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1 Introduction

Our knowledge about the mathematical accomplishments in India prior to 300 BCE

is derived primarily from ancient Sanskrit texts, especially the Vedic and the Vedāṅga

treatises. The Vedic literature traditionally refers to the four Saṁhitas (R. g, Sāma,

Yajur and Atharva vedas), Brāhman. as, Āranyakas, and Upanis.ads. Though these

are not technical texts, the number-vocabulary used in these treatises is of paramount

mathematical significance.

In course of time, there arose the necessity of formalising some of the technical

knowledge of the Vedic era. Thus emerged the six Vedāṅgas (literally, limbs of the

Vedas): śiks. ā(phonetics1), chandas (prosody), vyākaran. a (grammar), nirukta (ety-

mology), jyotis.a (astronomy) and kalpa (rituals). Among the mathematical knowl-

edge of the Vedic era that has been recorded in the Vedāṅgas, special mention may

be made of (i) the significant geometrical results associated with the construction

of the Vedic altars which have been presented in a portion of the kalpa known as

the Śulbasūtras,2 (ii) certain rules on computation of metres in the Chandah. -sūtra

of Piṅgalācārya,3 and (iii) a formalised calendrical system with a five-year yuga and

intercalary months that has been described in the Vedāṅga-Jyotis.a.4 They had a

considerable influence on post-Vedāṅga literature.

That the study of mathematics was given an elevated status in India from at least

the later Vedic Age, can be seen from certain passages of Upanis.adic literature.5 In

an episode narrated in the Chāndogya Upanis.ad (7.1.2.4), the sage Sanatkumāra asks

Nārada, a seeker of the supreme Brahmavidyā, to state the disciplines of knowledge

1The science of proper articulation and pronunciation.
2B. Datta (c), The Science of the Śulba; S.N. Sen and A.K. Bag, ed. with English translation

and commentary, Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and Mānava.
3Kedaranatha, ed. Chandah. -sūtra of Piṅgala with the commentary Mr.tasañj̄ıvan̄ı of Halāyudha

Bhat.t.a.
4T.S. Kuppanna Sastry and K.V. Sarma, Vedāṅga Jyotis.a of Lagadha.
5See B. Datta and A.N. Singh, History of Hindu Mathematics, Part I, 3-4; B. Datta (d), “Vedic

Mathematics” in P. Ray and S.N. Sen, eds., The Cultural Heritage of India, Vol. VI, 18.
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he had already studied. In his list, Nārada explicitly mentions naks.atra-vidya (the

science of stars, i.e., astronomy) and rāśi-vidya (the science of numbers, i.e., math-

ematics). Such branches of aparāvidyā, i.e., worldly knowledge, were considered

helpful adjuncts to parāvidyā, i.e., spiritual knowledge.

The importance of mathematics is again emphasised in the Vedāṅga literature.

A verse in Vedāṅga Jyotis.a asserts:6

yathā śikhā mayūrān. āṁ nāgānāṁ man. ayo yathā
tadvadvedāṅgaśāstrān. āṁ gan. itaṁ mūrdhani sthitam

As are the crests on the head of a peacock, as are the gems on the hoods of a snake,
so is gan. ita (mathematics) at the top of the śāstras known as the Vedāṅga.

The Jaina and Buddhist traditions too had a high esteem for the culture of

mathematics.7 One of the four branches of Jaina religious literature is gan. itānuyoga

(exposition of the principles of mathematics). A mastery over saṁkhyāna (the science

of numbers, i.e., arithmetic) and jyotis.a (astronomy) is stated to be one of the

principal attainments of a Jaina priest.8 The Sthānāṅga-sūtra considers mathematics

to be suks.ma (subtle).9 The Sūtrākr. tāṅga-sūtra (c. 300 BCE) regards geometry as

the “lotus of mathematics”.10 As in Vedic tradition, mathematics and astronomy

were relevant for the Jaina ceremonies. In Buddhist literature too, arithmetic, the

science of numbers and calculations (called saṁkhyāna, gan. an. a), is ranked among

the noblest of the arts.11

In this article, we shall highlight some of the significant mathematical and astro-

nomical concepts that occur in Indian treatises prior to 300 BCE.12 We give below

a brief introduction to the contents of the different sections.

The striking feature of the Vedic number-vocabulary is that numbers are invari-

ably expressed in the verbal form of our present decimal system. The invention of

6T.S. Kuppana Sastry and K.V. Sarma, op.cit., 36.
7See B. Datta and A.N. Singh, op.cit., 4, for precise references.
8See B. Datta (a), “The Jaina School of Mathematics”, Bulletin of the Calcutta Mathematical

Society, Vol. 21(2), 1929, 116.
9See B. Datta (a), op.cit., 123.

10See B. Datta (a), op.cit., 124, or B. Datta (b) , “The Scope and Development of Hindu Gan. ita”,
Indian Historical Quarterly, V, 1929, 491.

11Astronomy was not encouraged in Buddhist tradition, possibly because of its link with astrology.
However, monks living in forests were advised to learn the stations of the constellations. They were
to know the directions of the sky. See B. Datta (b), op.cit., 482.

12The much-admired town-planning and architectural proficiencies of the Harappan or Indus valley
civilisation indicate the attainment of considerable sophistication in computational and geometric
techniques. But, in the absence of textual evidence, we are not in a position to draw definite
conclusions as to what exactly they knew about mathematics.

2



Figure 1: śyenacit.

this decimal system (even in its oral form) requires a high degree of mathematical

sophistication.13 Again, various references in the Vedic texts show that the funda-

mental operations of arithmetic were well-known at that time. We shall discuss these

in Section 2.

The Vedāṅga that deals with rituals and ceremonies, namely the Kalpa-sūtras,

are broadly divided into two classes: the Gr.hya-sūtras (rules for domestic ceremonies

such as marriage, birth, etc.) and the Śrauta-sūtras (rules for ceremonies ordained

by the Veda such as the preservation of the sacred fires, performance of the yajña,

etc.). The Śulba-sūtras belong to the Śrauta-sūtras.

Baudhāyana, Mānava, Āpastamba and Kātyāyana are the respective authors of

four of the most mathematically significant Śulba texts, the Baudhāyana Śulba-sūtra

being the most ancient. The language of the Śulba-sūtras is regarded as being pre-

Pān. inian. The Śulba-sūtra of Baudhāyana (estimated to be around 800 BCE or

earlier) is the world’s oldest known mathematical text.

The Śulba-sūtras give a compilation of principles in geometry that were used in

designing the altars (called vedi or citi) where the Vedic sacrifices (yajña) were to be

performed. The platforms of the altars were built with burnt bricks and mud mortar.

The Vedic altars had rich symbolic significance and their designs were often intricate.

For instance, the śyenacit in Figure 1 has the shape of a falcon in flight (a symbolic

representation of the aspiration of the spiritual seeker soaring upward); the kūrmacit

is shaped as a tortoise, with extended head and legs, the rathacakracit as a chariot-

13B. Bavare and P.P. Divakaran, “Genesis and Early Evolutiion of Decimal Enumeration: Evidence
from Number Names in R. gveda”, Indian Journal of History of Science, Vol. 48(4), 2013, 535-581;
A.K. Dutta (e), “Was there Sophisticated Mathematics during Vedic Age?” in Arijit Chaudhury,
et. al., eds., An anthlogy of disparate technical thoughts at a popular level, 91-132.
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wheel with spokes, and so on. Further, the Vedic tradition demanded that these

constructions are executed with perfection — the accuracy had to be meticulous —

and the demand was met through remarkably sophisticated geometric innovations.

We shall discuss a few of these geometric constructions and their underlying algebraic

principles in Section 3.

In the last chapter of the prosody text Chandah. -śūtra of Piṅgalācārya (c. 300

BCE),14 there are interesting mathematical rules embodied in sūtras. The rules in-

clude the generation of all possible metres and the computation of their total number,

corresponding to a given number of syllables. A crucial ingredient in these rules is a

close analogue of the binary representation of numbers. The mathematical methods

in the Chandah. -sūtra had a profound infuence on the development of combinatorial

methods in later Indian texts. In Section 4, we discuss the enumeraive methods in

Chandah. -sūtra and other texts.

References to astronomical phenomena associated with the motions of the Sun

and the Moon like the solstices, equinoxes, solar year, seasons, lunar months, inter-

calary months, eclipses, and the naks.atra system are to be found in the Saṁhitas

and Brāhman. as.15 However, there is no presentation of a formal, quantitative sys-

tem of astronomy in any of the extant literature of the pre-Vedāṅga period. The

oldest available treatise exclusively devoted to astronomy is the Vedāṅga Jyotis.a by

Lagadha.16 There are different views regarding the date of composition of this work,

ranging from 1370 BCE to 500 BCE.17 In this text, we see a definite calendrical sys-

tem with a 5-year cycle of a yuga. In Section 5, we discuss astronomy in the earlier

Vedic literature, Vedāṅga Jyotis.a and also in subsequent works like Arthaśastra of

Kaut.ilya,18 and some Jaina and Buddhist texts.19

In Section 6, which is the last one, we make a few concluding remarks.

14The date of this text is uncertain; tentative estimates vary from 500 to 200 BCE, with 300 BCE
being the usually preferred date. Since Piṅgala has been referred to as an anuja of Pān. ini, a date
closer to 500 BCE appears plausible.

15B. Datta (d), op.cit., 18-36; K.V. Sarma, “Indian Astronomy in the Vedic Age” in Siniruddha
Dash, ed., ‘Facets of Indian Astronomy’, 33-56; B.V. Subbarayappa, Tradition of Astronomy in
India - Jyotih. śāstra, 84.

16T.S. Kuppanna Sastry and K.V. Sarma, op.cit.
17T.S. Kuppana Sastry and K.V. Sarma, op.cit.; Y. Ohashi (a), “Development of Astronomical

Observation on Vedic and Post-Vedic India”, Indian Journal of History of Science, Vol. 28 (3),
1993, 185-251.

18R.P. Kangle (a), The Kautilya Arthaśaāstra, Part I (text); R.P. Kangle (b), The Kautilya
Arthaśaāstra, Part II (translation).

