,Y ) = ζ̄ ′(X ′, Y ′).

In fact, by equation (6.1), taking P = linkM (X), there is a stratum-preserving homeomorphism

linkW (Y ) ∼= linkW∩P (Y ∩ P )

and hence, intersecting with Z gives a homeomorphism

linkW (Y ) ∩ Z ∼= link(Y ′) ∩ Z ′

where Y ′ = Y ∩P = Y ∩ link(X) and Z ′ = Z∩P = Z∩ link(X) are the corresponding strata of W ′.

The rank function ρ′ of P ′ is

ρ(Y ′) = dim(Y ′) + 1 = dim(Y ) + 1− dim(X)− 1 = ρ(X,Y ).

Therefore we may apply Equation (9.2) to the stratified space W ′ and thereby obtain∑
X≤Y≤Z

(−1)ρ(X,Y ) · ζ̄(X,Y ) · ζ̄(Y, Z) = δX,Z .

10 The semisuspension

Let Γ be a polytopal complex, that is, a regular cell complex whose cells are polytopes. Assume
the dimension of Γ is k. Let n > k be an integer. We define the nth semisuspension of Γ, denoted
Semi(Γ, n), to be the family of CW complexes obtained by embedding Γ in the boundary of an
n-dimensional ball Bn. Thus we are adding the two strata ∂Bn − Γ and the interior of Bn to the
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complex Γ to obtain the stratification. Note that one really has a family of embeddings. For
example, one can embed a circle into the boundary of a 4-dimensional ball so that the result is any
given knot. Nevertheless, we will show the face poset of Semi(Γ, n) is well-defined. Furthermore,
in the case Γ is homeomorphic to a k-dimensional ball, the semisuspension Semi(Γ, n) is unique up
to homeomorphism.

The face poset F (Semi(Γ, n)) of the nth semisuspension of Γ consists of the face poset of the
complex Γ with two extra elements ∗ and 1̂ of rank n and n+ 1, respectively, where the element ∗
corresponds to Sn−1 − Γ and the maximal element corresponds to the interior of the ball Bn. The
order relations are x ≤ ∗ for x ∈ Γ and ∗ ≺ 1̂. The weighted zeta function ζ̄ is given by

ζ̄(x, y) =

{
χ(Sn−1−ρ(x) − linkΓ(x)) if x < ∗ and y = ∗,
1 otherwise.

(10.1)

Observe that when n = k+ 1 the element ∗ would have the same rank as any of the k-dimensional
facets x and hence ζ̄(x, ∗) = 0. By Alexander duality we know that for a closed subset A of Sm
the Euler characteristic of the complement χ(Sm − A) is given by χ(A) if m is odd and 2 − χ(A)
if m is even. Using the reduced Euler characteristic we can write this relation as χ(Sm − A) =
1− (−1)m · χ̃(A). Thus the weighted zeta function can be rewritten as

ζ̄(x, y) =

{
1 + (−1)ρ(x,∗) · χ̃(linkΓ(x)) if x < y and y = ∗,
1 otherwise.

(10.2)

Also note that for a facet x of Γ, the link linkΓ(x) is the complex consisting of the empty set, and
hence its reduced Euler characteristic is −1.

Note that equation (10.2) does not depend on the particular embedding of the complex Γ
into the n-dimensional sphere. Summarizing this discussion and using Theorem 6.10, we have the
following result.

Proposition 10.1. Let Γ be a k-dimensional polytopal complex and let n > k be an integer.
Then the face poset of the nth semisuspension F (Semi(Γ, n)) having the weighted zeta function ζ̄
in (10.1) does not depend on the embedding of Γ into the boundary of Bn. Furthermore, the face
poset F(Semi(Γ, n)) is an Eulerian quasi-graded poset.

We now can relate the cd-index of the (n+1)st semisuspension to that of the nth semisuspension.

Proposition 10.2. Let Γ be a polytopal complex of dimension less than n. Then the following
identity holds:

Ψ(Semi(Γ, n+ 1)) = Ψ(Semi(Γ, n)) · c−Ψ([0̂, ∗]) · d,

where the interval [0̂, ∗] occurs in the face poset of the semisuspension Semi(Γ, n)).

