ABEL AND THE INSOLVABILITY OF THE QUINTIC

JIM BROWN

ABSTRACT. In this paper we deal with the insolvability of the quintic from
Abel’s perspective. We give a brief historical recap of the problem culminating
in Abel’s proof that a general quintic can not be solved by radicals. Most
students of mathematics are familiar with the Galois theory argument that
the general quintic is not solvable by radicals. It is our hope that this paper
will shed light on the brilliance of Abel that is often overlooked. The modern
language of groups and fields is pushed to the background, only to be brought
forward in illustrating how Abel’s ideas translate into modern language. The
student who is not familiar with modern algebra but has the ability to read
proofs and abstract mathematics should be able to read this paper and gain
an understanding of this beautiful piece of mathematics.

1. SOLVABLE BY RADICALS?

In this paper we will treat Abel’s proof that a general quintic is not solvable
by radicals, a startling proof when most mathematicians of the day thought it was
just a matter of time until someone found a method of solution. We will review not
just Abel’s proof, but also the history of the problem leading up to Abel’s work.
This paper does not assume the reader is familiar with modern algebra. Field
extensions will be used to help connect the material to modern algebra for those
with a knowledge of the subject, but this connection is not essential to understand
Abel’s proof. However, before we delve into the actual problem we remind the
reader what this problem is and what it means for an equation to be solvable by
radicals.

Consider the polynomial

f(z) = anz™ + an_12™ '+ ---+ a1z + ao.

In modern language, we say that f(z) is solvable by radicals if the roots of f(z) are
in a finite field extension L/K where L is formed by successive field extensions

1 1

1 1 1
K:K()CKl:K(T‘anl)CK2:K1(’/'1m2)C“'CL:Kn:Kn_l(’I“TT_"l)

for integers my, ..., m, and elements r; € K.
Let us illustrate this by looking at the quadratic equation

f(z)=ax® + bz +c

for integers a,b, and ¢. The solutions to the quadratic equation, as is well known

to all, are given by
. —b+ /b2 —4dac
- 2a '

2000 Mathematics Subject Classification. Primary 01A55.
Key words and phrases. Abel, Insolvability of the quintic.

1
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The solutions are obtained from the normal elementary operations in addition to
forming the square root of b> — 4ac. In this case, L = Q(v/b2 — 4ac). Therefore, a
quadratic equation is clearly solvable by radicals.

Similarly, one can see that the general cubic and the general quartic equations
are solvable by radicals. For example, the general cubic can be put into the form
f(x) = 2% + ax — b by a linear change of variables. A root of this polynomial is

given by
i 3 b + b2 + a2
r=\2 T \/ 27

One can see this is a radical solution to f(z) as deﬁned above. In terms of fields,

we have
b2 a?
- K z_ v
K (V4+27>’

3/ b b2 a2
K, = K; > Vit )
3/ b b2 a2
L = K K e bl
s=fel\g Tty Tor )

each of which is attained by adjoining a radical to the previous field where we
assume here that K contains the third roots of unity.

Of course Abel and his contemporaries did not have the language of field exten-
sions to work with. To Abel an equation is solvable by radicals if the roots are what
Abel calls algebraic functions. Recall that a rational function is the ratio of two

polynomials. Abel defines an algebraic function of the 0*" order to be a rational

5 — 4b
H would be a algebraic

1
function of the 0" order. An algebraic function of the 15 order is a function fi(fg")
where fj is a algebraic function of the 0** order and f; is a rational function of the

1

function of the coefficients. For example, fo(a,b,c) =

coefficients and f§" to the 0'" order. An example of an algebraic function of the

b+ /B2 =
1%t order would be fi(a,b,c) = w where for this example we have

= b2 —4acand m = 2. Similarly, we can define an algebraic function of any pos-

itive order k to be a function fi(f,” ) where fr,_1 is an algebraic function of order
k — 1, my is a positive integer, and fk is a rational function of the coefficients and
1

fkmj’“l. We call an algebraic function of some positive order k an algebraic function.