19For a discussion on the dates of these texts, see S.N. Sen, “Survey of Source Materials” in D.M.
Bose, S.N. Sen and B.V. Subarayappa, eds., A Concise History of Science in India, 34, 43.
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2 Decimal system and Arithmetic in Vedic literature

The decimal system is a pillar of modern civilisation. It has been a major factor in the

proletarisation of considerable scientific and technical knowledge, earlier restricted

only to a gifted few. Due to its simplicity, children all over the world can now learn

basic arithmetic at an early age. While the use of the perfected “decimal notation”

(the written form of the decimal system) can be seen in written documents of the

post-Vedic Common Era, the oral form of the decimal system goes back to the Vedic

age. In this section, we shall discuss the Vedic number vocabulary that is based on the

decimal system and that has been used in India throughout its subsequent history.

We shall also give illustrations of arithmetical knowledge from Vedic literature.

For clarity, we first make a distinction between the two forms of the decimal

system of representing numbers: the decimal notation and the decimal nomenclature.

In our standard decimal notation, there is a symbol (called “digit” or “numeral”) for

each of the nine primary numbers (1,2,3,4,5,6,7,8,9), an additional tenth symbol “0”

to denote the absence of any of the above nine digits, and every number is expressed

through these ten figures using the “place-value” principle by which a digit d in

the rth position (place) from the right is imparted the place-value d × 10r−1. For

instance, in 1947, the symbol 1 acquires the place-value one thousand (1 × 103), 9

acquires the value nine hundered (9 × 102), etc. The Sanskrit word for “digit” is

aṅka (literally, “mark”) and the term for “place” is sthāna.

In the decimal nomenclature, each number is expressed through nine words

(“one”, “two”, . . . ,“nine” in English) corresponding to the nine digits, and number-

names for “powers of ten” (“hundred”, “thousand”, etc.) which play the role of the

place-value principle. For convenience, some additional derived words are adopted

(like “eleven” for “one and ten”, . . ., “nineteen” for “nine and ten”, “twenty” for

“two ten”, etc).

The verbal form of the decimal system was already in vogue when the R. gveda

was compiled. Numbers are represented in decimal system in the R. gveda, in all other

Vedic treatises, and in all subsequent Indian texts. The R. gveda contains the current

Sanskrit single-word terms for the nine primary numbers: eka (1), dvi (2), tri (3),

catur (4), pañca (5), s.at. (6), sapta (7), as.t.a (8) and nava (9); the first nine multiples of

ten: daśa (10), viṁśati (20), triṁśat (30), catvāriṁśat (40), pañcāśat (50), s.as. t.i (60),

saptati (70), aś̄ıti (80) and navati (90), and the first four powers of ten: daśa (10),
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śata (102), sahasra (103) and ayuta (104). For compound numbers, the above names

are combined as in our present verbal decimal terminology; e.g., “seven hundred and

twenty” is expressed as sapta śatāni viṁśatih. in R. gveda (1.164.11).

An enunciation of the principle of “powers of ten” (a verbal manifestation of the

abstract place-value principle), can be seen in the following verse of Medhātithi in the

Śukla Yajurveda (verse 17.2 of the Vājasaneȳı Saṁhitā), where numbers are being

increased from one to one billion20 by taking progressively higher powers of ten: eka

(1), daśa (10), śata (102), sahasra (103), ayuta (104), niyuta (105), prayuta (106),

arbuda (107), nyarbuda (108), samudra (109), madhya (1010), anta (1011), parārdha

(1012):

imā me’ agna’ is.t.akā dhenavah. santvekā ca daśa ca daśa ca śataṁ ca śataṁ
ca sahasraṁ ca sahasraṁ cāyutaṁ cāyutaṁ ca niyutaṁ ca niyutaṁ
ca prayutaṁ cārbudaṁ ca nyarbudaṁ ca samudraśca madhyaṁ cāntaśca
parārdhaścaitā me’ agna’ is.t.akā dhenavah. santvamutrāmus.milloke.21

Medhātithi’s terms for powers of ten occur with some variations, sometimes with

further extensions, in other Saṁhitā and Brāhman. a texts. Terms for much higher

powers of ten are mentioned in subsequent Jaina and Buddhist texts and in the epic

Rāmāyan. a. When convenient, centesimal (multiples of 100) scales have been used in

India for expressing numbers larger than thousand — the R. gveda (1.53.9) describes

60099 as s.as. t.iṁ sahasrā navatiṁ nava (sixty thousand ninety nine). The Taittir̄ıya

Upanis.ad (2.8) adopts a centesimal scale to describe different orders of bliss and

mentions Brahmānanda (the bliss of Brahman) to be 10010 times a unit of human

bliss; there is a similar reference in the Br.hadāran. yaka Upanis.ad (4.3.33).

In retrospect, a momentous step had been taken by ancient Vedic seers (or their

unknown predecessors) when they imparted single word-names to successive powers

of ten, thus sowing the seeds of the decimal “place-value principle”.22 The written

20Billion means 1012 (million million) in England and Germany but 109 (thousand million) in
USA and France. Here we use it for 1012.

21A literal translation could be: “O Agni! May these Bricks be my fostering Cows — (growing into)
one and ten; ten and hundred; hundred and thousand; thousand and ten thousand; ten thousand
and lakh; lakh and million; million and crore; crore and ten crores; ten crores and hundred crores;
hundred crores and thousand crores; thousand crores and ten thousand crores; ten thousand crores
and billion. May these Bricks be my fostering Cows in yonder world as in this world!”. Note that
in Vedic hymns, the Cow is the symbol of consciousness in the form of knowledge and the wealth of
cows symbolic of the richness of mental illumination. The sanctified Bricks (is. t.akā, i.e., that which
helps attain the is. t.a) are charged with, and represent, the mantras. See A.K.Dutta (b), “Powers of
Ten: Genesis and Mystic Significance”, Srinvantu, Vol. 48(2), 44-52.

22For expressing very large numbers in words, even the present English terminology (of using
auxiliary bases like “thousand” and “million”) is less satisfactory than the Sanskrit system of having
a one-word term for each power of ten (up to some large power). This is effectively illustrated by
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decimal notation is simply a suppression of the place-names (i.e., the single-word

terms for powers of ten) from the verbal decimal expression of a number, along with

the replacement of the words for the nine primary numbers by digits and the use of

a zero-symbol wherever needed.

The decimal notation had evolved in India within the early centuries of the Com-

mon Era. It might have occurred even earlier. In the epic Mahābhārata (3.134.16),

there is an incidental allusion to the decimal notation during the narration of a tale

(3.132–134) involving ancient names like Uddālaka, Śvetaketu, As.t.āvakra, Janaka,

et al, whose antiquity go back to the Brāhman. a phase of the Vedic era.23

Some Sanskrit scholars see in the term lopa (elision, disappearance, absence) of

Pān. ini’s grammar treatise As.t.ādhyāȳı, a concept analogous to zero as a marker for

a non-occupied position, and have wondered whether lopa led to the idea of zero in

mathematics, or the other way. Indeed, in a text Jainendra Vyākaran. a of Pūjyapāda

(c. 450 CE), the term “lopa” is replaced by kham. , a standard Sanskrit term for

the mathematical zero. Pān. ini uses lopa as a tool similar to the null operator in

higher mathematics. Unfortunately, mathematics texts of the time of Pān. ini have

not survived.24 In the prosody-text Chandah. -sūtra, Piṅgalācārya gives instructions

involving the use of dvi (two) and śūnya (zero) as distinct labels. The choice of the

labels suggests the prevalence of the mathematical zero and possibly a zero-symbol

by his time.25

The decimal system (both in its verbal and notation forms) expresses any natural

number as a polynomial-like sum 10nan+ . . .+100a2+10a1+a0, where a0, a1, . . . , an

are numbers between 0 and 9. Such a representation involves recursive applications

of the well-known “division algorithm” that pervades the later Greek, Indian and

modern mathematics. The mathematical sophistication of the decimal system can

be glimpsed from the fact that its discovery required a realisation of the above

principles.

The decimal system is largely responsible for the excellence attained by Indian

mathematicians in the fields of arithmetic, algebra and astronomy. The dormant

G. Ifrah, The Universal History of Numbers, 428–429, by comparing the verbal representations of
the number 523622198443682439 in English, Sanskrit and other systems.

23The precise phrase is nava yogo gan. anāmeti śaśvat, “A combination of nine (digits) always
(suffices) for any count (or calculation).” The word śaśvat (perpetual) has the nuance of “from
immemorial time”.

24The date of Pān. ini is uncertain; most estimates vary from 700 BCE to 500 BCE.
25The estimates of Piṅgalācārya’s dates vary between 500 and 200 BCE; 300 BCE being the date

used most frequently.
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algebraic character of the decimal system influenced the algebraic thinking of math-

ematicians in ancient India and modern Europe. Post-Vedic ancient Indian ge-

niuses like Brahmagupta (who defined the algebra of polynomials in 628 CE) and

Mādhavācārya (who investigated the power series expansions of trigonometric func-

tions in 14th century CE) had the advantage of being steeped in the decimal sytem

gifted by the unknown visionaries of a remote past. As Isaac Newton would empha-

sise in 1671, the arithmetic of the decimal system provides a model for developing

operations (addition, multiplication, root extraction, etc.) with algebraic expres-

sions in variables (like polynomals and power series).26 More recently, we see S.S.

Abhyankar, a great algebraist of the 20th century, acknowledging the idea of decimal

expansion in a technical innovation in his own research.27

Thanks to the decimal system, Indians developed efficient methods for the ba-

sic arithmetic operations which were slight variants of our present methods. The

methods are described in post-Vedic treatises on mathematics but incidental refer-

ences show that all the fundamental operations of arithmetic were performed during

the Vedic time. For instance, in a certain metaphysical context, it is mentioned in

Śatapatha Brāhman. a (3.3.1.13) that when a thousand is divided into three equal

parts, there is a remainder one.28 A remarkable allegory in the Śatapatha Brāhman. a

(10.24.2.2-17) lists all the factors of 720:

720÷ 2 = 360; 720÷ 3 = 240; 720÷ 4 = 180; 720÷ 5 = 144; 720÷ 6 = 120;

720÷ 8 = 90; 720÷ 9 = 80; 720÷ 10 = 72; 720÷ 12 = 60; 720÷ 15 = 48;

720÷ 16 = 45; 720÷ 18 = 40; 720÷ 20 = 36; 720÷ 24 = 30.

