
eastern tropical Pacific and Antarctica peaked
during each of the last two glacial terminations
(28), consistent with the timing of enhanced EPR
hydrothermal activity.
Isolating a mechanistic linkage between ridge

magmatism and glacial terminations will require
a suite of detailed proxy records from multiple
ridges that are sensitive to mantle carbon and
geothermal inputs, as well as modeling studies
of their influence in the ocean interior. The
EPR results establish the timing of hydrothermal
anomalies, an essential prerequisite for deter-
mining whether ridge magmatism can act as a
negative feedback on ice-sheet size. The data
presented here demonstrate that EPR hydro-
thermal output increased after the two largest
glacial maxima of the past 200,000 years, im-
plicating mid-ocean ridge magmatism in glacial
terminations.
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Ancient Babylonian astronomers
calculated Jupiter’s position from the
area under a time-velocity graph
Mathieu Ossendrijver*

The idea of computing a body’s displacement as an area in time-velocity space is usually traced
back to 14th-century Europe. I show that in four ancient Babylonian cuneiform tablets, Jupiter’s
displacement along the ecliptic is computed as the area of a trapezoidal figure obtained by
drawing its daily displacement against time.This interpretation is prompted by a newly
discovered tablet on which the same computation is presented in an equivalent arithmetical
formulation.The tablets date from 350 to 50 BCE.The trapezoid procedures offer the first
evidence for the use of geometricalmethods in Babylonianmathematical astronomy,whichwas
thus far viewed as operating exclusively with arithmetical concepts.

T
he so-called trapezoid procedures examined
in this paper have long puzzled historians
of Babylonian astronomy. They belong to
the corpus of Babylonian mathematical as-
tronomy, which comprises about 450 tab-

lets from Babylon and Uruk dating between 400
and 50 BCE. Approximately 340 of these tablets
are tables with computed planetary or lunar data
arranged in rows and columns (1). The remaining
110 tablets are procedure texts with computa-
tional instructions (2), mostly aimed at comput-
ing or verifying the tables. In all of these texts the
zodiac, invented in Babylonia near the end of the
fifth century BCE (3), is used as a coordinate sys-
tem for computing celestial positions. The un-
derlying algorithms are structured as branching
chains of arithmetical operations (additions, sub-
tractions, and multiplications) that can be rep-
resented as flow charts (2). Geometrical concepts
are conspicuously absent from these texts, whereas
they are very common in the Babylonian mathe-
matical corpus (4–7). Currently four tablets, most
likely written in Babylon between 350 and 50 BCE,
are known to preserve portions of a trapezoid
procedure (8). Of the four procedures, here labeled
B to E (figs. S1 to S4), one (B) preserves a men-
tion of Jupiter and three (B, C, E) are embedded

in compendia of procedures dealing exclusively
with Jupiter. The previously unpublished text D
probably belongs to a similar compendium for
Jupiter. In spite of these indications of a connec-
tion with Jupiter, their astronomical significance
was previously not acknowledged or understood
(1, 2, 6).
A recently discovered tablet containing an un-

publishedprocedure text, here labeled textA (Fig. 1),
shedsnew light on the trapezoidprocedures. TextA
most likely originates from the same period and
location (Babylon) as texts B to E (8). It contains
a nearly complete set of instructions for Jupiter’s
motion along the ecliptic in accordance with the
so-called scheme X.S1 (2). Before the discovery of
text A, this scheme was too fragmentarily known
for identifying its connection with the trapezoid
procedures. Covering one complete synodic cycle,
scheme X.S1 begins with Jupiter’s heliacal rising
(first visible rising at dawn), continuing with its
first station (beginning of apparent retrograde
motion), acronychal rising (last visible rising at
dusk), second station (end of retrogrademotion),
and heliacal setting (last visible setting at dusk)
(2). SchemeX.S1 and the four trapezoid procedures
are here shown to contain or implymathematically
equivalent descriptions of Jupiter’s motion during
the first 60 days after its first appearance. Whereas
scheme X.S1 employs a purely arithmetical ter-
minology, the trapezoid procedures operate with
geometrical entities.

482 29 JANUARY 2016 • VOL 351 ISSUE 6272 sciencemag.org SCIENCE

Excellence Cluster TOPOI–Institute of Philosophy, Humboldt
University, Berlin, Germany.
*Corresponding author. E-mail: mathieu.ossendrijver@hu-berlin.de