2. THE QUADRATIC, CUBIC, AND THE QUARTIC

The ability to solve quadratic equations dates back to the Babylonians around
4000 years ago. The Babylonians did their mathematics entirely base 60. Of course
they did not treat these as abstract equations; their work was entirely word prob-
lems. What a nightmare for modern algebra students! Therefore they did not
have a formula to solve general quadratic equations, but rather were aware of the
method of completing the square in order to solve particular quadratic equations
they encountered.
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The next group to treat quadratic equations was the Arabic algebraists. The
most famous of this group of mathematicians being al-Khwarizmi. He felt the need
not just to solve the equations, but also to demonstrate their solution geometrically.
This was also a popular trend as algebra moved to Europe; mathematicians of the
day viewing algebra as inferior to geometry. The quadratic equations encountered
by the Arabic algebraists were mostly in terms of bookkeeping problems. In fact,
this seems to be the way that algebra was originally transferred to the geometric-
minded Europeans.

This is where solvability remained until the 1500’s when a group of Italian math-
ematicians provided solutions to the general cubic and general quartic. The Baby-
lonians did make progress on the solution to the cubic, but their work was mostly
lost until the 20th century and certainly not available to the mathematicians of the
16th century. The story of the solution of the cubic, and eventually the quartic, is
a well known one. It is the first real instance of a priority fight over a discovery,
especially one that turned nasty. Many great mathematicians of the day had tried
and failed to find a method of solving the cubic by radicals. One notable example
is Fibonacci, who believed the cubic unsolvable by radicals after failing to find a
solution himself.

Many modern authors attribute the solution of the cubic to either Cardano
or Nicolo Fontana. Fontana is more well know as Tartaglia, the name normally
encountered when reading about the cubic. In fact, del Ferro seems to have been
the first to solve the cubic. He never published his work, but rather passed his
method on to a student before he died. Tartaglia claimed to be the first to solve
the cubic. It may be that he did solve it independently of the work of del Ferro, but
it is also entirely possible he was influenced by del Ferro’s work. It is difficult to trust
Tartaglia’s claims because at this point in his life he had already published other’s
work claiming it to be his own several times. Regardless of del Ferro’s influence
on Tartaglia, it is clear that Tartaglia’s solution was more general then del Ferro’s.
This much is clear due to the fact that Tartaglia defeated del Ferro’s student in
a mathematical duel, a popular way mathematicians of the day determined their
prowess.

Cardano was interested in the solution of the cubic not just for the practical
applications it entailed; he also viewed it as a way to out-perform the ancients by
solving a problem they were unable to solve. When he learned of Tartaglia’s claim
to have solved the cubic he was intent on discovering Tartaglia’s method. Tartaglia
was a poor man and in need of money. Cardano convinced him to share his solution
under the agreement that Cardano would not publish the solution. Cardano kept
his word until he learned of del Ferro’s solution, which he regarded as voiding
his agreement with Tartaglia. When Cardano published the solution in his Great
Art, he attributed it to Tartaglia as well as del Ferro. The mention of del Ferro
infuriated Tartaglia, who claimed plagiarism. In fact, Tartaglia did not have the
general solution to the cubic. Cardano was able to provide a solution that worked
in full generality, allowing his student Ferrari to defeat Tartaglia in a mathematical
duel of their own. The method used by all of these mathematicians is the same
as used to solve the quadratic equation. They discovered a way to “complete the
cube” in order to write the equation in the form z® = a. The Cardano solution to
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the equation z3 + az — b = 0, as given in the previous section, is
) bl

_3b+ b2+a2+sb b2_’_a2
r=\stVatm T\ Vita

Once the cubic had been solved, the quartic soon followed suit. Cardano’s stu-
dent Ferrari was able to solve the quartic by employing the same method as had
been used to solve the cubic. Ferrari is able to reduce the quartic to solving a qua-
dratic equation, thereby reducing it to an equation he was already able to solve.
We will not state the solution here as it is not as simple to state and is easily found
in any standard abstract algebra book, see ([4], Section 14.7) for example.

