


Introduction

1 Gan. ita-yukti-bhās.ā

Gan. ita-yukti-bhās. ā (Rationales in Mathematical Astronomy), popularly

known as Yukti-bhās.ā by which term it is referred to below, is a highly in-

structive treatise which elucidates lucidly the rationale of mathematics and

astronomy as it was understood and explained in South India during the

middle ages. Jyes.t.hadeva (c. A.D. 1500-1610), the author, has couched the

work in Malayālam, the language of Kerala, and the work has been popular

in the land for more than 400 years as attested by a number of palm-leaf

manuscripts thereof available today, besides references to the work in later

texts and a later Sanskritization of Yukti-bhās. ā itself.

2 Astronomy in Kerala

From early times there had been, in Kerala, substantial academic activities,

as evidenced by centres of learning, reference to scholars, and profuse writ-

ings produced and preserved in the form of mansucripts. It is also worth

noting that apart from the religious and scholarly outlook of the elite in soci-

ety, the factors which additionally facilitated scholars to pursue their studies

in peace and tranquility included the geographical situation of the narrow

strip of land that formed Kerala, as sequestered between the Arabian Sea

and the Sahya range of mountains, at the extreme south of India, unaffected

by foreign invasions and political turmoils that disturbed most of the other

parts of India. Secondly, the characteristically simple and unostentatious

life led by the people of the land, right from royalty to the common man,

aided uninterrupted application to one’s professional pursuits. This trait
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permeated technical studies, as well, especially in the fields of architecture,

medicine, astronomy and astrology. In astronomy, Kerala followed the school

of Āryabhat.a (b. A.D. 476), and in astrology the school of Varāhamihira

(6th cent.).

An index to the profuse writings in the disciplines of astronomy and astrol-

ogy in the land is provided by the notices of authors and documentation

of works available in the form of manuscripts, through two recent publi-

cations, A History of the Kerala School of Hindu Astronomy and the Bib-

liography of Kerala and Kerala-based Astronomy and Astrology.1 See also

Science Texts in Sanskrit in the Manuscripts Repositories of Kerala and

Tamilnadu (K. V. Sarma, Rashtriya Sanskrit Sansthan, New Delhi, 2002).

These volumes, though not exhaustive, record about 2000 texts on Astrol-

ogy and Astronomy. There again, the works pertain to all types of texts, in-

cluding Gan. ita, Tantra, Karan. a, Grahan. a, Chāyā-gan. ita, Ven. vāroha-gan. ita,

Vyat̄ıpāta-gan. ita, Jātaka, Muhūrta, Prān. a, Pañcāṅga, Nimitta, Rekhā-

śāstra, Sam. hitā and several miscellaneous topics, couched both in Sanskrit

and in the local language, Malayālam.

3 Tradition of astronomical rationale in India

Academic traditon in India preferred precision and brevity in the presen-

tation of basic texts. This characterised not only the disciplines like Yoga,

Vedānta and Vyākaran. a, but also technical subjects like Astronomy. Here,

the rules were couched in the form of aphorisms (sūtra-s) or in aphoristic

verses, primarily for ease in memorisation. But this aspect of enunciation

required elaborate explanation for proper and full understanding and ap-

plication, which was supplied by teachers instructing disciples, or through

commentaries.

In the case of technical subjects, the explanation gradually reduced itself, as

teacher-pupil and father-son-traditions waned, to giving merely the mean-

1Both by K. V. Sarma, Vishveshvaranand Institute, Sadhu Ashram, Hoshiarpur, (Pun-
jab), 1972.
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ing of the words in the texts through commentaries, which failed to give the

inner significance or the detailed derivation of rules and procedures from fun-

damentals which tended to be forgotten. This situation ultimately had the

effect of doubts being cast about the originality of the rules themselves, es-

pecially by Western scholars who were conversant only with the deductional

method requiring the full setting out of the argument for each deduction.

This has caused even jaded pronouncements like the one by Morris Kline in

his book, Mathematical Thought from Ancient to Modern Times,2 where the

author says:

With the Hindus, there is much good procedure and technical

facility, but no evidence that they considered proof at all. It

is fairly certain that the Hindus did not appreciate the signifi-

cance of their own contributions. The few good ideas they had,

such as symbols for the numbers, were introduced casually with

no realisation that they were valuable innovations. They were

not sensitive to mathematical values. Along with the ideas they

themselves advanced, they accepted and incorporated the crude

ideas of the Egyptians and Babylonians.

4 Proof in Indian tradition

The crude ignorance of the above-mentioned historian of mathematics, Mor-

ris Kline, has been shared by some other Western historians as well, though

not by all. A proper reading of mathematical texts of Indian origin would

enable this statement to be corrected. Against the view – that the Hindu

mathematicians “had rules, but apparently no logical scruples” and that

there is “no evidence that they considered proof at all” – might be cited

the statement of the well-known scholiast of Indian Mathematics, Gan. eśa

Daivajña (fl. 1507) when he says, towards the beginning of his commentary

Buddhivilāsin̄ı on the L̄ılāvat̄ı of Bhāskara II (born 1114):

2Oxford, 1972, p.190.
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vyaktevāvyaktasam. jñe yad uditamakhilam. nopapattim. vinā tān-

nirbhrānto vā r. te tām. sugan. akasadasi praud. hatām. naiti cāyam |

pratyaks. am. dr. śyate sā karatalakalitādarśavat suprasannā

tasmād agryopapattim. nigaditumakhilam utsahe buddhivr. ddhyai ||

(Introduction, verse 4)

Gan. eśa Daivajña asserts here that whatever be stated in the vyakta or

avyakta branches, viz., Arithmetic and Algebra, would not be doubt-free

nor hailed in the midst of mathematicians without upapatti or proof. And

so, he intends to supply proofs for the enunciations of theorems, etc. occur-

ring in the original. In the same vein, Mallāri, the astronomer (fl. 1578),

says in his commentry on the Grahalāghava of Gan. eśa Daivajña:

upapattivicāran. āvidhau gan. akā mandadhiyo vimohitāh. |

tasmād vacmyupapattim asya vimalām. tanmohanāśāya tām ||

(Introduction, verses 4-5)

Mallāri says that dull-witted astronomers are confused over astronomical

proofs and so he was providing proofs for the elucidation thereof. On the

untenability of certain other points made by Kline, the attention of interested

scholars is directed to a well-documented paper by M.D. Srinivas.3

5 Sources of proof

The potential sources of information on traditional proofs, rationales, deriva-

tions and demonstrations in Indian mathematics and astronomy are com-

mentaries on the basic texts. But, as observed earlier, most commentaries

3The Methodology of Indian Mathematicians and its Contemporary Relevance, PPST
Bulletin, Madras, No.12, Sept. 1987, 1-35. We have included some material from this
article in the Epilogue to this Volume.
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restrict themselves to the explanation of the words of the texts and do not

go further. But still, there are a certain number of commentaries, like the

ones noticed above, which elucidate rationales also, partly or fully. Then,

there are works which, though based on earlier siddhāntic texts, introduce

revisions, innovations and methodologies, all aimed at arriving at better and

more accurate results. Often these texts give the rationale as well. Still

another source of information on proof are works wholly devoted to the

elucidation of mathematical and astronomical rationale, as also short inde-

pendent texts which take up for elucidation some topic or other. Sometimes

marginalia and post-colophonic statements in manuscripts give valuable in-

formation. Then, there is the large number of short tracts which demonstrate

the rationale of minor points or specific topics. It has to be remembered here

that in technical literature, as a rule, rationale, including innovations and

inventions, generally form part of the intimate instruction from the teacher

to the pupil and so are not always put on record in commentaries or in

manuscripts. Therefore, whatever is available in written form is rather the

exception than the rule, and so is to be welcomed with greater interest, for

that helps us in reconstructing the working of the mind of the early and

medieval Indian mathematician and astronomer.

6 The case of Kerala

It is well known that from the 7th century onwards, if not earlier, Kerala

has remained the bastion of the Āryabhat.an School of astronomy. There the

discipline flourished under royal patronage and was assiduously followed by

the Nampūtiri Brahmins of Kerala. It is interesting that among the works

composed here, alongside other texts, a number of texts on mathematical

and astronomical rationale, belonging to all the categories, also came to be

composed. Herein below, a mention is made of the rich crop of literature

on rationale produced in Kerala. Most of the texts are anonymous, but

the dates of several of them can be ascertained from the epoch or cut off

dates mentioned in these, or from other indications. In this set up, it is
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to be hoped that, besides being informative and instructive in the matter

of probing the mental make-up, intellectual interests and assiduity of the

mathematicians and astronomers of the land, especially during the medieval

times, the present work would encourage the texts being culled out individ-

ually or in groups for analytical study and interpretation in terms of modern

mathematics, and, eventually, for a better appraisal of the development of

mathematical ideas and procedures in the land.

7 Keralite commentaries presenting rationale

From among the commentaries on basic texts which, apart from explaining

the text, offer also the rationale of formulae and procedures, fully or partly,

might be mentioned the following: (For the documentation of manuscripts

of these works, see the Bibliography of Kerala and Kerala-based Astronomy

and Astrology and Science Texts in Sanskrit in the Manuscripts Repositories

in Kerala and Tamilnadu (op.cit)).

1. Āryabhat. ı̄ya-vyākhyā, Bhat.ad̄ıpikā, by Parameśvara (1360-1460).

2. Āryabhat. ı̄ya-bhās.ya by Nı̄lakan. t.ha Somayāj̄ı (1443-1560).

3. Āryabhat. ı̄ya-vyākhyā by Ghat.̄igopa (fl.1800).

4. Āryabhat. ı̄ya-vyākhyā by Krs.n.adāsa (Malayālam), (1756-1812).

5. Com. on Ābh. III.17-21: Kakśyāpratiman. d. alādi-śloka-vyākhyā, Anon.

(135 grantha-s).

6. Tantrasaṅgraha-vyākhyā, Yuktid̄ıpikā, by Śaṅkara Vāriyar (1500-60).

Ed. by K. V. Sarma, Hoshiarpur, 1977.

7. Laghubhāskar̄ıya-vyākhyā, Vivaran. a, by Śaṅkaranārāyan. a (825-900).

8. Laghubhāskar̄ıya-vyākhyā by Parameśvara (1360-1460).

9. Laghubhāskar̄ıya-vyākhyā (Old Malayālam), Anon.

10. Laghumānasa-vyākhyā by Parameśvara (1360-1460).

11. L̄ılāvat̄ı-vyākhyā, Kriyākramakar̄ı, by Śaṅkara Vāriyar (1500-60) Ed.

by K. V. Sarma, Hoshiarpur, 1975.
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8 Full-fledged works on rationale

12-38. Gan. ita-yuktayah. (27 rationalistic tracts culled from Mss. and edited

under the above common title, by K. V. Sarma, Hoshiarpur, 1979).

39. Gan. ita-yukti-bhās. ā, a Sanskrit version of the Malayālam work Yukti-

bhās. ā, Ed. K. V. Sarma, Shimla, 2004.

40. Grahapar̄ıks. ākrama by Nı̄lakan. t.ha Somayāj̄ı (1443-1560).

41. Jyotirmı̄mām. sā by Nı̄lakan. t.ha Somayāj̄ı (1443-1560), Ed. K. V. Sarma,

Hoshiarpur, 1977.

42. Yukti-bhās. ā by Jyes.t.hadeva (1500-1610). Ed. Tr. herein.

9 Innovative texts

A number of full-fledged texts based on earlier Siddhānta-s, but incorporating

and involving major revisions, innovations, and methodologies, peculiar to

Kerala have been produced down the ages. These are of two types, viz.,

those which take up for treatment the entire range of the subject, and those

which take up only one or more topics therein. Some of these explain the

rationales adopted therein, while, in the others, they have to be identified

by the rationale employed elsewhere and by modern analysis.

43. Agan. itagrahacāra of Mādhava of Saṅgamagrāma (1340-1425).

44. Uparāgakriyākrama, according to N̄ilakan. t.ha Somayāj̄ı, Anon.

45. Uparāgakriyākrama by Acyuta Pis.ārat.i (1500-1621).

46. Uparāgakriyākrama-yukti of verses III.28-30, Anon.,

47. Uparāgakriyākrama by Nārāyan. a (1500-75).

48. Uparāgavim. śāti by Acyuta Pis.ārat.i (1550-1621).

49. Uparāgās. t.aka, Epoch 1563, Anon.

50. Karan. adarpan. a, Epoch 1703, and Commentaries.

51. Karan. apaddhati by Putumana Somayāj̄ı (1660-1740).

52. Karan. asāra by Śaṅkara Vāriyar (1500-60) with auto-com.

53. Karan. āmr. ta by Citrabhānu (fl. 1550).
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54. Karan. ottama by Acyuta Pis.ārat.i (1550-1621) with auto-com.

55. Gan. itagrantha by Putumana Somayāj̄ı (1660-1740).

56. Gurūpadeśa, Anon.

57. Govindakr. ti by Govindasvāmin (800-850).

58. Grahacāranibandhana by Haridatta (650-700) Ed. K. V. Sarma.

59. Grahacāranibandhana-saṅgraha, Anon. Ed. K. V. Sarma.

60. Grahan. aman. d. ana by Parameśvara (1360-1460) Ed. K. V. Sarma.

61. Grahan. anyāyad̄ıpikā by Parameśvara (1360-1460) Ed. K. V. Sarma.

62. Grahan. ās. t.aka by Parameśvara (1360-1460) Ed. K. V. Sarma.

63. Grahan. ās. t.aka and Com. in Mal. Anon.

64. Grahan. ās. t.aka by Putumana Somayāj̄ı (1660-1740).

65. Grahan. opadeśa in 8 verses, Anon. and Com.

66. Grahamadhyama-yuktayah. by Puradahanapura-dvija Parameśvara (1775-

1830).

67. Candragan. itakramah. by Śaṅkara of Mahis.amaṅgalam (1494-1570).

68. Candracchāyā-gan. ita by Parameśvara (1360-1460) Ed. K. V. Sarma.

69. Candracchāyā-gan. ita by N̄ilakan. t.ha Somayāj̄ı (1443-1560) with auto-

commentary.

70. Dr. kkaran. a by Jyes.t.hadeva (1500-1610).

71. Dr. ggan. ita by Parameśvara (1360-1460).

72-73. Nyāyaratna I and II by Putumana Somayāj̄ı (1660-1740).

74-84. Pañcabodha I-XI and Coms.

85. Pañcabodhakriyā-saṅgraha by Puradahanapura-dvija Parameśvara (1775-

1839).

86. Pañcabodhās. t.aka by Putumana Somayāj̄ı (1660-1740).

87. Rāśigola-sphut. ān̄ıti according to Acyuta Pis.ārat.i Ed. K. V. Sarma.

88. Lagnaprakaran. a by Mādhava of Saṅgamagrāma (1340-1425).

89. Vākyakaran. a by Parameśvara (1360-1460).

90. Ven. vāroha by Putumana Somayāj̄ı (1660-1740).

91. Ven. vāroha by Mādhava of Saṅgamagrāma (1340-1425) Ed. K. V. Sarma.

92. Ven. vārohānusāri-grantha in 18 verses.

93. Vaidhr. tās. t.aka, Anon.

94. Vyat̄ıpātās. t.aka-vyākhyā by Parameśvara (1360-1460).
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95. Sadratnamālā by Śaṅkaravarman (1800-39) Ed. K. V. Sarma, New

Delhi, 2001.

96. Siddhāntadarpan. a-vyākhyā by N̄ilakan. t.ha Somayāj̄ı (1443-1560) Ed.

K. V. Sarma.

97. Sūks.magrahan. a-gan. ita according to Nīlakan. t.ha Somayāj̄ı’s method,

Anon.

98. Sphut.acandrāpti by Mādhava of Saṅgamagrāma (1340-1425) Ed. with

Trans., K. V. Sarma, Vishveshvaranand Inst., Hoshiarpur, 1973.

99. Sphut.anirn. aya-tantra by Acyuta Pis.ārat.i (1550-1621) and Autocom.,

Ed: K. V. Sarma, Hoshiarpur, 1974.

100. Sphut.anirn. aya-saṅgraha, Anon. Ed. K. V. Sarma.

10 Texts presenting innovations and rationale

The tracts mentioned below occur at the end of astronomical manuscripts

or are found collected together in Mss. codices. Being not full-fledged texts,

they are mostly anonymous and do not carry any specific titles. The titles

shall have to be given editorially on the basis of the subjects dealt with or

the topics discussed in the tracts. In several cases, since a number of topics

are dealt with, a general tentative title is construed from the first topic dealt

with, with the suffix ādi (‘etc.’), e.g. Ahargan. ādigan. itam:

101. Apamakriyā in 20 verses. 102.

102. Ayutadināt ādityacandramadhyamāh. 103.

103. Aśvatthagrāma-mahājyāh. , in 12 verses. 104.

104. Aśvatthagrāma-mahājyāh. in 9 verses.

105-107. Ahargan. ādi-gan. ita, I-III (Mal.).

108-110. Aharmānādi-gan. ita, I-III and Coms.

111. Uccan̄ıcādigranthah. .

112. Ekavim. śatipraśnakramah. (Mal.).

113. Kaks.yādisphut.a-gan. ita (Mal.).

114. Kalidinādigan. itam (Mal.) (140 granthas).
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115. Kut.t.ākārādigan. ita (350 verses).

116. Kriyāsaṅgrahah. I (6 sections, 300 gr.)

117. Kriyāsaṅgrahah. II.

118. Khan. d. adhruvāh. , Epoch Kali Day 1755000.

119. Khan. d. adhruvāh. , Epoch Kali Day 1862000.

120. Khan. d. adhruvāh. , Epoch Kali Day 1790000.

121. Khan. d. adhruvādi, in 6 verses, Epoch Kali day 1797000.

122. Khan. d. adhruvādyānayana (70 gr.).

123-124. Khan. d. adhruvādyānayana I-II.

125. Gan. anakriyādi (Mal.).

126-127. Gan. ita I (200 gr.), II (200 granthas).

128. Gan. itakriyā, Epoch 1527, with com.

129-40. Gan. itam Bhās. ā, I-XII (in Mal.).

141-50. Grahagan. ita, I-X.

151-61. Grahan. agan. ita, I-XI, with coms.

162. Grahamadhyamayuktayah. , Sahasradinānām, in 8 verses, by Puradahana-

puradvija Parameśvara.

163-164. Grahasphut.ah. , I-II.

165. Grahasphut.aparilekhah. , in 6 verses.

166-67. Grahasphut.avākyāni, I (100 gr.), II (100 gr.).

168. Grahasphut.avr. tta, in 7 verses, Trip. Jy. 768-I.

169-70. Grahasphut. ānayana, I-II.

171. Grahān. ām apavartanaparyayāh. .

172. Candragrahan. avidhi (Mal.).

173-75. Candracchāyā-gan. ita, III-V.

176. Candraviks.epacalana, in 10 verses.

177. Candrasphut.agan. anavākya and com.

178-79. Candrasphut. ādigan. ana, I-II.

180-81. Candrasphut. ādigan. ita, I-II.

182. Candrasphut. ādyānayana.

183. Chāyākriyā with com.

184-85. Chāyāgan. ita, I-II.

186. J̄ıvādyānayana.
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187. J̄ıvānayana.

188. Jyākriyā, Trip. Jy. 568-Z-19.

189. Jyākhan. d. ādyānayana (1910 gr.).

190. Jyānayanādi (Mal.), 1.

191-92. Jyotis.asaṅgraha, I-II.

193. Tithijyāh. .

194. Tithinirn. aya I, in 30 verses.

195. Tithinirn. aya II, in 11 verses.

196. Daśapraśnottara in 12 verses.

197. Dr. ggan. itakriyā.

198. Dr. gven. vārohakriyā.

199. Dhruvānayanaprakārah. with com.

200. Parahitagan. ita.

201. Mahājyāh. susūks.māh. , in 8 verses.

202. Mahājyāh. susūks.māh. , in 11 verses.

203. Mahājyādyānayana and com.

204. Mahājyānayanaprakārah. by Mādhava of Saṅgamagrāma (1340-1425).

205. Maud. hyagan. ana, in 6 verses. Trip. Jy. 568-Y.

206. Ravicandra-sphut.a-gan. ita, Uparāgkriyākramānusāri.

207. Ravisaṅkraman. ādigan. ita (200 gr.).

208. Ravisphut.ah. , in 4 verses.

209. Laghumānasakriyā.

210-211. Lāt.avaidhr. tādigan. ita, I-II.

212. Vakramaud. hyādigan. ita, 80 gr. Epoch A.D. 1857 V.

213. Vr. ttaks.etrakriyā.

214. Ven. vārohakriyā, Dr. ggan. itānusāri, in 14 verses.

215. Ven. vārohānusāri Candrasūks.masphut.ānayana and com. (Mal.).

216. Vaidhr. tānayana.

217. Vyat̄ıpāta-gan. ita.

218-219. Vyat̄ıpāta-gan. ita, I-II.

220. Śr. ṅgonnatyānayana.

221. Sūryasiddhāntānusāri Paryayajyādayah. .

222. Sphut.akriyā, in 3 verses.
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223. Sphut.acandrānayana, in 7 verses.

224. Sphut.acandrānayanam, in 24 vākya-s.

225. Sphut.acandrānayanam, in 32 vākya-s.

226. Sphut.anirn. aya-Tantrasaṅgrahatulya-grahamadhyamānayanam.

227. Sphut.anirn. ayatulya-madhyamānayanāya gun. akārahārakāh. .

228. Sphut.anirn. ayādhāritāh. (khan. d. adhruvāh. ), in 4 verses.

229. Sphut.aravyānayanam, in 24 vākya-s.

11 The Yukti-bhās. ā or Gan. ita-yukti-bhās. ā

An important work among the said texts is the Yukti-bhās. ā,4 whose main

aim is to present the rationale of the theories involved in the constants and

computations occurring in the Tantrasaṅgraha,5 an important astronomical

work of Nı̄lakan. t.ha Somayāj̄ı (A.D. 1443-1560). Thus, after the benedictory

verses, the work commences with the statement:

avit.e nat.e tantrasaṅgrahatte anusariccu grahagatiyiṅkal

upayogamul.l.a gan. itaṅṅal.e muzhuvanāyi colluvān

tut.aṅṅunnet.attu. . .

Here, commencing an elucidation in full of the rationale of plan-

etary computations according to the Tantrasaṅgraha. . .

4Pt. I ed. by Rāma Varma Maru Thampuran and A. R. Akhileswarayyar, Mangalo-
dayam Ltd, Trissur, 1948.

5Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄ı, Ed. with two commentaries, Yuktid̄ıpikā and
Laghuvivr. ti, both by Śaṅkara, by K. V. Sarma, Visveshvaranand Institute, Hoshiarpur,
1977. The attention of scholars is drawn also to the undermentioned publications:

1. Sarma, K.V. and Narasimhan, V.S. : Text and Translation of Tantrasaṅgraha
of Nı̄lakan. t.ha Somayāj̄ı, Supplement to the Indian Journal of History of Science,
(INSA, New Delhi), 33 (1998), pp.148.

2. M. S. Sriram, K. Ramasubramanian and M. D. Srinivas, Eds., 500 years of
Tantrasaṅgraha: A Landmark in the History of Astronomy, IIAS, Shimla, 2002.
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The work finds its first reference in modern writings in an article by C. M. Wh-

ish6 in 1834, where it is referred to towards verifying the date of the author

of Tantrasaṅgraha.7 Whish had stated that ‘a farther (sic) account of the

Yukti-Bhasha...’ will be given in a separate paper,8 which, however, does

not appear to have been written or published. Yukti-bhās. ā has been a pop-

ular text in Kerala for more than four hundred years since its composition

towards A.D. 1530. Several manuscripts of the work are known.9 However,

since the work is couched in the Malayālam language, which is spoken only

in Kerala, it has remained, practically, beyond the purview of scholars who

did not know the language, in spite of its having partly been published.10

And the few articles on this important work relate to only certain individual

6C. M. Whish, ‘On the Hindu quadrature of the circle and the infinite series of
the proportion of the circumference to the diameter exhibited in the four śāstras, the
Tantrasaṅgraham, Yukti-Bhāsha, Caran. a Padhati (sic) and Sadratnamālā’, Transactions
of the Royal Asiatic Society of Great Britain and Ireland, III.iii (1834), 509-23. The year
of publication of Whish’s paper has been variously cited as 1830 or 1835. In a commu-
nication to Dr. Ramasubramanian, Ms. Kathy Lazenbatt, Librarian of the Royal Asiatic
Society, has clarified that the year of publication is actually 1834. Ms. Lazenbatt notes
that: “The reference for the article by Whish is Transactions of the Royal Asiatic Soci-
ety, Vol. III, Part III, 1834, pp. 509-523. The confusion over the date may have arisen
in various ways. The first part of Vol. III was published in 1831, and unless you look
through the volume and find the title pages for Parts II and III, you might think the date
for the whole volume was 1831. Also the paper was read at a meeting of the Society on
15 December 1832, but was not published till 1834.” We are grateful to Ms. Lazenbatt for
clarifying this point.

7Cf. the statement: “The testimonies as to the author (of Tantrasaṅgraha) and the
period in which he lived, are the following... the mention made of him... by his commen-
tator, the author of the Yukti-Bhāshā, Cellallūra Nambūtiri”, p. 522. However, it has to
be noted, incidentally, that Whish has made wrong identifications when he states here:
(i) that the author of Tantrasaṅgraha is “Talaculattūra Nambūtiri” (p. 522), for it is cor-
rectly Gārgya Kerala Nı̄lakan. t.ha Somayāj̄ı; (ii) that Yukti-bhās. ā is a commentary on the
Tantrasaṅgraha, which it is not; and (iii) that the author of Yukti-bhās. ā is Cellalūra (i.e.
Kelallūr) Nambūtiri (p. 522), for it is actually Paraṅṅot.t.u Nampūtiri, as would be shown
below.

8See op. cit., p. 523.
9Several manuscipts of the work are preserved under the two titles in the Kerala Univer-

sity Mss. Library, Trivandrum, the Sanskrit College Library, Tripunithura, and in private
possession.

10There is a fine edition of Pt. I of the work, now out of print, by Rāma Varma Maru
Thampuran and A. R. Akhileswarayyar, Mangalodayam Press, Trichur, 1948, and an
extremely unsatisfactory and error-ridden edition of the whole work issued by the Govt.
Oriental Mss. Library, Madras, 1953.
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topics treated therein.11 It is therefore necessary that a critical appraisal of

the nature and contents of this work, as a whole, is made, so as to enable

scholars take up the work for further study.

12 Authorship of Yukti-bhās. ā

The introductory verses of the Yukti-bhās. ā do not mention the name of its

author, nor do its manuscripts indicate his name at their closing colophons.

However, one of its manuscripts preserved in the Sanskrit College Library,

Tripunithura, which had been used by Rāma Varma Maru Thampuran for

his edition of the work, had at its close the verse:

alekhi yuktibhās. ā vipren. a brahmadattasam. jñena |

ye golapathasthāh. syuh. kalirahitāh. śodhayantaste ||

Taking the word alekhi in the verse to mean ‘composed’ instead of its nat-

ural meaning ‘written, copied’, the Introduction to the said edition took

Brahmadatta mentioned in the verse as the author, and the date given by

the Kali chronogram ye golapathasthāssyuh. , corresponding to A.D. 1750, as

the date of its composition.12 There are, however, evidences which point

to the correct name of the author of Yukti-bhās. ā as Jyes.t.hadeva and his

date to be A.D. 1500-1610. Thus, an old palm-leaf manuscript, No.755, of

the Kerala University Manuscripts Library, entitled Gan. itayuktayah. contains

many astronomical tracts, in one of which, dealing with the precession of the

equinoxes (ayanacalana), occurs the statement:

atha viks.iptacalanasyān̄ıtau pūrvasūribhih. |

proktā ye matabhedāstān vaks.ye tattvabubhutsayā ||

11Cf., S. N. Sen, A Bibliography of Sanskrit Works on Astronomy and Mathematics,
INSA, New Delhi, 1966, p. 74; C. T. Rajagopal and M. S. Rangachari, ‘On an untapped
source of medieval Keralese mathematics’, Archive for History of Exact Science, 18 (1978)
89-101: C. T. Rajagopal and M. S. Rangachari, ‘On mediaeval Kerala Mathematics’, ibid,
35 (1986) 91-99.

12See P. Sridhara Menon in his Introduction, (p.5) to the edition of Pt. I of the work
by Rāma Varma Maru Thampuram and Akhileswarayyar.
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jūkakriyādike pāte svarn. am. tatsādhane vidhau |

ityuktā ks.epacalanasyān̄ıtistantrasaṅgrahe ||

jyes.t.hadevo
′pi bhās. āyām. nādhikam. kiñciduktavān |

The Tantrasaṅgraha referred to here is, obviously, the work of Nı̄lakan. t.ha

Somayāj̄ı, and the Bhās. ā specified as the work of Jyes.t.hadeva is the Yukti-

bhās. ā, which, as indicated above, seeks to set out and elucidate the the-

ories and practices involved in the Tantrasaṅgraha. There are more clear

evidences which point to the correct name of the author of Yukti-bhās.ā

as Jyes.t.hadeva, and his date to be A.D. 1500-1610. Thus, an astronomi-

cal chronology (granthavāri) in the Malayālam language found as a post-

colophonic statement in an old palm-leaf manuscript of a Malayālam com-

mentary on Sūryasiddhānta preserved in the Oriental Institute, Baroda, Ms.

No.9886, contains in it the statement:

parameśvaran vat.aśśeri nampūri nilāyāh. saumyat̄ırasthah. para-

meśvarah. . . . asya tanayo dāmodarah. , asya śis.yo n̄ılakan. t.ha so-

mayāj̄ı, iddeham tantrasaṅgraham āryabhat. ı̄yabhās.yam mutalāya

granthaṅṅal.kku karttāvākunnu |

‘laks.mı̄́sanihitadhyānaih. ’ iti asya kalinā kālanirn. ayah. , pūrvokta-

dāmodarasya śis.yah. jyes.t.hadevah. iddeham paraṅṅot.t.u nampūri-

yākunnu. yukti-bhās. āgranthatte un. d. ākiyatum iddeham tanne |

jyes.t.hadevan. d. e śis.yan tr. kkan. t.iyūru acyuta-pis. ārat.i, iddeham

sphut.anirn. ayam, golad̄ıpikā mutalāya grantha(ṅṅal.kku) karttāvā-

kunnu. acyuta-pis. ārat.iyut.e śis.yan melputtūru nārāyan. a bhat.t.atiri.

iddeham nārāyan. ı̄yam, prakriyā-sarvasvam mutalāya granthaṅ-

ṅal.kku kartā, ‘āyurārogyasaukhyam’ ityādi-kalinā kālanirn. ayah. . . . ”

Parameśvara was a Nampūri from Vat.aśśeri (family). He resided

on the northern bank of the Nil.ā (river). . . His son was Dāmodara.

Nı̄lakan. t.ha Somayāj̄ı was his pupil. He, (the latter), is the author

of Tantrasaṅgraha, Āryabhat. ı̄yabhās.ya and other works.

His date is determined by the Kali days, 16,80,553 (A.D. 1500).
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Jyes.t.hadeva was the pupil of the above Dāmodara. He was a

Nampūri from Paraṅṅot.t.u (family).13 He is also the author of

the work Yukti-bhās. ā.

Acyuta Pis.ārat.i of Tr. kkan. t.iyūr was the pupil of Jyes.t.hadeva.

He is the author of Sphut.anirn. aya, Golad̄ıpikā and other works.

Melputtūr Nārāyan. a Bhat.t.atiri was the pupil of Acyuta Pis.ārat.i.

He is the author of the Nārāyan. ı̄ya, Prakriyā-sarvasva and other

works. His date is determined by the Kali days 17,12,210

(A.D. 1587).

Here it is specifically stated that Jyes.t.hadeva is the author of Yukti-bhās. ā

and the teacher-pupil succession is : Parameśvara (A.D. 1360-1455) ⇒ son,

Dāmodara ⇒ pupil, Nı̄lakan. t.ha Somayāj̄ı (1443-1560) ⇒ Jyes.t.hadeva (1500-

1610) ⇒ pupil, Acyuta Pis. ārat.i (1550-1621) ⇒ pupil, Nārāyan. a Bhat.t.atiri

(fl.A.D. 1587). That Jyes.t.hadeva was the teacher of Acyuta Pis.ārat.i is stated

by Pis.ārat.i himself in the concluding verse of his work on the computation

of eclipses, entitled Uparāga-kriyākrama:14

proktah. pravayaso dhyānāt jyes.t.hadevasya sadguroh. |

vicyutāśes.ados.en. etyacyutena kriyākramah. ||

Thus has been stated the Uparāga-kriyākrama by Acyuta of clear

thought through his contemplation of (the teachings of) his aged

benign teacher Jyes.t.hadeva.

The Malayālam commentary to Uparāgakriyākrama explains that the expres-

sion proktah. pravayasodhyānāt serves also as a chronogram to give the date

of the completion of the work. This chronogram works out to A.D. 1592,

when Acyuta Pis.ārat.i, pupil of Jyes.t.hadeva, composed the work. Whish,

13For an independent tradition that the author of the Yukti-bhās. ā belonged to the
Paraṅṅot.t.u family (Sanskritised as Parakrod. a), situated in the Ālattūr village in Mal-
abar, see Nampūtirimār (Mal.), by Parayil Raman Namputiri, Trichur, Kollam era 1093,
(A.D. 1918), p. 55.

14See Ms. C. 628-B, end, of the Kerala Uni. Mss. Library.
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in his article referred to above, records a tradition that the author of the

Yukti-bhās. ā wrote also a work called Dr. kkaran. a.15 Dr. kkaran. a in question,

an astronomical manual in Malayālam verse, is available in manuscript form

(No.c.7-C of the Kerala University Mss. Library) but does not give anywhere

the name of its author. However, it gives the date of its composition in its

final verse through the Kali chronogram Kol.ambe barhisūnau (Kollam year

783) which is A.D. 1608.

In view of the tradition recorded by Whish and this date being not far from

1592 mentioned by Acyuta Pis.ārat.i, we might take the Dr. kkaran. a to be a

work of Jyes.t.hadeva and that he lived up to about 1610. In view of the

fact that Dāmodara (c. 1410-1520) was a teacher both of Nı̄lakan. t.ha So-

mayāj̄ı and Jyes.t.hadeva, and that Jyes.t.hadeva wrote his Yukti-bhās. ā in the

wake of Nı̄lakan. t.ha’s Tantrasaṅgraha, he must be a younger contemporary

of Nı̄lakan. t.ha. He is remembered in 1592 by his pupil Acyuta Pis.ārat.i as

pravayas (‘very old’). His Dr. kkaran. a is dated 1608. Jyes.t.hadeva should

therefore, have been long-lived, his date being 1500-1610. His family house

Paraṅṅot.t.u (Parakrod. a in Sanskrit) still exists in the vicinity of Ālattūr and

Tr. kkan. t.iyūr where well-known astronomers like Parameśvara, Nı̄lakan. t.ha

and Acyuta Pis.ārat.i flourished about those times.

13 Scope and extent of Yukti-bhās. ā

The entire text of Yukti-bhās. ā occurs as one continuum, without any internal

or closing colophons to mark off the subjects treated in the work. However,

towards the middle of the work, where the treatment of mathematics ends

and that of astronomy commences, occurs a general benedictory statement

which reads: “Śr̄ırastu, harih. śr̄ı-gan. apataye namah. , avighnamastu”. This

would naturally mean that the author had conceived his work as consisting

of two parts, devoted respectively to mathematics and astronomy. Since the

work deals with several main subjects and a number of topics under each,

the needed subject and topic divisions shall have to be made editorially with

suitable indication. Demarcating the work thus, the main subjects treated

in Part I, Mathematics, are: I. Parikarma (Logistics), II. Daśapraśna (Ten

15Whish, Loc. cit., p. 523.
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problems involving logistics), III. Bhinnagan. ita (Fractions), IV. Trairāśika

(Rule of three), V. Kut.t.ākāra (Pulverisation), VI. Paridhi-vyāsa ( Relation

between circumference and diameter) and VII. Jyānayana (Derivation of

Rsines).

The subjects treated in Part II, Astronomy, are: VIII. Grahagati (Plane-

tary motion), Bhagola (Sphere of the zodiac), Madhyagraha (Mean Planets),

Sūryasphut.a (True Sun), Grahasphut.a (True Planets), IX. Bhū-Vāyu-Bha-

gola (Spheres of the Earth, Atmosphere and Asterisms), Ayanacalana (Pre-

cession of the Equinoxes), X. Pañcadaśapraśna (Fifteen problems relating

to spherical triangles), XI. Dig-jñāna (Orientation), Chāyāgan. ita (Shadow

computations), Lagna (Rising point of the Ecliptic), Nati-Lam. bana (Paral-

laxes of Latitude and Longitude), XII. Grahan. a (Eclipse), XIII. Vyat̄ıpāta,

XIV. Visibility Correction of Planets, and XV. Moon’s Cusps and Phases of

the Moon.

14 Kriyākramakar̄ı, Yuktid̄ıpikā and Yukti-bhās. ā

There are two extensive commentaries, both by Śaṅkara Vāriyar of Tr. kkut.a-

veli family (A.D. 1500-1560), being Kriyākramakar̄ı and Yuktid̄ıpikā, the for-

mer on the L̄ılāvat̄ı of Bhāskara II,16 and the latter on the Tantrasaṅgraha

of Nı̄lakan. t.ha Somayāj̄ı.17 Interestingly, there is a close affinity between the

Yukti-bhās. ā and the above-said two commentaries. Even more, there is the

same sequence of arguments and verbal correspondences between them in

the treatment of identical topics. From this similitude it has been suggested

that the Yukti-bhās.ā is just a rendering into Malayālam of certain passages

from the Sanskrit. It is further suggested that, for this reason, there is not

much that is original in the Yukti-bhās. ā.18 But it is just the other way round,

namely that the Sanskrit versions are adaptations and paraphrases of the

relevant passages from the Yukti-bhās. ā. This is confirmed by Śaṅkara, the

16Cr. edn. with Introduction by K. V. Sarma, Vishveshvaranand Institute, Hoshiarpur,
1975.

17Cr. edn. with detailed Introduction by K. V. Sarma, Vishveshvaranand Institute,
Hoshiarpur, 1977. The identity of the authorship of the two commentaries has been dealt
with in detail herein, Intro., pp. li-vi.

18See, P. Sridhara Menon, Introduction to Maru Thampuran’s edn. of the work, p.6.
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author of both the commentaries, when he states specifically in the colo-

phonic verses of his commentary Yuktid̄ıpikā, on the Tantrasaṅgraha, that

what he had done in that commentary was only ‘the setting out of the mate-

rial elucidated in the work of the Brāhman. a of Parakrod. a (viz., Jyes.t.hadeva)

(author of the Yukti-bhās. ā). Cf., for instance, one such colophonic verse:19

ityes.a parakrod. āvāsa-dvijavarasamı̄rito yo ′rthah. |

sa tu tantrasaṅgrahasya prathame ′dhyāye mayā kathitah. ||

15 Yukti-bhās. ā in Malayālam and Sanskrit

There is a work entitled Gan. ita-yukti-bhās. ā (Ms. No.R.4382 of the Govt.

Or. Mss. Library, Madras) in Sanskrit and it has been suggested that it

might be the source of the Malayālam Yukti-bhās. ā.20 However, a detailed

comparison of the two shows that the Gan. ita-yukti-bhās. ā is but a rough

and ready translation into Sanskrit of the Malayālam original by one who

lacked not only the ability of writing idiomatic Sanskrit but also an adequate

knowledge of the subject. Moreover, at places, there occur haplographical

omissions, in the Sanskrit version, of passages available in the Malayālam

work, which fact too confirms that the Sanskrit version is the derived form.

16 Presentation of rationale

The mathematical and astronomical rationale presented in the Yukti-bhās.ā

relate to several aspects, to wit, concepts, theories, constants, computations,

demonstration by diagrammatic representation and the like. The treatment

is logical, going step by step, first presenting the fundamentals and gradually

building up the argument. It is, if one might say so, ‘intimate’ in that it

inculcates the rationale and elucidates the steps even as a teacher does to a

student. The work aims at understanding and conviction by the reader.
19Edn., p.77.
20Loc. cit., pp.5-6.
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17 Analytic contents of the Yukti-bhās. ā

As mentioned earlier, Pt. I of the Yukti-bhās. ā, dealing with Mathematics,

can be divided into seven chapters.

Ch. I on Logistics (Parikarma) deals with the Nature of numbers, Multipli-

cation as explained from several standpoints including the use of diagrams,

Multiplication by easy methods, Division, Squaring through several methods

and Roots of sums of squares and Difference of squares.

Ch. II Daśapraśnottara (Ten algebraic problems and their solutions) relates

to the finding of the numbers when two, from among the five, viz., their sum,

difference, product, sum of squares and difference of squares, are given.

Ch. III deals with Fractions. Highly analytical in presentation, the topics

dealt with are: Nature of fractions, their addition, subtraction, multiplica-

tion and division.

Ch. IV is entirely devoted to the Rule of Three, where both the general and

inverse rules are set out.

In Ch. V the importance of the Rule of three in mathematical and astro-

nomical computations is indicated with the computation of the current Kali

day.

The Mean Planets are derived therefrom. Apavartana (Reduction) and

Kut.t.ākāra (Pulverisation) are introduced here and their purpose specified.

An elaborate rationalisation of the principles involved in it and the practices

followed in both Reduction and Pulverisation are presented and explained

with examples. It is also indicated how the process helps in arriving at the

Bhājya-s (Divisors) and Bhājaka-s (Multiplicands) in Pulverisation by means

of the Vall̄ı (Series of divisions), and its application towards computing the

planets more and more accurately.

In Ch. VI, the Yukti-bhās. ā gives several formulae for determining the cir-

cumference of a circle of a given diameter. Some of the methods involve the



Introduction xli

properties of right angled triangles, towards which the properties of right

angled triangles are demonstrated graphically. For the methods which in-

volve different summations of series, the derivation of those series is also

demonstrated. Among the latter are the summations of consecutive num-

bers, the summation of squares, the summation of cubes and higher powers,

and the summation of summations. In the case of certain formulae, Yukti-

bhās. ā enunciates further rules towards making the derived results more and

more accurate. Attention of scholars might be drawn here to a series of pa-

pers wherein Prof. C. T. Rajagopal, former Director, Ramanujan Institute

of Mathematics, University of Madras, and his associates who have worked

out, in terms of modern mathematics, the above-said series and the different

formulae enunciated in the Yukti-bhās.ā. They have also shown that these

are much prior to the discoveries made more than a century later by the

Western scientists, James Gregory (1671), G.W. Leibnitz (1673) and Isaac

Newton (1670).21

Ch. VII forms a long disquisition of rationale relating to Rsines, their modi-

fications and allied subjects. The chapter commences with an elaborate ex-

position of the geometrical derivation of the 24 Rsines for 3◦45′ each and ex-

planations of allied terms like Rcosine, Rversed sine, arc, bhujā-khan. d. a, kot.i-

khan. d. a, j̄ıva-khan. d. a and khan. d. a-jyā and their mutual relationship. Some of

the other topics elucidated herein are: Accurate determination of the Rsines,

Computation of the Rsine of any given arc, Computation of the arc of any

given Rsine, Summation of Rsine differences and of Rversed sine differences.

Accurate determination of the circumference of a circle making use of the

said summations, Rsine of the sum of two angles, Cyclic quadrilaterals and

their properties, Square of the area of a circle, Derivation of Rversed sines,

Derivation of Rsine shadow, Surface area of a sphere and Volume of a sphere.

The author of the Yukti-bhās. ā elucidates the rationale of the several items

21(i) K. Mukunda Marar and C. T. Rajagopal, ‘On the Hindu quadrature of the circle’,
J. Bombay Branch of the Royal Asiatic Soc., NS 20. 65-82 (1944). (ii) C. T. Rajagopal
and A. Venkataraman, ‘The Sine and Cosine power series in Hindu mathematics’, J. Royal
Asiatic Soc. of Bengal, Sc., 15. 1-13 (1949). (iii) C. T. Rajagopal and M. S. Rangachari,
‘On an untapped source of medieval Keralese mathematics’, Archive for Hist. of Exact
Science, 18, 89-91 (1978). (iv) C. T. Rajagopal and M. S. Rangachari, ‘On medieval
Keralese mathematics’, Archive for Hist. of Exact Science, 35, 91-99 (1986).



xlii Gan. ita-yukti-bhās.ā

either geometrically or algebraically or using both means as the occasion

demands.

Ch. VIII deals with the Planetary Theory and the computation of Mean

and True Planets. At the outset, the concepts of the Mean Sun, Moon and

other planets, their linear velocities and angular motions are described. As

in all other Hindu astronomical treatises the assumption is made that the

linear velocity of all the planets is the same but the angular motion varies

depending on the dimension of their circular orbits. The Epicyclic Theory

for the Sun and Moon and for the other planets involving the manda and

ś̄ıghra epicycles is explained.

In a nut-shell the planetary theory broadly is like this. The Earth is the

centre and the Sun and the Moon go round the Earth. As for other planets,

with Earth as centre, the ś̄ıghra goes round the Earth with the mean motion

of the Sun. The mean planet moves on a circle with the ś̄ıghra as centre.

The true planet is on the mandocca circle with the mean planet as its centre.

Alternatively, the last two circles can be interchanged. This theory is advo-

cated by Nı̄lakan. t.ha in his commentary on Āryabhat. ı̄ya, and practically all

later Kerala authors have followed suit. In fact Nı̄lakan. t.ha tries to say that

it was the view of Āryabhat.a also. If ś̄ıghra is identified with the Sun itself,

then this agrees broadly with the modern theory with the positions of Earth

and Sun reversed.22

The rationale for adopting three or four stages of operations to find the geo-

centric longitude of a planet is also explained. This particular aspect has

been baffling the scholars. It is generally held that the Hindu astronomers

were not aware that the true geocentric longitude is to be obtained in two

steps by first applying the manda correction and, using the corrected planet,

the ś̄ıghra equation is to be obtained and applied to the once corrected planet;

therefore they adopted different methods involving three or four stages in dif-

ferent ways.23 However, later Kerala works like Sphut.anirn. aya have clearly

22On this, see K. Ramasubramanian, M. D. Srinivas and M. S. Sriram, ‘Modification of
the earlier Indian planetary theory by Kerala astronomers (c.1500 AD) and the implied
heliocentric picture of planetary motion’, Current Science, 66 (May 1994) 784-90.

23See, for instance, E. Burgess, Translation of the Sūryasiddhānta, p.86, lines 3ff.;
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explained the procedure in two stages correctly. This is not surprising if

the longitude is arrived at on the basis of the planetary theory described

above. Nı̄lakan. t.ha also, in his commentary on Āryabhat. ı̄ya, has given a

similar method.

Then how and why have these three or four stages-method get in ? Some

explanation has been given in some papers.24 But in the Yukti-bhās. ā, the

rationale has been expounded beautifully. In short, it is like this. In arriving

at the ś̄ıghra correction the ‘mean’ mandakarn. a is taken instead of the ‘true’

mandakarn. a. This is because the tables of ś̄ıghra-jyās can be constructed

only on the basis of ‘mean’ mandakarn. a. Hence a correction becomes neces-

sary for the ś̄ıghra-phala. To achieve this, a correction is effected in the ‘true’

manda planet in such a way that this correction together with its effect on

the tabular ś̄ıghra-phala will compensate for the error in ś̄ıghra-phala due to

the difference in mandakarn. a. The longer commentary on Tantrasaṅgraha

also gives this rationale as also the planetary theory. There are many small

tracts25 in Kerala wherein various alternate methods are advocated to give

effect to this correction. It is a moot point whether Āryabhat.a and other

astronomers were aware of this rationale or they just hit at these methods by

trial and error. The treatment of latitude with regard to the planets in the

Yukti-bhās. ā is also satisfactory. The theory is that the ś̄ıghra circle is always

on the ecliptic plane and only the plane of the planet’s path gets deflected.

This accords with facts and therefore, the resulting helio and geocentric lat-

itudes also represent the correct position as also the distance between the

Earth and the planet making allowance for the latitude.

Chapter IX deals with the celestial sphere and the related great circles such

as meridian, horizon, equator, ecliptic and their secondaries and the small

circles such as day parallels etc. The poles of great circles and their rela-

tion with mutually perpendicular great circles, the equinoctial and solstitial

points are explained. First the celestial sphere for an observer on the terres-

P. C. Sengupta, Khan. d. akhādyaka, p.58, last para.
24O. Neugebauer, ‘The Transmission of planetary theories in ancient and medieval as-

tronomy’, Scripta Mathematica, New York, 1956, App. ‘Hindu planetary theory’, p. 12ff.
25See for instance, K. V. Sarma, Rationales of Hindu astronomy, Pt.I, Hoshiarpur, 1979,

Tracts 24, 25 and 26.
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trial equator is described and then the changes are explained as the observer

moves to a northern latitude. Then the effects of Ayanacalana or the back-

ward motion of the first point of Aries on the equator, ecliptic etc., are

considered. Lastly the procedure for the construction of an armillary sphere

is described.

In continuation are dealt with Declination, Right Ascension and related

problems. In the first place the declination (Krānti) of the Sun (an object

on the ecliptic) is considered. The formula for this, viz.,

sin (declination) = sin (longitude) × sin (obliquity),

is got by using the properties of similar triangles and by the rule of propor-

tion. In addition, two more concepts which are not found in other works are

introduced. These are: Draw a secondary to the equator through the First

point of Aries and a secondary to this circle passing through the Sun. The

arcs between their point of intersection and the Sun and the First point of

Aries are called krānti-kot.i and nata, respectively. (Krānti-kot.i is not cosine

of krānti which is known as Dyujyā). We may call them ‘Inverse declination’

and ‘Inverse R.A.’. These concepts are used to determine various other for-

mulae which are described in the next chapter. Then the method of arriving

at the R.A. or Kālajyā is described.

But the most interesting derivations in this chapter are the exact formulae for

declination and R.A. of a star which is not on the ecliptic and therefore has

a latitude, not necessarily of a small magnitude. This problem has not been

satisfactorily solved by Indian astronomers till then and only approximate

solutions had been given which are valid only if the latitude is small.26 The

formulae derived here accord with the modern formulae.

Chapter X tackles fifteen types of astronomical problems. Taking the Sun

and the krānti triangle and the krānti-kot.i triangle there are six elements,

viz., longitude, R.A., declination, obliquity of the ecliptic, nata and krānti-

kot.i. The problem is: Given two of these six, the other four are to be found

out. There will be in all 15 cases which will arise. All these cases are

26See P.C. Sengupta, Khan. d. akhādyaka, pp.189-91, Problem viii.
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examined and the methods for finding the other four elements are discussed

exhaustively from fundamentals. It is a very interesting and instructive

exercise to understand how the ancient astronomers’ mind worked in solving

problems on spherical trigonometry.

Chapter XI deals with Direction and Gnomonic Shadow. This Chapter starts

with the method for finding accurately the east-west and north-south lines or

directions. The method adopted is the familiar one, marking off the points

where the shadow of the gnomon touches the circumference of a circle with

centre at the foot of the gnomon, forenoon and afternoon, and joining them

to get the east-west line. Since there will be a change in the declination of the

Sun between the forenoon and afternoon this line will not accurately depict

the east-west line and a correction is provided to rectify the error. Then

Kujyā and Carajyā are defined and the formulae derived. The method for

arriving at the shadow for the given time is next considered and the standard

method is adopted. But in this two corrections that are to be applied are

discussed in Tantrasaṅgraha.27 The Sun is not a point but a sphere, and

the umbra is to be taken as the shadow, and correction is needed for this.

Secondly the correction due to the parallax of the Sun is also explained. The

converse problem of finding time from shadow is tackled by the standard

method after giving effect to the above two corrections. Then the problems

connected with noon shadow, Samaśaṅku, corner shadow etc., are dealt with

in the usual manner.

There is again an interesting section concerned with Ten Shadow Problems.

We have five elements of the spherical triangle joining the Sun, zenith and

the north pole. The five elements are the three sides and two angles of the

triangle. That is, zenith distance, co-declination, co-latitude, which are the

three sides and, the azimuth and the hour angle, the two angles. (Actually

the text would use either these elements or their complements). Out of these

five, if any three are known the problem is to find the other two. There will

be ten cases to be solved. All these cases are taken up and the solutions are

derived methodically on the basis of the properties of spherical triangles.

27K. Ramasubramanian and M. S. Sriram, ‘Correction of the terrestrial latitude in
Tantrasaṅgraha’, Indian Jl. of History of Science, 38. 129-144 (2003).
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This subject is dealt with in Tantrasaṅgraha also, as it should be, and,

based on this, R. C. Gupta has presented a detailed paper.28 He has how-

ever, remarked that the rationales of the rules are not given in the work

(Tantrasaṅgraha) and his paper verifies the rules by the modern formulae.

