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Abstract

We investigate a special class of polytopes, the zonotopes, and
show that their flag f -vectors satisfy only the affine relations fulfilled
by flag f -vectors of all polytopes. In addition, we determine the
lattice spanned by flag f -vectors of zonotopes. By duality, these
results apply as well to the flag f -vectors of central arrangements of
hyperplanes.

1 Introduction

The flag f -vector of a convex polytope is an enumerative invariant of its
lattice of faces, containing more information than the usual f -vector. While
the latter counts the numbers of faces in each dimension, the former counts
the numbers of chains (flags) having any possible set of dimensions.

The Euler relation is the only affine relation satisfied by f -vectors of
all polytopes. For simplicial (or simple) d-polytopes, there are bd−1

2 c ad-
ditional relations, called the Dehn-Sommerville equations, which provide a
complete description of the affine space generated by all such f -vectors [10].
The information contained in the f -vector of a simplicial polytope is nicely
summarized in the form of the h-vector [18].

In the case of the flag f -vector, there is a large set of equations that are
satisfied for all polytopes. The corresponding affine space has dimension
given by the Fibonacci sequence [1]. The cd-index provides an efficient way
to summarize this information [2].

In the case of simplicial, simple and cubical polytopes, the flag f -vector
reduces directly to the f -vector. In this paper we investigate another spe-
cial class of polytopes, the zonotopes, and show for these that there is no
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reduction whatsoever; that is, we show that the flag f -vectors of zonotopes
satisfy only the affine relations satisfied by flag f -vectors of all polytopes.
This strengthens a result of Liu [14, Theorem 4.7.1]. Zonotopes are of par-
ticular interest in the study of hyperplane arrangements (see [20]), to which
they are dual. A direct consequence of our result is that the cd-index of a
central hyperplane arrangement is the most efficient encoding of the affine
information of its flag f -vector.

We define the basic terminology used throughout this paper. For a
convex d-dimensional polytope Q, and for a subset S ⊆ {0, . . . , d − 1}, we
denote by fS the number of chains of faces (flags) in Q, F1 ⊂ · · · ⊂ Fk,
with S = {dimF1, . . . ,dimFk}. The vector consisting of all the numbers
fS , S ⊆ {0, . . . , d − 1}, is called the flag f-vector of Q. The affine span of
the flag f -vectors of all polytopes (more generally, of all Eulerian posets) is
described by a system of linear equations, known as the generalized Dehn-
Sommerville equations [1].

For any S ⊆ {0, . . . , d − 1}, we set hS =
∑
T⊆S(−1)|SrT |fT . Define a

polynomial in the non-commuting variables a and b, called the ab-index,
by

Ψ(Q) =
∑
S

hS · uS ,

where uS = z0 · · · zd−1, zi = b if i ∈ S and zi = a if i /∈ S. An implicit
encoding of the generalized Dehn-Sommerville equations is given by the
fact that Ψ(Q) is always a polynomial in the variables c = a + b and
d = a · b + b · a. We call the polynomial the cd-index of Q.

As an example, the cd-index of a polygon Q is given by

Ψ(Q) = c2 + (f0 − 2) · d (1.1)

and the cd-index of a 3-dimensional polytope Q is given by

Ψ(Q) = c3 + (f0 − 2) · dc + (f2 − 2) · cd. (1.2)

In Section 2, we discuss the operations of taking pyramids and prisms,
and we use them to give a direct proof that the flag f -vectors of all polytopes
span the linear space determined by the generalized Dehn-Sommerville
equations. We next discuss zonotopes and three operations on them –
projection, Minkowski sum with a line segment and prism. We use the
coalgebra techniques of [7] to determine their effect on the cd-index. In
Section 4, we show the cd-index of an n-fold iterated Minkowski sum is a
polynomial function of n, and we use this in Section 5 to show that the
flag f -vectors of zonotopes also span the space of all flag f -vectors. This
result is extended in Section 6 by determining the lattice spanned by the
cd-indices of all zonotopes. It is the ring of all integral polynomials in c
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and 2d. In terms of flag f -vectors, this is equivalent to saying that fS is
divisible by 2|S|. Some observations and concluding remarks are indicated
in the final section.

The authors thank Gábor Hetyei and two referees for making useful
comments on an earlier version of this paper.