The Pañcaviṁśa Brāhman. a (18.3) describes a list of sacrificial gifts forming a geo-

metrical series

12, 24, 48, 96, 192, . . . , 49152, 98304, 196608, 393216.

The Śatapatha Brāhman. a (10.5.4.7) mentions, correctly, the sum of an arithmetical

progression

3(24 + 28 + 32 + . . . to 7 terms ) = 756.

26Newton’s statement is quoted in P.P. Divakaran (a), “Notes on Yuktibhās. ā: Recursive Methods
in Indian Mathematics” in C.S. Seshadri, ed., Studies in the History of Indian Mathematics, 296.

27See A.K. Dutta (e), op.cit., 105.
28The problem is also alluded to in the earlier R. gveda (6.69.8) and the Taittir̄ıya Saṁhitā

(3.2.11.2).

8



The Br.haddevata29gives the sum:30

2 + 3 + 4 + ...+ 1000 = 500499.

The sūtras 8.32-8.33 of Chandah. -śūtra of Piṅgala imply the following formula for the

sum of the geometrical progression (G.P.):

1 + 2 + 22 + ...+ 2n = 2n+1 − 1.

The following numerical example of the above G.P. series can be seen in the Jaina

treatise Kalpasūtra (c. 300 BCE) of Bhadrabāhu:31

1 + 2 + 4 + ...+ 8192 = 16383.

The incidental occurences of correct sums of such series in non-mathematical texts

suggest that general formulae for series were known at least from the time of the

Brāhman. as.32

In the Baudhāyana Śulba, there are examples of operations with fractions like

7
1

2
÷(

1

5
)2 = 187

1

2
; 7

1

2
÷(

1

15
of

1

2
) = 225;

√
7

1

9
= 2

2

3
; (3−1

3
)2+(

1

2
+

10

120
)(1−1

3
) = 7

1

2

(Details and further examples from other Śulbas are given by B. Datta.33)

Though the polynomial-type methods for performing arithmetical computations

are described only in post-Vedic treatises, the polynomial aspect of the Vedic number-

representation indicates that the Vedic methods too would have been akin to poly-

nomial operations, using rules like (ten times ten is hundred), (ten times hundred

is thousand), (hundred times hundred is ten-thousand) and so on, analogous to

xx = x2, xx2 = x3, x2x2 = x4, etc.

The decimal system (both oral and written) enabled Indians to express large

numbers effortlessly, right from the Vedic Age. This traditional facility with large

numbers enabled Indians to work with large time-frames in astronomy (like cycles

of 4320000 years) which helped them obtain strikingly accurate results.34 Again,

29A treatise on Vedic deities ascribed to Śaunaka, a venerated Vedic seer. A.A. Macdonell places
the text as being composed prior to 400 BCE.

30S.N Sen, “Mathematics” in D.M. Bose, S.N. Sen and B.V. Subbarayappa, eds., Concise History
of Science in India, 144.

31S.N. Sen, op.cit.
32Explicit statements of the general formulae for the sum of A.P. and G.P. series occur later in

the works of Āryabhat.a (499 CE) and Mahāv̄ıra (850 CE) respectively.
33B. Datta (c), The Science of the Śulba, Chapter XVI.
34For instance, Āryabhat.a estimated that the Earth rotates around its axis in 23 hours 56 minutes

and 4.1 seconds, which matches the modern estimate (23 hours 56 minutes 4.09 seconds).
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it is due to the decimal system that post-Vedic Indian algebraists could venture

into problems of finding integer solutions of linear and quadratic equations which

often involve large numbers.35 The traditional preoccupation with progressively

large numbers, that was facilitated by the decimal system, created an environment

that was conducive for the introduction of the infinite in Indian mathematics.36

The Vedic number system is the first known example of recursive construction.

Recursive principles dominate Indian mathematical thought and are prominent fea-

tures of some of its greatest achievements like the solutions of indeterminate equa-

tions and the work of the Kerala school.37 The facility with recursive methods is

another outcome of the decimal system.

A brief history of the decimal system is presented in the article by A.K. Dutta38

and a detailed history in the source-book of Datta-Singh.39

3 Geometry and Geometric Algebra in Śulbasūtras

The Śulbasutras show insights on the geometric and algebraic aspects of the proper-

ties of triangles, squares, rectangles, parallelograms, trapezia and circles, and prop-

erties of similar figures. They describe geometric constructions for rectilinear figures

(e.g., the perpendicular to a given line at a given point, a square on a given side,

a rectangle with given sides, an isoceles trapezium with a given altitude, face and

base) and exact methods for combination and transformation of geometric figures

— forming a square by combining given squares or by taking the difference of two

given unequal squares, transforming a rectangle (or an isoceles trapezium, an isoceles

triangle, a rhombus) into a square and vice versa. In this section, we shall illustrate

a few of their exact constructions, discuss their mathematical significance and high-

35For instance, the smallest pair of integers satisfying 61x2 + 1 = y2 is x = 226153980, y =
1766319049. And this example occurs in the Algebra treatise Bı̄jagan. ita (1150 CE) of Bhāskarācārya.
(See A.K. Dutta (c), Kutt.t.aka, Bhāvanā and Cakravāla, in C.S. Seshadri ed., Studies in the History
of Indian Mathematics, 145-199, for further details.)

36Indian algebraists like Āryabhat.a and Brahmagupta (628 CE) had a mastery over indeterminate
equations with infinitely many solutions, Bhāskarācārya (1150 CE) introduced an algebraic concept
of infinity and also worked with the infinitesimal in the spirit of calculus, and then there was the
spectacular work on infinite series by Mādhavācārya.

37A.K. Dutta (c), op.cit., 145-199; P.P.Divakaran (a), op.cit., 287-351; K.V. Sarma, K. Ramasub-
ramanian, M.D. Srinivas and M.S. Sriram, Gan. ita-Yukti-Bhās. ā of Jyes.t.hadeva.

38A.K. Dutta (d), op. cit., 1492-1504.
39B.Datta and A.N. Singh, History of Hindu Mathematics, Part I; Also see B. Bavare and P.P.

Divakaran, “Genesis and Early Evolution of Decimal Enumeration: Evidence from Number Names
in R. gveda”; B. Datta (d), Vedic Mathematics; G. Ifrah, op. cit.; Satya Prakash, Founders of Sciences
in Ancient India; A.K. Dutta (e), op. cit., 91-132.
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light the algebraic knowledge implicit in the Śulba methods. We first mention a

theorem from the Śulbasūtras which is a cornerstone of plane Euclidean geometry

with applications throughout history: the celebrated result popularly known as the

“Pythagoras Theorem”.

The familiar version of Pythagoras Theorem states that the square of the hy-

potenuse of a right-angled triangle equals the sum of the squares of the other two

sides. This result was known prior to Pythagoras (c. 540 BCE) in several ancient

civilisations. However, the earliest explicit statement of the theorem occurs in the

Baudhāyana Śulba-sūtra (1.48) in the following form (which we shall refer to as the

“Baudhāyana-Pythagoras Theorem”):

d̄ırghacaturaśrasyāks.n. ayārajjuh. pārśvamān̄ı tiryaṅmān̄ı ca yatpr.thagbhūte kurutastadubhayam.
karoti.

Thus, Baudhāyana states that the square on the diagonal of a rectangle is equal (in

area) to the sum of the squares on the two sides (which is clearly equivalent to the

usual version of Pythagoras Theorem). The theorem is stated in almost identical

language by Āpastamba (1.4) and Kātyāyana (2.11). In the Kātyāyana Śulba, there

is an additional phrase iti ks.etrajñānam indicating the fundamental importance of

the theorem in geometry. The theorem would play a pivotal role in much of ancient

Indian geometry and trigonometry.

Though the Baudhāyana-Pythagoras Theorem is explicitly stated only in the

Śulba-sūtras of a late Vedic period, the result (along with other principles of Śulba

geometry) was known and applied from the earlier phases of the Vedic era. The

Baudhāyana-Pythagoras Theorem is a crucial requirement for the constructions of

Vedic altars which are described in an enormously developed form in the Śatapatha

Brāhman. a (a text much anterior to the Śulba-sūtras); some of these altars are men-

tioned in the still earlier Taittir̄ıya Saṁhitā. Further, the descriptions of the fire-

altars in these older treatises are same as those found in the Śulba-sūtras. In fact,

the Śulba authors emphasise that they are merely stating facts already known to

the authors of the Brāhman. as and Saṁhitās.40 Even the R. gveda Saṁhitā, the old-

est layer of the extant Vedic literature, mentions the sacrificial fire-altars (though

without explicit descriptions of the constructions).

The Śulba-sūtras are thus, in essence, engineering manuals for the construction

40See B. Datta (d), The Science of the Śulba, 25-40, and A. Seidenberg (b), ‘The Origin of
Mathematics’, Archive for History of Exact Sciences, Vol. 18, 1978, 310-342.
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Figure 2: Baudhāyana’s Construction of a square equal in area to the sum of two
squares.

of fire-altars, summarising the necessary mathematical results and procedures which

were already known over a long period of time. Detailed mathematical proofs or

justifications are naturally outside the scope of these terse aphorismic handbooks.

But, as emphasised by several scholars like Thibaut, Bürk, Hankel, Schopenhauer

and Datta, the various Śulba constructions indicate that the Śulba authors knew

proofs of the Baudhāyana-Pythagoras Theorem in some form.41 As an illustration,

we give below Baudhāyana’s construction of a square equal in area to the sum of

two given squares:

nānācaturaśre samasyan kan̄ıyasah. karan. yā vars.̄ıyaso vr.dhram ullikhet
vr.dhrasya aks.n. ayārajjuh. samastayoh. pārśvamān̄ı bhavati

Thus, to combine the squares ABCD and ICGH as in Figure 2, the rectangle

ABEF is cut off from the larger square ABCD such that its side BE has length equal

to the side CG of the smaller square ICGH. Then the square AEHK on the diagonal

AE of this rectangle ABEF is the required square. (That the area of AEHK is the

sum of the areas of ABCD and ICGH can be seen by observing that the triangles ABE

and EGH in the latter are being replaced, respectively, by the congruent triangles

KHI and ADK.)

