
Lord Brouncker’s continued fraction for π

Michael D. Hirschhorn

Lord Brouncker is remembered today chiefly for his achievement of finding a

continued fraction for π. He might also have been renowned for his work on the

equation x2
− ny2 = 1, but for the fact that Euler mistakenly mentioned Pell’s

name in connection with this equation, which has carried Pell’s name ever since.

The object of this note is to establish Brouncker’s continued fraction, and to

show how it may be used to give a good approximation to π with little work.

Brouncker’s result may be written as follows.

(1)

π =
4

1 +
12

2 +
32

2 +
52

2 +
.. .

First let us see how this result is obtained, then see how it may be used to

compute approximations to π.

Let us begin by defining

In =

∫ 1

0

x2n

1 + x2
dx.

Then

In + In+1 =
1

2n + 1
.

We then have
In+1 + In

In+2 + In+1

=
2n + 3

2n + 1
.
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If we define rn = In+1/In, we have

1 + 1/rn

rn+1 + 1
=

2n + 3

2n + 1

and it is easy to make rn the subject:

rn =
2n + 1

2 + (2n + 3)rn+1

.

It follows that

r0 =
1

2 + 3r1

=
1

2 +
32

2 + 5r2

=
1

2 +
32

2 +
52

2 + 7r3

· · ·

=
1

2 +
32

2 +
52

2 +
·

·

·

2 +
(2n − 1)2

2 + (2n + 1)rn

Now,

r0 =
I1

I0

=
1 −

π

4
π

4

=
4

π
− 1,
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so

4

π
− 1 =

1

2 +
32

2 +
52

2 +
·

·

·

2 +
(2n − 1)2

2 + (2n + 1)rn

It follows that

(2)

π =
4

1 +
12

2 +
32

2 +
52

2 +
·

·

·

2 +
(2n − 1)2

2 + (2n + 1)rn

If we now “let n → ∞”, at least formally, we obtain Brouncker’s continued fraction

(1).

The question now arises, how can we use (1) to approximate π? We should go

to (2) for some large–ish value of n, and estimate rn. We might guess that rn → 1

as n → ∞, and we shall see that is so, indeed, I shall show that

(3) 1 > rn > 1 −

2

n
.

If we choose n = 20, we find that

3.140404294 < π < 3.142971689

which is not terribly good. Before going on to do much better, let us prove (3). It

is clear that rn < 1. We have

rn+1 =

2n + 1

rn

− 2

2n + 3
>

2n − 1

2n + 3
= 1 −

4

2n + 3
> 1 −

4

2n + 2
= 1 −

2

n + 1
.
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In order to improve on the above, let us suppose that

rn = 1 +
a1

n
+

a2

n2
+

a3

n3
+ · · ·

for some a1, a2, a3, · · · .

Then

rn+1 = 1 +
a1

n + 1
+

a2

(n + 1)2
+

a3

(n + 1)3
+ · · ·

= 1 +
a1

n

(

1 −

1

n
+

1

n2
− + · · ·

)

+
a2

n2

(

1 −

2

n
+

3

n2
− + · · ·

)

+ · · ·

= 1 +
a1

n
+

−a1 + a2

n2
+

a1 − 2a2 + a3

n3
+ · · · .

If we substitute these into the relation

rn+1 =

2n + 1

rn

− 2

2n + 3
,

set u =
1

n
and simplify, we obtain

1 + a1u + (−a1 + a2)u
2 + (a1 − 2a2 + a3)u

3 + · · · =

2 + u

1 + a1u + a2u2 + a3u3 + · · ·

− 2u

2 + 3u
.

= 1 + (−a1 − 2)u + (−a2 + a1 + a2
1 + 3)u2 + (−a3 + a2 + 2a1a2 − a3

1 − a2
1 −

3

2
a1 −

9

2
)u3 + · · · .

If we now compare coefficients of u, u2, u3 and so on, we find a1 = −1, a2 =

1, a3 = −

1

2
and so on, and

rn ∼ 1−
1

n
+

1

n2
−

1

2n3
−

1

4n4
+

1

8n5
+

25

16n6
−

25

32n7
−

601

64n8
+

601

128n9
+

23089

256n10
−

23089

512n11
−+ · · · .

(This is undoubtedly an asymptotis series rather than a convergent series.)
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So the last denominator in (2) is

2 + (2n + 1)rn ∼ 2n + 1 +
1

n
−

1

n3
+

13

4n5
−

313

16n7
+

11845

64n9
−

647473

256n11
+ · · · .

If we now set n = 20, we find

π ≈ 3.141592653589785

which is, as we know, correct to 13 decimal places.

Finally, you, dear reader, may like to guess and prove the value of the continued

fraction
1

1 +
12

1 +
22

1 +
32

1 +
42

1 +
52

. . .