2 Polytopes span

For a field k of characteristic 0, let F be the polynomial algebra in non-
commuting variables c and d over the field k, that is, F = k〈c,d〉. (In
fact, everything we do here works in any characteristic other than 2.) If we
set the degree of c to 1 and the degree of d to 2, we define Fd to be all
polynomials in F that are homogeneous of degree d.

Recall that a derivation f on an algebra A is a linear map satisfying the
product rule f(x · y) = f(x) · y + x · f(y), and that f(1) = 0. Observe that
it is enough to determine how the derivation acts on a set of generators,
and hence we may describe a derivation on F by giving its value on the
elements c and d. Define two derivations D and G on F by D(c) = 2 · d,
D(d) = c · d + d · c, G(c) = d, and G(d) = c · d. Observe that both
these derivations increase the degree by 1, that is, they are maps from Fd
to Fd+1.

For a polytope Q we denote the pyramid over Q by Pyr(Q). Likewise,
denote the prism over Q by Pri(Q). We similarly denote two linear maps
Pyr,Pri : F → F , by

Pyr(w) = w · c +G(w)

and
Pri(w) = w · c +D(w).

The following results are proved by in [7] using coalgebra techniques (see [7,
Theorems 4.4 and 5.2]).

Proposition 2.1 For a polytope Q we have that

Ψ(Pyr(Q)) = Pyr(Ψ(Q)),
Ψ(Pri(Q)) = Pri(Ψ(Q)).

Lemma 2.2 The linear span of the two sets Pyr(Fd) and Pri(Fd) is the
linear space Fd+1.

Proof: Define a third derivation G′ on the algebra F by G′(c) = d and
G′(d) = d · c. It follows that w · c + G(w) = c · w + G′(w) for all w ∈ F
(see [7, Lemma 5.1]).
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Observe that Pri(w) − Pyr(w) = D(w) − G(w) = G′(w). Thus the
statement of the lemma is equivalent to that Pyr(Fd) and G′(Fd) span the
space Fd+1. Let V = Pyr(Fd) +G′(Fd).

Let w be an element in Fd. Then we have that c · w = w · c +G(w)−
G′(w) = Pyr(w)−G′(w). Hence c · w belongs to V .

Let v be in Fd−1. Then we have that G′(c · v) = d · v+ c ·G′(v). Since
c ·G′(v) belongs to V by the previous paragraph and G′(c · v) also belongs
to V , we have d · v ∈ V .

Since a monomial in Fd+1 begins either with a c or a d, we conclude
V = Fd+1. �

From Lemma 2.2, we conclude directly the basic result that the linear
span of all flag f -vectors has dimension given by the Fibonacci numbers [1].

Theorem 2.3 Beginning with a point one can produce, by repeated use of
the operations Pyr and Pri, a set of polytopes whose cd-indices span F .

We note that this approach does not identify a specific basis, as was
done in [1] and [12]. We end this section with a few useful facts.

Lemma 2.4 The two linear maps Pri and Pyr are injective. The linear
map G has kernel generated by 1, and the linear map D has kernel generated
by the elements of the form (c2 − 2 · d)j, j ≥ 1.

Proof: Let F (i)
d be the linear span of all monomials of degree d containing

i d’s. Define two derivations D0 and D1 by: D0(c) = 0, D0(d) = cd + dc,
D1(c) = 2 · d, and D1(d) = 0. Define two linear maps Pri0 and Pri1 by:
Pri0(v) = D0(v)+v ·c and Pri1(v) = D1(v). We have that Pri = Pri0+Pri1,
and Prij is a linear map from F (i)

d to F (i+j)
d+1 .

Define a linear map φ : F (i)
d → k[x0, . . . , xi] by

φ(cn0dcn1d · · ·dcni) = xn0
0 xn1

1 · · ·x
ni
i .

This map takes the linear space F (i)
d isomorphically onto the linear space

of homogeneous polynomials of degree d − 2 · i in the variables x0, . . . , xi.
Moreover, we have

φ(Pri0(w)) = (x0 + 2 · x1 + · · ·+ 2 · xi) · φ(w).

Since the ring of polynomials is an integral domain, we have (x0 + 2 · x1 +
· · ·+ 2 · xi) is not a zero divisor. Hence Pri0 : F (i)

d −→ F
(i)
d+1 is an injective

map. The linear map Pri corresponds to a block matrix B, where the
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row labels of the block Bi,j correspond to monomials having i d’s and the
column labels correspond to monomials having j d’s. The blocks on the
diagonal of B are described by Pri0 and the blocks below the diagonal are
equal to zero. We thus conclude Pri is also injective.

