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The KP | Equation

The KP | equation is a nonlinear dispersive partial differential equation in two
spatial dimensions:
(ue +6uux + Uxx)x = 3uyy (1)
u(0,x,y) = uo(x,y)
that describes nonlinear, long waves of small amplitude with weak dispersion in

the transverse direction. It may be used to model waves in thin films with high
surface tension.
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Results in Literature
0000 000

Theorem 1: Large-Time Asymptotics for the KP |
Theorem 1 (SD, JL, PP)

Suppose that the initial data for the KP | equation lies in Z,, and is small

in specific norms. Let
1 /x y?
a=—[-——=—
12\t 12¢?

o(t7l), a>o,

Then,

u(t,x,y) o @) (t_g) , a~0, (2)

o(t1), a<o.
Here, Z,, and the norms in which u is small will be defined later.

See Theorem 2 for more detailed asymptotics in different

space-time regions.
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Global Well-Posedness for KP | Equation

Molinet, Saut, and Tzvetkov [4] proved the global well-posedness
of the KP | equation for initial data belonging to the function

space:
Z={uelX(R?): |lull; < oo}

with the norm
Jull 7 = ||U||L2(R2)+HUXXXHL2(1R2) + H”yHL2(]R2) + HUX}’HL2(IR2) (3)

+ Ha;luyuu(mz) + Ha;zuyyHB(W)'
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Function Space for the Initial Data

For our large-time asymtptotic analysis, we define
lullz, = Nullzgzs + el iz s + 21,32 (4)
+ ||UXX||L§L§/2 + ||ny||L§L§/2 + ||U><>O<||1_§L§r2

—i—Ha;lu

ezt t 195 uy ezt 1952 uyy 2212

-3 -1 2
+ Hayx u 12021 + |05 u 1212 + Hayax”HLgLﬁfl
+ |0y %u 2121 19y %u 212
where HfHLi,pLi,q = (§§(1+ x2)P(L+ y2)9|F(x, y)|? dy dx) /2
Note that
lullz = [lullz,, (5)

i.e., Zy is continuously embedded in Z.
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Literature Result 1: Leading Asymptotics for KP |

Manakov, Santini and Takhtajan [3] formally derived the leading
asymptotics for the KP | equation using the stationary phase
method as follows: As t — =00,

ot x,y) = — (@) Re (K(E )™ +0(1))  (6)

with small initial data, where

2

r 144('7 —12¢) (7)
with "slow” variables { = x/t and 7 = y/t, and K(&,7) is an
approximation to the solution of a Gelfand-Levitan-Marchenko
integral equation by stationary phase methods.
Note that the leading asymptotic in (6) holds only in the

space-time region
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Literature Result 2: Large-Time Asymptotics for u, of the
KP Equation

Hayashi and Naumkin [2] prove that for small initial data with
d;lug € H” N H>*, the x-derivative of the solution to the KP

equation has an asymptotic expansion of the form

u(t,x,y) =t 1 (Re A(z)V (K, %ﬁx) + o(l))

where A(z) is a "half derivative Airy function”

\/5 — 7o * i(z 3
Alz)= T e /4 /0 /G gz

with ¢ = —1 for the KP | equation and o = +1 for the KP I
equation, and V is an L* function and

Kk = (3t)"Y3\/max(0, —z), z=(3t)"1/3 <x + 4}%)
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Literature Result 3: Large-Time Asymptotics for u, of the
KP | Equation

Harrop-Griffith, Ifrim and Tataru [1] show that the x-derivative of
the solution to the KP | equation satisfies the pointwise bound

ug(£)|| o< et Y2 < £ >71/2
if the initial data has a small norm

[Juo|[x< e <1,

where
[1u(0)1 5= [16(0)|[2+] luxox (0) |72+ y® ux () [72+1| (x2x + y3y Ju(0) |72
and X is a Galilean-invariant space.
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Reconstruction Formula