However, the rationales are fully documented here in Yukti-bhās. ā. Essen-

tially they involve the application of several declination type formulae to

solve a particular problem. In fact the rationales are also given in the longer

commentary on Tantrasaṅgraha, Yuktid̄ıpikā. After all, Yukti-bhās. ā and Yuk-

tid̄ıpikā have the same origin.

Lagna and Kālalagna are treated in continuation. The equator cuts the

horizon of any place at two fixed points, east and west. The ecliptic also

cuts the horizon at two points but since the position of the ecliptic varies

every moment these points also vary moment to moment oscillating on either

side of the east and west points. These two points at east and west are called

Udayalagna and Astalagna or the rising and setting points of the ecliptic.

The distance from the First point of Aries to the east point and Udayalagna

are called the Kālalagna and Lagna, respectively. This chapter deals with

the method of calculating these two longitudes. Arriving at the lagna is a

standard problem in all texts. The procedure followed generally is to find

the rising times of the twelve signs for the local place and, from the longitude

of the Sun, obtain by interpolation the longitude of the rising point or lagna

for the desired time. This is bound to be approximate. However, in Yukti-

bhās. ā a direct method is adopted. First the zenith distance of nonagesimal

(Dr. kks.epa) is obtained and from that the lagna is arrived at. This method

again owes its origin to Tantrasaṅgraha.

Chapter XII deals with Eclipses and parallax correction. In the treatment

of the circumstances of an eclipse there is not much to comment. However,

we deal with two matters, one the second correction for the Moon and the

other the effect of parallax in longitude and latitude. The second correction

for the Moon which takes the place of the modern Evection plus the deficit

in the equation of centre of the Moon was known in India at least from the

28R. C. Gupta, ‘Solution of the astronomical triangle as found in Tantrasaṅgraha (1500)’,
Indian Jl. of Hist. of Science, 9. 86-99 (1974).
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10 century. There is a detailed paper by K. S. Shukla on this subject29

wherein he has dealt with this subject as contained in Tantrasaṅgraha also.

As can be expected, Yukti-bhās.ā follows Tantrasaṅgraha more or less and,

in addition, gives the basis for this correction. This basis or theory is the

same as explained in Shukla’s paper. However, a refinement has been made

in this work and that is when the Moon has a latitude, its distance from

Earth should be calculated taking the latitude also into account.

Now, coming to parallax, the idea is to calculate the effect of parallax in the

longitude and the latitude known as lambana and nati, respectively. The

usual formulae for these, as is in vogue in Kerala texts, are derived on the

basis that the object is on the ecliptic, that is, there is no latitude. While

other texts deal with this problem differently giving, in some cases, only

approximate results, the method followed here is exact. Further, other texts

do not take into account the latitude on the plea that during an eclipse the

latitude of the Moon is negligible. But here necessary formulae are derived

taking into account the latitude also.

Then to determine the angle of the Sun’s or the Moon’s disc at which the

eclipse starts or ends and to graphically depict an eclipse, the valana-s or

deflections are required to be calculated. Generally the texts deal with two

deflections, ayanavalana and aks.avalana, being the deflections due to obliq-

uity of the ecliptic and the latitude of the place, respectively. In Yukti-bhās. ā,

in addition, a deflection due to latitude of the Moon is also derived. This

deflection is generally found in other Kerala works also.

Chapter XIII is on Vyat̄ıpāta. Vyat̄ıpāta occurs when the Sun and the Moon

have equal declination and they are in the same ayanabhāga but in different

quadrants or in different ayana-s but in the same type of quadrant, odd

or even. This is considered very inauspicious, particularly in Kerala, and

the days on which vyat̄ıpāta falls are discarded for the performance of good

karma-s. All Kerala works on astronomy devote a chapter for determining

vyat̄ıpāta. Not only this, there are full-fledged works which deal exclusively

29K. S. Shukla, ‘The evection and the deficit of the equation of the centre of the Moon in
Hindu astronomy’, Proceedings of the Banaras Mathematical Society, NS, 7.ii (Dec.1945),
9-28.
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with vyat̄ıpāta and, as in the case of eclipses, the beginning, middle and

ending of vyat̄ıpāta are defined and the methods to arrive at these moments

are also explained. From the definition it will be seen that the declinations

of the Sun and the Moon are required to be calculated for this purpose.

The declination of the Sun presents no difficulty. In the case of the Moon

allowance has to be made for the latitude. The method of arriving at the

exact declination of the Moon has already been explained in Chapter IX.

In this chapter an alternate method is given with its rationale. The method

adopted is like this. The angle between the Moon’s path and equator is

not constant but varies between 19.5 to 28.5 degs. depending upon the

position of its node. The exact figure for the moment is first obtained. Then

the distance between the point of intersection of the Moon’s path and the

equator, and the Moon is got by making a correction to the node’s longitude.

This correction is called Viks.epa-calana. The method of arriving at these

two elements, with rationale, is explained. With these two elements, the

declination of the Moon is obtained in the same way as for the Sun. This is

a very interesting procedure and appears to be peculiar to Kerala.

In Chs.XIV and XV, Dr. kkarma or Reduction to observation is explained

with rationale as also Candraśr. ṅgonnati relating to the phases of the Moon.

18 Manuscript material

18.1 Malayālam version of Yukti-bhās. ā

The present critical edition of Yukti-bhās. ā has been prepared on the basis of

eight exemplars in palm-leaf, paper and print, designated A to H, procured

from different sources.

A. The edition of Part I alone of the work covering general mathematics, is-

sued under the title Yukti-bhās. ā : Onnāmbhāgam: Sāmānyagan. itam, edited

by Rāma Varma Maru Thampuran and A. R. Akhileswarayyar, (Mangalo-

dayam Ltd., Trissur, M.E. 1123 : A.D. 1948, pp. 394), now out of print. The
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copious Notes and Appendices provided to the edition greatly enhance the

value of this publication.

B. Ms. No. 486 of the Sree Sarada Education Society Research Centre,

containing both Parts I and II of the work. It has been scrupulously copied

in pencil from a palm-leaf manuscript, possibly towards 1940, in a quar-

ter size notebook. Though closely written, the writing is legible and the

text contained is generally pure. Following Yukti-bhās. ā, written on pages

1-105, the notebook contains four more works, all on Jyotis.a, being: Sadrat-

namālā of Śaṅkara Varman with Malayālam commentary by the author him-

self (pp.105-132), Bhūgola-ñāyam (pp. 133-35), Sādhanakriyā (pp. 136-140)

and Horāsāra (pp. 147-180). In continuation, pages 181 to 218 carry miscel-

laneous matters including some mathematical calculations. This manuscript

had been presented to the present editor by H. H. Rāma Varma Maru Tham-

puran several years back.

C. A well-preserved palm-leaf manuscript belonging to the Sree Sarada

Education Society Research Centre, in 199 folios. The manuscript carries

the whole work, Parts I and II. The text preserved here is generally pure. It

carries, at the end, the undermentioned postcolophonic statement.

karakr. tamaparādham ks.antumarhanti santah. , śr̄ı gurubhyo namah. ,

śr̄ı sarasvatyai namah. , vedavyāsāya namah. , ente caṅṅamkunnattu

bhagavati śaran. amāyirikkan. am.

Here, the scribe, who does not name himself, refers to his personal deity, be-

ing Goddess Bhagavat̄ı of Caṅṅamkunnu which should be his native village.

D. Ms. No. 12513 of the Oriental Research Institute and Manuscripts Li-

brary of the Kerala University, Trivandrum. This palm-leaf manuscript,

though written in legible characters, is britle and very much worm-eaten

which often makes it unreadable. The collation was done from a xerox copy

of the manuscript supplied by the Library. At the close it carries the follow-

ing post-colophonic verse.
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vyalekhi yuktibhās. ā vipren. a brahmadatta-sam. jñena |

ye golapathasthāh. syuh. kalirahitāh. śodhayantaste ||

Here the scribe names himself as Brahmadatta and the date of the comple-

tion of writing the manuscript by the chronogram ye golapathasthāh. syuh. in

the Kat.apayādi word-numerals, viz., 1771931, falling in A.D. 1639.

E. Ms. No. T. 90 of the Malayālam Section of the Oriental Research Insti-

tute and Manuscripts Library of the Kerala University, Trivandrum. This

is a very readable copy made in M.E.1100 (A.D.1925) from a palm-leaf

manuscript carrying only Pt. II of the work. The text contained herein

is generally pure.

F. Ms. No. D. 332 of the Malayālam Section of the Madras Govt. Oriental

Manuscripts Library, as printed by the Library issued under the title Gan. ita-

yukti-bhās. ā by T. Chandrasekharan (Madras, 1953). The manuscript carries

the whole work but is highly erroneous and the edition has added its own

share of errors.

G. A paper transcript of Part II of the work preserved in the Sree Sarada

Education Society Research Centre, Madras. It is written in shapely script

in 351 pages. The text preserved herein is pure.

H. A copy of Ch. VIII alone of the work written in pencil on foolscap paper

presented to the present Editor by H. H. Rāma Varma Maru Thampuran of

the Cochin royal family. The text contained herein is pure.

18.2 Sanskrit version of Yukti-bhās. ā

While the author of Yukti-bhās. ā has obviously composed the work only in

Malayālam, there is available a Sanskrit version as well of the work. It exists

in Paper transcript No. R. 4382 of the Madras Govt. Oriental Manuscripts

Library. It had been copied from a palm-leaf manuscript with the Raja of

Chirakkal (Malabar) in 1923-24 by N. Parthasarathi Acharya. The writing

herein in Devanāgar̄ı lacks space between words and leaves no stops after
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sentences. It is mostly a literal word to word translation, with even the

placement of the words as in the Malayālam original, which makes quaint

reading since the word order in Malayālam sentences, quite often, differs from

that in Sanskrit. Malayālam words are often used with Sanskrit termina-

tions. Gender division between adjectives and the nouns that they qualify is

not maintained, following the practice in Malayālam. Compound words are

often formed putting Malayālam and Sanskrit words together. Malayālam

verbs are used with Sanskrit suffixes. The nominal and verbal suffixes are

also used quite often erroneously. Indeed, the Malayālamised Sanskrit in

this version of the work can be properly understood only by one knowing

well the Malayālam language.

It would seem that the Sanskrit version has been prepared by a Malayālam

scholar whose knowledge of idiomatic Sanskrit was limited. Possibly this

work had been taken up at the instance of a member of royal family of

Chirakkal, with the view that this great work should appear also in Sanskrit.

Despite the above-said limitations, the Sanskrit version has been found help-

ful in identifying correct readings where the manuscripts of Malayālam ver-

sion exhibited doubtful readings, and also in filling the haplographical gaps

whenever they occurred in the Malayālam manuscripts.

19 Editorial presentation

The aim of this edition of Yukti-bhās. ā is to present a critical text of the work

based on the available manuscripts. The mediaeval Malayālam prose found

in the manuscripts has been recorded as such in the edition, and the variant

readings found therein are recorded as footnotes. The quaintness of medieval

Malayālam prose and the absence of punctuation marks in the manuscripts

did not really pose a problem in editing the work for two reasons. First,

the subject treated belongs to the discipline of science which is definitive in

nature, and, secondly, the treatment of the subject is methodical, analytical

and elucidatory. The correct deciphering of even obscure words was not

difficult though numerous subjects are dealt with.
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20 Appendices

The following appendices have been included in Volume II of this publication.

I. Glossary of technical terms: Malayalam-English

A full Glossary of the Technical terms used in the Yukti-bhās. ā has been

provided. For most of these English equivalents are available which have

been duly noted against the respective terms. Wherever necessary, short

explanations have also been provided towards making their meaning explicit.

When a term has varying meanings, that has also been pointed out. It might

be noted that the Malayālam and the Sanskrit terms are always meaningful,

with the result that the meanings of simple or compound technical terms

are identified and understood through a knowledge of basic Sanskrit.

Characteristically enough the Yukti-bhās. ā ‘describes’ and ‘defines’ every

technical term on its first occurrence in the work. In order to direct the

attention of the reader to the said description and definition their relevant

places of occurrence in the text have been indicated with the chapter number

and section number where it occurs, against the term in the Glossary. It is

to be expected that this would, to a great extent, serve also as a Subject

Index to the Volume in view of the mass of documented information given

herein.

II Citations of authors and texts

Appendix II collects together the authors and texts cited in the Yukti-bhās.ā.
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Malayālam and Sanskrit with an English Translation.

S.S.E.S. Research Centre K. V. Sarma

32/2, II Main Road

Gandhi Nagar, Adyar

Chennai - 600 020



Introduction lv

Empty page – Introduced deliberately



Gan. ita-Yukti-Bhās.ā

(Rationales in Mathematical Astronomy)

of

jyes.t.hadeva

Malayalam Text Critically Edited with English Translation

by

K. V. SARMA

With Explanatory Notes in English

by

K. RAMASUBRAMANIAN

M. D. SRINIVAS

M. S. SRIRAM

Volume One

Chapters I – VII : Mathematics

Hindustan Book Agency

2008



To be treated as – Blank page (introduced deliberately)



Foreword

One of the most significant events in the history of mathematics has been the
development of infinitesimal calculus, achieved independently by Leibniz and
Newton in the 17th century. It is remarkable that the work of the Kerala
school of mathematics during 14th-16th centuries already anticipates this
development.

These contributions of the Kerala mathematicians during the medieval pe-
riod might well have remained an unwritten chapter in the history of In-
dian mathematics had it not been for Charles Whish, a civilian employee
of the East India Company, who published in 1830s a paper highlighting
their achievements. Since the middle of the 20th century, Indian scholars
have worked on these contributions and now the work of the Kerala school
during the medieval period is well recognised. Mādhava (c. 14th cent) and
Nı̄lakan. t.ha Somayāj̄ı (c. 1444-1545) were the leading personalities of this
school. Jyes.t.hadeva, a junior contemporary of Nı̄lakan. t.ha authored an im-
portant work called Gan. ita-Yuktibhās. ā which is based on the work of the
Mādhava school. There are at least two unique aspects of this work. First,
unlike the usual texts in mathematics and astronomy which are written in
Sanskrit, Yuktibhās. ā is written in the local language Malayalam, besides, it
is in the form of an expository text which includes detailed explanations and
proofs of various results.

Though, there have been earlier editions of Yuktibhās. ā, a truly critical edi-
tion with English translation is indeed very desirable and this in fact has
been achieved by late Prof. K. V. Sarma, an eminent scholar and indologist,
who began to collect manuscripts of the text from 1950s. An earlier draft
of the text with English translation, prepared by him, has been in circula-
tion among a few scholars since nineties. However, from 2000 onwards, he
re-worked on these with the help of some fresh manuscript material and re-
vised both the text and the translation thoroughly. He was very particular
that the English translation of Yuktibhās. ā should be supplemented by de-
tailed explanatory material. He requested Professors K. Ramasubramanian,
M. D. Srinivas and M. S. Sriram to take up this work which they did. Un-
fortunately, Prof. K. V. Sarma passed away three years ago just when the
work was nearly complete. After some delay in publication, the present two



volumes, one of which contains the Malayalam text of the mathematics part
of Yuktibhās. ā and its English translation and the other the astronomy part
of the text with its English translation, are now being published along with
explanatory notes. I am very happy that Prof. K. V. Sarma’s wish has been
fulfilled. As one associated with the Hindustan Book Agency, I am also glad
that the Agency is publishing these volumes, which I believe will be of great
value to the academic community.

C. S. Seshadri

Director

Chennai Mathematical Institute



Preface

We are writing this preface with a deep sense of grief as our senior colleague
Prof. K. V. Sarma is no more with us to celebrate the completion of a work
that was so dear to him and occupied much of his time during the last
years of his life. Professor Sarma passed away on the Makara-saṅkrānti day,
January 14, 2005, barely a few days after we had completed the final draft
of Volume I of Gan. ita-Yuktibhās. ā containing the Malayalam Text, English
Translation and Explanatory Notes of the Mathematics Section of this great
work. A few months earlier he had finalised the editing of a Sanskrit version
of Gan. ita-Yuktibhās. ā, which has been published by the Indian Institute of
Advanced Study, Shimla, in 2004. He had also completed the editing of
the Malayalam Text of Volume II on Astronomy and was also more or less
through with marking final corrections to his English Translation.

Publication of a critically edited text of Gan. ita-Yuktibhās. ā together with
English Translation and Notes has been a long cherished project of Profes-
sor Sarma. Even though the importance of Gan. ita-Yuktibhās. ā was brought
to the notice of modern scholarship by C. M. Whish in 1830s, an edition of
the Mathematics part of the text (along with notes in Malayalam) was pub-
lished only in 1948 by Ramavarma Maru Thampuran and Akhileswarayyar.
In 1953, the Government Oriental Manuscripts Library of Madras issued a
rather unsatisfactory edition of the whole work. Prof. Sarma’s efforts to
bring out a critical edition of the whole work began around the same time.
With the encouragement of Ramavarma Thampuran, he collected several
manuscripts of the text. Some of his earlier drafts of the critical edition
of the text and its English translation have been in circulation amongst a
few scholars since the early nineties. From around 2000, he reworked on the
critical edition after he got access to some fresh manuscript material. He
also revised his translation thoroughly in the light of recent investigations
on the contributions of the Kerala School of Astronomy.

Prof. Sarma was very particular that the English Translation of Gan. ita-
Yuktibhās. ā should be supplemented by detailed Explanatory Notes elucidat-
ing the theories and processes expounded in the text by means of equations,
diagrams and notations currently employed in mathematics and astronomy.
He was kind enough to invite us to take up this work. It was only his re-
lentless enthusiasm and active involvement which made this work possible.



We sincerely hope that these volumes will take their due place in the long
series of illustrious works of the Kerala School of Astronomy that have been
edited and published by Prof. Sarma.

We would like to record our deep sense of indebtedness to late Prof. Sarma,
for all the kind encouragement and guidance we have received from him
during the course of this work. We are very much obliged to Mr. Jameel
Ahmed, Research Scholar, Department of Malayalam, University of Madras,
who spent countless hours reading the Malayalam Text with us. Without his
enthusiastic help it would not have been possible for us to carefully edit the
English Translation and prepare the Explanatory Notes. We would also like
to thank Sri I. P. Muralidharan of Korel Graphics for the personal attention
and care that he bestowed in typesetting the final Malayalam Text.

We are grateful to Prof. C. S. Seshadri, Director, Chennai Mathemati-
cal Institute, for kindly contributing a Foreword to this Volume. We are
deeply indebted to him and his colleague Prof. R. Sridharan and also to
Prof. J. V. Narlikar of IUCAA, Pune, for their valuable advice, encour-
agement and support, which have immensely helped us in seeing this work
through to publication.

We would like to acknowledge the support provided by the Indian Institute of
Advanced Study, Shimla, towards the preparation of this work by the award
of a Research Project to Prof. K. V. Sarma and Research Associateship to
Dr. K. Ramasubramanian. We are especially grateful to Prof. G. C. Pande,
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6.4.4 Samaghāta-saṅkalita: General principle of summation 65

6.4.5 Repeated summations . . . . . . . . . . . . . . . . . . 66

6.5 Conclusion: Calculation of the circumference . . . . . . . . . 67
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1.8.4 Bhujā-kot.i-karn. a-nyāya . . . . . . . . . . . . . . . . . 159

1.8.5 Fourth method of squaring . . . . . . . . . . . . . . . 159

1.8.6 Difference of squares of two numbers is the product of
their sum and difference . . . . . . . . . . . . . . . . . 160

1.8.7 Sum of the progression of odd numbers is a square . . 161

1.9 Square-root . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

1.10 Root of sums and difference of squares . . . . . . . . . . . . . 163

CHAPTER 2 The Ten Questions and Answers . . . . . . . . . . . . . . . . . . . . . . . . . 164

CHAPTER 3 Arithmetics of Fractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

CHAPTER 4 Rule of Three . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

4.1 Nature of rule of three . . . . . . . . . . . . . . . . . . . . . . 169
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5.3.3 Bhagan. a-śes.a of mean Sun . . . . . . . . . . . . . . . 173

5.3.4 An example . . . . . . . . . . . . . . . . . . . . . . . . 174
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6.6 Cāp̄ıkaran. a: Conversion of the Rsine to arc . . . . . . . . . . 198

6.7 Circumference by an alternate method . . . . . . . . . . . . . 200
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7.5.5 Accurate computation of Rsines and Rversines, with-
out using tables . . . . . . . . . . . . . . . . . . . . . . 232

7.6 Accurate circumference from an approximate value . . . . . . 233

7.7 Square of Rsine . . . . . . . . . . . . . . . . . . . . . . . . . . 234



xviii Gan. ita-yukti-bhās.ā
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Bhājya and Hāra, does not divide the Ks.epa, then the
problem is ill-posed . . . . . . . . . . . . . . . . . . . . 300

B.5 Rationale for the procedure for finding Apavartāṅka . 302
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Chapter 1

The Eight Mathematical

Operations

1.1 Benediction

pratyūhavyūhavihatikārakam. paramam. mahah. |

antah. karan. aśuddhim. me vidadhātu sanātanam ||

May the Supreme Effulgence which sweeps off assailing masses

of obstacles confer on me eternal purity of mind.

gurupādāmbujam. natvā namaskāryatamam. mayā |

likhyate gan. itam. kr. tsnam. grahagatyupayogi yat ||

Having bowed at the most venerable feet of the teacher, the en-

tire calculation, whatever is needed for the computation of the

motions of the planets, is being set out by me.

1.2 Nature of numbers

Here, at the outset, with a view to expound, following the Tantrasaṅgraha, all

the calculations as are needed for the computation of the motion of the plan-

ets, first the elementary calculations (gan. ita), such as addition (saṅkalita)

etc., are being set out. Now, gan. ita is a special analysis (parāmarśa-víses. a)

involving numbers or digits (sam. khyā) in relation to objects amenable to

being counted (sam. khyeya). The numbers are firstly, the numerals from one
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up to ten, which are the ‘basic (digits)’ (prakr. ti). Each of these, multiplied

(in order) by ten, extending up to hundred, function like their ‘extensions’

(vikr. ti). The place of the (extensions) which result by multiplying the (bases)

by ten (i.e., the numbers 10 up to 100) would be higher by one place from

that of the basic digits. These ‘extensions’ themselves will, (in their turn),

function like ‘bases’ for their ‘extensions’ formed by multiplying them by

ten, resulting in numbers up to thousand. Thus, numbers multiplied by ten

would result in their next ‘extensions’; they would also be higher by one

place. The nomenclature of the numbers up to eighteen places formed in

this manner is:

ekadaśaśatasahasrāyutalaks. aprayutakot.ayah. kramaśah. |

arbudamabjam. kharvanikharvamahāpadmaśaṅkavastasmāt ||

jaladhíscāntyam. madhyam. parārdhamiti daśagun. ottarāh. sam. jñāh. |

sam. khyāyāh. sthānānām. vyavahārārtham. kr. tāh. pūrvaih. ||

Eka, daśa, śata, sahasra, ayuta, laks.a, prayuta, kot.i, arbuda,

abja, kharva, nikharva, mahāpadma, śaṅku, jaladhi, antya, mad-

hya and parārdha: These are the names of the place-values, each

ten-fold of the previous, as designated by the ancient (scholars).

(L̄ılāvat̄ı, 10-11)

Here, if the above principle of multiplication (by ten) and (corresponding)

change of place (as we place them higher) are not assigned to the digits, then

there will be no limit to the way in which numbers may be designated, and

it would be impossible to recognise the numbers and their order. Hence, the

conception as above is made for practical purposes. The digits from one to

nine occupy the first place. When multiplied by ten they occupy the second

place and are put one place to the left (and so on). These (several places)

are designated as ‘unit’s place’, ‘ten’s place’ and so on. Thus is the nature

of numbers.
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1.3 Mathematical operations

Now, are indicated the different computations (gan. ita-bheda) employing (num-

bers). Computations are twofold, (resulting, respectively in) an increase

(vr. ddhi) or a decrease (ks.aya). Computations resulting in increase are the

‘addition’ (yoga), ‘multiplication’ (gun. a), ‘squaring’ (varga) and ‘cubing’

(ghana). Then, those resulting in decrease are the ‘subtraction’ (viyoga),

‘division’ (haran. a), ‘square-root’ (varga-mūla) and ‘cube-root’ (ghana-mūla).

Here, ‘addition’ is operative in ‘multiplication’, ‘multiplication’ in ‘squaring’

and ‘squaring’ in ‘cubing’. Similarly, ‘subtraction’ is operative in ‘division’,

‘division’ in ‘square-root’, and ‘square-root’ in ‘cube-root’. Thus the preced-

ing (operation) is involved in the succeeding one.

1.4 Addition and subtraction

The process of these operations is now indicated. Here, when unity is added

to a number, the result would be, in order, the next higher number in the

ascending order, and so on endlessly. Similarly, when unity is subtracted

from a higher number, the result would be, in order, the next lower number

in the descending order. This is the nature of all numbers. There, given any

number, when higher numbers are conceived of, they will be the result of

the addition, in order, of unity (to the preceding numbers). Similarly, given

any number, when lower numbers are conceived of, they would be the result

of the subtraction, in order, of unity (from the preceding numbers). Thus,

when the nature of the numbers in the ascending and descending order is

conceived, the results would be the addition and subtraction of unity (to or

from preceding numbers). Suppose it was intended to add, to any number,

unity a certain number of times. Then, if the same number of units is added

together separately and the result obtained is added to the desired number,

then, too, the total will be the same. Thus, addition can be conceived in

this manner. In the same manner, if it was intended to subtract, from any

number, unity a certain number of times, the result obtained will be got
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also by subtracting the whole at one stretch. Thus, if the higher and lower

numbers are to be known, addition and subtraction need to be effected.

Addition and subtraction are known by the terms saṅkalita and vyavakalita.

Unity is designated by rūpa and vyakti. Thus (have been set out) addition

and subtraction.

1.5 Multiplication: In general

1.5.1 Methods of multiplication

Then, multiplication: Really speaking, it is only addition. There, when

something is multiplied by another, what is multiplied is called ‘multiplicand’

(gun. ya) and that with which multiplication is done is called ‘multiplier’

(gun. akāra). Here, the multiplicand is being added to and it may be noted

that the multiplicand itself is the additive. The multiplicand is added as

many times as there are unities in the multiplier. Addition, as per this

procedure, is multiplication. It is explained herein below.

1.5.2 First method of multiplication

Here, to start with, the last (i.e., the highest) digit of the multiplicand

may be multiplied by the multiplier, the advantage being that there is no

confusion and the digits, by which multiplication has been done and those

by which multiplication is yet to be done, do not get overlapped. Let the

last digit of the multiplicand be unity and suppose it has to be multiplied

by 100. Unity has then to be repeated 100 times. When it is repeated ten

times, there will be a rise of unity in the ten’s place, as per the rule stated

earlier. When unity is again repeated ten times, there will result two in the

ten’s place. When it is repeated a hundred times, that will result in unity

in the hundredth place.
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Therefore, if there was unity in the hundredth place of the multiplier, move

the last digit of the multiplicand to the hundredth place as counted there

from. It would then have been multiplied by hundred. At this juncture,

the occurrence of digits below the last digit of the multiplicand may be

ignored since they are not of any utility here. The above being the case,

place the multiplier above the multiplicand in such a manner that its first

place is above the last place of the multiplicand. Now, if the last digit of

the multiplier is 1, place the last digit of the multiplicand below the last

place (antya) of the multiplier. If it is 2, place twice the last digit of the

multiplicand. This would mean that it has been multiplied by the last digit

of the multiplier. Now, the place next (lower) to the last is called penultimate

(upāntya). Multiply the last digit of the multiplicand as many times as the

penultimate digit of the multiplier and place it (below the said penultimate

digit). This would mean that the multiplication by the penultimate has been

done. Continue, in this manner, multiplying the last digit of the multiplicand

with all the digits of the multiplier up to its first place and place the results

below the respective place of the multiplier. This would mean that the

last digit of the multiplicand has been multiplied by all the digits of the

multiplier. If any place in the multiplier has no digit (sam. khyā) and is zero

(́sūnya), the multiplicand need not be placed below it. That place might get

filled by numbers raised from other (lower) places. Now, place the multiplier

in such a manner that its unit’s place is against the penultimate digit of the

multiplicand. Multiply that (penultimate) digit also as before. Follow this

procedure till the first place of the multiplicand is reached. Then the entire

multiplicand would have been multiplied (by the multiplier).

1.5.3 Second method of multiplication

The method of multiplication could be in the following manner, as well.

Multiply the multiplier separately by the different digits of the multiplicand

and add the results with due reference to places. Here, it is not essential

to start with the last place, as there is no possibility for confusion between

the digits. Again, multiplication might be done by different parts (digits)



6 1. The Eight Mathematical Operations

of the multiplier instead of those of the multiplicand. Let the multiplier

be in three digits, the number being 234. Take it in three parts. That is,

suppose there are three multipliers, the first being 200, the second 30 and

the third 4. There, assume the multipliers to be three in number, place the

multiplicand at three places and multiply by each of these three (parts). Add

without interchanging the places. This will also give the result of the above-

said multiplication. Here, at one place (the multiplicand) would have been

repeated 200 times, at another 30 times and at the third 4 times. When all

these are added, the result of the multiplication by 234 would be obtained.

1.5.4 Third method of multiplication

Multiplication can be done also in another manner without reference to place

values. For this, split (the said multiplier into) two parts, the first being 110

and the other 124. The multiplicand might also be taken in parts in a similar

manner. Thus, the partitioning might be made with reference, either to the

value of the number, or to the places. Thus, the method of multiplication

by parts is effected in the same way as (general) multiplication.

1.5.5 Representation of the product as an area

The product of multiplication can be conceived also as the area of a plane

figure (ks.etra). There will then be ease (in understanding). By plane figure is

meant (here) a plane quadrilateral (caturaśra). This could be a rectangle or

a square. When the multiplicand is larger and the multiplier smaller, think

of a rectangle whose length is the same as the multiplicand in units of dan. d. a

(kol) or aṅgula (viral), and whose breadth is the same as the multiplier, in

the same units. Then, if the unit taken is the dan. d. a, draw across this figure,

breadth-wise and lengthwise, lines at interstices of one dan. d. a. The figure

will then be filled with squares (sama-caturaśra) whose side is of the measure

of one dan. d. a. These squares will also be set in rows. Along the length will be

squares equal in number to the multiplicand and the number of rows formed
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will be that of the multiplier. If, however, the columns (or breadth-wise

rows) are taken, in each column there will be squares equal in number to

the multiplier, the number of columns being that of the multiplicand. These

squares are termed ‘units of area’ (khan. d. a-ks.etraphala). When conceived in

this manner, there will be as many unit squares of area as when the length

and breadth of the figure are multiplied together. Clearly, it is also the

multiplier repeated as many times as the multiplicand and the multiplicand

repeated as many times as the multiplier.

Besides being the product of multiplication, the figure will have equal di-

agonals. The (straight) line drawn from one corner of a quadrilateral to

the opposite corner through the centre of the figure is called the diag-

onal (karn. a). The figure obtained is called a ‘product-area’, (rectangle,

ghātaks.etra). Ghāta and sam. varga are synonyms of gun. ana (multiplication).

Further, a varga (square) can also be conceived as a plane figure. Here, a

varga-ks.etra will always be a square (sama-caturaśra). The above is multi-

plication in general.

1.6 Multiplication: Special methods

1.6.1 First special method

Now, for a method to know by how much more or less a product would be

when the multiplicand or the multiplier is increased or decreased by any

desired number (is. t.a) and then multiplied. Here, when the multiplier or the

multiplicand, whichever is smaller, is decreased by the desired number, and

the result is multiplied, the figure will be smaller in area; the number of

rows will be less by the number decreased. Hence, in order to fill the rows

(and reach the size of the original figure), (to the present figure) should be

added (the figure) obtained by multiplying the longer side by the desired

number. When (the multiplier or the multiplicand) has been increased by a

certain desired number, the number of rows would also have increased by that

number. Here, (the area) should be reduced by the longer side multiplied by
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the desired number in order to get the (original) number of rows, since the

number of rows has increased by the desired number. Similarly, it is obvious

that when the multiplication is done by decreasing or increasing the larger

number by acertain desired number, the product thereof should be increased

or decreased by the product of the smaller number by the desired number,

in order to obtain the original product.

1.6.2 Second special method

Now, to the smaller of the multiplier and the multiplicand, add a big arbi-

trary number (is. t.a); and from the bigger, subtract a small arbitrary number

(is. t.a). Now, when these two are multiplied, the resultant figure will have as

many rows increased as the number added, and as many unit squares in each

row decreased as the number subtracted; the resultant will be such a figure.

There, when it is conceived that a small number is subtracted from a large

multiplicand and a large number added to a small multiplier, the figure will

have an increased number of rows, each as long as the multiplicand minus

the is. t.a ( smaller number). There, the increased number of rows is equal to

the is. t.a (larger number) of the multiplier. Hence, the product of the cho-

sen number that is added to the multiplier and the multiplicand, minus the

number subtracted from it, should be subtracted from the figure (which has

resulted). Now, to be added are the number of columns (breadth-wise rows)

equal to the is. t.a of the multiplicand. Hence, it would be enough if the mul-

tiplier is multiplied by the is. t.a of the multiplicand and added. This would

be the desired product. It might be noted that this is the procedure when

some desired number is added to or subtracted from both the multiplier and

the multiplicand.

1.6.3 Third special method

Now, to the procedure to find what is to be subtracted when the multiplier

is divided by a number and the quotient added to the multiplier itself and
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with the sum thereof, the multiplicand is multiplied. Here, let the multiplier

be 12. Let the quotient 1, obtained by dividing the multiplier by itself, be

added to it. Then multiply the multiplicand by it. The result will be 13

rows each of the length of the multiplicand. To remove one row there from,

the (figure) will have to be reduced, not by itself divided by 12, but by

itself divided by 13. This (reduction) will be one-thirteenth of the original

to which its one-twelfth had been added. Since this is clear, it follows that

the 1 added to the divisor of the first division would be the divisor for the

next (division to get the desired subtractand). In a figure having 13 rows,

one row to be removed would be its one-thirteenth, since one added to the

original twelve would be thirteen, and when one-thirteenth of it is removed,

the result is twelve. In the same manner if one-twelfth is reduced from

twelve, one-eleventh of the remainder added to it will make it twelve. Hence,

when the multiplier is divided by a number and the quotient is subtracted

from the multiplier and the result is multiplied by the multiplicand, in order

to get the correct result, add the quotient of this product, obtained by a

divisor which is less by one than the original divisor. Thus, (in order to get

at the result), according as the circumstance warrants, add to or subtract

from the said product, the quotient obtained by the said divisor. Or, before

multiplication, this relevant part either of the multiplier or the multiplicand,

might be calculated and added to or subtracted from it (viz., the multiplier

or the multiplicand, as the case may be and the multiplication done): then

also the correct result will be obtained. Here, the divisor is the same as

said above. It has been stated that the first divisor to which one is added

to or subtracted from, acts as the subsequent divisor (to get the correction

term). Just as the correct result is reached by reducing the multiplier by

the part which has been added to it, the same result will be obtained also

by reducing the multiplicand by that part. When the reduction is effected

in the multiplier, there will be the reduction of actual rows; while, when

the reduction is effected in the multiplicand, there will be reduction in the

number of unit squares in each row. That is, compared to the true figure,

there has been an increase in breadth and a decrease in length. The area,

however, remains the same.
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1.6.4 Fourth special method

Now, in the instance where, from among the multiplier and the multiplicand,

the multiplier was assumed as 12, the special situation where the quotient

obtained when it was divided by 12 is itself multiplied by any number and

added to (the multiplier) 12, is set out here. Let the quotient obtained

by dividing (the multiplier 12) by 12 be multiplied by 5 and the result be

added to the multiplier 12. In the figure which involves the said (revised)

multiplier, there will be 17 rows. Here, in order to obtain the number of

unit squares in one row, the area will have to be divided by 17. And, to

get the true area, the area got as above will have to be reduced by that due

to the quotient multiplied by 5. There, the subsequent divisor is formed by

adding the selected number, which is multiplying the quotient, to the original

divisor. In the case, when the result is subtracted (from the multiplier), the

figure would have seven rows. In that case, the number of unit squares in a

row will have to be obtained by dividing it by 7. Therefore, the multiplier

of the quotient, viz., 5, will have to be subtracted from 12. And, that will

be the subsequent divisor. The multiplier of the quotient at both places is

the self-same 5. Thus, the conception of products is easier in each of these

cases, if it is conceived in the above manner as an area.

1.6.5 Fifth special method

Then, when 12 is the multiplier, that 12 divided by 4 gives a quotient 3.

Multiply the multiplicand by that 3. Multiply the product also by 4 which

had been taken as the divisor. The result will be the same as that for

multiplication by 12. There, when multiplied by 3, the multiplicand will be

in three rows. When that is multiplied by 4, there will be four sets of three

rows. Thus, there will be 12 rows in all. Therefore, where there is a divisor,

which can divide either the multiplier or the multiplicand completely (i.e.,

without remainder), with this divisor, multiply the other of the two, viz.,

multiplier and multiplicand. Multiply the product again by the quotient

got above. Then too, the multiplier and the multiplicand would have been

multiplied. Thus have been set out, the different methods of multiplication.
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1.7 Division

Next, division: There, that which is divided is the dividend (hārya). That

by which division is done is the divisor (hāraka). Now, conceive the dividend

as a rectangle (ghāta-ks.etra), and the divisor as equal to the length of one

of its sides. Now, the number of times the divisor can be subtracted from

the dividend would be equal to the number of unit squares in each divisor-

long row of this rectangle. Thus, the dividend is a rectangle formed by the

multiplication of the divisor and the quotient. There, when the divisor is

being subtracted from the 100th place of the dividend, in effect, it would have

been subtracted a hundred times. Then, the quotient will be 100. When

the digit 1 is placed in the 100th place, that will give (the value of) 100.

Therefore, the quotient should be placed at that place of the dividend from

which, to start with, the divisor is subtracted. The digit (of the quotient) to

be placed there would be given by the number of times the divisor has been

subtracted. Continue this procedure till the first place (of the dividend) is

reached. Thus has been set out, (the procedure of) division.

1.8 Square

1.8.1 First method of squaring

Next, the square (varga): Now, squaring is, indeed, multiplication, the spe-

ciality herein being that the multiplier and the multiplicand are equal num-

bers. Therefore, the corresponding figure (varga-ks.etra) will be a square

(sama-caturaśra). Therefore, here, the units in both the rows and columns

will be equal. Earlier, when multiplication was expounded, it had been in-

structed that the multiplier is to be placed with its first place above the last

place of the multiplicand, then multiply the multiplicand’s last place with

the different places of the multiplier and keep the result below the respective

places. This would mean that the product (at each step) would be placed

at a place which is less by one than the sum of the corresponding places of

the multiplier and the multiplicand. In the present case, since the number of
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places in the multiplier and the multiplicand are equal, the place where the

square of a digit appears is twice the place to be multiplied less one, and thus

would be an odd place. Therefore, the result of the last place multiplied by

the last place would come in an odd place. The last place multiplied by the

penultimate would come in the even place below; the penultimate multiplied

by the last, would also occur there. Then the penultimate multiplied by the

penultimate would occur in the odd place, below. Thus, the products of like

places are to be placed at odd places and the products of unlike places are

to be placed at even places. Hence, to start with, put the square of the last

places at one spot. In squaring, since all places of the number to be squared

have to be multiplied by all its places, let the products of similar places be

termed varga and that of dissimilar places as ghāta. Again, it is said, that

odd place is termed oja and even yugma. Sum of all numbers is called rāśi.

Here, deposit (at its place) the square of the last digit. Now, the product of

the last digit of the multiplicand and the penultimate of the multiplier and

the product of the penultimate of the multiplier and the last of the multi-

plicand are equal both in their value and in the place where they ought to

occur. Hence, double the last digit, multiply it by the penultimate and put

it below the penultimate place. This will be the next below the square of the

last digit. Then place in subsequent places, appropriately, all the numbers

got by multiplying, by twice the last digit, all the digits below the penulti-

mate. The last digit can now be discarded, since the multiplications to be

done by the last digit of the multiplier and by that of the multiplicand have

already been done. Now, move the penultimate and lower digits lower by

one place. They will then be just one place lower than the place lower than

the square of the last digit. Add to the number at that place the square

of the penultimate. Then double the penultimate and multiply with it the

next lower digits and add them to the numbers in the subsequent places

appropriately. Now, discard the penultimate. Then move (the digits) by

one place lower, and add the square of the digit next to the penultimate.

Then double it, (i.e., the digit next to the penultimate), multiply with it the

lower digits and add them to the numbers in subsequent places appropri-

ately. Then lower the digits by one place and square. Continue this process

till all the digits are done. Thus, squaring is in effect multiplication. It has

already been observed that multiplication is in effect addition. Therefore,



1.8 Square 13

this, (i.e., squaring), is a special type of addition. Thus has been stated one

type of squaring.

1.8.2 Second method of squaring

Now, the above is demonstrated in a plane figure. The varga (square) is

here (conceived as) a plane square figure. When the square of its last digit

is depicted, there will be a corresponding square. And that will be at one

corner. Now, the squaring of the number to be squared is considered here by

breaking it into two components. There, its last digit makes one component.

All the lower digits together make up the other component. Partition both

the multiplier and the multiplicand, (both being the same number), in this

manner. Now, take as the first (portion) the product of the last component

of the multiplier, with the last component of the multiplicand; as the second

(portion), the product of the last component of the multiplier with the first

component of the multiplicand; as the third (portion), the product of the first

component of the multiplier with the last component of the multiplicand; and

as the fourth (portion) the product of the first component of the multiplier

with the first component of the multiplicand. Thus the square figure will be

in four portions. There, the first and the last portions will be squares. Thus

these two are square figures (varga-ks.etra) while the second and the third

are rectangles (ghāta-ks.etra).

There, if the square of 123 is required, the 1 of the hundredth place would

be one component and the two lower places, making 23, would be the sec-

ond component. When the square of 100 is depicted, there would be a

square figure with 100 rows and in each row there would be 100 unit squares.

Suppose this is (situated) in the north-eastern corner. Then place the rect-

angles alongside it, on the southern and western sides. These two would be

rectangles with the longer side 100 and shorter side 23. Then the square

of 23 would come in the south-western corner. Now, even this 23 could be

divided by places and squared. Here conceive the square figure of side 20

as situated in the north-east corner; then two rectangles of length 20 and

breadth 3, towards the south and the west; then the square of 3 in the south-
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western corner. Continue thus, till the places are exhausted. Thus, we have

a method of squaring. In this method, when a number is to be squared, it is

to be divided into two components, these are multiplied together, doubled

and to this is added the squares of both the components, the result being

the square of the sum of the two components.

1.8.3 Third method of squaring

Then, take the product of the components, multiply that by four; add to it

the square of their difference. In this manner, too, the total square would

result. This is as follows: Here, a rectangle would be formed with the longer

component as the length and the shorter side as breadth. Draw also its

diagonal. Thus, we have a method to construct the square figure using

four of these rectangles. Place one of these rectangles with its length along

the south, alongside the (full) square, from the north-east corner. Another

rectangle is placed at the south-east of this, towards the west; then, from

the south-west, towards the north; then, from the north-west, towards the

east. When (they are) placed in this manner, there will be found a deficient

area at the centre of the figure, equal to the square of the difference of the

components. If this is also supplied, the square will be full. This is because,

the smaller component occurs at both ends (of the entire line), the remainder

will be the difference of the components. Therefore, four times the product

(of the components) and the square of their difference, when added together,

will give the square of the sum of the components. Now, from what has been

set out here, it follows that the sum of the squares of the components would

be the sum of twice their product and the square of their difference, since

the square of the whole had previously been derived by adding to it twice

the product of the components.

1.8.4 Bhujā-kot.i-karn. a-nyāya

Now, when the sum of the squares of the components is taken as an area,

the diagonal of the product rectangle (ghāta-ks.etra) will be the side of a
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square with the same area. The method for this: Draw the four rectangles as

stated above and mark those hypotenuses whose extremities do not fall at the

corners of the square but touch the other corners (of the rectangles). From

this figure, cut along the hypotenuses and remove the four outer triangles.

What remains there would be a square with its sides equal to the hypotenuse.

Then, if two each of the (four outer) triangles that have been removed are

joined together, two rectangles will result. This being the case, it means

that the sum of the squares (of the components) would be the square of the

hypotenuse. And twice the sum of the squares of components when decreased

by the square of their difference gives the square of their sum. Hence in

all the three cases, viz., (i) when double the product of the components is

subtracted from the sum of their squares, or (ii) when four times the product

is subtracted from the square of the sum, or (iii) the square of the sum is

subtracted from twice the sum of the squares, what results would be the

square of the difference.

1.8.5 Fourth method of squaring

Now, place the number to be squared at two places, consider one as the mul-

tiplier and the other as the multiplicand, and from one of them subtract any

(arbitrarily) desired number; add the same number to the other. And mul-

tiply the two. The figure formed would be a rectangle with breadth equal to

the reduced-multiplier and with its length equal to the added-multiplicand.

Then cut off the portion corresponding to enhanced length and place it along

the deficient breadth (of the rectangle). The result will be deficient (from

the desired square) in one corner by an amount equal to the square of the

added number. If this is also added, the square, as before, will result.

1.8.6 Difference of squares of two numbers is the product of

their sum and difference

Then, by following the same reasoning as in the method of squares of com-

ponents: Square a desired number and place it at two places. Take another
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desired number. Then, find the product of the two desired numbers, double

the product and add the same at one place and subtract from the other.

Then, add the square of the second desired number in both the places. The

two results got would be the square of the sum of the two desired numbers

and the square of the difference between the two desired numbers. And, if

the square roots of the two results are calculated the same will be the roots

of the squares of the sum (of the two desired numbers) and of the difference

(of the two desired numbers).

Now, the figure which was referred to earlier for obtaining the square of the

sum of the two components, i.e., the figure with the square of the larger

component at the north-east, the square of the smaller component at the

south-west and, at the other two corners, the rectangles formed by the prod-

uct of the two components. These four together form the figure of the square

of the sum of the two components. Again, in the same figure, at the south-

west is the square of a desired number and at the north-east is the square

of another desired number. Now, given the square on the north-east, the

three other portions form the rest of the square of the undivided full num-

ber. Hence, the total area of these three figures is equal to the difference

between the squares of the undivided full number and the chosen number.

Now, the method to obtain this difference of squares: Here, at the north-

east corner of the square, there will be a rectangle each towards the south

and the west; these two will have (an area equal to) the product of the

smaller number and the difference between the two numbers. The square

lying on the south-west is equal to the square of the difference between the

two numbers. So, (to get the difference between the two squares), twice

the smaller number, together with the difference between the two numbers,

should be multiplied by the difference. This way, it will be equal to the

product of the sum and difference of the two numbers. For, the difference

added to the smaller number gives the larger number. Hence the product of

the sum and the difference of two numbers is equal to the difference of their

squares.
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1.8.7 Sum of the progression of odd numbers is a square

From this it follows: The square of 1 is 1; subtracting from this the square

of zero, the remainder is 1. When 3, being the sum of 1 and 2, is multiplied

by their difference, which is 1, their product 3, is the product of the sum and

difference (of 1 and 2). Hence, the difference between the squares of 1 and 2

is 3. When this 3 is added to 1, which is the square of 1, the sum will be 4,

being the square of 2. In the same manner, the sum of 2 and 3, being 5, is

the difference between the squares of 2 and 3. Again, the difference between

the squares of 3 and 4, is, 7. The difference between the squares of 4 and 5,

is 9. Thus, commencing from 1, the difference between the squares of two

consecutive numbers will be greater at each step by 2. Thus, this will be

the śred. h̄ı-ks.etra, figure of an (arithmetic) progression, starting with 1, with

a common increase of 2. And this will be the figure of the squares of the

numbers commencing from 1. The above being the case, the figure of a square

can be considered also as ekādi-dvicaya-śred. h̄ı-ks.etra, the figure associated

with an arithmetic progression of numbers starting with 1, increasing at

each step by 2. Here, the side of the square is equal to the (number of terms

or) the number of rows (in the śred. h̄ı-ks.etra). In the first row, there is one

component, in the next row, there will be three components; in the next row,

there will be five. In this manner, the number of components in each row

increases by 2. This is the nature of the śred. h̄ı-ks.etra or a progression. This

aspect will be elaborated in the section on Rsines. Thus has been stated the

logistics of Squaring.

1.9 Square-root

Next, the square-root: This process is the reverse of the process of multi-

plication. There too, the calculation of the square root is the reverse of the

process of squaring which commences from the first digit to the last digit (of

the number). For instance, the method of squaring 123 from the first place

(is as follows): Place the square of the first digit, i.e., 9, below the first digit;

this is the first step. Then double 3, i.e., 6, and multiply with it the 2 of
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the second place and the 1 of the third place, and place the results below

the respective places in the same line as (9 of) the first step. This is the

second step. Then, shift one place higher the 2 of the second place and 1 of

the third place. Square the 2 of the second place, i.e., 4, and place it in the

hundred’s place. This is the third step. Then, double the 2 of the second

place, with this 4 multiply the 1, being the third digit which has been shifted

to the fourth place, and place the resulting 4 (i.e., 4 × 1), in the thousand’s

place. This is the fourth step. Then shift the 1, which is the third digit and

which has been shifted to the fourth place, and place its square, 1, in the

fifth place. This is the fifth step. Thus is the method for (squaring) numbers

having three places.

The method for the square root of the (resulting) number, (i.e., 15129), is

the reverse of the above method of squaring. In the above the last step was

the placement of the square of 1 in the fifth place. Subtract the square of 1

from it; this is the first step. Then, double this and divide the fourth place

by it. Keep this 4, in front. Then, subtract the square of the quotient (i.e.,

2 × 2 = 4) from the next (i.e., third) place. Then, divide the next place by

(twice the number formed) by these two places. Then, subtract the square

of the quotient from the next place. This is the method for the reverse

process. (That is), the last step (of squaring) is the first step (here), the

first step is the last step; subtraction in place of addition, addition in place

of subtraction, and lowering the place where it is raised. Square-rooting is

thus the reverse of squaring.

1.10 Root of sum and difference of squares

Following the above reasoning, the square root of the sum of two squares

(can be obtained as follows): Divide the square of the smaller number by

twice the larger number. Then (from the remainder), subtract the square

of the quotient. Add twice this quotient to the divisor (i.e., twice the first

number). Continue this process. What is to be noted is that the addition of

twice the quotient should be made to that place in the divisor, which is the
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place which was divided in the dividend. Then half the divisor obtained at

the last step would be the root of the sum of the squares. If, however, the

division is made (and the quotient known) by mental calculation and that

quotient is added, without doubling it, to the divisor and then division is

made, then the square of the quotient need not be subtracted, since that too

would have gone (i.e., accounted for). Then, even if the division is made,

add the result to the divisor. It would then be as if it had been doubled

and added. Then, when the division is made from a lower place, conjure

the result, add it to the corresponding lower place in the divisor and then

divide. Again add the result. Continue this (processes) till all (the places

of) the dividend are exhausted. Then half the divisor would be the root of

the sum of the squares.

Here, we can also conceive of the divisor to be double the root of the number

got by subtracting the square of the larger number from the sum of the

squares. The difference between this and the earlier process of square-rooting

is that this process is not according to the division of place (sthāna-vibhāga)

(which was employed earlier) where we remove the first square, but according

to the division of numbers (sam. khyā-vibhāga). Thus (has been stated) the

rooting of sum of squares.

Now, for calculating the root of the difference of two squares: While dividing

the dividend with the divisor, the division should be done after subtracting

the quotient from the divisor, and after the division the quotient is again

subtracted. Then, while conjecturing the quotient that would result by di-

viding at a lower place, subtract the quotient from the result at the earlier

place and then divide. Subtract the quotient from the divisor. This is con-

tinued till the dividend is exhausted. Half of the last divisor will be the

root of the difference of the squares. Thus (has been stated) the rooting of

difference of squares.

[Thus ends Chapter One entitled The Eight Mathematical Operations]



Chapter 2

The Ten Questions and Answers

Now, the method to ascertain two numbers if any two of the following five,

viz., the sum, difference, product, sum of squares, and difference of squares

of the two numbers, are known.

Qn. l. Here, if the difference of two numbers is added to their sum, the

result obtained will be twice the bigger number. Then, if the difference is

subtracted from the sum, the result obtained will be twice the smaller num-

ber. Then, when the two results, as obtained above, are halved, the two

numbers, respectively, will result.

Qn. 2. Now, to ascertain the numbers when their sum and product are

known: Here, in accordance with the rationale explained earlier, if four

times the product is subtracted from the square of the sum, and the root of

the result found, it will be the difference between the numbers. Using this

(and the sum of the numbers), the two numbers can be got as explained

above.