RESEARCH | REPORTS



In text A, Jupiter’s motion along the ecliptic is
described in terms of its daily displacement (mod-
ern symbol: v) expressed in °/d (degrees/day) and
its total displacement (S) expressed in degrees. A
crucial new insight about scheme X.S1 provided
by text A concerns its use of piecewise linearly
changing values for v. Although not formulated
explicitly, this linear dependence on time is clearly
implied (8). Jupiter’s motion along the ecliptic is
described for two consecutive intervals of 60 days
between its first appearance and its first station.
For each interval, initial and final values of v are
provided. Note that Babylonian astronomy em-
ploys a sexagesimal; i.e., base-60 place-value system

in which numbers are represented as sequences of
digits between 0 and 59, each associated with a
power of 60 that decreases in the right direction. In
the commonly used modern notation for these
numbers, all digits are separated by commas, ex-
cept for the digit pertaining to 60°, which is
separated from the next one pertaining to 60−1

by a semicolon (;), the analog of our decimal point.
For the first interval of 60days,v0=0;12°/d (=12/60)
and v60 = 0;9,30°/d (=9/60 + 30/602). Their sum
is multiplied by 0;30 (=1/2), resulting in a mean
value (v0 + v60)/2 = 0;10,45°/d, which is multi-
plied by 1,0 (=60) days, resulting in a total
displacement S = 1,0•(v0 + v60)/2 = 10;45°. For

the second interval, v60 = 0;9,30°/d and v120 =
0;1,30°/d (=1/60 + 30/602), leading to (v60 +
v120)/2 = 0;5,30°/d and S = 5;30°. The sum of
the total displacements, 10;45° + 5;30° = 16;15°, is
declared to be the total distance bywhich Jupiter
proceeds along the ecliptic in 120 days. In other
words, the ecliptic longitude of Jupiter after 60
and 120 days is computed as l60 = l0 + 10;45°
and l120 = l0 + 16;15°, respectively.
Text A doesnot describe how v varies fromday

to day, but of the three forms of time dependence
of v that are attested in Babylonian planetary
texts—piecewise constant, linear, or quadratic in
each time interval (2, 9)—only the linear one comes
into question. If v were piecewise constant, then
S should equal 60•v for each interval. If v were
piecewise quadratic, then S = 60•(v0 + v60)/2 can
only be some rough approximation. That would
be unexpected, since other tablets imply that some
Babylonian scholars in this period were familiar
with the exact algorithm for summing a quadratic
series (9, 10). By contrast, the values ofS computed
in text A are exact if one assumes that v changes
linearly in each interval. It follows that in scheme
X.S1, vdecreases linearly from0;12°/d to 0;9,30°/d
between day 0 and day 60, and from 0;9,30°/d to
0;1,30°/d between day 60 and day 120.
This new reconstruction of the first 120 days of

scheme X.S1 results in trapezoidal figures if v is
plotted against time in amodern fashion (Fig. 2).
It is important to note that text A itself does not
contain or imply a geometrical representation.
However, it turns out to be explicitly formulated
in the trapezoid procedures, texts B to E (figs. S1
to S4). Although their formulation differs in details,
at least three of them (B to D) consist of the same
two parts, I and II.
In part I, Jupiter’s total displacement for the

first 60 days of scheme X.S1 is computed. A cor-
responding introductory statement mentioning
Jupiter and themeasures of the trapezoid is part-
ly preserved in texts B and C, and perhaps in text
E (8). The number 10;45, referred to as the “area”
of the trapezoid (B, C), is then added to the “po-
sition of appearance” (B, C, D), the technical term
for Jupiter’s ecliptical longitude at first appearance,
i.e., l60 = l0 + 10;45°. Texts B andC partly preserve
the computation of 10;45 as the area of the trap-
ezoid through a series of steps equivalent to the
computations in text A. Its “large side” and “small
side,” v0 = 0;12°/d and v60 = 0;9,30°/d, are av-
eraged, (v0 + v60)/2 = 0;10,45°/d, which is then
multiplied by 60 days, the width of the trapezoid,
resulting in 10;45°. The latter operation is partly
preserved in text C and can be restored in text B.
Part II, partly preserved in texts B, D, and E, is

concerned with the time in which Jupiter reaches
a position referred to by a term tentatively trans-
lated as the “crossing” (8). It is now clear that this
denotes a point on the ecliptic, say lc, located
halfway between l0 and l60, i.e., lc = l0 + 10;45°/2.
This interpretation is consistent with a statement,
preserved only in text B, according to which the
“crossing” is located in the middle of Jupiter’s
“path,” readily interpreted as a reference to the
ecliptical segment from l0 to l60. Texts B and
D also preserve the following statement that
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Fig. 1. Photograph of text A (lines 1 to 7). (A) Full image. (B) Partial image of the right side taken
under different lighting conditions.
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Fig. 2. Time-velocity graph of Jupiter’s motion. Daily displacement along the ecliptic (v) between
Jupiter’s first appearance (day 0) and its first station (day 120) as a function of time according to scheme X.S1

as inferred from text A. All numbers and axis labels are in sexagesimal place-value notation.The areas of the
trapezoids, 10;45° and 5;30°, each represent Jupiter’s total displacement during one interval of 60 days.
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precedes the solution procedure: “Concerning
this 10;45, you see when it is halved.” The time
in which Jupiter reaches lc, say tc, is then com-
puted by the following geometrical method: The
trapezoid for days 0 to 60 is divided into two
smaller trapezoids of equal area (Fig. 3). In order
to achieve this, the Babylonian astronomers ap-
plied a partition procedure that is well-attested in
Old Babylonian (2000 to 1800 BCE) mathematics
(5, 6). In modern terms, it can be formulated as
follows: If v0 and v60 are the parallel sides of a
trapezoid, then the intermediate parallel that
divides it into two trapezoids of equal area has a
height vc = [(v0