41B. Datta, op.cit., Chapter IX.
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This construction, described (in verse 1.50) shortly after the statement of the

Baudhāyana-Pythagoras Theorem (1.48), clearly shows that the Vedic savants knew

why the Baudhāyana-Pythagoras Theorem holds. In fact, the diagram is itself a

demonstration of the Baudhāyana-Pythagoras Theorem! For, it shows that the

square AEHK on the diagonal AE of the rectangle ABEF is the sum of the square

ABCD on the side AB and the square ICGH on the side CG(=BE). There are many

more of such examples - two more will occur in this article in a different context.

A striking feature of the Śulba geometry is the abundance of “exact” construc-

tions of the “straightedge-and-compass” type that makes our present high-school

Euclidean geometry appear so formidable to a large section of students. These

constructions demand mathematical rigour and do not allow measurements.42 For

instance, to obtain a square whose area equals the sum of the areas of the square

ABCD and the square ICGH, one could have measured the length a of AB, the length

b of IC, then mark out a side of length
√
a2 + b2 (which will often be an irrational

number even when a and b are rational numbers) and draw a square on it. But all

these steps would have involved approximations. The purely geometric construc-

tion from Baudhāyana Śulba described above is free from any such measurement or

approximation.

The mathematical sophistication of the Vedic age can be seen from the way the

Baudhāyana-Pythagoras Theorem is applied to such geometric (exact) constructions

in the Śulba treatises. The applications involve a subtle blend of geometric and

algebraic thinking. An awareness of algebraic formulae like

(a± b)2 = a2 + b2 ± 2ab; a2 − b2 = (a+ b)(a− b)

and quadratic equations, at least in a geometric form, is implicit in these construc-

tions. The concern for accuracy in the building of the sacred fire-altars might have

triggered the invention of the mathematical principles involved in these exact meth-

ods. We now present two more examples of exact constructions from the Śulba texts.

The Kātyāyana Śulba-sūtra (6.7) describes the following construction of a square

equal in area to the sum of the areas of n squares of same size:

yāvatpramān. āni samacaturaśrān. yek̄ıkartuṁ cik̄ırs.edekonāni tāni bhavanti tiryak dvigun. ānyekata
ekādhikāni tryaśrirbhavati tasyes.ustatkaroti.

42Note that measurements inevitably involve inaccuracy. Due to the intrinsic inaccuracy, one
takes several measurements during scientific experiments.
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2

(n− 1)a

√
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Figure 3: Kātyāyana’s construction of a square whose area is n times the area of a
smaller square.

Note that if each side of each of the given squares is of length a units, then the

square to be constructed will have area na2, i.e., each side of the desired square will

be of length
√
na. To construct a side of length

√
na, the above verse prescribes

constructing a line segment BC whose length is (n − 1) times the given length a

and forming the isoceles triangle BAC with BC as the base such that each of the

two sides BA and AC have length (n+1)a
2 (see Figure 3). Then the altitude DA of

triangle BAC has the required length
√
na and the desired square can be constructed

on this line segment DA. For, BD = BC
2 = (n−1)a

2 and BA = (n+1)a
2 , so that DA2 =

( (n+1)a
2 )2 − ( (n−1)a

2 )2 = na2.

Kātyāyana’s procedure gives an exact construction of
√
na (no measurement or

approximation is involved) making an ingenious application of the Baudhāyana-

Pythagoras Theorem. It makes an implicit use of the formula

na2 = (
n+ 1

2
)2a2 − (

n− 1

2
)2a2;

in fact, the construction may be regarded as a geometric expression of the above

algebra formula.

Next, we consider the Śulba procedure to construct a square equal in area to a

given rectangle. Baudhāyana Śulba (1.54) states:

d̄ırghacaturaśraṁ samacaturaśraṁ cik̄ırs.aṁstiryaṅmān̄ıṁ karan. ı̄ṁ kr.tvā śes.aṁ dvedhā
vibhajya viparyasyetaraccopadadhyāt khan. d. amāvāpena tatsaṁpūrayet tasya nirhārah.
utkah. .
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Figure 4: Śulba transformation of a rectangle into a square.

Thus, if ABCD is the given rectangle of length a units and breadth b units

which is to be transformed into a square, then Baudhāyana prescribes marking out

AE of length b units along AB (and complete the square DAEF) and bisecting the

remainder EB (see Figure 4). With the mid-point G of EB as centre, an arc of radius

AG is to be drawn which intersects the extension of the line EF at I. The segment EI

gives the desired side. Note that GE = a−b
2 and GI = GA = EA+GE = b+ a−b

2 =

a+b
2 , so that EI2 = (a+b

2 )2 − (a−b
2 )2 = ab.

Seidenberg remarks that this Śulba transformation of the rectangle into a square

is in the spirit of Euclid’s Elements:43

“entirely in the spirit of The Elements, Book II, indeed, I would say it’s more in the
spirit of Book II than Book II itself.”

The above procedure applies the Baudhāyana-Pythagoras Theorem to achieve

an exact construction of
√
ab from a and b through an implicit use of the formula

ab = (
a+ b

2
)2 − (

a− b
2

)2;

it essentially gives a geometric formulation of the algebra formula.

43A. Seidenberg (b), op.cit., 318.
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As will be clear from the above examples, the geometric knowledge in the Vedic

era far transcended empirical observations — there was the mathematician’s insight

into the theorems and properties of geometric objects. Much of the mathematics

of the Vedic savants was algebraic in spirit and substance and it is all the more

remarkable that such accomplishments were made several centuries before the genesis

of formal Algebra.44

The Śulba authors do not confine themselves to such exact constructions alone.

An interesting statement in the Śulba verses of Baudhāyana (1.61–2), Āpastamba

(1.6) and Kātyāyana (2.13) is the approximation:

√
2 ∼ 1 +

1

3
+

1

3× 4
− 1

3× 4× 34
.

The right hand side equals the fraction 577
408 which is the best possible approximation

of
√

2 among fractions with the same or smaller denominators.45 In terms of deci-

mal fractions, 577
408 (= 1.4142156 . . .) matches

√
2 (= 1.414213 . . .) up to five decimal

places.46 Simpler fractions 7
5 and 17

12 have also been used by Śulba authors as ap-

proximations for
√

2; they too have the property of being the most accurate among

all fractions with denominators bounded by 5 and 12 respectively.

Another noteworthy feature of Śulba geometry is its study of the circle and formu-

lation of rules to construct a circle from a square and vice versa. Such constructions

are inevitably approximate.47 The pioneering work on the circle in the Vedic era ap-

pears to have a significant impact on post-Vedic mathematicians and astronomers.48

In Section 2, we had mentioned examples of operations with fractions occurring in

the Śulba treatises. The texts also show a familiarity with the addition, multiplication

and rationalization of elementary surds; the term karan. ı̄ was used for surd (e.g., dvi-

karan. ı̄ for
√

2). In Āpastamba Śulba (5.8), one sees an implicit use of results such

as49

36√
3
× 1

2
× (

24√
3

+
30√

3
) = 324; 12

√
3× 1

2
(8
√

3 + 10
√

3) = 324.

44The formalisation of Algebra was to occur more than a millennium later, possibly around the
time of Brahmagupta (628 CE).

45A.K. Dutta (c), “Kut.t.aka, Bhāvanā and Cakravāla”, 186.
46The pair (577, 408) satisfies the equation x2 − 2y2 = 1, a special case of an important equation

investigated by Brahmagupta and other algebraists of the post-Vedic period; it is also involved in
Ramanujan’s prompt solution of a mathematical puzzle which had surprised P.C. Mahalanobis. See
A.K. Dutta (f), “The Bhāvanā in Mathematics”.

47Modern algebra has confirmed that it is not possible to make an exact construction of a square
equal in area to a circle or vice versa, using straightedge-and-compass alone.

48One is reminded of Brahmagupta’s brilliant results on quadrilaterals inscribed inside a circle.
49More details are to be found in B. Batta (c), Science of the Śulba, Chapter XVI.
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The Śulba-sūtras mention several rectangles the lengths of whose adjacent sides

a, b and the length of each diagonal c are all integers (or rational numbers), i.e.,

(a, b, c) are integral (or rational) triples satisfying the famous equation x2 + y2 =

z2.50 The triples (3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (12, 35, 37) and some of

their multiples occur in the Śulba-sūtras.51. The identity 4na2 + (n − 1)2a2 = (n +

1)2a2 that is implicit in Kātyāyana’s rule for combining squares (discussed earlier

in this section) suggests that Vedic scholars were aware that triples of the form

(2rs, r2 − s2, r2 + s2) satisfy x2 + y2 = z2.

For constructing Vedic fire-altars, one has to find the numbers and sizes of dif-

ferent kinds of bricks required for building the different layers subject to various

conditions. The altar-specifications amount to finding integer solutions of simulta-

neous indeterminate equations.52 We find intricate examples of such specifications

in Baudhāyana and Āpastamba Śulba-sūtras.53 Among the greatest mathematical

achievements of post-Vedic stalwarts like Āryabhat.a, Brahmagupta and Jayadeva

are their systematic methods for finding integral solutions of linear and quadratic

indeterminate equations.54 This adds to the mathematico-historical significance of

the implicit indeterminate equations in the Śulba-sūtras.

Another interesting result of geometrico-algebraic flavour is Baudhāyana’s method

for constructing progressively larger squares, starting with a unit square, by adding

successive gnomons.55 This amounts to a geometric presentation (in fact, a geometric

proof) of the algebraic identity

1 + 3 + 5 + · · ·+ (2n− 1) = n2.

This is illustrated in Figure 5.

