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Inequalities.

We discuss inequalities in two or more variables.
An inequality in one variable looks like 2x + 3 ≤ 5 and is
solved by rearranging it so only the variable appears on the
left hand side: x ≤ 1.
This can also be done graphically thus:
Convert it to an equation and solve it. Thus:

2x + 3 = 5 leads to x = 1.

On the number line, plot the point x = 1 and notice that all
points to the left of it satisfy the inequality and the ones on
the right don’t.
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Examples continued.

The interval (−∞, 1) on the number line looks like:

We verify test values x = 0 and x = 2 to decide that this
interval consists of the solutions and the other part of the
number line does not.
The set of solutions is said to be the feasible set of the
inequalities used.
If we similarly handle another inequality, say 3x + 10 ≥ 4,
then the solution to the associated equation 3x + 10 = 4 is
x = −2 and the interval [−2,∞) is deduced as before.
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Examples continued.

If we try to solve both 2x + 3 ≤ 5 and 3x + 10 ≥ 4 together,
then we get the intersection of the two intervals. But this can
be also explaind thus.
We solve both associated equations plotting their solutions
on the number line.

By using test points on each interval, say x = −3, 0, 2 we pick
up the ones which satisfy all the inequalities. This gives the
feasible set [−2, 1].

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 4 / 17



Examples continued.

If we try to solve both 2x + 3 ≤ 5 and 3x + 10 ≥ 4 together,
then we get the intersection of the two intervals. But this can
be also explaind thus.
We solve both associated equations plotting their solutions
on the number line.

By using test points on each interval, say x = −3, 0, 2 we pick
up the ones which satisfy all the inequalities. This gives the
feasible set [−2, 1].

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 4 / 17



Examples continued.

If we try to solve both 2x + 3 ≤ 5 and 3x + 10 ≥ 4 together,
then we get the intersection of the two intervals. But this can
be also explaind thus.
We solve both associated equations plotting their solutions
on the number line.

By using test points on each interval, say x = −3, 0, 2 we pick
up the ones which satisfy all the inequalities. This gives the
feasible set [−2, 1].

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 4 / 17



Inequalities in two variables.

An inequality like x + 2y ≤ 4 is the next topic. As before, we
first convert it to the equation x + 2y = 4.
We note that this is a line and we know how to plot it. It is
not difficult to see that the plane is split into two halves so
that on one side of the line the inequality is true, while on
the other side it is not! Thus, having plotted x + 2y = 4, we
see that at the origin O(0, 0) the inequality is satisfied.
So, we choose as the feasible set the half plane containing the
origin.

In the picture, only the first quadrant is
shown, since inequalities x ≥ 0, y ≥ 0 are
typically going to be part of our condi-
tions.
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Two variables continued.

If we have more than one inequalities, then we solve them
separately and take the common part. Here is the solution for

x ≥ 0, y ≥ 0, 3x + 4y ≤ 12, x + 2y ≥ 2.

As before, the first two inequalities mean we only draw things
in the first quadrant. Here are the separate regions for the
two inequalities followed by the combined region.

3x + 4y ≤ 12 x + 2y ≥ 2 Combined.
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Summary of The Graphical Method.