3. THE FIRST “EQUATIONS” AND THE FIRST “SOLUTIONS”

It is often overlooked that the work of the Italian mathematicians on the cubic
and the quartic was done without the benefit of modern notation or abstraction.
They were still working with word problems, phrasing their cubics in the form:

“Two men go into business together and have an unknown capital.
Their gain is equal to the cube of the tenth part of their capital.
If they had made three ducats less, they would have gained an
amount exactly equal to their capital. What was their capital and
their profit?”

It is of course much easier to state now:

“What are the roots of the equation (f—o)3 - 3=z

The 17th century French lawyer and code-breaker Viete was the first to introduce
modern notation. He was the first to come to the realization that a symbol can stand
for a number and this symbol can be manipulated like a number. We now refer to
Viete’s “symbols” as variables, but Viete referred to them as species, indicating the
entire species of numbers they could represent. It is clear what an extraordinarily
powerful problem solving discovery this was. On top of this, he was also the first
to consider the idea of coefficients. With these two breakthroughs he was able to
begin considering equations of the forms az® + bz? + cx + d = 0 as opposed to
specific word problems as above.

Viete did not believe these discoveries to be his own. Unlike the Italian mathe-
maticians discussed in Section 2 who were very concerned with their priority, Viete
believed he had only rediscovered what the ancients must have already known.
Though there is no evidence that the ancients did know his methods, Viete could
not fathom how the Greeks would have been able to discover their proofs without
his methods. One thing Viete was not modest about was the applicability of his
methods. He believed that he could find the root of any polynomial by employing
his new machinery. Adding fuel to this notion was his ability to solve a contest
problem presented by van Roomen that involved finding the roots of a degree 45
polynomial. It so happened that Viete recognized the equation as a trigonometric
identity, which he was then able to solve.

Descartes, a much more famous mathematician then Viete, picked up where
Viete left off. He further developed Viete’s methods and symbols to the point that
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his works begin to resemble modern mathematics. Descartes was the first to state
the fundamental theorem of algebra: a degree n polynomial necessarily has n roots.
Descartes did not attempt to prove this statement. He believed all polynomials of
degree greater then 4 could be solved with the same methods as had been applied
to the quadratic, the cubic, and the quartic. In fact, he left the solution of higher
degree equations as an exercise to the reader.

4. THE WORK OF LAGRANGE AND RUFFINI

No discussion of the history of the insolvability of the quintic would be complete
without discussing Langrange’s contributions. Lagrange’s 1771 paper Reflections
on the Algebraic Theory of Equations was an immensely important paper. Instead
of merely pushing forward and trying to find a solution of the quintic by radicals,
Langrange analyzed why the methods used to solve the quadratic, the cubic, and
the quartic had succeeded. He concluded that the method that had been used to
solve these equations would not work to solve the quintic. His reasoning was as
follows. For a cubic with roots a;, as, a3 Langrange considered the resolvent

R = (a1 + &az + Ea3)?

with &3 a root of the equation 23 —1 = 0. His novel idea was to consider what effect
a permutation of the roots (a1, as, a3) would have upon the resolvent. For the cubic
there are 3! = 6 different possibilities for the permutation of the roots. However,
Lagrange calculated that these permutations only lead to 2 different possible values
for the resultant. For instance,

(1 + &30 + E23)® = (o + &z + E2an)?.

Similarly, when he considered the resolvent of a quartic he found that there are only
3 possible values for R even though there are 4! = 24 possible permutations of the
roots. The key fact here is that the number of possible values for the resolvent is
less then the degree of the equation one is trying to solve. This is what allows one
to simplify the equation as was done for the quadratic, cubic, and quartic. When
Lagrange considered the resolvent of the quintic, he found that there were 6 possible
values! Langrange concluded that the methods used before would not generalize to
solve the quintic. However, he was still confident that the quintic could be solved
by new methods.