Proof. We begin by expanding the cd-index of the semisuspension Semi(Γ, n+ 1) using the chain
definition of the ab-index. Note there are four types of chains, depending on whether the ∗-element
is in the chain or not, and whether the chain contains a non-empty element of the complex Γ or
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not. In order to distinguish between the two face posets F(Semi(Γ, n)) and F(Semi(Γ, n+ 1)), we
mark the weighted zeta function, the rank function and the element ∗ of the second poset with
primes. We have

Ψ(Semi(Γ, n+ 1)) = (a− b)n+1 +
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · (a− b)ρ
′(x,1̂)−1

+ ζ̄ ′(0̂, ∗′) · (a− b)n · b +
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · ζ̄ ′(x, ∗′) · (a− b)ρ
′(x,∗′)−1 · b.

Note that ζ̄ ′(x, ∗′) = 1 + (−1)ρ
′(x,∗′) · χ̃(linkΓ(x)) = 2−

(
1 + (−1)ρ(x,∗) · χ̃(linkΓ(x))

)
= 2− ζ̄(x, ∗).

Hence the above expression translates to

Ψ(Semi(Γ, n+ 1)) = (a− b)n+1 +
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · (a− b)ρ(x,1̂)−1 · (a− b)

+ (2− ζ̄(0̂, ∗)) · (a− b)n · b

+
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · (2− ζ̄(x, ∗)) · (a− b)ρ(x,∗)−1 · (a− b) · b

= (a− b)n · c +
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · (a− b)ρ(x,1̂)−1 · c

− ζ̄(0̂, ∗) · (a− b)n−1 · (a− b) · b

−
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · ζ̄(x, ∗) · (a− b)ρ(x,∗)−1 · (a− b) · b

= Ψ(Semi(Γ, n)) · c− ζ̄(0̂, ∗) · (a− b)n−1 · d

−
∑

x∈Γ−{0̂}

Ψ([0̂, x]) · b · ζ̄(x, ∗) · (a− b)ρ(x,∗)−1 · d

= Ψ(Semi(Γ, n)) · c−Ψ([0̂, ∗]) · d,

where we used −(a− b) · b = b · c− d in the third step.

11 Inclusion-exclusion for the semisuspension and its cd-index

This section begins with an inclusion-exclusion relation for the nth semisuspension of polytopal
complexes.

Theorem 11.1. Let Γ and ∆ be two polytopal complexes such that their union Γ∪∆ is a polytopal
complex of dimension less than n. Then the following inclusion-exclusion relation holds:

Ψ(Semi(Γ, n)) + Ψ(Semi(∆, n)) = Ψ(Semi(Γ ∩∆, n)) + Ψ(Semi(Γ ∪∆, n)). (11.1)
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Proof. Consider a chain c = {0̂ < x1 < · · · < xi = x < 1̂} in the face poset of Semi(Γ∪∆, n) whose
largest element x belongs to Γ ∪∆. If the element x is in the intersection Γ ∩∆ then this chain is
enumerated twice on both sides of the identity. If the element x lies in Γ but not in Γ ∩ ∆ then
this chain is enumerated once on both sides. Symmetrically, if the element x lies in ∆ but not in
the intersection then the chain is again enumerated once on both sides.

It remains to consider chains c = {0̂ < x1 < · · · < xi = x < ∗ < 1̂} that contain the element ∗.
Again let x be the largest element in the chain contained in the union Γ ∪∆. If x does not belong
to the intersection Γ∩∆ then the chain c is enumerated in one term from each side of (11.1). The
case that remains is when x belongs to the intersection Γ∩∆. Note that the link of x in Γ, ∆, Γ∩∆
and Γ∪∆ are all polytopal complexes and the reduced Euler characteristic of polytopal complexes
behaves as a valuation, that is, χ̃(linkΓ(x)) + χ̃(link∆(x)) = χ̃(linkΓ∩∆(x)) + χ̃(linkΓ∪∆(x)). Hence
we have