Qn. 3. Now, (given) the sum and the sum of the squares (of the numbers):

There, when the square of the sum is subtracted from twice the sum of the

squares and the root of the result found, it will be the difference between

the numbers.
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Qn.4. Then, when the difference between the squares is divided by the sum

(of the numbers), the result will be the difference between the numbers, as

per the rationale explained earlier.

Qn. 5. Then, (given) the difference and the product of the numbers: There,

if the product is multiplied by four and the square of the difference added

and the root of the result found, it will be the sum of the numbers.

Qn. 6. Then, given the difference and the sum of squares: When the square

of the difference is subtracted from double the sum of the squares, and the

root of the result found, it will be the sum of the numbers.

Qn. 7. Then, when the difference of the squares is divided by the difference

(of the numbers), the result will be the sum of the numbers.

Qn. 8. Then, (given) the product and the sum of the squares (of the num-

bers): Here, subtract twice the product from the sum of the squares, and

find the root of the result. This will be the difference (between the numbers).

When the product is multiplied by 4 and the square of the difference added,

the root of the result is the sum (of the numbers).

Qn. 9. Then, (given) the product and the difference of the squares (of

the numbers): Now, we obtain the squares of the two numbers. Here, the

calculations done using the numbers can be done using the squares of the

numbers. The distinction here would be that the results will also be in terms

of squares. There, when the product is squared, it will be the product of the

squares, (since) there is no difference in the result of multiplication when the

sequence (of the steps) is altered. Hence, taking that the product and the

difference of the squares are known, the sum of the squares can be derived by

the same method used for calculating the sum (of two numbers) given their
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product and difference. Here, when the square of the product is multiplied

by four and added to the square of the difference in the squares, the root

of the result will be the sum of the squares. Then placing this sum of the

squares in two places, add to one the difference of the squares and subtract

it from the other. Then divide both by 2. The results will be the squares of

the two numbers.

Qn. 10. Then, the tenth (question) is when the sum of the squares and the

difference of the squares are known. This too has been answered above.

These are the ten questions. These have been stated here since they are

made use of in several places. Cube roots have no use in planetary compu-

tation. Hence they are not stated here. Thus (have been explained) a way

of computation.

[Thus ends the Chapter Two entitled The Ten Questions and Answers]



Chapter 3

Arithmetics of Fractions

3.1 Nature of fractions

Now, the addition etc. of numbers which form, in different ways, parts

(avayava-s) of numbers: There, the full number l, is called rūpa. Here, when

to this full 1 is added another full 1, the result is 2. If to this is added

another full 1, it will be 3. When, from this 3, a full 1 is subtracted, it will

be 2. If from this 1 is reduced it will be 1. Thus, by the addition of numbers

which are similar, there will result higher and higher numbers.

Similarly, the subtraction of similar numbers will result in lower and lower

numbers. Addition of half, or quarter (and the like) to 1 will be addition

of dissimilar numbers; but the result will not be 2. Similarly by reducing

half, quarter etc. from 2, the result will not be 1. Hence there will be true

fullness only by the addition or reduction of similar (full) numbers. And, as

a result, the numbers would increase or decrease. Only they will be truly

full addition and subtraction. In such cases as two minus one and a quarter,

direct addition and subtraction do not take place and the two will remain

separate. Hence, when parts of different measures, or a full and a part, have

to be added to or subtracted from, they have to be converted to the same

denomination (savarn. a).

3.2 Conversion to the same denomination

Now, to the method of conversion to the same denomination (savarn. ı̄-karan. a):

Suppose one-fifth and one-fourth have to be added. There, if one is parti-
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tioned into four equal parts, each part will be a quarter. If each of these

is divided in to five, there will be twenty parts, each (quarter) having five

divisions. Now, one-fifth will be one section of 1 divided by five as done ear-

lier. If each of these is divided into 4, each will be one-twentieths. In such a

situation, since the fifth divisions of one fourths and the fourth divisions of

one-fifths are of the same denomination, addition and subtraction between

them are possible. Since each part in both is one-twentieth of 1, their de-

nomination is the same. Here, in order to indicate that one-fourths added

four times produce full unity (1), place 4 below as denominator (cheda) and

1 above as numerator (am. śa). In the case of the fifths, place 5 below as

denominator and 1 above as numerator. Now, multiply by 4, which is the

denominator of one-fourths, both 5 which is the denominator of one-fifths

and 1 its numerator. Then, multiply by 5, the denominator of one-fifth, both

4 which is the denominator of the quarter and 1 its numerator. Then, in

both cases, the denominator will be the same, being 20. And, the numerator

will be 5 in the case of one-fourth and 4 in the case of one-fifth. Here, there

is nothing special about one-fourth and one-fifth. What is significant is that,

presently, there are a number of small divisions. In such cases, multiply by

the denominator of one, the denominator and numerator of the other. Then,

multiply both the denominator and numerator of the first by the denomina-

tor of the other. Then, the two will have the same denominator and will be

of the same denomination. Hence, they will be amenable for addition and

subtraction. Hence, (in the case under consideration), in addition, there will

be 9 (units of the same denomination) and in subtraction, there will be 1.

These are in units of one-twentieths of the full number 1.

In this manner, common denomination can be found even if there be several

terms. There, multiply by a denominator all the numerators and denomina-

tors, excluding the given denominator and its corresponding numerator. As

a result of this, all of them will be having a common denominator and so are

amenable for addition and subtraction. If, to these fractions, any full number

has to be added, multiply that full number by the (common) denominator.

Then that full number will also be converted to the same denomination as

those parts. Thus (has been stated) conversion to the same denomination

(savarn. ana).
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3.3 Multiplication of fractions

Now, multiplication of fractions: When one-fourth is the multiplicand and

certain full numbers are the multipliers, place the multiplicand in as many

places as there are multipliers. Then add these (fractions) amongst them-

selves. Then it will be as if the multiplicand has been multiplied (by the

multiplier) according to the principle of ‘multiplication by parts’ (khan. d. a-

gun. ana). Suppose there are ten 1’s in the multiplier, (i.e., the multiplier

is 10). Then place the one-fourths in ten places. Their sum will be the

product. They will be ten numerators with the same denominator. Thus,

there will be no difference (in the result), if 10 is multiplied by onefourths; it

will only be ten one-fourths. It has already been stated that a multiplicand

repeatedly added as many times as the multiplier and the multiplier repeat-

edly added as many times as the multiplicand lead to the same result. That

being the case, the only difference here is that in the result, since there is a

denominator, the whole number product has to be divided by the denomi-

nator. This is the case, when there is a denominator in only one, either in

the multiplicand or the multiplier. When, however, there are denominators

in both the multiplicand and the multiplier, division has to be made by both

the denominators. Hence, the division has to be made by the product of the

denominators amongst themselves. Therefore, in the matter of multiplying

fractions, multiply all the numerators and multiply all the denominators,

amongst themselves. Thus will result, the product of such multiplicand and

multiplier. For instance, if one-fourth and one-fifth are multiplied, the result

will be one-twentieth. Thus (has been stated) the multiplication of fractions.

3.4 Division of fractions

Next, the division of fractions: Here also the underlying principle is the same

as has been stated earlier, viz., to find out how many times, in full numbers,

can the divisor be deducted from the dividend. Now, when a fourth of
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unity is multiplied by 10 units, the result will be 10 one-fourths. This is

generally termed as 10 by 4. If this product is divided by the multiplier,

the multiplicand will be the result. If it is divided by the multiplicand, the

multiplier will be the result. Here the multiplier, namely 1 by 4, can be

deducted 10 times. And, as a result, 10 full numbers will be obtained. This

will be the quotient according to the principle stated above. Now, when the

ten full numbers have to be deducted from the product, the dividend is after

all ten one-fourths. Hence, 40 one-fourths are required to deduct once the

full number 10. Then alone the quotient will be 1. Hence, it results that

in the case of this dividend the quotient is only one-fourth. This being the

case, the method (for division) would be to reduce the divisor and increase

the dividend. Here, when 10 by 4 is divided by 1 by 4, 4 is the divisor of the

divisor 1. Multiply 10, the dividend, by that divisor 4. Then divide by 1 and

by the original denominator (4) of the dividend. Here the product of 1 and 4

is 4. 40 divided by this is 10. Thus, multiply the numerator of the dividend

by the denominator of the divisor. That (result) will be the numerator. Then

multiply the denominator of the dividend by the numerator of the divisor;

that will be the denominator. The division would be done in this manner.

If it is desired to know the full numbers in the quotient, the division should

be made by the denominator. Thus, multiplying one-fourth and one-fifth

and taking the product, viz., one-twentieth as the dividend, if it is divided

by one-fifth, the result will be 5 by 20. Then, if both the denominator and

the numerator are divided by 5, the result will be 1 by 4. If the dividend

(one-twentieth) is divided by 1 by 4, the result will be 1 by 5.

In this way, both multiplication and division are more or less the same. Mul-

tiplying the denominators of the multiplicand and the multiplier, and their

numerators, amongst themselves, is multiplication. And, it is division when

the denominator of the divisor is taken as the numerator and the numerator

(of the divisor) as denominator, and multiplication is done. This is all the

distinction (between the two). Thus (have been stated) the multiplication

and division (of fractions).
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3.5 Squares and square-roots of fractions

Now, when a fraction has to be squared, both the denominator and the nu-

merator have to be squared. These two will be the denominator and the

numerator of the square. Then, when the root of a fraction has to be found,

the roots of both the denominator and the numerator have to be found.

These will be the denominator and the numerator of the root. Thus (have

been stated) the calculation of the root of fractions.

[Thus ends Chapter Three entitled Arithmetics of Fractions]



Chapter 4

Rule of Three

4.1 Nature of the rule of three

Next is (dealt with) the ‘rule of three’. Suppose a composite thing has two

parts. Suppose also that there is a relationship between the parts to the

effect that if one part is of a certain measure, the other would be of a fixed

corresponding measure. Suppose also that this relationship is known. In

such a situation the method of inferring, in another composite elsewhere,

the measure of one part (when the other is known), is termed as the ‘rule of

three’. (To cite) an example: When it is known that 5 measures of paddy

will yield 2 measures of rice, it can be presumed that this relationship in

measures between paddy and rice persists everywhere. Hence, if it is desired

to know how many measures of rice would be got from 12 measures of paddy,

this ‘rule of three’ procedure is made use of. Here, in the calculation of

rice for 12 measures of paddy, the known measure, 5, is termed pramān. a

(antecedent or argument). The corresponding rice, 2 measures, is termed

pramān. a-phala (consequent or fruit). 12 measures of paddy is termed icchā,

and the corresponding measure of rice, which is to be found out, is termed

icchā-phala (resultant or required fruit).

Here, from the knowledge of (the measure of rice) for 5 (measures of paddy),

if we ascertain the (corresponding measure of rice) for one (measure) of

(paddy), then it would be easy to find out the result for any desired measure.

Here is the method (thereof): Now, for the 5 units of the pramān. a, the phala-

units are 2. When that 2 is divided into 5 parts, one part thereof will be the

phala corresponding to one pramān. a-unit. If this is multiplied by the units
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in the icchā-rāśi, we will get the icchā-phala corresponding to all the icchā-

units. When 2 is divided into 5 parts, it is tantamount to dividing by 5 and

two-fifths will be the quotient. In this division, 5 will be the denominator.

Hence, the two one-fifths, (i.e., two-fifths), will be the result. This being the

case, the pramān. a will be the denominator of the pramān. a-phala. This is

the multiplicand. The icchā-rāśi will be the multiplier. Hence, the pramān. a-

phala is multiplied by icchā and the product is divided by the pramān. a which

is the denominator (as said before). The result will be the icchā-phala. Here,

a fifth part and the quotient obtained by dividing by 5 are the same. This is

just like what happens if the number of units of area of a rectangle is divided

by the number of parts in a row, to give the number of parts in a column.

Thus (has been stated) the ‘rule of three’.

Here, paddy is the composite unit. Husk, rice and bran are its parts. The

invariable relation (vyāpti) between them is that 2 measures of rice corre-

spond to 3 measures of husk; it can also be conceived in the form that 3

measures of husk correspond to 5 measures of paddy. Thus the pramān. a

and phala can be taken differently according to specific reasons (upādhi). At

times it might also happen that the pramān. a and icchā can be reversed if

the enquiry is: If 2 measures of rice correspond to 5 of paddy, for this much

rice, how much of paddy. The above is also a type of rule of three.

4.2 Reverse rule of three

Now, the ‘reverse rule of three’: Now, in the trairāśika, ‘If so much weight of

gold is required at such a price for 8 caret gold, what weight of gold would

be needed for 10 caret gold’, obviously, here is not the case that icchā-phala

will be higher than the pramān. a-phala in proportion as the icchā-rāśi was

greater than the pramān. a-rāśi, but that it will be proportionately less. In

such cases it is the ‘reverse rule of three’ (vyasta-trairāśika) that applies. The

distinction here is that the icchā-phala is got by dividing by the icchā-rāśi,

the product of pramān. a and pramān. a-phala. There is the rule:
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vyastatrairāśikaphalam icchābhaktah. pramān. aphalaghātah. |

The phala in ‘reverse rule of three’ is got by dividing, by the

icchā, the product of pramān. a and pramān. a-phala.

Thus (has been made) an indication of the ‘rule of three’.

Now, most of mathematical computations are pervaded by this trairāśika-

nyāya, ‘rule of three’ and the bhujā-kot.i-karn. a-nyāya, ‘rule of base, height

and hypotenuse’ (of a rectangle). All arithmetical operations like addition

etc. function as adjuncts to the above. Thus have been stated most of the

principles of calculation.

[Thus ends Chapter Four entitled Rule of Three]



Chapter 5

Kut.t.ākāra

5.1 Computation of current Kali day

Here is set out the mathematics for the computation of the ahargan. a, the

number of days elapsed since the epoch etc., by the extension of the said

mathematics. There, the number of days passed in the Kali era is calculated

by means of two trairāśika-s (rule of three). Here, the number of years

passed from Kali-beginning is calculated using solar measures, since in the

case of years, the solar years are the ones commonly used. The number of

months passed in the current year is ascertained using the lunar months.

The number of days passed in the current month is ascertained by means of

civil days, since they are the ones commonly used. Then, using these, the

civil days passed from the beginning of Kali is to be calculated. Now, what

is enunciated (in astronomical treatises) is the number of revolutions and

civil days in a four-yuga period (caturyuga). Using that, the days elapsed

from the beginning of Kali is calculated. In a yuga, the difference between

the number of solar and lunar revolutions (bhagan. a-s) is the number of lunar

months (in a yuga). The yuga-adhimāsa (intercalary months in a yuga), is

obtained from that, by subtracting the solar months (in a yuga), which is got

by multiplying the solar revolutions in a yuga by twelve. Given that this is

the number of adhimāsa-s for the solar months in a yuga, calculate by rule of

three the number of elapsed adhimāsa-s corresponding to the number of solar

months elapsed from the beginning of Kali. When the elapsed adhimāsa-s
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is added to the currently elapsed solar months, the number of currently

elapsed lunar months will result. This is now added to the elapsed months

from Caitra (during the current year). This is multiplied by 30 and the

(lunar) days elapsed in the current month is added. The result will be

the number of elapsed lunar days (tithi-s) from Kali-beginning. Now, the

difference between the lunar days in a yuga and the civil days in a yuga

is the number of avama-days, (i.e., discarded days), in a yuga. Now, the

number of elapsed avama days is got by applying the rule of three: If for

the yuga-lunar-days, so much is the yuga-avama days, how many avama

days would correspond to the currently elapsed lunar days. Subtracting the

elapsed avama days from the currently elapsed lunar days, the elapsed civil

days from Kali-beginning is obtained.

5.2 Computation of mean planets

Now, (is explained) the computation of mean planets for the currently elapsed

Kali days. Using the trairāśika: If for the civil days of yuga this much is the

number of bhagan. a-s (revolutions of a planet), then for the currently elapsed

civil days, what is the bhagan. a; thus the number of completed bhagan. a-s

of the planet is got. Then, from the remainder (́ses.a), the segment of the

revolution in terms of the signs (rāśi), degrees (am. śa), minutes (liptā), can

be got by multiplying the remainder, respectively, by 12, 30 and 60 (and di-

viding by the number of civil days in a yuga). The results are the (current)

mean (positions of the respective planets). This is one method.

Or, take as icchā-rāśi any one of the elapsed māsa, adhimāsa, avama, or

any bhagan. a, elapsed from the beginning of Kali. Take as pramān. a the

corresponding values for the yuga. Take as the pramana-phala, the yuga-

bhagan. a the number of revolutions in a yuga (of the desired planet). By

applying trairāśika, the icchā-phala (for the current day) would be got which

would be of the same category as the pramān. a-phala taken. Thus is the

method of obtaining the mean planet.
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5.3 Kut.t.ākāra in planetary computations

Now, in the above-said calculations, the multipliers and divisors are very

large, since they are related to the yuga. Hence, in order to simplify the cal-

culation by reducing the multipliers and divisors, the method of apavartana,

and incidentally kut.t.ākāra, is set out here.

5.3.1 Bhagan. a-śes.a and other remainders

Now, the product of icchā-phala and pramān. a and the product of pramān. a-

phala and icchā are equal. Hence, this product divided by icchā would give

the pramān. a-phala; divided by pramān. a it would be icchā-phala; divided by

pramān. a-phala, it would be icchā; and divided by icchā-phala, it would be

pramān. a. This being the case, when icchā-phala is already known (as a full

number), it, multiplied by the pramān. a and divided by the pramān. a-phala,

would give icchā-rāśi, when there is no remainder. If there is a remainder,

what is lacking is to be added or what is in excess is to be subtracted (from

the dividend) and we get the icchā-rāśi as a full number. When we take

only the integral part of the icchā-phala and multiply it by the pramān. a (to

derive the icchā-rāśi), addition or subtraction of the remainder shall have to

be carried out (on the pramān. a). (On the other hand), when the icchā-rāśi

is derived by dividing by the pramān. a-phala, if multiplication is done along

with the fractional part of the icchā-phala, there will be no remainder.

There, from the elapsed civil days (is. t.a-ahargan. a) the elapsed revolutions

(bhagan. a-s) are derived as icchā-phalā, there will be, after the division, an

adjunct, a part of the revolution (bhagan. a-avayava) in the form of completed

rāśi-s etc. With full revolutions (bhagan. a-s) obtained as quotient, that por-

tion of the dividend which could not be divided out completely is termed

bhagan. a-śes.a. Now, the first divisional part of the revolution (bhagan. a) is

the rāśi (sign). 12 rāśi-s make one revolution. Hence, 12 being the denom-

inator for rāśi-s, when the bhagan. a-śes.a is multiplied by 12 and divided by
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the pramān. a (number of civil days in a yuga) as before, the elapsed rāśi-s

will be obtained as quotient. If there is a remainder still, of the dividend,

that is termed rāśi-śes. a. The sub-division of the rāśi is the bhāga (degree).

The remainder, (i.e., rāśi-śes.a) when multiplied by 30 and divided by the

pramān. a, the bhāga-s (degrees) are got. The remainder (of the dividend)

left is termed bhāga-śes.a. That multiplied by 60 and divided by the divisor

as above (i.e. the pramān. a), the quotient is kalā (minute). The remainder

is kalā-śes.a.

The above being the case, it is possible to arrive at the elapsed civil days

(is. t.a-ahargan. a) from the kalā-śes.a by reverse calculation. (This is) how it is:

Multiply the divisor (number of civil days in a yuga) by the kalā-s obtained,

and add the kalā-śes.a and divide by 60. The result will be the bhāga-śes.a.

Then multiply the bhāga-s (obtained earlier) by the divisor, add the bhāga-

śes.a and divide by 30. The result will be rāśi-śes. a. The rāśi-s (obtained

earlier) are multiplied by the divisor, and the rāśi-śes.a is added and the sum

divided by 12; the result is bhagan. a-śes.a. This is added to the product of

the completed bhagan. a-s and the divisor, and divided by yuga-bhagan. a. The

result will be the elapsed ahargan. a (Kali days elapsed in the yuga).

5.3.2 Kut.t.ākāra for Ahargan. a

Now, wherever appropriate, the dividend, which is the product of the mul-

tiplier and the multiplicand, is called the bhājya (dividend). However, in

kut.t.ākāra operations, pramān. a-phala is called bhājya. In bhagān. a-śes.a, bhāga-

śes.a, etc., the denominators, viz., 12, 30 and 60 are the bhājya-s, in order.

In all places, the pramān. a (number of civil days in a yuga) is called bhājaka.

The remainders that occur one after another are the icchā-rāśi and are the

respective sādhya-s (quantities to be found at the respective places). In

kut.t.ākāra, this sādhya is called gun. ākāra (multiplier). With the pramān. a-

phala multiply the icchā-rāśi and divide by the pramān. a and ascertain the

remainder in the dividend, i.e., that portion which is required (in the quo-
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tient) to make up 1 unit. Now, where the pramān. a and pramān. a-phala (and

this remainder), these three are known, the method to know the icchā-rāśi

is called kut.t.ākāra.

5.3.3 Bhagan. a-śes.a of mean Sun

Now the ‘reduced’ (apavartita)-bhagan. a of the Sun is tatsama (576). The

correspondingly reduced number of civil days in a yuga is dh̄ıjagannūpura

(2,10,389). This is the pramān. a. Tatsama (576) is the pramān. a-phala.

These (two), (viz., dh̄ıjagannūpura and tatsama), are also termed, respec-

tively, avāntara-yuga (the number of years in an intermediate-yuga) and

(avāntara-yuga-bhagan. a) (the civil days in that period). They are known

also as reduced dividend and divisor (dr. d. ha-bhājya and dr. d. ha-bhājaka). The

kut.t.ākāra involving these and yugabhagan. a-śes.a is demonstrated below.

Now, at sunrise, on the day ending the avāntara-yuga (of 576 years), the

mean Sun would be at the end of Mı̄na-rāśi. Hence on that day, there would

be no bhagan. a-śes.a. So, mean Sun for any day (after that) is calculated by

multiplying the number of days elapsed by tatsama (576) and dividing by

dh̄ıjagannūpura (2,10,389). Hence, at the end of one day after the avāntara-

yuga the bhagan. a-śes.a is tatsama (576). For two days it is double that. Thus,

every day, the bhagan. a-śes.a will increase by one tatsama (576). This is an

additive remainder (adhika-śes.a). In this manner, when mātula (365) days

pass by, the product of mātula and tatsama (576) is less than dh̄ıjagannūpura

(2,10,389) by dh̄ıvandya (149). On that day this (dh̄ıvandya (149)) is a neg-

ative remainder (ūna-śes. a). Therefore, on the next day, since tatsama (576)

has to be added to the product, actually what happens is that the bhagan. a

would be completed by the addition of dh̄ıvandya (149); and tatsama (576)

minus dh̄ıvandya (149), viz., surabhi (427), would be adhika-śes.a at the end

of the first day of the second year. Then during the course of the second

year, the daily bhagan. a-śes.a would increase by tatsama (576). Then, at the

commencement of the third year, the actual bhagan. a-śes.a would be tatsama

(576) minus twice dh̄ıvandya (149), which is dās̄ıstr̄ı (278). Again, during
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the third year, on account of the daily increase, the bhagan. a-śes.a will in-

crease by tatsama (576). Hence, the bhagan. a-śes.a at the commencement of

each year will be different. But the daily increase would be similar. Hence,

within a yuga no two days will have the same bhagan. a-śes.a. Hence, a perti-

nent question which arises would be: What is that number which is less than

dh̄ıjagannūpura (2,10,389) and which when multiplied by tatsama (576) and

divided by dh̄ıjagannūpura (2,10,389) would give a given remainder, which

is (a) more or (b) less (than the dividend) by a given amount. The mathe-

matical operation to find out such a multiplier (gun. akāra-sam. khyā), in the

above situation, is called kut.t.ākāra.

5.3.4 An example

This can be easily understood when a specific number is considered: Let it

be supposed as follows: Let tatsama (576) be the bhājya, dh̄ıjagannūpura

(2,10,389) be the bhājaka, and the negative (ūna)bhagan. a-śes.a be 100. Let

it be that it is required to think of (the number, of the day) by which if

tatsama (576) is multiplied, the r. n. a-ks.epa (negative remainder) would be the

specified bhagan. a-śes.a (viz., 100). Such a number, being munigāthā (7,305),

a procedure to arrive at it should be thought of. It might also be verified

through trairāśika. The product of yuga-bhagan. aśes.a and the multiplier (to

be found out) increased by 100 is equal to the product of dh̄ıjagannūpura

(2,10,389) and another multiplier. Here, the two multipliers are munigāthā

(7,305) and 20. There, the product of dh̄ıjagannūpura (2,10,389) and 20 is

greater than that of tatsama (576) and munigāthā (7,305) by 100. However, it

is not possible to arrive at these multipliers (viz., 7,305 and 20) by inspection,

since the bhājya and bhājaka are large. On the other hand, this would be

easy if the bhājya and bhājaka are made small.

Now, the method of reduction: Here tatsama is the increase in bhagan. a

per day. Hence repeatedly subtract tatsama (576) from dh̄ıjagannūpura

(2,10,389). When tatsama (576) has been subtracted mātula (365) times,

the remainder will be dh̄ıvandya (149). That is, after mātula (365) days, the
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śes.a will be less than tatsama (576) by dh̄ıvandya (149). That will be the

negative remainder (r. n. a-ks.epa). The śes.a the day next to mātula would be

tatsama minus dh̄ıvandya (i.e., 576 − 149 = 427). Thus the śes.a would be

more than dh̄ıvandya (149). In subsequent days it will increase regularly.

Then, for the day nāgasthāna (730), it (i.e., the ūna-śes.a) will be twice

dh̄ıvandya. Then for the kalāsthāna (731), the adhika-śes. a will be tatsama

minus twice dh̄ıvandya. Then, for the day śuddhanaya (1,095), the ūna-

śes.a is three times dh̄ıvandya. Then, for the day stabdha-naya (1,096) the

adhika-śes.a would be tatsama minus three times dh̄ıvandya, viz., dh̄ıpriya

(576 − 3 × 149 = 129) is the adhika-śes. a. Then the śes.a will grow less

than dh̄ıpriya. Now, for stabdhanaya (1,096) the adhikaśes. a is dh̄ıpriya and

for mātula (365), the ūnaśes.a is dh̄ıvandya. Hence for their sum kārtav̄ırya

(1,461), 20, being the difference between dh̄ıvandya (149), and, dh̄ıpriya (129)

will be the ūna-śes.a. Thus, the bhagan. a-śes.a is lessened by 20. Then, on the

day kārtav̄ırya ×6 (i.e., 1461×6 = 8, 766) the ūnaśes. a will be 20×6. On the

day stabdhanaya (1,096), the adhikaśes.a is dh̄ıpriya (129). The sum of these

(numbers of) days, i.e., 6× kārtav̄ırya + stabdhanaya, (i.e., 6× 1461+ 1096),

is pr̄ıtidugdha (9,862); on this day, the adhika-śes. a is the difference between

6 × 20 and dh̄ıpriya (−6 × 20 + 129), equal to 9. Thus, the śes.a of the sum

of an adhikaśes. a-dina and an ūnaśes. a-dina would be the difference between

the two śes.a-s. Now, multiply the two days (by suitable multipliers) and

add. Multiply the two śes.a-s by the multipliers of the respective days and

find their difference. Then, that difference will be the śes.a for the sum of

the days. There it will be ūna-śes.a if it is in the bhājaka and adhika-śes.a if

it is in the bhājya.

For the above reason, if dh̄ıvandya and dh̄ıpriya are each multiplied by 5

and subtracted (from one another), there would be an increase by 100 (i.e.,

5 × 149 − 5 × 129 = 100). If mātula and stabdhanaya are each multiplied

by 5 and added together, for this sum of days, viz. munigāthā (7,305), 100

will be ūna-śes.a. Now, multiply 20 by 14, and 9 by 20. The difference (of

the products) will be 100. Then multiply pr̄ıtidugdha (9,862) by 20 and

kārtav̄ırya (1,461) by 14 and add. Subtract the sum from dh̄ıjagannūpura

(2,10,389); the difference is munigāthā (7,305) for which the ūna-śes.a is 100,
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as stated above. Hence, reduce śes.a to such a small measure such that the

multipliers can be mentally thought out easily. In any case, the result would

be the same in all cases.

5.4 Kut.t.ākāra process

L̄ılāvat̄ı (of Bhāskara II) has stated the procedure by which such multipliers

can be thought of easily:

bhājyo hārah. ks.epakaścāpavartyah. kenāpyādau sam. bhave

kut.t.akārtham |

yenacchinnau bhājyahārau na tena ks.epaścaitaddus. t.amuddis. t.ameva ||

parasparam. bhājitayoryayoryat śes.am. tayoh. syādapavartanam. tat |

svenāpavartena vibhājitau yau tau bhājyahārau

dr. d. hasam. jñitau stah. ||

mitho bhajettau dr. d. habhājyahārau yāvad vibhakte bhavat̄ıha rūpam |

phalānyadhodhastadadho niveśyah. ks.epastathānte khamupāntimena ||

svordhve hate ′ntyena yute tadantyam. tyajenmuhuh. syāditi

rāśiyugmam |

ūrdhvo vibhājyena dr. d. hena tas. t.ah. phalam. gun. ah. syādaparo haren. a ||

evam. tadaivātra yadā samastāh. syurlabdhayaśced vis.amastadān̄ım |

yathāgatau labdhigun. au vísodhyau svataks.an. ācches.amitau

tu tau stah. ||

The bhājya, bhājaka and ks.epa which are proposed for kut.t.aka

operation, should first be factored by whatever number (apavar-

tana) possible (reduction to the lowest terms). The problem is

faulty (has no solution) if the proposed ks.epa too cannot be di-

vided by the same number by which the bhājya and bhājaka are

divisible.
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When a bhājya and a bhājaka are mutually divided, the (final)

remainder is their greatest common factor (apavartana). (The

quotients which result when) the bhājya and bhājaka are divided

by the apavartana are termed the reduced dividend and divisor

(dr. d. ha-bhājya and dr. d. ha-bhājaka).

Divide mutually the dr. d. ha-bhājya and dr. d. ha-bhājaka till the final

remainder is 1. Place the quotients (obtained at each division)

one below the other, and below the last place the ks.epa and below

that symbol zero.

Multiply, by the penultimate, the number just above, and add the

last number, and put it in the place of the number just above;

also cast away the last number. Repeat the process till only

two numbers remain (at the top). Abrade (taks.an. a) the upper

number by the dr. d. ha-bhājya. The result will be the required

quotient (phala, labdhi). Abrade the number below by the dr. d. ha-

hāraka and the result is the required multiplier (gun. a).

The above is the case when the number of quotients in the (vall̄ı)

consists of an even number of items. When, however, the num-

ber of quotients is odd, subtract the labdhi and gun. a from their

abraders (taks.an. a-s i.e., from the bhājya and bhājaka.) The re-

mainders got are the labdhi and gun. a respectively.

(L̄ılāvat̄ı, 242-246).

Here, the idea is to get small bhājya and bhājaka. Knowing the solution for

such a problem, the solution for the required problem can be extrapolated.

An example:

ekavim. śatiyutaśatadvayam. yadgun. am. gan. aka pañcas. as. t.iyuk |

pañcavarjitaśatadvayoddhr. tam. śuddhimeti gun. aka vadāśu me ||

Oh mathematician! 221 is multiplied by a certain multiplier, 65

is added to the product and the result, divided by 195, leaves no
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remainder. Tell me quickly what that multiplier is.

(L̄ılāvat̄ı, 247).

The import of this: If 221 is multiplied by a certain multiplier and 65 added

to the product and the result is divided by 195, there will be no remainder,

the question is what is such a multiplier. This is a subject for kut.t.ākāra.

5.4.1 The process of Apavartana

Now, the process of apavartana: When the bhājya, 221, is divided by the

bhājaka 195, the remainder is 26. When 195 is divided by 26 the remainder is

13. When, with that, 26 is divided there is no remainder. So 26 is a multiple

of 13. Hence, the number, (viz., 182), which is the portion (of 195) exactly

divisible by 26 (previously) is also a multiple of 13. Also, this portion (182),

plus 13, (viz., 195), which had been used to divide the original bhājya (221)

is also a multiple of 13. In pursuance of this principle, in what has been

considered so far and in what follows, whenever two numbers are mutually

divided, the last remainder always divides all the portions which appear in

between. Thus, when the original bhājya and bhājaka are divided by the

last remainder got by the mutual division of the two, (i.e., apavartana), they

are divisible without leaving any remainder; and the quotients obtained are

termed dr. d. ha-bhājya and dr. d. ha-bhājaka . Therefore, here the dr. d. ha-bhājya

is 17 and the dr. d. ha-bhājaka is 15. When the original ks.epa (additive) 65 is

divided by 13, the result got, 5, will be the (dr. d. ha-ks.epa).

Now, the original ks.epa always has to be divisible by 13. The reason be-

ing: The excess in the bhājya over the bhājaka is 26. When it (bhājya) is

multiplied, there will be proportionate increase in the śes.a. Hence it (ks.epa)

would be divisible by 13 without remainder. Otherwise, this will not be a

ks.epa which would occur with the given bhājya and bhājaka, and the problem

will have no solution.
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5.4.2 Vall̄ı

Then, with 17, 15 and 5, as the dr. d. ha-bhājya and dr. d. ha-bhājaka and dr. d. ha-

ks.epa, got by subjecting the (original) bhājya and bhājaka and ks.epa to the

process of apavartana, the process for deriving the multiplier (gun. akāra) to

the bhājya: By dividing the bhājya, 17, by the bhājaka, 15, the quotient is 1

and the remainder is 2. Now, divide 15 by this 2. The quotient is 7; place

this below the earlier quotient 1. The remainder here is 1. In this manner

divide the bhājya and bhājaka mutually till the remainder is 1, and place

the results one below the other. This column of results is called vall̄ı. Using

these vall̄ı-results, viz., 1 and 7 and the remainders, 2 and 1, one below the

other, and using the reverse process of calculation, the bhājya and bhājaka

can be arrived at as follows.

5.4.3 Vallyupasam. hāra: Reverse Vall̄ı

Here, the last operation (done above) should be done first. And, that relates

to 2, being the remainder got from the bhājya. The result got by dividing

the bhājaka 15, by this divisor 2, is 7. Now multiply this 7 by 2. The original

dividend will be got, provided there had been no remainder. If there had

been a remainder add that to this product and the sum will be the new

dividend. In the present case, to 14, being the product of 2 and 7, the

remainder 1 is added, and the dividend 15 will be obtained. Now, to derive

the dividend (17) of this 15: Earlier, 1 was the result got from dividing 17

by 15. Multiply 15 by this 1. The result is only 15. Add to it 2, being the

remainder, to get 17, which is the dividend for 15.

Supposing there had been vall̄ı results even above this, multiply the 17 with

the number just above it and add 15. The result would be the dividend of 17.

In this manner, multiply by the upāntya (penultimate) the result just above

it and add the antya, i.e., the remainder below. Then, discard the antya,

multiply the upāntya with what is above, add the new antya to the product

and discard the antya. When a stage is reached where there are only two
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numbers, since there would be no upāntya, the operation comes to an end.

Then, of the two numbers the upper one would be the bhājya, and the lower

one, the bhājaka. This would be the case when the bhājya is larger than

the bhājaka. When, however, the bhājya is smaller, the lower number would

be the bhājya and the upper number, the bhājaka. The rule is that bhājya

will appear in that place where the corresponding result has been derived,

and that bhājaka will appear in that place when the corresponding result has

been derived. This operation is termed vallyupasam. hāra (the reverse process

of vall̄ı). It might seem that the reverse operation exhibits some differences.

While obtaining the vall̄ı results, there is only division. In the reverse process

there is not only multiplication, but also the addition of remainders. Hence,

it might seem, that here there is some difference from the usual ‘reverse

process’. However, when the principle involved is considered carefully, it

would be seen that it is only the reverse process, for in the earlier operation

the results were set out after deducting the remainders.

5.4.4 Derivation of Gun. a and Labdhi

Making use of the principle of vallyupasam. hāra (reverse process of vall̄ı) the

procedure is stated here to calculate the icchā-phala (gun. akāra), and the

icchā, from the bhājya and bhājaka which correspond to the pramān. a-phala

and pramān. a. For this, divide mutually the dr. d. ha-bhājya and dr. d. ha-bhājaka

and place the results one below the other, till either in the bhājya or the

bhājaka only unity (1) occurs as the remainder. Below that, place also the

apavartita-ks. epa (reduced additive). Below that too place zero.

In the case considered above, the vall̄ı column would read, 1, 7, 5, 0. On this

do the reverse operation described above. Keep the antya-s, which are to be

discarded, separately in sequence. Then the vall̄ı will read, from bottom, 0,

5, 35, 40. Of these 0 and 35 are multipliers (gun. akāra). 5 and 40 are the

quotients (phala). The hāra, (i.e., bhājaka), and bhājya for these are 1, 2,

15 and 17. Here, 1 and 15 are hāra, (i.e., bhājaka), and 2 and 17 bhājya.

The first bhājya-śes.a is 2, which, when multiplied by 0, is 0. Adding to it
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the ks.epa 5, and dividing by the hāra-śes.a 1, the result is 5. The second

bhājya-śes.a is 2 which is to be multiplied by 35, 5 added, and divided by

15. The result is 5. The third (bhājya) is 17, which is multiplied by 35,

5 added and divided by 15. The result is 40. Thus, in respect of the two

multipliers (gun. akāra) on the two sides, in the middle is the quotient (phala).

Likewise, in respect of the quotients (phala) above and below, in the middle

is the multiplier (gun. akāra). In the same manner, the bhājya-s and hāra-s

appear alternatively in the sequence. Now, 35 divided by 15, will give a

remainder, 5, which is the multiplier (gun. akāra). And, 40 divided by 17,

gives the remainder 6, which is the quotient (phala). This operation is called

taks.an. a, abrading. This (is) the process for deriving the multipliers (gun. a-s)

and quotients (labdhi-s) for the is. t.a-ks.epa.

5.4.5 Kut.t.ākāra for mean Sun

Now is explained the vallyupasam. hāra involving tatsama (576) and

dh̄ıjagannūpura (2,10,389) as bhājya and bhājaka. There, the remainders on

mutual division are, in order: dh̄ıvandya (149), dh̄ıpriya (129), nār̄ı (20), dhik

(9), śr̄ıh. (2) and kim. (1). The results of the vall̄ı are, in order: mārtān. d. ah.
(365), gauh. (3), kim. (1), tat (6), śr̄ıh. (2) and vit. (4). Here, since 1 is the

remainder for the bhājya, though the ks.epa had been intended as positive,

it is taken as negative. Therefore, take 1 as r. n. a-ks.epa and place 1 below

the vall̄ı-results, and below that place zero. Then do the reverse-vall̄ı op-

eration, and place the results from bottom upwards. The numbers will be:

nu (0), kim. (1), vit. (4), dh̄ıh. (9), homa (58), sūta (67), dh̄ı́satruh. (259), kha

ı̄s.avedhah. (94,602).

Now, in the set dh̄ıvandya (149) etc., the last bhājya-śes.a is 1. Multiply it

by the r. n. a-ks.epa 1 and subtract the r. n. a-ks.epa. Zero is got and so the result

is zero. This being the case, in the first trairāśika (to be done), the hāra

is 2, bhājya is 1, gun. akāra is 1 and phala is zero. In the second trairāśika

the hāra is śr̄ıh. (2), the bhājya is the number above, viz., dh̄ı (9), the gun. a

is kim. (1), as before, and the phala is vit. (4), which is next higher. In the
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third (trairāśika), the hāra is narah. (20) which is above, the bhājya is the

earlier dh̄ıh. (9), the gun. a is dh̄ıh. (9) which is the next higher figure, and

the result is the earlier vit. (4). In the fourth (trairāśika) the hāra, bhājya,

gun. a and labdhi are, respectively, narah. (20), dh̄ıpriyah. (129), dh̄ıh. (9) and

homah. (58). In the fifth (trairāśika), they are, respectively, dh̄ıvandyah.
(149), dh̄ıpriyah. (129), sat̄ı (67) and homah. (58). In the sixth (trairāśika),

(they are, respectively): dh̄ıvandyah. (149), tatsamah. (576), sat̄ı (67) and

dh̄ı́satruh. (259). In the seventh (trairāśika) (they are, respectively): the

hāra is, dh̄ıjagannūpura (2,10,389), the bhājya is tatsama (576), the gun. a is

ratna-stambhārdha (94,602) and the phala is dharmarāt. (259). These are the

gun. a-s and labdhi-s when 1 is the r. n. a-ks.epa for these bhājya-s and bhājaka-s.

Following the same principle, when 1 is the dhana-ks.epa, the gun. a-s and

labdhi-s are the remainders got by subtracting the gun. a-s and labdhi-s of

the r. n. a-ks.epa from the hāra-s and bhājaka-s and they are: sūdosau māyayā

(1,15,787), and sakalah. (317). Such will be the gun. akāra and labdhi when

the sign, positive or negative, of the ks.epa is interchanged.

Then, if the gun. a-s and labdhi-s obtained for ks.epa 1, are multiplied by any

desired is. t.a-ks.epa, the gun. a-s and labdhi-s of the is. t.a-ks.epa are got. Thus

has been stated kut.t.ākāra, in brief.

[Thus ends Chapter Five entitled Kut.t.ākāra]



Chapter 6

Circle and Circumference

Now is stated the method to know the measure of the circumference of a

circle in terms of its diameter which forms of the side of a square, the said

side being taken to be of measure unity in some unit like the cubit or aṅgula.

6.1 Bhujā2 + Kot.i
2 = Karn. a

2

It is explained here (how), in a rectangle, the sum of the squares of a side

and of the height is equal to the square of the diagonal. Now, the square of

a length is the area of a square having (that length) as its side (bāhu). In a

square or in a rectangle, the diagonal (karn. a) is the straight line drawn from

one corner to its opposite corner through its centre. In a rectangle, the kot.i

stretches lengthwise on two lateral sides. The two vertical-sides called bhujā

will be shorter, as presumed here. It is the diagonal of such a rectangle that

is sought to be known.

Now, draw a square (with its side) equal to the kot.i and another equal to

the bhujā. Draw, in this manner, two squares. Let the bhujā-square be on

the northern side and the kot.i-square on the southern side in such a way

that the eastern side of both the squares fall on the same line; and in such a

manner that the southern side of the bhujā-square falls on the northern side

of the kot.i-square. This (northern) side (of the kot.i-square) will be further

extended in the western-side than the bhujā (since it is longer). From the

north-east corner of the bhujā-square, measure southwards a length equal to
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the kot.i and mark the spot with a point. From this (point) the (remaining)

line towards the south will be of the length of the bhujā. Then cut along

the lines starting from this point towards the south-west corner of the kot.i-

square and the north-west corner of the bhujā-square. Allow a little clinging

at the two corners so that the cut portions do not fall away. Now break off

the two parts (i.e., the triangles) from the marked point, turn them round

alongside the two sides of the bigger (i.e., kot.i) square, so that the corners

of the triangles, which met at that point earlier, now meet in the north-west

direction, and join them so that the cut portions form the outer edges. The

figure formed thereby will be a square. And the sides of this square will be

equal to the karn. a associated with the (original) bhujā and kot.i. Hence it is

established that the sum of the squares of the bhujā and kot.i is equal to the

square of the karn. a and it also follows that if the square of one of them is

deducted from the square of the karn. a, the square of the other will be the

result. This is to be understood in all cases.

6.2 Circumference of a circle approximated by

regular polygons

Now, the procedure to construct a circle from a square. Construct a square

of any desired measure. The problem is to find the measure of a circle having

its diameter equal to the side of the square. Draw, through the centre of

this square, the east-west and north-south lines. Four squares would now

have been formed. Then, draw a line from the centre of the larger square

to one corner. That will be the hypotenuse. (In the discussion below) it

is presumed that this hypotenuse has been drawn towards the south-east

corner. Now, draw a hypotenuse from the (southern) tip of the daks. in. a-

sūtra (north-south line passing through the centre) to the (eastern) tip of

the pūrva-sūtra (west-east line passing through the centre). The circle to be

constructed is the one which has its centre at the centre of the square.

Here, in any of the triangles formed, take the largest side as the ground,

and conceive the meeting point of the other two sides (viz., the apex of the



6.2 Circumference approximated by regular polygons 47

triangle) as being vertically above. From this point (i.e. the apex) suspend

a weight. That line is called the lamba (perpendicular). The two sides

(above the ground) are called the bhujā-s. The side along the ground is

called the bhūmi (base). The two segments on the base, on either side of the

perpendicular (lamba, altitude drawn from the apex), are called ābādhā-s.

Here, think of the line drawn from the centre to the (south-east) corner

as the bhūmi (base). The pūrva-sūtra (west-east line passing through the

centre) and the southern half of the eastern side (of the larger square) are

taken as the bhujā-s (of the triangle considered). Half the hypotenuse from

the (eastern) tip of the pūrva-sūtra is the altitude. In the same way is

formed another triangle with its sides being the daks.in. a-sūtra (north-south

line passing through the centre) and eastern-half of the southern side of the

(larger) square. The base (of this triangle) is the same as the one taken

earlier. Thus two triangles are formed in the (smaller) square.

Here, the base-segment (ābādhā) that touches the (south-east) corner is

(taken as) pramān. a. The distance between the corner and the end of the dik-

sūtra (north-south or east-west line) is the pramān. a-phala. The icchā-rāśi is

the base minus the radius, which is the remaining bit in the base (from the

circle) towards the corner. Calculate the corresponding icchā-phala. Mea-

sure out this icchā-phala from the (south-east) corner in both the sides of

the (smaller) square; mark these points, and cut off the figure along the line

joining them. The side of a (circumscribing) octagon will result. Double

the icchā-phala and subtract from the side of the (larger) square (or the

diameter). The result is the side of the octagon.

Now, square the radius joining the middle of the side of the octagon and

also half the side of the octagon; add the two and find the square root. The

result will be the hypotenuse, from the centre to the corner of the octagon.

Take this as the base and construct the lamba (perpendicular) from the apex

of the same triangle. That will fall from the centre of the side of the octagon

on the hypotenuse. The hypotenuse will be divided into two ābādhā-s (seg-

ments) which lie on either side of the point where this perpendicular meets
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it. The radius and half the side of the octagon will be the bhujā-s (of this tri-

angle of which the hypotenuse is the base). Now, the difference between the

squares of these two bhujā-s (sides) and the difference between the squares

of the two ābādhā-s (segments of the hypotenuse) are equal. Because, the

bhuja-s are the karn. a-s (hypotenuses) associated with the lamba (perpendic-

ular) and the ābādhā-s (segments), and the square of the lamba (perpendicu-

lar) in both the cases is the same. Hence the difference between the squares

of the ābādhā-s (segments) is equal to the difference between the squares of

the bhujā-s (sides). Therefore, if the difference between the squares of the

bhujā-s (sides) is divided by the hypotenuse, the result will be the difference

between the ābādhā-s (segments); because the hypotenuse is the sum of the

segments, and since the division of the difference of the squares (of two num-

bers) by their sum will give the difference (between the numbers). Now, if

the difference between the segments is subtracted from the hypotenuse and

the result halved, the smaller segment will be got.

Now, this segment will be the pramān. a. Half the side of the octagon is the

pramān. a-phala. Subtract the radius from the hypotenuse; the remainder,

(the bit from the circle) towards the end of the hypotenuse, will be the

icchā-rāśi. This will be a part of the smaller segment. Using the trairāśika:

If the hypotenuse for the smaller segment is half the side of the octagon, what

would be the hypotenuse for this icchā-rāśi, the given bit of the segment?

The result would be a part of the side of the octagon. Mark that distance

from the corner (of the octagon) on both sides, and cut off the corners of

the octagon. The result will be (circumscribing) sixteen-sided figure. When

the icchā-phala is doubled and subtracted from the side of the octagon, the

side of the sixteen-sided figure will be obtained.

Continuing the procedure adopted for the derivation of the side of the (cir-

cumscribing) sixteen-sided figure, the measures of the sides of the (circum-

scribing) 32-sided figure and those of further figures with double the number

of sides at each stage can be obtained; and when the number of corners

is increased indefinitely up to uncountable (asam. khyā), the (resulting) fig-

ure would be essentially a circle (vr. tta-prāya). For this circle, the diameter



6.3 Circumference without calculating square-roots 49

would be the side of the (circumscribing) square, taken in the first instance.

Then, making use of this circumference and diameter, either the diameter

or the circumference of any circle can be found from the other by trairāśika.

6.3 Circumference of a circle without calculating

square-roots

6.3.1 Dividing the circumference into arc-bits: Approximat-

ing the arc-bits by Jyārdha-s (Rsines)

Now is described the procedure for arriving at the circumference of a circle

of desired diameter without involving calculation of square-roots. Construct

a square with the four sides equal to the diameter of the proposed circle.

Inscribe the circle inside the square in such a manner that the circumference

of that circle touches the centres of the four sides of the square. Then,

through the centre of the circle, draw the east-west line and the north-south

line with their tips being located at the points of contact of the circumference

and the sides. Then, the interstice between the east-point and the south-east

corner of the square will be equal to the radius of the circle. Divide this line

into a number of equal parts by marking a large number of points closely

at equal distances. The more the number of divisions, the more accurate

(sūks.ma) would be the (calculated) circumference.

Then draw hypotenuse-lines from the centre of the circle to all these points.

In (the triangles) so formed, kot.i will be the pūrva-sūtra (line from the centre

towards east) and the bhujā-s will be the segments, along the eastern side of

the square, between the tip of the east-line and the tips of the hypotenuse-

lines. There, the (interstice) from the pūrva-sūtra towards the next hy-

potenuse to the south of it, will be the bhujā. For the second hypotenuse,

the first two segments will be the bhujā. For the further hypotenuse-lines,

the bhujā-s will increase by one segment each. The bhujā for the hypotenuse

at the (south-east) corner of the square will be the largest. In all these cases,
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the radius equal to the pūrva-sūtra will be the kot.i. Hence, the respective

hypotenuse-lines will be the root of the sum of the squares of the radius and

the respective bhujā.

Now, take the first segment, being the distance from the tip of the pūrva-

sūtra to the tip of the first hypotenuse. Multiply it by the pūrva-sūtra,

which is equal to the radius, and divide it by the first hypotenuse. The

result will be the (perpendicular) distance from the east point to the first

hypotenuse. (For the triangle formed), this perpendicular line will be a kot.i.

The bhujā will be the (distance) from the meeting point of this kot.i and the

first hypotenuse, and the tip of the hypotenuse. The corresponding karn. a

will be the bit (of the eastern side of the square) joining the east point

and the tip of the first hypotenuse. Take this as the icchā-ks.etra. We will

now state a similar triangle which will be the pramān. a-ks.etra. For this, the

kot.i is the pūrva-sūtra from the centre of the circle to the mid-point of the

eastern side of the (larger) square; the first hypotenuse will be the karn. a;

the bhujā is the distance between the tips of the hypotenuse and the kot.i.

The icchā-ks.etra is tulyākāra (similar) to this pramān. a-ks.etra.

The reasoning for this is as follows: The karn. a of the icchā-ks.etra is paral-

lel to the bhujā of the pramān. a-ks.etra and the karn. a of the pramān. a-ks.etra

is parallel to the bhujā of the icchā-ks.etra. The karn. a of the icchā-ks.etra,

which is a segment of the (eastern) side of the square, is perpendicular to

the pūrva-sūtra which is the kot.i of the pramān. a-ks.etra. Also, the kot.i of the

icchā-ks.etra, which is being calculated as the icchā-phala, is perpendicular to

the karn. a of the pramān. a-ks.etra. For the above reason, the two figures are

similar. Here, for these two figures, parallelness of their bhujā and karn. a (hy-

potenuse), and perpendicularity of their kot.i and karn. a (hypotenuse), render

them into similar figures. On the other hand, if there is perpendicularity or

parallelness of all the three sides, then also they wi11 be similar figures.

To cite an instance: On (the roof of a) square man. d. apa (hall), for the slanting

beam (kazhukkol), which might be taken as the karn. a of the pramān. a-ks.etra,

the joining tie (vāmat.a, brim-plank) will be the bhujā. And the hole for
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the tie (val.attul.a) which corresponds to the karn. a of the icchā-ks.etra will be

parallel to this (bhujā). The bhujā for this karn. a will be the slant of the hole

for the tie on the side of the beam. Since the bhujā and the karn. a (of the

two) are parallel, the slant in the hole of the tie is caused by the slant of the

beam. These things have to be thought out in this manner. Hence the kot.i

of the icchā-ks.etra can be derived by means of trairāśika.

Then there is a third triangle. For this the east-west line is the karn. a. The

distance of the first hypotenuse from the tip of the east-west line, which is

the kot.i of the above-said icchā-ks.etra, is the bhujā here. The segment of

the first hypotenuse extending from the meeting point of the bhujā (stated

above) up to the centre of the circle is the kot.i. This is thus.