The proof is similar for the linear map Pyr. The only difference is
that we obtain another polynomial of degree 1, namely the polynomial
x0 + · · ·+ xi.

For the two linear maps D and G we need to modify the argument.
For D we get the polynomial x0 + 2x1 + · · · + 2xi−1 + xi and for G we
get x0 + · · ·+ xi−1. We can now obtain that the two linear maps D0, G0 :
F (i)
d −→ F (i)

d+1 are injective when i ≥ 1, while when i = 0 they are the

zero maps. Since dim(F (0)
d ) = 1, the dimensions of the kernels of the linear

maps D,G : Fd −→ Fd+1 are each at most 1.
For d ≥ 1 it is easy to see that G restricted to F (0)

d ⊕ F (1)
d is an

injective map. Thus G can still be divided into blocks so that the blocks
on the main diagonal are injective. Hence we conclude that for d ≥ 1 the
map G : Fd −→ Fd+1 is injective, that is, the kernel of G is generated by
the polynomial 1.

When d is odd one can similarly obtain that D restricted to F (0)
d ⊕F

(1)
d

is an injective map. Hence D : Fd −→ Fd+1 is an injective map for d odd.
Finally, when d is even it is easy to see that D

(
(c2 − 2 · d)d/2

)
= 0. Hence

the kernel of D is generated by elements of the form (c2 − 2 · d)j . �

Corollary 2.5 For all non-negative integers k we have that Dk(c) is non-
zero.

Proof: The proof is by induction on k. It follows directly for k = 0
and k = 1. Assume for k ≥ 1 that Dk(c) is non-zero. Observe that the
coefficient of ck+1 in Dk(c) is zero. Hence Dk(c) is not a scalar multiple of
(c2− 2 ·d)j and so Dk(c) does not belong to the kernel of D. We conclude
that Dk+1(c) is non-zero. �

3 Zonotopes

The Minkowski sum of two subsets X and Y of Rd is defined as

X + Y = {x + y ∈ Rd : x ∈ X,y ∈ Y }.

Notably, the Minkowski sum of two convex polytopes is another convex
polytope. For a vector x we denote the set {λ · x : 0 ≤ λ ≤ 1} by [0,x].
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We denote by aff(X) the affine span of X, that is, the intersection of all
affine subspaces containing the set X.

We say that the nonzero vector x ∈ aff(Q) lies in general position with
respect to the convex polytope Q if the line {λ · x + u ∈ Rd : λ ∈ R}
intersects the boundary of the polytope Q in at most two points for all
u ∈ Rd. Alternatively, x ∈ aff(Q) is in general position if x is parallel to
no proper face of Q.

From [7, Prop. 6.3] we have the following result. Let Q be a d-
dimensional convex polytope and x a nonzero vector that lies in general
position with respect to the polytope Q. Let H be a hyperplane orthogonal
to the vector x, and let Proj(Q) be the orthogonal projection of Q onto
the hyperplane H. Observe that Proj(Q) is a (d − 1)-dimensional convex
polytope.

Proposition 3.1 The cd-index of the Minkowski sum of Q and [0,x] is
given by

Ψ(Q+ [0,x]) = Ψ(Q) +D(Ψ(Proj(Q))).

A zonotope is the Minkowski sum of line segments. That is, if
x1, . . . ,xn ∈ Rd, then the zonotope they generate is the Minkowski sum

Z = [0,x1] + · · ·+ [0,xn].

A (central) hyperplane arrangement is a finite collection H of linear hy-
perplanes in Rd. An arrangement is called essential if the intersection of
all its hyperplanes is the origin. An arrangement H induces a subdivision
of Rd into relatively open cells whose closures are ordered by inclusion.
The resulting poset is a lattice, called the face lattice of H. An arrange-
ment H ⊂ Rd has a natural flag f -vector with components fS(H), where
S ⊆ {1, . . . , d}. The face lattice of Z is anti-isomorphic to that of the
central arrangement H of the n hyperplanes with normals x1, . . . ,xn [5,
Prop. 2.2.2]. If Z is d-dimensional, then its flag f -vector and that of
its dual hyperplane arrangement are related by fS(Z) = fd−S(H), where
S = {i1, . . . , ik} ⊆ {0, . . . , d− 1} and d− S = {d− ik, . . . , d− i1}.