ζ̄Γ(x, ∗) + ζ̄∆(x, ∗) = 1 + (−1)ρ(x,∗) · χ̃(linkΓ(x)) + 1 + (−1)ρ(x,∗) · χ̃(link∆(x))

= 1 + (−1)ρ(x,∗) · χ̃(linkΓ∩∆(x)) + 1 + (−1)ρ(x,∗) · χ̃(linkΓ∪∆(x))

= ζ̄Γ∩∆(x, ∗) + ζ̄Γ∪∆(x, ∗),

using equation (10.2). Hence the zeta weight of the chain c satisfies ζ̄Γ(c)+ζ̄∆(c) = ζ̄Γ∩∆(c)+ζ̄Γ∪∆(c)
and thus contributes the same amount to both sides of (11.1).

Corollary 11.2. Let Γ1, . . . ,Γr be r polytopal complexes such that their union has dimension less
than n. Then the following inclusion-exclusion relation holds:

Ψ

(
Semi

(
r⋃
i=1

Γi, n

))
=

∑
∅6=I⊆{1,...,r}

(−1)|I|−1 ·Ψ

(
Semi

(⋂
i∈I

Γi, n

))
.

For a polytopal complex Γ with facets F1, . . . , Fm, define the nerve complex N (Γ) to be the
simplicial complex with vertex set {1, . . . ,m} and the subset I is a face if the intersection

⋂
i∈I Fi

is non-empty. We need the following version of the nerve theorem. A weaker version is due
to Borsuk [11, Theorem 1]. For other versions and references, see Björner’s overview article [8,
Section 4]. The version we state here follows from Björner, Korte and Lovász [9, Theorem 4.5].

Theorem 11.3 (Nerve theorem for polytopal complexes). For a polytopal complex Γ, the complex Γ
and the nerve complex N (Γ) are homotopy equivalent.

We can now generalize Proposition 4.3 in [5]. Recall that Ωn denotes the stratification of an
n-dimensional closed ball into a point, an (n − 1)-dimensional cell and an n-dimensional cell. See
Example 6.15.

Theorem 11.4. Let Γ be a polytopal complex of dimension less than n. Assume that Γ has facets
F1, . . . , Fr. Then the cd-index of the semisuspension Semi(Γ, n) is given by

Ψ(Semi(Γ, n)) = −
∑
F

χ̃(linkΓ(F )) ·Ψ(F ) ·Ψ(Ωn−dim(F )),

where the sum is over all possible intersections F of the facets F1, . . . , Fr.
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Proof. By the inclusion-exclusion Corollary 11.2, we have that

Ψ(Semi(Γ, n)) =
∑

∅6=I⊆{1,...,r}

(−1)|I|−1 ·Ψ

(
Semi

(⋂
i∈I

Fi, n

))

=
∑
F

 ∑
∅6=I⊆{1,...,r}⋂
i∈I Fi=F

(−1)|I|−1

 ·Ψ(Semi(F, n)), (11.2)

where the outer sum is over all possible intersections F of the facets F1, . . . , Fr. We express the
inner sum using the nerve complex of the link. For F a face of Γ let J(F ) be the non-empty index
set J(F ) = {i ∈ I : F ⊆ Fi}. The inner sum of (11.2) is given by∑

∅6=I⊆J(F )⋂
i∈I Fi=F

(−1)|I|−1 =
∑

∅6=I⊆J(F )

(−1)|I|−1 −
∑
I⊆J(F )⋂
i∈I Fi%F

(−1)|I|−1

= 1− χ(N (linkΓ(F )))

= −χ̃(N (linkΓ(F )))

= −χ̃(linkΓ(F )), (11.3)

where in the last step we used that the nerve complex of a polytopal complex is homotopy equivalent
to the original complex and hence they have the same (reduced) Euler characteristic. Finally,
observe that the face poset of Semi(F, n) is given by the Stanley product

F(Semi(F, n)) = F(F ) ∗ F(Ωn−dim(F )). (11.4)

By combining equations (11.2), (11.3) and (11.4), the result follows.