Then there is a second pramān. a-ks.etra. For that the kot.i is the east-west line.

The bhujā is two segments of the side of the (original) square taken from the

tip of this kot.i. The karn. a is the second hypotenuse drawn from the centre

of the circle. This is the second pramān. a-ks.etra. Now, its icchāks.etra is this:

Its kot.i is the line starting from the tip of the first hypotenuse, perpendicular

to the second hypotenuse and meeting the second hypotenuse. The bhujā is

(the line) from the meeting point of this kot.i and the second hypotenuse, to

the tip of the second hypotenuse. The karn. a is the second segment of the

(eastern side of the) original square. This is the second icchā-ks.etra.

To cite a parallel: When the second beam (kazhukkol, making the roof of a

square man. d. apa, referred to earlier) from the centre is taken as the karn. a

of the pramān. a-ks.etra, the bhujā of the pramān. a-ks.etra would be two beam

segments. Hence, the second beam will be longer than the first one. In

proportion, the holes for the joining rod in that will also be longer. Now,

this will be the karn. a of the icchā-ks.etra and will be parallel to the brim-

plank (vāmat.a) which is the bhujā of the pramān. a-ks.etra. Thus, as the slant

in the (several) beams and the orientation of the holes in them are similar,

so too will the pramān. a-ks.etra and the icchā-ks.etra considered here will be

similar.
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Take the second segment of (the eastern) side of the square starting from the

tip of the east-west line. Multiply that by the radius which is the kot.i of the

pramān. a-ks.etra and divide by the second hypotenuse which is the pramān. a.

The result will be the kot.i of the second icchā-ks.etra. Now, take this kot.i

as the bhujā and the segment in the second hypotenuse, being the distance

from its meeting point to the centre of the circle, as the kot.i. Take the first

hypotenuse as the karn. a. Thus a third triangle is to be noticed here.

Thus, there are three triangles related to each of the segments of the side

of the square commencing from the east-point and going up to the (south-

east) corner. There, multiply each of these segments by dik-sūtra, the line

from the centre towards the east (viz., radius). Divide each product by the

longer of the (two) hypotenuse-lines which touch the tips of corresponding

segment. The result, in each case, will be the perpendicular distance from

the tip of the previous hypotenuse to the longer hypotenuse. These are the

kot.i-s of the icchā-ks.etra-s. Each of these will then be considered as bhujā.

The corresponding kot.i would be the segment of the longer hypotenuse, from

the meeting point of this bhujā to the centre of the circle. And the karn. a

would be the lesser of the two hypotenuses from the centre touching the two

ends of the bhujā. These are the triangles. Some of these will be pramān. a-

ks.etra-s in what follows. The corresponding icchā-ks.etra-s will be portions

of the pramān. a-ks.etra-s which are within the circle. The icchā (rāśi) here

would be the radius which is a portion of the pramān. a-karn. a. The icchā-

phala would be the perpendicular distance from the tip of this radius to the

bigger hypotenuse.

These icchā-phala-s are nothing but the jyārdha-s, Rsines, of the bits of

circumference between the successive hypotenuse-lines. Now, multiply each

segment of the (eastern) side of the square commencing from the east-point,

twice by the radius and divide by the product of the two hypotenuse-lines

meeting the ends of the segment. The result, in each case, will be the

jyārdha, Rsine of the bit of the circumference between the two hypotenuse-

lines. When the segments of the square are extremely small, these jyārdha-s,

Rsines, will be almost (prayen. a) same as the corresponding arcs.
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6.3.2 Circumference in terms of the Karn. a-s (hypotenuses)

Now, since the (eastern) side of the square has been divided into equal

segments, the multiplicand is the same in all the above cases. The multiplier,

in each case, is the square of the radius. Since the divisors are the products

of adjacent hypotenuse-lines, they are all different. Now, in this situation, it

is possible to take the product of the two hypotenuse-lines as half the sum

of their squares, since they (hypotenuses) are practically the same. This

being the case, divide the dividend separately by the squares of the two

hypotenuse-lines, add the results obtained and halve them. The result of

dividing by half the sum of the squares would be equal to this.

We shall consider each of the segments of the (eastern) side of the square as

being divided by the square of the hypotenuse drawn to the northern tip of

each segment. There, the first is the east-west line. When division is made

by the square of this, the multiplier also being the same, viz., square of the

radius, the result will be just the segment itself. The last hypotenuse is the

line to the (south-east) corner (from the centre). When division is made by

its square, half the segment will be the result, since the square of the last

hypotenuse is double the square of the radius. When the divisor is double

the multiplier, half the multiplicand is the result.

Now, there are two hypotenuse-lines touching the two tips of each segment.

With reference to this, find the sum of the results obtained by dividing by

the squares of the first of the (two) hypotenuse-lines. Find also the sum

of the results obtained by dividing by the second of the (two) hypotenuse-

lines. The difference between these two (sums) will be the difference between

the first term of the first sum and the last term of the second sum. That

will be, half the length of the segment. For the terms in between, since the

divisors are the same the results will also be the same. There is no difference

(between the two sums) as regards the terms starting from the second to the

penultimate. (The difference between the two sums is) thus half the length of

the segment. There, the result on dividing by the first divisor (the square of

the first hypotenuse) is the segment itself. The result on dividing by the last
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divisor (the square of the last hypotenuse) is half the segment. In the case of

dividing by half the sum of the squares of the hypotenuse-lines, the difference

is one-fourth of the segment. When the segment becomes extremely small,

this one-fourth becomes negligible. Hence, it follows that we should take as

the divisor the square of just one hypotenuse (in each term).

6.3.3 Śodhya-phala-s: Iterative corrections

Now, for each of the segments, we shall consider that the square of the

larger hypotenuse is taken as the divisor. Then, multiply the segments by

the square of the radius and divide by the square of the larger hypotenuse

associated with them. The results, will be the jyārdha-s of the corresponding

circumference-bits (arcs-bits) contained in the interstices of the hypotenuse-

lines.

Now, multiply the respective segments by the difference between the multi-

plier (the square of the radius) and the respective divisor (the square of the

hypotenuse) and divide by the square of the respective hypotenuse. Sub-

tract the results from the respective segments. The results will be the jyā

(Rsine) of the respective circumference-bit of arc contained in the interstices

of the hypotenuse-lines. There, the square of the sum of those segments in

the (eastern) side of the square, lying between the east-point and the respec-

tive tips of the hypotenuse, is the difference between the multiplier and the

divisor. The multiplier is the square of the radius.

There, if the multiplication is done by the difference between the multiplier

and the divisor, and division is done by the multiplier itself, the result will

be larger (than the one referred to above), since the multiplier is smaller

than the divisor. Now, place this result at two places, multiply the value at

one place by the difference between the multiplier and the divisor and divide

by the divisor; the result obtained is subtracted from the earlier result (kept

at the other place). That will be the actual result.

The above would mean that in the case of calculating the śodhya-phala (the

subtractive term obtained above), if the multiplication is done by the dif-
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ference between the multiplier and the divisor and division is done by the

multiplier (instead of the divisor), then a similar subtraction should be made

from that term also as was done before. There, in the second śodhya-phala

(subtractive term obtained by iteration) also, the result of dividing the dif-

ference between the multiplier and divisor by the divisor would give rise

to another subtractive term from the śodhya-phala, which will be the third

result. Here also, if the division is made by the multiplier, a fourth śodhya-

phala would be obtained (following the same procedure as before). If in all

(the śodhya-phala-s), the division is made by the multiplier, then there will

be no end to the series of subtractive terms (́sodhya-phala-paramparā), as

always (at the end of any number of steps) the last term has a division by

the divisor. If there is to be no division by the divisor, then there will be

no end to the number of subtractive terms. When the (subtractive term)

becomes very small, it can be discarded.

6.3.4 Phala-yoga-s, and their series: Phala-paramparā

When we proceed in the above manner, the first (phala-yoga) is the sum of

the multiplicands, which is the sum of the segments of the (eastern) side of

the square, being the radius. The second is subtractive from the first. The

third is subtractive from the second. This being the case, add together all

the odd terms; add also all the even terms amongst themselves. From the

sum of the odd-s subtract the sum of the even-s. The result will be one-

eighth of the circumference. The above is the case when the multiplier is

small. When, however, the multiplier is large, then all the phala-s (results)

have to be added to the multiplicand.

Since, here, the multipliers and divisors are the squares of the kot.i (which is

the radius) and karn. a-s (hypotenuses), the differences between the multipli-

ers and divisors would be the square of the bhujā-s. The first bhujā would be

the first of the equal segments into which the (eastern) side of the square has

been divided. Two segments together make up the second bhujā. Three seg-

ments together make up the third bhujā. In this manner, the bhujā-s will be
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successively made up of a number of segments, the number increasing by one

at each step (ekādyekottara). Further, they have to be conceived as being of

infinitesimal length (an. u-parimān. a), for the sake of accuracy (sūks.matā) of

the result. Then, consider them also as whole numbers. Starting from unity,

consider the sum of the squares of successive numbers. Multiply by that

sum, the multiplicand which is the segment (of the side of the square) which

has been conceived both as an infinitesimal and as a unit (as an. u-parimita

and rūpa) and divide by the square of the radius. The quotient got will be

the first phala-yoga, sum of results.

For the second phala-yoga, the first phala will be the multiplicand. The mul-

tiplicands are of different (measures); the difference between the multiplier

and divisor which is the square of the is. t.a-bhujā (portion of the eastern side

of the square) are also several. Hence, there is no easy way to multiply

by the sum of the difference between the multipliers and divisors. Hence,

multiply the bhujā-varga-saṅkalita, summation of the squares of the bhujā-s

(successive portions of the eastern side of the square), which is the sum of

the difference between the multipliers and divisors, twice by the first mul-

tiplier which is unity, and divide the product twice by the square of the

radius. The result will be the second phala-yoga. Here, the multiplier will

be the summation of the squares of the squares (varga-varga) of numbers

from unity increased consecutively by one (ekādyekottara). And the divisor

will be the square of the square of radius. Here the radius (measured by the

segment as a unit) will be the pada, number of terms for the summation.

Then, the third phala-yoga is also to be derived from the first multiplicand.

There the multiplier is the samas.ad. ghāta-saṅkalita, summation of the sixth

power of numbers from one onwards (ekādyekottara), and the divisor is the

sixth power of the radius.

Thus, (for the further phala-yoga-s) the divisor would be two powers raised

further, (of the radius), and summation of the same powers (of numbers)

is the multiplier. There, from the cubes are obtained, the summation of

squares; from the fifth powers, the summation of the fourth powers; from

the seventh powers, the summation of the sixth powers.
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There, multiply the cube which forms the multiplier with the square of the

radius, which is the divisor. The result will only be the radius. Thus,

everywhere when the multipliers are divided by their respective divisors, the

result will be the radius.

Now, since the cubes have to be divided by 3, divide the radius by 3. Then it

would be that the summation of the squares of the (segments of the) radius

has been divided by the square of the radius. In the same manner, division

of the radius by 5 would be the same as division of the summation of the

fourth powers by the fourth power. Thus, the result of dividing the radius

successively by the odd numbers, 3, 5 etc. would be successive outcomes in

the above-stated phala-paramparā (sequence of results). Hence, has it been

said:

trísarādivis. amasam. khyābhaktam r. n. am. svam. pr. thak kramāt kuryāt |

Take the results of the division by the odd numbers 3, 5 etc. as

additive and subtractive in order (cited also in Yuktid̄ıpikā com.

on Tantrasaṅgraha, II. 2711).

There, in this series of results (phala-paramparā), when subtractions have to

be done at each step, it amounts to subtracting the sum of the odds from the

sum of the multiplicands, and adding the sum of the evens. Hence has it also

been said: r. n. am. svam pr. thak kramāt kuryāt, ‘do subtraction, or addition, in

order’.

Next, sama-ghāta-saṅkalitānayana, the principle of ‘summation of equal

powers (of natural numbers)’ is to be explained as it is useful in the above

context. In that context, the principle of computing the summation of

(natural) numbers and their squares are also explained here. Incidentally

1This and several other verses of Mādhava which have been cited in Yuktibhās. ā, have
also been cited by Śaṅkara in his commentary Yuktid̄ıpikā on Tantrasaṅgraha. It may
however be noted that Yuktid̄ıpikā declares, at the end of each chapter, that it is only
presenting the subject as expounded by Jyes. t.hadeva (in Yuktibhās. ā).
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(uttarottara-saṅkalitaikyānayana) the principle of repeated summations of

(natural numbers) is also explained.

6.3.5 Śodhya-phala-s and Phala-yoga

Now, the square of the east-west line (the radius) is the multiplier and the

square of the corresponding hypotenuse is the divisor. Therefore, the re-

spective difference between the multiplier and the divisor is the square of

the segment in the (eastern) side of the square occurring in the interstice

between the tip of the hypotenuse and the east-west line. The multiplicand

is the segment of the (eastern) side of the square between the tip of the

desired hypotenuse and the tip of the adjacent (smaller) hypotenuse. The

icchā-phala is the (ardha-jyā) Rsine of the circumference bit (arc) which oc-

curs in between the said two hypotenuses. Thus are obtained all the results.

Here, the multiplicands are all the same, since the segments (on the eastern

side of the square) between two hypotenuses are all equal. When all these

results are calculated and added together, the result is the circumference

of that portion of the circle which lies between the east-west line and the

hypotenuse joining the (south-east) corner (of the square).

Here, the bhujā corresponding to the hypotenuse next to the east-west line

is one segment of the side of the square. For the second hypotenuse, the

bhujā is given by two segments. In this manner, the bhujā for the succeeding

hypotenuses will include one segment more (than the previous). Thus the

successive bhujā-s, starting from the first, are obtained by adding one seg-

ment each to the previous one. Hence, the sum of their squares is equal to

the sum of the difference between the multipliers and the divisors. Since the

multiplicand for all is the same, if that is multiplied by the sum of the dif-

ference between the multiplier and divisor, the result will be the phala-yoga,

if the divisor by which the product is to be divided is just 1.

Suppose the divisor to be 1. It also taken to be the square of the radius

for doing the calculations. Now, find the product of the result arrived at as

above and the difference between the multiplier and the divisor. When this

is lesser than the dividend, then the result got by dividing with the divisor
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will be equal to the result got by dividing by the multiplier. When it is not

less, but in fact larger than the dividend, then the result there-from and the

difference between the multiplier and the divisor should be multiplied, and

quotient obtained by dividing that by the divisor should be subtracted from

the quotient got by dividing by the multiplier. Then also the result will be

the same. When the subtractive term is obtained, if we instead divide by the

multiplier, the result will be slightly larger. In that case a subtractive term

(́sodhya-phala) has to be derived from that also. If the process is repeated,

further terms (́sodhya-s) shall have to be subtracted. Then, starting from

the end, when all these (́sodhya-s) have been subtracted, the result will be

obtained.

6.3.6 Śodhya-phala-s: An example

Here, let the dividend be 100. Let the divisor be 10 and the multiplier 8.

Suppose also that by multiplying this, 100 is got. Here, if the division is done

by the divisor (10), the result is 10. When the divisor 10 is to be subtracted

once from the dividend (to get 90), if instead (the multiplier) 8 is subtracted,

(to get 92), the difference between the divisor and the multiplier, viz., 2, will

remain back in the dividend. Again, as many times as (the divisor and

the multiplier are) subtracted, so many times of the difference between the

divisor and the multiplier will remain back in the dividend. Hence, if the

product of the result (100/10) and the difference between the multiplier and

the divisor (10-8=2) is subtracted from the dividend (100) and the remainder

(100-20=80) is divided by the multiplier (8), the result (80/8 = 10) will be

equal to the result got by dividing (100) by the divisor (10). Here, when the

dividend (100) is divided by the multiplier (8), the result is 12.5. When this

result is multiplied by the difference between the multiplier and divisor, (viz.,

2) the result got is 25. When this is divided by the divisor, 10, the result is

21

2
. When this is subtracted from the earlier result, 121

2
, the remainder is

10.

Here, if 25 is divided by 8, the result is 3 and one-eighth. This is śodhya,

to be reduced, the result got is larger. Now, when this result, (3 and one-

eighth), is multiplied by the difference between the multiplier and the divisor

(2), and the product divided by the divisor (10), the result is half plus one-
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eighth. When this is subtracted from the second result (namely 3 and one-

eighth) we got 21

2
. Then, this is the amount to be subtracted from the first

result (namely 121

2
). In this manner, the respective results are multiplied

by the difference between the multiplier and the divisor and divided by the

divisor, and the result when subtracted from the previous result will be more

accurate. Then it shall be subtracted from the result earlier; then (the still

corrected result) from the one earlier than that, and so on. In this manner,

the result obtained at the first step can be made to correspond to the actual.

Now, the respective squares of the bhujā-s (portions of the eastern side of

the square) are the difference between the multiplier and divisor of (the

multiplicand, viz.,) the segment of the square. The results got at each stage

shall have to be multiplied by the square of the bhujā-s. Since there is no

other result (from which to start), calculate the second result from the bhujā-

khan. d. a, the segment (of the side of the square) which is the multiplicand

for the first result. (The method) for this: Since the multiplier for both the

first and the second results are the square of the bhujā, to get the next result

multiply twice with the square of the bhujā, the multiplicand which is the

bhujā-khan. d. a. The divisor of the first result is the square of the radius; so,

divide (the product arrived at as above) by the square of that (i.e., the fourth

power of the radius) for the second result. Here, since the multiplicands are

the same, the multiplication can be done with the sum of the multipliers.

Here, the multipliers are the squares of the squares (fourth power) of the

bhujā-khan. d. a multiplied by successive numbers starting with unity. Their

sum is the sum of the difference of the multipliers and divisors. This sum

is termed ekādyekottara-varga-varga-saṅkalita, summation of the squares of

squares of numbers 1, 2, etc. Here the divisor is the square of square of the

radius. Thus, for getting the first result, the multiplier is two equal bhujā-s

which have been multiplied amongst themselves, and the divisor is two radii

which are multiplied amongst themselves.

Then, for the second result: The multiplier is the equal bhuja segments

multiplied four-fold and the divisor is radius multiplied four-fold. Then, for

the third result: The multipliers and divisors are, (respectively), the same

ones multiplied amongst themselves six-fold. Thus, for the fourth (result)

the multipliers and divisors are (respectively) the same ones multiplied eight-
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fold amongst themselves. The multiplicand, at all places, is the same, the

bhujā-khan. d. a. Hence, for obtaining the phala-yoga, the final result, the final

multiplier will be the sum of the multipliers. Now, when the first phala-yoga

is calculated, the bhujā-s associated with the hypotenuses commencing from

the east-west line up to the line joining the (centre to the south-east) corner

of the square, will be multiples of the bhujā-khan. d. a, commencing from one

segment of the side of the square and increasing at the rate of one segment,

the last of them being the side of the square equal to the radius. The sum

of their squares is the sum of the multipliers. This is termed ekādyekottara-

varga-saṅkalita. Thus, in the calculation of the second phala-yoga, the sum

of the multipliers is the sum of the squares of the squares of the successive

bhujā-s commencing from one bhujā-khan. d. a, and growing by the addition of

one bhujā-khan. d. a to the previous one, the last one being the radius. Thus

the sum of the multipliers in terms that follow, will be the summation of

(the multipliers) the same numbers of bhujā-khan. d. a raised to powers 6, 8

etc.

6.4 Saṅkalita: Summation of series

Now is described the methods of making the summations (referred to in

the earlier sections). At first, the simple arithmetical progression (kevala-

saṅkalita) is described. This is followed by the summation of the products of

equal numbers (squares). Though not useful in the (calculations dealt with

in the present work), the summation of the products of 3 and 5 identical

numbers are also described here, since they occur among matters useful

herein.

6.4.1 Mūla-saṅkalita: Sum of natural numbers

Here, in this mūla-saṅkalita (basic arithmetical progression), the final bhujā

is equal to the radius. The term before that will be one segment (khan. d. a)

less. The next one will be two segments less. Here, if all the terms (bhujā-s)

had been equal to the radius, the result of the summation would be obtained

by multiplying the radius by the number of bhujā-s. However, here, only one

bhujā is equal to the radius. And, from that bhujā, those associated with the

smaller hypotenuses are less by one segment each, in order. Now, suppose
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the radius to be of the same number of units as the number of segments to

which it has been divided, in order to facilitate remembering (their number).

Then, the number associated with the penultimate bhujā will be less by one

(from the number of units in the radius); the number of the next one, will

be less by two from the number of units in the radius. This reduction (in the

number of segments) will increase by one (at each step). The last reduction

will practically be equal to the measure of the radius, for it will be less only

by one segment. In other words, when the reductions are all added, the sum

thereof will practically (prāyen. a) be equal to the summation of the series

from 1 to the number of units in the radius; it will be less only by one radius

length. Hence, the summation will be equal to the product of the number

of units in the radius with the number of segments plus one, and divided by

2. The summation of all the bhujā-s of the different hypotenuses is called

bhujā-saṅkalita.

Now, the smaller the segments, the more accurate (sūks.ma) will be the

result. Hence, do the summation also by taking each segment as small as

an atom (an. u). Here, if it (namely, the bhujā or the radius) is divided into

parārdha (a very large number) parts, to the bhujā obtained by multiplying

by parārdha add one part in parārdha and multiply by the radius and divide

by 2, and then divide by parārdha. For, the result will practically be the

square of the radius divided by two. In order that the number might be

full, it is divided by parārdha. Thus, if the segments are small, only one

small segment shall have to be added to get the summation. Hence, not

adding anything to (the units in) the bhujā, if it is multiplied by the radius

and divided by 2 it will be bhujā-saṅkalita when it has been divided into

extremely small segments. Thus, the square of the radius divided by 2 will

be the saṅkalita when the segment (bhujā-khan. d. a into which the bhujā or

the side of the square is divided) is very small.

6.4.2 Varga-saṅkalita: Summation of squares

Now is explained the summation of squares (varga-saṅkalita). Obviously,

the squares of the bhujā-s, which are summed up above, are the bhujā-s each

multiplied by itself. Here, if the bhujā-s which are all multipliers, had all
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been equal to the radius, their sum, (saṅkalita derived above), multiplied by

the radius would have been the summation of their squares. Here, however,

only one multiplier happens to be equal to the radius, and that is the last

one. The one before that will have the number of segments one less than

in the radius. (Hence) if that, (i.e., the second one), is multiplied by the

radius, it would mean that one multiplied by the penultimate bhujā would

have been the increase in the summation of the squares. Then (the segment)

next below is the third. That will be less than the radius by two segments.

If that is multiplied by the radius, it will mean that, the summation of the

squares will increase by the product of the bhujā by two (segments). In this

manner, the summation in which the multiplication is done by the radius

(instead of the bhujā-s) would be larger than the summation of squares by

terms which involve the successively smaller bhujā-s multiplied by succes-

sively higher numbers. If (all these additions) are duly subtracted from the

summation where the radius is used as the multiplier, the summation of

squares (varga-saṅkalita) will result.

Now, the bhujā next to the east-west line is less than the radius by one

(segment). So if all the excesses are summed up and added, it would be the

summation of the basic summation (mūla-saṅkalita-saṅkalita). Because, the

sums of the summations is verily the ‘summation of summations’ (saṅkalita-

saṅkalita). There, the last sum has (the summation of) all the bhujā-s. The

penultimate sum is next lower summation to the last. This penultimate sum

is the summation of all the bhujā-s except the last bhujā. Next to it is the

third sum which is the sum of all the bhujā-s except the last two. Thus, each

sum of the bhujā-s commencing from any bhujā which is taken to be the last

one in the series, will be less by one bhujā from the sum (of the bhujā-s)

before that.

Thus, the longest bhujā is included only in one sum. But the bhujā next

lower than the last (bhujā) is included both in the last sum and also in

the next lower sum. The bhujā-s below that are included in the three, four

etc. sums below it. Hence, it would result that the successively smaller

bhujā-s commencing from the one next to the last, which have been multi-

plied by numbers commencing from 1 and added together, would be sum-
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mation of summations (saṅkalita-saṅkalita). Now, it has been stated earlier

that the summation (saṅkalita) of (the segments constituting) a bhujā which

has been very minutely divided, will be equal to half the square of the last

bhujā. Hence, it follows that, in order to obtain the summation (saṅkalita)

of the bhujā-s ending in any particular bhujā, we will have to square each

of the bhujā-s and halve it. Thus, the summation of summations (saṅkalita-

saṅkalita) would be half the summation of the squares of all the bhujā-s.

In other words, half the summation of the squares is the summation of the

basic summation. So, when the summation is multiplied by the radius, it

would be one and a half times the summation of the squares. This fact can

be expressed by stating that this contains half more of the summation of

squares. Therefore, when the square of the radius divided by two is multi-

plied by the radius and one-third of it subtracted from it, the remainder will

be one-third of the whole. Thus it follows that one-third of the cube of the

radius will be the summation of squares (varga-saṅkalita).

6.4.3 Ghana-saṅkalita and Varga-varga-saṅkalita: Summation of

third and fourth powers

Now, to the method or deriving the summation of cubes: Summation of

cubes, it is clear, is the summation where the square of each bhujā in the

summation of squares is multiplied by the bhujā. Now, by how much will the

sum of cubes increase if all the bhujā-squares were to be multiplied by the

radius. By the principle enunciated earlier, the bhujā-square next to the last

will increase by itself being multiplied by 1. The bhujā-squares below will

increase by their multiples of two, three etc., in order. That sum will be equal

to the summation of the summation of squares (varga-saṅkalita-saṅkalita). It

has already been shown that the summation of squares is equal to one-third

the cube of the radius. Hence one-third the cube of each bhujā will be equal

to the summation of all the bhujā-squares ending with that bhujā. Hence, it

follows that the summation of summation of bhujā-squares (varga-saṅkalita-

saṅkalita) is equal to one-third the sum of the bhujā-cubes (ghana-saṅkalita).

Therefore, the summation of squares multiplied by the radius will be equal

to the summation of the cubes plus a third of itself. Hence, when one-fourth
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of it is subtracted, what remains will be the summation of cubes. Hence,

it also follows that the summation of cubes (ghana-saṅkalita) is equal to

one-fourth the square of the square of the radius.

Then, when this summation of cubes is multiplied by the radius, by the

principle enunciated earlier, it follows that the result will be the summation

of the squares of squares (varga-varga-saṅkalita) together with the summa-

tion of the summation of cubes (ghana-saṅkalita-saṅkalita). It has just been

stated that the summation of cubes is one-fourth the square of square (of

the radius). Hence, by the principle enunciated earlier, it also follows that

one-fourth the sum of squares of squares is the summation of the summation

of cubes. Hence, this being in excess of the result by one-fourth of itself,

if one-fifth of it is subtracted, it follows that the summation of squares of

squares (varga-varga-saṅkalita) will be equal to one-fifth of the radius raised

to the power of five.

6.4.4 Samaghāta-saṅkalita: General principle of summation

Now, the square of the square (of a number) is multiplied by itself, it is called

sama-pañca-ghāta (number multiplied by itself five times). The successive

higher order summations are called sama-pañcādi-ghāta-saṅkalita (and will

be the summations of powers of five and above). Among them if the sum-

mation (saṅkalita) of powers of some order is multiplied by the radius, then

the product is the summation of summations (saṅkalita-saṅkalita) of the

(powers of the) multiplicand (of the given order), together with the summa-

tion of powers (sama-ghāta-saṅkalita) of the next order. Hence, to derive

the summation of the successive higher powers: Multiply each summation

by the radius. Divide it by the next higher number and subtract the result

from the summation got before. The result will be the required summation

to the higher order.

Thus, divide by two the square of the radius. If it is the cube of the radius,

divide by three. If it is the radius raised to the power of four, divide by

four. If it is (the radius) raised to the power of five, divide by five. In this
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manner, for powers rising one by one, divide by numbers increasing one by

one. The results will be, in order, the summations of powers of numbers

(sama-ghāta-saṅkalita). Here, the basic summation is obtained from the

square, the summation of squares from the cube, the summation of cubes

from the square of the square. In this manner, if the numbers are multiplied

by themselves a certain number of times (i.e., raised to a certain degree) and

divided by the same number, that will be the summation of the order one

below that. Thus (has been stated) the method of deriving the summations

of (natural) numbers, (their) squares etc.

6.4.5 Repeated summations

Now, are explained the first, second and further summations: The first sum-

mation (ādya-saṅkalita) is the basic summation (mūla-saṅkalita) itself. It

has already been stated (that this is) half the product of the square of the

number of terms (pada-vargārdha). The second (dvit̄ıya-saṅkalita) is the

summation of the basic summation (mūla-saṅkalitaikya). It has been stated

earlier that it is equal to half the summation of squares. And that will be

one sixth of the cube of the number of terms.

Now, the third summation: For this, take the second summation as the

last term (antya); subtract one from the number of terms, and calculate

the summation of summations as before. Treat this as the penultimate.

Then subtract two from the number of terms and calculate the summation

of summations. That will be the next lower term. In order to calculate the

summation of summations of numbers in the descending order, the sums of

one-sixths of the cubes of numbers in descending order would have to be

calculated. That will be the summation of one-sixth of the cubes. And that

will be one-sixth of the summation of cubes. As has been enunciated earlier,

the summation of cubes is one-fourth the square of the square. Hence, one-

sixth of one-fourth the square of the square will be the summation of one-

sixth of the cubes. Hence, one-twenty-fourth of the square of the square will

be the summation of one-sixth of the cubes. Then, the fourth summation will

be, according to the above principle, the summation of one-twenty-fourths of
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the square of squares. This will also be equal to one-twenty-fourth of one-fifth

of the fifth power. Hence, when the number of terms has been multiplied by

itself a certain number of times, (i.e., raised to a certain degree), and divided

by the product of one, two, three etc. up to that index number, the result

will be the summation up to that index number amongst the first, second

etc. summations (ādya-dvit̄ıyādi-saṅkalita).

6.5 Conclusion: Calculation of the circumference

Here, it is necessary to calculate also the summation of squares, the summa-

tion of the squares of squares and the sum of numbers raised to the power

of 6 etc. Hence it was directed to divide by numbers starting with 3, 5, etc.

The divisors for these are the square of the radius, square of the square etc.

But the result of dividing the cube of the radius by the square of the radius,

the quotient is the radius itself. Hence, the radius divided by three is the

first sum of the results (phala-yoga). And this is the sum of the differences

of the respective multiplicands and the respective results (phala). Therefore,

subtract it from the sum of multiplicands. The result will be half the side

of the square from the tip of the east-west line to the (south-east) corner.

Likewise, when the fifth power (of the radius) is divided by the square of the

square (of the radius), the result is only the radius. Thus, the radius divided

by 5 is the second result. In this manner, when the radius is divided by the

odd numbers 7, 9 etc., further results will be obtained. The results got are

to be alternatively added to and subtracted from the radius. In this way, we

obtain one-eighth of the circumference of the circle.

Here, as the multiplier is smaller than the divisor, the succeeding terms

become less and less, and when the terms become very small, then they

can be discarded and the calculation ended; then the result will be mostly

accurate. The result got will be the portion of the circle lying between the

tip of the east-west line and the line (from the centre) joining the (south-

east) corner. When this is multiplied by 8, (the circumference) of the circle

will be complete. First multiply the radius which is the dividend by 8; that

will be four times the diameter. It is to this diameter that the necessary
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procedures have to be adopted as explained with reference to the verse vyāse

vāridhinihate. . . (cited also in Yuktid̄ıpikā, com. on Tantrasaṅgraha, II. 271),

and the prescribed corrections are to be applied to get (the circumference

of) the circle.

6.6 Cāp̄ıkaran. a: Conversion of the Rsine to arc

Using the principles enunciated above, the jyā-s (Rsines) can be converted

into arcs as given in the verses

is. t.ajyātrijyayorghātāt kot.yāptam. prathamam. phalam |

jyāvargam. gun. akam. kr. tvā kot.ivargam. ca hārakam ||

prathamād phalebhyo ′tha neyā phalatatirmuhuh. |

ekatryādyojasam. khyābhirbhaktes.vetes.vanukramāt ||

ojānām. sam. yutestyaktvā yugmayogam. dhanurbhavet |

doh. kot.yoralpameves. t.am. kalpan̄ıyamiha smr. tam ||

labdh̄ınāmavasānam. syānnānyathāpi muhuh. kr. te |

The product of the desired jyā (Rsine) and the radius (Rsine

90), divided by the kot.i (Rcosine) is the first result. Making the

square of the Rsine the multiplier and the square of the Rco-

sine the divisor, derive a series of successive results (by multi-

plying and dividing) the first result successively. Divide these

results, in order, by the odd numbers 1, 3 etc., find the sum of

the terms in the even places and subtract them from the sum of

the terms in the odd places. The result will be the correspond-

ing arc (dhanus). Here, the lesser of the doh. and kot.i is to be

taken as the desired jyā. Otherwise there will be no end to the

quotients when the successive terms are calculated. (cited also

in Yuktid̄ıpikā, II. 206-209)

vyāsavargād ravihatāt padam. syāt prathamam. phalam |

tadāditastrisam. khyāptam. phalam. syāduttarottaram ||
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rupādyayugmasam. khyābhirhr. tes.ves.u yathākramam |

vis.amānām. yutestyaktvā samam. hi paridhirbhavet ||

Multiply the square of the diameter by 12 and find the root.

That shall be the first result. That result divided by 3 shall be

the second result. Further and successive results are obtained

(by dividing the further results repeatedly by 3, in order). All

these results are divided, in order, by the odd numbers 1, 3 etc.

Find the sum of the odd results (now got) and subtract from it

the sum of the even results. The remainder is the circumference.

(cited also in Yuktid̄ıpikā, II. 212-214)2

Now is stated the method to find the arc of the bhujā or kot.i (Rsine or

Rcosine), whichever is smaller. Here too, first it is supposed that the Rsine is

smaller. Multiply this desired Rsine by the radius and divide by the Rcosine

(kot.i-jyā). The result would be the first result. Then multiply this result

itself by the square of the Rsine and divide by the square of the Rcosine.

This would be the second result. Likewise calculate the third result, by

multiplying the second result by the square of the Rsine and dividing by

the square of the Rcosine. Calculate further results in the same way, using

the selfsame multiplier and divisor. Divide the sequence of results (phala-

paramparā), in order, by the odd numbers 1, 3, 5 etc. Of the results now

got, find the sum of the first, third, fifth etc., and subtract therefrom the

sum of the second, fourth etc. The remainder is the (desired) arc. To get the

complementary-arc (kot.i-cāpam), subtract this from (the arc of the circle)

equal in measure to three signs (90 degrees). When the complementary arc

is smaller, that is what is to be calculated to start with.

The rationale (upapatti) for this (is as follows): As in the (earlier) case where

(the circumference of) the circle was sought to be got from the radius, here a

square is constructed (touching the sides of the circle). The sine-chord (jyā)

is so chosen such that the versine-chord (́sara), is stretched along the (portion

of the) east-west line starting from the centre going up to the circle. Extend

the hypotenuse drawn from the centre of the circle and passing through the

2This result is discussed in the next Section (6.7).
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tip of the sine-chord up to the side of the square lying outside the circle.

Here, this would be the longest hypotenuse. The part of the (eastern) side

of the square that lies between the tip of this hypotenuse and the tip of the

east-west line will now be the first result. Then, it is instructed to derive a

series of results arrived at by taking the above-said part of the side of the

square as the multiplicand, its square as multiplier and with the square of

the east-west line as divisor. There, in all the results, if the entire (half)

side of the square (bhujā-bhāga) is the multiplicand, the multipliers and

the divisors will be the same. When such is the case, the result will be

the multiplicand itself at all places. Then, the multiplicand itself is being

divided by the odd numbers (from 1). Here, however, the multipliers and the

divisors which are the Rsine (bhujā) and the Rcosine (kot.i), are not the same,

and the results will be (different and) become successively smaller. (In this

manner) all the results have to be calculated in order. Obviously, for this it

would be preferable to have smaller multipliers and divisors. Therefore (in

the instructions contained in the verses) it is not the portion of the square,

which stretches from the east-west line to the last hypotenuse, that is taken

as the multiplier, but the (corresponding) interstice inside the circle, which

is the Rsine. Then, the divisor would be its Rcosine. The respective results

would be the multiplicands. This is the difference (between the calculation

of one-eighth of the circumference and that of the given arc). Here also, the

division is made by the odd numbers derived from varga-saṅkalita etc. Thus

is (explained) the conversion of chords into arcs.

6.7 Circumference by an alternate method

Now, an (alternate) method to derive the circumference using the diameter,

based on of the above-said principle: The square of the given diameter is

multiplied by 12 and its root is found. This is the first result. This result

is divided by 3. This is the second result. The second result divided by 3

is the third result. In like manner, find successive results by dividing by 3.

These results are then divided, in order, by the odd numbers 1, 3, etc. Add

together the odd results and from their sum subtract the sum of the even

results. The remainder is the circumference.



6.7 Circumference by an alternate method 71

Here, what is calculated to start with is one-twelfth the (circumference) of

the circle. Multiply that by 12. The process here is similar to the way one-

eighth of the circumference was calculated earlier. In this case also, mark the

jyā-s (i.e., sine and cosine chords) as instructed earlier for cāp̄ıkaran. a (when

jyā-s were converted to arcs). Mark off one-twelfth of the circle on both sides

of the east-west line and consider the chord (jyā) that touches these points.

That chord, then, will be the full chord (samasta-jyā) for one-sixth of the

circle, with its middle point on the east-west line. Half of this chord will be

the half-chord (ardha-jyā) of one-twelfth (of the circumference). And, it is

one-fourth of the diameter, since the full chord of one-sixth (circumference)

is equal to the radius or half the diameter (vyāsārdha). In this manner, six

full chords of the length of the radius will cover the whole circle.

Here, the hypotenuse produced from the centre of the circle to the tip of

the sine-chord is extended to touch the (east) side of the square. The part

of the side of the square from this point to the east-west line will be now

obtained as the first result. Using this, is derived the length of the portion

of the circle between this hypotenuse and the east-west line. Since this has

to be multiplied by 12 (to get the circumference), the first result itself was

multiplied by 12.

Since the sine-chord of one-twelfth circumference is equal to one-fourth the

diameter, the square of this sine-chord is one-sixteenth of the square of the

diameter. Four times the square of this sine-chord is the square of the radius.

The square of the radius less one-fourth of itself, i.e., the remaining three-

fourths (of the square of the radius), is the square of the cosine-chord. Here,

the above-said square of the cosine-chord is the divisor and the square of

the radius is the multiplier of the square of the sine-chord. When these are

reduced by common factor (apavartana), 4 will be got as the multiplier and

3 as the divisor. Now, the square of the sine-chord, which is the square of

the diameter divided by 16, is the multiplicand. The result is the square

of that part of the (east) side of the square extending from the tip of the

hypotenuse to the east-point. Multiply it by the square of 12 and find the

root of the product. Thus, here, the square of 12 and 4 are the multipliers.

The product of these two is the square of 24. Multiply the divisors, 16 and
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3, (to get) 48. Divide the square of 24 by 48; the result is 12. Hence it

was asked to multiply the square of the diameter by 12. The square-root of

this (number) would be half the side of a hexagon circumscribing the circle.

Now, the hypotenuse passing through the vertex of the hexagon inscribed in

the circle, will also meet the vertex of the circumscribing hexagon. This is

the situation (as can be seen in the diagram).

Then, to find the second result, as instructed (earlier) in the derivation of the

arc from the sine, half the side of the outer hexagon is the multiplicand, the

square of the sine-chord is the multiplier and the square of the cosine-chord

is the divisor. Then consider the second result as the multiplicand and using

the same multipliers and divisors, find the further results. Here, when the

multipliers and divisors are reduced by common factor (apavartana), 1 will

be got as multiplier and 3 as divisor, since Rsine of one rāśi (30 deg) is one-

fourth the diameter. Hence, when each of the successive results are divided

by 3, the further results are obtained. Then divide these successive results

respectively by the odd numbers 1, 3 etc. Then from the sum of the odd

results subtract the sum of the even results. The result is the circumference.

This is the method of deriving one-twelfth circumference from the diameter.

6.8 Antya-sam. skāra: Final correction terms

How, when a last correction (antya-sam. skāra) is made, to the (sum of)

several successive results obtained (from the first result) on division in order,

by the odd numbers, the circumference can be obtained well-nigh accurate,

(the rationale of this) is explained here.

First, it has to be verified whether this stated correction itself is accurate

or not. Such verification (might be made as follows): Obtain the result

after division by a certain odd number, keep it in two places, and apply

the correction at one place. To the result, at the other place, apply (add

or subtract) first the result obtained by dividing by the next odd number

and to that apply the correction corresponding to the next even number. If

the circumferences obtained in both cases are equal, then the correction can

be taken as accurate. Why? For the reason that when the circumference
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derived by both ways is the same, then this correction has uniform appli-

cation (sarva-sādhāran. atva). Hence, even when the correction is done after

the division by higher and higher odd numbers, the result will be the same.

Hence, it is to be understood that if the correction done for earlier terms is

accurate, the same will follow later also.

If the difference between the result of division by the odd number above

and the associated correction is equal to the previous correction, only then

will the two circumference values (obtained) be equal. Hence, the result got

through division by an odd number would be equal to the sum of the lower

correction term and the next higher correction term. Corrections should be

instituted in such a manner that the above equality occurs.

Now, if both the (successive) correction divisors are equal to double the

odd number, then the sum of the two corrections will be equal to the result

of (division by) that odd number. But it can never happen that both the

(successive) correction divisors are equal to double the odd number. Why?

Now, as proposed, the correction divisor is to be double the odd number.

Then, it is proposed that an odd number has been taken as the divisor

of the last term and that double the succeeding odd number is the first

correction divisor. In that case, we will have to take the second correction

divisor to be double the odd number further next to it. (Such has to be the

case) because, same procedure is to be adopted (in both the cases). Then it

(second correction divisor) will be 4 added to twice the odd number below.

On the other hand, if that (second correction divisor) has been equated with

double the odd number, the (correction divisor) below will be 4 less. Thus

it is impossible for both the two correction divisors (above and below) to be

equal to double the odd number.

Hence, a situation has to be envisaged when the two correction divisors and

double the odd number are very close to each other. Now, if two numbers,

which differ by 2 are doubled, the difference will become 4. The same differ-

ence will persist even if some number is added to or subtracted from both

the numbers and then they are doubled. So, it should be the case that one

correction divisor is less than double the odd number by 2 and the other
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more than that by 2. It was to conduce to such a situation that it has

been said that the (first order) correction divisor should be double the even

number above.

If the above is to be the case, it is also necessary to ascertain the extent of

inaccuracy (sthaulya) of the correction, and for this the difference between

the sum of the two (successive) corrections and the result of division by the

odd number in between is to be known. For this, the two correction divisors

and the odd number are converted so as to have a common denominator

(samaccheda); then alone can one be subtracted from the other. For the

reduction to common denominators, it is essential to know the numbers. If

it is taken that the number is “this much”, then the procedure cannot be

applied in all places (i.e., in general). This being so, there is a method for

the reduction to common denominators even without knowing the numbers,

by using the consideration of positives and negatives (dhanarn. a-parikalpana,

as employed in avyakta-vidhi (algebra)). How is it? This has been stated in

the verse beginning

r. n. am r. n. adhanayoh. ghāto dhanam r. n. ayoh. dhanavadho dhanam.
bhavati |

The product of negative and positive (numbers) is negative; while

that of two negatives or two positives is positive.

(Brāhmasphut.a-siddhānta, 18.33).

Thus, it is to be known that a number which is negative and a number

which is positive, if multiplied, will give a negative product. It is also to

be known that two positive numbers, when multiplied, and two negative

numbers, when multiplied, the products will be positive.

Now, it is also necessary to know the method of (working with cowries)

representing magnitudes (rāśi), when their numerical values (sam. khyā) are

not known. How is it? Here, the magnitude (rāśi) for which the numerical

value (sam. khyā) is not known, and the number of times it appears (i.e., its

powers) are represented by using different place values (sthāna-s), in the

same manner as in (the case of) 1, 10, 100 etc, with the difference that
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they do not increase by just 10. There, the first place is called rūpa-sthāna

(numerical place). When the capacity of that place has been completed up

to the (unknown) magnitude, then go to the second place. That second place

is called rāśi-sthāna. When we keep 1 in the second place, it means that the

quantity is equal to the rāśi. Then, when the number in the second place is

raised, it goes to the third place, which is the position of the ‘square of the

rāśi ’. In the same way, the next fourth place is the cube’s place. Then is

the place of the square of the square. In the same way, the next ones are the

fifth-power, sixth-power etc. This has been stated in the passage starting

avyaktavargaghanavargavargapañcahatas. ad. d. hatād̄ınām. sthānāni |

The places are, in order, the unknown, its square, cube, square

of the square, the unknown raised to the power of 5, 6 etc.

Now, taking the last odd number as the rāśi (unknown magnitude), the

method is demonstrated below. Draw two rows of compartments, so that

each place (sthāna) is enclosed in a compartment. Let the compartments in

the upper row represent the (parts of the) numerator and those in the lower

row, the denominator. Let the odd number (the unknown magnitude) be

1 0 . Here, when a number is negative it should be marked by a special

sign(◦). For zero anything might be used (to represent it). Here, the first

correction divisor will be less than twice the rāśi by 2. The representation

for that: In the second place there will be 2 and the first place there will be

negative 2, i.e., 2 2◦ . Then, the second correction divisor would be 2 more

than double the rāśi, i.e., in the second place 2. In the first place there will

be positive 2, and thus, 2 2 . This is the way of placing (the numbers).

Now, take these three as denominators, and take 1 (rūpa) as the numerator

for each. Reduce these to a common denominator by the rule:

anyonyahārābhihatau harām. śau rāśyossamacchedavidhānamevam |

Mutually multiply the numerators and denominators (of frac-

tions); this is the method of getting a common denomination.

(L̄ılāvat̄ı, 30).
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When this is done, the results got by dividing these will have a common

denominator. There will be the same denominator. That will be (the fol-

lowing in the compartments): in the first (place) zero; second place minus

4; third place zero, because there will arise minus 4 and plus 4; and fourth

place 4. This is the denominator. The numerator, in the case of division by

the odd number: in the first place, minus 4; second place, zero; and third

place, 4. The numerator in the case of division by the second correction

divisor: in the first place zero; second place minus 2; and third place plus

2. Now, the numerator in the case of division by the first correction divisor:

in the first place, zero; second and third places 2. Then, the (numerator of

the) sum of the results of correction (sam. skāra-phalayoga): in the first and

second places, 0; third place 4. Thus:

On division by the odd number: 0 4 0 4◦

4 0 4◦ 0

On division by the first divisor: 0 2 2 0

4 0 4◦ 0

On division by the second divisor: 0 2 2◦ 0

4 0 4◦ 0

Sum of the two corrections: 0 4 0 0

4 0 4◦ 0

Thus, the sum of the results of corrections exceeds the result on division by

the odd number by 4. Hence, when double the succeeding even number is

taken as the correction divisor, we see that the inaccuracy (sthaulya) is four

times the diameter divided by the cube of the last odd number from which

number itself has been subtracted. In this way, it is obvious that the result

of correction (with this correction divisor) is more than what is sought after.

Here is the method to derive another (more accurate) correction. Suppose

1 is added to both the correction divisors. Here, the common denominator

is obtained by multiplying all the three denominators. And the respective



6.8 Antya-sam. skāra: Final correction terms 77

numerators are formed by multiplying the other two denominators. There,

the numerator of the (division by the) odd number is the product of the

two correction divisors. Here, when 1 is being added to the two correction

divisors and they are multiplied, it is to be known by how much would be the

increase from the earlier case. There, multiply one of the divisors increased

by 1, by the other divisor. (Similarly) multiply by the first divisor the other

to which too 1 has been added. Then add the two. This will give the increase

in the numerator when 1 has been added to the two divisors. Now, the two

divisors have to be multiplied by the number unity. Hence, the sum of the

correction divisors can be mu1tiplied by unity. The sum of the correction

divisors will now be equal to the rāśi multiplied by 4, since one divisor will

be 2 less than twice the rāśi and the other will be more than that by 2.

Hence, the numerator of (the division by the) odd number, when converted

to common denominator, will be increased by rāśi multiplied by 4 and a rūpa.

Now, the numerator of the first correction divisor is the product of the odd

number and the second correction divisor. There, because of the increase of

1 in the second correction divisor, there will be an increase by one rāśi. The

numerator of the second correction divisor will also increase by this much.

Hence, the sum of the numerators of the two correction divisors will be more

than that in the earlier case by double the rāśi. In the numerator of the

odd number the increase will be four times the rāśi and one rūpa. Thus, the

inaccuracy (sthaulya) now has also a contribution (to its numerator) from

the rāśi-sthāna; previously the inaccuracy had only a contribution from the

rūpa-sthāna.

Therefore it is seen that a full 1 should not be added to the correction divisor.

Then how much is to be added? (It has to be argued as follows): Now, if

a full 1 is added (to the correction divisors), then in the numerator of the

odd number there will be an increase of the rāśi multiplied by 4; and in the

sum (of the numerators) of the other two, rāśi multiplied by two will be the

increase. Here, then, if the rūpa divided by itself (i.e., the correction divisor)

is added, only half of the above increase will result, since the correction

divisors are nearly equal to double the rāśi. Here the difference in the rūpa

is only 1. And the difference in the rūpa has to be 4, since there will be

a reduction of 4 in the numerator of the odd number from the sum of the
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(numerators of the) other two. Therefore, to the correction- divisors used

earlier, 4 rūpa-s divided by themselves (i.e., the correction divisors) should

be added. Then there will be a reduction of about 8 rūpa-s in the numerator

of the odd number; and there will be an increase of 4 rūpa-s in the sum

of the numerators of the other two (correction divisor terms). Hence, for

the results to become more or less accurate, the Ācārya, has directed the

addition of 4 rūpa-s divided by itself (the correction divisor).

Here, it was 2 less and 2 more than double the odd number that had been

previously proposed as the correction divisors. Twice the two even numbers,

in the two sides of the odd number come next. But, when these are converted

to the same denomination, the denominator will be 4 more than the square of

double the even number; double the even number itself will be the numerator.

When these are factored (apavartana) by 4, the numerator will be half the

even number and the denominator will be the square of the even number

plus one (rūpa). Hence it is said:

tasyā ūrdhvagatā yā samasam. khyā taddalam. gun. o
′nte syāt tad-

vargo rūpayuto hārah. |

Half of the even number above that will be the multiplier (nu-

merator), and the square of that (even) number plus one (rūpa)

will be the divisor. (cited also in Yuktid̄ıpikā, II. 272-3)

Now, if it is desired to know the inaccuracy (sthaulya) of this correction

also, (the procedure is as follows): Find the common denominator for the

two correction divisors to which is added 4 rūpa-s divided by themselves (the

correction divisors), and the odd number. The method of placing these (the

cowries), is as follows: The first correction divisor is twice the rāśi less 2,

and thus in the second place 2, and in the first place minus 2. This is for

the first correction divisor. Next, the second correction divisor: Since there

is an increase of 2 in twice-the-rāśi, in both places plus 2. The numerator is

1 in each case. Then, when we add to these denominators 4 rūpa-s divided

by themselves (the correction divisors), the resulting denominator will be

square of the (original) denominator plus 4. The numerator is equal to the
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original denominator. Then, the denominators and numerators are to be

halved. (The placements in the compartments will then be as follows): In

the case of the denominator of the first correction divisor, 2 is to be placed

in the third place, minus 4 in the second place, and 4 in the first place:

2 4◦ 4 . In the case of the second (correction-denominator), the difference

is that the 4 in the second place is positive, i.e., 2 4 4 . The numerators

in both cases are 1, in both places, with the difference that it is negative in

the first case, in the first place, i. e., 1 1◦ and 1 1 . In the case of the

denominator of the odd number, it is 1 in the second place and zero in the

first place, i.e., 1 0 , and the numerator is 1.

Now, reduce all these three to a common denominator using the rule anyo-

nyahārābhihatau harām. śau. . . (L̄ılāvat̄ı, 30). Then, this common denomina-

tor will have six places in six compartments. It will be zero in the first

compartment, 16 in the second compartment, zero in the next three places

and 4 in the sixth place, i.e: 4 0 0 0 16 0 . Here when the first place is

removed, it will be the numerator of the odd number, 4 0 0 0 16 . (In

these placements), the number in a compartment will not get elevated to the

next compartment. Even if the number exceeds 10, (i.e. having two digits)

it shall have to be just increased by 10 (and kept in the same compartment).

Since the number is an unknown rāśi, there is no way of raising to the next

place using a number equal to the rāśi. However, here also, the numbers

pertaining to the same compartment should be added together if they are

all positive or negative; (they should be) subtracted from one another if they

are of different signs. That is all what can be done in these cases. Coming

to (the numerator of) the first correction divisor: This too has five places.