A solution to the KP | equation is constructed through the Zhou's
IST [5] as

19 50 (K-
u(t,x,y) = —=~ U et (e (TH(k, )+ T~ (k, 1)) (9)
x ul(l,x;y,t) dl dk

where

Solk, 1;8,1) = (1= k)& — (17 = K*)i +4(F — &%)
is the phase function, T=(k, /) are scattering data and u/(/, x;y, t)
is the solution to a nonlocal Riemann-Hilbert problem (RHP).
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Time-Zero Scattering Data and Scattering Solutions

In the direct problem, time-zero scattering data is constructed
through the initial data u(x, y) and scattering solutions

uE(k, X y):

TE(k, 1) = —\/;?H(i(l— k))/e"(’2*k2)’7a*;7i(/— k.17 k) dy (10)
where T and i are the partial Fourier transforms of u and u= in

the x variable, respectively, and ‘ujE is the solution of the equation
ity + o + 2ikpis + u(x, y)up =0
lim u(k,x;y)=1 (11)
x—+oo T
which can be analytically continued to +Im k > 0.
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Integral Equations for u*

ﬁi obey the integral equation

it =V2m(l) + g (i) (12)
where _
E(F)(ly) = — /y IR0 (G4 £) (1) . (13
g, (F)(11y) e (= f)(hy)dny.  (13)
Let

WLk, 1 y) = it (K, 1 y) — v/2mé(])
Then, (12) can be written as an integral equation for ﬁi:
5 = g (V2r8) + g (jih) (14)
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Existence of u* and Small Initial Data

The resolvent operator (/ — giF)~! is bounded from L?L%k to itself
and from Lf’yL:,l to itself such that

o s " 8] 2
L 1215~
_ oty-1 < ! Y=l
H(I 84) HL;"Lf’k = } : NG
n=0

[ ﬁ:
= S
=

I |

[l e
1082 ||M<Z( ) (1)

L .
where |’fHL§LI2,—]_ = ([|1|7Xf(I,y)| dI dy)?. Hence, we require
fillg, < V2, 195t <o (16

With (16), the forward scattering map S : & — T is continuous
from L}y N Lf,L?’fl to L?,
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Nonlocal RHP

The function 1/(k, x; y, t) in the reconstruction formula (9) solves
the nonlocal RHP

w=1+Crp (17)
which is determined by the time-evolved scattering data
T(t, k, 1) = "t PR 7=k )
for u!(-,x;y,t) — 1 € L2(R?).
Here
Cr=CT +CTT, (18)

(TEF) (k) = / et (KIS T (k1) (1) dl (19)

and Cy : L2(R) — L3(IR) denoting the Cauchy projectors.
The existence of a solution to the nonlocal RHP requires

N4l 2 1-¢C
C=—2 <1, il <—— (20)
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Change of Variables

Define
1 "
=35 (e %), (21)

r?=—a,

where r? is defined in (7) with & = x/t and 57 = y/t as before.
For convenience, we will make the following change of variables:

so that

A A
(ko) = (15 + ko 15 +1) (22)
so that the phase function in shifted variables becomes

S(k, 1;a) = 12a(/ — k) + 4(I® — k3) (23)
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Phase Function and Space-Time Regions
The phase function S(k, /; a) in (23) with a = (& — #2/12)/12 has
@ no critical points for a > 0,
@® a single degenerate critical point at (0,0) for a =0,
©® four non-degenerate critical points, (++/—a, +4/—a) for
a<o.

E-2/12=0

Critical points No critical points

E—1n%/12<0
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Reconstruction Formula Revisited

Write
T+ _ T+ n l)
TEk, ) =T <k+12,/+ - (24)
Let
Ak, 1) = i1 = k) (T (k1) + T (k1))
The reconstruction formula can be written as
U(t/ X/Y) = U/OC(t/ X/)’) + unon/oc(t/ X/Y) (25)
where
_ 1 itS(k,l;a)
uloc(t/X/}/) = ;/e A(k, /) dk dl (26)
and
Unonfoc (£, X, ¥) = % /e"ts(k"“’)A(k, n (' (1+ 1’7—2,x;y, t)-1) didk  (27)

l itS(k,;a) ( T+ T— L}II R/
—|—7_[/e (T (k)+T (k,/)) = (/+ 12,X,y,t) dl dk.
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Thm 1 and GWP Its in Literature ST for KP | Equation
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Theorem 2: Large-Time Asymptotics for KP |