Theorem 11.4 generalizes Proposition 4.3 in [5] which considered the case when F1, . . . , Fr is
the initial line shelling segment of an n-dimensional polytope. Their proof is based on shelling,
whereas the proof we give here for Theorem 11.4 is an application of inclusion-exclusion.

12 The Eulerian relation for the semisuspension

Let Γ be a regular subdivision of an n-dimensional ball Bn such that the interior of the ball is one
of the faces. Let Λ be a regular subdivision of Γ such that the interior of the ball is yet again a
face of Λ. For a face F of Γ we define Λ|F to be the subdivision of F induced by Λ. There are
two extremal cases. When F is the empty set, let Λ|F be the empty subdivision of the empty face.
In this case the semisuspension Semi(Λ|F , n) is the (n − 1)-dimensional sphere and the interior of
the n-dimensional ball. The second extremal case is when F = 1̂, and we let Λ|F and Semi(Λ|F , n)
denote the subdivision Λ of the n-dimensional sphere.

Theorem 12.1. Let Γ be a regular subdivision of the n-ball Bn and let Λ be a regular subdivision
of Γ such that both subdivisions have the interior of the ball as a face. Then the alternating sum of
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cd-indexes of semisuspensions is equal to zero, that is,∑
F∈Γ

(−1)ρ(F,1̂) ·Ψ(Semi(Λ|F , n)) = 0.

Proof. The chains enumerated by the term Ψ(Semi(Λ|F , n)) fall into four cases: (i) the empty chain
{0̂ < 1̂}, (ii) the chain {0̂ < ∗ < 1̂}, (iii) chains containing non-trivial elements from Λ but not
containing ∗, and finally, (iv) chains containing ∗ and non-trivial elements from Λ.

The alternating sum of the weights of the chains of type (i) is given by∑
0̂≤F≤1̂

(−1)ρ(F,1̂) · (a− b)n = 0, (12.1)

since the face poset of any regular subdivision satisfies the classical Eulerian relation. Similarly,
the alternating sum of the weights of the chains of type (ii) is given by

(−1)n+1 ·
(
1 + (−1)n−1

)
· (a− b)n−1 · b +

∑
0̂<F<1̂

(−1)ρ(F,1̂) · (a− b)n−1 · b = 0. (12.2)

Observe that the first term corresponds to F = 0̂ (see Example 6.14) and that there is no contri-
bution from F = 1̂.

Now consider chains of type (iii). Note that there is no contribution from the term F = 0̂.
From the remaining terms we have the contribution∑

0̂<F≤1̂

(−1)ρ(F,1̂) ·
∑

0̂<x<1̂
σ(x)≤F

Ψ([0̂, x]) · b · (a− b)ρ(x,1̂)−1

=
∑

0̂<x<1̂

 ∑
σ(x)≤F≤1̂

(−1)ρ(F,1̂)

 ·Ψ([0̂, x]) · b · (a− b)ρ(x,1̂)−1 = 0, (12.3)

since the inner sum is equal to zero. Here we let σ(x) denote the smallest dimensional face in Γ
containing the face x ∈ Λ.

Finally, consider the chains of type (iv). Here the only contribution is from the terms 0̂ < F < 1̂:∑
0̂<F<1̂

(−1)ρ(F,1̂) ·
∑

0̂<x<1̂
σ(x)≤F

Ψ([0̂, x]) · b · ζ̄(x, ∗) · (a− b)ρ(x,∗)−1 · b

=
∑

0̂<x<1̂

 ∑
σ(x)≤F<1̂

(−1)ρ(F,1̂) · ζ̄(x, ∗)

 ·Ψ([0̂, x]) · b · (a− b)ρ(x,∗)−1 · b = 0. (12.4)

Again we claim that the inner sum is equal to zero. Observe that if we have the strict inequality
σ(x) < F then the face x is on the boundary of F and linkF (x) is contractible, that is, the reduced
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Euler characteristic is 0 and the weighted zeta function is given by ζ̄(x, ∗) = 1. On the other hand
if the equality σ(x) = F holds then the face x is on the interior σ(x) and linkσ(x)(x) is a sphere of

dimension ρ(σ(x))− ρ(x)− 1. Its reduced Euler characteristic is (−1)ρ(σ(x))−ρ(x)−1. Hence we have

