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Parity and Time Reversal Operators

1. Parity

Let

P(N) = {P ∈ O(N)|det(P ) = −1} (1)

be subgroup of O(N) with det = −1, where P 2 = 1 for any P ∈ P , i.e. P † = P−1 = P . Since

P has ±1 eigenvalues let

P0 = diag {1, 1, ..., 1,−1,−1, ...,−1} (2)

be the diagonal form of P with n+ number of +1 and n− number of −1 eigenvalues, where

n+ + n− = N and (1)n+(−1)n− = −1 (i.e. det = −1). Then we can write P in general as

P = RP0R
−1 (3)

where R is N -dimensional rotation matrix having N(N − 1)/2 free parameters.

Using

N(N − 1)/2− n+(n+ − 1)/2− n−(n− − 1) (4)

one can show that P has

N2/4− (1− (−1)N)/8 (5)
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free parameters.

For N = 2,

P =

(
cosφ sinφ
sinφ − cosφ

)
(6)

having one free parameter.

2. Time Reversal

Let

T = UK (7)

where U is an unitary operator and K is c.c. operator with K2 = 1.

We know that

T 2 =

{
1, integer spin
-1, half-integer spin

(8)

PT-Symmetric Hamiltonians

1. Finite-Dimensional Matrix Representation of PT-Symmetric Hamiltoni-
ans

By definition, PT -symmetric Hamiltonians satisfy

[H,PT ] = 0 (9)

Let’s consider T 2 = 1, and take U = 1. Also notice that [T, P ] = 0. Then (9) implies

P0H
∗
0 = H0P0 (10)

where H = RH0R
−1 with H ∈MN(C).

For N = 2, let
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H0 =

(
a1 + ib1 a2 + ib2
a3 + ib3 a4 + ib4

)
, P0 =

(
1 0
0 −1

)
(11)

where ai, bi ∈ < for i = 1, 2, 3, 4

Solving (10) for (11) gives

H0 =

(
a1 ib2
ib3 a4

)
(12)

Let H be symmetric to have orthogonal eigenvectors. Then

H0 =

(
a ib
ib c

)
(13)

for any a, b, c ∈ <.

If (13) is generalized to any N ,

H0 =

(
A iB
iBT C

)
(14)

having the 2×2 block form, where A is a real symmetric n+×n+ matrix, C is a real symmetric

n− × n−, and B is a real n+ × n− matrix.

Notice that H0 in (14) has

N(N + 1)/2 (15)

free parameters. Then in accordance with (3), the number of free parameters in H is equal to

the sum of the number of free parameters in H0 (15) and the number (5) of free parameters in

P , which is

3N2/4 +N/2− (1− (−1)N)/8 (16)

Let’s also find the most general 2×2 PT-symmetric Hamiltonian, which has four free parameters

according to (16). Using the explicit form of the rotation matrix R ∈ SO(2) and H0 in (13), we
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find H as

H =

(
a+ b cosφ− ic sinφ ic cosφ+ b sinφ
ic cosφ+ b sinφ a− b cosφ+ ic sinφ

)
(17)

Note that a, b, c, φ (renamed free parameters) in (17) are different from those used above.

2. Algebraic Properties of PT-Symmetric Hamiltonians
Proposition 1.

Let

H(N) = {H ∈MN(C)|[H,PT ]} (18)

For a fixed element U in H(N), define a function φU : H(N)→ H(N) by φU(H) = UHU−1.

Show that φU is an automorphism of H(N) (inner automorphism induced by U ), i.e. φU ∈

Aut(H(N)) such that Inn(H(N)) = {φU |U ∈ H(N)} where Inn(H(N)) ≤ Aut(H(N)).

Proof: Suppose UHU−1 ∈ H(N). We want to show that φU is isomorphism ofH(N) to itself,

i.e. φU ∈ Aut(H(N)).First, we show that φU is homomorphism. For any H1, H2 ∈ H(N),

φU(H1H2) = UH1H2U
−1 = UH1U

−1UH2U
−1 = φU(H1)φU(H2). Next, we show that φU is

one-to-one. Notice that φU(H1) = φU(H2) ⇒ UH1U
−1 = UH2U

−1 ⇒ U−1(UH1U
−1)U =

U−1(UH2U
−1)U ⇒ H1 = H2. Then we show that φU is onto. We know that U=1HU ∈ H(N)

for every U and H inH(N) sinceH(N) is a group. Now, for every H inH(N), notice that the

image of U−1HU is H , φU(U
−1HU) = U(U−1HU)U−1 = (UU−1)H(UU−1) = eHe = H .

Therefore, φU is an automorphism ofH(N).

Notice that φPT = id, identity map in Aut(H(N)) since φPT (H) = PTH(PT )−1 = H

for every H inH(N) and PT inH(N).
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Proposition 2.

Show that if H ∈ H(N), then Char(H)(E) ∈ <[E], where E are energy eigenvalues of H , i.e.

if H is a PT-symmetric Hamiltonian, then coefficients of its characteristic polynomial are real.

Proof 1: Note that det(H − EI) = det(PTHT−1P−1 − EI) = det(THT−1 − EI). If

we take T in (7) where T−1 = KU−1, we get det(H −EI) = det(H∗ −EI). Thus H and H∗

have the same set of eigenvalues, then H has a real characteristic polynomial. This conclusion

is valid for any choice of linear operators P and U and antilinear operator T .

Proof 2: Note that the characteristic equation of H can written as
∑

n anE
n = 0. We know that

every square matrix satisfies its own characteristic equation (Cayley-Hamilton Theorem), i.e.∑
n anH

n = 0. If [H, κ] = 0 for any antilinear operator κ, then H also obeys
∑

n a
∗
nH

n = 0.

Thus the characteristic polynomial of H is real.

Proposition 3.

Let H1 and H2 be similar matrices in H(N) such that H2 = UH1U
−1 for some inevitable ma-

trix U . Show that H1 and H2 have the same characteristic polynomial.

Proof: The characteristic polynomial ofH2 is det(UH1U
−1−E1I) = det(UH1U

−1−UE1IU
−1) =

det(U(H1−E1I)U
−1) = det(U)det(H1−E1I)det(U

−1) = det(U)det(U−1)det(H1−E1I) =

det(UU−1(H1 − E1I)) = det(H1 − E1I).
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