Theorem 2 (SD, JL, PP)

Suppose that u € Z,,, and u obeys (20). The following asymptotics hold as t — oco:

0

o(t7l), a>c>0,
o(t*%), t%|a|§ c,
uloc(trxry) t:oo
1 ) ~
: Re (e’(ls"3_”/2) Tt(=r,r) a<—-c<0
1 e—i(16tr+in/2) T+(r, —r)) +o(th),

O(t?), a>c>0,
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Large-Time Decay Regions for the KP | Equation

E—12/12=0

O (t71) decay Rapid decay

&—n%/12<0 E—n%/12>0

Note:
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Local Term: No Critical Points

Suppose that u € Z,, and u obeys (20). Suppose that a > ¢ > 0. Then
Uloc(t/ X,}/) = O(t_l)' (28)

First, using the Green's identity

; ; VS-v : AVS

itS : 1 itS itS

Ado = A — V| —=—5]do|, (29
/Qe 7 (It) (/E)Qe |V5|2 ° /Qe (|VS|2> U) ( )

where Q is a domain in IR? with a piecewise smooth boundary 99, and

VS #£0.
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Local No Critical Points: Proof of Proposition 1 (1/5)

Let
S =S(k,I;a) = 12a(l — k) + 4(1® — k%),
A=, 1) = (= k) (T D+ T (k1))
QF = {(k, 1) : £(/ — k) > 0},
and
Q= {(k 1) € Q% : P+ K? < R?}.
Then

uloc(t/ X, )/) = R!inoo uloc,R(t/ X, y)
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Local No Critical Points: Proof of Proposition 1 (2/5)

where
1 ; VS-v
Uioc R(t, X, ¥) = = ) [/m e A (k, /)|V5|2 ds (30)
{+-}
. VS
_ Sy . [ AF(k, | | k}
/Q??:e v ( (ko) o ¢

For the boundary term, it suffices to consider

VS-v
ItSA:I: k /
J oAt g o

where
v = {(k, 1) : £(/ — k) > 0, I+ k* = R?}.

Samir Donmazov JOINt wor . University of Kentucky




Intro: Thm 1 and GWP Results in Literature \ET ? or tlv KP | Equation

0000000080 000000000000000000

Local No Critical Points: Proof of Proposition 1 (3/5)

Note that

IVS(k,I;a)| ~ (a+ 1% + Kk?) (31)

|AS(K, I; 8)| ~ (a+ P2+ K?)? (32)
and we have the following estimate on the scattering data:

(1 — k) TE(k, )| S 1. (33)
from which, we have
+
1A%, =

with (31),

VS-v
Its e <
LR s ’)yvsP YIS TR

vanish as R — oo, i.e., the boundary terms in (30) vanish.
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Local No Critical Points: Proof of Proposition 1 (4/5)

Let {g,} C CF(IR?). Then the integrals
li(gn) = | e*enlk,I)do (34)

can be integrated by parts N times to show that it is O(t~V). Let

g € LY(R?). Since I+ : g — I+(g) is a continuous map from L}(IR?) to
C, then by the density argument, /+(g) = o(1).

It suffices to show that the amplitudes

) VS VS
Eis e Bl
V'<A |VS|2> - () oea t AV (jgsp)  ©9

belong to L1(IR?).
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Local No Critical Points: Proof of Proposition 1 (5/5)

To show this, we estimate

FE (k)| ‘(I—k)Vfi(k,/)’

VS
‘V(Ai)' IVS2| ~ a+ P+ k2 at 24 k2 (36)
e s IAS| VS-S VS|
2 (osp)| s (ese s e ) e
< |AE|(a+ P+ k%) 2
But we have the other estimates on the scattering data:
T, (I - k)VTE € L2(R?). (38)
It follows that both quantities in (36) and (37) are in L(IR?). O
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Local Term: Nondegenerate Critical Points

Suppose that u € Z,, and u obeys (20). Suppose that a < —c < 0. Let
a= —r% Then

1 _; 3_ ~ ; 3_ ~_
ioe(t,x,y) 5, 2o (€70 AT (—r, 1) 4 10O TAT(r,—r))  (30)

+o(t71)
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Local Nondegenerate Critical Points: Proof of Proposition
2 (1/8)

Recall that critical points are at (£r, £r). Let ¢ € C5° be a cut-off function with
¥(s) =1 for |s|< 3 and ¢(s) = 0 for |s|> 1. Define

tpa(l):w(m('r_’)) +¢<16(Ir+r)).