ζ̄(x, ∗) = 1 + (−1)ρ(x,∗) · (−1)ρ(σ(x))−ρ(x)−1 = 1 + (−1)ρ(σ(x),1̂) and the inner sum is given by

(−1)ρ(σ(x),1̂) ·
(

1 + (−1)ρ(σ(x),1̂)
)

+
∑

σ(x)<F<1̂

(−1)ρ(F,1̂) =
∑

σ(x)≤F≤1̂

(−1)ρ(F,1̂) = 0.

The Eulerian relation now follows by summing the four identities (12.1), (12.2), (12.3) and (12.4).

13 Merging strata

We now consider the operation of merging three strata and its effect on the cd-index. This is the
geometric analogue of zipping elements in quasi-graded posets.

Theorem 13.1. Let W be a Whitney stratification of a manifold M such that M0 is one of the
strata. Assume that x, y and z are three strata such that dim(x) = dim(y) = dim(z) + 1 and when
replacing the three strata x, y and z with a single stratum w = x ∪ y ∪ z one obtains a Whitney
stratification W ′. Then the cd-index changes according to

Ψ(W ′) = Ψ(W )−Ψ([0̂, z]) · d ·Ψ([x, 1̂]).

Proof. Note that W ′ = W − {x, y, z} ∪ {w}. We begin to show that x, y and z form a zipper in
the face poset of W . Condition (i) in Definition 5.5 follows from the dimension condition in the
statement of the theorem.

Since W ′ is a Whitney stratification, we know that the link of a point p ∈ w is independent of
the choice of p if the point p belongs to x, y or z. Hence the strata z is only covered by the strata x
and y, verifying condition (ii). By similar reasoning condition (iii) follows. Pick a point p in z.
Locally the neighborhood of p in z is Rdim(z) and the neighborhood of p in w is Rdim(z)+1. Thus
the neighborhood of p in x (or y) is a half space. Hence linkx(z) is a point and we conclude that
ζ̄(x, z) = 1 (and ζ̄(y, z) = 1).

Next we verify that the zipped poset is indeed the face poset of the stratification W ′. All we
need to verify is that their weighted zeta functions agree, since they already have the same poset
structure and rank function. Observe that linkv(x) is the same as linkv(w) since x is contained
in w. Hence we have ζ̄W ′(w, v) = ζ̄(x, v).

Next we must show ζ̄W ′(u,w) = ζ̄(u, x) + ζ̄(u, y) − ζ̄(u, z) for all u ∈ P . Here we have several
cases to verify. If the strata u is comparable to x (or y) only, two terms are equal to zero and the
identity holds. If the strata u is less than z (and hence x and y) then the identity follows by the
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principle of inclusion-exclusion for the Euler characteristic. See Lemma 7.2. Finally, if the strata u
is less than x and y, but not z, then ζ̄(u, z) = 0 and the identity follows by the additivity of the
Euler characteristic.

Hence the face poset of W ′ is the result of zipping the face poset of W and the identity follows
from Proposition 5.8.

14 Shelling components for non-pure simplicial complexes

We now turn our attention to computing the cd-index of the nth semisuspension of a (non-pure)
shellable simplicial complex. The first step is to define the cd-index of the simplicial shelling
components.

For i ≤ k let ∆k,i be the simplicial complex consisting of i+1 facets of the k-dimensional simplex.
Define the quasi-graded poset Pn,k,i for 0 ≤ i ≤ k ≤ n to be the face poset of the semisuspension

Pn,k,i = F(Semi(∆k,i, n)).