The first is zero, the second place has minus 4, the third is zero, and in the

next two places 2. i.e., 2 2 0 4◦ 0 . Now, the numerator of the second

correction divisor: In the first place it is zero, in the second place 4, then

zero, then minus 2 and in the fifth place 2, i.e. 2 2◦ 0 4 0 . This is the

way.

Now coming to the sum of the correction results: It has 4 in the fifth place

and zero in all the other places, i.e. 4 0 0 0 0 . When this (sam. skāra-

phala-yoga) is subtracted from the result of division by the odd number,
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only 16 will be left in the first place. When the remaining numerators and

denominators are factored (apavartana) by 4, the numerator will be 4, and

the denominator will have 1 in the sixth place, 4 in the second place and zero

in the other places. In this situation, the denominator would be the sum of

fifth power of the odd number to which is added four times the base (odd)

number. 4 divided by this will be the inaccuracy (sthaulya). 0 0 0 0 0 4

. 1 0 0 0 4 0

6.9 More accurate results for the circumference

Therefore, the circumference (of a circle) can be derived in taking into con-

sideration what has been stated above. A method for that is stated in the

verse

samapañcāhatayo yā rūpādyayujām. catuh. ghnamūlayutāh. tābhih. |

s.od. aśagun. itāt vyāsād pr. thagāhates.u vis.amayuteh.
samaphalayutimapahāya syādis. t.avyāsasam. bhavah. paridhih. ||

The fifth powers of the odd numbers (1, 3, 5 etc.) are increased

by 4 times themselves. The diameter is multiplied by 16 and it

is successively divided by the (series of) numbers obtained (as

above). The odd (first, third etc.) quotients obtained are added

and are subtracted from the sum of the even (the second, fourth

etc.) quotients. The result is the circumference corresponding to

the given diameter. (cited also in Tantrasaṅgraha commentary

Yuktid̄ıpikā, II. 287-8).

Herein above is stated a method for deriving the circumference. If the cor-

rection term is applied to an approximate circumference and the amount

of inaccuracy (sthaulya) is found, and if it is additive, then the result is

higher. Then it will become more accurate when the correction term ob-

tained from the next higher odd number is subtracted. Since it happens
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that (an approximate circumference) becomes more and more accurate by

making corrections in succeeding terms, if the corrections are applied right

from the beginning itself, then the circumference will come out accurate.

This is the rationale for this (above-stated result).

When it is presumed that the correction divisor is just double the odd num-

ber, the following is a method to obtain the (accurate) circumference by a

correction for the corresponding inaccuracy (sthaulyām. śa-parihāra), which

is given by the verse:

vyāsād vāridhinihatāt pr. thagāptam. tryādyayugvimūlaghanaih.
trighnavyāse svamr. n. am. kramaśah. kr. tvā paridhirāneyah. |

The diameter is multiplied by 4 and is divided, successively, by

the cubes of the odd numbers beginning from 3, which are di-

minished by these numbers themselves. The diameter is now

multiplied by three, and the quotients obtained above, are added

to or subtracted from, alternatively. The circumference is to be

obtained thus. (cited also in Yuktid̄ıpikā, II. 290).

If, however, it is taken that half the result (of dividing) by the last even num-

ber is taken as the correction, there is a method to derive the circumference

by that way also, as given by the verse

dvyādiyujām. vā kr. tayoh. vyekā hārād dvinighnavis.kambhe

dhanam r. n. amante ′ntyordhvagataujakr. tirdvisahitā harasyārdham |

The squares of even numbers commencing from 2, diminished

by one, are the divisors for four times the diameter. (Make the

several divisions). Similarly divide four times the diameter by

twice the result of squaring the odd number following the last

even number to which is added 2. The quotients got by the

first (division) are alternately added to or subtracted from twice

the diameter. (The result will be a better approximation of the

circumference). (cited also in Yuktid̄ıpikā, II. 292).
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Then again there is the method given by the verse:

dvyādeścaturādervā caturadhikānām. nirekavargāścet hārāh.
kuñjaragun. ito vis.kambhah. svamatikalpito bhājyah.
phalayutirekatra vr. ttirbhājyadalam. phalah̄ınamanyatra |

Squares of successive numbers subtracted from 2 or 4, increas-

ing in order by 4, and each less by 1, are the divisors. Eight

times the diameter is divided separately by these and the results

are added togeter. This will give the circumference. The same

sum subtracted from four times the diameter will also give the

circumference. (cited also in Yuktid̄ıpikā, II. 293-4).

6.10 A very accurate correction

Here is stated another correction applied after the division by the odd num-

bers, which is more accurate (sūks.matara) than the earlier correction and is

given by the verse

ante samasam. khyādalavargah. saiko gun. ah. sa eva punah.
yugagun. ito rūpayuto samasam. khyādalahato bhaved hārah. |

At the end, (i.e., after the procedure involving the division of the

diameter with the odd numbers etc.), (apply another correction

with) the multiplier being the square of half of the next even

number plus 1, and the divisor being four times the previous

multiplier with 1 added and multiplied by half the even number.

(cited also in Yuktid̄ıpikā, II. 295-6).

[Thus ends Chapter Six entitled Circumference and Diameter]



Chapter 7

Derivation of Sines

7.1 The side of a regular hexagon inscribed in a

circle is equal to the radius

In the manner explained above, derive the diameter for the circle of cir-

cumference measuring 21,600 minutes (cakra-kalā). Halve the diameter (to

obtain the radius) and, with it, draw a circle. Draw through the centre (of

the circle) the east-west and north-south lines and on both sides of the north-

south line construct two equilateral triangles (sama-tryaśra). The sides of

all these (four triangles) will be equal to the radius. Now, construct four

complete chords (samasta-jyā) equal to the radius with their ends touching

the ends of the north-south line. These will be the sides of the triangles.

Then draw four radii starting from the centre and touching the tips of these

four complete chords. Each of these will also be the sides (of the triangles

drawn). Now, the halves of the north-south line will be the common sides

of the triangles. Thus there will be two triangles on each side of the north-

south line. Construct in this manner four equilateral triangles of sides equal

to the radius. Here, construe that in each triangle, one side lies flat on the

bottom which is called bhūmi (ground, base).

Then, let the sides touching the two ends of the base be imagined to be

upwards. Then from the apex point where they meet, attach a string with

a heavy weight tied to it. This (string) is called lamba (perpendicular). If

the two sides, which have been thought of as pointing upwards, are of the

same length, then the perpendicular will meet the base at its centre. If

one of them is shorter, the perpendicular will tend to that side (from the
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centre). Consider the east point of the east-west line to be vertical. Then

the north-south line would be horizontal (samavitāna).

Let two perpendiculars be dropped from the apexes of the two triangles on

the eastern side of the north-south line. They will meet the north-south line

at the midpoints of its two halves. Therefore the distance between these

perpendiculars would be equal to the radius. (That is): Since these two

(perpendiculars) meet the midpoints of the two radii on the north-south line

on the two sides of the centre, this distance is made up of two halves of the

radius; together, this line will be of the length of the radius. Therefore, the

distance between the apexes of the two triangles would also be of the length

of the radius. The line (between the two apexes) is also the complete chord

(samasta-jyā) of the arc between the apexes. Then, the two outer sides of

the two triangles to the outer side of the two perpendiculars will also be

complete chords equal to the radius.

It thus results that the half-circumference on the eastern side of the north-

south line would be filled by three complete chords, each of the length of

the radius. The same is the case in the other half of the circumference as

well. Thus, the entire (circumference of) the circle is filled by six complete

chords of the length of the radius. The above being the case, it means that

the complete chord (samasta-jyā) of two rāśi-s (60 deg.) is equal to the

radius, since two rāśi-s means one-sixth of the circle. It follows that the

Rsine (ardha-jyā) of half a rāśi is half the radius.

7.2 Derivation of Rsines

7.2.1 Jyā, Kot.i and Śara: Rsine, Rcosine and Rversine

When the arc (cāpa) and the chord (jyā) are both halved, it is stated that it

is the ‘half-chord’ (ardha-jyā) of the (halved) arc; not in the manner in which

it is seen that the arc is full and this is its half-chord. Since in planetary

astronomy there is the use only of the half-chord (ardha-jyā), the half-chord

is connoted by the term jyā, Rsine.
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Now, the interstice between the middle of the complete chord to middle of

the full arc is called śara (‘reversed sine’, Rversine). The śara for the half-

chord and the full chord is the same. And that is a portion (at one end) of

the radius drawn from the centre (of the circle) to the mid-point of the arc.

Now, when the circle is drawn on the ground it is presumed that one-twelfth

of the circumference to the north from the tip of the east-west line is taken as

Mes.a. Now, consider the Rsine (bhuja-jyā) along the south-north. Consider

the Rcosine (kot.i-jyā) directed along the east-west. Then, the tip of the

south-north line will be kot.i-śara. Here, the line along the east-west from

the tip of the Rsine (jyā) of the first rāśi is the Rcosine (kot.i) of the first

rāśi. This will also be the Rsine of two rāśi-s. When that is subtracted from

the east line, we get the Rversine (śara) of the first rāśi. When the Rsine of

the first rāśi is subtracted from the north line, the remainder, which is the

cosine of one rāśi, will also be the śara of two rāśi-s.

7.2.2 Deivation of Rsines

We can consider the Rsine of the first rāśi and its śara as bhujā and kot.i,

since they are in contrary directions (one being perpendicular to the other).

The root of the sum of squares of these two would be the distance between

the tip of the east line to the tip of the Rsine of the first rāśi and is equal

to the full-chord of one rāśi. Place this in such a manner that the midpoint

of this full-chord falls on the east line. Then half of this full chord will lie

south-north and will form a śara to the east-west line. This half-chord is the

Rsine (ardha-jyā) of half-rāśi. When this is squared, subtracted from the

square of the radius, and then the square-root taken, the result will be Rsine

of two and a half rāśi-s. When this is subtracted from the radius, the result

from the tip of the east-west line will be the Rversine (́sara) of half-rāśi. In

this manner, when Rsine of half rāśi is subtracted from the radius, the result

will be, from the tip of the south-north line, the Rversine of two and a half

rāśi-s.
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Thus, when the square of Rsine (ardha-jyā) and the square of the Rversine

(́sara) are added together and the square-root of this sum is halved, the

result will be the Rsine of half the related arc. In this manner, Rsines can

be derived by finding the square-root of the sum of squares of Rsines and

Rversines. Now, by doubling the square of the radius, and the root found

is halved, it will be the Rsine of one and a half rāśi. In this manner also

certain Rsines can be derived.

7.3 Some technical terms and definitions

7.3.1 Rsine and Rcosine

Now, the portion of the circle from the tip of the east-west line to the tip

of the south-north line is a quadrant of the circle. Divide this into 24 or

more parts by marking off points at equal interstices. Do this similarly in

the other quadrants also. Here, interstices between these points form arc-

bits (cāpa-khan. d. a). The straight lines along south-north from the various

tips of the arc-bits, so that their centres lie exactly on the east-west line,

are the bhujā-jyā-s. In the same manner, lines drawn along east-west from

the meeting points of the arc-bits, so that their midpoints are on the north-

south line, are the kot.i-jyā-s. For that, in the odd-quadrants, the portion

covered is bhujā, to be covered is kot.i, and it is the other way around in the

even quadrants. Then, it is presumed that the Rsines and the Rcosines have

their bases, respectively, on the east and north lines and have their tips at

the meeting points of the (relevant) arcs. In the same manner, one end of

the arc-bit is called the base and the other end is called the tip. For the

sake of practical convenience, the ends of the Rsine-bits (bhujā-khan. d. a) and

arc-bits which are nearer the eastwest line are called ‘the bases’ and the ends

that are nearer the north-south line are called ‘the tips’. In the case of the

Rcosine-bits (kot.i-khan. d. a), the nomenclatures of the base and tip are just

the opposite.
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7.3.2 The 24 Rsines and Rcosines

Herein below is explained, how to divide a rāśi into eight, and a quadrant into

24, and derive the Rsine for each division. Now, mark on (the circumference

of) the circle on its northern side from the east line, the tip of the first arc-bit

at the place corresponding to one-eighth of a rāśi. The Rsine of that arc-bit

will be the first sine. That will extend from the east line up to the tip of the

first arc-bit and will also be the Rsine difference of the first arc-bit. Then,

the tip of the second arc-bit will be at a distance of one-eighth of a rāśi

from the tip of the first arc-bit. The portion (of the circle between these

two points) will be the second arc-bit. The half-chord along south-north

from the tip of this arc-bit up to the east line will be the second Rsine. The

half-chords along the east-west drawn from the tips of the first and second

arc-bits up to the south-north line will be the first and second Rcosines. In

this manner, draw chords north-south and east-west from all the tips of all

the (24) arc-bits. The twenty-fourth will be the radius.

7.3.3 Rsine and Rcosine differences

Now, the Rcosine difference (kot.i-khan. d. a) of the first arc-bit is the distance

from the point of contact of the east-west line with the circle to the foot of

the first sine. The Rsine difference (bhujā-khan. d. a) of the first arc-bit is the

(first) bhujā-jyā (i.e., Rsine) itself. The Rsine difference (bhujā-khan. d. a) of

the second arc-bit is that part of the second Rsine which is between the tip

of the second Rsine to the first Rcosine line. Then the Rcosine difference

(kot.i-khan. d. a) of the second arc-bit is the portion of the first Rcosine, namely

the interstice between the tip of the first arc-bit to the second Rsine.

In the same manner, portions of the Rsine and Rcosine, which are along

the north-south from the tip of the third arc(-bit) and along the east-west

from the base of the third arc(-bit), which lie between the point of contact

of the Rsine and Rcosine, and (of the circumference) of the circle would

be the Rsine difference (bhujā-khan. d. a) and Rcosine difference (kot.i-khan. d. a)
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pertaining to the third arc-bit. In this manner, for all the arc-bits, the

portions of the Rsine and Rcosine which start from the two ends of the arc-

bit, which lie between their intersection and the circumference of the circle,

as above, would be their Rsine and Rcosine differences.

It is also to be noted that the hypotenuse (karn. a) of these (Rsine and Rcosine

differences) will be the full-chords (samasta-jyā) relating to the respective

arc-bits. The lengths of these (hypotenuses) will be equal. Since the arc-bits

are equal (to one another) the full-chords will also be equal (to one another).

However, the bhujā and kot.i of these hypotenuses will be of different lengths,

(since) these are the Rsine and Rcosine differences. Thus, we have 24 (right-

angled) triangles with equal hypotenuses but of different lateral sides. Then

again, the hypotenuse for the Rsines and Rcosines are the lines from the

centre of the circle to point of contact of the Rsines and Rcosines at the tips

of the arc-bits, (viz., the radii), and hence all the hypotenuses are equal.

Here too the Rsines and Rcosines differ (though the hypotenuses are all

equal).

7.3.4 Rsine and Rcosine in the quadrants

Now the point where the east line touches the circle is the beginning of Mes.a

rāśi (‘First point of Aries’). One-twelfth (of the circumference) of the circle

from there is the end of Mes.a. That much portion further is, the end of

Vr. s.abha. The tip of the north line marks the end of Mithuna. Such is the

conception here. With the point of contact of the east line and the circle

as the commencing point, the portion of the circumference with its tip at

a desired point on it is the is. t.a-bhujā-cāpa, the arc corresponding to the

desired Rsine. The portion (of the circumference) up to that point from the

tip of the north line is the is. t.a-kot.i-cāpa.

In the first quadrant, the part of the arc which has passed from the beginning

of the quadrant (up to the desired point) is the bhujā-cāpa and from that

point, the part still required to complete the quadrant is the kot.i-cāpa. In
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the second quadrant, the part which has passed is the kot.i-cāpa, since the

north point constitutes the beginning of the quadrant. And the bhujā-cāpa

is that part from the tip of the kot.i-cāpa to complete the quadrant. Since

the west point is the beginning of the quadrant, in the third quadrant the

position is as in the first quadrant. In the fourth quadrant, the bhujā-cāpa

and kot.i-cāpa are as in the second quadrant. In the first quadrant, the base

of the bhujā-cāpa is at the east line and the tip is at the desired point. The

corresponding kot.i-cāpa will have its tip at the said point and its base on

the north line. The half-chords of these form the Rsines and Rcosines.

7.3.5 Rcosine differences and Śara differences

When a quadrant is divided into 24 parts and it is also presumed that the

first arc-bit is the desired arc, the kot.i-cāpa is formed by 23 arc-bits which

is left after removing (from the quadrant) the bhujā-cāpa or the first arc-bit.

Thus, the Rcosine of the first (arc-bit) is the 23rd Rsine. The second Rcosine

is the 22nd (Rsine). See likewise (in the case of the further arc-bits also).

Now, the feet of all the Rsines will lie on the east-west line. In this line, the

interstices of the points where the feet of the Rsines fall, as counted from the

centre (of the circle), are, in order, the Rcosine differences (kot.ijyā-khan. d. a).

Here, the first Rcosine difference is the interstice on the east line between

the foot of the 23rd Rsine and the centre (of the circle). The second Rcosine

difference is the interstice on the east line between the feet of the 23rd Rsine

and the 22nd Rsine. The sum of these two Rcosine differences make up the

second Rsine. In this manner, by adding successively the Rcosine differences,

in order, the succeeding Rsines will be obtained.

There again, the first interstice at the tip of the east line is the first Rversine

(́sara). When to this the next interstice is added, it will be the second

Rversine. In this manner, if the interstices are added, in order, beginning

from the tip of the east line, the successive Rversines will be obtained. When

we begin from the centre (of the circle and add the interstices), it would be

the Rcosines. Since the interstices are different, if the beginning is made
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from the centre, they will be Rcosine differences and if begun from the tip

(of the east line), they will be the Rversine differences. Similarly, in the

south-north line, if begun from the centre of the circle, the interstices will be

Rsine differences and the sum of these differences will be Rsines. If we begin

from the tip of the north line, it will be kot.i-śara differences and kot.i-śara-s,

respectively. This is the way in which the Rsine differences are set out in

the radii of a circle.

7.4 Computation of Rsines

7.4.1 Tabular Rsines (Pat.hita-jyā)

Now, the full chords of the various arc-bits are alike and are of equal length.

They are the hypotenuses and the portion of the Rsine and Rcosine which

have their tips at the two tips of the hypotenuse, from the point of their

intersection to the tips of the hypotenuse, can be taken to make (right angled)

triangles with the full-chord of the arc-bit as hypotenuse and the Rsine and

Rcosine portions as the sides. These Rsine and Rcosine bits too might be

considered as the Rsine and Rcosine differences. These differences should

be calculated and set in a table. These are also called tabulated Rsines

(pat.hita-jyā-s), since these have been ‘stated and tabulated’ in earlier texts

(pūrva-śāstra). They might be set out also inversely. They will, then, be the

reversed sines (utkrama-jyā-s).

Starting from the beginning of a quadrant, if (the portion of the circle up to)

the point at which a certain number of arc-bits have been passed by, happens

to be the desired arc, then the corresponding tabular Rsine will be the Rsine

of the desired (arc). When the desired point is a little further, add to it a

part of the Rsine difference (jyā-khan. d. aikadeśa) corresponding to the part

of the next arc-bit (cāpa-khan. d. aikadeśa, which gives the increase in the arc).

Then the (sum) will be the Rsine at the desired point. Here is a method to

compute the desired part of the Rsine difference (jyā-khan. d. aikadeśa). The
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method is to use the rule of three thus: If, when a particular arc-bit is the

pramān. a and a particular sine difference is the pramān. a-phala, what will be

the portion of the difference which will correspond to the portion of the arc-

bit. But the result will be rough (sthūla). The reason for this: The second

arc (made up of two arc-bits) is double the first arc, and third arc (which

is made up of three arc-bits) is three times of the first. This is (the nature

of) the arcs. But the second Rsine is not double the first sine, nor is the

third Rsine, three times the first. The reason for this: The first arc is not

curved, since the Rversine (́sara) is very small. So it (the arc) is practically

equal to the Rsine. But, as the arc increases the curved-nature will increase.

There, the Rsine will have lesser length, since the Rversine (́sara) increases

in length. Therefore, the rule of three should not be applied to derive the

Rsines with the arc as the pramān. a since the result will be rough.

7.4.2 Computation of accurate tabular Rsines

Now is set out a method to compute the tabular Rsines, themselves, accu-

rately. Consider the full-chord (samasta-jyā) of the first arc-bit, which joins

the tip of the east line which is the base of the first arc-bit, and the point

towards the north, which lies at one-eighth of a rāśi, equal to 225 minutes.

Then, when Rsine and Rcosine differences are constructed from the base

and tip of the arc-bit, and when these are taken as the bhujā and kot.i, this

full-chord will be the corresponding hypotenuse.

Then, draw a radius from the centre of the circle to the midpoint of this

arc-bit. The end of this radius would be the Rversine (́sara) associated with

this full chord. Hence, this radius and the full chord would be perpendicular

to each other. Therefore, the tip of this radius would be as much moved to

the north from the tip of the east-west line as the tip of the full-chord is

moved to the east from the southern tip of the north-south line (by which is

meant here, the Rsine parallel to the north-south line). Here, the first Rsine

itself will be the south-north line with reference to the full chord of the first

arc-bit. Now, starting from the tip of this radius, construct the Rsine and

Rcosine.
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Here the arc would be 112.5 minutes which is half of the arc-bit. Since the

curvedness (of this arc) is small, consider this arc itself as the Rsine. Its

square subtracted from the square of the radius and the root found would

be its Rcosine, the Rsine of 23.5 arc-bits. The radius minus this would

be the Rversine (́sara) of the original bhujā. For the radius-hypotenuse

through the midpoint of the first arc-bit, the bhujā is the Rsine which is 112.5

minutes. Then, what would be the bhujā for the full-chord-hypotenuse which

is double the above Rsine: From this trairāśika, the first Rversine (́sara)

which is the bhujā associated with the full-chord-hypotenuse, is calculated.

Here, the bhujā is north-south of the radius-hypotenuse. Since the full-

chord-hypotenuse is perpendicular to the above, the bhujā of the full-chord-

hypotenuse would be east-west. Then, if for this radius-hypotenuse, the

Rsine of 23.5 arc-bits will be the kot.i, what will be the kot.i for the whole-

chord-hypotenuse: through such a rule of three (trairāśika) will the first

Rsine be got. Here, for the radius-hypotenuse the kot.i is east-west, and for

the whole-chord-hypotenuse, it is north-south. Then, when the first Rversine

(́sara) is subtracted from the radius, the first Rcosine is obtained.

Using the same rationale, derive the second and further Rsines also. This

is how it is to be done: Construct a radius-hypotenuse with its tip at the

tip of the first Rsine. For that hypotenuse, the bhujā and the kot.i will be

the first Rsine and the twenty-third Rsine. Here, they will be the pramān. a-

phala. Now, construct a full-chord-hypotenuse (samasta-jyā-karn. a) from the

midpoint of the first arc-bit and of the second arc-bit. This will be icchā-rāśi.

This full-chord will also be one-eighth of a rāśi, since it (the corresponding

arc) is made up of the halves of two arc-bits. The icchā-phala-s for this

(trairāśika) would be (the Rsine and Rcosine), viz.: (i) the Rsine difference

with its tip at the midpoint of the second arc-bit extending up to the Rcosine

which has its tip at the midpoint of the first arc-bit; (ii) (the distance) from

the point of contact of this Rsine difference to the tip of the Rcosine. This

will be a Rcosine difference. The Rcosine (of the midpoint of the first arc-

bit), less this Rcosine difference, would be the Rcosine with its tip at the

midpoint of the second arc-bit. Now, add the Rsine difference to the Rsine

with its tip at the midpoint of the first arc- bit. The result will be the second
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Rsine with its tip at the midpoint of the second arc-bit. Then taking these

jyā-s (i.e., Rsine and Rcosine) as pramān. a-phala-s, the radius-hypotenuse

with its tip at the point of contact of these two jyā-s as the pramān. a and the

full-chord of the second arc-bit as icchā, the resulting icchā-phala-s would be

the Rsine and Rcosine of the second arc-bit. Here, add the Rsine difference

to the first Rsine and subtract the Rcosine difference from the twenty-third

Rsine. The result will be the second Rsine and the twenty-second Rsine.

These two will (mutually) be Rsine and Rcosine.

Then, taking the above (two) as pramān. a-phala-s, derive the Rsine and Rco-

sine which have their tips at the midpoint of the third arc-bit. Then taking

them as the pramān. a-phala-s, derive the Rsine and Rcosine with their tips

at the tip of the third arc-bit. Continue this (calculation) to the end. Here,

apply what is got from the midpoint of the arc-bits to those obtained from

the mid-points, and apply the differences got from the tips of the arc-bits to

these got from the tips. Thus, there will be two sets, one derived from the

midpoints of the arc-bits and the other from the tips (of the arc-bits). Of

these, ignore those derived from the midpoints and tabulate those derived

from the tips. These will form the tabular Rsines.

7.4.3 Accurate Rsine and Rcosine at a desired point

When the desired point is not at the tip of an arc-bit, but inside the arc-bit,

here is the method to derive the Rsine and Rcosine, which have their tip

at the desired place. The portion of the arc-bit from the nearer tip of the

arc-bit to the desired point is termed śis. t.a-cāpa (‘remainder-arc’). When the

full-chord of that śis. t.a-cāpa is taken as the icchā-rāśi, and the rule of three is

applied, the icchā-phala-s got would be the Rsine and Rcosine differences of

that śis. t.a-cāpa. If they are applied as corrections (sam. skāra) to the tabular

Rsines relevant to the tip of the arc-bit nearest to the desired point, the

Rsine and Rcosine having their tips at the desired point are obtained.

(For the relevant calculation) the radius-hypotenuse which has its tip at the

midpoint of the śis. t.a-cāpa is the pramān. a. The Rsine and Rcosine of this are
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the pramān. a-phala. But these are not known. Hence, the method to derive

them is given below. Construct a full-chord for half the śis. t.a-cāpa touching

the midpoint of the śis. t.a-cāpa and the tip of the tabular sine. Consider it

as the hypotenuse. Derive the bhujā and kot.i of this hypotenuse as icchā-

phala-s and apply them to the relevant tabular Rsines. The result will be

the Rsine and Rcosine with their tips at the midpoint of the śis. t.a-cāpa.

But this requires the Rsines with their tips at the midpoints of the śis. t.a-

cāpārdha. Take these Rsines as equal to the (nearest) tabular Rsines, since

the difference is minute. If this accuracy is not sufficient, take the full-chord

associated with one-fourth the śis. t.a-cāpa, and derive the Rsine differences

from it. If even this much accuracy is not sufficient, make calculations on

the basis of even half of the above. This is what has been stated in the verse:

is. t.a-doh. kot.i-dhanus.oh. . . . (Tantrasaṅgraha, II.106)

7.5 Computations of Jyā and Śara by Saṅkalita-s

7.5.1 First and second order differences of Rsines

Thus, when the Rsines (and Rcosines) which have their tips at the midpoint

of the arc-bits are considered as pramān. a-phala-s there will result the Rsine

and Rcosine associated with the junction of the arc-bits which are the bhujā

and kot.i of the hypotenuse, which is the full-chord with its tip at the junction

of the arcs. There, those that are obtained from the midpoint of the first arc

are those relating to the tip of the first arc-bit. There too, it is definite that

if the pramān. a-phala is east-west, the icchā-phala is north-south and if (the

pramān. a-phala) is north-south, the icchā-phala would be east-west. There

is something more to be noted. If for the pramān. a-phala-s the tip is at the

centre of the arc-bit, for the icchā-phala-s, the tip is at the tip of the arc-bits.

And, if for the pramān. a-phala-s the tip is at the tip of the arc-bits, for the

icchā-phala-s the tip is at the midpoint of the arc-bits. This is also definite.

Here, in the derivation of all differences, the icchā and pramān. a are the full-

chord and trijyā. They are the same in all the cases. It is because there is

difference in the pramān. a-phala-s, that there is difference in icchā-phala-s.
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Now, multiply the icchā-rāśi by the difference of the Rcosines which have

their tips at the midpoint of the arc-bits. The results would be the differences

between the Rsine differences which have their tips at the tips of the arc-

bits. If, however, (the icchā-rāśi) is multiplied by the Rsine-difference at the

midpoint of the arc-bits, one gets the difference of the Rcosine differences at

the tips of the arc-bits. When the Rsine of the junction of the first arc-bit is

multiplied by the full-chord of the arc-bit and divided by trijyā, the Rcosine

difference which has its tip at the midpoint of the first arc-bit is got. Then,

multiply that difference by the full-chord and divide by the radius. The

result will be the amount by which the Rsine difference which has its tip at

the tip of the second arc-bit is smaller than the Rsine difference which has

its tip at the tip of the first arc-bit. Hence, when the first Rsine is multiplied

by the square of the full-chord of the arc-bit and divided by the square of the

trijyā, the result would be the difference between the first Rsine difference

and the second Rsine difference.

Now, the tabular Rsines at the junction of the arc-bits are called also pin. d. a-

jyā-s. Now, multiply the several pin. d. a-jyā-s by the square of the full-chord

(of the arc-bit) and divide by the square of trijyā. The results are the dif-

ferences of the Rsine differences (khan. d. a-jyāntara). When we consider the

pin. d. a-jyā at the juncture of any two arc-bits, the result would be the differ-

ence between the Rsine differences associated with the two arc-bits. Here,

in the place of the multiplier, the phala can be taken and in the place of

the divisor, the multiplicand can be taken. Then, multiply pin. d. a-jyā by the

respective second order difference (khan. d. āntara) and divide by the corre-

sponding pin. d. a-jyā. Then also the second order difference will result. Thus

(has been set out) the method of deriving the first and second differences.

Next is explained the derivation of the sums and repeated summations of

the second differences and using them for the computation of desired Rsine

and Rversines. It has been stated earlier that for the first arc-bit the Rsine

difference (khan. d. a-jyā) is the same as pin. d. a-jyā. Multiply this by the square

of the full-chord (of the arc-bit) and divide by the square of trijyā. The result

will be the difference between the first and second Rsine differences. When
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this difference is subtracted from the first sine difference, the second Rsine

difference is got. Then, when that is added to the first Rsine difference,

the result will be second pin. d. a-jyā. If this is multiplied by the square of

the full-chord and divided by the square of trijyā, it will be the difference

between the second and third Rsine differences. When this is subtracted

from the second Rsine difference, the third Rsine difference will result. If

this is added to the second pin. d. a-jyā, we get the third pin. d. a-jyā. Thus, when

the respective pin. d. a-jyā-s are multiplied and divided (by the above multiplier

and divisor) the second difference (khan. d. āntara) next to it is obtained. Then,

commencing from the beginning, if the second differences up to the desired

arc-bit are added together and subtracted from the first Rsine difference, the

remainder will be the desired Rsine difference.

Now, if all the second differences are to be added together at one stretch,

add together all the tabular Rsines up to the desired sine, multiply by the

square of the full-chord and divide by the square of trijyā. The result will

be the sum of the second differences. When this is subtracted from the first

Rsine difference, the remainder will be the desired Rsine difference.

7.5.2 Desired Rsines and Rversines from Jyā-saṅkalita

Here, if the sum of the Rversine-differences (śara-khan. d. a) centred at the mid-

point of the arc-bits is multiplied by the full-chord and divided by trijyā, then

also the sum of the second differences will be obtained. To obtain the sum of

the Rversine differences about the midpoints (of the arc-bits), the sum of the

pin. d. a-jyā-s at the tip of the arc-bits should be multiplied by the full-chord

of the arc-bit and divided by trijyā. Thus can be obtained the summation

of the Rversine differences at the middle of the arc-bits.

Now to the derivation of the sum of Rsine differences. In a quadrant, there

are 24 Rsines. Suppose the 8th sine is required. Multiply the first pin. d. a-jyā

by 7; multiply the second pin. d. a-jyā by 6, the third by 5, the fourth by 4, the

fifth by 3, the sixth by 2 and the seventh by 1. Add all these together. The
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result is called the ‘repeated summation of Rsines’ (jyā-saṅkalita). Repeated

summations have been dealt with in detail earlier, in the context of comput-

ing the circumference and diameter of a circle. Here, multiply the repeated

summation of the Rsines by the square of the fullchord of the arc-bit and

divide by square of the radius. Subtract the quotient from the first Rsine

difference multiplied by 8. The result will be the 8th Rsine.

In this manner we get the result that when the repeated summation of the

Rsines (jyā-saṅkalita) up to the tip of a particular arc-bit is done, the result

will be the difference between the next higher Rsine and the corresponding

arc (jyā-cāpāntara). Here, the arc-bit has to be conceived as being as minute

as possible. Then, the first Rsine difference will be the same as the first

arc-bit. Hence, if it is multiplied by the desired number, the result will

certainly be the desired arc. Therefore, when the result of the jyā-saṅkalita

is subtracted from the desired arc, the result will be the desired Rsine.

The statement that in a quadrant there are 24 Rsines is only a convention,

since some specified number of divisions has to be made (for definitive cal-

culations). In this case, therefore, by multiplying the second differences,

starting from the last second difference of the desired arc up to the first and

second differences, respectively, by the numbers 1, 2, 3 etc., the result will be

the repeated summation of the second differences (khan. d. āntara-saṅkalita).

And it has been obtained since this is the difference between the required

arc and the required Rsine.

It is clear that the all the Rsines up to that of the desired arc are the means

for deriving the difference between the corresponding Rsine and the arc.

Since all these Rsines are not known, consider the arcs themselves as the

Rsines and perform the cāpa-saṅkalita. Here, the desired arc itself is the last

Rsine. One arc-bit less than this arc is the next previous Rsine. Similarly,

consider that the arcs lower by successive arc-bits form the successive Rsines,

in that order. Here again, consider that there are as many arc-bits as there

are minutes in the desired arc. Then perform the repeated summation of the

sum of numbers one, two, etc. (ekādyekottara-saṅkalita). That will result in
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the sum of the Rsines. When that is multiplied by 1 minute which is the

full-chord, there will be no difference in the number. Now, divide this by

trijyā. The result will be the sum of the Rversine-differences (́sara-khan. d. a-

yoga) at the middle of the arc-bits. Since the bit is small, the sum of the

Rversine differences centred at the tip of the arc-bits is practically equal to

this and, as such, can be taken as this itself. Now, the smaller the arc-bit,

the more exact (sūks.ma) the Rsine would be. Here, taking the arc-bit to

be one minute divided by parārdha, multiply it by the denominator which is

parārdha, perform the saṅkalita and divide by the denominator. The result

will be practically equal to the saṅkalita performed without having been

multiplied by the denominator.

7.5.3 First, second and third repeated summations

Here, however, repeated summation (saṅkalita) is made up to the number,

which is the number of infinitesimally small parts contained in the required

arc. And that number is the number of terms in the series. It is easy to

conceive this if it is visualized in a summation figure (saṅkalita-ks.etra), in

which there are as many rows as there are terms with number 1 in the first

row. It would be easier if that is conceived of as a square bit. In the second

row there will be two bits, in the third line three and so on, increasing by

one bit per line; the last line will have as many bits as there are terms (pada-

saṅkhyā). Here, the number is the desired arc. Multiply the degrees herein

by a denominator equal to an atom (an. u) and the resulting number of atoms

will be the number of terms. Now, the number of terms multiplied by itself

increased by 1 and divided by 1 multiplied by 2, (i.e., n(n + 1)/(1 × 2))

the result would be the summation (saṅkalita). This is the first summation

(saṅkalita).

Now, the second (repeated) summation. This is the sum of the above (first)

saṅkalita, and the saṅkalita with one row less, with two rows less, with three

rows less etc. Thus the second saṅkalita is the sum of (first) saṅkalita-s with
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one term less at each stage. The third saṅkalita would be got by taking

the (second) saṅkalita as that of the last term and adding up the results by

reducing the terms by one.

The method for deriving the above saṅkalita-s: The pada, (pada + 1), (pada

+2), these three are to be multiplied together. This is to be divided by

6, which is the product of 1, 2 and 3. The result got would be the sec-

ond saṅkalita. In this manner, take the numbers ascending by one each,

which have been multiplied together. (Their result) should be divided by

the product of the same number of the (natural numbers) 1, 2, 3 etc. The

result will be the next following saṅkalita. Here, if the arc-bit is conceived

as infinitesimal, the sine will be accurate. When units which are practically

zero (́sūnya-prāya) are added one each to the number of terms (pada) the

resulting numbers practically do not change at all. Hence, the squares and

cubes of the required arc should be divided by the successive products of

one (two) etc. (ekādi-ghāta, i.e. 1, 1× 2, 1× 2× 3, 1× 2× 3× 4 etc.). Then

the results will be accurate.

Hence half the square of the arc is the first saṅkalita. Then the second

saṅkalita is one-sixth of the cube of the desired arc. Since the first saṅkalita

is half the square, it can be taken as the last term of the second saṅkalita.

Then half the square of the number of terms reduced by one would be the

penultimate term. When addition is made successively of all these terms the

result will be the saṅkalita of half the square of the desired arc. And, that

is half of the summation of the squares (varga-saṅkalita). It has been stated

earlier that one-third the cube of the number of terms is the summation

of squares. Hence, half the above is one-sixth of the cube. From this it

results that the third saṅkalita is one-sixth of the summation of cubes (ghana-

saṅkalita). But this will be one-twenty-fourth of the square of squares. Thus,

has been derived, what was stated in detail earlier for a saṅkalita, that equal

numbers (the number of terms) are multiplied amongst themselves a certain

number of times and then the denominator for it is the product of the integers

1, 2, 3 etc. taken up to the same number.
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7.5.4 Successive corrections to Jyā and Śara

Now, here the first saṅkalita is the sum of the Rsines beginning with the

first Rsine up to the required Rsine. Taking the full-chord to be 1, there will

be no change in the above sum when multiplied by it (i.e., by 1). Divide it

by the radius. The result will be the Rversine (́sara) which is the sum of

the Rversine differences (śarakhan. d. a-yoga). Multiply this Rversine by the

sum of the arc-bits, divide by the radius and by three. The result will be

the difference between the arc and the Rsine. Thus, the result of dividing

one-sixth the cube of the desired arc by the square of the radius, will also

be the difference between the arc and the sine.

Now, when the desired Rversine is divided by the radius, the result is the dif-

ference between the first and last differences (ādyāntya-khan. d. āntara). Now,

find by the sum of Rsines, the difference between the first and penultimate

differences. From this can be got, the summation of the second order differ-

ences (khan. d. āntara-saṅkalita) being the sum of all the second order differ-

ences starting from the first sine difference and summing all differences of

differences, from the second saṅkalita which is one-sixth of the cube of the

desired arc. This is the same as the difference between the Rsine and the

arc.

But this is only approximate (prāyika), since in place of the saṅkalita of the

Rsines the saṅkalita of the arcs had been taken for calculation. Hence, in

this way the sum of the differences at each step between the Rsines and the

arcs, would be the excess in the saṅkalita of the arcs over the saṅkalita of

the Rsines. When from the sum of the arcs the Rversine is obtained, and

then the differences between the Rsines and the arcs accounted for divided

by the radius, and the result subtracted from the Rversine, the Rversine

would become more accurate (sūks.ma).

Here, Rsine-arc difference at the last stage had been from the second saṅkalita.

Therefore, the successive Rsine-arc differences (jyā-cāpāntara) should all be

found starting from the second saṅkalita, with the number of terms (pada)
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going down by one. Thus the sum of Rsine-arc differences will be the third

saṅkalita. Then from the fourth saṅkalita, the saṅkalita of the Rsine-arc dif-

ferences is to be found by the method indicated earlier. Then, this saṅkalita

will be the excess that had resulted previously by using the saṅkalita of arcs

in place of what was desired, namely, the saṅkalita of Rsines. When, this

saṅkalita of the arcs is divided by the square of the radius and the result

subtracted from the earlier calculated difference between the Rsine and the

arc, the resulting difference between the desired Rsine and the desired arc

will be more accurate.

Now, when the difference between the Rsine and the arc which was obtained

first, is multiplied by the desired arc and divided by the radius, the result will

be the correction for the Rversine (́sara-sam. skāra). When this correction to

the Rversine is again multiplied by the desired arc and divided by the radius,

the result will be the correction for the Rsine-arc difference (jyā-cāpāntara-

sam. skāra). Now, obtain this correction to the difference between the Rsine

and the arc, from the sum of the Rsine-arc differences (jyā-cāpāntara-yoga).

This is (how it is done): Multiply this correction by the arc, divide by

the radius and subtract the result from the earlier correction arrived at for

the Rversine. Then the Rversine-correction (́sara-sam. skāra) will be more

accurate. Multiply this correction to the Rversine by the required arc, and

divide by the radius; the result is the correction to the Rsine-arc difference.

It is to be noted that the aim is to arrive at a correction based on the

saṅkalita-s. Hence, here, in all instances, when the result is multiplied by

the arc, what has been divided by the numbers, 1, 2, 3 etc., up to some

number, has to be divided by the radius. Here is the method to obtain the

difference between the result based on one saṅkalita and that derived on the

basis of the succeeding saṅkalita. Here, note the number of times the arc has

been multiplied by itself. For this the divisor is the product of the radius

multiplied by itself so many times, and the product of that many numbers

starting from one, (i.e., 1, 2, 3 etc). When it is required to get the result

succeeding another result, multiply the result once by the required arc and

divide once by the radius. Then too the derived result would be the same.
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7.5.5 Accurate computation of Rsines and Rversines, with-

out using tables

Thus, since the results were (actually) obtained from the sum of the arcs,

while it was required to obtain them from the sum of Rsines, the correction

terms are all in excess of the actual results. Therefore, the successive cor-

rection terms (sam. skāra-phala) at every higher stage should be subtracted

from the earlier correction-results. This being the case, the following is the

procedure (kriyā-krama) to be adopted. The required arc is the first result.

When this is squared, halved and divided by the radius, the second result is

got. Keep this second result separately. Now multiply the second result also

by the arc and divide by 3 and also by radius. Place the result got below

the first result. Then multiply this also by the arc and divide by four and

the radius. Keep the result below the second result. In this manner, derive

successive results by multiplying the previous result by the arc, and dividing

by corresponding successive numbers 1, 2, 3 etc. and by radius. Now, place

below the first result the odd results, viz., the third, the fifth etc., and place

below the second result the even results, viz., the fourth, sixth etc. Then

subtract successively the bottom result from the one above it, the remainder

from the one still above it. Ultimately, in the first column (paṅkti), the re-

sultant first result will be left and in the second column the resultant second

result will be left. These will be the required Rsine and Rversine.

The odd results might also be separately calculated and the desired Rsine

can be derived, and the even results calculated separately and the desired

Rversine calculated separately. This latter is another procedure (for arriving

at the results). Now, the procedure to derive the required Rsine: Multiply

the required arc by the square of the required arc and divide by the square

of radius. Then, divide also by 6, which is the product 2 and 3. The result is

Rsine-arc difference. The further results are derived similarly, the multiplier

is the square of the arc, and the divisor is the square of the radius. Still

another divisor is the product of the (corresponding) even number and the

next odd number. This would be the square of the corresponding even
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number plus its root, because the succeeding odd number is one more than

the even number. Thus, this is another method to derive the required Rsine.

Then applying the same procedure on the second result, by multiplying and

dividing the successive results, the required the Rversine would be obtained.

The only difference is that here the divisor is the square of the odd number

plus that number.

Then, in this manner, Rsines and Rversines are calculated for the entire

quadrant and tabulated. Using them (i.e., these tables) derive (the Rsine

and Rversine) for any desired arc (in-between them) by the rule of three.

(Here is the method therefor): Set out the odd results and even results

separately in two columns. In both cases, multiply the last result by the

square of the required arc and divide by the square of the radius. Subtract

the results from the penultimate in the two columns. Continue this process

of multiplication and division and subtract from the results just previous

to each. Then subtract from the required arc the last item of the sequence

beginning with vidvān etc. The remainder would be the required Rsine.

Through the same procedure used with the sequence beginning with stena,

the last result would be the required Rversine. This is the method of deriving

the required Rsine and Rversine without using the regular, tabular values

(of Rsines and Rversines).

7.6 Obtaining accurate circumference from

approximate value

Now, in pursuance of the principles enunciated above, here is a method to

evaluate an accurate value of the circumference starting from an approximate

value for a given diameter. First construct a circle for any assumed diameter

and compute its circumference roughly by the application of the rule of three

using approximations such as for 7 (of radius) 22 (of circumference) and so

on. Then, taking the required diameter as radius, one-fourth of the presumed
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rough circumference will be one-eighth (of the circumference for the new

radius). Calculate the Rsine for this in the manner explained above. Then

(that Rsine) will be more or less equal to the Rsine of an arc, which is one-

eighth of the accurate circumference in a circle of which the desired diameter

is (taken to be) the radius. Now, when the Rsine is calculated according to

the procedure enunciated in the verses beginning with nihatya cāpavargen. a

(‘having multiplied with the square of the arc’), instead of taking the square

of the radius as the first divisor, as had been instructed previously, take the

square of the desired diameter as the divisor. The reason for this is that here

it is the square of the radius of a circle whose diameter is twice the (first)

diameter. This is the only speciality in the matter of the derivation of the

Rsine relating to the desired diameter.

Then, subtract the square of this Rsine from the square of the radius. The

remainder will be the square of the Rcosine. The square of the Rsine of

one-eighth of the accurate circumference is half of the square of the radius.

The square of Rcosine is also the same. Since this eighth is half of the

circumference, the bhujā and kot.i will be equal.

It is possible to derive the Rsine of the difference of one-eighth of the rough

circumference and that of the accurate circumference, applying the rule of

j̄ıve paraspara which will be stated later. Now, multiply the squares of the

rough Rsine and rough Rcosine by the squares of the accurate Rsine and

Rcosine and divide by the square of the radius. The results got will be half

the squares of the approximate Rsine and Rcosine, since the multipliers are

half and double. Find their respective square roots and find the difference

thereof. The difference is the Rsine of the difference between one-eighth of

the rough circumference and that of the accurate circumference. Find the

arc of (this Rsine). For that, find the cube of this and divide by six times

the square of the radius. Add the result to this Rsine of the difference (of

one-eighth circumferences found above). This will be the arc of the differ-

ence. Add this to the eighth of the approximate circumference, if the square

of the approximate Rsine is smaller than half the square of the diameter,

and subtract if greater. The result will be one-eighth of the accurate cir-
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cumference of a circle of double the diameter. This will be one-fourth of the

circumference for the desired diameter. When this is multiplied by four, the

accurate circumference is got. This (as has been explained) is the procedure

for rendering the approximate circumference accurate.

7.7 Square of Rsine

Next is explained how the square of the Rsine can be derived through the

rule nihatya cāpavargen. a (‘having multiplied by the square the arc’), by

following a special procedure. Here the square of the arc is multiplied by the

square of the arc itself. The square of the arc and the results are placed one

below the other. Then, starting from 2, from the squares of the numbers 2,

3, 4, 5 etc., half their respective roots are subtracted. With the remainders

multiply the square of the radius and use the results as the divisors. This

is the only difference herein. What remains at the last step is the square of

the sine. Then, using this procedure, the square of the Rversine can also be

obtained. Here the results will be given by the sequence śaurir, jayati (25,

618) etc., instead of vidvān, tunnabalah. (44, 3306) etc.

7.8 Derivation of Rsines from J̄ıve-paraspara-nyāya

7.8.1 J̄ıve-paraspara-nyāya

In the application of the rules stated earlier, the full-chord of the arc-bit is

taken as the icchā-rāśi. However, in the application of j̄ıve-paraspara-nyāya,

which is set out below, half the full-chord is taken as the icchā-rāśi. Now,

construct a full-chord from the tips of the first arc-bit and of the third arc-

bit, covering two arc-bits (the second and third arc-bits). Then, draw a

radius (from the centre) to touch the tip of the second arc-bit. For that

radius-hypotenuse, the bhujā will be the second Rsine and the kot.i will be
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the twenty-second Rsine. Here too, the midpoint of the full-chord will meet

the radius-hypotenuse. The halves (of the full-chord) will be the Rsines

(ardha-jyā) of an arc-bit. These half-chords are to be taken as icchā-rāśi

here. Then, if the Rsine of the arc-bit is multiplied by the second Rsine and

divided by the radius, the result will be the Rcosine difference drawn east-

west from the middle of the full-chord. Then, if (the Rsine of the arc-bit) is

multiplied by the twenty-second Rsine and divided by the radius, the result

will be the Rsine difference, which is drawn south-north from the tip of the

third arc-bit extending up to the base of the Rcosine difference.

Then, from the point where the midpoint of the full-chord-hypotenuse meets

the radius-hypotenuse, draw the perpendiculars to the east-west line and the

north-south line. Their (measures) can be got by applying the rule of three:

When the radius is the hypotenuse, the second Rsine and the twenty-second

Rsine are, respectively, the bhujā and kot.i; when that part of the radius,

which is radius-minus-Rversine of the full-chord, is the hypotenuse, what

will be the bhujā and kot.i. Then, add the Rsine difference to the bhujā of the

radius-minus-Rversine of the radius. The result will be the third Rsine; if it

is subtracted, it will be the first Rsine. Now, subtract the Rcosine difference

from the kot.i of the radius-minus-Rversine; the result will be the twenty-first

Rsine; if the Rcosine difference is added to that kot.i, the twenty-third Rsine

will result. The reason for this is that when the halves of the full-chord-

hypotenuse are taken as the icchā-rāśi, the Rsine and Rcosine differences

are equal for both the arc-bits; and also for the reason that the bhujā and

kot.i derived from the radius-minus-Rversine are the ends (avadhi-s) to the

Rsine differences derived from the half-chord-hypotenuse. This is how the

tabular sines are derived.

Then, derive Rsine and Rcosine differences corresponding to the half-chord-

hypotenuse of the śis. t.a-cāpa (the portion of the arc between the required arc

and the next arc-bit), and the bhujā and kot.i from the radius-minus-Rversine

corresponding to the desired arc (́sis. t.a-cāpa-śara), and from these calculate

the desired Rsines.
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7.8.2 J̄ıve-paraspara-nyāya: An alternative proof

Here is stated an alternative way to obtain the above rule. Here, consider

the third Rsine extending from the tip of the third arc-bit extending up to

the east-line. Identify the point on this where the Rcosine difference (kot.i-

khan. d. a) commencing from the midpoint of the full-chord meets this; from

that point, construct two (north-south) differences, one on each side thereof.

Then a triangle will be formed, with the northern difference as the bhujā

and the Rcosine difference as kot.i and half the full-chord as hypotenuse.

Now, for the southern bit of the third Rsine also, the said Rcosine difference

will be the kot.i, its hypotenuse will be equal to the second Rsine. This

hypotenuse will be the line from the midpoint of the full-chord extending up

to the point where the third Rsine meets the east-line. The (last) will be

equal to the second Rsine. Here, the radius is the pramān. a; half the full-

chord and its kot.i, which is the radius-minus-Rversine of this, are the two

pramān. a-phala-s; and the icchā is the second Rsine. The (two) icchā-phala-s

are one: the Rcosine difference starting from the mid-point of the full-chord,

and, two: the southern part of the third Rsine, from its meeting point with

the above (Rcosine difference). Just as the pramān. a-rāśi is the hypotenuse

for the pramān. a-phala-s in the shape of bhujā and kot.i, in the same way for

the icchā-phala-s in the shape of bhujā and kot.i, the hypotenuse will be the

icchā-rāśi. This is the rule.

Now, there is a triangle where the second Rsine is the hypotenuse, the south-

ern part of the third Rsine is the bhujā and the Rcosine difference derived

by the rule of three is the kot.i. There is also another triangle in which the

northern half of the full-chord is the hypotenuse, the northern part of the

third Rsine is the bhujā and the Rcosine difference itself is the kot.i. Now,

this is a triangle where the first and second Rsines are the sides, the third

Rsine is the base and the Rcosine difference is the perpendicular. Here,

the two base-segments (ābādhā) can be got by subtracting the square of the

perpendicular separately from the squares of the two sides and finding the

(two) roots. The sum of the (two) segments will be the base, which is the

third Rsine. In this manner the tabular Rsines and the desired Rsines can
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also be derived. Thus has been explained the method by which if two Rsines

are separately known, the Rsine of the sum of the arcs corresponding to the

two individual Rsines, may be calculated.

7.9 Principle of the area of a triangle

Now is set out the method for deriving the Rsines without using the radius.

This involves the principle of the area of a triangle (tribhuja-ks.etra-nyāya).

Hence that is stated first.

