
Further Lectures on Sets.

Ma 162 Spring 2010

Ma 162 Spring 2010

April 5, 2010

Avinash Sathaye (Ma 162 Spring 2010) Chapter 6. April 5, 2010 1 / 16



Product Sets.
One of the important skills about sets is to be able to count
the number of elements in a set. Quite often, a set is a table
of information.
Given sets A,B we can form the product set

A× B = {(a, b) | a ∈ A, b ∈ B}.
A little thought shows that if A,B are finite, then:

n(A× B) = n(A) · n(B).
For example, we can have a class roll consisting of student
names followed by letters giving the class grade. It will be
convenient to consider the pair (Student Name, Grade) and
call it an assigned grade.
So, if S is the set of all students and G is the set
{A,B,C ,D,E ,W } then the assigned grades in a semester
form the set S ×G.
For a class of 180 students, we get n(S ×G) = 180 · 6 = 1080.Avinash Sathaye (Ma 162 Spring 2010) Chapter 6. April 5, 2010 2 / 16
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Multiple Products.
To handle the whole grade book, we can let N be the set of
integers between 0 and 100 and consider the product set

S × N × N × N × N ×G or S × N 4 ×G

whose members are 6-tuples consisting of student name
followed by a sequence of four exam scores followed by the
final grade.
Naturally, we have an extended product formula

n(A1 × A2 × · · ·Ar) = n(A1) · n(A2) · · · n(Ar).

We now illustrate how we can count the number of elements
in various sets using this formula.
For the same class of 180 students, we get

n(S × N 4 ×G) = 180 · 1004 · 6 = 108, 000, 000, 000.
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Counting Specific Sets.
The above number only gives the possible student records for
a class of 180. The actual class records are, of course only
180, since there is exactly one per student.
We will often need to identify and count specific subsets of
the full product sets in this way.
We cast a die 5 times and note the number on top, which
would be a member of the set S = {1, 2, 3, 4, 5, 6}. If we
record the 5 castings and record the top numbers in order,
then we get members of the product set S5 which has
65 = 7776 elements.
A telephone company assigns nine digit telephone numbers.
How many different phones can it handle?
We can imagine the telephone numbers as members of the set
T 9 where T = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. Thus n(T ) = 10, so
n(T 9) = 109 = 1, 000, 000, 000.
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A homework problem.

Your favorite restaurant, Wally’s Fine Dining, has a dinner
menu with 6 appetizers, 11 entrees, and 8 desserts. A dinner
at Wally’s consists of 1 appetizer, 1 entree, and 1 dessert.
What is the largest number of days could you eat dinner at
Wally’s without ever ordering the exact same meal?
Answer: Imagine a choice card with three boxes marked
appetizer, entree and dessert.
They can be respectively filled with 6, 11, 8 choices and by
multiplication principle, the answer is the product:
(6)(11)(8) = 528.
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Another Homework Problem.

Manjula is extremely fashionable; so she can’t stand wearing
the same outfit twice to one job. She owns 6 shirts, 3 pairs of
pants, and 9 pairs of shoes. If she works 270 days at her
current job, how many more shirts must she get to have
enough so that she will never have to wear the same outfit
twice?
Answer: Suppose she buys x new shirts. Then by
multiplication principle, she would be good for
(6 + x)(3)(9) = 162 + 27x days.
We want this answer to become at least 270. Clearly x = 4
works! (6 + 4)(3)(9) = 270.
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More Telephone Numbers.

Suppose we now require that the first digit of a telephone
number cannot be 0 or 5, then we get a modified count 8 · 108

or 800, 000, 000.
This is typical. We often start restricting the elements of a
product set and count the new subset.
As another example, if besides the beginning 0 or 5, we also
disallow all numbers with the same digit repeated 9-times,
then we get to disallow these 10 numbers
000, 000, 000, 111, 111, 111, · · · , 999, 999, 999.
Is the new answer 800, 000, 000− 10? A little thought will
show that it is actually 800, 000, 000− 8 = 799, 999, 992.
Why? because 000, 000, 000 and 555, 555, 555 are not
available to discard!
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More Restricted Products: Permutations.
A natural question about the telephone numbers can be the
following. Suppose, we wish to count those telephone number
which do not repeat any digits. We could try and calculate
the numbers with some repeated digits and try to subtract
them off.
A little thought will show that this is not practical. There
are too many ways to repeat some digit and it would be hard
to keep track of double counting. A better strategy is the
following: Imagine the permissible numbers as sequences of
digits to be filled in. The very first digit can be any one of
the 10 digits in T . The second can now be one of 9, since the
first digit is now used up! The third has now 8 choices and
continuing, the last (ninth) digit has only two choices left.
Thus, the total count is 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 = 3, 628, 800.
We end up with a much smaller answer!
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A natural question about the telephone numbers can be the
following. Suppose, we wish to count those telephone number
which do not repeat any digits. We could try and calculate
the numbers with some repeated digits and try to subtract
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Permutations Continued.
In general, many problems can be solved by this idea of
filling in slots as we did above. The problem can be
formulated as asking
“in how many ways, can we seat n people in r chairs” or in a
more neutral language, ‘ ‘in how many ways can we arrange
n objects in r positions”?
The general answer is:

P(n, r) = n · (n − 1) · (n − 2) · · · (n − r + 1).
It is instructive to try various values of r and check this out!
It is also clear that r ≤ n for otherwise the number is zero
and there is no solution. After all 4 people cannot fill up 5
chairs!
Using the factorial notation, we can conveniently rewrite this
as P(n, r) = n!