On a common graph paper, draw the equations corresponding
to each inequality, and mark the regions indicated by each
inequality using a directional arrow. In our course, the
assumption always puts the region in the first quadrant.
The directional arrow is usually decided by using a test
point. For any inequality at least one of the three points
(0, 0), (1, 0), (0, 1) is always a good point to use.
Take the common part of the plotted regions.
Calculate and list all the corner points. Make sure that the
chosen corner points actually satisfy all ineualities.
Some corner points, or even some whole lines may be lost,
meaning they do not have any points in the region.
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Summary Continued.
The aim of sketching and marking the corner points is to
solve an optimization problem for a linear function on the
resulting region.
Review various examples in the section 3.2 where a practical
situation leads to a set of inequalities and a linear function to
be optimized (i.e. maximized or minimized).
The first step is to clearly name the variables and write down
the inequalities and the function to be optimized.
Then you sketch the region carefully, provided that you have
only two variables. More variables are handled in the next
chapter using the Simplex algorithm.
Then you list all the corner points of the region in order and
evaluate the function at each of the corners. The optimum
value of the function is among the values at the corner
points, with one exception, which we discuss next.
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Further Comments.
If the region is not bounded, then the function may not have
a maximum or a minimum. This can be decided by checking
along the edges of the polygon running off to infinity.
Why does the graphical method work? We give a brief
explanation below.
Parametric lines. Consider a line in the plane, say,
y = 3x + 5. It passes through a point (1, 8). We want to
study the line near this point. So we take a point on this line
whose x-coordinate is 1 + t and notice that its corresponding
y-coordinate shall be y = 3(1 + t) + 5 = 8 + 3t.
In fact, all points of this line can now be described by the
parametric equations:

x = 1 + t, y = 8 + 3t.
This is called the parametric form of the line. It is useful
to be able to calculate such a form near any convenient point!
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Explanation Continued.

Thus for the same line, we could also have started with a
point (−2,−1) and concluded a different parametric form

x = −2 + t, y = −1 + 3t.

Functions on Parametric lines. Consider a function, say
f (x , y) = 3x + 4y. We can analyze how it behaves on our
parametric line by plugging in the parametric form. Thus we
have f (x , y) = 35 + 15t.
This shows that as t increases, so does the function value.
Remember that the parameter t was the change in the
x-coordinate from the point (1, 8). Thus, as we let
x-coordinate increase on our line, the function value increases.
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Explanation continued.

Conclusion. Thus on a line in parametric form, a linear
function increases or decreases with the parameter depending
on the coefficient of the parameter.
For the above line, if we consider a different function, say
g(x , y) = 3x − y + 2, then we see that
g(1 + t, 8 + 3t) = 3(1 + t)− (8 + 3t) + 2 and this simplifies to
g(1 + t, 8 + 3t) = −3.
Thus, a linear function on a line is either constant at all
points or increases in one of the two available directions and
decreases in the opposite direction.
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Why Corners?
Consider the plane region of feasible points that we can plot
for our problem. Where would a linear function become
maximum on such a region? If we take any point in the
interior of our region, then we can draw a little line segment
through the point which is still entirely in the region.
Now if our function is not constant on the line, it would be
increasing in one of the two directions and thus would not be
maximum at our given point. If by luck, we had chosen a line
segment on which the function happens to be constant, we
can choose a different segment through the same point and
make the same argument. We could not have the same
function constant on the second segment as well, for it is
clear that then the function would be identically constant on
the whole plane Think why!! and our problem has a trivial
answer: every point is a maximum point!
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Continued discussion.
Thus, our maximum point has to be on the boundary!
It could be on a boundary segment or at a corner. Note that
if it is on a segment, but not at a corner, then the function
has to be constant on the whole boundary segment (for
otherwise we get a contradiction as above).
This is why it is enough to only check the corner points for
locating a maximum.
This also explains that if we find two maximum points which
are corners, then the line joining them must form a boundary
line, i.e. they must be adjacent points on the boundary
polygon.
If the region is unbounded, then it has boundary lines
running off to infinity and we may find that the maximum
point may not exist in the sense that it has to be a point of
infinity on one such boundary line.
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Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2x + 1.5y subject to
x ≥ 0, y ≥ 0, 3x + 4y ≤ 1000 and 6x + 3y ≤ 1200
We first sketch the lines and find their common point. Then
we decide on the region.
Note that in the picture below, the inequality 3x + 4y ≤ 1000
corresponds to the line BC and the inequality 6x + 3y ≤ 1200
matches the line AB. Their regions both point towards the
origin, since the origin satisfies both of them! The axes are
automatically included with regions pointing towards the first
quadrant.