Consruct a scalene triangle (vis.ama-tryaśra), with the longest of its three

sides along the north-south, towards the western side. This would be taken

as the ‘base’. Let the other two sides commence from the two ends of the

base and meet at a point towards the east. These are to be taken as the

sides (bhujā-s). From the point where the two sides meet, drop a perpen-

dicular (vipar̄ıta) to the base. This is to be called the ‘perpendicular’. The

components of the base on the two sides of the perpendicular are called

‘base-segments’ (ābādhā). For the segments and the perpendicular, which

are like bhujā and kot.i, the two sides form the hypotenuses. Now, square

the longer side and subtract from it the square of the shorter side. The re-

sult would be the square of the longer base-segment minus the square of the

shorter base-segment, since the square of the perpendicular is the same for

the squares of the two hypotenuses. In other words, the difference between

the squares of the sides would be equal to the difference between the squares

of the two base-segments.

Now, the difference between the squares of the sides is equal to the product

of the sum of the sides and the difference of the sides. Since this is equal also

to the difference between the squares of the base-segments, when it is divided

by the base, which is the sum of the two base-segments, the result will be

the difference between the two base-segments. This (difference) added to

and subtracted from the base and halved, would, respectively, be the two

base-segments. Then again, the square of each base-segment subtracted
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from the square of the relevant side and the root found, would result in the

perpendicular. The perpendicular multiplied by half the base will give the

area of the triangle.

Here, cut along the lines starting from the midpoints of the sides ending at

the mid-points of the corresponding base-segments; the resulting two triangle

bits are placed in such a way that the base-segment portions meet the end

of the perpendicular and the hypotenuses lie on the hypotenuses. This will

result in a rectangle having two sides equal to half the base, the (other) two

sides being equal to the perpendicular. Hence the area thereof will be the

product of half the base of the triangle and the perpendicular (and hence

equal to the area of the triangle). This is the principle of the area of a

triangle (tryaśra-ks. etra-nyāya).

7.10 Diagonals of a cyclic quadrilateral

Now is stated, how the principle of the area of a quadrilateral can be derived

from the above. First consider a circle. Then consider a (cyclic) quadrilateral

with its four corners touching the circumference of the circle. It shall also be

that the four sides are not equal to one another. Now, it should be possible to

know the diagonals of this quadrilateral from its sides. Here is the method.

Now, for the sake of convenience, consider the following arrangement: Of the

(four) sides, let the longest side be on the west; call it the ‘base’ (bhūmi).

Then successively, the southern and northern sides will be the ‘sides’ (bhujā).

Let the smallest side be on the east. Call it the ‘face’ (mukha). Let this be

the set-up. Now, since (all) the sides touch the circumference, they are all

full-chords. Thus, the circle will be full with four full-chords, since the tips

of the chords touch each other. Now, considering the sum of the arcs of two

adjacent sides, the full-chords thereof would be diagonals of the quadrilateral.

If we divide the quadrilateral into two by drawing one of these diagonal-

hypotenuses, on the two sides of this hypotenuse will be two triangles. This

hypotenuse will be the common base for both the triangles. The sides (of
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the quadrilateral) will be the sides (of the) triangles. In the same manner,

the other diagonal (of the quadrilateral) can form two triangles (on its two

sides), with itself being the base.

7.10.1 Product of two full-chords is equal to the difference

in the squares of the full-chords associated with half

the sum and difference of the arcs

Now, consider one of these diagonals. If the sum of the sides on one side

of the diagonal is multiplied by their difference, the result will be equal to

the sum of the segments of the base multiplied by their difference. The sum

of the base-segments is the full-chord of the sum of the arcs associated with

these two sides. Then the difference between the two base-segments will be

the full-chord of the difference between these two arcs.

When the desired diagonal, which is the sum of the base-segments, is taken

as the base, and the difference between the segments as the face (mukha) and

the shorter side is taken to be equal to the longer side there will be formed,

on one side of the said diagonals, a quadrilateral with equal perpendiculars

(i.e., a trapezium). Here the distance between the (two) perpendiculars is

the difference between the (two) base-segments. Hence the full-chord of the

difference between the (two) arcs will be equal to the difference between the

(two) base-segments. Now, in a quadrilateral, if the lateral-sides are equal,

the perpendiculars will also be equal. Their corresponding base-segments

will also be equal. Hence, in the base, the distance between the bases of the

perpendiculars will be equal to the difference between the base-segments.

The distance between the tips of the perpendicular is also the same.

Hence, the full-chord of the difference between the (two) arcs will be equal

to the difference between the (two) segments. The full-chord of the sum of

the (two) chords will be the base (bhūmi). This is also the desired diagonal.

Hence, the difference between the squares of the sides on one side of the

diagonal will be equal to the product of the full-chords of the sum and
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difference of the corresponding arcs. Thus, the product of the full-chords of

the sum and difference of the arcs will be equal to the difference between

the squares of the chords of the (corresponding) arcs.

Hence, the rule is: The product of two full-chords is equal to the difference

between the squares of the full-chords associated with half the sum and

difference of the corresponding arcs (associated with the two original full-

chords). (In the same manner) the difference of the squares of two full-

chords will be equal to the product of the full-chords associated with the

sum and difference of the two arcs corresponding to the (original) full-chords.

This rule deserves to be known when the derivation of the diagonal (of a

quadrilateral) is attempted.

7.10.2 Sum of the products of the two pairs of sides associ-

ated with a diagonal is equal to the product of the

diagonal with the third diagonal

Now is explained the derivation of the diagonal using the above-said rule.

Here, as instructed earlier, take the longest side of the scalene cyclic quadri-

lateral as the base, situated in the west, the smallest side as the face, on the

east, then, the longer lateral-side on the south and the shorter lateral-side

to the north. The first diagonal is the line from the southern tip of the base

to the northern tip of the face, and the second diagonal is the line from the

northern tip of the base to the southern tip of the face. Consider also the

arcs between the tips of the diagonals as the arcs of the relevant full-chords

(i.e., sides). Mark some dots on these said arc-bits, (as follows):

From the northern tip of the base, mark the point on the arc of the northern

side at a distance equal to the arc of the face. The distance, along the

circumference, from this point to the northern tip of the face might be called

mukha-saumyabhujā-cāpāntara (‘difference between the arcs of the face and

the northern side’). Consider the diameter, one tip of which touches the

midpoint of this (arc). Then, from the northern tip of the base, mark the

point on the arc of the base at a distance equal to the arc of the southern
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side. The distance (along the circumference) from this point to the tip of the

southern tip of the base may be called bhū-yāmyabhujā-cāpāntara (‘difference

between the arcs of the base and the southern side’). The other tip of the

diameter (mentioned above) will touch the midpoint of this arc. This is

the foot of the diameter. Now, the distance from the foot of the diameter

to the southern tip of the base is bhū-yāmyabhujā-cāpāntarārdha (‘half the

difference of the arcs of the base and the southern side’). Hence, the distance

along the circumference, from the foot of the diameter to the northern tip of

the base, and that (from the same point) to the eastern tip of the southern-

side are equal. Then again, the distance between the tip of the diameter

and the western tip of the northern side and that to the southern tip of the

eastern side are also equal.

This being the set up, multiply the face and the northern side. Add the

product to the product of the base and the southern side. The result will

be the sum of two differences of squares (as indicated below). The first

(difference) is the difference of the squares of the two full-chords, associated

with arcs equal to half the sum and difference of the arcs of the face and

northern side. The second (difference) is the difference of the squares of

the full-chords associated with the arcs obtained by halving the sum and

difference of the arcs of the base and the southern side. This is according to

the rule derived earlier.

Now, if we add half the sum of the arcs relating to the face and the northern

side and half the sum of the arcs relating to the base and southern side, we

will get half the circumference of the circle. The sum of the squares of the

full-chords associated with the arcs obtained in the above half-sums would

be equal to the square of the diameter, since the said two full-chords are

bhujā and kot.i. Just as the Rsines of the two parts into which a quarter of a

circle is divided bear the relationship of bhujā and kot.i, with the radius being

the karn. a; in the same manner, the full-chords of the two parts into which

half the circumference is divided, will also bear the relationship of bhujā and

kot.i, with the diameter as the karn. a. Hence, the sum of the squares of the

said full-chords of the half-sums will be the square of the diameter.
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Therefore, the sum of the products of the said full-chords would be equal to

the square of the diameter minus the sum of the squares of the full-chords of

half the two arc-differences. There, subtract from the square of the diameter

the square of the full-chord of one of the said differences. The remainder

would be the square of the kot.i thereof. Since this is the difference of the

squares of two full-chords, the two arcs resulting from the addition and

subtraction of the two arcs associated with these full-chords, the full-chords

thereof would have been multiplied, according to the rule derived above.

Here, since the arc associated with a diameter is half the circumference, add

to and subtract from half the circumference half the arc-difference at the tip

of the diameter. The difference of the squares here would be the product

of the full-chords of the two arcs here, since this difference of squares is

formed by the product of the full-chords of the sum and difference of the two

arcs. Here, however, for the sum-and-difference-arcs, (i.e., the arcs which are

added together and subtracted from), the full-chords are the same, only the

śara-s and arcs differ. It is a rule that when (the tip-points) move equally on

two sides of the diameter, the full-chords thereof would be equal. Just the

same way as, when the Rsines (ardha-jyā, half-chords) are tabulated equally

on a circle of circumference 21,600 (minutes), when, say, the 24 parts are

considered, the 23rd and 25th (Rsines) will be equal. Since the chords are

equal, their product will be their square. (In the calculation mentioned

earlier), when the square of the full-chord of the arc-interstice between the

northern tip of the face and the tip of the diameter is first subtracted from

the square of the diameter, what remains is the square of the full-chord (of

the arc) between the foot of the diameter to the northern tip of the face.

From this has to be subtracted the square of the full-chord of the arc-

interstice from the foot of the diameter to the southern tip of the base.

This is the second full-chord of half the arc-difference. Since this is also the

difference between the square of two full-chords, it will be the product of the

full-chords associated with the sum and the difference of the arcs. Now, the

portion of the circumference from the northern tip of the face to the foot of

the diameter is an arc. The (arc) interstice between the foot of the diameter
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and the southern tip (of the base) is another arc. The difference between

these two is the part of the circumference between the northern tip of the

face to the southern tip of the base. This will be the sum of the arcs of the

face and the southern side. The full-chord of this is the first diagonal. Thus,

this first diagonal is the full-chord of an arc-difference. Now, the portion of

the circumference from the northern tip of the face passing the foot of the

diameter and reaching up to the point marked on the arc of the base is an

arc-sum (i.e., sum of two arcs). The chord thereof would be the chord of the

composite arc made up of the face-arc and the base-arc. The base-arc here

would be the south-side-arc plus the arc in the base-arc from the southern

tip up to the point marked. Thus, however when this interstice is added to

the arc of the southern side, since it will be equal to the arc of the base, the

full-chord of the sum of the arcs of the base and of the face is a sum-chord.

Hence, the sum of the products of the face and the northern side and that

of the base and the southern side, would be equal to the product of the

full-chord of the sum of the face and southern-side arcs with that asso-

ciated with the sum of the face and the base arcs. This is to be called

ādyakarn. āśrita-bhujāghātaikya (‘sum of the products of the chords related,

to the first diagonal’). The first diagonal is the diagonal which extends from

the northern tip of the face and the southern tip of the base. Touching the

tip of this (diagonal) are the face and the northern side and touching the

foot are the base and the southern side; ādyakarn. āśrita-bhujāghātaikya is

called so for the reason of its being the sum of the product of the above

two. This is being shown to be the product of the first and third diagonals.

Here, the first diagonal is the line from the southern tip of the base to the

northern tip of the face. The third diagonal, then, is the first diagonal itself

got by exchanging the base and the southern side so that the tip is the same

as before (i.e., the tip of the first diagonal) and the foot touching (the cir-

cumference) elsewhere. The second diagonal is also like the first. When we

said that the foot of the first diagonal, which touches the southern tip of the

base, would be elsewhere, it will actually be at the point, mentioned earlier

on the arc of the base, which is obtained by moving from the southern tip

of the base by an amount equal to the arc-difference between the base-arc
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and the southern-side-arc. The line from this (point) to the northern tip of

the face is the third diagonal. This comes into being when the base and the

southern side are exchanged. Hence this is termed the third diagonal.

7.10.3 The area of the cyclic quadrilateral is equal to the

product of the three diagonals divided by twice the

diameter

Now, consider these two (viz., the first and the third) diagonals as two sides

and the arc of the interstice between these two diagonals as the base arc.

This latter will be the arc-bit between the point on the base arc and the

southern tip of the base. Consider the chord of this arc-bit as the base

and make a triangle. Now, the altitude in this triangle will be the vertical

line to the said base from the northern tip of the face to this base. This

perpendicular can be had by dividing the product of the sides, which are

here the first and the third diagonals, by the diameter. (The rule) in general

is: In the case of the sides of a triangle, which form chords (in a circle), when

the product of two sides is divided by the diameter, the result would be the

perpendicular to the base which is the chord of the arc which is the sum of

the arcs of the sides. This rule is derived from the j̄ıve-paraspara-nyāya.

Now, when we divide the scalene quadrilateral into two triangles by the

second diagonal, there will be a perpendicular in each. For both these per-

pendiculars the second diagonal will be the common base. The sum of the

perpendiculars of the two triangles will be equal to the perpendicular ob-

tained as the product of the first and third diagonals divided by the diameter.

This shall be demonstrated in what follows.

Here, the tips of the first and third diagonals are (together) at the northern

tip of the face, and their feet are, one, at the southern tip of the base and

the other at the point marked on the arc of the base. The chord of the

arc between these two feet forms the base for the triangle formed by these

two diagonals. For this base and for the second diagonal, the direction is the

same, (i.e., they are parallel), since, from the two tips of the second diagonal,

these two chord tips are equally distant by an arc equal to the arc of the
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southern side. The midpoint of the arc of the second diagonal and the arc

of the base of this triangle will be the foot of the diameter mentioned above.

Hence, the direction of the second diagonal and the base of this triangle are

the same. Hence, the two perpendiculars which have the second diagonal as

the base, and the large perpendicular (drawn earlier) have the same direction.

Then, the quadrilateral having the second diagonal as the base, and having

as its face the base of the triangle, having the first and third diagonals as

sides, will have equal perpendiculars, (i.e., it will be a trapezium). It will be

clear then that the sum of the two (smaller) perpendiculars (on the second

diagonal) will be equal to the large perpendicular.

Now, when this sum of the perpendiculars is multiplied by half the second

diagonal, there will result the sum of the areas of the two triangles having

the second diagonal as the common base, and equal to the area of a (cor-

responding) cyclic quadrilateral. Hence, the product of the three diagonals

divided by the diameter and halved, will be the area of the quadrilateral.

Correspondingly the product of the three diagonals divided by the area (of

the quadrilateral) will give twice the diameter. If the product of the squares

of the diagonals is divided by the square of the area, the result will be square

of twice the diameter. It is noted that, here, the sum of the perpendiculars,

the diameter, and the area, have been discussed only incidentally; they will

be dealt with again later on.

7.10.4 Derivation of the Karn. a-s (diagonals)

Now, (is stated) the method to derive the karn. a-s, diagonals. There, it has

been set out in detail, earlier, that the sum of the products of the two sets

of the sides related to the first diagonal will be equal to the product of the

first and third diagonals. By the same principle, it follows that the sum of

the products of the two sets of sides related to the second diagonal will be

equal to the product of the second and third diagonals. This is equal to the

sum of the product of the face and the southern side and that of the base

and the northern side.
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Now, exchange the base and the southern side and find the products of the

two sets of the sides related to the resulting second diagonal and add them.

This will be equal to the sum of the products of the face and the base and

that of the south and north sides. This is called the product of the opposite

sides (bhujā-pratibhujā-ghātayogam). This will be equal to the product of

the first and the second diagonals.

Now, if the, sides are further exchanged, there cannot be a fourth diagonal

since the prastāra (number of possible combinations) has been exhausted.

Here, multiply the above-derived product of the first and third diagonals by

the product of the first and second diagonals and divide by the product of

the second and third diagonals. The result will be the square of the first

diagonal. Then multiply the product of the second and third diagonals by

the product of the first and second diagonals and divide by the product of

the first and third diagonals. The result will be the square of the second

diagonal. Thus (has been stated) the method of deriving the diagonals. The

third diagonal need not be derived since it is only introduced (by us) here.

If need be, derive it as above.

7.11 Cyclic quadrilateral and J̄ıve-paraspara-nyāya

Now, what had been stated earlier, viz., that the sum of the products of the

two sets of opposite sides (in a cyclic quadrilateral) is the product of the

first and second diagonal, is being demonstrated here in the case of tabular

Rsines. (Through the j̄ıve-paraspara-nyāya) it has been shown that when

two Rsines are mutually multiplied by the Rcosines, divided by the radius

and added together, the Rsine of the sum of the arcs would be obtained.

Here, (in the situation being dealt with here), the radius would be the first

diagonal and the Rsine of the sum of the arcs would be the second diagonal.

The two Rcosines would be the correspondingly opposite sides. It will be

shown how this can be so.

There, at the tip of the second Rsine is the tip of the radius diagonal. For,

the second and third arc (bits) together there is a full-chord. The radius-
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diagonal will pass through the midpoint of this full-chord. Consider the

triangle in which: One side is half the full-chord extending from the meeting

point of this diagonal and the above-said full-chord to the tip of the third

Rsine; the second Rsine can be taken as touching the said meeting point

and the meeting point of the third Rsine and the east-west line; that will

be the (second) side; the third side is the third Rsine. In this (triangle),

half the full-chord is the first Rsine. If this (Rsine) and the second Rsine

are multiplied by the corresponding Rcosines, added together and divided

by the radius, the third Rsine would be obtained. In fact, these have been

stated earlier itself.

Now, another figure, (a scalene quadrilateral), can be conceived, but in a

different way. Here, conceive of a full-chord touching the tips of the second

Rsine and the fourth Rsine. Conceive the radius-diagonal passing through

the midpoint of this full-chord, and the second Rsine in its own place. Then

the second Rsine, its Rcosine along the east-west line, the portion of the

full-chord which touches the tip of the second Rsine, and its complementary

(kot.i) part on the radius will form the sides of a scalene quadrilateral. Con-

struct a diagonal extending from the point of contact of the east-west line

and the second Rsine, and passing through the midpoint of the full-chord.

This will be the third Rsine by the rule stated earlier. There will be an

apparent displacement (in this third Rsine). The other hypotenuse is the

radius touching the tip of the second Rsine. Here, (in the quadrilateral), the

second Rsine and the Rcosine of the first Rsine will be the opposite sides.

The other pair, also, similarly (will be the opposite sides). Hence, also fol-

lows the rule that the sum of the products of opposite sides will be equal to

the products of the two diagonals.

7.12 Derivation of tabular Rsines without using

the radius

Now, the difference between the squares of the first and second Rsines will

be equal to the product of the first and third Rsine. The difference between

the squares of the first and third Rsines will be equal to the product of the
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second and fourth Rsines. Thus, the difference between the squares of two

Rsines will be equal to the product of the Rsines of the sum and of the

difference of their arcs, according to the rule evolved earlier. Then again,

when the square of the first Rsine is subtracted from the square of any

Rsine and divided by the next Rsine below, the result will be the next Rsine

above. In this manner the tabular Rsines can be derived without making

use of the radius (in their derivation). Then again, if to the product of the

first and third Rsines the square of the first Rsine is added and the root

found, it will be the second Rsine. Thus, the squares of the Rsines can be

successively found without the use of the radius. Here, (instead of the Rsine)

the corresponding full-chords can also be used. Thus are (stated) one class

of methods for the derivation of Rsines.

7.13 Altitude and circum-diameter of a triangle

Now is demonstrated the rationale of the earlier statement that when the

full-chords of two arcs are multiplied together and divided by the radius

(diameter?), the result would be the perpendicular to the base given by

the full-chord associated with the sum of the two arcs. This is shown us-

ing the full-chords of the circle of 21,600 minutes. There, from the eastern

tip of the east-west line, mark off ten arc-bits on the two sides and con-

sider the full-chord, which is along the north-south direction. This will be

the tenth full-chord (corresponding to the tenth tabular Rsine). Now, from

the southern tip (of the chord) mark off (towards the north) twelve arc-

bits and construct the corresponding full-chord. The tip of this chord will

meet the circumference towards the north of the east-west line at a distance

of two arc-bits. This will be the sixth chord. Then construct a full-chord

commencing from the northern tip of this chord to the northern tip of the

tenth chord. This will be the fourth chord. Construct the diameter passing

through the midpoint of the sixth chord and the centre and extending to

the circumference on both sides. This (diameter) and the sixth chord will

be perpendicular to each other, since the diameter will be along the corre-

sponding śara. Then, construct another full-chord from the eastern tip of
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this diameter towards the west, and another to the north. The first will be a

kot.i and the second a bhujā. This bhujā will be the fourth chord. Now, from

the tip of the east-west line to the southern tip of the tenth chord, there are

ten arc-bits. There, from the tip of the tenth chord, and after six arc-bits,

the tip of the radius touches the circumference. From here the east-west

line is four arc-bits away; four arc-bits towards north from here, the tip of

the bhujā touches the circumference. Thus, since this full chord covers eight

arc-bits it results that it is the fourth chord.

Now, construct another diameter extending from the midpoint of the fourth

chord which meets the northern tip of the tenth chord. Construct a bhujā,

along south-north, from the eastern point of this (diameter). Since this is

a full-chord of twelve arc-bits, it will be the sixth chord. It is to be noted

here that, if the diameter-hypotenuse passes through the midpoint of any

chord, its bhujā will be the other chord. Here, the distance between the tip

of the east-west line and the tip of the base which is the full-chord of the

sum of the two arcs, will be half the sum of the arcs. The reason for this is

that when half the required arc is subtracted from this, half of the other arc

remains.

Here, the pramān. a is the diameter which is the hypotenuse, the bhujā of this

is the pramān. a-phala, and the chord perpendicular to the diameter is the

icchā. The perpendicular which is the vertical distance between the point

of contact of the opposite chords to the chord of the sum of the arcs will

result as the icchā-phala. Here, when one of the desired chords is the icchā

the other becomes the pramān. a-phala. Therefore, either of the fourth and

the sixth chords will be the icchā-phala, when the perpendicular is derived.

When, however, the kot.i is derived, the pramān. a-phala would be the kot.i

of the diameter touching the midpoint of the arc. Here, since the products

of the icchā and pramān. a-phala are different, the icchā-phala-s for the two

chords, which latter are the two base-segments of the tenth chord, will be

different. Since here the icchā and pramān. a are mutually perpendicular,

their phala-s also will be perpendicular. Thus has been said the derivation

of the perpendiculars and base using the chords.
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7.14 Resume of results derived so far

[The under-mentioned have been arrived at from the above discussions:]

1. It has been shown that when two Rsines are multiplied respectively by

the other Rcosines and added, the result would be the product of the

Rsine of the sum of the corresponding arcs and the radius.

2. The above would imply that in a quadrilateral of specified diagonals

the sum of the products of the opposite sides is equal to the product

of the diagonals.

3. By the same rule the product of adjacent sides added together would

be equal to the product of some diagonals.

4. It has also been noticed that by the same rule it is possible to derive

the Rsines of sums and differences of arcs.

5. Also, through the above-said procedure the tabular Rsines could also

be derived.

6. The sum of the product of the sides related to the first diagonal is equal

to the product of the first and third diagonals; when this product of the

diagonals is divided by the diameter the result will be the perpendicular

in the triangle having as its base the full-chord of the sum of the arcs

associated with the diagonals.

7. The said perpendicular is also the sum of the perpendiculars of the

two triangles of which the second diagonal forms the base. In that

case it need not be considered as the product of the diagonals but as

the product of the sides.

8. It is also understood by the general rule that the area of the quadri-

lateral will result when half the second diagonal is multiplied by this

perpendicular.
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7.15 Area of a cyclic quadrilateral

Then, following these principles, it will be shown that, without specifying

the circumference, but given the sides of a quadrilateral of fixed diagonals,

the diameter can be calculated. For this purpose, it will be shown that the

area of the quadrilateral can be obtained without the employment of the

diagonals and diameter. (Earlier) this had been demonstrated in deriving

the square of the area of a triangle. It is now shown how that is possible, in

the same manner, in the case of a quadrilateral.

Now, construct a quadrilateral inside a circle (i.e., a cyclic quadrilateral).

The four corners of the quadrilateral should touch (the circumference of)

the circle. Then the four sides of the quadrilateral will be four chords of the

circle. And by these four chords the circle would have been fully covered. In

this quadrilateral, construct one diagonal from one corner to the (opposite)

corner. This diagonal will then be the common base of the two triangles

formed. The area of a quadrilateral specified like this is obtained by the

procedure enunciated in the verse

sarvadoryutidalam. catuh. sthitam. bāhubhirvirahitam. ca tadvadhāt |

mūlamasphut.aphalam. caturbhuje spas. t.amevamuditam. tribāhuke ||

Add all the sides and halve it and keep the result in four places.

Subtract one side each from each of the above results. Multiply

together the four remainders and find the root (of the product).

In the case of the quadrilateral the said root will give the rough

area and in the case of the triangle, it will give the exact area.’

(L̄ılāvat̄ı, 167)

Here, take the two sides on one side of the chosen diagonal as the two sides

of a triangle, take the diagonal as the base, and derive the perpendicular,

as explained earlier. In the same manner, derive the perpendicular for the
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triangle on the other side of the diagonal. Then, multiply the sum of the

perpendiculars by half the diagonal. The result will be the area of the quadri-

lateral, since the area of a triangle is got by multiplying the perpendicular

by half the base. This has been stated in the verse:

lambagun. am. bhūmyardham. spas. t.am. tribhujaphalam. bhavati |

In a triangle, the product of the perpendicular and half the base

will give the exact area.

(L̄ılāvat̄ı, 164)

Now, consider the quadrilateral with the following sides:

pañcāśad ekasahitā vadanam. yad̄ıyam. bhūh. pañcasaptatimitā ca

mito ′s.t.as.as. t.yā |

savyo bhujādvigun. avim. śatisammito ′nyastasminphalaśravan. alambamiti

pracaks.va ||

In a quadrilateral with face 51, base 75, left side 68, and the

other side, twice 20 (i.e., 40) tell the area, diagonals and perpen-

diculars.

(L̄ılāvat̄ı 178)

atreśakon. agāmı̄s. t.ah. karn. ah. saptasaptatisam. khyāh. |

Here, the diagonal (from) north-east is 77.

Here, it has been stated that the western side is taken as the base and the

eastern side as the face. The diagonal from the north-east corner to the

south-west corner is 77. This is taken as the desired diagonal and as the

base of both the triangles. This set-up will make it easy to remember (i. e.,

to keep track of the discussion below).
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7.15.1 Area in terms of the Lamba-nipātāntara and Lamba-yoga

(interstice between the altitudes and the sum of alti-

tudes)

A perpendicular dropped from the south-east corner will meet the chosen

diagonal at a point a little to the south of the midpoint (of the diagonal), and

the perpendicular dropped from the north-west corner will meet the diagonal

at a point a little to the north of its midpoint. Now the interstice between

the points where these perpendiculars meet the diagonal is called lamba-

nipātāntara (interstice between the perpendiculars). Since this is a part of

the base (diagonal) it will be at right angles to the perpendiculars. Both the

perpendiculars will have the same direction. So, extend one perpendicular

to one side and the other perpendicular to the other side so that the two

perpendiculars are extended equally. At the tips of the perpendiculars mark

the lamba-nipātāntara also. Now will be formed a rectangle.

When the square of the sum of the perpendiculars and the square of the

lamba-nipātāntara are added and the root of the sum found, it will be the

diagonal of the rectangle which touches the tips of the perpendiculars. This

will (really) be the second diagonal to the cyclic quadrilateral. This is

called itara-karn. a (‘other diagonal’). Now, when the square of the lamba-

nipātāntara is subtracted from the square of the other diagonal, the result

will be the square of the sum of the perpendiculars (lamba-yoga). The square

of the lamba-yoga (sum of the perpendiculars) and the square of half the is. t.a-

karn. a (chosen diagonal), when multiplied together will give the square of the

area of the (cyclic) quadrilateral.

7.15.2 Derivation of the Lamba-nipātāntara

Now, in the example of the quadrilateral, with specified sides given in the

verse pañcāśad ekasahitā etc., the perpendicular dropped from the conjunc-

tion of the face and the southern side, will meet the base (diagonal), a little

to the south of the midpoint, since the southern side (40) is shorter than

the face (51). It is the rule that, of the two sides that meet the tip of the

perpendicular, it is towards the shorter side that the perpendicular will fall.
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The segments of the base, on the two sides of the point where the perpen-

dicular fall, are called ābādhā-s (base-segments). These two will be related

only to that perpendicular. Now, the perpendicular dropped from the point

of conjunction of the base of the quadrilateral and the northern side, going

towards from southwest to the northeast meets the desired diagonal-base, a

little to the north of its midpoint, since the northern side (68) is shorter than

the base of the quadrilateral (75). In this set-up, amongst the base-segments

associated with the two perpendiculars, the difference between the northern

base-segments will be the lamba-nipātāntara (interstice between the two per-

pendiculars). Here, since, one foot of the perpendicular is to the south of

the midpoint of the desired diagonal-base and the other foot is on the north-

ern side thereof, the lamba-nipātāntara would also be equal to the sum of

the distances from the said midpoint to the feet of the two perpendiculars.

Hence, the lamba-nipātāntara can be derived either by subtracting the base-

segments of the two perpendiculars in any one direction, or by adding up the

distances of the feet of the perpendiculars from the midpoint of the base-

diagonal. Now, even when the southern side is changed as the face and the

(present) face is interchanged as the southern side, the desired diagonal will

continue to be the base. Then both the perpendiculars fall on the northern

side of the midpoint of the base. Hence the lamba-nipātāntara would be the

difference between the distances between the feet of the perpendiculars and

the mid-point of the base. If this is derived from the base-segments, there

will be no difference, since the lamba-nipātāntara is the difference between

the base-segments on any one side.

Now, when the quadrilateral is divided into two triangles by the desired di-

agonal, suppose that of the two sides of each of the two triangles, the shorter

sides touch one tip of the diagonal and the longer sides touch the other tip.

Then, the two perpendiculars will fall on the base, viz., the desired diagonal,

towards that side of its midpoint where the shorter sides are. Hence, the dif-

ference between the distances of the feet of the two perpendiculars from the

midpoint of the base would be the lamba-nipātāntara. On the other hand,

in cases where the tips of the larger side of one triangle and the smaller side

of the other triangle meet at both the tips of the diagonal, then the perpen-

diculars fall on the two sides of the midpoint of the base-diagonal, since the

rule is that the foot of the perpendicular will be towards the shorter side.
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Here, the lamba-nipātāntara would be the sum of the distances of the feet of

the perpendiculars from the midpoint of the base.

The distance between the mid-base and the foot of the perpendicular is half

the difference between the ābādhā-s (base-segments). If the shorter base-

segment is marked off from the tip of the longer base-segment, the result

will be the difference between the two base-segments. The mid-base-point

will be at the centre of this. Thus, it results that half the difference between

the base-segments is the distance between the mid-base and the foot of the

perpendicular. Therefore, the sum or difference of half the differences the

(two pairs of) base-segments will be equal to the lamba-nipātāntara.

Now, when the difference of the squares of the base-segments of a perpen-

dicular is divided by the base, which is their sum, the result will be the

difference between the segments. And the result of dividing, in the same

manner, half the difference of the said squares will be half the difference

between the segments. Now, the difference between the squares of the base-

segments and the difference of the squares of the two sides, other than the

base, of a triangle are equal, for the reason that the said two sides of the

triangle form the hypotenuse for the bhujā and kot.i formed by the perpen-

dicular and the base-segments. Here, when the square of the shorter of the

two sides is subtracted from the square of the longer side, it will be the same

as subtracting (from the square of the longer side, both) the squares of the

shorter base-segment and the perpendicular. In this, when first the square

of the perpendicular is subtracted from the square of the longer side, what

would remain is the square of the longer base-segment. From that the square

of the shorter base-segment is subtracted. Hence, the difference between the

squares of the two sides and the difference between the squares of the two

base-segments are equal.

Now, amongst the two sides of the desired diagonal, take the square of the

larger side and subtract from it the square of the shorter side and halve the

remainder. Similarly, find the difference between the squares of the sides

on the other side of the diagonal and halve the remainder. When these two

remainders are added together or subtracted from one another and the result

divided by the diagonal, which is the sum of the base-segments, the quotient

will be the lamba-nipātāntara.
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Therefore, if it is desired to add the difference between the squares of the

sides on one side of the diagonal to the difference between the squares of

the sides on the other side of the diagonal (the procedure is as follows):

Now, there are two triangles on different sides of the diagonal; add the

square of the longer side of one triangle to the square of the longer side of

the other triangle. From this subtract the sum of the squares of the two

shorter sides. The remainder will be the sum of the differences between the

respective squares of the sides. Here, in both cases, in both the longer sides,

there would be some remainder (when the respective shorter sides have been

subtracted from them). Since these remainders are positive, the two longer

sides might be taken as positive. Hence it is possible to subtract the sum of

the negatives (i.e., the shorter sides) from the sum of the positives.

Suppose it is needed to get the difference between the two differences of the

squares. Now, of the two differences of the squares, consider that square-

difference which is the smaller of the two; if this difference is the remainder

from the square of some side, then the square of that side can be taken as

a full negative. The reason is that, what is (negatively) left here is being

subtracted from the square of the longer side of the other triangle. This

would mean that this negative-side-square is subtracted from the square of

the smaller side related to it as also from the square of the larger side of

the other triangle. Thus the negative quantities are constituted by the sum

of this negative-side-square and the square of the smaller side of the other

triangle. And, the positive quantities are the sum of the squares of the other

sides. When one is subtracted from the other, the remainder will be positive.

This is the way when the differences of the squares of sides are subtracted

one from the other. It is also said:

antarayoge kārye rāśidvayayormahadyutestyājyā |

itarayutirantare cennyūnādhikayogato ′nyayutih. ||

When the antara-yoga of two sets of two numbers is required,

then from the larger sum of the numbers (of the two sets) is to be

subtracted the other sum of numbers. If their antara (difference)

is required from one sum large or small, the other sum should be

subtracted.
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Now, conceive of a situation like this: Of the two sides associated with the

two perpendiculars drawn to the diagonal, let the longer sides be on one side

of the perpendiculars, say south, and the shorter sides on the other side, i.e.,

north. In this case, calculate, according to the rule set out above, the sum

of the squares of the base and face (of the quadrilateral) and the sum of

the squares of the southern and northern sides, and subtract one from the

other. The remainder will be the difference of the difference of squares. On

the other hand, let it be the case where in one triangle the side on one side

of the perpendicular is longer and in the other the side on the other side is

longer, and it is required to derive the sum of the square-differences of the

sides, according to the above-said rule. Since the squares of the longer sides

have to be added, here, the squares of the base and the face and the squares

of the southern and northern sides have to be added. Hence, the rule is that

in all cases the sum of the squares of the two sets of opposite sides should

be found. The difference between two sums of the squares of the opposite

sides should be found and halved. When this difference is divided by the

diagonal, the lamba-nipātāntara will be got.

7.15.3 First result for the area

When the said half-difference is squared, and divided by the square of the

diagonal, the square of the lamba-nipātāntara will be got. When this square

is subtracted from the square of the other diagonal, the result will be the

square of the lamba-yoga, the sum of the two perpendiculars. When the

square of the sum of the perpendiculars and the square of the desired diag-

onal are multiplied and divided by four, the result will be the square of the

area of the quadrilateral.

Now, the square of the lamba-nipātāntara plus the square of the sum of

the perpendiculars will be the square of the other diagonal. If that is to

be multiplied by the square of the desired diagonal and calculations made,

the square of the lamba-nipātāntara, which is subtractive, should also be

multiplied by the square of the desired diagonal and then the subtraction

made, since addition and subtraction of numbers can be made only if they

have a common denominator. Thus, it follows that this should be subtracted

from the product of the squares of the two diagonals. Here, the square of
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the lamba-nipātāntara is found thus: The squares of the opposite sides are

first found, added together and halved. The difference between the two is

squared and the result divided by the square of the desired diagonal. (The

square of the lamba-nipātāntara so found) is then multiplied by the square

of the desired diagonal. Thus, half the sum of the squares of the opposite

sides and their difference are found and squared. That is subtracted from

the product of the squares of the desired diagonal and the other diagonal.

One fourth of the remainder will be the square of the area (of the quadrilat-

eral). Here, we have to divide by four the difference of the squares. When

they are halved, squared and the difference found, it will be one fourth the

square difference. Hence, half the product of the diagonals and half the dif-

ference of half the sum of the squares of the opposite sides can be squared

and one subtracted from the other. Then also the square of the area (of the

quadrilateral) will result.

By the same rule, it is possible that the sum of the squares of halves of the

opposite sides be subtracted one from the other. There is the rule:

pratibhujadalakr. tiyutyoryad antaram. yacca karn. aghātadalam |

vargāntarapadam anayoścaturbhujaks. etraphalam adhikam ||

Find the difference between the sums of the squares of halves of

the opposite sides. Find also the product of the two diagonals

and halve it. Square the above two separately, subtract one from

the other, and find the root. The result will be a little more than

the area of the quadrilateral.

7.15.4 Second result for the area

It had been stated earlier that the squares of the two diagonals was to

be derived through the addition of the products of the sides adjoining the

diagonals. (This follows the rule): When the products of two results are

required, multiply the two multipliers by the two multiplicands, and divide

by the product of the two divisors. What is got will be the product of the

two results.
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(This rule might be applied here): (First) multiply, separately, the two sides

which touch the tip of the desired diagonal and the two sides which meet the

base-point of the diagonal and add the two products. This will be the mul-

tiplicand for the desired diagonal. Similarly the multiplicand for the other

diagonal will be the sum of the products of the sides adjoining that diagonal.

Now, the multiplicand of the desired diagonal will be the divisor for the other

diagonal and the multiplicand of the other diagonal will be the divisor for

the desired diagonal. Therefore, since the products of the two multiplicands

and of the two divisors are equal, the product of the two multipliers will itself

be equal to the product of the results. Then again, the multiplier in the case

of both the diagonals is the two pairs of opposite sides multiplied separately

and added together; the square thereof would be equal to the product of the

squares of the two diagonals. Actually, however, the diagonals would have

been multiplied together before squaring, since multiplying the numbers and

then squaring them, and squaring the numbers and then multiplying them

would give the same result. Hence, it is definite that when the product of one

set of opposite sides is added to the product of the other set of opposite sides

and squared, it will be equal to the square of the product of the diagonals.

Therefore, the square of the lamba-nipātāntara multiplied by the square of

the desired diagonal is subtracted from this product of the squares of the

two diagonals; the result will be the product of the square of the desired

diagonal and the square of the sum of the perpendiculars. One-fourth of

this would be the square of the area of the quadrilateral.

Now, the product of the square of the lamba-nipātāntara and the square of

the desired diagonal would be the square of half the difference of the sum

of the squares of the two sets of opposite sides, since half the sum of the

difference of two numbers is equal to half the difference of their sum. Since

this has to be subtracted from the product of the squares of the diagonals

divided by four, (the same result can be obtained) also by first dividing

them by four and then doing the subtraction. Again, since these two which

are in the form of squares have to be divided by four, their halves can be

squared and the subtraction done, for one fourth of a square (of a number)

is equal to the square of half (the number). Hence, add together the square

of half the base and of half the face. Add together also the square of half

the southern side and the square of half the northern side. Then find out
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the difference between these two sums. Find also half the product of the

two diagonals. Square these two and find their difference. The result will be

the square of the (area of the) quadrilateral. This has been stated by the

passage pratibhujadalakr. tiyutyoryadantaram. . . .

The difference between these two squares can be found also by multiplying

their sum by their difference, according to the rule yogāntarahatirvargānta-

ram (‘the product of the sum and difference of two numbers is the difference

of their squares’). The method of finding the sum and difference in the

above (is as under): The product of the base and the face and the product

of the southern and northern sides should be added together and halved,

and placed in two places. To one add the difference between the sum of the

squares and from the other subtract. The results will be the relevant sum

and difference. This sum and difference of the sum of squares refer to the

difference of the sum of squares of the halves of the face and the base, and

the sum of squares of the halves of the southern and northern sides. Now,

when to a number the difference of two other numbers has to be added,

add to the number the larger of the latter two numbers and from the sum

subtract the smaller number. Then it will be as if the difference has been

added. On the other hand, when from a number the difference between two

numbers has to be subtracted, then, to the number add the smaller number

and subtract the larger number. Then it will be that the subtraction has

been done.

Or, the sum and difference can be effected in the following manner. Find

half the product of the base and the face, and apply to it the sum of the

squares of their halves. Similarly find half of the product of the southern and

northern sides, and apply to it the sum of the squares of their halves. Then

add the two results. This will be either of the required sum or difference (as

the case may be). Here, add to the (earlier) product the sum of the squares

of half the base and the face. And subtract from the (earlier) product the

sum of the squares of half the southern and northern sides. Take the sum

of these two as the first number. The second number should (be derived

thus): Subtract the sum of the squares of half the base and the face from

the product of these two sides. Similarly add the sum of the squares of half

the southern and northern sides to the product of those sides. The second

number is the sum of the two. Now, when half of the product of opposite
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sides from which the sum of the squares of half of these is to be subtracted,

there the half of the product will be double the product of the halves. On

the other hand, the sum of the (corresponding) squares would be greater by

the square of the difference. Hence, the sum of the squares should not be

subtracted from double the product. So the square of the difference of half

these opposite sides would be negative. In the other product, however, it

will be the sum of the squares of the opposite sides, since double the product

and the sum of the squares are being added here. This is according to the

rule:

vargayogo dvayo rāśyoh. dvighnaghātena sam. yutah. |

h̄ıno vā tatpade rāśyoryogabhedau prak̄ırtitau ||

Double the product of two numbers added to or subtracted from

their sum of squares and the root found, would be the sum or

difference of the two numbers.

Here, half the base and face have been added together and the square of

their sum found. From this has been subtracted the square of the difference

of half the southern and northern sides. Take this as the first number. The

second number would be the square of the sum of half the southern and

northern sides from which the square of the difference between half the base

and face is subtracted. When these two are multiplied, the square of the

area of the quadrilateral is obtained.

7.15.5 Final result for the area

Here also, the said two (rāśi-s) are differences of squares. The two ( numbers)

can be calculated also using the products of sum and difference. Since these

differences of squares are to be multiplied, it will be that the results of two

additions and two subtractions, all the four, are multiplied together. And

the result will form the square of the area (of the quadrilateral).

Hence, now place, at two places, the sum of the base and the face. From

one subtract half the difference of the southern and northern sides, and add

the same to the other. These two shall form two numbers. Then place, at
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two places, the sum of half the southern and northern sides; add to one,

half the difference between the base and the face and subtract it from the

other. These results give two other numbers. These four numbers are to be

multiplied together to get the square of the area (of the quadrilateral).

The said four numbers can be calculated as follows. Find the sum of the

four sides of the quadrilateral, halve it and place at four places. From each

subtract one side, in order. The four numbers thus got are the required four

numbers. (The reason is as follows): Here, half the sum of the four sides is

the sum of half of each of the four sides. From this one full side is subtracted.

Since the sum contains its half, that half will get subtracted. As regards the

other half, it will get subtracted from half the opposite side if that were the

longer (of the two) and the difference will remain. If half the opposite side

were shorter, the difference of the two would have been subtracted from the

sum of the halves of the other two sides as well. In other words, when the face

is subtracted from half the sum of all the (four) sides (sarvadoryutidalam),

the remainder will be the sum of half the southern and northern sides and

the difference between half the base and face. Similarly (in the second of

the above proposed four subtractions), when the base-side is subtracted the

result will be one in which the difference would have been removed. When

from half the sum of all the sides the smaller of the southern and northern

sides is subtracted the result will be the sum of half the base and the face

and the difference of the other two sides. When the longer of the two sides

is thus subtracted, it would be that the said difference is removed. Then

multiply together all the four results. The area of the quadrilateral would

be obtained. Thus has it been said:

sarvadoryutidalam. catuh. sthitam. bāhubhirvirahitam. ca tadvadhāt |

mūlam asphut.aphalam. caturbhuje spas. t.amevamuditam. tribāhuke ||

Half the sum of all the sides is to be placed at four places and from

each, one side is subtracted and the results multiplied together.

The root found would be the rough area of the quadrilateral. In

the case of the triangle (also) it will be the definitive (area).

(L̄ılāvat̄ı, 167)
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7.15.6 Area of triangles

Working in the same manner, the area of the triangle will result. There, the

sum of half the base and half the sum of the sides will be the sarvadoryu-

tidalam (‘half the sum of the sides’). Put it in four places. From three of

these subtract one side each. From the last nothing is to be subtracted.

Now, the product of the simple ‘half the sum of the sides’ and the same

with the base subtracted from it will be mostly equal to the square of the

perpendicular. This will also be the difference between the squares of half

the sum of the base-segments and half the sum of the (other) two sides. The

difference between the squares of a base-segment and the (corresponding)

side is equal to the square of the perpendicular and this is the reason for its

closeness (to the product mentioned). The product of the other two ‘half

the sum of the sides’, (viz., the second and the third) from which the two

sides have been subtracted will be mostly equal to the square of half the

base. When this and the earlier result, nearly equal to the square of the

perpendicular, are multiplied together the square of the area of the triangle

will be got. Here, the amount of decrease in the square of half the base is

compensated by the increase in the square of the perpendicular. Hence the

result got is the square of the triangle.

The rationale of the above is stated below: In a triangle the two sides form

also the hypotenuses to the common perpendicular (to the base) which forms

their common kot.i. Hence the square of each side will be equal to the sum

of the square of the common perpendicular and the square of the respective

base-segment. Hence the difference between the squares of the two base-

segments will be equal to the difference of the squares of the two sides which

are the hypotenuses. Hence, if half the sum of the squares of the two base-

segments is subtracted from half the sum of the squares of the two sides, the

remainder will be just the square of the perpendicular.

Now, if the square of half the sum of the base-segments is subtracted from

the square of half the sum of the sides, the remainder will be more than the

square of the perpendicular. Now, take half the difference between the two

sides and take also half the difference between the two base-segments. Square
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these two quantities and find the difference. This is clearly the amount of

excess over the square of the perpendicular.

Now, in the case of two numbers, twice the product added to the square

of the difference is the sum of the squares. Hence, the product added to

half the square of the difference will be half the sum of the squares. Thus,

in the square of half the sum there will be the product together with the

one-fourth of the square of the difference. Hence, it transpires that half

the sum of squares will be greater than the square of half the sum by the

quantum of the square of half the difference. Therefore in the instance under

consideration, the square of half the difference of the two sides will be less

than the square of half their sum; similarly the square of half the difference

between the base-segments will be less than the square of half the base, which

latter is half the sum of the base-segments, the relative difference being equal

to half the sum of the squares. Here, the square of half the difference of the

two base-segments is larger than the square of half the difference of the two

sides. Hence, it is necessary that the other be subtracted from the square of

half the sum of the base-segments. (In the subtraction of a larger number

from a smaller number) what is deficient in the minuend (i.e. the number

from which subtraction is to be made) will be the excess in the remainder

after subtraction. According to this rule, the square of the perpendicular

will be in excess by the difference between the square of half the difference

between the base-segments, and the square of half the difference between

the sides. This will be the case when the squares of halves of the sum of

quantities are subtracted one from the other.

Here, the difference between the squares of the sides of the triangle and

the difference between the squares of the base-segments are equal. Hence,

the result of the product of the sum of the sides by the difference of the

sides, and the product of the sum of the base-segments and the difference

between the base-segments, are equal, for the reason that the product of

the sum of and difference of two numbers is equal to the difference between

their squares. Since the two products are equal, a kind of pramān. a, icchā,

and their phala-s kind of relation-ship can be envisaged amongst these four

numbers. Now, it is definite that the product of the pramān. a-phala and

icchā and the product of icchā-phala and pramān. a are equal. In the present

case, if the sum of the sides is considered as the pramān. a, the pramān. a-phala
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will be the difference between the base-segments, icchā would be the sum of

the base-segments, and the icchā-phala would be the difference between the

sides. The same relationship would subsist even among their squares and the

differences of their squares. Here, it is also definite that the relation between

the difference between sides and the difference between the base-segments,

would be the same as the relation between the sum of the sides and the sum

of the base-segments. The same relationship exists amongst their halves.

Amongst the squares of the halves also the same is the relation. Thus, if

half the square of half the sum of the sides is equal to the square of half the

sum of the base-segments, then, half the square of the difference between the

base-segments will be the square of half the difference of the sides. Similar

is the relationship amongst the difference between the squares of half sums

and the difference between the squares of half their differences.

Here a rule of three can be visualised as follows: The pramān. a is the square

of half the sum of the base-segments; pramān. a-phala is the square of half

the difference between the sides; icchā, would be the difference between the

squares of half the sum of the sides and half the sum of the base-segments; the

icchā-phala would be then the difference of the squares of half the difference

between the base-segments and of half the difference between the sides. This

icchā-phala is, here, the excess in the square of the perpendicular (mentioned

above).

Therefore, the deficiency in the square of half the base should be compen-

sated by utilising the above multipliers and divisors. Here, square of half

the base is the multiplicand, the multiplier is the square of half the differ-

ence between the sides, and the divisor is the square of half the sum of the

base-segments. Here, since the multiplicand is the same as the divisor, the

multiplier and the result will also be the same. And, that is the square of

half the difference between the two sides. Now, the square of half the differ-

ence between the sides has to be subtracted from the square of half the base.

When, with this square of half the base, the square of the perpendicular

to which is added the difference of the squares of half the differences, the

square of the area of the triangle is got. (Here is the process involved in the

above): Now, (first) is derived the square of half the base which is deficient

by the square of half the difference between the sides. Then, from among

the two sides subtracted from the ‘half-sum-of-all-the-sides’ (sarvadoryuti-
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dala), of these two, that from which the shorter side had been subtracted

will contain in it half the base with half the difference of the sides. And

in the ‘half-sum-of-all-the-sides’ from which the longer side had been sub-

tracted will contain in it, half the base less half the difference between the

sides. Then, when these two, viz., one of which is half the base less half the

difference between the sides and the other with the same added to it, are

multiplied, the result will be the square of half the base less the square of

half the difference between the sides: The above is according to the rule:

is. t.onayugrāśivadhah. kr. tih. syādis. t.asya vargen. a samanvito vā |

Suppose a number has added to it a desired number and also sub-

tracted from it. The product of the two together with the square

of the desired number would give the square of the number.

(L̄ılāvat̄ı,20)

Now, the square of the perpendicular contains added to it the difference of

the squares of half the differences. Now, to separate the said difference of

squares of half the differences, that particular multiplier and divisor which

are used, the same multiplier and divisor should be made the multiplier and

divisor merely of the square of the half of the base, and not the multiplier

and the divisor for the square of the perpendicular. For example: When 5

(the multiplicand) is multiplied by 3 (the multiplier), if actually the multi-

plicand is taken as 6, being the multiplicand increased by its one-fifth, the

multiplication should be done with the multiplier, 3, with one-sixth of it re-

duced from it, i.e., by 21

2
. In the same manner, here, too, one has to derive

the result that has to be subtracted from merely the square of half the base.

It therefore follows that the area of the triangle derived by using the rule

sarvadoryutidala (‘half the sum of all the sides’) is indeed accurate.

7.16 Derivation of the Sampāta-śara, arrow of the

intercepted arc when two circles intersect

Now there is another rule of a similar nature:
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grāsone dve vr. tte grāsagun. e bhājayet pr. thaktvena |

grāsonayogalabdhau sampāta-śarau parasparatah. ||

(When one circle intersects another circle), multiply the diam-

eters of the two circles each diminished by the erosion (grāsa)

and divide (each result) by the sum of the diameters of the two

circles after each has been diminished by the decrease. Then are

obtained the arrows of the area (of the two circles) intercepted

by each other.

(Āryabhat. ı̄ya, Gan. ita, 18)

Construct a smaller circle in such a manner that a little of it overlaps a

portion of a bigger circle. Draw a diameter line passing through the centres

of the two circles and extending up to their circumferences. Join the points

at which the circles intersect to get a line perpendicular to the diameter-

line. This line will be a chord common to both the circles. The diameter-

bits, from the point where this chord and the diameter-line meet, to the

two circumferences, are the śara-s (arrows, Rversines). There the śara of

the smaller circle will be larger and that of the larger circle will be smaller.

Diameter minus śara (of the two circles) will be otherwise, that of the smaller

circle being smaller and that in the larger circle being larger.

Here, the product of the respective śara and diameter-minus-́sara will be the

square of the common half-chord. The rule here is:

vyāsāt śaronāt śarasaṅgun. ācca mūlam. dvinighnam. bhavat̄ıha j̄ıvā |

The root of the product of the diameter-minus-́sara and the śara,

multiplied by two will be the full-chord.

(L̄ılāvat̄ı, 204)

Hence, the śara in the larger circle will be smaller than the śara in the

smaller circle, in proportion as the diameter-minus-́sara in the smaller cir-

cle is smaller than that in the larger circle, since their products are equal.