Define the cd-index of the simplicial shelling component, Φ̌(n, k, i), to be the difference

Φ̌(n, k, i) = Ψ(Pn,k,i)−Ψ(Pn,k,i−1) for 1 ≤ i ≤ k ≤ n,

and Φ̌(n, k, 0) = Ψ(Pn,k,0) for 0 ≤ k ≤ n. See Table 1 for the degree 2 and 3 cases. Observe that

Ψ(Pn,k,i) =

i∑
j=0

Φ̌(n, k, j). (14.1)

The polynomials Φ̌(n, n, i) (the case k = n) were introduced by Stanley [46].

To obtain a recursion for the shelling components, we need the following identity.

Proposition 14.1. For 0 ≤ i ≤ k ≤ n the following identity holds:

Ψ(Pn,k,i ×B1) + Ψ(Pn+1,k+1,0) = Ψ(Pn+1,k+1,i+1) + Ψ(Pn,k,i ∗B2). (14.2)

Proof. View the only facet of ∆k+1,0 to be one of the facets not among the facets of ∆k+1,i. Then
we have the union ∆k+1,i ∪∆k+1,0 = ∆k+1,i+1 and the intersection ∆k+1,i ∩∆k+1,0 = ∆k,i. Hence
by the inclusion-exclusion relation in Theorem 11.1, we have

Ψ(Semi(∆k+1,i, n+1))+Ψ(Semi(∆k+1,0, n+1)) = Ψ(Semi(∆k+1,i+1, n+1))+Ψ(Semi(∆k,i, n+1)).

Or equivalently,

Ψ(Pn+1,k+1,i) + Ψ(Pn+1,k+1,0) = Ψ(Pn+1,k+1,i+1) + Ψ(Pn+1,k,i). (14.3)
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Applying Proposition 10.2 to the last term of (14.3) gives

Ψ(Pn+1,k,i) = Ψ(Pn,k,i) · c−Ψ([0̂, ∗]) · d, (14.4)

where the interval [0̂, ∗] is in the quasi-graded poset Pn,k,i.

Now observe that the quasi-graded poset Pn,k,i×B1 is the face poset of the cone of Semi(∆k,i, n).
This cone has two facets, namely, (1̂, 0̂) and (∗, 1̂), and they share a subfacet (∗, 0̂). Replacing these
three strata with a new strata ∗, we obtain by Theorem 13.1 that

Ψ(Pn,k,i ×B1)−Ψ([0̂, (∗, 0̂)]) · d = Ψ(Semi(∆k+1,i, n+ 1)) = Ψ(Pn+1,k+1,i). (14.5)

Observe that the interval [0̂, (∗, 0̂)] in Pn,k,i ×B1 is identical to the interval [0̂, ∗] in Pn,k,i.

Finally, using Ψ(Pn,k,i × B1) = Ψ(Pn,k,i) · c by Lemma 5.3, adding equations (14.3), (14.4)
and (14.5), and canceling terms yields equation (14.2).

The case n = k in Proposition 14.1 appears in Theorem 8.1 in [19]. Refer to Section 5 for the
definition of the derivation G.

Theorem 14.2. The cd-index of the simplicial shelling components satisfy the recursion

G(Φ̌(n, k, i)) = Φ̌(n+ 1, k + 1, i+ 1)

with the boundary conditions

Φ̌(n, k, 0) = Ψ(Bk) ·Ψ(Ωn−k+1),

for k ≥ 1 and

Φ̌(n, 0, 0) =

{
(c2 − 2d)n/2 if n is even,

(c2 − 2d)(n−1)/2 · c if n is odd.

Proof. Substituting the sum (14.1) into Proposition 14.1 yields

i∑
j=0

Pyr(Φ̌(n, k, j)) + Φ̌(n+ 1, k + 1, 0) =

i+1∑
j=0

Φ̌(n+ 1, k + 1, j) +

i∑
j=0

Φ̌(n, k, j) · c.