Gauss seems to have been the first prominent mathematician to state that he be-
lieved the quintic was not solvable. His first statement to this effect was contained
in his 1799 doctoral dissertation. He published this thought in his Disquisitiones
Arithmeticae:

“Everyone knows that the most eminent geometers have been in-
effectual in the search for the general solution of equations higher
then the 4th degree... And there is little doubt that this prob-
lem does not so much defy modern methods of analysis as that it
proposes the impossible.”

It is now widely known that the first serious attempt at proving the insolvability
of the quintic was given by the Italian Paolo Ruffini. Ruffini was a doctor by trade,
using his evenings to jot down his musings on mathematics. During his lifetime
he published 6 versions of his proof, the first in Teoria Generale delle Equazioni in
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1799 and the last in 1813. The reason he published so many versions is that his
proof was not widely accepted. Each version of the proof was written to try and
answer criticisms other mathematicians had leveled at his work. Ruffini’s writing
was notoriously long and difficult to understand. Lagrange, who Ruffini credited as
his inspiration, said of Ruffini’s work that there is “little in it worthy of attention.”
One of the few eminent mathematicians who did give Ruffini credit was Cauchy.
He wrote to Ruffini praising his work, letting him know he had lectured on Ruffini’s
work and even generalized some of the results.

In fact there was a gap in Ruffini’s proof. Ruffini assumed without proof that
all algebraic functions can be expressed in terms of rational functions of the roots
of the equation. In modern language, Ruffini failed to show that if L is a field
that is contained in a radical tower over a field K, then L itself must necessarily
be a radical extension. Later in his life Abel read Ruffini’'s work, coming to the
same conclusions as most had that the work was difficult to read and did not fully
demonstrate the insolvability of the quintic.

5. ABEL: A BIOGRAPHICAL SKETCH

In this section we give a brief biographical sketch of Abel’s life. The interested
reader is advised to consult [5] for a more thorough treatment of Abel’s biography.

Abel was born on August 5, 1802 in Frindoe, Norway. At the time Norway was
still part of Denmark, not achieving independence until 1814. Abel grew up poor
with many accounts saying his father was a drunk and his mother a woman of “low
moral standards.” Both of his parents died by the time he was 18 years old, leaving
him to care for himself and his younger siblings.

Abel’s genius was already apparent during his years in high school. His high
school teacher Holmboe recognized his gifts and encouraged him to pursue them.
While in high school Abel read works by Lagrange and Cauchy, among others. In
fact, Abel read one of Cauchy’s papers that was based upon Ruffini’s work!

In 1821 Abel entered Royal Frederick’s University in Christiania where he con-
tinued to excel. During his years at the university Abel believed he had found
a general solution to the quintic. However, when pressed for numerical examples
by his teachers he soon discovered his solution was not a general one. After this
incident Abel set his sights on proving that the quintic was not in fact solvable by
radicals. Due to his extraordinary talents, Abel was granted special permission by
the university to travel to Berlin and Paris to meet with the great mathematicians
of the day. Abel published his proof of the insolvability of the quintic in 1824 in
the hope that it would open doors for him during his travels.

While on his travels Abel met several prominent mathematicians, receiving a
chilly reception from most. While in Paris Abel met Legendre and Cauchy, each of
which was less then encouraging to Abel. Abel wrote of the French mathematicians
he met:

“monstrous egotists ... uncommonly reserved with respect to for-
eigners ... Everyone works by himself here, without bothering oth-
ers. Everyone wants to teach and no one wants to learn.”

One of the more influential mathematicians he met was not one of the most
famous of his day, but is well known now for the journal that still bears his name:
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Crelle. Crelle was very impressed with Abel’s work and encouraged him to submit
his papers to the journal he was starting. Abel continued for the rest of his life to
submit his work to Crelle for publication in his journal.