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 14 / 17



Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2x + 1.5y subject to
x ≥ 0, y ≥ 0, 3x + 4y ≤ 1000 and 6x + 3y ≤ 1200
We first sketch the lines and find their common point. Then
we decide on the region.
Note that in the picture below, the inequality 3x + 4y ≤ 1000
corresponds to the line BC and the inequality 6x + 3y ≤ 1200
matches the line AB. Their regions both point towards the
origin, since the origin satisfies both of them! The axes are
automatically included with regions pointing towards the first
quadrant.

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 14 / 17



Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2x + 1.5y subject to
x ≥ 0, y ≥ 0, 3x + 4y ≤ 1000 and 6x + 3y ≤ 1200
We first sketch the lines and find their common point. Then
we decide on the region.
Note that in the picture below, the inequality 3x + 4y ≤ 1000
corresponds to the line BC and the inequality 6x + 3y ≤ 1200
matches the line AB. Their regions both point towards the
origin, since the origin satisfies both of them! The axes are
automatically included with regions pointing towards the first
quadrant.

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 14 / 17



Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2x + 1.5y subject to
x ≥ 0, y ≥ 0, 3x + 4y ≤ 1000 and 6x + 3y ≤ 1200
We first sketch the lines and find their common point. Then
we decide on the region.
Note that in the picture below, the inequality 3x + 4y ≤ 1000
corresponds to the line BC and the inequality 6x + 3y ≤ 1200
matches the line AB. Their regions both point towards the
origin, since the origin satisfies both of them! The axes are
automatically included with regions pointing towards the first
quadrant.

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 14 / 17



Some Sample Problems.

Problem 3.2.2 by graphing The problem is to maximize
the profit P = 2x + 1.5y subject to
x ≥ 0, y ≥ 0, 3x + 4y ≤ 1000 and 6x + 3y ≤ 1200
We first sketch the lines and find their common point. Then
we decide on the region.
Note that in the picture below, the inequality 3x + 4y ≤ 1000
corresponds to the line BC and the inequality 6x + 3y ≤ 1200
matches the line AB. Their regions both point towards the
origin, since the origin satisfies both of them! The axes are
automatically included with regions pointing towards the first
quadrant.

Avinash Sathaye (Ma 162 Spring 2010) Matrices February 15, 2010 14 / 17



Problem continued.

The corners are
O(0, 0),A(200, 0),B(120, 160),C (0, 250).
The values of 2x + 1.5y at these are
(0, 400, 480, 375).

So the maximum is at B(120, 160) with maximum value 480.
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More Solved Problems.
Consider the problem (similar to B2.8). Suppose that
x + 2y ≤ 2 and y + 5x ≤ 5 together with x ≥ 0, y ≥ 0. The
maximum value of the function 6x + 9y + 2 on the resulting
region occurs x = · · · and y = · · · . The maximum value of
the function is · · · .
We first convert all inequalities to equations and plot after
finding common points. The equations are:

x + 2y = 2, y + 5x = 5, x = 0, y = 0.

The corners are
(1, 0), (8/9, 5/9), (0, 1), (0, 0).
The values of 6x + 9y + 2 at these are
(8, 37/3, 11, 2).

So the maximum is at (8/9, 5/9) and the maximum value is
37/3.
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More Solved Problems.
Consider the problem (similar to B2.9). Suppose that
y ≤ 5x , y ≥ 3x and x/4 + y/5 ≤ 1 together with x ≥ 0, y ≥ 0.
The maximum value of the function x + y on the resulting
region occurs x = · · · and y = · · · . The maximum value of
the function is · · · .
We first convert all inequalities to equations and plot after
finding common points. The equations are:

y = 5x , y = 3x , x/4 + y/5 = 1, x = 0, y = 0.
Note that the last two do not contribute to the picture!

The corners are
(0, 0), (4/5, 4), (20/17, 60/17).
The values of x +y at these are (0, 24/5 =
4.8, 80/17 = 4.7059).

So the maximum is at (4/5, 4) and the maximum value is 4.8.
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