Two important and useful facts about the combinatorial behavior of
zonotopes are the following:

1. The face lattice of Z is determined by the oriented matroid of the
point configuration {x1, . . . ,xn} [5, Prop. 2.2.2], and

2. The flag f -vector of Z is determined by the matroid of the configura-
tion {x1, . . . ,xn} [5, Cor. 4.6.3].
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Since we are only interested here in invariants derivable from the flag f -
vector, we will consider two zonotopes to be equal if they have the same
underlying matroid. In this case it will be important, when defining oper-
ations on zonotopes, to show that they only depend on their matroids.

For a zonotope Z we note that the combinatorial type of the prism over
Z can be realized as the zonotope Pri(Z) = Z + [0,x] for any x /∈ aff(Z).
At the level of matroids, this involves adding a new element independent
of all the original ones, that is, forming a free extension of one higher rank.

We define a zonotope M(Z) by

M(Z) = Z + [0,x],

where x lies in general position with respect to Z. While the combinatorial
type of M(Z) depends on the choice of x, its matroid is well-defined. This
follows since the underlying matroid of M(Z) is always a free extension (of
the same rank) of the matroid of Z, that is, an extension such that x lies
on no proper subspace spanned by the generators x1, . . . ,xn.

Finally, we define the zonotope π(Z) to be the projection of M(Z) along
the direction x, that is, onto the hyperplane orthogonal to x. Observe that
π(Z) is the projection Proj(Z) in a general direction. The matroid of the
zonotope π(Z) is well-defined, since it is obtained by contracting x in the
matroid of M(Z).

Directly as a corollary of Proposition 3.1 we have

Corollary 3.2 For a zonotope Z we have

Ψ(M(Z))−Ψ(Z) = D(Ψ(π(Z))).

The operations Pri, M , and π were used by Liu [14] to give a lower
bound on the dimension of the span of the flag f -vectors of zonotopes. The
relationship between these operations is given by the following lemma. The
second relation was first observed by Liu in [14, Theorem 4.2.7].

Lemma 3.3 For a zonotope Z we have, up to matroid,

π(M(Z)) = M(π(Z))

and
π(Pri(Z)) = M(Z).
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Proof: In each pair we check that the underlying matroids are the same.
For π(M(Z)) one makes a free extension of Z by x and again by y

(both in aff(Z)), then contracting y. The image of x under this contraction
is still free with respect to the images of x1, . . . ,xn, so the resulting matroid
is the same as that of M(π(Z)).

For π(Pri(Z)) the description is the same, except now neither x nor
y is in aff(Z). In this case, the images of x1, . . . ,xn will have the same
matroid as M(Z). �

4 Polynomial functions

In this section we define polynomial functions and derive some of their
properties. These functions play a role in the proof of our main theorem.
Let V and W be vector spaces over the field k.

Definition 4.1 A function f : N −→ V is called a polynomial function of
degree d if it can be written in the form

f(n) = vd ·
(
n

d

)
+ vd−1 ·

(
n

d− 1

)
+ · · ·+ v0 ·

(
n

0

)
,

where v0, . . . ,vd ∈ V and vd 6= 0. We call vd the leading coefficient.

Observe that
(
n
d

)
is defined by the Pascal relations in any character-

istic. We define the difference operator ∆ by ∆f(n) = f(n + 1) − f(n).
The following proposition contains the essential results we will need about
polynomial functions.

Proposition 4.2 Let f : N −→ V be a polynomial function of degree d.

(i) If φ : V −→W is a linear map then the composition φ◦f : N −→W is
a polynomial function of degree at most d. If φ applied to the leading
coefficient is non-zero then the degree is d.

(ii) The function ∆f(n) is a polynomial function of degree d− 1.

(iii) If g is a function from N to V such that ∆g(n) = f(n) then g is a
polynomial function of degree d + 1 with the same leading coefficient
as f .

(iv) The vector f(0) is in the linear span of f(1), . . . , f(d+ 1).
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Proof: Let f(n) be the polynomial function of degree d

f(n) = vd ·
(
n

d

)
+ vd−1 ·

(
n

d− 1

)
+ · · ·+ v0 ·

(
n

0

)
.

(i) Observe that

(φ ◦ f)(n) = φ(vd) ·
(
n

d

)
+ φ(vd−1) ·

(
n

d− 1

)
+ · · ·+ φ(v0) ·

(
n

0

)
,

which is a polynomial function of degree at most d. When φ(vd) 6= 0 we
have that φ ◦ f is of degree d.

