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Terminology for Gauss-Jordan Elimination.

We now explain the general Gauss-Jordan Elimination process.
First, some definitions:

let M be a matrix. In application, we expect it to be the
augmented matrix of a system of linear equations, however,
this is not relevant to our definitions.
Assume that the matrix has m rows and n columns, so it is
of type m × n.
A pivot in a row is the first non zero entry in it. The pivot
position is the corresponding column number. The pivot
position sequence (p.p. for short) is the sequence of such
pivot positions in order.
If the row is full of zeros, then we declare that it does not
have a pivot and the pivot position is declared to be ∞.
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Examples.

Examples. Consider:

A =

 2 1 5
0 1 1
0 3 2

 , B =

 0 −1 5
1 3 1
0 0 2

 , C =

 2 1 5
0 5 1
0 0 0

 .
What are the pivots and the pivot positions?
Answer
For A, the p.p. is (1, 2, 2) with pivots being 2, 1, 3
respectively.
For B, the p.p. is (2, 1, 3) with pivots being −1, 1, 2
respectively.
For C , the p.p. is (1, 2,∞) with pivots being 2, 5 respectively.
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Elementary Operations.

A matrix is said to be in Row Echelon Form or REF if its
p.p. is a strictly increasing sequence. For this definition we
shall consider a sequence of ∞ to be a strictly increasing
sequence!
Note: In the above examples, C is in REF, while A,B are
not.
We allow two operations which help us put a matrix in REF.
The first is a row swap. Thus, swapping the first and second
row of B produces

B =

 0 −1 5
1 3 1
0 0 2

 ⇒
 1 3 1
0 −1 5
0 0 2

 p.p. is(1, 2, 3)

The notation for this is R1 ↔ R2.
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Elementary Operations continued.

The second operation consists of adding some multiple of one
row to another.
For the matrix A, the p.p. is (1, 2, 2) and we need to make
the last row pivot position bigger to get REF.
It is easy to see that subtracting 3R2 from R3 does the trick.
We shall write this operation as R3 − 3R2 with the
convention that the first mentioned row is being replaced!
The result is:

A =

 2 1 5
0 1 1
0 3 2

 ⇒
 2 1 5
0 1 1
0 0 −1

 .
The new p.p. is (1, 2, 3) with pivots (2, 1,−1).
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Getting to REF

Now we outline the REF procedure in general. First find the
p.p. of the given matrix.
Use row swaps as needed to get the pivot positions
increasing, but they may not be strictly increasing yet!
For example, the matrix A above had p.p. (1, 2, 2).
If two successive rows have the same pivot position, use the
earlier row to push the pivot position of the latter row as
described below.
In the example of matrix A, the pivot in R2 was 1, while the
pivot in R3 was 3 in the same column. Call this entry 3 to be
the target, which needs to become zero!
If the target is in Ri and pivot in Rj , then the operation can
be described as Ri − target

pivot Rj .
Here it becomes R3 − 3

1R2 or R3 − 3R2.
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RREF or alternate procedure after REF.

We explained how to make an augmented matrix of a system
of linear equations be in REF. We also explained how we can
finish the solution process by a “back substitution” method.
Now we explain an alternate procedure which is essential for
the upcoming Simplex algorithm method.
It also has the advantage that the final solution can be
simply read from its display, without further manipulations.
This form is called Reduced Row Echelon Form or
RREF. The book calls it the row-reduced form.
We shall first illustrate how to reach this RREF and then
give its formal definition.
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RREF example.