Just as in a triangle, the sum of the sides and the sum of the base-segments

are proportionately related to half the difference between the base-segments

and that between the sides. The relationship here is similar to that. Here,
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the sum of the two śara-s is called grāsa (overlap). The relationship, be-

tween the diameter-minus-grāsa-s (in the two circles), is the same as the

relationship between the diameter-minus-́sara-s (in them). Here, when the

larger śara has been subtracted from the larger diameter-minus-́sara, and

the smaller śara from the smaller diameter-minus-́sara, the remainders are

the respective diameter-minus-grāsa. Hence, diameter-minus-́sara is sim-

ilar to the diameter-minus-grāsa. When the śara-s are not known sepa-

rately, they can be derived by the application of the rule of three with the

diameter-minus-grāsa of the two circles as pramān. a-phala, the sum of the

two diameter-minus-grāsa-s as the pramān. a and the grāsa as icchā. The

śara in one circle can be got from the diameter-minus-grāsa of the other and

the other śara (from the second diameter-minus-grāsa). Thus the method of

deriving the śara from the grāsa (has been stated).

7.17 Derivation of the shadow

There is another rule of similar import:

chāyayoh. karn. ayorantare ye tayorvargavísles. abhaktā rasādr̄ıs. avah. |

saikalabdhe padaghnam. tu karn. āntaram. bhāntaren. onayuktam. dale

stah. prabhe ||

Find the difference between the two shadows. Find the difference

between the two shadow-hypotenuses. Square the two differences

and subtract one from the other, with that divide 576 (= 12 ×

12 × 4). Add 1 to the quotient and find the root. With this

root multiply the difference between the hypotenuses. When

this product is added to the difference between the shadows or

subtracted therefrom and halved, (the length of) the two shadows

are got.

(L̄ılāvat̄ı, 238)

On level ground, place a (lighted) lamp higher than the 12 inch gnomon.

At some distance from it, place the 12-inch gnomon. Place another gnomon

of the same height at a still more distance than the first one. It will be

seen that the shadow cast by the nearer gnomon is shorter and that by the
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distant gnomon is longer. Here, the distance from the tip of the shadow

to the upper tip of the gnomon is called shadow-hypotenuse (chāyā-karn. a).

(It is also noted that) the shadow-hypotenuse is longer when the shadow is

longer, since the (heights of) the gnomons are equal.

Now, consider the sum of the two shadows as the base, the hypotenuses as the

sides and the gnomon as the altitude. Consider also the difference between

the shadows as the difference between the base-segments and the differences

between the hypotenuses as the difference between the sides. Now, square

these two differences and subtract one from the other and take the remainder

of the above as the pramān. a; take as pramān. a-phala the difference of the

squares of the sum of the shadows and the sum of the hypotenuses; and, take

as icchā the square of the difference between the hypotenuses. Then apply

the rule of three. The square of the sum of the shadows will result as the

icchā-phala. (It is to be noted that) when the pramān. a-phala is divided by

the pramān. a and the multiplication is done after taking the square root, then

the difference between the hypotenuses has to be multiplied. The result will

be the sum of the shadows. It has therefore to be derived in that manner.

Now, the square of the sum (of the shadows) is the square of the gnomon

multiplied by 4, with the difference of the squares of the differences added

to it. Since the divisor is to be added to the dividend, 1 should be added

to the quotient to get the same result. Hence only four times the square of

the gnomon is divided. The application of the rule of three follows from the

same kind of explanation given above. This is the similarity here with the

earlier derivation of the square of the area.

7.18 Area of the surface of a sphere

Two rules have been enunciated earlier, viz., first, to the effect that from the

sum of pin. d. ajyā-s (Rsines) the sum of the khan. d. āntara-s (second order Rsine

differences) can be derived, and secondly that if the circumference and the

diameter in one circle are known it is possible to apply the rule of three to

derive them for the desired circle. It is explained here how these two can be

used to obtain the surface area of a sphere.
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Now, a right-round sphere is called a gola. Conceive of two circles at the

centre of the sphere, one east-west, and the other, north-south. Conceive

also some circles at short distances towards the north-south of the central

east-west circle. The distances of all the parts of these circles to the east-

west circle should be the same. Hence, each of these circles will be a little

smaller than the previous circle. Continuing in the same manner, conceive of

a number of circles of different sizes, the gap between successive circles being

the same, each circle touching the lateral sides of the sphere. Continue the

process till the northern and southern extremeties of the sphere are reached.

The interstices between these circles will be equal and clearly visible on the

north-south circle. Such being the situation, cut the gap between two circles

which is circular in form at any place, and stretch the piece flat. It would,

then, be seen that a quadrilateral of equal altitude (sama-lamba, trapezium)

is formed, with the circumference of the longer circle as the base, that of the

smaller circle as the face and the arc-bits of the interstice on the north-south

circle as the sides. Now, cut the (triangular) external extension on one side

of the strip and fix it, upside down, at the end of the extension at the other

end of the strip. There will then be formed a rectangle with half the sum of

the face and base of the earlier figure as the length and the perpendicular

distance between them as the breadth. Now conceive of the other interstices

(between the adjacent circles) also as rectangles. The breadth of all (the

rectangles) will be equal, but the length (of the rectangles) will be varied.

Now, the area (of a rectangle) is the product of its length and breadth. Since,

in the present case, the breadth is the same (for all the rectangles) if we add

up all the lengths and multiply by the breadth, the result will be the surface

area of the sphere.

The problem now is to know the number of interstices, (in other words, the

number of rectangular strips), and their lengths and breadth. Now, the radii

of the several circles conceived will be the half-chords (Rsines) of a circle of

the radius of the sphere. Therefore, if these Rsines are multiplied by the

circumference of the sphere and divided by the radius of the sphere, the

results will be (the circumference of the) circles with the respective Rsines

as their radii. And, taking the Rsines of the middle of the interstices, we

get the lengths of the said rectangles. When the sum of these Rsines is
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multiplied (by the circumference of the circle and divided by the radius of

the sphere) the sum of the lengths of all the rectangles will be got. Multiply

this by the (common) breadth. The result will be the sum of the areas (of all

the rectangles). Now, the several interstices of the circles on the north-south

circle will be the chord-bits in the circumference of the sphere. And the

(common) Rsine of these arc-bits will be the breadth of all the rectangles.

Now, to the method of deriving the sum of the Rsines: With the sum of the

second differences (khan. d. āntara-yoga) multiply the square of the radius of

the sphere and divide by the square of the full-chord of the arc-bit. The result

is the sum of Rsines (ardhajyā-yoga). Then, multiply it by the breadth of

the rectangle; this breadth is the Rsine of the arc-bit. The sum of the second

differences (khan. d. āntara-yoga) is the first khan. d. a-jyā. Since the arc-bits are

very minute, they will practically be equal to the full-chord. These two are

to be the multipliers and the square of the full-chord is the divisor. But

neither multiplication nor division is necessary here, and the result will only

be the square of the radius. It has then to be multiplied by the circumference

and divided by the radius. The result will be the radius (multiplied by the

circumference). Since the surface areas of both the hemispheres have to be

found, the radius should be doubled. Thus, it results that when the diameter

of the sphere is multiplied by the circumference of the sphere, the surface

area of the sphere is got.

7.19 Volume of a sphere

Here-in-below is stated the derivation of the volume of the interior of a

sphere. Now, cut the sphere (into slices) along circles as envisaged above

for calculating its surface area. A number of flat circular slices will result.

While deriving the surface area, if the circles had been envisaged east-west,

the pieces shall have to be cut on the north-west circumference, and that

too, at equal distances. The thickness of the slices should (also) be equal.

This being the case, after obtaining the area of every circle (a section of each

slice), and taking the thickness of each as one unit, and adding the results,

the volume of the sphere can be obtained.
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7.19.1 The area of the circle

Now is stated the method to derive the square of the area of a circle. Cut the

circle equally into two across a diameter. In both halves cut (equal) sections

from the centre to the circumference. The divisions would be spread out at

the circumference and pointed at the centre. Then, taking hold of the ends

of the two halves, straighten them up and join one into the other, so that

the pointed parts of one go into the cavities of the other. This arrangement

will result in the shape of a rectangle having half the circumference of the

circle as length and the radius as breadth. Thus, by multiplying half the

circumference by the radius is obtained the area of the circle.

7.19.2 Derivation of the volume of a sphere

Hence, by multiplying the square of the Rsines (the radii of each of the several

circular slices into which the whole body of the sphere has been sliced) by

the circumference of the sphere and dividing by the diameter of the sphere,

the surface area of the respective slices will be got. The addition of all these

will give the volume of the sphere (since the thickness of each slice has been

taken as the unit).

Now, for the derivation of the squares of the Rsines. When the śara and

the diameter-minus-́sara are multiplied, the result will be the square of the

Rsine, since the sum of the kot.i and karn. a is diameter-minus-́sara and the

difference between them is the śara. Now, when the śara and diameter-

minus-́sara are separately squared, added and subtracted from the square

of the diameter, and the result halved, the square of the Rsine is got, for

the rule is that the difference between the square of the sum and the sum of

squares (of two numbers) would be twice the product (of the said numbers).

Now, (by conceiving of the number of slices of the sphere to be large), the

circles should grow gradually smaller and smaller and their (common) thick-

ness made infinitesimal (an. u-prāya). Then, the first śara would be just one

atom. The further śara-s will increase by one atom each. Hence, one, two,
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etc., (ekādyekottara) sums of atoms will be the first, second, etc. śara-s.

Hence, the sum of squares of the śara-s is the sum of squares of consecu-

tive numbers (varga-saṅkalita). Here, the diameter provides the number of

terms of the series (gaccha). The diameter is divided infinitesimally and the

varga-saṅkalita is done. Twice the result of this summation would be the

sum of the squares of the śara and the sum of the squares of the diameter-

minus-́sara. Here, the decreasing series from 1 to the radius is that of the

śara and increasing one from the radius is that of the diameter-minus-́sara.

If however, it is taken that the increasing series is śara and the decreasing

series is considered as diameter-minus-́sara, then, the sum of the squares of

the śara and the sum of the squares of diameter-minus-́sara would be equal.

Hence, it was directed to double the summation of (squares of) consecutive

numbers.

It might also be taken that both (the śara and the diameter-minus-́sara) are

śara-s, one is the larger śara, the other is the smaller śara; and that, for

both, the chord is common. In that case, the product of the śara and the

diameter-minus-́sara is the square of the Rsine. There is the rule:

vr. tte śarasam. vargo ′rdhajyāvargassa khalu dhanus.oh. |

In a circle (when a chord divides it into two arcs), the product of

the śara-s of the two arcs is equal to the square of the half-chord.

(Āryabhat. ı̄ya, Gan. ita, 17)

Then again, the square of the Rsine will result when the square of the śara

and that of the diameter-minus-́sara have both been subtracted from the

square of the diameter and the result halved, for the reason that the dif-

ference between the sum of the squares (of two numbers) and the square of

their sum would give twice their product. Therefore, the square of the di-

ameter should be multiplied by the desired number of the square of Rsines.

The result will be the cube of the diameter which has been divided into

infinitesimal parts. Since the division subsequently has to be made by the

infinitesimal, the above result will be only the cube of the diameter. Then,

from that, twice the varga-saṅkalita has to be subtracted. Now, the varga-
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saṅkalita is one-third the cube. Since that has to be doubled and subtracted,

the remainder will be one-third the cube. Since this has to be halved the

result would be one-sixth the cube. Therefore the cube of the diameter di-

vided by six would be the sum of the squares of all the Rsines (the radii of

the infinitesimal slices) of the sphere. This has, now, to be multiplied by the

circumference and divided by the diameter. Hence the diameter need not

be cubed in the beginning; it would be enough to square it, since a division

shall have to be done later (by the diameter itself). Thus the square of the

diameter multiplied by the circumference and divided by 6 would give the

volume of the sphere. Thus has been explained, the volume of the sphere

and its surface area, which are obtained in the context of the summation

(saṅkalita) of square of Rsines, and using the addition of the squares of

śara-s.

[Thus ends Chapter Seven entitled Derivation of Sines]
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Prologue

Yuktibhās. ā is written in an extremely lucid style and there is not really
much need for any further explanation regarding the meaning or import
of the text. The following explanatory notes are appended to the English
translation mainly to elucidate the processes set forth in the text by means
of equations, diagrams and notations currently employed in mathematics
and astronomy. They are in the form of supplementary explanatory notes
which are to be read along with the translation and are not meant to be
an independent exposition of the contents of Yuktibhās. ā. Also while writing
these explanatory notes we have restricted our objective more or less exclu-
sively to elucidating the text, except for offering a few comments which are
generally relegated to the footnotes.1

While preparing these notes for the Mathematics part (Chapters 1-7) of
Yuktibhās. ā, we have made extensive use of the notes in Malayalam given
in the seminal edition of the Gan. itādhyāya of Yuktibhās. ā by Ramavarma
(Maru) Thampuran and A. R. Akhileswarayyar.2 We have also made liberal
use of many of the modern studies of Yuktibhās. ā especially the pioneering
works of C. T. Rajagopal and his collaborators3 and the recent study by
S.Parameswaran.4

1In order to place the contents of Yuktibhās. ā in the larger tradition of upapatti or Proofs
in Indian Mathematics, an Epilogue on this subject is appended at the end of the Explana-
tory Notes in this Volume. Similarly, in order to elucidate the model of planetary motion
discussed in the Astronomy part of Yuktibhās. ā an Epilogue on Nı̄lakan. t.ha’s Revision of
the Traditional Indian Planetary Model is appended at the end of the Second Volume.

2H. H. Ramavarma (Maru) Thampuran and A. R. Akhileswarayyar, Eds., Yuktibhās. ā,
Mangalodayam Ltd., Thrissur 1948.

3See for instance, the following: K. Mukunda Marar, ‘Proof of Gregory’s Series’,
Teacher’s Magazine 15, 28-34, 1940; K. Mukunda Marar and C. T. Rajagopal, ‘On the
Hindu Quadrature of the Circle’, J.B.B.R.A.S. 20, 65-82, 1944; K. Mukunda Marar and
C. T. Rajagopal, ‘Gregory’s Series in the Mathematical Literature of Kerala’, Math Stu-
dent 13, 92-98, 1945; A. Venkataraman, ‘Some interesting proofs from Yuktibhās. ā’, Math
Student 16, 1-7, 1948; C. T. Rajagopal ‘A Neglected Chapter of Hindu Mathematics’,
Scr. Math. 15, 201-209, 1949; C. T. Rajgopal and A. Venkataraman, ‘The Sine and
Cosine Power Series in Hindu Mathematics’, J.R.A.S.B. 15, 1-13, 1949; C. T. Rajagopal
and T. V. V. Aiyar, ‘On the Hindu Proof of Gregory’s Series’, Scr. Math. 17, 65-74,
1951; C. T. Rajagopal and T. V. V. Aiyar, ‘A Hindu Approximation to Pi’, Scr.Math. 18,
25-30, 1952. C. T. Rajagopal and M. S. Rangachari, ‘On an Untapped Source of Medieval
Keralese Mathematics’, Arch. for Hist. of Ex. Sc. 18, 89-101, 1978; C. T. Rajagopal and
M. S. Rangachari, ‘On Medieval Kerala Mathematics’, Arch. for Hist. of Ex. Sc. 35(2),
91-99, 1986.

4S. Parameswaran,The Golden Age of Indian Mathematics, Kochi 1998.



It is generally believed that the remarkable work of the Kerala School of As-
tronomy and Mathematics was first brought to the notice of modern schol-
arship by C. M. Whish in 1830s.5 However it appears that from the early
decades of the 19th century many British observers had noticed and reported
on the Indian mathematicians’ knowledge of several infinite series.6 Inciden-
tally Whish had noted in his paper that “A further account of Yucti Bhasa,
the demonstrations of the rules for the quadrature of the circle by infinite
series, with the series for the sines, cosines and their demonstrations, will
be given in a separate paper”. However he does not seem to have published
any further paper on this subject.

The work of Kerala School was completely ignored by modern scholarship
for over a century till it was resurrected by the pioneering work of C. T. Ra-
jagopal and his collaborators in the 1940’s. Following the work of Rajagopal
and his collaborators, there have been a number of studies which discuss
some of the proofs in the Mathematics Part of Yuktibhās. ā, and these have
contributed to a better understanding and appreciation of the work of the
Kerala School of Mathematics.7 We have made use of some of these studies
also, while preparing these Explanatory Notes.

5C. M. Whish ‘On the Hindu Quadrature of the Circle, and the infinite series of the pro-
portion of the circumference of the diameter exhibited in the four Shastras, the Tantrasan-
graham, Yucti Bhasa, Carana Paddhati and Sadratnamala’, Trans. Roy. As. Soc. (G.B.) 3,
509-523, 1834. As regards the year of publication of this article, refer to fn.6 on page xxxiii.

6See, for instance, John Warren, Kāla Saṅkalita, Madras 1825, p 92-3, 330-1.
7Apart from the work of Parameswaran cited earlier, we may here cite the follow-

ing: T. A. Sarasvati Amma, Geometry in Ancient and Medieval India, Varanasi 1979;
T.Hayashi, T. Kusuba and M. Yano, ‘The Correction of the Mādhava Series for the Cir-
cumference of a Circle’, Centauras, 33, 149-174, 1990; Ranjan Roy, ‘The Discovery of
the Series formula for π by Leibniz, Gregory and Nīlakan. t.ha’, Math. Mag. 63, 291-
306, 1990; V. J. Katz, ‘Ideas of Calculus in Islam and India’, Math. Mag. 68, 163-174,
1995; V. J. Katz, A History of Mathematics, 2nd Ed., Addison Wesley Longman, 1998;
G. C. Joseph, The Crest of the Peacock: The Non-European Roots of Mathematics, 2nd
Ed., Princeton 2000; C. K. Raju, ‘Computers, Mathematics Education, and the Alterna-
tive Epistemology of the Calculus in the Yuktibhās. ā’, Phil. East and West 51, 325-362,
2001; D. F. Almeida, J. K. John and A. Zadorozhnyy, ‘Keralese Mathematics: Its Pos-
sible Transmission to Europe and the Consequential Educational Implications’, J. Nat.
Geo. 20, 77-104, 2001; D. Bressoud, ‘Was Calculus Invented in India?’, College Math.
J. 33, 2-13, 2002; J. K. John, ‘Derivation of the Sam. skāras applied to the Mādhava Se-
ries in Yuktibhās. ā’, in M. S. Sriram, K. Ramasubramanian and M. D. Srinivas (eds.), 500
Years of Tantrasaṅgraha: A Landmark in the History of Astronomy, Shimla 2002, p 169-
182; G. G. Emch, R. Sridharan, and M. D. Srinivas (eds.), Contributions to the History of
Mathematics, New Delhi, 2005. Some aspects of the Astronomy Part of Yuktibhās. ā are dis-
cussed in K. V. Sarma and S. Hariharan, ‘Yuktibhās. ā of Jyes.t.hadeva: A book of Rationale
in Indian Mathematics and Astronomy in Analytical Appraisal’, IJHS, 26, 185-207, 1991.



Chapter 1

The Eight Mathematical

Operations

1.5 Multiplication: In general

1.5.2 First method of multiplication

This may be illustrated by the following example, where 234 is the multiplier
and 647 is the multiplicand.

2 3 4
6 4 7

1 2
1 8

2 4
1 4 0 4
2 3 4

4 7
1 4 0 4

8
1 2

1 6
1 4 9 7 6

The multiplier and multiplicand are to be
placed as shown with the first place of the
multiplier above the last place of the mul-
tiplicand. The digit (6) at the last place of
the multiplicand is first multiplied by the
digit (2) at the last place of the multiplier,
then by the next digit (3) and finally by the
digit (4) at the first place of the multipiler.

Then the digit at the last place of the mul-
tiplicand is discarded and the first place of
the multiplier is placed above the penulti-
mate place of the multiplicand. The digit
in the penultimate place of the multipli-
cand is multiplied by the different digits of
the multiplier.
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1 4 9 7 6
2 3 4

7
1 4 9 7 6

1 4
2 1

2 8
1 5 1 3 9 8

The process is repeated till the different
digits of the multiplier multiply the digit
at the first place of the multiplicand .

If all the products are added, with the cor-
rect place values in mind, the product of
the multiplier and the multiplicand is ob-
tained.

1.5.3 Second method of multiplication

This can be illustrated by the following example where, again, 234 is the
multiplier and 647 is the multiplicand.

647 × 200 = 129400
647 × 30 = 19410
647 × 4 = 2588
647 × 234 = 151398

1.5.4 Third method of multiplication

This can be illustrated by considering the same example as above.

647 × 110 = 71170
647 × 124 = 80228
647 × 234 = 151398

1.5.5 Representation of the product as an area

Figure 1.1 represents the product 11 × 7 = 77.
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Figure 1.1: Product as an area.

1.6 Multiplication: Special methods

1.6.1 Multiplication: First special method

Let a be the multiplicand and b the multiplier and p the desired number
added or subtracted from b. Then,

a b = a(b ∓ p) ± ap. (1.1)

This is illustrated in Figure 1.2 for multiplicand 9, multiplier 5, when desired
number 2 is subtracted from 5.

9 × 5 = 9 × (5 + 2) − 9 × 2.

= −

(9 x 5)

9 x (5 + 2)

(9 x 2)

Figure 1.2: Illustrating the first special method.
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1.6.2 Multiplication: Second special method

Let a be the multiplicand and b the multiplier and p a desired number
substracted from a and q is a desired number added to b. Then

ab = (a − p)(b + q) − (a − p)q + pb. (1.2)

This is illustrated in Figure 1.3 for multiplicand 9, multiplier 5, when desired
number 2 is subtracted from 9 and desired number 3 is added to 5.

9 × 5 = (9 − 2) × (5 + 3) − (9 − 2) × 3 + 2 × 5.

= − +

(9 − 2) x (5 + 3)                  

(9 x 5)                (2 x 5)
(9 − 2) x 3

Figure 1.3: Illustrating the second special method.

1.6.3 Multiplication: Third special method

Let a be the multiplicand and b the multiplier and let the quotient of b
divided by desired number d be added to (or subtracted from) b to give a
new multiplier. Then we have to subtract from (or add to) this new product
the quotient of it when divided by d± 1 (the divisor ±1) to get the product
of a and b.

ab = a

(

b ±
b

d

)

− (±)a

(

b ± b
d

d ± 1

)

. (1.3)

This is illustrated for b = 12 = d. Now,

a

(

12 +
12

12

)

= a × 13.
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Hence, what is to be subtracted from the above, is

(a × 13)

13
= a

(

12 + 12

12

12 + 1

)

.

In other words

a

(

12 +
12

12

)

− a

(

12 + 12

12

)

12 + 1
= a × 13 −

(a × 13)

13
= a × 12.

Similarly

a

(

12 −
12

12

)

+ a

(

12 − 12

12

)

12 − 1
= a × 11 +

a × 11

11
= a × 12.

1.6.4 Multiplication: Fourth special method

Let a be the multiplicand and b the multiplier and let the quotient of b
divided by a desired number d be multiplied by a number m and the result
added to (or subtracted from) b to give a new multiplier. Then we have to
subtract from (or add to) this new product m times the quotient of it when
divided by d ± m (the divisor ±m) to get the product of a and b.

ab = a

(

b ± m
b

d

)

− (±) m



a

(

b ± m b
d

)

d ± m



 . (1.4)

This is illustrated for b = 12 = d and m = 5.

a

(

12 + 5 ×
12

12

)

− 5 × a

(

12 + 5 × 12

12

)

12 + 5
= a × 17 − 5 ×

a × 17

17
= a × 12.

Similarly

a

(

12 − 5 ×
12

12

)

+ 5 × a

(

12 − 5 × 12

12

)

12 − 5
= a × 7 + 5 ×

a × 7

7
= a × 12.
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1.6.5 Multiplication: Fifth Special method

Let a be the multiplicand and b the multiplier and let b be divisible by d
and the quotient be q. Then

ab = a

(

b

d

)

d = a q d . (1.5)

In particular, for b = 12 = 3 × 4,

a × 12 = (a × 3) × 4. (1.6)

1.8 Square

1.8.1 First method of squaring

The process can be illustrated by considering the following example.

1 2 3
1 4 6

2 3
1 4 6

4 12
3

1 4 6
4 12

9
1 5 1 2 9

Suppose the number to be squared is 123. First,
place the square of the (first) digit 1 in the
last place below itself. Then, below each of the
succeeding digits, place twice the product of the
digit with the last digit.

Then discard the digit 1, move the rest of
the digits 23 by one place and repeat the process.

Then discard the next digit 2 and move the
remaining digit 3 by one place and repeat the
process.

Adding the different results we get the value
of the square (123)2 = 15129.

Note that in the above process the squares
of the different digits 12, 22, 32, occur at the odd
places.
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1.8.2 Second method of squaring

This method is based on successively partitioning the number into two com-
ponents. For instance, if the number is a + b where a stands for the number
corresponding to the digit at the last place, and b represents the number
obtained by replacing the last digit by zero, then

(a + b)2 = a2 + 2ab + b2. (1.7)

This can be seen from the ks.etra in Figure 1.4.

a b

a

b

Figure 1.4: Square of a sum.

The square of a number such as 123 can be obtained by successively parti-
tioning the number as follows.

(123)2 = (100 + 23)2 = (100)2 + 2 × 100 × 23 + (23)2

(23)2 = (20 + 3)2 = (20)2 + 2 × 20 × 3 + 32.

This can be seen from the ks.etra in Figure 1.5 where, for the sake of conve-
nience, we have displayed the square (12 + 8 + 5)2.

1.8.3 Third method of squaring

Let a number be divided into the sum of two components a + b. Then its
square is given by

(a + b)2 = 4ab + (a − b)2. (1.8)
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12

12 x 8

12 x 5

12 x 8 12 x 5

8 x 5

8 x 58

5

2

2

2

12 8 5

Figure 1.5: Square of a triple sum.

This can be seen from the ks.etra in Figure 1.6. In the square of side a + b,
four rectangles of sides a,b are placed as shown. This leaves a central square
of side a − b.

b

a − b)(

a

Figure 1.6: Third method of squaring.

Since it has already been shown that

(a + b)2 = a2 + 2ab + b2,

it follows that

a2 + b2 = 2ab + (a − b)2. (1.9)
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1.8.4 Bhujā-kot.i-karn. a-nyāya

Now it can be shown that the sum of the squares of the sides of a rectangle
is equal to the square of its diagonal. This result (the so called Pythagoras
Theorem) is referred to as the Bhujā-kot.i-karn. a-nyāya. For this consider
the ks.etra in Figure 1.7, which is the same as the Figure 1.6, except that we
draw those diagonals of the rectangles which do not meet the corners of the
(larger) square.

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������� ���������� ��������a b

Figure 1.7: Bhujā-kot.i-karn. a-nyāya.

If we now cut along these diagonals, what remains is the square of the
diagonal and what has been cut off are four triangles each of area 1

2
ab.

Thus,

(Diagonal)2 = (a + b)2 − 4

(

1

2

)

a b = a2 + b2.

1.8.5 Fourth method of squaring

If it is desired to find the square of a, add and subtract from it a number b
and take the product of the resulting numbers. Then the square of a can be
obtained by adding the square of b to this product.

a2 = (a + b)(a − b) + b2. (1.10)

This can be seen from the ks.etra in Figure 1.8.
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b

ba

b
2

Figure 1.8: Fourth method of squaring.

1.8.6 Difference of squares of two numbers is the product of

their sum and difference

b

(a − b)

a

 b x  (a − b)

b 
x 

 (
a 

−
 b

)

2

Figure 1.9: Difference of squares.

Let a be a number and b a component of it. Consider the ks.etra in Figure
1.9, which is similar to the one we used earlier while dicussing the method
of squaring by partitioning a number into two components. We see that the
difference between the squares of the larger number a and its component b
is equal to the sum of the square of the difference (a − b) together with the
two rectangles with sides b and a − b. Thus

a2 − b2 = (a − b)2 + 2b(a − b)

= (a − b)(a − b + 2b)

= (a − b)(a + b). (1.11)
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1.8.7 Sum of the progression of odd numbers is a square

From the above result that the difference in the squares of two numbers is
the product of their sum and difference, it follows that

12 − 02 = (1 + 0)(1 − 0) = 1,

22 − 12 = (2 + 1)(2 − 1) = 3,

32 − 22 = (3 + 2)(3 − 2) = 5.

and so on. Hence

1 = 12,

1 + 3 = 22,

1 + 3 + 5 = 32.

Therefore the sum of the progression of odd numbers is a square. This is an
arithmetic progression with initial term 1 and common difference 2. This
feature can also be seen in the corresponding śred. h̄ı-ks.etra in Figure 1.10.

����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������

1

3

5

7

9

Figure 1.10: Śred. h̄ı-ks.etra.

1.9 Square-root

First, the process for calculating the square may be reformulated as follows,
where the calculation starts with the first place or the last digit (instead of
the last place or the first digit as was described earlier in Section 1.8.1).
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1 2 3
6 12 9

1 2
6 12 9

4 4
1

6 12 9
4 4

1
1 5 1 2 9

Suppose that the number to be squared is 123.
First, place the square of the(last) digit 3 in the
first place below itself. Then, below each of the
preceding digits, place twice the product of the
digit with the last digit.

Then discard the last digit 3 of the number, move
the rest of the digits 12 by one place above and
repeat the process.

Then discard the last digit 2 and move up the re-
maining digit 1 by one place and repeat the pro-
cess.

Adding the different results we get the value of the
square
(123)2 = 15129.

The process of obtaining the square-root is exactly the reverse process (vyasta-
vidhi) of the above and is illustrated by the same example.

1 2 3
1 5 1 2 9
1

5 1
4
1 1

4
7 2 9
7 2

9
9

When calculating the square-root of 15129 sub-
tract from the last odd place (1) the nearest square
(1) and place its root (1) above the number in the
line which will represent the square root.

Divide the next place by twice the root found so
far, 2 × 1 = 2, and place the quotient (2) next to
the first digit placed above. Subtract the square
22 = 4 from the next place.

Divide the next place by twice the number at the
root’s place (2×12 = 24) and place the quotient (3)
as the next digit of the root. Subtract the square
of the quotient (32 = 9) from the next place.

Since there are no more digits, the number found
in the root’s place is the square root. That is√

15129 = 123.
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1.10 Root of sums and difference of squares

To calculate the square root of a2 ± b2, the procedure is similar to the one
stated above and involves working out a sequence of divisors. First divisor
is 2a. Divide b2 by this and from the remainder subtract the square of the
quotient. This will be the next dividend. The next divisor is 2a± twice the
quotient, added or subtracted at the appropriate place. The process is to be
repeated. Half the divisor at the last step is the root.

It has also been remarked that we can also think of the given number as
being partitioned into sum of two squares (sthāna-vibhāga) and follow the
above process.1

1Note that the same process can be employed for finding the root of a2 ± b, and also
for calculating successive approximations to the roots.
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The Ten Questions and Answers

Let a and b be two numbers and, for convenience, let us assume that a ≥ b.
Let,

p = a + b, q = a − b, r = ab

s = a2 + b2 t = a2 − b2. (2.1)

Given any two of the five quantities p, q, r, s, t, how to find a and b? These
are the ten questions.

Qn. 1. If p, q are given then,

a =
(p + q)

2
and b =

(p − q)

2
. (2.2)

Qn.2. If p, r are given, then

(p2 − 4r)
1

2 = [(a + b)2 − 4ab]
1

2 = a − b = q. (2.3)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.3. If p, s are given, then

(2s − p2)
1

2 = [2 (a2 + b2) − (a + b)2]
1

2 = a − b = q. (2.4)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.4. If p, t are given, then

t

p
=

(a2 − b2)

a + b
= (a − b) = q. (2.5)
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And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.5. If q, r are given, then

(q2 + 4r)
1

2 = [(a − b)2 + 4ab]
1

2 = a + b = p. (2.6)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.6. If q, s are given, then

(2s − q2)
1

2 = [2(a2 + b2) − (a − b)2]
1

2 = a + b = p. (2.7)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.7. If q, t are given, then

t

q
=

(a2 − b2)

a − b
= (a + b) = p. (2.8)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.8. If r, s are given, then first calculate

(s − 2r)
1

2 = [(a2 + b2) − 2ab]
1

2 = (a − b) = q. (2.9)

Then calculate

(q2 + 4r)
1

2 = [(a − b)2 + 4ab]
1

2 = a + b = p. (2.10)

And, we can follow the rest of the procedure as in Qn.1 to calculate a, b
from p, q.

Qn.9. If r, t are given, then calculate

(t2 + 4r2)
1

2 = [(a2 − b2)2 + 4(ab)2]
1

2 = a2 + b2 = s. (2.11)

Then we can follow the procedure as in Qn.1, to calculate a2, b2 as

a2 =
(s + t)

2
, b2 =

(s − t)

2
, (2.12)
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from which a, b can be calculated.

Qn.10. If s, t are given, then, as in Qn.9,

a2 =
(s + t)

2
, b2 =

(s − t)

2
, (2.13)

from which a, b can be calculated.



Chapter 3

Arithmetics of Fractions

If we have to add or subtract one-fourth(denoted 1

4
) and one fifth (denoted

1

5
), we have to render them into same denomination (savarn. ana). This is

done by noting that one-fifth of one-fourth and one-fourth of one-fifth are
both identical, namely one-twentieth (denoted 1

20
). This is represented in

Figure 3.1.

1 1/4 1/20 1/5 1

1/4
1/5

Figure 3.1: Savarn. ana.
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Thus
1

4
+

1

5
=

5

20
+

4

20
=

9

20
, (3.1)

and
1

4
−

1

5
=

5

20
−

4

20
=

1

20
. (3.2)
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Rule of Three

4.1 Nature of rule of three

The typical problem involving the rule of three is the following: When 5
measures of paddy is known to yield 2 measures of rice (and when it is
presumed that the same relation will persist always (vyāpti)) how many
measures of rice will be obtained from 12 measures of paddy?

Here pramān. a = 5, pramān. a-phala = 2, icchā = 12 and we have to find the
icchā-phala.

If for 5 measures of paddy 2 measures of rice are obtained, then for 1 measure

of paddy 2

5
measures of rice (

pramān. a-phala
pramān. a

) will be obtained. Therefore

for 12 measures of paddy 12 × 2

5
= 24

5
measures of rice will be obtained.

icchā-phala =
icchā × pramān. a-phala

pramān. a
. (4.1)

This is the rule of three.

It is said that most of mathematical computations are pervaded by trairāśika-
nyāya, the rule of three, and bhujā-kot.i-karn. a-nyāya, the relation between
the base, height and the diagonal of a rectangle (Pythagoras Theorem).
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Kut.t.ākāra

5.1 Computation of current Kali day

The following is the method of computing ahargan. a A, the number of civil
days elapsed since the beginning of Kaliyuga by using the rule of three twice.
Let s be the number of solar years elapsed since the beginning of Kaliyuga, m
the number of lunar months elapsed since the beginning of current solar year
and d the number of civil days elapsed in the current month. Let S be the
number of solar years in a yuga, which is also yuga-bhagan. a or the number
of revolutions of the Sun in a yuga. If M the number of lunar months in a
yuga (which is also the difference between the yuga-bhagan. a-s of the moon
and the Sun), then,

Am = M − 12 S, (5.1)

is the number of adhimāsa-s, intercalary months in a yuga, which correspond
to 12 S solar months in a yuga. Similarly, if D is the number of civil days
in a yuga, then

Ad = 30 M − D, (5.2)

is the avamadina, the number of omitted lunar days in a yuga, corresponding
to 30 M lunar days in a yuga. Now, by rule of three, the number of elapsed
intercalary months am corresponding to 12s + m elapsed solar months, is
given by

am =
(12 s + m)Am

12 S
, (5.3)

Thus the number of elapsed lunar months is 12 s+m+am and the number of
elapsed lunar days is 30(12 s+m+am)+ d. The number of elapsed omitted
lunar days ad, corresponding to the above number of lunar days, can now
be obtained by rule of three as

ad =
[30(12 s + m + am) + d] Ad

30 M
. (5.4)



5.2 Computation of mean planets 171

Then the ahargan. a A elapsed since the beginning of Kaliyuga is given by1

A = 30(12 s + m + am) + d − ad. (5.5)

5.2 Computation of mean planets

If B is the yuga-bhagan. a of a planet in a yuga, D is the number of civil days
in a yuga and A is the ahargan. a or the number of civil days elapsed since
the beginning of Kaliyuga, then the bhagan. a L, corresponding to the mean
position of the planet for this number of elapsed civil days, is given by the
rule of three as

L =
A × B

D
. (5.6)

5.3 Kut.t.ākāra in planetary computations

5.3.1 Bhagan. a-śes.a and other remainders

When the product of the ahargan. a A and the number of revolutions of the
planet in a yuga B is divided by the number of civil days in a yuga D, the
quotient b gives the number of completed revolutions of the planet. The
remainder bs is the bhagan. a-śes.a.

L =
A × B

D
= b +

bs

D
. (5.7)

When this remainder (bhagan. a-śes.a) is multiplied by 12 and divided by D,
the quotient r will give the number of rāśi-s or signs and remainder rs is
rāśi-śes.a.

12 × bs

D
= r +

rs

D
. (5.8)

When this remainder (rāśi-śes. a) is multiplied by 30 and divided by D, the
quotient a will give the number of am. śa or bhāga or degrees and the remain-
der as is am. śa-śes.a or bhāga-śes.a.

30 × rs

D
= a +

as

D
. (5.9)

1Note that in this computation am and ad have to be taken as integers and their true
values may sometimes differ from the computed values by one.
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When this remainder (am. śa-śes.a) is multiplied by 60 and divided by D, the
quotient k will give the number of kalā or minutes and the remainder ks is
the kalā-śes.a.

60 × as

D
= k +

ks

D
. (5.10)

Now, given the kalā-śes.a ks, and knowing the completed revolutions b, signs
r, degrees a, and minutes k, we can calculate the elapsed ahargan. a A as
follows. First we obtain the am. śa-śes.a

as =
(D k + ks)

60
. (5.11)

Then we calculate the rāśi-śes.a

rs =
(D a + as)

30
. (5.12)

Then we calculate the bhagan. a-śes.a

bs =
(D r + rs)

12
. (5.13)

From that we obtain the Ahargan. a

A =
(D b + bs)

B
. (5.14)

5.3.2 Kut.t.ākāra for Ahargan. a

The kut.t.ākāra process can be employed to find values of ahargan. a A, given
the value of any of the śes.a-s bs, rs, as or even ks, when the values of b, r, a
and k are not known, from the condition that they are all integers. In fact,
given ks, the kut.t.ākāra process gives possible values of k, a, r, and b also,
apart from A. The first equation to be solved is

(60 as − ks)

D
= k, (5.15)

where the dividend (bhājya) 60, divisor (bhājaka) D, and the remainder
(ks.epa) ks are known, and the process of kut.t.ākāra is used to find the desired
‘multiplier’ (sādhya, gun. a) as and also the ‘result’ (labdhi) k. The value of
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as, thus found, is used in the next step to find rs, bs and finally A by solving
the following equations using the same kut.t.ākāra process.

30 rs − as

D
= a, (5.16)

12 bs − rs

D
= r, (5.17)

B A − bs

D
= b. (5.18)

In the process a, r, and b are also found apart from the ahargan. a A.

5.3.3 Bhagan. a-śes.a of mean Sun

According to Tantrasaṅgraha, the number of revolutions of the Sun in a yuga
S, is 43,20,000 and the number of civil days in a yuga D, is 157,79,17,200.
On dividing both by the common factor 7,500, we get the intermediate yuga
(avāntarayuga) of 576 years with 210,389 days (tatsama and dh̄ıjagannūpura
in the kat.apayādi notation). We shall take these reduced (apavartita) revo-
lutions and civil days. Then, for ahargan. a A, the completed revolutions b
and bhagan. a-śes.a bs of mean Sun, would be given by

(A × 576)

210389
= b +

bs

210389
. (5.19)

At the beginning of any intermediate yuga, since A = 0, the bhagan. a-śes.a
bs = 0; for A = 1, bs = 576; for A = 2, bs = 2 × 576, and so on. After one
year, for A = 365, since

365 × 576 = 210340 = 210389 − 149, (5.20)

the bhagan. a-śes.a bs = −149, which is a negative remainder (ūna-śes. a).
Hence the remainder is different for every day in the intermediate yuga.
Given a value bs (positive or negative integer) for the bhagan. a-śes.a, the
kut.t.ākāra process is used to find a suitable ahargan. a A such that

(A × 576 − bs)

210389
= b, (5.21)

where b is an integer.
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5.3.4 An example

Consider the case when there is a negative remainder of 100. That is

(A × 576 + 100)

210389
= b. (5.22)

We can verify that A = 7305 provides a solution with b = 20. But how
do we arrive at that?

We will have to think of reducing the problem (a systematic procedure for
that, namely the kut.t.ākāra process, will be enunciated in the next section).
For instance, we had seen that for A = 365, the remainder is −149. Now after
three years, i.e., for A = 1095, the remainder will be −3×149 = −447. Thus,
for the next day, i.e., for A = 1096, the remainder will be (576− 447) = 129.
Now, since 5 × (129 − 149) = −100, we can see that negative remainder of
−100 will be obtained for A = 5 × (1096 + 365) = 7305.

5.4 Kut.t.ākāra process

The process can be illustrated by considering the example cited from L̄ılāvat̄ı,
247, which is to solve for integral values of x, y, the following equation.

(221 x + 65)

195
= y. (5.23)

Here 221 is the bhājya, 195
is the bhājaka (or hāra)
and 65 is the ks.epa. The
first step is to make bhājya
and hāra mutually prime to
each other (dr. d. ha) by di-
viding them by their great-
est common factor (ap-
vartāṅka). The apvartāṅka
is found by the process
of mutual division (the so
called Euclidean algorithm)
to be 13.

1 9 5 ) 2 2 1 (1
1 9 5

2 6 ) 1 9 5 (7
1 8 2

1 3 ) 2 6 (2
2 6

0
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Now dividing bhājya, hāra and ks.epa by this (apvartāṅka), we get the dr. d. ha-
bhājya, hāra and ks.epa to be 17, 15 and 5 respectively. Thus, the problem
is reduced to the solution of the equation

(17x + 5)

15
= y.

Now by mutually dividing the dr. d. ha-bhājya and
hāra, the vall̄ı (or column) of quotients (which
are the same as before) is formed, below which
are set the ks.epa 5 and zero.

15 ) 17 (1
15
2) 15 (7

14
1

The penultimate number 5 is multiplied by the
number above 7 and the last number 0 added
to it and this result 35 is put in the place of
the number (7) above the penultimate number.
The last number 0 is discarded. The process is
repeated till only two numbers 40, 35 are left in
the vall̄ı.

1 1 40
7 35 35
5 5
0

5 × 7 + 0 = 35
35 × 7 + 5 = 40

Since the number of quotients is even,2 we abrade
40 by reduced dividend 17 and 35 by reduced
divisor 15 to get labdhi, y = 6 and the gun. a,
x = 5.

40 = 2 × 17 + 6
35 = 2 × 15 + 5

y = 6
x = 5

5.4.1 The process of apavartana

When we mutually divide two numbers, we can easily see that the remainder
at any stage is such that any common factor of the two numbers divides the
remainder also. Further, if the last remainder divides the previous remain-
der, then it also divides the remainder previous to that and so on. Hence,
the greatest common factor (apavartāṅka) of two members can be obtained
as the last (non-zero) remainder in the process of mutual division.

2When the number of quotients is odd, the labdhi and gun. a found this way have to be
deducted from the corresponding reduced dividend and divisor.
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From the kut.t.aka equation (5.23), it is also clear that, for the problem to
have any solution, the ks.epa will have to be divisible by this greatest common
factor of the dividend and divisor. In our equation with dividend 221 and
divisor 195, the ks.epa 65 is alright as it is divisible by the greatest common
factor 13 of the dividend and the divisor.

5.4.4 Derivation of gun. a and labdhi

To understand the process by which the values of gun. a x and labdhi y were
obtained in the above example (5.23), let us form two sequences: One in-
volving the final two terms 40, 35, left in the vall̄ı, and the last terms which
have been discarded in the process, namely 5, 0 in our example. The other
sequence is made up of the dividend 17, divisor 15 and the successive re-
mainders in mutual division, namely 2, 1.

40 17
35 15
5 2
0 1

In the first sequence, the odd terms from below 0, 35 are
the gun. a and the even terms 5, 40 are the labdhi. And,
correspondingly, the odd terms of the second sequence
1, 15 are the divisors and the even terms 2, 17 are the
dividends. Thus we have3

(2 × 0 + 5)

1
= 5,

(2 × 35 + 5)

15
= 5,

(17 × 35 + 5)

15
= 40.

3A more detailed demonstration (upapatti) of the kut.t.aka process along these lines
is given in the commentary Bı̄janavāṅkurā on Bı̄jagan. ita of Bhāskarācārya by Kr.s.n. a
Daivajña, who shows that the last two terms of the vall̄ı, at each successive stage, corre-
spond to the labdhi and gun. a when the dividend and the divisor are given by successive
remainders (starting in the reverse from the end), which are obtained in the mutual di-
vision of the original divisor and the dividend. A translation of this upapatti is given in
Appendix B of the Epilogue.
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5.4.5 Kut.t.ākāra for mean Sun

Now is considered the kut.t.ākāra for the mean Sun, taking the r. n. a-ks.epa to
be equal to 1. First, consider the equation,

(576 x − 1)

210389
= y, (5.24)

which is the same as
(210389 y + 1)

576
= x. (5.25)

By mutual division of 210389 and 576 the vall̄ı is constructed as shown below,
and we have the solution y = 259 and x = 94602.

576 ) 210389 (365
210389

149 ) 576 (3
467
129 ) 149 (1

129
20 ) 129 (6

120
9 ) 20 (2

18
2 ) 9 (4

8
1

365 365 365 365 365 365 94602
3 3 3 3 3 259 259
1 1 1 1 67 67
6 6 6 58 58
2 2 9 9
4 4 4
1 1
0
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If we look at the two sequences mentioned above, namely, one formed by
the divisor, dividend and the sequence of remainders viewed as divisors and
dividends and the other formed by the last entry in each row of the vall̄ı,
viewed as gun. a and labdhi, we get the sequence of relations:

94602 210389
259 576
67 149
58 129
9 20
4 9
1 2
0 1

(1×1)−1

2
= 0

(9×1)−1

2
= 4

(9×9)−1

20
= 4

(129×9)−1

20
= 58

(129×67)−1

149
= 58

(576×67)−1

149
= 259

(576×94602)−1

210389
= 259

Similarly, we can solve the kut.t.ākāra for the mean Sun with ks.epa 1, namely

(576x + 1)

210389
= y, (5.26)

and obtain x = 115787 and y = 317.4

4The importance of these solutions for ks.epa 1 is that the solutions for the equation
with arbitrary ks.epa k, namely (576x+k)

210389
= y, can be found right away as x = 115787 k,

and y = 317 k, in terms of the solutions of the equation (5.26) where ks.epa is 1.



Chapter 6

Circle and Circumference

6.1 Bhujā2 + Kot.i
2 = Karn. a

2

In any rectangle, the longer side (taken as the lateral side) is the kot.i and
the shorter side (taken as the vertical side) is the bhujā. Then the square of
the karn. a, the diagonal, is equal to the sum of the squares of the bhujā and
the kot.i.

In order to prove this bhujā-kot.i-karn. a-nyāya, consider Figure 6.1. Here
ABCD and BPQR, are squares with sides equal to the bhujā and kot.i re-
spectively. The square BPQR is placed on the south such that the eastern
sides of both the squares fall on the same line and the south side of the
bhujā-square lies along the north side of the kot.i-square. As stated above, it
is assumed that the bhujā is smaller than the kot.i.

Mark M on AP such that

AM = BP = Kot.i.

Hence

MP = AB = Bhujā, and MD = MQ = Karn. a.

Cut along MD and MQ, such that the triangles AMD and PMQ just cling
at D, Q respectively. Turn them around to coincide with DCT and QRT .
Thus is formed the square DTQM , with its side equal to the karn. a. It is
thus seen that

Karn. a-square DTQM = Bhujā-square ABCD

+ Kot.i-square BPQR. (6.1)
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Figure 6.1: Bhujā-kot.i-karn. a-nyāya.

6.2 Circumference of a circle approximated by

regular polygons

In Figure 6.2 we show the quadrant OEA1S of the square which circum-
scribes a circle of radius r = OE. OE is the east line and OS the south
line. OA1 is the karn. a, the diagonal or hypotenuse joining the centre to the
south-east corner, which meets the circle at C1. ES is the other diagonal
which meets (and bisects) the diagonal OA1 perpendicularly at D1. Here,
we denote half the side of the circumscribing square by l1 and the karn. a by
k1. That is,

l1 = OE = A1E = r. (6.2)

k1 = OA1 =
√

2r. (6.3)

In the triangle OA1E, the diagonal OA1 can be thought of to be the base
(bhūmi), then OE and EA1 will be the sides (bhujā), ED1 will be the altitude
(lamba), and OD1 and A1D1 will be the base-segments (ābādhā). In this case,
the base-segments are both equal to

a1 = A1D1 =
k1

2
=

r
√

2
. (6.4)
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Figure 6.2: Circumference approximated by regular polygons.

Let A2 be the point on A1E such that C1A2 is parallel to ED1. Now A1A2

is determined by the rule of three (based on the similarity of the triangles
A1A2C1 and A1ED1):

A1A2 = (A1C1)

(

A1E

A1D1

)

= (k1 − r)

(

l1
a1

)

. (6.5)

Mark the point B2 on A1S such that A1A2 = A1B2. If we cut along A2B2,
then the side of a circumscribing regular octagon will result. Half the side
of this circumscribing regular octagon, A2C1 = EA2 = l2, is given by

l2 = A2E = A1E − A1A2

= l1 − (k1 − r)

(

l1
a1

)

. (6.6)

Join OA2, the diagonal to the corner of octagon, and let it meet the circle
at C2. Now, in the triangle OA2E the diagonal OA2 can be thought of
to be the base (bhūmi), then OE and EA2 will be the sides (bhujā), ED2

will be the altitude (lamba), and OD2 and A2D2 will be the base-segments
(ābādhā). The karn. a, k2 = OA2, is found from

k2

2 = (OE)2 + (EA2)
2 = r2 + l22. (6.7)
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The smaller base-segment, a2 = A2D2, can be found as follows. Since ED2 is
the perpendicular (lamba) to the base OA2, from the bhujā-kot.i-karn. a-nyāya
we have

(EA2)
2 − (A2D2)

2 = (OE)2 − (OD2)
2

= (ED2)
2. (6.8)

Therefore, the difference of the squares of the ābādhā-s is equal to the dif-
ference of the squares of the bhujā-s. That is

(OD2)
2 − (A2D2)

2 = (OE)2 − (EA2)
2. (6.9)

Since the sum of the ābādhā-s is equal to the karn. a

OD2 + A2D2 = OA2 = k2, (6.10)

we get

OD2 − A2D2 =
(OD2)

2 − (A2D2)
2

OD2 + A2D2

=
(OE)2 − (EA2)

2

OA2

=
(r2 − l22)

k2

. (6.11)

Hence

a2 = A2D2 =

(

k2 −
(r2 − l22)

k2

)

2
. (6.12)

Let A3 be the point on A1E such that C2A3 is parallel to ED2. Now A2A3

is determined by the rule of three (based on the similarity of the traingles
A2A3C2 and A2ED2 ):

A2A3 = (A2C2)

(

A2E

A2D2

)

= (k2 − r)

(

l2
a2

)

. (6.13)

Then, half the side of the circumscribing sixteen-sided regular polygon,
EA3 = l3, is given by

l3 = A3E = A2E − A2A3

= l2 − (k2 − r)

(

l2
a2

)

. (6.14)
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Following the same sequence of steps, we can calculate half the side of the
circumscribing 32-sided regular polygon, l4 and so on.1

Knowing the side of a circumscribing regular polygon, we can find its perime-
ter. It is said that when the number of corners of the polygon is increased
indefinitely up to uncountable (asaṅkhyā), the resulting figure will essen-
tially be the circle (vr. tta-prāya). Thus the circumference of the circle with
the given diameter can be found. It is also stated that the circumference of
any arbitrary circle can be determined this way, using the proportionality
between the circumference and the diameter.

6.3 Circumference of a circle without calculating

square-roots

6.3.1 Dividing the circumference into arc-bits: Approximat-

ing the arc-bits by Jyārdha-s (Rsines )

In Figure 6.3 we show the quadrant OEAS of the square which circumscribes
a circle of radius r = OE. OE is the east line and OS the south line.
Divide the tangent EA into n equal parts by marking the points Ao ≡
E, A1, A2....An ≡ A, at equal distances given by,

EA

n
=

r

n
.

It is noted that more the number of points (larger the n), more accurate will
be the circumference determined by this method.