Towards the end of his life people finally started to recognize the brilliance of
Abel’s work. Such mathematicians as Gauss and Legendre sang his praises. Un-
fortunately, Abel was unable to secure a university position even with such math-
ematicians trying to find him work. He continued his work on the solvability of
equations by radicals. In his pursuits he was the first to introduce the notion of
“abelian”, the notion still bearing his name. He may have finished the work that
was ultimately left for Galois had he not stopped working on the solvability of
equations in order to pursue competitive work with Jacobi on elliptic functions.

Abel died in poverty on April 6, 1829 of tuberculosis. On the 8th of April Crelle
sent word that he had finally found a position for Abel so he would live in poverty
no longer.

6. ABEL’S PROOF

In this section we present Abel’s proof of the insolvability of the quintic by
radicals as given in his 1824 paper. The method employed is reductio ad absurdum.
Though the proof given in Abel’s 1824 paper is very terse; we will fill in the details
where appropriate. We are indebted to [5] for Abel’s proof as well as the author’s
comments on the proof.

We begin with the general equation of degree 5
(1) v —ayt+ by — e +dy—e=0
with the assumption that y is expressible in terms of radicals of the coefficients.
Abel states that it is clear that one can write

y=ao+ a1R? + asR> + -+ + (1,,_1Rp1'%1

where p is a prime and ao,...,ap—1, R are all of the same form as y. He presents
a proof of this fact in an 1826 paper. We state this result as a theorem and give
Abel’s proof of this fact.

Theorem 6.1. Any algebraic function y solving Equation 1 can be written in the
form
1 2 p=1
y=ao+aRer +ayR? +---+a, 1R»
with p a prime and ag, . ..,ap—1, R are algebraic functions of lower order then y.

Proof. Note that by factoring p and writing radicals to the p as a nested sequence,

we can assume p is prime. For example, a = {/ Ja.
Let v be an algebraic function as in the statement of the theorem. By definition

. F
we can write v = el where

G =go+giR> + g2Rv +--- + g,R*
for some ¢ € N and p prime and similarly for F'. Next we consider the substitutions
1 1 1 1 1 1
Ry — (R?»,R* + £2R?,...,R? +— (P 'R? where £ # 1 is a solution to the
equation z? — 1 = 0. Note that we have p — 1 different substitutions so in general
we have p—1 different values of G, call them G, ...,Gp—1. Consider the expression
= FGGy---Gp_q
- GGGy Gp1’
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We claim that we can write the denominator of v as an algebraic function of the
0" order. To see this, merely multiply out the expression and gather terms:

GG1Gy--Gyo1 = (go+ g R? +gaRé + -+ g,R?)
x(go + G1ER? + g282R7 + - + g, £ R#)
X oo X (go + g1&P ' RY + go2P"URE 4 .- 4 g, &PV RY)
= something with no R¥ left with 0 < i < p

where we have used the fact that

L 1
1+E+8+--+ 1 = -
= 0.

If go is a polynomial, we are done. If it contains further radicals we can repeat the
process until their are no radicals left, leaving us with a go that is simply a rational
function of the coefficients, i.e., an algebraic function of the 0" order.

Using this fact, we can write

_F_FGlGQ"'Gp_l_ % %
v_G_GGng---Gp_l_f0+f1R +---f4R

as an algebraic function of order k for some positive integer k where we have
absorbed the rational function GG1G> - - - Gp—1 into the numerator and the f; and
R are algebraic functions of order k£ — 1. We can assume ¢ < p for if not we could
write p = n1q +m; and so R% = R™R%. We can then absorb the R™ into the
coefficients f;. a

To see an example of Theorem 6.1 we can consider the cubic y®> + ay —b =0
again. Cardano’s solution can be written in the form

Yo = R% + a2R§

where
b b2 ad
B=stVitw
and
o
>T 3R

Note that Theorem 6.1 can be stated in modern language as follows.