(ii) It is straightforward to obtain

∆f(n) = vd ·
(

n

d− 1

)
+ vd−1 ·

(
n

d− 2

)
+ · · ·+ v1 ·

(
n

0

)
,

which proves (ii).
(iii) By induction on n we have

g(n) = vd ·
(

n

d+ 1

)
+ vd−1 ·

(
n

d

)
+ · · ·+ v0 ·

(
n

1

)
+ g(0),

which is a polynomial function of degree d + 1. The leading coefficient is
vd, which is the leading coefficient of f .

(iv) By property (ii) we know that ∆df(n) is a polynomial function of
degree 0, hence it is a constant. Thus ∆df(0) = ∆df(1). But ∆df(0) is
a linear combination of f(0), . . . , f(d) and ∆df(1) is a linear combination
of f(1), . . . , f(d + 1). The coefficient of f(0) in ∆df(0) is (−1)d, which is
nonzero, and hence the relation ∆df(0) = ∆df(1) gives the desired result.
�

Observe that Proposition 4.2 and its proof are valid in any characteristic
for the field k since (−1)d is never zero. Moreover, it applies to Abelian
groups (Z-modules) as well. This last fact will be used in Section 6.

The main result of this section shows that the cd-index of iterates of
the operation M is a polynomial function.

Theorem 4.3 Let Z be a d-dimensional zonotope. Then the mapping n 7→
Ψ(Mn(Z)) is a polynomial function of degree d − 1 into Fd with leading
coefficient Dd−1(c).

Proof: The proof is by induction on d. The base case is d = 2. Assume
that Z is a 2-dimensional zonotope, that is, Z is a 2k-gon. Then M(Z) is
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a (2k + 2)-gon, and Mn(Z) is a (2k + 2n)-gon. By equation (1.1) we have
the cd-index of Mn(Z) is given by Ψ(Mn(Z)) = c2 + (2k + 2n − 2) · d =
2 · n · d + c2 + (2k − 2) · d. This is a polynomial function of degree 1 in n
with leading coefficient 2 · d = D(c).

Assume that d ≥ 3 and let W = π(Z). Observe that W is a (d − 1)-
dimensional zonotope. Now by Corollary 3.2 and Lemma 3.3 we have

∆(Ψ(Mn(Z))) = Ψ(Mn+1(Z))−Ψ(Mn(Z))
= D(Ψ(Mn(π(Z))))
= D(Ψ(Mn(W ))).

By the induction hypothesis we know that n 7→ Ψ(Mn(W )) is a polynomial
function of degree d− 2 with leading coefficient Dd−2(c). By Corollary 2.5
and by property (i) in Proposition 4.2, we have n 7→ D(Ψ(Mn(W ))) is
polynomial function of degree d − 2 with non-zero leading term Dd−1(c).
Finally, by property (iii) in the same proposition we complete the induction.
�

5 Zonotopes span

Let Gd be the linear span of the cd-indices of zonotopes of dimension d.
Liu proved that dimGd ≥ dimGd−1 + dimGd−3 [14, Theorem 4.7.1]. In this
section we prove that dimGd = dimGd−1 + dimGd−2, that is, Gd equals Fd.

Since zonotopes are polytopes, we know that Gd ⊆ Fd. We first prove
a variation of Lemma 2.2 that substitutes D for Pyr in order to be able to
operate solely with zonotopes.

Lemma 5.1 The linear span of the two sets D(Fd) and Pri(Fd) is the
whole space Fd+1.

Proof: Let V be the subspace of Fd which is spanned by D(Fd) and
Pri(Fd), that is, V = D(Fd) + Pri(Fd).

Let w ∈ Fd. Since w · c = Pri(w) − D(w) ∈ V , we know that every
cd-monomial which ends with a c belongs to Pri(Fd) +D(Fd).

Consider v ∈ Fd−1. We have that D(v · c) = D(v) · c + 2 · v · d, and
hence v · d = 1

2 · (D(v · c) − D(v) · c). We have D(v · c) ∈ V . Moreover
D(v) · c ∈ V by the previous paragraph. Hence v · d ∈ V , and we conclude
that every cd-monomial belongs to V . �

The following result shows that the flag f -vectors of zonotopes made
by the successive application of the operators Pri and M , beginning with
Z = 0, span the space of all flag f -vectors of polytopes.
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Theorem 5.2 The cd-indices of d-dimensional zonotopes linearly span the
space of cd-polynomials of degree d, that is, Gd = Fd.

