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Definition of a Matrix.
Here we mainly cover 2.5 in great detail. You should study 2.4
from the examples in the book and on WHS.

A matrix is simply a rectangular array of numbers. If M is a
matrix with m rows and n columns, then we say it is of type
m × n and convey the same meaning by saying M = Mm×n.
Example.

A =


1 2
3 4
0 −3
3 0

 ,B =
[
2 −1 3 0 1

]
,C =


2
1
3
0
1

 .

These have types A = A4×2,B = B1×5,C = C5×1.
The matrix B above is said to be a row matrix and C is
said to be a column matrix for obvious reasons.
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Matrix operations.
Individual entries of a matrix are conveniently denoted by a
subscript notation. Thus for the matrix A above, we have
A22 = 4 and we may find it more convenient to write it as
A(2, 2) = 4.
Note that

A(2, 1) = A(4, 1) = 3 = B(1, 3) = C (3, 1).
Addition. Let P,Q be matrices of the same type. We define
P + Q by the formula

(P + Q)(i, j) = P(i, j) + Q(i, j).
If the types are mismatched, then the sum is undefined.
Scalar Multiplication. Let P be a matrix and c any
number (which is also called a scalar. Then we define cP by
the formula

(cP)(i, j) = cP(i, j).
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More definitions.
Example. Let

P =
[
2 5
1 7

]
and Q =

[
3 1
−1 2

]
.

Let R = P + Q.
Then

R =
[
2 + 3 5 + 1
1− 1 7 + 2

]
=
[
5 6
0 9

]
.

Also, if c = 5 then

cP =
[
5 · 2 5 · 5
5 · 1 5 · 7

]
=
[
10 25
5 35

]
.

Thus:

2P − 3Q =
[

2 · 2− 3 · 3 2 · 5− 3 · 1
2 · 1− 3 · (−1) 2 · 7− 3 · 2

]
=
[
−5 7
5 8

]
.
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Matrix Product.
Given matrices A = Am×n and B = Br×s we define their
product only when n = r . This means that the number of
columns of A matches the number of rows of B.
The definition is:
(AB)(i, j) = A(i, 1)B(1, j)+A(i, 2)B(2, j)+· · ·+A(i, n)C (n, j).
Thus for our earlier examples:

B =
[
2 −1 3 0 1

]
,C =


2
1
3
0
1


we define

BC =
[
2 · 2 + (−1) · (1) + 3 · 3 + 0 · 0 + 1 · 1

]
=
[
13
]
.
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Understanding the Matrix Product.
Thus, if we multiply a row and a column of the same length
we get a 1× 1 matrix and it is often written as a single
number without the square brackets.
This helps us understand the general product thus.
Consider the old

P =
[
2 5
1 7

]
and Q =

[
3 1
−1 2

]
.

Write P =
[

R1
R2

]
where R1,R2 are its two rows

[
2 5

]
and[

1 7
]
.

Similarly, write Q =
[

C1 C2
]
where C1,C2 are its columns[

3
−1

]
,

[
1
2

]
.
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Matrix product explained.

Then we have:

PQ =
[

R1
R2

] [
C1 C2

]
=
[

R1C1 R1C2
R2C1 R2C2

]
.

Thus, we see

PQ =
[
2 · 3 + 5 · (−1) 2 · 1 + 5 · 2
1 · 3 + 7 · (−1) 1 · 1 + 7 · 2

]
=
[

1 12
−4 15

]
.
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Another view of the product.

Here is another useful view of a matrix product. Suppose
that we have a matrix A = Am×n and we multiply it by a
column X = Xn×1. Then we can interpret AX thus:
Write

A =
[

C1 C2 · · · Cn
]
and X =


x1
x2
· · ·
xn

 .

Then
AX = x1C1 + x2C2 + · · ·+ xnCn.
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Calculating the full product.

Thus we can find the same old PQ by multiplying P by each
column of Q and building a matrix from them.
We already know:[

2 5
1 7

] [
3
−1

]
= 3
[
2
1

]
+ (−1)

[
5
7

]
=
[

1
−4

]
.

Similarly:[
2 5
1 7

] [
1
2

]
= 1
[
2
1

]
+ 2
[
5
7

]
=
[
12
15

]
.