Due to the paucity of source-materials, we are not in a position to ascertain

the full extent of the mathematical knowledge attained in the Vedic era.56 But even

50An integer triple (a, b, c) satisfying a2 + b2 = c2 is called a Pythagorean triple.
51See B. Datta (c), op.cit., 124, for more examples.
52A system of m algebraic equations in more than m variables is called indeterminate. The term

is suggestive of the fact that such a system may have infinitely many solutions.
53For details, see A.K. Dutta (a), “Diophantine Equations: The Kuttaka”, Resonance, Vol. 7(1),

2002, 8-10 and B. Datta (c), op.cit., Chapter XIV.
54For details see, A.K. Dutta (c), op.cit.
55Here, a gnomon refers to the L-shaped figure that one gets when a (smaller) square is removed

from a corner of a square.
56Bibhutibhusan Datta mentions in B. Datta (b), “The scope and development of Hindu Gan. ita”,

2, that apart from the practical geometry described in the Śulbas, the Vedic priests had also a secret
knowledge of an esoteric geometry.
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1 = 12 1 + 3 = 22 1 + 3 + 5 = 32

Figure 5: Demonstration of the result 1 + 3 + 5 + ....+ (2n− 1) = n2 for n = 1, 2, 3.

what has come out on the basis of limited source-materials arouses a sense of sublime

wonder among sincere scholars and thinkers on ancient Indian mathematics. The

impact that contemplations on Vedic geometry can have on a dedicated seeker of

its history can be seen from the tribute paid by Bibhutibhusan Datta (emulating a

verse of Kālidāsa) in the Preface of his book:57

“How great is the science which revealed itself in the Śulba, and how meagre is my
intellect! I have aspired to cross the unconquerable ocean in a mere raft.”

References for further reading. A systematic presentation of ancient Indian geometry,

including Vedic geometry, occurs in the book of Sarasvati Amma.58 The work of Bibhutibhu-

san Datta59 contains a wealth of information and insights and is an indispensable beacon for

anyone seriously interested in Śulba geometry. A. Seidenberg has made a masterly analysis of

Śulba mathematics in his papers.60 There are other papers which discuss specific features of

Śulba mathematics.61 Original texts of the Śulba-sūtras with translations and commentaries

are available in the literature.62

57B. Datta (c), op.cit.
58T.A. Sarasvati Amma, Geometry in Ancient and Medieval India.
59B. Datta (c), op.cit. Also see B. Datta and A.N. Singh (revised by K.S. Shukla), Hindu Geom-

etry, Indian Journal of History of Science, Vol. 15(2), 1980, 121-188.
60A. Seidenberg (a), The Ritual Origin of Geometry, Archive for History of Exact Sciences, Vol.

1, 1962, 488-527; A. Seidenberg (b). op.cit.; A. Seidenberg (c), “The Geometry of Vedic Rituals”,
in F. Staal, ed., Agni, The Vedic Ritual of the Fire Altar, Vol II.

61D.W. Henderson, Square Roots in the Śulba Sūtras, in C.Gorini, ed., Geometry at Work ; J.F.
Price, Applied Geometry of the Śulba Sūtras, in C. Gorini, ed., Geometry at Work; S.G. Dani,
Geometry in the Śulvasūtras, in C.S. Seshadri, ed., Studies in the History of Indian Mathematics;
P.P. Divakaran (b), “What is Indian about Indian Mathematics?”, Indian Journal of History of
Science, Vol. 51(1), 2016, 56-82; A.K. Dutta (e), “Was there sophisticated mathematics during
Vedic Age?”, in Arijit Chaudhuri, ed., An anthology of disparate thoughts at a popular level, 91-132.

62S.N. Sen and A.K. Bag, eds., The Śulbasūtras of Baudhāyana, Āpastamba, Kātyāyana and
Mānava; Satya Prakash and R.S. Sharma, eds., Baudhāyana Śulba Sūtra; Satya Prakash and R.S.
Sharma, eds, Āpastamba Śulba Sūtra; S.D. Khadilkar, ed., Kātyāyana Śulba Sūtra; G. Thibaut,
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4 Enumerative mathematics in Piṅgala’s Chandah. -sūtra
and other works

4.1 Combinatorial mathematics in Piṅgala’s Chandah. -sūtra

Piṅgala’s Chandah. -sūtra (estimated around 300 BCE) systematises the rules for the

‘metres’ in Sanskrit poetry.63 It has 31 sūtras spread over 8 chapters. Of particular

relevance to us are the mathematical concepts in the last 15 verses of the eighth

chapter, where combinatorial tools and what amounts to a binary representation of

numbers are used in the discussion of metrical patterns.64

The basic entities in the discussion are laghu (light) and guru (heavy) syllables,

which we denote by L and G respectively. A syllable is guru if it has a long vowel or

(even if is a short syllable), if what follows is a conjunct consonant, an anusvāra, or

a visarga; otherwise it is a laghu. For instance, the sequence, “sra-s. t.u-rā-dhyā-va-

ha-ti” corresponds to G-L-G-G-L-L-L.

Prastāra

In the sūtras (rules) 8.20-23, Piṅgala tells us how to obtain the prastāras (layout

with all the possible metrical patterns) for 1, 2 and 3 syllables:

1. Form a G, L pair.

2. Insert on the right, G’s and L’s.

3. [Repeating the process] we have eight (vasavah. ) metrical forms in the 3-syllable

prastāra.

The single syllable prastāra is :

1 G

2 L

In the 2-syllable prastāra, the first two rows are got by attaching a G at the right

of each of the above, and the next two rows by attaching an L at the right of the

above. So, we have the 2-syllable prastāra:

On the Śulva-sūtras, Journal of the Asiatic Society of Bengal, XLIV, 1875, 227-275; A.D. Bürk,
“Das Āpastamba Śulva-sūtra”, Zeitschrift der deutschen morgenländischen Gesellschaft, LV, 1901,
543-591 and LVI, 1902, 327-391.

63Kedaranatha, ed., Chandah. -sūtra of Piṅgala with the commentary Mr.tasañj̄ıvan̄ı of Halāyudha
Bhat.t.a.

64The articles, R. Sridharan (a),“Sanskrit Prosody, Piṅgala Sūtras and Binary Arithmetic” in G.G.
Emch, R. Sridharan and M.D. Srinivas, eds. “Contributions to the History of Indian Mathematics”
and M.D Srinivas (a), “Piṅgala’s Chandah. śāstra”, Lecture 5, NPTEL course on Mathematics in
India from Vedic Period to Modern Times, www.nptel.ac.in, 2014, discuss the mathematical contents
of Piṅgala’s work. Our write-up follows the lecture note of M.D. Srinivas closely, and borrows
extensively from it.
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1 G G

2 L G

3 G L

4 L L

In the 3-syllable prastāra, the first four and the next four rows are obtained by

attaching a G or an L respectively at the right of the 4 rows of the 2-syllable prastāra.

So, we have the 3-syllable prastāra:

1 G G G

2 L G G

3 G L G

4 L L G

5 G G L

6 L G L

7 G L L

8 L L L

The procedure is likewise extended for metres with more syllables.65

The connection with the binary representation of numbers is the following. Set

G = 0, and L = 1, and consider the mirror reflection of a row in any prastāra. Then

that would be the binary representation of the row-number reduced by 1. Consider

for instance, the 7th row in the 3-syllable prastāra: G L L. The mirror reflection is

L L G = 1 1 0 = 0× 1 + 1× 2 + 1× 22 = 6 in the binary representation, which is

the row-number 7 reduced by 1.

Saṅkhyā

Now, the number of possible metres of n syllables is called saṅkhyā, which we

denote by Sn. Its value is 2n, as there are two possibilities for each syllable, namely

L or G, so that for n syllables it is 2 × 2 × 2 . . . n times, which is 2n. Sūtras 28-31

give an optimal algorithm for finding the number of metres with n syllables, i.e., 2n:

a. Halve the number and mark “2”.

b. If the number cannot be halved, deduct 1, and mark “0”.

c. [Proceed till you reach 0. Start with 1 and scan the sequence of marks from

the end].

d. If “0”, multiply by 2.

e. If “2”, square.

65In a later text called Vr.ttaratnāka (c. 1000 CE), there is an alternate rule related to the above for
generating the prastāras, which gives the same results. See Madhusudana Sastri, ed., Vr.ttaratnākara
of Kedāra with the commentaries, Nārāyan. ı̄ and Setu.
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Example: Consider for instance, the casee of n = 7.

1. 7 cannot be divided by 2. 7-1 =6. Mark “0”.

2. 6
2 = 3. Mark “2”.

3. 3 cannot be halved. 3-1=2. Mark “0”.

4. 2
2 = 1. Mark “2”.

5. 1-1=0. Mark “0”.

So, the sequence is 0 2 0 2 0. So beginning from the right, we have the sequence:

1× 2 = 2, 22, 22 × 2 = 23, (23)2 = 26, 26 × 2 = 27.

The same procedure is used for finding 2n in all later texts on mathematics in

India.

Sūtra 8.32 gives the sum of all the saṅkhyās:

S1 + S2 + S3 + . . .+ Sn = 2Sn − 2.

The next sūtra gives

Sn+1 = 2Sn.

Together, the two sūtras imply:

Sn = 2n and 1 + 2 + . . .+ 2n = 2n+1 − 1.

The latter is clearly the formula for a geometric series. It is implicitly used for

obtaining subsequent rules.

Nas.t.a, Uddis.t.a and Lagakriyā

Suppose some rows in a prastāra are lost or “nas.t.a”. They can be recovered

using Piṅgala’s procedure to find the metrical pattern corresponding to a given row.

It is based on the binary representation of a number, and association of L with 1,

and G with 0. The process (called nas.t.a) is stated in 8.24-25:

a. Start with the row number.

b. Halve it [if possible], and write an L.

c. If it cannot be halved, add 1 and halve, and write a G.

d. Proceed till all the syllables of the metre are found.

As an example, consider the construction of the 7th row of the 3-syllable prastāra.

1. 7 cannot be halved. 7+1
2 = 4, G.

2. 4
2 = 2, L.

3. 2
2 = 1, L.
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So, the metrical pattern is G L L. Note that the mirror reflection of this is

L L G, which corrresponds to 1 1 0 = 6 in the binary representation. This is expected,

as it is 1 less than the row number, which is 7.

Uddis. t.a is the inverse of nas.t.a, that is, finding the row number given the metrical

pattern. This is given in sūtras 8. 26-27 of Piṅgala’s Chandah. -sūtra and also in later

texts like Vr.ttaratnākara. We will not discuss it further, save mentioning that the rule

is again associated with the binary representation of numbers, and the association

of L with 1, and G with 0.