Proof: The proof is by induction on the dimension d; the case d ≤ 2
is clear. We assume that the theorem holds for d ≥ 2, hence Gd = Fd,
and prove it for d + 1. Assume that {Z1, . . . , ZN} form a spanning set of
zonotopes of dimension d. Since Ψ(Pri(Zi)) = Pri(Ψ(Zi)) we have that
Pri(Fd) ⊆ Gd+1.

By combining Theorem 4.3 and property (iv) in Proposition 4.2, we
know that Ψ(Zi) lies in the linear span of Ψ(M(Zi)), . . . ,Ψ(Md(Zi)).
Hence, we know that

{
M j(Zi) | 1 ≤ i ≤ N, 1 ≤ j ≤ d

}
is a spanning set

of zonotopes. Observe that every zonotope in this spanning set is the
Minkowski sum of a line segment with a d-dimensional zonotope. Hence we
can describe this spanning set as {M(W1), . . . ,M(WN ·d)}.

By Lemma 3.3 and Corollary 3.2 we have

Ψ(M(Pri(Wi)))−Ψ(Pri(Wi)) = D(Ψ(π(Pri(Wi))))
= D(Ψ(M(Wi))).

Since both M(Pri(Wi)) and Pri(Wi) are (d + 1)-dimensional zonotopes,
we have D(Ψ(M(Wi))) ∈ Gd+1. But since {M(Wi)} forms a spanning set
for Fd, we obtain that D(Fd) ⊆ Gd+1. By Lemma 5.1 we obtain that
Gd+1 = Fd+1, which completes the induction. �

Since the face lattice of a central hyperplane arrangement is an Eulerian
poset, it has a cd-index, obtainable from that of its dual zonotope by
reversing each cd-monomial.

Corollary 5.3 The cd-indices of essential hyperplane arrangements in Rd

linearly span the space of cd-polynomials of degree d.

6 The integral span

We turn now to the problem of finding the integral span of flag f -vectors of
zonotopes. This leads to an integral c-2d–index for zonotopes and central
arrangements.

Let R be the ring in the non-commuting variables c and d over the
integers Z, that is, R = Z〈c,d〉. As before let the degree of c be 1 and the
degree of d be 2. Let Rd be all polynomials in R that are homogeneous
of degree d. We view Rd as an Abelian group. Similarly, let T = Z〈c, 2d〉
and let Td = T ∩Rd. For a cd-monomial w, let p(w) be the number of d’s
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that occur in w. A generating set of Td is 2p(w) ·w, where w ranges over all
cd-monomials of degree d.

Observe that Lemma 2.2 and Theorem 2.3 have the following integer
analogues.

Lemma 6.1 The Abelian group Rd+1 is generated by Pyr(Rd) and
Pri(Rd).

Theorem 6.2 The Abelian group Rd is generated by the cd-index of d-
dimensional polytopes.

The goal of this section is to prove the analogous result of Theorem 6.2
for zonotopes. Let Sd be the subgroup of Rd generated by the elements
Ψ(Z), where Z ranges over all d-dimensional zonotopes. We begin by
showing that Td ⊆ Sd. This proof is essentially the same as the proof
of Theorem 5.2. We need the following lemma.

Lemma 6.3 The Abelian group Td+1 is generated by Pri(Td) and D(Td).

The proof differs from the proof of Lemma 5.1 in only one point. We do
not divide by 2; we instead use the relation 2 · v · d = D(v · c) − D(v) · c
and the fact that the monomial v · d contains one more d than v, that is,
p(v · d) = p(v) + 1. We thus have that the generating set of Td+1 lies in the
integral span of Pri(Td) and D(Td).

The results in Section 4 also apply to Abelian groups as well as vec-
tor spaces. Hence the proof of Theorem 5.2 generalizes to a proof of the
following result.

Proposition 6.4 The Abelian group Td is contained in the group Sd.

It remains to show the inclusion in the other direction, that is, Sd ⊆ Td.
For S a subset of {0, 1, . . . , d−1}, we call S sparse if for all i, {i, i+ 1} 6⊆ S
and d−1 6∈ S. Suppose that S has cardinality p. Let w be a cd-monomial of
degree d containing p d’s. We say that w covers the sparse set S if uS appear
in the expansion of w = w(c,d) as an ab-polynomial w = w(a+b,ab+ba).
More explicitly, we can write w = ci0 · d · ci1 · d · · · · d · cip , where ik ≥ 0.
Define j0, . . . , jp−1 by j0 = i0 and jh+1 = jh+2+ih+1. Observe that the hth
d in w covers the positions jh and jh+1. Then w covers the sparse set S if
and only if S is contained in the set {j0, j0 +1, j1, j1 +1, . . . , jp−1, jp−1 +1}.
(Compare this notion with Stanley’s definition of WS [16].)