Theorem 6.2. Assume that 27 — R € F|[z] is irreducible and that o is a root. Let
B be an element of F(a) with 8 ¢ F. Then there is a v € F(a) such that v € F
and

B=ao+v+axy’+-- +ap_ 17"
where agp,as,...,ap—1 € F.
Theorem 6.3. The general equation of degree 5
(2) v —ayt+ by —e +dy—e=0

is not solvable by radicals.
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Proof. Suppose such a solution yq exists. Theorem 6.1 shows that we can write
(3) yo=ao+aiR? +ayRs + -+ +ap,_1 B>

with p a prime and ay, ..., ap—1, R are all algebraic functions of lower order then .
1

Note that we can assume a; = 1 by replacing R# by (f}) * if necessary. Therefore
1
assume our solution is of the form

p—1
(4) Yo =ag+ R¥ + ayR% +---+a, 1R .

We can assume that it is impossible to express R* as a rational function in
ap,ai,---,ap—1, R and the coefficients of Equation 2. Subsituting Equation 4 into
Equation 2, we obtain an expression

bo +biR¥ +b2R? + -+ b, R'7 =0

where the b; are polynomials in the a;’s and R and rational functions of the coefli-
cients of Equation 2.

Claim 6.4. It must be the case that bg, b1, ...,bp—1 are all 0.

Proof. Let z = R¥. We have the following simultaneous equations
22— R=0 and bg+biz+by2®+ - +b,_12P71 =0.

If we assume that the b; are not all 0 then we must have some nonzero solution
to the system of equations. Suppose there are k such values that are simultaneous
solutions. We can find an equation

(5) cot+ciz+ -+ g2t

that has these k values as its roots where the ¢; are rational functions of R, bg, b1,

.., bp—1. Since it shares the k roots with 2 — R = 0, we know that the roots of
Equation 5 must be of the form £z for £ a root of the equation 2z — 1 = 0. Upon
substituting the simultaneous solutions xi;2z into the equation

bo + b1z +baz” + - +by_12P71 =0

we obtain k simultaneous equations

co+ciz4-+eg2F = 0
co+éiciz+- Lz = 0

k ko _
co+&_1c12+---&_qcz” = 0.

If we treat each power of z as a separate unknown, then we have k simultaneous
equations to determine k¥ unknowns. Therefore we can always find z as a rational
function of ¢g,c1,...,c,. Since the ¢;’s are themselves rational functions of the
coefficients of Equation 2 along with ag, a1, ...,a,_1 and R, this shows that we can

express R¥ as such a rational function. However, we assumed this was not possible,
giving us our contradiction. Thus it must be that b; =0 for alli =0,...,p—1. O

Note that Claim 6.4 can be written in modern language as follows.
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Theorem 6.5. Let f(z) € F[z] be an irreducible polynomial of degree p over the
field F and let K = Flz]/(f(z)). Let § = z(mod f(z)) € K. Then the elements
1,6,6%,...,6° ! are a basis for K as a vector space over F.

Abel now observes that if yg is a solution to Equation 2, then so are the values y;
where the values y; are obtained from yg by making the substitution Rv §"R% for
& as above. One can see that these y; are still solutions by making the substitution
into Equation 2. One will once again get an expression

bo+ by R¥ +byRv +---+b, |R*%

as before, only this time we will also have powers of £ multiplying the b;. However,
we showed above that all the b; are necessarily 0, so we still get that this sum is 0.

Observe that since we are looking at a quintic, it must be that p < 5. We can
also restrict to the case that the roots are distinct. If we have a quintic polynomial
f(x) with a repeated root «, then we can write f(z) = (z — a)?g(z) where g(z)
is a polynomial of degree 3. Then showing that the roots of f(z) are expressible
by radicals is the same as showing that (z — a)g(z) has roots that are expressible
as radicals. However, this is a polynomial of degree 4, a problem that has already
been solved. Therefore we have the following equations

(6) Yo = ao-i-R%+azR%+---+ap_1RpTTl
(7) yi = ao+ERP + @R + - +ap 1 PR
(8) Yp 1 = ao+E&'RE + P R5 +--- +a, 1ERT .