The lagakriyā process determines the number of metrical forms with r gurus (or

laghus) in a prastāra of metres of n syllables. This number is the binomial coefficient

nCr (the number of ways r objects can be chosen out of n objects).66 Piṅgala’s sūtra

on this (8.34) is all too brief. Halāyudha, the tenth century commentator explains it

as giving the basic rule for the construction of a table of numbers which he refers to

as the Meru-prastāra.67 Halāyudha’s table is actually a rotated version of the well

known Pascal triangle, and is based on the recurrence relation n+1Cr = nCr+ nCr−1.

In a recent article, Jayant Shah has claimed68 that the lagakriyā is actually

implied in some other sūtra of Piṅgala’s Chandah. śāstra in its Yajur rescension,

namely (8.23b), and not the one cited above and elaborated by Halāyudha.

As the laghu and guru are associated with short and long syllables respectively,

‘mātrā’ values of 1 for laghu and 2 for guru have also been assigned in the literature

following Piṅgala’s work. The mātrā value of any metrical form would be the sum of

the mātrās of each syllable. In the Prākr. ta text Vr.tta-jāti-samuccaya (c. 600 CE),69

Virahāṅka has discussed the problem of computing the total number of metrical

forms Mn for a given value n of the mātrā and shown that Mn = 1, 2, 3, 5, 8, 13, 21, . . .

for n = 1, 2, 3, 4, 5, 6, 7, . . ., and satisfy the relation Mn = Mn−1 + Mn−2.
70 This

relation is satisfied by the so-called “Fibonacci numbers”71 which are actually the

Virahāṅka numbers Mn, whose discovery was inspired by Piṅgala’s work.

66Mahāv̄ıra (850 CE) and Herigone (1634 CE) gave the explicit formula nCr =
n(n−1)(n−2)...(n−r+1)

1.2.3...r
.

67Kedaranatha, ed., op.cit. Also see C.N. Srinivasiengar, The History of Ancient Indian Mathe-
matics, 27-28; R. Sridharan (a), op.cit.; M.D.Srinivas (a), op.cit.

68Jayant Shah, “A History of Piṅgala’s Combinatorics”, Gan. ita Bhārat̄ı, Vol. 35, 2013, 1-54.
69H.D. Velankar, ed., Vr.tta-jāti-samuccaya or Kaisit.t.ha-chanda (in Prākr. ta) of Virahāṅka, with

commentary by Gopāla.
70R. Sridharan (b), “Pratyayas for Mātrāvr. ttas and Fibonacci Numbers”, 120-137; M.D. Srinivas

(b), “Development of Combinatorics”, and references therein.
71described by Fibonacci around 1200 CE
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4.2 Combinatorial, probabilistic and statistical ideas in other works

Vikalpa is the Jaina name for permutations and combinations. The Jaina text Bha-

gavat̄ısūtra (300 BCE) mentions the number of philosophical doctrines that can be

formulated by combining a certain number n of basic doctrines, taking one at a

time, two at a time, three at a time, four at a time, i.e., n (= nC1),
n(n−1)

1.2 (=

nC2),
n(n−1)(n−2)

1.2.3 (= nC3),
n(n−1)(n−2)(n−3)

1.2.3.4 (= nC4). The author further observes

that “in this way, 5,7, . . . , 10 etc., enumerable, unenumerable, or infinite number

of things may be mentioned.”72 It is remarkable that apart from suggesting the

number of combinations for a general n, mention is made of applying the method to

infinite collections, and that there is a recognition that there are infinities of different

cardinalities (i.e., sizes). This is indeed bold, considering the antiquity of the text.

A combinatorial statement also occurs in Chapter 26 of Suśrutasaṁhita, the

celebrated medicinal work of Suśruta.73 The text explicitly states (sūtra 4:12-13)

that when the six different rasas (tastes)74 are taken one, two, . . . , six at a time,

there are 6(= 6C1), 15(= 6C2), 20(= 6C3), 15(= 6C4), 6(= 6C5), and 1(= 6C6)

combinations and that their total is 63.75

In the Mahābhārata (Vana parva,72), there is an interesting episode in which

King R. tuparn. a reveals to Nala the quick sampling method of estimating the number

of leaves and fruits in a branch of a tree by counting them only on a portion of

the branch.76 P.C. Mahalanobis, who laid the foundations of statistics in modern

India, observes that there are certain ideas in the Jaina logic syādavāda “which seems

to have close relevance to the concepts of probability” and that syādavāda “seems

to have given the logical background of statistical theory in a qualitative form”.77

Mahalanobis clarifies that it is not claimed that the concept of probability in its

72C.N. Srinivasiengar, op.cit., 26-27; A.K. Bag, Mathematics in Ancient and Medieval India, 188.
73M.S. Valiathan, The Legacy of Suśruta, 243; C.N. Srinivasiengar, op.cit., 27; A.K. Bag, op.cit.,

188; M.D. Srinivas (b), “Development of Combinatorics in India 1”, Lecture 18, NPTEL course on
Mathematics in India from Vedic Period to Modern Times, www.nptel.ac.in, 2014. The range of
dates for the text varies from 600 to 300 BCE; see R.C. Majumdar, “Medicine” in D.M. Bose, S.N.
Sen and B.V. Subbarayappa, eds., Concise History of Science in India, 223-224.

74Bitter, sour, saltish, astringent, sweet and hot.
75C.N. Srinivasiengar, op.cit.; M.S. Valiathan, op.cit.; M.D. Srinivas (b), op.cit.
76This has been pointed out by the distinguished philosopher of science, Ian Hacking (The Emer-

gence of Probability: A Philosophical Study of Early Ideas about Probability, Induction and Statistical
Inference, 6-9) and by the eminent statistician, C.R. Rao (“ Statistics in Ancient India”, Science
Today, December 1977, 36). For a more detailed discussion on the episode, see C.K. Raju, “Proba-
bility in Ancient India” in P.S. Bandyopadhyay and M.R. Forster, eds., Handbook of the Philosophy
of Science Vol. 7, 2010, 1171–1192.

77P.C. Mahalanobis, The Foundations of Statistics, Sankhyā, Vol. 18, 1957, 183-194.;
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present form was recognised in syādavāda, “but the phrases used in syādavāda seem

to have a special significance in connection with the logic of statistical inference”.

In the very first page of the Editorial of the inaugural issue of the journal Sankhyā

(1933), P.C. Mahalanobis emphasises that “administrative statistics had reached a

high state of organization before 300 B.C.”78 As he points out,79 the Arthaśāstra

of Kaut.ilya “contains a detailed description for the conduct of agricultural, popu-

lation, and economic censuses in villages as well as in cities and towns on a scale

which is rare in any country even at the present time. . . . The detailed description

of contemporary industrial and commercial practice points to a highly developed

statistical system.” The Arthaśāstra also emphasises independent cross-verification

of the collected data.80

5 Astronomy in India before 300 BCE

5.1 Astronomy in Vedic literature before Vedāṅga Jyotis.a

There are references to astronomical phenomena and observations right from the

early Vedic period.81 The Sun was considered as the Lord of the universe who

supports the heavens and the earth, controls the seasons and causes the winds. In

the R. gveda it is stated that “God Varun. a charted in the sky, a broad path for the

Sun” (R. V 1.24.8), which probably alludes to the zodiacal belt. In the Taittir̄ıya

Saṁhita (3.4.7.1), the Moon is referred to as ‘Sūryaraśmi ’, i.e., “(one who shines

by) Sun’s light”. The dependence of Moon’s phases on its elongation from the Sun

is implicit in a description in Śatapatha Brāhman. a (1.6.4.18-20). This text also

describes the earth explicitly as a sphere: pariman. d. ala u va ayam lokah. (7.1.1.37).

The R. gveda (R. V, 1.164.11) mentions the wheel of time formed with 12 spokes and

720 days and nights; the Aitareya Brāhmana (AB, 1.7.7) refers to a saṁvatsara with

360 days. It is possible that they are referring to a year with 360 days.

In early Vedic literature, we find references to both lunar and solar months. Now,

a lunar month, being the time interval between two successive new Moons or full

78C.R. Rao too expresses the same view in C.R. Rao, op.cit.
79P.C. Mahalanobis, “Why Statistics?” Sankhyā, Vol. 10(3), 1950, 196-197.
80See P.C. Mahalanobis, op.cit., for the actual passages.
81B. Datta (d),“Vedic Mathematics”, in P. Ray and S.N. Sen, eds., The Cultural Heritage of

India, Vol. VI, 19-21; K.V. Sarma, “Indian Astronomy in the Vedic Age” in Siniruddha Dash,
ed., Facets of Indian Astronomy, 33-56; S.N. Sen, “Astronomy” in D.M. Bose, S.N. Sen and B.V.
Subbarayappa, eds., Concise History of Science in India, 58-135. All references to Vedic literature
in this section are as in the article by K.V. Sarma, unless stated otherwise.
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Moons, is a natural time-marker. Its average duration is nearly 291
2 days, i.e., there

are 354 days in twelve lunar months, which is less than a year. From early times it

was recognised that one needs to add ‘adhikamāsa’s or ‘intercalary months’ at regular

intervals to align the lunar months with the solar year. The twelve months of the

year (possibly solar months with 30 days each) have been named in the Taittir̄ıya

sam. hita which also gives the names of the intercalary months as ‘sam. sarpa’ and

‘am. haspati ’ (Taitt. Sam. 1.4.14):

“(O Soma juice!), you are taken in by the dish (upayāma). You are

Madhu, Mādhava, Śukra, Śuci, Nabhas, Nabhasya, Īs.a, Ūrja, Sahas, Sa-

hasya, Tapas, Tapasya. You are also Saṁsarpa and the Aṁhaspati.”

The months are distributed among the six seasons. However, there is no mention

of any rule regarding when the intercalary months are to be added. Seasons were

determined by the position of the Moon. It has been suggested that the year being

made of nearly 365 days is indicated in Vedic texts like Taittir̄ıya Saṁhita.82 Other

possibilties of intercalation which would yield an average year of 365.25 days have

also been suggested.83 The basic concept of the calendar with 12 lunar months in a

year with intercalary months at suitable intervals, is followed to this day in India,

though in a more precise manner.

The northern and southern motions of the Sun (uttarāyana and daks. in. āyana)

are referred to in R. g, Yajur and Atharva vedas. The equinoxes at the middle of

the ayanas and the solstices at their beginning are mentioned. It is noted that the

Sun stands still at the winter and summer solstices.84 A 5-year yuga-cycle is also

mentioned in Taittir̄ıya and Vājasaneyi saṁhitas.