This gives another way to get PQ by as a matrix with these
two columns. Both these methods are useful.
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Special Matrices.
A matrix is said to be square, if its type is n × n for some n.
Note that the product AA is defined if and only if A is
square. If A is square, then we use the more natural notation
A2 in place of AA.
More generally Am is defined as AA · · ·A where we have
exactly m terms of a square matrix A.
A matrix with all zero entries is called a zero matrix and we
abuse the notation by simply writing it as 0. It may be
written as 0m×n to indicate its type, but this is rarely done.
Thus the size of this 0 must be guessed by context.
Another matrix which has an abused notation is the identity
or unit matrix. It is denoted by I or In if its type is n × n
matrix.
The identity matrix is defined by the formula:

I (i, j) = 0 if i 6= j and I (i, i) = 1.
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More Special Matrices.

Thus, we have

I2 =
[
1 0
0 1

]
and I3 =

 1 0 0
0 1 0
0 0 1

 .
These behave like 1 in our usual numbers. Thus
AI = A and IA = A for all matrices A with the
understanding that the I is chosen to make the product well
defined.
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Elementary Matrices.

We performed some elementary operations on matrices to
achieve desired forms like REF and RREF. We now show
that these operations can be also explained as simply the
result of multiplying by suitable special matrices called
elementary matrices. We first define them.
Let n > 1 be a chosen integer. Define Ers(c) to be the n × n
matrix defined as follows.
Start with In and write c for its (r , s)-th entry.
Thus if n = 3, then

E21(5) =

 1 0 0
5 1 0
0 0 1

 and E22(5) =

 1 0 0
0 5 0
0 0 1

 .
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Using Elementary Matrices.

Let

A =

 1 1 2
−5 −4 0
0 1 3

 .
Calculate E21(5)A. 1 0 0

5 1 0
0 0 1


 1 1 2
−5 −4 0
0 1 3

 =

 1 1 2
0 1 10
0 1 3

 .
Thus we note that multiplying on the left by E21(5) has
the same effect as our operation R2 + 5R1.
It can be proved that when i 6= j then left multiplying by
Eij(c) has the same effect as Ri + cRj .
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Using Elementary Matrices continued.

What about Eii(c)?
Consider E22(5)A.

 1 0 0
0 5 0
0 0 1


 1 1 2
−5 −4 0
0 1 3

 =

 1 1 2
−25 −20 0

0 1 3

 .
Thus E22(5) has the same effect as 5R2 when we left multiply
by it.
In general Eii(c) has the same effect of cRi .
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The Voodoo Principle.

How should we remember the effect of elementary matrices?
Here is a simple trick.
Say we wish to do the operation R2 + 5R1 on some 3× n
matrix.
Since it has 3 rows, we start with I3 and perform the desired
operation on it. 1 0 0

0 1 0
0 0 1

 R2+5R1−→

 1 0 0
5 1 0
0 0 1

 .
Thus we get E21(5) by doing the operation on I . We can now
left multiply by it to any matrix to get the same row
operation.
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Voodoo Principle continued.

Thus we see:

 1 0 0
5 1 0
0 0 1


 1 2 0 −1
−5 1 1 2
1 1 0 1

 −→
 1 2 0 −1
0 11 1 −3
1 1 0 1

 .
Any desired row operation can be thus performed. For
instance if we want the sum of the three rows of the above
matrix, we can simply multiply it by the sum of the three
rows of I3, i.e.

[
1 1 1

]
. Try this out!

We can perform column operations as well, except we need to
multiply by the modified identity matrices on the right
instead of left.
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Permutation matrices.

The Voodoo principle can also be used to permute rows of a
given matrix. Thus, for any matrix A = A3×n we wish to
swap its second and third rows.
We start with I3 (an identity matrix with the same number of
rows and swap its second and third rows. We get:

P23 =

 1 0 0
0 0 1
0 1 0

 .
Now P23A gives: 1 0 0

0 0 1
0 1 0


 1 1 2
−5 −4 0
0 1 3

 =

 1 1 2
0 1 3
−5 −4 0

 .
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More Voodoo Principle.

In general a permutation matrix is a matrix obtained by
permuting rows of some In. Left multiplication by such a
permutation matrix produces the same row permutation on
any chosen matrix (with n rows).
The same permutation matrix can also be interpreted as a
column permutation. Thus our P23 above can be thought of
as swapping the second and third columns of I3.
Then AP23 will do the same column permutation of A thus: 1 1 2

−5 −4 0
0 1 3


 1 0 0
0 0 1
0 1 0

 =

 1 2 1
−5 0 −4
0 3 1

 .
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