Consider now the sum yo +y1 + - - - + yp—1. This sum is given by

Yo+ y1 -+ ypo1 = pao+ (1 +E+ -+ ERr
tas(l+&+--+E )RS + .-
-1
tap (L+E+-—+E HRS .

Recalling the definition of £, we see that
1
ap = E(yo +yi+ -+ Ypo1)-

Similarly, to find an expression for y;, we multiply Equation 6 by 1, Equation 7 by
&P~1, ete. until multiplying Equation 8 by ¢ and add them up. In this case we get

Yo + é’l’*lyl +§P72y2 4+ 4 é'yp71 — (1 + f 4+ a é-pfl)ao
PEPRY + apP(1+ €+ -+ )Ro + -
+ap 1L+ €64+ R

Therefore, we have

1 1 _
9) R» 21—)(110 My 4+ Eypor).
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Following the same reasoning we also obtain

2 1 _
wR7 = (o +¢ Yo+ 4+ Eypa)
et 1 p—1
ap 1R = ;(yo+§y1+"'+§ Yp-1)-
Using these equations we see that ao,...,a,—1, I, and R are all rational functions

in the roots of Equation 2. Let us consider one of these quantities, say R. Then as
we did with yo above, we can write

(10) R=ro+87 +718% +--- 471, 187 .
As above, we consider the substitutions S @ ¢tS ¢ with ¢ a root of
29+l p+1=0.

Using the same arguments, we get that ro,...,74_1, S, and S ¢ are all rational
functions of the different values of R under these substitutions. However, we know
that the different values of R are all rational functions of yo,y1, . ..,yp—1. Therefore,

it must be that the functions rg,...,rq—1, S, and S 4 are rational functions of
Y0,Y1,---,Yp—1 as well. Following this line of reasoning we can conclude that the
irrational functions in the expression for y are all rational functions of the roots of
Equation 2.

Let us now consider irrational functions of the form R* with R a rational function
of the coefficients of Equation 2. At this point Abel is starting from the beginning
with R an algebraic function of the 0*" order. We now relabel the roots of Equation
2 to be yo,y1,-..,ys. Write r = R%, so in particular we have that r is a rational
function of the roots yo,y1,...,ys4 (see argument surrounding Equation 10) and
R is a symmetric function of these roots (R is rational in the coefficients, so in
particular it is symmetric in the roots). Since we are looking at the solution of
a general quintic, we can consider the y; as independent variables. Since R is
a symmetric function in the y; it remains unchanged under permutations of the
y;- Since f(z) = zP — R is an irreducible polynomial, we have that r takes on
p different values under permutations of the roots. Observing that there are 5!
different permutations of the roots yo,¥1, - --, Y4, the work of Lagrange gives that
p must be a divisor of 5!. (In modern terms this is just Lagrange’s theorem on the
order of a subgroup dividing the order of the group.) Since p is prime, we must
have that p = 2,3 or 5. Abel uses the following theorem due to Cauchy.

Theorem 6.6. ([2]) The number of values a function of n variables can take under
permutations of the variables cannot be lower than the largest prime number p <n
without becoming equal to 2.

What this says for the case of the quintic is that p = 2 or 5. Suppose that p = 5.
The function r = R5 has 5 different values. Abel states without proof that this
means that r can be put in the form
(11) R% =1 =aqg+ a1y + oyl + azyp + asy

with the a; being symmetric functions of yg,91,--.,ys. Abel published a proof of
this fact in a later article, but we omit that proof here due to its lack of availability.
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Two versions of this “proof” are given in [5], with the first being completely bogus
and the second still unconvincing. Recall that the various roots of Equation 1 are
formed from by making the substitution R5 fiR% for ¢ a fifth root of unity.
Multiplying both sides of Equation 11 by £ which amounts to taking R5 to §R%
and hence yo to y; we obtain

oo + a1y1 + a2yi + asys + auyi = oo + Eonyo + Eanyd + Easys + Loy

This equation implies either £ = 1 or yo and y; are not algebraically independent
(y1 = &yo), both of which we assumed were not true. Therefore we must have p = 2.