As the sidereal period of the Moon is close to 27.11 days, i.e., the Moon covers

nearly 1
27th part of the ecliptic85 per day (angle-wise), it is natural to divide the

82In his introduction to the work on Vedāṅga Jyotis.a, T.S. Kuppanna Sastry observes: “The solar
year was known to have 365 days and a fraction more, though it was roughly spoken of as having 360
days, consisiting of 12 months of 30 days of each. Evidence of this is found in the Kr.s.na-yajurveda:
Taittir̄ıya Saṁhita (TS) 7.2.6, where the extra 11 days over the 12 lunar months, totalling 354 days,
is mentioned to complete the r. tus by the performance of the Ekādaśa rātra or eleven-day sacrifice.
TS 7.1.10 says that 5 days more were required over the Sāvana year of 360 days to complete the
seasons, addding that 4 days are too short and 6 days too long.” T.S. Kuppanna Sastry and K.V.
Sarma, Vedāṅga Jyotis.a of Lagadha, 10. The relevant passages from TS are in page 20.

83S.N. Sen, op.cit., 75-76.
84This is due to the fact that the declination of of the Sun has the least variation at these points,

due to which the points of rising and settting of the Sun on the horizon do not vary over many days.
85Ecliptic is the circle which is the apparent path of the Sun around the earth in the background

of stars. It is inclined at an angle of nearly 23 1
2

◦
with the celestial equator.
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ecliptic into 27 equal divisions. Each of these divisions is called a ‘naks.atra’, so

that each day is associated with a naks.atra in which the Moon is situated. Aśvini,

Bharan. i, Kr. ittikā, Rohin. i, Mr.gaśira, Ārdrā, Punarvasu, Pus.ya, Āśles.a, Maghā,

Pūrva Phālgun. i, Uttara Phālgun. i, Hasta, Citrā, Svāti, Vísākhā, Anurādhā, Jys.t.hā,

Mūlā, Pūrvās. ād. hā, Uttaās. ād. hā, Śravan. a, Dhanis. t.hā, Śatabhis.aj, Pūrvābhādrā, Ut-

tarābhādrā, and Revati are the 27 naks.atras. The full list of 27 naks.atras headed by

Kr.ittikā appears in Taittir̄ıya saṁhita and Atharvaveda.86

B.V. Subbarayappa has pointed out that the nomenclature of some of the naks.atras

had agricultural significance:87

“The word Ārdrā means ‘wet’ and the naks.atra Ārdrā heralded the onset

of rains when the Sun became positioned in it . . . Pus.ya denoted the

growth and nourishment of young sprouts . . . Maghā meant the wealth

of standing fruitful crop.”

In R. g and Atharva vedas, five celestial objects are mentioned, as being distinct

from the stars. These are the planets Mercury, Venus, Mars, Mars, Jupiter and

Saturn. Jupiter and Venus are mentioned by name.88 Allusions to eclipses can

be seen in verses mentioning darkness hiding the Sun (solar eclipse) and the Moon

entering the Sun (lunar eclipse). The descendants of the sage Atri are said to be

knowledgeable about the eclipses.89

5.2 Vedāṅga Jyotis.a and allied literature

We have seen in early Vedic literature the rudiments of a calendar with intercalary

months added to ensure that the lunar months are in step with the seasons, and with

27 naks.atras as markers of Moon’s movement. However, all descriptions there are

qualitative. It is in Vedāṅga Jyotis.a that we have a definite quantitative calendrical

system.90 One of the limbs of the Vedas, this work is attributed to sage Lagadha and

comes in two rescensions: the R. gvedic (36 verses), and the Yajurvedic (43 verses);

86S.N. Sen, op.cit., 66-68; B.V. Subbarayappa and K.V. Sarma, Indian Astronomy: A Source
Book, 110-111. The Babylonians had a series of 33 or 36 zodiacal stars. Also there were hsuis or
stars associated with the lunar zodiac stars in Chinese records. However, there is no evidence of
any influence of these on the Indian naks.atras (S.N. Sen, op.cit., 79-82.), and the “indigenous origin
of the naks.atra system can never be in doubt” (B.V. Subbarayappa, The Tradition of Astronomy
in India, Jyotih. śāstra, 84).

87B.V. Subbarayappa, op.cit., 84.
88K.V. Sarma, op. cit., 53-54.
89K.V. Sarma, op.cit., 51-54; S.N Sen, op.cit., 64.
90T.S. Kuppanna Sastry and K.V. Sarma, op.cit.
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their basic content is the same. There is reference to the winter solstice being at the

beginning of the asterism Śravis. t.hā (Delfini) segment, and the summer solstice at

the mid-point of the Āsles.a segment. This would corrrespond to some time between

1370 BCE and 1150 BCE, taking into account the precession of the equinoxes and

possible errors in the precise locations of the solstices.91

The calendrical system of Vedāṅga Jyotis.a is as follows. A yuga has 5 solar years

each consisting of 366 civil days, i.e., there are 1830 civil days in a yuga. When the

Sun and the Moon are at the beginning of the winter solstice (in Śravis. t.hā, as we

saw), it is the beginning of the yuga, the first solar year, the first lunar month, and

the first ayana (uttarāyana in this case). Each year has 2 ayanas and 6 seasons.

After the completion of one yuga, the Sun and the Moon come together at the same

position in the stellar background. There are 67 sidereal lunar months (the time

required by the Moon to complete one revolution), and 62 (=67 - 5) synodic or lunar

months in a yuga. Each lunar month has two paks.as or parvas (bright and dark),

and each of them has 15 tithis, so that there are 124 parvas. Tithi is a concept

which is unique to India, and is explicitly mentioned for the first time in Vedāṅga

Jyotis.a.92

As there are 62 lunar months in 5 years, the Vedāṅga Jyotis.a adds two additional

or ‘intercalary months’ (adhikamāsas) in each cycle of 5 years: one each in the third

year and the fifth year.

The Vedāṅga Jyotis.a calendar is based on the ‘mean’ or average motions of the

Sun and the Moon. In later times, the Indian calendar retains the concepts of

intercalary months, tithis, naks.atras, etc., but all the calculations are based on the

true motions of the Sun and the Moon, which are not uniform.

There are arithmetical rules regarding the occurrence of various phenomena as-

sociated with the Sun and the Moon. Two important reference points in astronomy

are the points of intersection of the ecliptic and the equator, called equinoxes (vis.uvat

in Sanskrit). They are the mid-points of the uttarāyana (northward motion), or the

daks. ināyana (southward motion) of the Sun. Verse 31 in R. g rescension and verse 23

in the Yajur rescension of the Vedāṅga Jyotis.a tell us how to calculate the instant

91However, the text itself could have been composed later, but before 500 BCE. See T.S.Kuppana
Sastry and K.V. Sarma, op.cit. and Y. Ohashi (a), “Development of Astronomical Observation on
Vedic and Post-Vedic India”, Indian Journal of History of Science, Vol. 28 (3), 1993, 185-251.

92During each tithi, the angular separation between the Sun and the Moon increases by 12◦.
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of the nth equinox in terms of the number of parvas and tithis:93

“Take the ordinal number of the vis.uvat and multiply by 2. Subtract

one. Multiply by 6. What has been obtained are the number of parvas

gone. Half of this is the tithi at the end of which the vis.uva occurs.”

This can be understood as follows. The Sun traverses the ecliptic 5 times in a yuga,

and the interval between two vis.uvats corespond to half of the ecliptic. Also there are

124 parvas in a yuga. Hence the interval between two successive vis.uvats is 124
10 parvas

= 12 parvas, 6 tithis (as 1 parva = 15 tithis). Hence, the instant of occurrence of the

nth vis.uvat is (n− 1
2)(12 parvas 6 tithis) = (2n−1)×6 parvas+ (2n−1)×3 tithis,

which is the rule. There are more complex arithmetical rules regarding the instants

at which a lunar or solar naks.atra begins, and other instants.

The calendrical system of Vedāṅga-Jyotis.a is followed in many later texts, like

Arthaśāstra of Kaut.ilya (around the fourth century BCE), Śārdūlakarn. āvadāna (a

Buddhist text around the third century BCE, which was translated into Chinese

in third century CE), several Jaina Prākrit texts like Sūrya-prajñāpti and Candra-

prajñāpti (around 300 BCE), and Paitāmaha-siddhānta of first century CE.94

Duration of day-time

The duration of the day-time (time-interval between the Sunrise and the Sunset)

varies over the year, depending upon the position of the Sun on the ecliptic (specifi-

cally, its declination which is its angular separation from the equator), and also the

latitude of the place. On the equinoctial day, when the Sun is on the equator, the

durations of the day-time and the night-time are both equal to 15 muhūrtas for all

the latitudes.95 At the winter solstice, the day-time is the least and at the summer

solstice, it is the maximum. Vedāṅga-jyotis.a gives a simple arithmetical rule for the

duration of the day-time over the year in verse 22 of R. g rescension and verse 40 of

Yajur rescension:96

“The number of days which have elapsed in the northward course of

the Sun (uttarāyana) or the remaining days in the southward course

(daks. ināyana) doubled and divided by 61, plus 12, is the day-time (in

muhūrtas) of the day taken.”

93T.S. Kuppanna Sastry and K.V. Sarma, op.cit., 47.
94Y. Ohashi (a), op.cit.
95A muhūrta is one-thirtieth of a civil day.
96T.S. Kuppanna Sastry and K.V. Sarma, op.cit., 66.
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Hence, the duration of day-time is given by

Dt = (12 +
2n

61
) muhūrtas,

where n denotes the number of days elapsed after the winter solstice when the Sun’s

course is northward, and the number of days yet to elapse before the winter solstice

when the Sun’s course is southward. On the winter solstice day, n = 0, and Dt = 12

muhūrtas; at the equinox (vis.uvat), n = 91.5, and Dt = 15 muhūrtas; and at the

summer solstice, n = 183, and Dt = 18 muhūrtas.