For a cd-monomial w and a cd-polynomial F (c,d), we denote the
coefficient of w in F (c,d) by [w]F (c,d).
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Definition 6.5 For a d-dimensional polytope Q and a sparse subset S of
{0, 1, . . . , d− 1}, define kS by

kS =
∑
w

[w]Ψ(Q),

where the sum ranges over all cd-monomials w of degree d that cover S
and contain exactly |S| d’s.

We call the vector (kS), where S ranges over all sparse subsets, the flag
k-vector. As an example, let d = 8 and S = {0, 3, 5}. Then we have

k{0,3,5} = [d3c2]Ψ(Q) + [d2cdc]Ψ(Q) + [dcd2c]Ψ(Q).

As a refinement of Proposition 1.3 in [16] we obtain the following rela-
tion.

Proposition 6.6 The coefficients of the cd-monomials containing p d’s
can be expressed as an integer linear combination of kS’s where S has car-
dinality p. That is, for w containing p d’s we have

[w]Ψ(Q) =
∑
|S|=p

qw,S · kS ,

where the sum ranges over sparse sets S and qw,S are integers.

The proof follows by ordering the sets and the monomials by lexicographic
order. It is then easy to see that the defining relation of kS corresponds to
a lower triangular matrix with 1’s on the main diagonal. Thus this linear
relation is invertible over the integers.

Lemma 6.7 For T a sparse subset of {0, 1, . . . , d− 1} we have that

hT =
∑
U⊆T

kU .

The proof is by expanding the cd-index in terms of a’s and b’s and collecting
terms.

Combining Lemma 6.7 with the relation fS =
∑
T⊆S hT , we obtain

fS =
∑
U⊆S

2|SrU | · kU . (6.1)

By the Principle of Inclusion-Exclusion the inverse of this relation is

kS =
∑
U⊆S

(−1)|SrU | · 2|SrU | · fU . (6.2)
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Lemma 6.8 For a zonotope Z we have that 2|S| divides fS.

Proof: Observe that a zonotope is centrally symmetric and every face of
a zonotope is a zonotope. Hence, every face of the zonotope Z is centrally
symmetric. (Zonotopes are characterized by the central symmetry of all
their faces, in fact, of their 2-dimensional faces. See [5, Proposition 2.2.14].)

We may count fS , where S = {i1 < · · · < ik}, by first choosing a
face Fik of dimension ik, then choosing an ik−1-dimensional face of Fik ,
and so on. But since at each selection the face Fij is centrally symmetric
(including Z), we know that there is an even number of choices of Fij−1 .
By multiplying together all these factors of 2, we obtain 2|S|. �

Lemma 6.9 For a zonotope Z we have that kS ≡ 0 mod 2|S|.

Proof: It is enough to observe that 2|S| divides 2|SrU | · fU . �

By combining Proposition 6.6 and Lemma 6.9 we obtain

Proposition 6.10 The cd-index of a zonotope Z of dimension d belongs
to Td. That is, Sd ⊆ Td.

Proof: It is enough to prove for a zonotope Z and a cd-monomial w that
the coefficient of w in Ψ(Z) is divisible by 2p(w) where p(w) = p is the
number of d’s occurring in w. That is, [w]Ψ(Z) ≡ 0 mod 2p.

Indeed, by Proposition 6.6 and Lemma 6.9 we have

[w]Ψ(Z) =
∑
|S|=p

qw,S · kS ≡ 0 mod 2p,

where S ranges over all sparse subsets of {0, 1, . . . , d−1} having cardinality
p. �

Combining Propositions 6.4 and 6.10 gives us the main result of this
section.

Theorem 6.11 The Abelian group generated by the cd-indices of zono-
topes of dimension d is precisely Td, that is, all integral polynomials of
degree d in the variables c and 2d.

As a direct consequence of this theorem, Proposition 6.6 and equa-
tion (6.2), we get the following.

