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Standard Optimization Problems.
A standard maximization problem can be conveniently
described in matrix form as follows.
Maximize P = CX subject to AX ≤ B and X ≥ 0.
Here, X is a column of the variables used in the problem, C
is a row vector, so that P = CX is a linear function of X . It
is often similar to a profit function, hence the letter P.
Moreover, in the current course we assume that B ≥ 0. This
insures that the choice X = 0 satisfies all the inequalities, i.e.
is a feasible solution.
Problems can be analyzed without this assumption, but we
won’t try to solve them not in this course.
Here is an example (4.1 Example 3): Take

A =

 2 1 2
2 4 1
1 2 3

 , B =

 14
26
28

 and C =
[
2 2 1

]
.
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Example continued.

We construct a problem table (or tableau) recording all the
coefficients as follows:

x y z Constants
2 1 2 14
2 4 1 26
1 2 3 28
2 2 1 ∗

 or symbolically

 X Constants
A B
C ∗

 .

We are using the title “constants” to match the book
notation. When we write the Simplex tableau, it may be
changed to RHS, since in the tableau, we have equations, not
just inequalities.
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Minimization tableau.

There is a natural dual problem associated with this table
and it has a dual problem table (tableau) as follows:

u v w Constants
2 2 1 2
1 4 2 2
2 1 3 1
14 26 28 ∗

 or symbolically

 Y Constants
A′ C ′
B ′ ∗

 .

The matrices A′,B ′,C ′ are the transposes of A,B,C
respectively. Thus the whole table is simply a transpose.
Our dual problem is described as follows: Minimize
14u + 26v + 28w subject to the conditions

2u+2v+w ≥ 2, u+4v+2w ≥ 2, 2u+v+3w ≥ 1 and u, v,w ≥ 0.
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Duality theorem.

The dual problem is described as a minimization problem as
follows. We let Y be a row vector of variables, equal in
number to the number of rows of A.

Minimize YB subject to YA ≥ C and Y ≥ 0.

Compare this with the inequalities above by taking
Y =

[
u v w

]
.

The reason to write Y as a row rather than a column is
somewhat technical and would be clarified below.
The amazing theorem called the “duality theorem” states
that any solution of the original maximization problem by
the Simplex Algorithm produces a solution to its dual
minimization problem by simply reading the final tableau.
We describe this next.
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The solution from the algorithm.
For our maximization problem above, we record the starting
and the final tableaux and then show how to interpret them.
Starting tableau:

x y z u v w P RHS
2 1 2 1 0 0 0 14
2 4 1 0 1 0 0 26
1 2 3 0 0 1 0 28
−2 −2 −1 0 0 0 1 0

 .

End tableau:
x y z u v w P RHS
1 0 7/6 2/3 −1/6 0 0 5
0 1 −1/3 −1/3 1/3 0 0 4
0 0 5/2 0 −1/2 1 0 15
0 0 2/3 2/3 1/3 0 1 18

 .
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The interpretation of the solution.
Inspection of the final tableau says that the final basis is
x , y,w,P and hence the final basic solution is:

(x , y, z , u, v,w,P) = (5, 4, 0, 0, 0, 15, 18).

The Voodoo Principle also tells us the actual row
transformations that we performed. This information is read
from the 4× 4 matrix under the variables u, v,w,P.
We know that the row transformations can be performed by
multiplying the original 4× 8 matrix by some 4× 4 matrix on
the left. We see that this transformation matrix must be

[
M 0
Y 1

]
=


2/3 −1/6 0 0
−1/3 1/3 0 0

0 −1/2 1 0
2/3 1/3 0 1

 .
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Interpretation continued.
The first part of the last row Y =

[
2/3 1/3 0

]
tells us

that we must have multiplied the first three rows by
2/3, 1/3, 0 respectively and added to the last row.
By looking at the the entries at the foot of the x , y, z
columns, we deduce that[

0 0 2/3
]

= −C + YA

since the original entries were −C =
[
−2 −2 −1

]
and we

added YA to it. Thus YA ≥ C .
By looking at the last entry in the bottom row, we know that
it was 0 and we have added YB to it.
Thus, we have

Y ≥ 0,YB = (2/3) · (14) + (1/3) · (26) + (0) · (28) = 18.

Thus Y is a feasible solution to the dual problem.
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Why do we have the dual problem solved?
Recall that the two Linear Programming Problems (LPP)
are:

Maximize: P = CX s.t. X ≥ 0,AX ≤ B
and

Minimize: Q = YB s.t. Y ≥ 0,YA ≥ C .
Here we name the second function Q instead of C since C is
used for the coefficients of P.
Recall that by a feasible solution to either problem we mean
a solution which satisfies all the inequalities, but may not
give the maximum or minimum.
If X0,Y0 are feasible solutions to the two problems
respectively, then we see that Y0B ≥ Y0AX0 ≥ CX0. Thus
the function value Q0 = Y0B is always bigger than or equal
to the function value P0 = CX0.
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Proof of Duality.
Thus, if X0 and Y0 are feasible solutions to the maximization
and its dual minimization problems respectively and if

P0 = CX0 = Y0B = Q0

then both must be simultaneously the optimum values for the
respective problems, hence the solutions of both the problems
at once!
Thus for our dual problems X0 = (5, 4, 0) and
Y0 = (2/3, 1/3, 0) are the respective solutions of the
maximization and the minimization problems with a common
function value 18.
Warning! Note that the Y values are read at the foot of the
original slack variables, but they are not the values of the
basic solution for the slack variables corresponding to the
maximization problem.
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How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



How to handle optimization problems?
Recall that we always assume all our variables to be non
negative in this course. In the following discussion, we are
only discussing the remaining inequalities; we shall call them
essential inequalities.
If our essential inequalities are of ≤ type with non negative
RHS, then we write it as a maximization problem and solve
with the Simplex algorithm. (If we happen to be minimizing
a function, we can always maximize its negative instead!)
If our essential inequalities are of ≥ type with non negative
RHS, then we write it as a minimization problem and solve
its dual with the Simplex algorithm. Then read off the
solution under the slack columns as shown above. (If we
happen to be maximizing a function, we can always minimize
its negative instead!)
Terminology. The problem we wish to solve is always called
the primal problem and its dual is the dual problem.Avinash Sathaye (Ma 162 Spring 2010) Matrices March 1, 2010 11 / 12



When do we fail?

Recall that if we have a negative entry in the last row of a
simplex tableau but no suitable pivot above because all such
entries are less than or equal to zero, then our maximization
problem is unbounded and has no solution.
For the dual minimization problem, we can claim that there
is no feasible solution. This means that its feasible region is
empty!
We can also have a case where the dual minimization
problem is unbounded, but then the primal maximization
problem shall have no feasible solution! This cannot occur
under our standardness assumption.
You will meet this in higher courses.
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