Actually, Dt depends upon the latitude of the place, and the text does not specify

the place where the formula is valid. The ratio of the daytimes for the summer and

winter solstices is 18 : 12 = 3 : 2 according to the formula, and this is true for a

latitude of 35◦N using the modern formula for the day-time.97 However, the values

of Dt using the modern formula for this latitude do not agree with the Vedāṅga

Jyotis.a rule for most days. Ohashi showed that the rule works well for latitudes

between 27◦ and 29◦ N, for most days and is probably based on observations.98 The

following figure depicts the variation of the day-time, Dt with the number of days

elapsed after the winter solstice.99 As the longitude of the Sun, λ varies uniformly

in Vedāṅga-Jyotis.a:

λ = −90◦ +
n

183
× 180◦,

where n denotes the number of days elapsed after the winter solstice. Here, λ = −90◦

at the winter solstice (n = 0), and λ = 90◦ at the summer solstice (n = 183). The

duration of the day-time for partcular values of λ and the latitudes of the place is

easily calculated using modern spherical astronomy.100 We compare the variation of

the day-time with n using the Vedāṅga-Jyotis.a formula (straightline in the figure),

and the modern formula for latitudes 27◦, 29◦ and 35◦N. For the first two latitudes,

there is remarkable agreement with the rule in the text, except near the solstices, as

pointed out earlier, whereas for the latitude of 35◦N, the agreement with the rule is

good only at the solstices and the equinox.

The use of gnomon for determining directions

97See for instance, W.M. Smart, Textbbook on Spherical Astronomy.
98Y. Ohashi (a), op.cit., 205; Y. Ohashi (b), “Mesopotamian Zig-zag Function of Day Length

from Indian Point of View”, Gan. ita Bhārat̄ı, Vol. 34, 2012, 53-64.
99This figure is in the same spirit as the ones in the papers by Ohashi, where the duration of day-

time is plotted against Sun’s lomgitude, λ in the interrval 0◦ to 90◦ for 27◦N and 29◦N longitudes,
and compared with the values in the text.
100W.M. Smart, op.cit.
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Figure 6: Comparison of the length of day-time calculated from the modern formula
for latitudes 27◦, 29◦ and 35◦N, with the Vedāṅga Jyotis.a rule.

A prominent feature of the śulba texts is the reference to the west-to-east direction

(prāc̄ı, the eastward line). Every Vedic fire-altar has a principal line of symmetry

which is to be placed along this direction. All geometric constructions in the Śulba

texts are described with reference to this west-east line and its perpendicular (the

north-south line). The fixing of these cardinal directions is one of the features of Śulba

geometry, which seems to have influenced post-Vedic trigonometry with its emphasis

on the sine function (as in modern trigonometry).101 The Kātyāyana Śulba-sūtra

(I.2) describes the determination of the east-west line:102

“Having put a gnomon (śaṅku) on a level ground, and having described

a circle with a cord whose length is equal to the gnomon, two pins are

placed on each of the two points where the tip of the gnomon-shadow

touches [the circle in the forenoon and afternoon respectively]. This [line

joining the two points] is the east-west line (prāc̄ı)”.

Annual and the diurnal variations of the shadow

In Artha-śāstra (II.20.41-42) it is stated that the mid-day shadow of a 12-digit

gnomon is zero at the summer solstice, and increases at the rate of 2 digits per month

101See P.P. Divakaran (b), “What is Indian about Indian Mathematics?”, Indian Journal of History
of Science, Vol. 51(1), 2016, 67-68.
102S.N. Sen and A.K. Bag, ed. with English translation and commentary, “Śulbasūtras”, New

Delhi, 1983; Y. Ohashi (a), op. cit.
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during the Sun’s southward course towards the winter solstice.103 The Buddhist

text Śardūlakarn. āvadāna, and the Jaina texts also give lists of shadow-lengths every

month.

The Artha-śāstra (II.20.39-40) and the Jaina text Candra-prajñāpti give similar

data for the diurnal variation of the shadow.104 The Artha-śāstra values fit very

well with the actual shadow at the summer solstice for a latitude of 23.7◦N. The

Śardūlakarn. āvadāna and the Atharva-Jyotis.a data on the diurnal variation of the

shadow fit reasonably with the actual shadows at the equinox. From the stated

numbers in the various texts on the annual and diurnal variations of the shadow,

Ohashi concludes that they are based on actual observations in north India.105

6 Concluding remarks

We have seen that some of the major mathematical and astronomical concepts in

India can be traced to Vedic times. The ideas are elaborated in the Vedāṅga and

Sūtra period; there were contributions from the “heterodox” Jaina and Buddhist

schools too. This corpus of literature before 300 BCE had a profound impact on the

development of mathematics and astronomy in India in the later period.106 We have

already remarked on the centrality of the decimal system for the excellence attained

in Indian arithmetic, algebra and astronomy. The polynomial-type methods for

performing algebraic operations are similar to operations involving numbers in the

decimal place value system. Again, it is due to the decimal system that Indians in

the classical age could attempt the problems of finding integer solutions of linear

and quadratic indeterminate equations which often involve very large numbers, and

develop their mathematical astronomy which again involved large numbers.

Śulba geometry based on the Baudhayana-Pythagoras Theorem played a pivotal

role in the development of geometry, trigonometry and astronomy in the later period.

The emergence of calculus concepts in India in the form of infinite series for π and

103R.P. Kangle (a), op.cit., 71; R.P. Kangle (b), op.cit., 139; Y. Ohashi (a), op.cit., 208-209.
104Y. Ohashi (a), op.cit., 214-217.
105See Y. Ohashi (a), op.cit., 214, 225.
106B. Datta and A.N. Singh, History of Hindu Mathematics, Parts I and II ; B. Datta, A.N. Singh

(revised by K.S. Shukla), “Hindu Trigonometry”, Indian Journal of History of Science, Vol. 18, 1983,
39-108; C.N. Srinivasiengar, The History of Ancient Indian Mathematics; A.K. Bag, Mathematics in
Ancient and Medieval India; T.A. Saraswati Amma, Geometry in Ancient and Medieval India; Kim
Plofker, History of Mathematics in India: From 500 BCE to 1800 CE ; D.A. Somayaji, A Critical
Study of Ancient Hindu Astronomy ; S.N. Sen and K.S. Shukla, eds, A History of Indian Astronomy ;
B.V. Subbarayappa and K.V. Sarma, op.cit.; B.V. Subbarayappa, op.cit.
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trigonometric functions and integration methods107 was facilitated by the decimal

system, and the geometrico-algebraic methods of the Śulba-sūtras.

Combinatorial ideas in Piṅgala’s Chandah. -sūtra and other texts are elaborated

and further developed in later works. We have seen in Section 4.1 that Virahāṅka’s

discovery (around 600 CE) of the so-called Fibonacci numbers was inspired by

Piṅgala’s work (around 300 BCE). Again, while the post-Vedic Gan. itasārasaṅgraha

(850 CE) of Mahāv̄ıra gives the general formula for nCr, we have seen that Piṅgala’s

work gives a hint for finding nCr, and explicit values of nCr’s are mentioned for

specific values of n in various pre-300 BCE texts. Further progress is recorded in

the works of Bhāskarācārya (12th century), Nārāyan. a Pan. dita (14th century) and

others.108 We also see sophisticated combinatorics in the thoery of Indian music,

where the pratyayas (procedures) are essentially the same as in Piṅgala’s seminal

work.109

We cite one example of the influence of Vedāṅga-Jyotísa in post-Vedic Siddhāntic

astronomy. In the 5-year cycle of yuga with 1830 days in Vedāṅga-Jyotísa (with

antecedents in Brāhman. as), both the Sun and the Moon were considered to com-

plete integral numbers of revolutions (5 and 67 respectively) around the earth. In

Āryabhat.ı̄ya (499 CE) and subsequent texts, we have the notion of a Mahāyuga of

43,20,000 years in which apart from the Sun and the Moon, all five visible plan-

ets along with their apsides and nodes complete integral number of revolutions.110

Again, the post-Vedic Siddhāntic calendrical system with solar, sidereal, synodic

and intercalary months, naks.atras and so on, is an advanced version of the Vedāṅga-

Jyotísa calendar, with the calculations based on the true positions (“longitudes”) of

the Sun and the Moon, rather than their mean positions as in the latter. Similarly,

the procedure for finding the exact east directon, and the time from the shadow in

the Siddhāntic texts have their genesis in the Śulbasūtras, Arthaśāstra, and the Jaina

107A.K. Bag, op.cit.; K.V. Sarma, K. Ramasubramanian, M.D. Srinivas and M.S. Sriram, Gan. ita-
Yukti-Bhās. ā of Jyes.t.hadeva.
108See B. Datta and A.N. Singh (revised by K.S. Shukla), “Permutations and Combinations in

India ”, Indian Journal of History of Science, Vol.27(1), 1992, 231-244, for developments upto
Bhāskara’s times. For Nārāyan. a’s work on combinatorics, see Paramanand Singh, “Gan. itakaumudi
of Nārāyan. a Pan. dita, Chapter XIII, English translation with notes”, Gan. itabhāratī, Vol. 23, 2001,
18-82.
109Raja Sridharan, R. Sridharan, and M.D. Srinivas, “Combinatorial Methods in Indian Music:

Pratyayas in Saṅgītaratnākara of Śāraṅgadeva” in C.S. Seshadri, ed., Studies in the History of Indian
Mathematics, 55-112.
110K.S. Shukla and K.V. Sarma, ed. with English translation and notes, Āryabhat.ı̄ya of Āryabhat.a.
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and Buddhist works before 300 BCE.111

Indian mathematics and astronomy are algorithmic in nature.112 The roots of this

algorithmic approach are to found in the sūtra literature — Śulbasūtras, Chandah. -

sūtra, Vedāṅga-Jyotísa, Bhagavat̄ısūtra and other works before 300 BCE.
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183-194.

Majumadar, R.C., “Medicine” in D.M. Bose, S.N. Sen and B.V. Subbarayappa, eds.,

A Concise History of Science in India, Indian National Science Academy, New Delhi,

1971, 223-224; revised edition, Universities Press, Hyderabad, 2009.

Ohashi, Y., “Development of Astronomical Observation on Vedic and Post-Vedic

India”, Indian Journal of History of Science, Vol. 28 (3), 1993, 185-251.

Ohashi, Y., “Mesopotamian Zig-zag Function of Day Length from Indian Point of
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