Using that Pyr(w) = w · c +G(w) and canceling terms, the identity simplifies to

i∑
j=0

G(Φ̌(n, k, j)) =
i+1∑
j=1

Φ̌(n+ 1, k + 1, j). (14.6)

The recursion follows immediately from (14.6). The boundary condition follows from Pn,k,0 =
Bk ∗ F(Ωn−k+1) when k ≥ 1 and Example 6.14 when k = 0.
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We recall the notion of shellability of non-pure complexes due to Björner and Wachs [10]. Let ∆
be a non-pure simplicial complex, that is, a simplicial complex with its maximal faces not necessarily
all of the same dimension. We say ∆ is non-pure shellable if either dim(∆) = 0 (and hence any
ordering of the facets is a shelling order) or dim(∆) ≥ 1 and there is an ordering F1, . . . , Fm of

the facets, called a shelling order, satisfying
(⋃r−1

j=1 Fj

)
∩ Fr is pure of dimension dim(Fr) − 1 for

r = 2, . . . ,m. We say that a facet Fr has shelling type (k, i) if dim(Fr) + 1 = k and that the

intersection
(⋃r−1

j=1 Fj

)
∩Fr has i facets (of dimension k− 2). Note that the first facet F1 has type

(dim(F1)+1, 0). Furthermore, the only facet of shelling type (k, 0) is the first facet. The h-triangle
entry hk,i is the number of facets of shelling type (k, i). It is a well-known result that the h-triangle
does not depend on the particular shelling order and is equivalent to the f -triangle [10].

Theorem 14.3. Let ∆ be a non-pure shellable simplicial complex of dimension at most n. Then
the cd-index of the semisuspension of ∆ is given by

Ψ(Semi(∆, n)) =
n∑
k=0

k∑
i=0

hk,i · Φ̌(n, k, i).

Proof. The proof is by induction on the number of facets in the complex ∆. If ∆ has one facet, say
of dimension k, then F (Semi(∆, n)) = Bk+1 ∗ Ωn−k = Pn,k,0. Hence Ψ(Semi(∆, n)) = Φ̌(n, k, 0)
and the only non-zero entry in the h-triangle is hk,0 = 1.

Now assume that the result is true for the complex ∆ and we adjoin another facet F of shelling
type (k, i). Note that i ≥ 1. By the inclusion-exclusion Theorem 11.1, we have

Ψ(Semi(∆ ∪ F, n))−Ψ(Semi(∆, n)) = Ψ(Semi(F, n))−Ψ(Semi(∆ ∩ F, n)). (14.7)

Again by inclusion-exclusion, the right-hand side of (14.7) is given by

Ψ(Semi(∆k,i, n))−Ψ(Semi(∆k,i−1, n)) = Ψ(Pn,k,i)−Ψ(Pn,k,i−1) = Φ̌(n, k, i),

completing the induction step.

In the proof of Theorem 14.3 we did not use the fact that F1 through Fm are facets of the
simplicial complex ∆, only that Fr is a facet of F1 ∪ · · · ∪ Fr−1 ∪ Fr. Using this observation, we
prove the following Pascal type relation.

Proposition 14.4. For 0 ≤ i ≤ k < n we have the identity

Φ̌(n, k + 1, i) = Φ̌(n, k, i) + Φ̌(n, k + 1, i+ 1).

Proof. We begin to prove this identity for i = 0. Consider the simplex ∆ having k + 1 vertices.
Directly we have Semi(∆, n) = Φ̌(n, k+ 1, 0). On the other hand we can build this complex in two
steps, first by adding a facet F of cardinality k and next by adding the simplex ∆. The first step
yields Φ̌(n, k, 0) and the second step Φ̌(n, k + 1, 1), proving the identity. The case i > 0 follows by
applying the derivation G i times.
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k\i 0 1 2

0 c2 − 2 · d
1 c2 − d d
2 c2 d 0

k\i 0 1 2 3

0 c3 − 2 · dc
1 c3 − dc− cd dc− cd
2 c3 − cd dc cd
3 c3 + dc dc + cd cd 0

Table 1: The cd-polynomials Φ̌(2, k, i) and Φ̌(3, k, i).

Recalling that the polynomials Φ̌(n, k, 0) are given in Theorem 14.2, we have the following
expression for the cd-polynomial Φ̌(n, k, i).