To get RREF, we must first get REF. So, we shall start with
the already worked example:

x1 x2 x3 RHS
3 2 0 0
0 −5/3 2 4
0 0 −3/5 49

5


Let us note that the vertical bar separator and the variable
names are for understanding only and not part of calculations
at this stage.
We start with the pivot in the last row, namely, −3

5 . The
operation to perform is to make the pivot 1 by multiplying
the row by a suitable number and then cleaning up all entries
above it to zero.
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RREF Example continued.
The first operation is denoted as −5

3R3 and gives a new
matrix:

x1 x2 x3 RHS
3 2 0 0
0 −5/3 2 4
0 0 −3/5 49

5

 ⇒


x1 x2 x3 RHS
3 2 0 0
0 −5/3 2 4
0 0 1 −49

3


Next we cleanup the entry 2 above the pivot (now made 1)
and this is done with R2 − 2R3.
It yields:

x1 x2 x3 RHS
3 2 0 0
0 −5/3 2 4
0 0 1 −49

3

 ⇒


x1 x2 x3 RHS
3 2 0 0
0 −5/3 0 110

3

0 0 1 −49
3
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Continued Example.
Next, we cleanup the entry 2 in row 1 column 2. We use the
pivot −5/3 so the operation shall be R1− 2

−5/3R2 = R1 + 6
5R2.

Thus we get:
x1 x2 x3 RHS
3 2 0 0
0 −5/3 0 110

3

0 0 1 −49
3

 ⇒


x1 x2 x3 RHS
3 0 0 44
0 −5/3 0 110

3

0 0 1 −49
3


Finally, we make all pivots 1, i.e. we make 1

3R1 and −3
5R2.

This produces:
x1 x2 x3 RHS
3 0 0 44
0 −5/3 0 110

3

0 0 1 −49
3

 ⇒


x1 x2 x3 RHS
1 0 0 44

3

0 1 0 −22
0 0 1 −49

3
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Reading the Answer.

Recall that we have the final form:
x1 x2 x3 RHS
1 0 0 44

3

0 1 0 −22
0 0 1 −49

3


Now we see the main advantage of RREF. The final solution
is clearly visible on the RHS. To read the value of x1, find the
pivot under it and read off the value of RHS, namely 44

3 .
Similarly, x2 = −22, x3 = −49

3 .
Thus, RREF takes care of the back substitution without
writing the equations again.
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How to solve equations in RREF.
We now give an example of a system in RREF with infinitely
many solutions.
Consider an augmented matrix:

x y z w RHS
1 0 2 0 2
0 1 3 0 5
0 0 0 1 3


The pivot variables are x , y,w while z is a non pivot variable.
Thus we solve the three equations in order for x , y,w in terms
of the non pivot (or free) variable z .
Thus, the answer is: x = 2− 2z , y = 5− 3z , w = 3. Here z is
arbitrary.
All we did was to move all the z terms to the RHS and then
read off the solutions as before.
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RREF defined.

An augmented matrix is said to be in RREF if it is in REF
and satisfies the following additional conditions:

1 The pivot in each row is equal to 1.
2 All entries in the pivot column below or above the pivot are

equal to zero. The book describes this as the pivot column
being a unit column, this being a typical column of the
identity matrix.

Of course, it can happen that in RREF, the equations are
inconsistent. This happens when the pivot of some row only
appears on RHS. Such equations have no solutions.
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Some Terminology.

The number of pivots in RREF only depends on the starting
matrix and is called its rank.
For obvious reasons, rank of a matrix is less than or equal to
its number of rows as well as number of columns.
The system either has no solutions (if an inconsistent
equation is present) or a unique solution (if all variables are
pivot variables) or infinitely many, if there is at least one non
pivot variable.
This is the so-called 0− 1−∞ principle of linear algebra.
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Comments.

We can make some general observations based on the above.
Given a system of m equations in n variables, let r be the
rank (i.e. the number of pivots) in the RREF of its
augmented matrix.
r ≤ min{m, n}.
The system has a unique solution iff r = n.
The system is consistent (i.e. has at least one solution) iff no
pivot occurs on the RHS.
The number of free (arbitrary) variables is n − r .
The general solution expresses the pivot variables as suitable
constants plus certain combinations of the non pivot
variables.
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