Let r = Rz. Note that r must have two different values of opposite sign. Abel
again uses a result due to Cauchy that states one can write

r=sS?
where )
Sz = (yo—y1)(yo —y2) -+~ (Y1 —y2) -+~ (Y3 — ya)

and s is a symmetric function.

Consider now irrational functions of the form
1

m

1 1
(12) (do—{-lelnl +d2R2"2 +)

with the d; and the R; being rational functions of the coefficients of Equation 2 and

hence symmetric functions of the roots yo,y1,-- -, y4. Note that what we are doing

here is considering a radical of a sum of algebraic functions of order 1. Applying
1

what we have just done to each RZ.’T", it must be the case that n;y =ne = --- = 2,
Ry = s2S, Ry = 535, etc. with each s; a symmetric function. We can write
Equation 12 as

(13) (e0 + €15%).
Set .
1
ro = (eg +€152)™,
and
1,1
r = (60 —6152)7".
Upon multiplying r¢ and r; we obtain
a1
rory = (ed — e3S)m.
Suppose that rgr; is not a symmetric function. Then applying Theorem 6.6 we must
have m = 2. However, this cannot be the case as then r¢ would have 4 different
values, being a square root of terms involving a square root. As we observed above,
the only possible values under Theorem 6.6 are 2 or 5. Therefore it must be the
case that rory is a symmetric function.
Set v = rgr; and

_1
m

z=rg 471 = (eo+€15%)™ +v(eg + €157)

We have eliminated the possibility that m = 2, so it must be the case that m =5
since m is necessarily a prime number. Since z takes on 5 values, we can use the
same reasoning as in Equation 11 to write

(14) 2 = g+ oy + sy’ + asy® + gyt
= (eo +€15%)% + v(eg +€15%)_%
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where the a; are symmetric functions of the roots y; and thus rational functions of
the coefficients of Equation 2.
The next step in Abel’s argument is not clear to me. He states:
Combining this equation with the proposed equation, we can ex-
press y in terms of a rational function of z,a,b,c,d, and e. Now
such a function is always reducible to the form

(15) y= A+ R5 + AyR? + A3R3 + AR5

with the A; and R are functions of the form eg + ;.5 %, eg,e1 and
S being rational functions of a, b, ¢, d, and e.

For the second part to get the A; and R of the correct form, he is using the same
type of arguments as used in establishing Theorem 6.1 and then the arguments used
in establishing Equation 13. It is possible that he means that one can express y in
terms of an algebraic function of z,a, b, c,d and e. This would make sense because
Equation 14 is a quartic, which we know is solvable by radicals. However, this is
not what he states. It is also then not clear that one gets the desired form for the
A;’s and R.

Assuming what Abel says is valid, the proof can be concluded as follows. Using
the expression in Equation 15 for y we obtain

1 1
(16) Rz = g(yo + &y + Eyo + Eys + Eya)
(17) = (eo+e€182)3

where we have used the same reasoning as that used to arrive at Equation 9.
However, we see that Equation 16 has 120 possible values under permutation of
the roots y;, where as Equation 17 has only 10 possible values. This gives the
contradiction to the assumption that Equation 2 is solvable by radicals. |

We end by briefly translating the last part of Abel’s argument into modern
language. Let K = Ky C K13 C K2 C --- C K,, = L be the tower of field extensions
given by the fact that we are assuming Equation 1 is solvable by radicals. What
Abel is showing is that K7 is necessarily a quadratic extension of K and that no
further extension is possible, which gives the contradiction he needs.
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