I =k
o o
()| 0
—t k
(=" | )
o o
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Local Nondegenerate Critical Points: Proof of Proposition
2 (2/8)

Using partition of unity,

Uioc(t, X, ¥) = Uioc,1(t, X, ¥) + Uloc,2(t, X, y) (40)
where
Uoc,1(t, X, y) = (41)
_ :C/eits(k"?"")wa(k)q)a(/)A(k, 1) di dk
and
Uloc,2(t, X, y) (42)
1

= [ &SI~ g AK, 1) dcal

7T
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Local Nondegenerate Critical Points: Proof of Proposition

2 (3/8)

Set

AE = (1= pa(Da(K)il1 = k) (TH+T7),
then similar to the proof of Proposition 1, it follows that

Uoe2(t, %, y) = o(t™1). (43)
Now, write

— oAF =
Ujoc,1 = uloc,l + uloc,l

ter(bxy) = & [ SR )il )Tk, 1
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Local Nondegenerate Critical Points: Proof of Proposition
2 (4/8)

By an extension of Parseval’'s Theorem,

[k Det Ndldk = [ F(~&1,~E2)8(e0, &) dirdls,  (44)
R2 R2
where we set

f(k, /) — eitS(k,I;a),

gk, 1) = iH(I = k)(I = K)pa(K)pa( ) T (K, 1).
With /' = (12¢)3/ and k' = (12t)

f(—&1,—&) =

k scaling

a— fgt)) A.((12Q§ (a+—f§i)), (45)

— Wi

(12t)%

where
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Local Nondegenerate Critical Points: Proof of Proposition
2 (5/8)

We also have
8(61,52) = 5 [ e T ERHED Y (kg (11— KU = K) T (K, D dl k. (47)
Let
A1 22, ) = A (120 (- Q)) w0203 (o4 2)) ge e, (a9
so that

/ A(E1, &2, 3, t)dE dEo. (49)

ub 1 (tx,y) =
loc,1 (12t

We will extract additional t~1/3 decay from the integral in (49) to obtain
the leading asymptotic of u)f_,(t, x,y) using asymptotics of the Airy
function.
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Local Nondegenerate Critical Points: Proof of Proposition
2 (6/8)

Let
2 = (12t)5 (a— %) . nm=(12t)3 <a+ 1%)

be the arguments of the Airy functions in (48).
The leading asymptotic of the Airy function:

: 1 23 @ _7
Ai(—x) s Tt cos (§X2 = Z) +0 (X 4) (50)
If zz < —1 and zp < —1, we can use the asymptotic in (50) for both Airy
functions in (48):

. 1 3 7T _7

Ai(z1) ol ﬁ cos (Str + &1r — Z) + O, (t 6) (51)
) T _1

Ai(z) ol — cos (8tr3 — Cor — Z) + O, (t g) (52)

University of Kentucky
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Local Nondegenerate Critical Points: Proposition 2 (7/8)

Let
E1(t) = 12t(a+ (12t)73),  &(t) = —12t(a+ (12¢)73). (53)
Write
u,'gcll(t,x,y): 1(t) + 1°(¢) (54)
where
27T
0=~ /Ml(t),wz o A1 82,2, 1) 21 (55)

Note: z; < —1 implies ¢; > ¢1(t) and z < —1 implies {2 < &»(t), and
4cos(8trd 4 & r — 1/4) cos<8tr3 — for — 7'(/4) = (56)
(167 71/2) (@ —E)r | gi(EatEa)r
4 e BB | Gi(16itr im[2) g i(E1—Ea)r
Using asymptotics (51) with the identity (56) in (55), we recover the
leading term in (39).
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Local Nondegenerate Critical Points: Proof of Proposition
2 (8/8)

On the other hand, we have the estimate
|a+ehia+edie

’LZ <, 1 (57)
where

861, 82) = o [ & MOy (K0 — IHU — T (k Dl k. (58)
The estimate (57) implies that g € L(IR?) and

[[ 181 el e a2 < (622, (59)
&1>6tr?

