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1. The equation for Fahrenheit temperature in terms of Centigrade temperature is F =
9
5
C + 32.

a) When is the Fahrenheit temperature equal to 4 times the Centigrade temperature?

Answer: Set up the equation F = 4C and use the known formula to write 9
5
C + 32 =

4C.

Rearrange this as

(4− 9

5
)C = 32 or C = 32

5

20− 9
=

160

11
.

They ask for the value of F , so plug this into the known formula again:

F =
9

5

160

11
+ 32 =

288 + 11 · 32

11
=

640

11
= 58.181818.

b) Can 5 times the Fahrenheit temperature ever be 8 more than 9 times the Centigrade
temperature? ( 5 F = 9 C + 8 ) Why or why not? Answer:No!

If this were true, then we have two equations F = 9
5
C + 32 and 5F = 9C + 8.

The first is equivalent to 5F = 9C + 160 and this is inconsistent with 5F = 9C + 8.

2. A tourist travels from city A with coordinates (0, 0) to city C with coordinates (12, 10).
He must pass through exactly one of the cities B(7, 5) or D(5, 7) along the way.
Assume he travels the straight line between cities.

a) Which city should he pass through (B or D) in order to minimize his trip distance
from A to C?

Answer: We see

d(A, B) + d(B, C) =
√

72 + 52 +
√

(12− 7)2 + (10− 5)2 =
√

74 +
√

50.



Also

d(A, D)+d(D, C) =
√

52 + 72+
√

(12− 5)2 + (10− 7)2 =
√

74+
√

49 + 9 =
√

74+
√

58.

So clearly, the route through B is shorter and he should take that.

b) What is the total minimum length of his trip from A to C?

As calculated, the answer is
√

74 +
√

50 = 15.67.

3. Point A has coordinates (6, 1),and point B has coordinates (0, 8).

a) What is the distance from A to B and what is the slope of the line through A and
B?

distance:
√

(0− 6)2 + (8− 1)2 =
√

36 + 49 =
√

85 = 9.2195.

slope:
8− 1

0− 6
= −7

6
.

b) Find the number y so that the point C with coordinates (9, y) lies in the first
quadrant and triangle ABC is a right triangle with right angle at A. (Note: The
coordinates of A and B were given at the top of the problem.)

We equate the product of the slopes of AB and AC to −1.

Thus:
7

−6

y − 1

3
= −1.

This simplifies to y − 1 = 18
7

or

y = 1 +
18

7
=

25

7
= 3.5714.

4. The cost function for a manufacturer is C = 4 x + 6600 , where x is the number of
units produced per month and C is measured in dollars. His revenue is $11 per unit.

a) Determine the manufacturer’s profit P = m x + b, assuming he can sell all the units
he manufactures.

Answer: We have:

P (x) = R(x)− C(x) = 11x− (4x + 6600) = 7x− 6600.

b) Determine the breakeven value for x and the breakeven cost C at that value for x.

Answer: We solve for P (x) = 0 to get x = 6600
7

.

The corresponding cost is C(x) = 46600
7

+ 6600 = 72600
7

.
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5. In a free market, the supply equation for a supplier of wheat is x = 40 p + 100 where
p is in dollars and x is in bushels. When the price is $1 per bushel the demand is 540
bushels. When the price goes up to $10 per bushel the demand is 0 bushels. Find the
equilibrium price and the number of bushels supplied at the equilibrium price.

Answer: Assume a demand function x = ap + b where we have naturally used the
same letter x for both demand and supply.

Use the given information to get two equations

540 = a(1) + b and 0 = a(10) + b.

Subtracting, we get 540 = −9a or a = −60. The second equation now gives 0 =
−60(10) + b or b = 600. Thus x = −60p + 600.

Now for the equillibrium price, we solve

x = 40p + 100 = −60p + 600 which gives 100p = 500 or p = 5.

That gives x = 40(5) + 100 = 300 as the supply at the equillibrium.

6. For what value of k is the system
x− 2 y + z = 1

2 x + y + 3 z = 0

y + kz = 0

inconsistent (i.e. has no solution)?

Answer: Make an augmented matrix and start turning it into REF.
x y z RHS
1 −2 1 1
2 1 3 0
0 1 k 0

 .

Start with 
x y z RHS
1 −2 1 1
2 1 3 0
0 1 k 0

 R2−2R1−→


x y z RHS
1 −2 1 1
0 5 1 −2
0 1 k 0

 .

Next, do:


x y z RHS
1 −2 1 1
0 5 1 −2
0 1 k 0

 R3− 1
5
R2−→


x y z RHS
1 −2 1 1
0 5 1 −2
0 0 k − 1

5
2
5

 .
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If k − 1
5
6= 0 then we have an REF with three pivots and hence a unique solution.

If k − 1
5

= 0, then the last equation becomes inconsistent. So the answer is k = 1
5
.

7. Given the system of equations


−x + y + 3 z = 0

2 x− y − 4 z = −1

2 x− 2 y − 5 z = 2

a) Write the augmented matrix for the system.

Answer: 
x y z RHS
−1 1 3 0

2 −1 −4 −1
2 −2 −5 2

 .

b) Carry out standard row reductions to convert the augmented matrix to REF(row
echelon form). Be sure to describe your reductions in standard notation. Just giving
the final form will receive no credit.

x y z RHS
−1 1 3 0

2 −1 −4 −1
2 −2 −5 2

 R2+2R1,R3+2R1−→


x y z RHS
−1 1 3 0

0 1 2 −1
0 0 1 2

 .

We are done with REF since the pivot position sequence (p.p.) is now (1, 2, 3).

8. You are given the system of equations


−x + y − 3 z = −3

2 x− y + 5 z = 5

2 x− 2 y + 7 z = 8

Here is the augmented matrix of the system reduced to a row echelon form. 1 0 2 2
0 1 −1 −1
0 0 1 2


Use it to decide if the system has no solutions, 1 solution, or more than 1
solution. Give your reason and describe the solution completely.

The final form can be rewritten as:


x y z RHS
1 0 2 2
0 1 −1 −1
0 0 1 2

 .
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Thus, each x, y, z is a pivot variable and there is no pivot on RHS. Therefore the
equations are consistent and have a unique solution. The solution can be found by
back substitution:

From the third equation: z = 2. From the second equation: y − z = −1 or y =
z − 1 = 1. From the first equation: x + 2z = 2 or x = 2− 2z = −2.

So the complete solution is (x, y, z) = (−2, 1, 2).
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