Corollary 14.5. We have the identity

Φ̌(n, k, i) =

i∑
j=0

(−1)j ·
(
i

j

)
· Φ̌(n, k − j, 0).

15 Concluding remarks

Theorem 6.10 was developed using an ambient smooth manifold M . This result can be developed
without the ambient manifold using abstract stratifications. We decided against this approach since
it is unnecessarily complex and does not give us any advantages.

As was mentioned in the introduction, finding the linear inequalities that hold among the
entries of the cd-index of a Whitney stratified manifold expands the program of determining linear
inequalities for flag vectors of polytopes. Since the coefficients may be negative, one must ask what
should the new minimization inequalities be. Observe that Kalai’s convolution [31] still holds. More
precisely, let M and N be two linear functionals defined on the cd-coefficients of any m-dimensional,
respectively, n-dimensional manifold. If both M and N are non-negative then their convolution is
non-negative on any (m+ n+ 1)-dimensional manifold.

Other inequality questions are: Can Ehrenborg’s lifting technique [15] be extended to stratified
manifolds? Is there an associated Stanley–Reisner ring for the barycentric subdivision of a stratified
space, and if so, what is the right version of the Cohen–Macaulay property [47]? Finally, what non-
linear inequalities hold among the cd-coefficients?

One interpretation of the coefficients of the cd-index is due to Karu [32] who, for each cd-
monomial, gave a sequence of operators on sheaves of vector spaces to show the non-negativity of
the coefficients of the cd-index for Gorenstein* posets [32]. Is there a signed analogue of Karu’s
construction to explain the negative coefficients occurring in the cd-index of quasi-graded posets?

One of the original motivations for this paper was to develop a local cd-index in the spirit
of Stanley’s local h-vector [45] which was used to understand the effect of subdivisions on the h-

37



vector. The main result of Section 12 implies that such a local cd-index would always give the zero
polynomial.

Observe that the shelling components Φ̌(n, k, i) can have negative coefficients. Refer to Table 1.
For which values of n, k and i do we know that they are non-negative? Is there a combinatorial
interpretation of the cd-polynomials Φ̌(n, k, i)? In the case n = k such interpretations are known
in terms of André permutations and Simsun permutations [19, 24, 25].

Given a Whitney stratified space, its face poset with rank function given by dimension and
weighted zeta function involving the Euler characteristic (see Definition 6.9 and Theorem 6.10)
yield an Eulerian quasi-graded poset. Conversely, given an Eulerian quasi-graded poset (P, ρ, ζ̄) can
one construct an associated Whitney stratified space? It is clear that for x ≺ y with ρ(x)+1 = ρ(y)
one must require ζ̄(x, y) to be a positive integer since linky x is a 0-dimensional space consisting of
a collection of one or more points. What other conditions on an Eulerian quasi-graded poset are
necessary so that it is the face poset of a Whitney stratified space?

As always when the ab-index is defined one also has the companion quasisymmetric function.
This quasisymmetric function can be defined by the (almost) isomorphism γ in [21, Section 3].
More directly, for a chain c = {0̂ = x0 < x1 < · · · < xk = 1̂}, define the composition

ρ(c) = (ρ(x0, x1), ρ(x1, x2), . . . , ρ(xk−1, xk)).

Then the quasisymmetric function of a quasi-graded poset (P, ρ, ζ̄) is given by

F (P, ρ, ζ̄) =
∑
c

ζ̄(c) ·Mρ(c),

where M is the monomial quasisymmetric function. It is straightforward to observe that F can be
viewed as a Hopf algebra morphism as follows.

Theorem 15.1. The following two identities hold for the quasisymmetric function of a quasi-graded
poset:

∆(F (P, ρ, ζ̄)) =
∑

0̂≤x≤1̂

F ([0̂, x], ρ, ζ̄)⊗ F ([x, 1̂], ρ, ζ̄),

F (P ×Q, ρP×Q, ζ̄P×Q) = F (P, ρP , ζ̄P ) · F (Q, ρQ, ζ̄Q).

See [1] for results on generalized Dehn–Sommerville relations in the setting of combinatorial
Hopf algebras.
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