H 1861, &2)| dE1 dEs < (6tr%) 3. (60)
Cr<—6tr2

It follows from (59) and (60) that /<(t) in (54):
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Local Term: Degenerate Critical Point

Proposition 3

Suppose that u € Z,,, and u obeys (20). Suppose that t3 |a|< c. Then
_2
upc(t, x,y) = o(t 3). (61)

As in the proof of Proposition 2, let

At 2 = ai (12007 (a=£2) ) i (0207 (a4 2 ) )2, (62
where g € L}(IR?) with

/?(51152) dZ dgé; =0

so that
Uloc(tlxry) = (12 /A 6116213 t)dél d§2 (63)
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Local Degenerate Critical Point: Proof of Proposition 3

(1/1)

Note that
1

Ai ((12t)§ (a _ 121:)) — A ((12t)%a) ~ oz (1) (64)

Thus, by Dominated Convergence Theorem, it follows from (63) that
2
tuoc(t, % y) = 27 [ 8(21,82) Ai ((120)33) dErdia+o(1)  (65)
=o(1)

Ol
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Large-Time Asymptotics of the Nonlocal Term

Suppose that u € Z,, and u obeys (20). Then
t72, a>c>0,
|unon/oc(t/X/.y)|s tigl t%|a‘§ c, (66)
t71, a<—c<o.

Write
unon/oc(tr X, )/) = Unonloc,l(t/ X, Y) + unonloc,2(t/ X, }’) (67)
where
1 . . °
unonloc,l(t/ X/.y) = ; /e’tS(k,I'a)A(k/ l) (”ll (/ + %/X;}’/ t) - 1) dl dk (68)
and
1 7 . ) ~ ~
unon/oc,2(t/ X/Y) = T / eltSO(k,l,g’,,r]) (T+(k1 l) + Tﬁ(k/ l)) (69)

o’ no.
x - (/+§,x,y, t) dl dk.
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Nonlocal RHP Revisited (1/2)

Recall the nonlocal RHP:

p=1+Crp (70)
where
Cr=CT +C.TT, (71)
(TE0)(K) = [ mSEHENTE (e, DF() df (72)
with
So(k, 1:&,m) = (1= K)§ — (P = k) +4(1° — i)
Let
I
Py =W — 1.
Then the nonlocal RHP becomes
uly = Cr(1)+Cr(ply). (73)
Hence, it suffices to consider
(TE1)(k) = /effso("f’;éf'?)ri(k, di (74)
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Nonlocal RHP Revisited (2/2)
Differentiating (70) with respect to x,

o' oy
L~ Corppetity 07 (%) (75)
where
9T~ AT+
Ca/ax(f) = C+Wf+ Cfo (76)
and
+
(a;r ) i/ eSOk EM (1 — )T (k, NF(I)dI  (77)
X
Equation (75) can be written for ay%/ax as
ou!

_ ou'
P = Corpll = Cry iCr ) + G +Cr (Be) ()
Hence, it suffices to consider

(aTi ) (k) = i/ etSOUEM (1 — ) TE(k, ) dl  (79)
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Large-Time Asymptotics of a Solution to the Nonlocal
RHP (1/2)

Suppose that u € Z,,, and u obeys (20). Then, the estimates following asymptotics hold as
t — oo:

t71, a>c>0,

| _1 2
Hy -1 L,?s t73, t3lal<c, (80)
1
t72, a<-—-c<O,
(b
t7l, a>c>0,
9 !
Hl <{t3, ti|al<e, (81)
ox 12
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Large-Time Asymptotics of a Solution to the Nonlocal

RHP (2/2)

Suppose that u € Z,,, and u obeys (20)
t — oo:

1,
IT=@lps {5
t3,
(b
=1
H a7'i _
t—3,

Samir Donmazov

. Then, the estimates following asymptotics hold as

a>c>0,

t3]a|< c, (82)
a<—c<o,

a>c>0

t3lal< ¢, (83)
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