Corollary 6.12 The lattice spanned by flag f-vectors of all d-zonotopes is
the set of all integral vectors f = {fS} where fS is divisible by 2|S|.
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Since in the relation fS(Z) = fd−S(H) between a d-zonotope Z and its
dual (essential) hyperplane arrangement H the sets S and d − S have the
same cardinality, we obtain the following.

Corollary 6.13 The lattice spanned by flag f-vectors of all essential hy-
perplane arrangements in Rd is the set of all integral vectors f = {fS}
where fS is divisible by 2|S|.

7 Concluding remarks

Our method proves that zonotopes span, but is there a nice basis? We
describe one possible basis, suggested in [14]. To do so, we define two
operations P and B on a zonotope Z, where PZ := Pri(Z) and BZ :=
M(Pri(Z)). Note that both result in a zonotope of one higher dimension.
Now if we write a BP -word of length d, that is, a word of length d made
with the letters B and P , we may view this as a sequence of d operations
performed on the 0-dimensional zonotope 0, and so as a d-dimensional zono-
tope. Liu [14] conjectured that a basis for the flag f -vectors (and hence, the
cd-indices) of all d-dimensional zonotopes could be constructed by forming
all BP -words of length d ending in P and having no two consecutive B’s.
This should be compared to the basis for all polytopes given in [1] which
was made up of similar combinations of pyramid and bipyramid operations.

We have described the lattice spanned by all cd-indices of zonotopes.
The next natural problem is to determine all linear inequalities they must
satisfy. It is known that the cd-index of any polytope must be nonnega-
tive [16]. What more can be said about zonotopes? There is a family of
linear inequalities known to be satisfied by flag f -vectors of zonotopes.

Theorem 7.1 (Varchenko/Liu) If Z is a d-dimensional zonotope and
S = {i1, . . . , ik}, then

fS(Z)
fi1(Z)

<

(
d− i1

i2 − i1, . . . , ik − ik−1, d− ik

)
· 2ik−i1 .

For the case k = 2 this was proved in [19] (see also [5, §4.6]) and
stated in [9]. For this generality a proof is given in [14]. Theorem 7.1
bounds the average number of S r {i1} chains in links of i1-faces of a
d-dimensional zonotope by the number of S r {i1} chains in a (d − i1)-
dimensional crosspolytope (all with the dimensions shifted appropriately).
It is easy to find polytopes for which the inequalities in Theorem 7.1 fail.
For example the cyclic polytope Cd(n) does not satisfy the inequality for
S = {0, 1} when n ≥ 2d+ 1.
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For 3-zonotopes it is enough to consider the pairs (f0, f2). In this case
the convex hull taken over all 3-zonotopes can be completely described as
the cone with apex (8, 6) (corresponding to the 3-cube), and extreme rays
(1, 1) and (2, 1). Along the ray (1, 1) can be found all zonotopes of the form
Mn(Pri(square)), while on the other ray one finds all those of the form
Pri(Mn(square)) (prisms over even polygons). Other than the fact that
only even points appear, the problem of determining which lattice points
in this cone are actually realized by zonotopes (or by oriented matroids)
appears to be a difficult one. See, for example, [10, Chap. 18].

The cd-index of a zonotope does depend only on the underlying ma-
troid, and not on the oriented matroid. This suggests that there is a cd–
index for matroids, in fact, a c-2d–index, independent of whether they are
orientable or not. The authors are currently investigating the cd-index
without reference to orientation.

For polytopes and certain classes of Eulerian posets the flag h-vector
has been given a combinatorial interpretation. We wonder if the flag k-
vector can be also given a combinatorial interpretation. Observe that we
only define kS for sparse sets S. We may extend the flag k-vector to all
sets by inverting the relation given in Lemma 6.7. It is known that the
flag h-vector of a polytope, being the “fine” h-vector of a balanced Cohen-
Macaulay complex, must be the fine f -vector of another balanced simplicial
complex ∆ [18, Thm 4.6]. Thus, in this case, the flag k-vector can be
interpreted as the fine h-vector of this ∆.

By the definition of the flag k-vector, kS ≥ 0 for all sparse S whenever
the cd-index is nonnegative. Is there a larger interesting class of posets
for which the sparse flag k-vector is always nonnegative? For example, in
the case just described this will occur if the complex ∆ is itself Cohen-
Macaulay; here the full flag k-vector will be nonnegative. That the full
flag k-vector is not always nonnegative can be seen by examining the flag
k-vector of a tetrahedron, for which k{0,1} = −4.
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