(n−r)! .
This formula should be memorized.
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Circular permutations.

Sometimes the problem is to seat a number of people in a
circle rather than in a row of chairs.
We can ask for the number of ways of arranging some r of n
people at a circular table with r chairs.
The simplest way to do this problem is to note that if the
chairs are in a row, we know the answer P(n, r). Now we
move the chairs in a circle. We note that r different
arrangements in a row can give the same arrangement in a
circle since shifting everybody to the right in the circle does
not give a new arrangement.
So, the simple formula for the circular arrangement is:

P(n, r)
r = n!

(n − r)!r .
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Set Problems.
Given that A,B and C are sets with 94, 67 and 84 members
respectively, answer the following.
If B ⋂A has 45 members, then B ⋃A has ___ members.
Answer: Use the formula
n(B

⋃
A) = n(B) + n(A)− n(B

⋂
A) = 94 + 67− 45 = 116.

If it is further known that C ⋂A has 57 members, then C ⋃A
has ___ members.
Answer: By an identical calculation, we get:
94 + 84− 57 = 121.
If, in addition B − C has 40 members, then C ⋂B has ___
members.
Answer. This time, we note that the sets B − C and C ⋂B
have no common elements and their union is B. So, we get

n(B) = 67 = n(B − C ) + n(C
⋂

B) = 40 + n(C
⋂

B).
Hence n(C ⋂B) = 67− 40 = 27.Avinash Sathaye (Ma 162 Spring 2010) Chapter 6. April 5, 2010 11 / 16
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Some Counting Problems

Finally, if we are given that the intersection of all three sets
A,B, and C has 17 members, then the union of all three sets
has ___ members.
Answer: Using the three set formula:
n(A⋃B ⋃C ) = n(A) + n(B) + n(C )− n(A⋂B)−
n(B ⋂C )− n(C ⋂A) + n(A⋂B ⋂C )
and the above calculations, we get:
n(A⋃B ⋃C ) = 94 + 67 + 84− (45 + 57 + 27) + 17 = 133.
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Combinations.
Let us revisit our formula for permutations. Consider a
problem of selecting a delegation of three students from a
class of 25 students to go to a state convention.
We could try to count the number of possible delegations
thus. Set up three chairs and seat the students randomly in
them one after the other.
As we saw before, the possible number of such selections
appears to be 25 · 24 · 23 = 13, 800. Do remember this as
P(25, 3) = 25!

22! .
But we need to think some more. Once the team is selected,
the order does not matter. A little thought shows that the
same 3-student team can appear in 3! = 6 different ways in
our selections, depending on the order of choosing.
Since we are only interested in the team and not the order,
the correct answer should be 13, 800/6 = 2, 300.
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our selections, depending on the order of choosing.
Since we are only interested in the team and not the order,
the correct answer should be 13, 800/6 = 2, 300.
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More Combinations.
We record the formula for choosing r element sets out of n
objects as:

C (n, r) = n!
(n − r)!r ! = n(n − 1) · · · (n − r + 1)

r(r − 1) · · · (1) .

This is also described as the number of ways of choosing r
objects out of n objects.
We gave two forms of the formula. While the first is easy to
remember, the second is easier to work with especially if
r < (n − r).
Here are some observations and hints.
C (n, r) = C (n, n − r). Just check the first formula.
Alternatively, think thus: Choosing r objects from n is the
same as choosing (n − r) for rejection!
C (n + 1, r) = C (n, r) + c(n, r − 1). Use simple algebraic
manipulation.
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Binomial Theorem.
Binomial Theorem:

(1+x)n = 1+C (n, 1)x +C (n, 2)x2 + · · ·+C (n, r)xr + · · ·+xn.

Idea of the proof. Think of (1 + x)n as product of n terms
(1 + x). To get a term xr out of this product, we simply have
to choose x from r of the terms and 1 from the remaining
(n − r) terms. Hence the term xr must occur C (n, r) times!
Note that the above expression suggests why
C (n, 0) = C (n, n) = 1.
Also, we must clearly have C (n, r) = 0 if r > n, since we
cannot choose r > n objects from among the n objects.
C (n, r) gives the number of ways of splitting an n-element
set into two pieces - an r element set and an (n − r) element
set. We can ask for the number of ways of splitting into three
sets of sizes a, b, (n − a − b).
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Multinomial Theorem.
A similar argument can show that the answer is:

C (n, a, b) = n!
(n − a − b)!a!b! .

There is a corresponding multinomial theorem:
(1 + x + y)n =

∑
C (n, a, b)xayb.

We can thus state the Multinomial Theorem:
(1 + x + y)n =

∑
C (n, a, b)xayb.

For example:
(1+x+y)3 = 1+3 x+3 y+3 x2+6 xy+3 y2+x3+3 x2y+3 xy2+y3.

Verify these terms.
Food for thought! Make suitable definitions and prove the
full Multinomial Theorem.

(1 + x1 + x2 + · · · xr)n =
∑

C (n, a1, a2, · · · , ar)xa1
1 xa2

2 · · · xar
r .
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