2 + v60
2)/2]1/2. In the present case,

vc denotes Jupiter’s daily displacement when it
is at the “crossing.” This expression follows from
equating the areas of the partial trapezoids, S1 =
tc•(v0 + vc)/2 = S2 = t2•(vc + v60)/2, where tc and t2
are thewidths of these trapezoids, and using tc =
t•(v0 – vc)/(v0 – v60), where t = tc + t2 is the
width of the original trapezoid (6, 10). Inserting
v0 = 0;12°/d, v60 = 0;9,30°/d, and t = 1,0 d, we ob-
tain vc = [(0;2,24 + 0;1,30,15)/2]1/2 = (0;1,57,7,30)1/2 =
0;10,49,20,44,58,...°/d, tc = 28;15,42,0,48,...d, and
t2 = 31;44,17,59,12,...d. The computation of vc is
partly preserved in text D up to the addition
0;2,24 + 0;1,30,15 (8). In text B, the related quan-
tity u2 = (v0

2 – v60
2)/2 = (0;2,24 – 0;1,30,15)/2 =

0;0,26,52,30 is computed. This was most likely
followed by another step in which vc was com-
puted using vc

2 = v0
2 – u2. Whereas all known

Old Babylonian examples of the partition algo-
rithm concern trapezoids for which vc, v0, and
v60 are terminating sexagesimal numbers (6), the
present solution does not terminate in the sex-
agesimal system. Hence, texts B to E can only
have offered rounded results for vc and tc. Nothing
remains of this in texts B to D, but text E partly
preserves a computation involving 0;10,50, which
is, most plausibly, an approximation of vc. This
interpretation is confirmed by the fact that text
E also mentions the value tc = 28 d and, very
likely, t2 = 32 d, both in exact agreement with

tc = 60•(v0 – vc)/(v0 – v60) and t2 = 60 – tc if one
approximates vc = 0;10,50°/d. By rounding vc,
only an approximately equal partition of the trap-
ezoid is achieved.
Also partly preserved in text E is a computa-

tion of the area of the second partial trapezoid,
using the same method as before, leading to S2 =
t2•(vc + v60)/2, where t2 = 32 days, vc = 0;10,50°/d,
and v60 = 0;9,30°/d. The value of S2 is broken
away but can be restored as 5;25,20°. The probable
purpose of this computation was to verify the
solution for vc, as is done in the Old Babylonian
mathematical text UET 5, 858 (5, 11). The anal-
ogous computation of the area of the first par-
tial trapezoid, which can be reconstructed as S1 =
tc•(v0 + vc)/2 = 5;19,40°, is not preserved. Neither
of these values equals 5;22,30° = S/2 as they
ideally should (Fig. 3), a direct consequence of the
rounding of vc to 0;10,50°/d. At most two more
lines are partly preserved in texts B, D, and E, but
they are too fragmentary for an interpretation.
The evidence presented here demonstrates

that Babylonian astronomers construed Jupiter’s
displacement along the ecliptic during the first
60 days after its first appearance as the area of a
trapezoid in time-velocity space. Moreover, they
computed the time when Jupiter covers half this
distance by partitioning the trapezoid into two
smaller ones of ideally equal area. These compu-
tations predate the use of similar techniques by
medieval European scholars by at least 14 cen-
turies. The “Oxford calculators” of the 14th cen-
tury CE, who were centered at Merton College,
Oxford, are credited with formulating the “Mer-
tonian mean speed theorem” for the distance
traveled by a uniformly accelerating body, cor-
responding to the modern formula s = t•(v0 +
v1)/2, where v0 and v1 are the initial and final
velocities (12, 13). In the same century Nicole
Oresme, in Paris, devised graphicalmethods that
enabled him to prove this relation by computing
s as the area of a trapezoid of width t and heights
v0 and v1 (12). Part I of the Babylonian trapezoid

procedures can be viewed as a concrete example
of the same computation. They also show that
Babylonian astronomers did, at least occasionally,
use geometricalmethods for computing planetary
positions. Ancient Greek astronomers such as
Aristarchus of Samos, Hipparchus, and Claudius
Ptolemy also used geometrical methods (12),
while arithmetical methods are attested in the
Antikytheramechanism (14) and inGreco-Roman
astronomical papyri from Egypt (15). However,
the Babylonian trapezoid procedures are geo-
metrical in a different sense than the methods
of the mentioned Greek astronomers, since the
geometrical figures describe configurations not
in physical space but in an abstract mathemat-
ical space defined by time and velocity (daily
displacement).
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Fig. 3. Partitioning the trapezoid for
days 0 to 60. The time at which
Jupiter reaches the “crossing,” tc,
where it has covered the distance
5;22,30° = 10;45°/2, is computed
geometrically by dividing the trapezoid
for days 0 to 60 into two smaller
trapezoids of equal area. In text E, vc is
rounded to 0;10,50°/d, resulting in tc =
28 d, S1 = 5;19,40°, t2 = 32 d, and S2 =
5;25,20°.
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