1If we have already calculated ln, half the side of the circumscribing regular polygon
of 2n+1 sides (and also kn−1, an−1, the previous karn. a and base-segment), then we can
calculate ln+1 (and kn, an) using the relations:

k
2

n = r
2 + l

2

n,

an =

[

kn − (
r2

−l2
n

kn

)
]

2
,

ln+1 = ln − (kn − r)
(

ln

an

)

.

These lead to the simple recursion relation ln+1 = r

ln
[
√

(r2 + l2n) − r], with the initial
condition l1 = r.
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Figure 6.3: Dividing the circumference into arc-bits.

Join the hypotenuses karn. a-s OA1, OA2, . . . OAn ≡ OA, and let them meet
the circle at C1, C2, . . . Cn ≡ C. The quadrant of the circle is divided into n
arc-bits, EC1, C1C2, . . . Cn−1Cn, which lie between successive hypotenuses.
Each of the karn. a-s, ki = OAi, is given by

k2

i = OA2

i = OE2 + EA2

i

= r2 +

(

ir

n

)2

. (6.15)

Draw the perpendicular EP from the east point E to the first hypotenuse
OA1. The triangles EPA1 and OEA1 are similar. Hence

EP

EA1

=
OE

OA1

. (6.16)

Therefore

EP = EA1 ×
OE

OA1

=

(

r

n

)(

r

k1

)

. (6.17)

The similarity of the triangles EPA1 and OEA1 can be understood by noting
that the karn. a of one triangle is parallel to the bhujā of the other and vice
versa, and the karn. a of one is perpendicular to the kot.i of the other and vice
versa. It is also illustrated by considering the junction of the slanting beam
and the joining tie in the roof of a square hall man. d. apa as in Figure 6.4.
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Now, draw the perpendicular A1P1 from the tip A1 of the first hypotenuse
to the second hypotenuse OA2. Again the triangles A1P1A2 and OEA2 are
similar. Hence

A1P1

A1A2

=
OE

OA2

. (6.18)

VamataVamata

Vala Vala

Ner (straight)
Kazhukkol

A

B

C

AB − Koti (cosine)
BC − Bhuja (sine)
CA − Karna (hypotenuse)

The hole made in
the Kazhukkol 
for Vala to  
pass through

magnified view

Figure 6.4: Slanting beam and joining tie in a Man. t.apa.

Therefore

A1P1 = A1A2 ×
OE

OA2

= A1A2 ×

(

r

k2

)

=

(

r

n

)(

r

k2

)

. (6.19)
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Now, draw the perpendicular C1Q1 from the point C1 where the first hy-
potenuse meets the circle to the second hypotenuse OA2. The triangle
OC1Q1 which lies inside the circle is similar to the triangle OA1P1. Hence
C1Q1 = b1, which is also the jyārdha (Rsine) of the arc-bit C1C2, is given by

b1 = C1Q1 = A1P1 ×
OC1

OA1

= A1A2

(

r

k2

)

×

(

r

k1

)

=

(

r

n

)

(

r2

k1k2

)

. (6.20)

Similarly, it can be shown that the jyārdha or Rsine, bi = CiQi, of the arc-
bit CiCi+1, is given by the corresponding segment AiAi+1 of the side of the
square multiplied by the square of the radius and divided by the product
of the two diagonals (OAi and OAi+1) meeting the ends of the segment.
For this, first the perpendicular distance di = AiPi, from the tip of the
hypotenuse OAi to the hypotenuse OAi+1, is calculated using the fact that
the triangles AiPiAi+1 and OEAi+1 are similar (see Figure 6.5):

di = AiPi = AiAi+1 ×
OE

OAi+1

= AiAi+1

(

r

ki+1

)

=

(

r

n

)(

r

ki+1

)

. (6.21)

Then the Rsine, bi = CiQi, is calculated using the fact that the triangles
OCiQi and OAiPi are similar

bi = CiQi = AiPi ×
OCi

OAi

= AiAi+1

(

r

ki+1

)

×

(

r

ki

)

=

(

r

n

)

(

r2

kiki+1

)

. (6.22)
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Figure 6.5: Circumference approximated by Rsines.

6.3.2 Circumference in terms of the Karn. a-s (hypotenuses)

It is said that when the size
(

r
n

)

of the equal segments into which the side
of the square is divided is very small (n is very large), then these Rsines
will be almost the same as the arc-bits. Then, one-eighth the circumference
of the circle (the arc EC, between the first and last hypotenuses) can be
approximated by the sum of the Rsines

C

8
≈ bo + b1 + . . . + bn−1

=

(

r

n

)

[(

r2

kok1

)

+

(

r2

k1k2

)

+ . . . +

(

r2

kn−1kn

)]

, (6.23)

where bo = EP is the Rsine of arc-bit EC1 and ko = r. When n is very
large,

ki ≈ ki+1, (6.24)

and hence

1

(kiki+1)
≈

1

2

(

1

k2
i

+
1

k2
i+1

)

. (6.25)
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Hence, the above expression for one-eighth the circumference of the circle
becomes

C

8
≈

(

r

n

)

r2

(

1

2

)[(

1

k2
0

+
1

k2
1

)

+

(

1

k2
1

+
1

k2
2

)

+ . . .

. . . +

(

1

k2
n−1

+
1

k2
n

)]

. (6.26)

We have already noted that the first hypotenuse k0 = r, and it can be easily
seen that the last hypotenuse is given by k2

n = 2r2. Now, when n is very
large, the above expression (6.26) simplifies to

C

8
≈

(

r

n

)

[(

r2

k2
1

)

+

(

r2

k2
2

)

+

(

r2

k2
3

)

+ . . . +

(

r2

k2
n

)]

, (6.27)

as the two expressions (6.26) and (6.27) differ by the amount

(

r

n

)(

1

2

)

[(

r2

k2
o

)

−

(

r2

k2
n

)]

=

(

r

n

)(

1

2

)(

1 −
1

2

)

=

(

r

n

)(

1

4

)

, (6.28)

which becomes negligible when n is large.

6.3.3 Śodhya-phala-s: Iterative corrections

As we have seen above, each of the Rsines bi of the arc-bits is approximated
by

bi =

(

r

n

)

(

r2

k2
i+1

)

. (6.29)

Thus the segment
(

r
n

)

is multiplied by the “multiplier”, namely the square
of the radius, and divided by the “divisor”, namely the square of the hy-
potenuse. Here the divisors, the karn. a-s k2

i given by (6.15), are larger than
or equal to the multiplier r2. This division can be expressed as a sequence
of iterative corrections śodhya-phala-s as shown below.

Consider the product a
(

c
b

)

, where some quantity a is multiplied by the
multiplier c, and divided by the divisor b, which is larger than the multiplier
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c. We first rewrite this product in the following form

a

(

c

b

)

= a − a
(b − c)

b
. (6.30)

Now, if in the expression
(

b−c
b

)

we want to replace the division by b (the

divisor) by division by c (the multiplier), then we have to make a subtractive
correction (́sodhya-phala)

(b − c)

b
=

(b − c)

c
−

(b − c)

c

(b − c)

b
. (6.31)

Thus our original relation (6.30) becomes

a

(

c

b

)

= a −

[

a
(b − c)

c
−

(

a
(b − c)

c

)

(b − c)

b

]

. (6.32)

Now in the second correction term in (6.32), if we again replace the division
by the divisor b, by the multiplier c, then we have to employ the relation
(6.31) to get another subtractive term

a

(

c

b

)

= a − a
(b − c)

c
+ a

[

(b − c)

c

]2

− a

[

(b − c)

c

]2 (b − c)

b
. (6.33)

Thus, after taking m śodhya-phala-s we get

a

(

c

b

)

= a − a
(b − c)

c
+ a

[

(b − c)

c

]2

− . . . + (−1)m−1a

[

(b − c)

c

]m−1

+(−1)ma

[

(b − c)

c

]m−1 (b − c)

b
. (6.34)

It is stated that if we keep on dividing only by the multiplier c, then there
will be no end to these correction terms (phala-paramparā). It is also said
that when the correction term becomes very small they can be discarded.2

2The resulting infinite series expansion is convergent for 0 ≤ b− c < c, which condition
is satisfied in our case where b = k2

i and c = r2, as they satisfy r2
≤ k2

i < 2r2 for 0 ≤ i < n.
For the same reason, the correction terms in (6.34) become very small when m becomes

very large. If we set (b−c)

c
= x, then c

b
= 1

(1+x)
. Hence, what is given above is the

binominal series for (1 + x)−1 which is convergent for −1 < x < 1.
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6.3.4 Phala-yoga-s and their series: Phala-paramparā

Using the above method, each of the Rsines of the arc-bits can now be
expressed as

bi−1 =

(

r

n

)

(

r2

k2
i

)

=

(

r

n

)









r2

(

r2 +
(

ir
n

)2
)









=

(

r

n

)

−

(

r

n

)

1

r2

(

ir

n

)2

+ . . . + (−1)m
(

r

n

)

1

r2m

(

ir

n

)2m

+ . . . . (6.35)

Now using this expansion for the Rsines in the expression for one-eighth of
the circumference and keeping terms with the same powers of

(

r
n

)

together,
we get

C

8
= bo + b1 + b2 + . . . + bn−1

=

(

r

n

)

[1 + 1 + . . . + 1]

−

(

r

n

)(

1

r2

)

[

(

r

n

)2

+

(

2r

n

)2

+ . . . +

(

nr

n

)2
]

+

(

r

n

)(

1

r4

)

[

(

r

n

)4

+

(

2r

n

)4

+ . . . +

(

nr

n

)4
]

−

(

r

n

)(

1

r6

)

[

(

r

n

)6

+

(

2r

n

)6

+ . . . +

(

nr

n

)6
]

+ . . . . (6.36)

Each of the terms in (6.36) is a sum of results (phala-yoga) which we need
to calculate when n is very large, and we have a series of them (phala-
paramparā) which are alternatively positive and negative. Clearly the first
term is just the sum of the bhujā-khan. d. a-s, the bits into which the tangent
or the eastern side of the square, of side equal to radius r was divided. Thus
the first term is equal to the radius r. The next summation will involve
bhujā-varga-saṅkalita, the sum of the squares of the bhujā-s or portions of
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the side of the square, increasing by one bit at a time. The next phala-
yoga will involve bhujā-varga-varga-saṅkalita or sum of fourth powers of the
bhujā-s and so on.

It is said that for the sake of accuracy (sūks.matā) of the result, the bhujā-
khan. d. as

r
n
, will have to be infinitesimal (an. u-parimān. a). It will be shown in

Section 6.4 that when n is large, the successive sums (phala-yoga) are r
3
, r

5
,

and so on. This leads to the expression for the circumference

C

8
= r −

r

3
+

r

5
− . . . . (6.37)

Or, equivalently if d is the diameter of the circle

C = 4d

(

1 −
1

3
+

1

5
− . . .

)

. (6.38)

which is the result enunciated in the verse of Mādhava, vyāse vāridhinihate...
(cited also in Yuktid̄ıpikā II. 271).3

6.3.6 Śodhya-phala-s : An example

Here, an example is given of how the iterative subtractive corrections can be
obtained. The basic identity that is iterated is of the form

a

b
=

(

a

c

)

−

(

a

b

)

(b − c)

c
. (6.39)

Here, if in the second term we divide by the “multiplier” c, instead of the
“divisor” b, we have to subtract the next subtractive term

a

b
=

a

c
−

[(

a

c

)(

(b − c)

c

)

−

(

a

c

)(

(b − c)

c

)(

(b − c)

b

)]

, (6.40)

and so on. In the example given, a = 100, the divisor b = 10 and the
multiplier c = 8. First it is noted that

100

10
=

100

8
−

(

100

10

)(

(10 − 8)

8

)

. (6.41)

3This and several verses of Mādhava, which have been cited in Yuktibhās. ā, have also
been cited by Śaṅkara in his commentary Yuktid̄ıpikā on Tantrasaṅgraha. It may however
be noted that Yuktid̄ıpikā declares, at the end of each Chapter, that it is only presenting
the subject as expounded by Jyes.t.hadeva (in Yuktibhās. ā).
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Then it is noted that if in the second term we take 100

8
instead of 100

10
, then

the second term becomes 25

8
instead of 25

10
. So the subtraction is in excess

and is to be śodhya, further reduced. Then it is explained that we get back
the correct correction 25

10
, by subtracting from 25

8
the product of that with

(10−8)

10
. Thus

100

10
=

100

8
−

100

8

(

(10 − 8)

8

) [

1 −

(

(10 − 8)

10

)]

, (6.42)

and so on.

6.4 Saṅkalita: Summation of series

The bhujā-khan. d. a-s, the bits into which the tangent or the eastern side
of the square of side equal to radius r was divided, are all equal to r

n
.

The bhujā-s are given by its integral multiples r
n
, 2r

n
, . . . nr

n
. In the series

expression (phala-paramparā) derived earlier for the circumference, there
occur saṅkalita-s or summations of even powers of the bhujā-s such as the

bhujā-varga-saṅkalita,
(

r
n

)2
+
(

2r
n

)2

+....+
(

nr
n

)2
, bhujā-varga-varga-saṅkalita,

(

r
n

)4
+
(

2r
n

)4

+ ..... +
(

nr
n

)4
, and so on. If we take out the powers of

bhujā-khan. d. a
r
n
, the summations involved are that of even powers of the

natural numbers, namely edādyekottara-varga-saṅkalita, 12 + 22 + ... + n2,
edādyekottara-varga-varga-saṅkalita, 14 + 24 + ... + n4, and so on. A method
is now given to estimate for large n the sama-ghāta-saṅkalita, or the sum of
a general series of integral powers of the natural numbers.

6.4.1 Mūla-saṅkalita: The sum of natural numbers

The first summation, the bhujā-saṅkalita, may be written in the order from
the final bhujā to the first bhujā as

S(1)

n =

(

nr

n

)

+

(

(n − 1)r

n

)

+ .... +

(

r

n

)

.

Now, conceive of the bhujā-khan. d. a
r
n

as being infinitesimal (an. u) and at the
same time as of unit-measure (rūpa), so that the radius will be the measure
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of n, the pada, or the number of terms. Then

S(1)

n = n + (n − 1) + .... + 1. (6.43)

If each of the terms were of the measure of radius (n) then the sum would
be nothing but n2, the square of the radius. But only the first term is of the
measure of radius, the next is deficient by one segment (khan. d. a), the next
by two segments and so on till the last term which is deficient by an amount
equal to radius-minus-one segment.

S(1)

n = n + [n − 1] + [n − 2].... + [n − (n − 2)] + [n − (n − 1)]

= n.n − [1 + 2 + ... + (n − 1)]. (6.44)

When n is very large, the quantity to be subtracted from n2 is practically

(prāyen. a) the same as S
(1)

n , thus leading to the estimate

S(1)

n ≈ n2 − S(1)

n , (6.45)

or, equivalently

S(1)

n ≈
n2

2
. (6.46)

It is stated that the result is more accurate, the smaller the segments, or
larger the value of n. In fact, the well-known exact value of the sum of the
first n natural numbers

S(1)

n =
n(n + 1)

2
, (6.47)

is also quoted as another way of justifying the above estimate when n is very
large. With the convention that the r

n
is of unit-measure, the above estimate

(6.46) is stated in the form that the bhujā-saṅkalita is half the square of the
radius.

6.4.2 Varga-saṅkalita : Summation of squares

With the same convention that r
n

is the measure of the unit, the bhujā-varga-
saṅkalita will be

S(2)

n = n2 + (n − 1)2 + .... + 12. (6.48)

In above expression, each bhujā is multiplied by itself. If instead, we consider
that each bhujā is multiplied by the radius (n in our units) then that would
give raise to the sum

n [n + (n − 1) + ... + 1] = n S(1)

n . (6.49)
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This sum is exceeds the bhujā-varga-saṅkalita by the amount

nS(1)

n − S(2)

n = 1.(n − 1) + 2.(n − 2) + 3.(n − 3) + . . . + (n − 1).1.

This may be written as

nS(1)

n − S(2)

n = (n − 1) + (n − 2) + (n − 3) + . . . +1

+(n − 2) + (n − 3) + . . . +1

+(n − 3) + . . . +1

+ . . . . (6.50)

Thus,

nS(1)

n − S(2)

n = S
(1)

n−1
+ S

(1)

n−2
+ S

(1)

n−3
+ . . . . (6.51)

The right hand side of (6.51) is called the saṅkalita-saṅkalita (or saṅkalitai-

kya), the repeated sum of the sums S
(1)

i (here taken in the order i = n−1, n−

2, . . . 1). For large n, we have already estimated in (6.46) that S
(1)

n ≈ n2

2
.

Thus, for large n

nS(1)

n − S(2)

n =
(n − 1)2

2
+

(n − 2)2

2
+

(n − 3)2

2
+ . . . . (6.52)

Thus, the right hand side of (6.52) (the saṅkalita-saṅkalita or the excess of

nS
(1)

n over S
(2)

n ) is essentially S
(2)

n

2
for large n, so that we obtain

nS(1)

n − S(2)

n ≈
S

(2)

n

2
. (6.53)

Again, using the earlier estimate (6.46) for S
(1)

n , we obtain the result

S(2)

n ≈
n3

3
. (6.54)

Thus bhujā-varga-saṅkalita is one-third the cube of the radius.

6.4.3 Ghana-saṅkalita and Varga-varga-saṅkalita: Summation of

third and fourth powers

The ghana-saṅkalita is given by

S(3)

n = n3 + (n − 1)3 + . . . + 13. (6.55)
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Again, when we consider by how much n S
(2)

n is in excess over this, we get

nS(2)

n − S(3)

n = 1.(n − 1)2 + 2.(n − 2)2 + 3.(n − 3)2 . . . + (n − 1).12

= S
(2)

n−1
+ S

(2)

n−2
+ S

(2)

n−3
+ . . . . (6.56)

Here again, the right hand side of (6.56) is varga-saṅkalita-saṅkalita, the
repeated summation of the summation of squares. As the sum of squares
has already been estimated in (6.54) for large n, we get

nS(2)

n − S(3)

n ≈
(n − 1)3

3
+

(n − 2)3

3
+

(n − 3)3

3
+ . . .

≈

(

1

3

)

S(3)

n . (6.57)

Thus we get the estimate

S(3)

n ≈
n4

4
. (6.58)

Similar reasoning leads to the following estimate in the case of varga-varga-
saṅkalita

S(4)

n ≈
n5

5
. (6.59)

6.4.4 Samaghāta-saṅkalita : General principle of summation

Essentially the same procedure is to be followed in the case of a general
samaghāta-saṅkalita, (summation of equal powers) given by

S(k)

n = nk + (n − 1)k + . . . + 1k. (6.60)

We first compute the excess of nS
(k−1)

n over S
(k)

n to be a saṅkalita-saṅkalita

or repeated sum of the lower order saṅkalita-s S
(k−1)

r

nS(k−1)

n − S(k)

n = S
(k−1)

n−1
+ S

(k−1)

n−2
+ S

(k−1)

n−3
+ . . . . (6.61)

If the lower order saṅkalita S
(k−1)

n has already been estimated to be, say,

S(k−1)

n ≈
nk

k
, (6.62)
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then, the above relation (6.61) leads to

nS(k−1)

n − S(k)

n ≈
(n − 1)k

k
+

(n − 2)k

k
+

(n − 3)k

k
+ . . .

≈

(

1

k

)

S(k)

n . (6.63)

Thus we obtain the estimate4

S(k)

n ≈
nk+1

(k + 1)
. (6.64)

6.4.5 Repeated summations

Now are discussed saṅkalita-saṅkalita or saṅkalitaikya (repeated summa-

tions). There the first summation (ādya-saṅkalita) V
(1)

n is just the mūla-
saṅkalita or the basic summation of natural numbers, which has already
been estimated in (6.46)

V (1)

n = S(1)

n = n + (n − 1) + (n − 2) + . . . + 1

≈
n2

2
. (6.65)

The second summation (dvit̄ıya-saṅkalita or saṅkalita-saṅkalita or saṅkali-
taikya) is given by

V (2)

n = V (1)

n + V
(1)

n−1
+ V

(1)

n−2
+ . . .

= S(1)

n + S
(1)

n−1
+ S

(1)

n−2
+ . . . . (6.66)

As was done earlier, this second summation can be estimated using the

estimate for S
(1)

n

V (2)

n ≈
n2

2
+

(n − 1)2

2
+

(n − 2)2

2
+ . . . . (6.67)

Therefore

V (2)

n ≈

(

1

2

)

S(2)

n . (6.68)

4These are estimates for large n. Exact expressions for S
(1)

n , S
(2)

n and S
(3)

n , have
been known in Indian mathematics for a long time and may be found, for instance, in
Āryabhat. ı̄ya, Gan. ita, 21-22.
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Using the earlier estimate (6.54) for S
(2)

n , we get an estimate for the dvit̄ıya-
saṅkalita

V (2)

n ≈
n3

6
. (6.69)

Now the next repeated summation can be found in the same way

V (3)

n = V (2)

n + V
(2)

n−1
+ V

(2)

n−2
+ . . .

≈
n3

6
+

(n − 1)3

6
+

(n − 2)3

6
+ . . .

≈

(

1

6

)

S(3)

n

≈
n4

24
. (6.70)

It is noted that proceeding this way we can estimate repeated summation

V
(k)

n of order k, for large n, to be5

V (k)

n = V (k−1)

n + V
(k−1)

n−1
+ V

(k−1)

n−2
+ . . .

≈
nk+1

1.2.3. . . . (k + 1)
. (6.71)

6.5 Conclusion: Calculation of the circumference

Using the estimates for the various samaghāta-saṅkalita, summation of pow-
ers of the bhujā-s, we can derive the series for the circumference (6.37) men-
tioned earlier. We had in (6.36)

C

8
=

(

r

n

)

[1 + 1 + . . . + 1]

−

(

r

n

)(

1

r2

)

[

(

r

n

)2

+

(

2r

n

)2

+ . . . +

(

nr

n

)2
]

+

(

r

n

)(

1

r4

)

[

(

r

n

)4

+

(

2r

n

)4

+ . . . +

(

nr

n

)4
]

− . . . . . . . (6.72)

5These are again estimates for large n. Exact expressions for the first two summations,
V

(1)

n and V
(2)

n , are given in Āryabhat. ı̄ya, Gan. ita, 21. Exact expression for the k-th order

repeated summation V
(k)

n has been given (under the name vāra-saṅkalita), by Nārāyan. a
Pan.d. ita (c.1350) in his Gan. itakaumud̄ı, 3.19, and they are also given later in Chapter 7 of
Yuktibhās. ā.
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For large n, using the estimate (6.64), S
(k)

n ≈ nk+1

(k+1)
, we arrive at the result

of Mādhava cited earlier

C

8
= r −

r

3
+

r

5
− . . . , (6.73)

C = 4d

(

1 −
1

3
+

1

5
− . . .

)

. (6.74)

It is remarked that the magnitude of the succeeding terms becomes smaller
and smaller, and when the terms become very small, then they can be dis-
carded and the calculation be terminated; then the result will be mostly
accurate.

6.6 Cāp̄ıkaran. a: Conversion of the Rsine to arc

If s = rθ is the arc (dhanus) of a circle of radius r subtending an angle
θ at the centre, r sin θ and r cos θ are its jyā (Rsine) and kot.i (Rcosine)
respectively, and if the jyā is less than the kot.i, then the arc is obtained by
the rule is. t.ajyātrijyayorghātāt... (cited also in Yuktid̄ıpikā, II. 206):6

s = r

[

jyā(s)

kot.i(s)

]

−

(

r

3

)[

jyā(s)

kot.i(s)

]3

+

(

r

5

)[

jyā(s)

kot.i(s)

]5

− . . . . (6.75)

This result is obtained in the same way as the series for one-eighth the
circumference derived earlier. Consider the quadrant of the square OEAS
circumscribing the circle as in Figure 6.6.

Choose the (bhujā) jyā PQ of the given arc EP in such a way that its kot.i
OQ and the śara (Rversine) QE are along the west-east line. Extend the
radius OP to meet the square at B. The portion EB = t, of the eastern
side of the square, is now divided into n equal parts and, following the same
argument as before in Section 6.3.1, we arrive at the expression for the arc
EP = s:

s ≈

(

t

n

)

[(

r2

k2
o

)

+

(

r2

k2
1

)

+

(

r2

k2
2

)

+ . . . +

(

r2

k2
n

)]

, (6.76)

6This corresponds to the result

s = rθ = r

(

r sin θ

r cos θ

)

−

(

r

3

)(

r sin θ

r cos θ

)3

+
(

r

5

)(

r sin θ

r cos θ

)5

− . . . .
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B

O

E

PQ

A

E
S

Figure 6.6: Conversion of the Rsine to arc.

where the hypotenuses k2
i are given by

k2

i = r2 +

(

it

n

)2

. (6.77)

Calculating the śodhya-phala-s as before, we get7

s =

(

t

n

)

[1 + 1 + . . . + 1]

−

(

t

n

)(

1

r2

)

[

(

t

n

)2

+

(

2t

n

)2

+ . . . +

(

nt

n

)2
]

+

(

t

n

)(

1

r4

)

[

(

t

n

)4

+

(

2t

n

)4

+ . . . +

(

nt

n

)4
]

− . . . . (6.78)

Estimating the saṅkalitas S
(k)

n as before, we get

s = r

(

t

r

)

−

(

r

3

)(

t

r

)3

+

(

r

5

)(

t

r

)5

− . . . . (6.79)

7Since t < r, we continue to have r2 < k2

i < 2r2, which ensures that the infinite series
expansion converges.
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If we note that
t

r
=

EB

OE
=

PQ

OQ
=

jyā(s)

kot.i(s)
, (6.80)

then we obtain the series (6.75) given above.

6.7 Circumference by an alternate method

The above series (6.75) for the arc is used to obtain an alternative expression
for the circumference of a circle, as given in the verse vyāsavargād ravi-
hatāt. . . (cited also in Yuktid̄ıpikā, II. 212)

C =
√

12d2

(

1 −
1

3.3
+

1

32.5
−

1

33.7
+ . . .

)

(6.81)

This result is obtained from the earlier result on cāp̄ıkaran. a by considering
the bhujā and kot.i of an arc equal to one-twelfth of the circumference.

O

ko
ti

bhuja

E

A B

E

S

Figure 6.7: Jyā and Kot.i of one-twelfth of circumference.

In Figure 6.7, we mark off one-twelfth of the circle on either side of the east-
west line and consider the full-chord (samasta-jyā) that touches these points
A and B. This full-chord of one-sixth of the circumference of the circle,
which is also the side of the inscribed regular hexagon, is equal to the radius.8

8This will be shown in the beginning of Chapter 7.



6.8 Antya-sam. skāra: Final correction terms 201

Hence for one-twelfth of the circumference, the associated bhujā or Rsine is
given by half the radius, r

2
, and the corresponding kot.i is (

√
3) r

2
. Thus we

see that the ratio of the (bhujā)2 to the (kot.i)
2, which is the multiplier which

generates the successive terms in (6.75), is given by

(

jyā(s)

kot.i(s)

)2

=
1

3
.

Therefore

C =

(

12r
√

3

)

[

1 −
1

3

(

1

3

)

+
1

5

(

1

3

)2

− . . .

]

=
√

12d2

[

1 −
1

3.3
+

1

32.5
−

1

33.7
+ . . .

]

. (6.82)

6.8 Antya-sam. skāra: Final correction terms

We have the series for the circumference

C

4d
= 1 −

1

3
+

1

5
− . . . + (−1)n−1

1

(2n − 1)
+ (−1)n

1

(2n + 1)
+ . . . . (6.83)

The denominators in this series keep increasing, but extremely slowly. Now is
explained a way to perform a last correction, say after n-th term, so that the
value of the circumference is obtained to a high degree of accurary, without
having to evaluate a large number of terms.

Let p = 2n − 1 be the n-th odd number and let us take the correction

term after the n-th term in the above series, (−1)
(p−1)

2
1

p
, to be of the form

(−1)
(p+1)

2
1

ap
. Since the series is alternating, the correction term will be sub-

tractive if the last term is additive and vice versa. Thus

C = 4d

[

1 −
1

3
+ . . . + (−1)

(p−1)

2

1

p
+ (−1)

(p+1)

2

1

ap

]

. (6.84)

The correction will be really accurate, if the value of the circumference does
not change whether we incorporate the correction after the (n − 1)-th term
or after the n-th term. That is

C = 4d

[

1 −
1

3
+ . . . + (−1)

(p−3)

2

1

p − 2
+ (−1)

(p−1)

2

1

ap−2

]
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= 4d

[

1 −
1

3
+ . . . + (−1)

(p−3)

2

1

p − 2
+ (−1)

(p−1)

2

1

p
+ (−1)

(p+1)

2

1

ap

]

. (6.85)

Thus, for the correction to be really accurate, the condition is

1

ap−2

+
1

ap

=
1

p
. (6.86)

It is first observed that we cannot satisfy this condition trivially by taking
the correction denominators (correction divisors, sam. skāra-hāraka-s) both
to be equal, say ap−2 = ap = 2p. For, the correction has to follow a uniform
rule of application and thus, if ap−2 = 2p, then ap = 2(p + 2); or, if ap = 2p,
then ap−2 = 2(p − 2).

We can, however, have both ap−2 and ap close to 2p by taking ap−2 = 2p− 2
and ap = 2p + 2, as there will always persist this much difference between
p − 2 and p when they are doubled. Hence, the first (order) estimate of
the correction divisor is given as, “double the even number above the last
odd-number divisor p”,

ap = 2(p + 1). (6.87)

But, it can be seen right away that, with this value of the correction divi-
sor, the condition for accuracy (6.86), stated above, is not exactly satisfied.
Therefore a measure of inaccuracy (sthaulya) E(p) is introduced

E(p) =

(

1

ap−2

+
1

ap

)

−
1

p
. (6.88)

The objective is to find the correction denominators ap such that the inac-
curacy E(p) is minimised. We have to estimate the inaccuracy for a correc-
tion divisor which bears a specific relation with the last odd-number divisor,
whose numerical value, for the sake of generality, has to be left unspecified or
unknown. And thus the method of dhanarn. a-s.ad. vidha (computations with
positive and negative quantities) in avyakta-gan. ita or algebra, will have to
be employed with the last odd-number divisor p as the avyakta-rāśi, the
unknown variable. For this purpose, a notation for expressing ratio of poly-
nomials in a single unknown quantity (by placing them in two rows of square
compartments one below the other) and the procedure for calculating sums
and differences of such expressions by converting them to a common denom-
inator (samaccheda) are set forth in the Text.

When we set ap = 2(p + 1), the inaccuracy will be

E(p) =
1

(2p − 2)
+

1

(2p + 2)
−

1

p
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=
(2p2 + 2p)

(4p3 − 4p)
+

(2p2 − 2p)

(4p3 − 4p)
−

(4p2 − 4)

(4p3 − 4p)

=
4

(4p3 − 4p)

=
1

(p3 − p)
. (6.89)

This estimate of the inaccuracy shows that the correction has over-corrected
the value of the circumference, and hence there has to be a reduction in the
correction, or an increase in the correction denominator. But, it will not do,
if we merely add 1 to the correction denominator. For, if we take ap = 2p+3,
thereby leading to ap−2 = 2p − 1, we get

E(p) =
1

(2p − 1)
+

1

(2p + 3)
−

1

p

=
(2p2 + 3p)

(4p3 + 4p2 − 3p)
+

(2p2 − p)

(4p3 + 4p2 − 3p)

−
(4p2 + 4p − 3)

(4p3 + 4p2 − 3p)

=
(−2p + 3)

(4p3 + 4p2 − 3p)
. (6.90)

The inaccuracy is now negative but, more importantly, it has a much larger
numerator than the earlier one, because it has a term proportional to p. For
large p, E(p) given by (6.90) varies inversely as the square of p, while for
the divisor given by (6.87), E(p) as given by (6.89) varied inversely as the
cube of p.9

If we want to obtain a better correction, then a number less than 1 has to be
added to the above correction divisor. This is arrived at as follows: When,
full unity was added, the two correction divisor terms together gave an extra
contribution of 2p to the numerator of E(p) and the −1

p
term gave an extra

contribution of (−4p−1). Thus if we try adding rūpa (unity) divided by the
correction divisor itself, i.e., if we set ap = 2p + 2 + 1

(2p+2)
, the contributions

from the correction divisors get multiplied essentially by
(

1

2p

)

. Thus to get

rid of the higher order contributions, we need an extra factor of 4, which

9It may be noted that among all possible correction divisors of the type ap = 2p + m,
where m is an integer, the choice of m = 2 is optimal, as in all other cases there will arise
a term proportional to p in the numerator of the inaccuracy E(p).
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will be achieved if we take the correction divisor to be

ap = 2p + 2 +
4

(2p + 2)
=

(2p + 2)2 + 4

(2p + 2)
. (6.91)

Then, correspondingly, we have

ap−2 = 2p − 2 +
4

(2p − 2)
=

(2p − 2)2 + 4

(2p − 2)
. (6.92)

We can then calculate the inaccuracy to be

E(p) =
1

2p − 2 +
4

2p − 2

+
1

2p + 2 +
4

2p + 2

−

(

1

p

)

=
(2p3 − 2p2 + 4)

(4p4 + 16)
+

(2p3 + 2p2 − 4)

4p4 + 16)
−

(16p4 + 64)

(16p5 + 64p)

=
−4

(p5 + 4p)
. (6.93)

Clearly, the sthaulya with this (second order) correction divisor has improved
considerably, in that it is now proportional to the inverse fifth power of the
odd number.10 In the end of this chapter a still more accurate (third order)
correction divisor will be given.

We may display the result obtained for the circumference with the correction
term as follows. If only the first order correction is employed, we have

C = 4d

[

1 −
1

3
+ . . . + (−1)

(p−1)

2

1

p
+ (−1)

(p+1)

2

1

(2p + 2)

]

. (6.94)

If the second order correction is also taken into account, we have

C = 4d









1 −
1

3
+ . . . + (−1)

(p−1)

2

1

p
+ (−1)

(p+1)

2

1

(2p + 2) +
4

(2p + 2)









= 4d









1 −
1

3
+ . . . + (−1)

(p−1)

2

1

p
+ (−1)

(p+1)

2

(p + 1)

2
(p + 1)2 + 1









. (6.95)

10It may be noted that if we take any other correction divisor ap = 2p+2+ m

(2p+2)
, where

m is an integer, we will end up having a contribution proportional to p2 in the numerator
of the inaccuracy E(p), unless m = 4. Thus the above form (6.91) is the optimal second
order choice for the correction divisor.
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These can also be expressed in the following alternative forms:

C = 4d

[

1 −
1

3
+ . . . + (−1)(n−1)

1

(2n − 1)
+ (−1)n

1

4n

]

, (6.96)

and

C = 4d

[

1 −
1

3
+ . . . + (−1)(n−1)

1

(2n − 1)
+ (−1)n

n

(4n2 + 1)

]

. (6.97)

6.9 More accurate results for the circumference

Now, if the correction term is applied to an approximate circumference and
the amount of inaccuracy (sthaulya) is found, and it is additive, then the
result is higher. Then it will become more accurate when the correction
term obtained from the next higher odd number is subtracted. And so on.
This leads to the interesting possibility of obtaining better series results
for the circumference by the method of sthaulya-parihāra, incorporating the
correction terms from the beginning itself.

Let us recall that inaccuracy or sthaulya at each stage is given by

E(p) =
1

ap−2

+
1

ap

−

(

1

p

)

. (6.98)

The series for the circumference (6.74) can be expressed in terms of these
sthaulya-s as follows:

C = 4d

[(

1 −
1

a1

)

+

(

1

a1

+
1

a3

−
1

3

)

−

(

1

a3

+
1

a5

−
1

5

)

− . . .

]

= 4d

[(

1 −
1

a1

)

+ E(3) − E(5) + E(7) − . . .

]

. (6.99)

If we consider the second order correction divisor (6.92), then using the
expression for the sthaulya-s (6.93), we get

C = 4d

(

1 −
1

5

)

− 16d

[

1

(35 + 4.3)
−

1

(55 + 4.5)
+

1

(75 + 4.7)
− . . .

]

= 16d

[

1

(15 + 4.1)
−

1

(35 + 4.3)
+

1

(55 + 4.5)
− . . .

]

. (6.100)
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The above series is given in the verse samapañcāhatayoh. . . . (cited also in
Yuktid̄ıpikā, II. 287). Note that each term in the above series involves the
fifth power of the odd number in the denominator, unlike the original se-
ries which only involved the first power of the odd number. Clearly, this
transformed series gives more accurate results with fewer terms.

If we had used only the first order correction (6.87) and the associated
sthaulya (6.89), instead of the second order correction employed above, then
the transformed series is the one given in the verse vyāsād vāridhinihatāt...
(cited also in Yuktid̄ıpikā, II. 290)

C = 4d

[

3

4
+

1

(33 − 3)
−

1

(53 − 5)
+

1

(73 − 7)
− . . .

]

. (6.101)

Note that the denominators in the above transformed series are proportional
to the third power of the odd number.

If we take a non-optimal correction divisor, say of the form ap = 2p, then
the sthaulya is given by

E(p) =
1

(2p − 4)
+

1

2p
−

1

p

=
1

(p2 − 2p)

=
1

(p − 1)2 − 1
. (6.102)

Then, the transformed series will be the one given in the verse dvyādiyujām.
vā kr. tayo... (cited also in Yuktid̄ıpikā, II. 292)

C = 4d

[

1

2
+

1

(22 − 1)
−

1

(42 − 1)
+

1

(62 − 1)
+ . . .

]

. (6.103)

Reference is also made to the following two series given in the verse dvyādeś-
caturādervā... (cited also in Yuktid̄ıpikā, II. 293), as being similar in nature:

C = 8d

[

1

(22 − 1)
+

1

(62 − 1)
+

1

(102 − 1)
+ . . .

]

, (6.104)

C = 8d

[

1

2
−

1

(42 − 1)
−

1

(82 − 1)
−

1

(122 − 1)
+ . . .

]

. (6.105)
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6.10 A very accurate correction

The correction term associated with the third order correction, which is said
to be very accurate correction (sūks.matara-sam. skāra) is given by the verse
ante sama-saṅkhyādalavargah. ... ( cited also in Yuktid̄ıpikā, II. 295).11

1

ap

=
1

2p + 2 +
4

(2p + 2) +
16

(2p + 2)

=

(

(p + 1)

2

)2

+ 1

((p + 1)2 + 5)
(p + 1)

2

. (6.106)

The corresponding expression for the circumference with the above correc-
tion term can also be expressed in the form12

C = 4d

[

1 −
1

3
+ . . . + (−1)(n−1)

1

(2n − 1)
+ (−1)n

(n2 + 1)

(4n3 + 5n)

]

. (6.107)

11The inaccuracy or sthaulya associatd with this correction can be calculated to be

E(p) =
2304

(64p7 + 448p5 + 1792p3 − 2304p)
.

The inaccuracy now is proportional to the inverse seventh power of the odd-number. Again
it can be shown that the number 16 in (6.106) is optimally chosen, in that any other choice
would introduce a term proportional to p in the numerator of E(p), given above. It can also
be shown that the successive optimal correction terms are indeed successive convergents
of a continued fraction

1

ap

=
1

(2p + 2) +
22

(2p + 2) +
42

(2p + 2) +
62

(2p + 2) + . . .

.

12It may be noted that this correction term leads to a value of π = C

d
, which is accurate

up to 11 decimal places, when we merely evaluate terms up to n = 50 in the series (6.107).
Incidentally the value of π = C

d
, given in the rule vibudhanetra..., attributed to Mādhava

in Kriyākramakar̄ı (p.377), is also accurate up to 11 decimal places.



Chapter 7

Derivation of Sines

7.1 The side of a regular hexagon inscribed in a

circle is equal to the radius

It is instructed that using the methods of the previous chapter the diameter
of a circle whose circumference is given by 21,600 minutes be calculated;
and halving the diameter the corresponding radius be found.1 Then we are
instructed to draw a circle of this radius.

In Figure 7.1 we consider a circle and draw the east-west line EW and north-
south line NS through its centre O. Draw the full-chords NA, ND from
the north point and SB, SC from the south point of length equal to the
radius. Join the radii OA, OD, OB and OC. We then have four equilateral
triangles OAN , ODN , OBS and OCS with sides equal to the radius. From
A, B, drop the perpendiculars (lamba) AP , BQ to the north-south line.
Since these bisect the base, it follows that

NP = PO = OQ = QS =
r

2
. (7.1)

Hence, it follows that
AB = PQ = r. (7.2)

Similarly it follows that CD = r. Hence it follows that NABSCD is a
regular hexagon, of side equal to the radius, which is inscribed in the circle.

1The standard units employed are 1 bhāga (degree) = 60 kalā (liptā or ili, minute); 1
kalā = 60 vikalā (second) and so on. If the diameter is 21600′, then a fairly accurate value
of radius is 3437′44′′48′′′22iv29v22vi22vii given in the katapayādi notation by the verse
śr̄ırudrah. śridharah. śres. t.ho devo viśvasthal̄ı bhr. guh. .
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Figure 7.1: Regular hexagon inscribed in a circle.

Hence the samasta-jyā or the full-chord,2 of two rāśi-s (60◦) is the radius
and hence Rsine (ardha-jyā or just jyā) of one rāśi is given by

Jyā(EA) =
r

2
. (7.3)

7.2 Derivation of Rsines

7.2.1 Jyā, Kot.i and Śara : Rsine, Rcosine and Rversine

Half the full-chord (samasta-jyā) of an arc is the half-chord (ardha-jyā) of
half the arc. Since in planetary astronomy it is only the ardha-jyā that is
used, it will be called just jyā, or Rsine of the half-arc.

In Figure 7.2, the arc EA is one rāśi (sign, arc corresponding to 30◦). Then
AP , the half-chord of double the arc is the jyā or Rsine. The Rsine of the

2The word jyā refers to the ‘string’ of a bow. In Figure 7.1 if AEB is considered as a
bow, then the chord AB can be conceived of as the string of the bow.
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Figure 7.2: Jyā, Kot.i and Śara.

arc NA (the complimentary arc of EA), namely AQ, is the kot.i or Rcosine.
If we mark the Rcosine along the east-west line as PO, then the bit of the
radius remaining, PE, is the śara or Rversine.3 If we mark the Rsine along
the north-south line as OQ, then the bit of the radius remaining, QN , is the
kot.i-śara, or the Rvercosine.

If s = rθ, is the arc of a circle of radius r (in minutes), subtending angle θ
(in radians) at the centre, then

Jyā(s) ≡ R sin(s) = r sin(θ) = r sin

(

s

r

)

, (7.4)

Kot.i-jyā(s) ≡ R cos(s) = r cos(θ) = r cos

(

s

r

)

, (7.5)

Śara(s) ≡ R vers(s) = r vers(θ) = r vers

(

s

r

)

= r

(

1 − cos

(

s

r

))

. (7.6)

In most of what follows, it is assumed that the circumference of the circle is
21, 600′ or 360◦.

3The term śara means ‘arrow’. In Figure 7.2, if we consider the arc AEB as a bow,
then PE serves as śara or arrow joining the mid point of the full-chord with the middle
of the arc AB.



7.2 Derivation of Rsines 211

7.2.2 Derivation of Rsines

Now, in Figure 7.2, consider the triangle APE, where AP , the Rsine, is the
bhujā and PE, the Rversine, is the kot.i. Hence the full-chord (samasta-jyā)
of one sign, AE, is given by

AE2 = AP 2 + PE2. (7.7)

But the full-chord AE of one sign is twice the Rsine of half a sign. Thus

R sin(EC) =

(

1

2

)

[

R sin2(EA) + R vers2(EA)
]

1

2 . (7.8)

The same relation will hold of any arc s:

R sin

(

s

2

)

=

(

1

2

)

[

R sin2(s) + R vers2(s)
] 1

2 . (7.9)

There is also the standard relation

R cos(s) = R sin(90◦ − s) =
[

r2 − R sin2(s)
] 1

2 , (7.10)

where we have assumed that 90◦ is one-fourth the circumference. Equations
(7.9) and (7.10) can be used along with the standard values4

R sin(30◦) =
r

2
, (7.11)

R sin(45◦) =

(

r2

2

) 1

2

, (7.12)

to derive a number of Rsines.5

4The R sin 30◦ value has been derived in (7.3). The value of R sin(45◦) can be obtained
by noting that the square of the full-chord (EN in Figure 7.2) of the corresponding double-
arc of 90◦, is given by 2r2.

5As will be explained later in Section 7.4.2, the object is to derive the 24 tabulated
Rsines of arcs which are multiples of 225′ = 3◦45′. Here the starting value (7.11) of
R sin(30◦) is the 8th tabulated sign. From this, the Rsine of the complementary arc 60◦,
or the 16th tabulated Rsine, is obtained from (7.10). The Rsine of the half-arc, R sin 15◦,
or the 4th tabulated Rsine is found using (7.9). In this way, by successive applications of
(7.9) and (7.10), the 1st, 2nd, 4th, 5th, 7th, 8th, 10th, 11th, 13th, 14th, 16th, 17th, 19th, 20th,
22nd, 23rd and 24th tabulated Rsines are all determined. The remaining tabulated Rsines
are found by following the same procedure, starting from the value (7.12) of R sin(45◦),
which is the 12th tabulated Rsine.
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7.3 Some technical terms and definitions

7.3.1 Rsine and Rcosine

Consider the quadrant of the circle from the east point to the north point.
This quadrant may be divided into a convenient number, usually taken to
be 24, of equal cāpa-khan. d. a-s or arc-bits.

ON

E

C
1

C

C

2

3

1

2

A3

A

A

BBB 123

E

S

Figure 7.3: Rsines and Rcosines.

In Figure 7.3 are shown (not to scale) the first three arc-bits, EC1, C1C2 and
C2C3. The Rsines (bhujā-jyā) are parallel to the north-south line and the
Rcosines (kot.i-jyā) and the Rversines (́sara or utkrama-jyā) are parallel to
the east-west line. C1A1, C2A2, C3A3 are the Rsines of the arcs EC1, EC2,
and EC3 respectively. C1B1, C2B2, C3B3 are the Rcosines of these arcs,
and A1E, A2E, and A3E are the Rversines of these arcs, respectively.
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7.3.3 Rsine and Rcosine-differences

The Rsine-difference (bhujā-khan. d. a) of the first arc-bit EC1 is B1O, which is
the same as C1A1, the first Rsine itself. The Rsine-difference of the second
arc-bit C1C2 is B2B1, which is equal to the portion of the second Rsine
enclosed between its tip C2 and the first Rcosine C1B1. The Rsine-difference
of the third arc-bit C2C3 is B3B2, which is equal to the portion of the third
Rsine enclosed between its tip C3 and the second Rcosine C2B2.

The Rcosine-difference (kot.i-khan. d. a) of the first arc-bit EC1 is EA1, which
is the distance from the east point to the foot of the first Rsine. The Rcosine-
difference of the second arc-bit C1C2 is A1A2, which is equal to the portion
of the first Rcosine enclosed between its tip C1 and the second Rsine C2A2.
The Rcosine-difference of the third arc-bit C2C3 is A2A3, which is equal to
the portion of the second Rcosine enclosed between its tip C2 and the third
Rsine C3A3. It is noted later that EA1 is the first Rversine-difference (śara-
khan. d. a), which is also the first Rversine. A1A2 and A2A3 are the next two
Rversine-differences.

Each of the Rsine-difference and Rcosine-difference pairs, B1O and EA1,
B2B1 and A1A2, B3B2 and A2A3, will be bhujā-s and kot.i-s, with the cor-
responding full-chords of the arc-bit as the karn. a. Since the arc-bits are all
equal, the corresponding full-chords (samasta-jyā-s) are all equal, though in
each case, the bhujā-s and kot.i-s, the Rsine- and Rcosine-differences are all
different. This is quite like the Rsines and Rcosines themselves which can
be considered as bhujā-s and kot.i-s which, though differ from arc to arc, are
such that the corresponding karn. a (the hypotenuse, which is the root of sum
of their squares) is always equal to the radius.

7.3.4 Rsine and Rcosine in the quadrants

The east point on the circle is usually taken as the Mes.ādi, the First Point
of Aries, and from there the rāśi-s, the signs, are marked towards the north,
such that the end of the rāśi Mithuna (Gemini) is at the north point. When a
given arc (is. t.a-cāpa) is reckoned from the east point and its tip is in different
quadrants, then, the correspoinding bhujā-cāpa and kot.i-cāpa are given as
follows (see Figure 7.4).
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Figure 7.4: Bhujā-cāpa and Kot.i-cāpa in different quadrants.

In the first quadrant, if the given arc is EA1, then EA1 itself is the bhujā-
cāpa and NA1 is the kot.i-cāpa. In the second quadrant, if the given arc is
EA2, then WA2 is the bhujā-cāpa and A2N is the kot.i-cāpa. In the third
quadrant, if the given arc is EA3, then WA3 is the bhujā-cāpa and A3S is
the kot.i-cāpa. In the fourth quadrant, if the given arc is EA4, then EA4 is
the bhujā-cāpa and A4S is the kot.i-cāpa.

7.4 Computation of Rsines

7.4.1 Tabular Rsines (Pat.hita-jyā)

Having divided the quadrant into a number of equal arc-bits, the correspond-
ing Rsine-differences may be calculated and tabulated. These are called
tabulated Rsine (differences), pat.hita-jyā, as has been done in earlier texts
(pūrva-śāstra-s).6 They can be tabulated in order, or in the inverse order as
utkrama-jyā-s.

6Some texts such as the Āryabhat. ı̄ya tabulate Rsine-differences, while other texts such
as the Sūryasiddhānta tabulate the Rsines themselves.
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If a given arc is a multiple of these arc-bits, then the corresponding Rsine
can be found merely by adding these tabulated Rsine-differences. But if the
desired arc falls in the interstices of these arc-bits, then a suitable part of the
next Rsine-difference is to be added to the value of the Rsine of the nearest
arc which is an integral multiple of the arc-bits.

It is noted that we will not get accurate results by just applying the “rule
of three” that if an arc-bit corresponds to so much of Rsine-difference, how
much a portion of it will correspond to. Such a result will only be rough.
This can be seen by noting that while the arc-bits are all equal, the Rsine-
differences are all different, so that the Rsine of two arc-bits is not twice
the Rsine of a single arc-bit. The reason for this is explained as follows:
The first arc is not curved, since the Rversine is very small. So the arc is
practically equal to the Rsine. But, as the arc increases the curved nature
will increase. There, the Rsine (bhujā-jyā) will have lesser length, since the
Rversine increases in length. Therefore, the rule of three should not be
applied to derive the Rsines.

7.4.2 Computation of accurate tabular Rsines

Before going to the calculation of Rsines when the desired arc falls in the
interstice between the arc-bits, a method for calculating the tabulated Rsines
is presented. For this purpose, consider the quadrant EN of the circle (of
circumference 21600′) to be divided into 24 equal arc-bits of 225′ each. We
shall show the first two arc-bits in Figure 7.5 where, for the sake of visual
clarity, we have taken these arc-bits to be much larger than 225′. EC1 and
C1C2 are the first two arc-bits. Draw the first two Rsines C1B1 and C2B2,
as also the first two Rcosines C1K1 and C2K2. Further, let C1K1 and C2B2

intersect at G.

The chords of all the equal arc-bits are all equal and let this chord-length be
denoted as α. It is equal to the square-root of the sum of the squares of the
first Rsine C1B1 and the first Rversine EB1.

Let M1, M2 be the mid-points of the arc-bits EC1, C1C2. Let M1P1 and
M1Q1 be the Rsine and Rcosine of arc EM1, and M2P2 and M2Q2, those of
arc EM2. Let H be the point of intersection of M1Q1 and M2P2.
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Figure 7.5: Computation of tabular Rsines.

Now, the arc EM1 is of measure 1121

2

′

. Since this arc may be considered
small, we can approximate the corresponding Rsine, M1P1 by the arc itself.
Thus

R sin
(

1121

2

′
)

= M1P1 ≈ 1121

2

′

. (7.13)

Then, the corresponding Rcosine, M1Q1 (which is also the Rsine of 231

2

arc-bits of 225′) and the Rversine, EP1, are given by

R cos
(

1121

2

′
)

= M1Q1 =
[

r2 − R sin2
(

1121

2

′
)] 1

2 ,

≈

[

r2 −
(

1121

2

′
)2
] 1

2

, (7.14)

R vers
(

1121

2

′
)

= EP1 = r − R cos
(

1121

2

′
)

≈ r −

[

r2 −
(

1121

2

′
)2
] 1

2

. (7.15)

Now, the radius OM1 bisects the chord EC1 perpendicularly as M1 is the
midpoint of the first arc-bit. Now the triangles OM1P1 and C1EB1 are
similar as the sides of one are perpendicular to the corresponding sides of
the other. Hence, we have

OM1

C1E
=

M1P1

EB1

=
OP1

C1B1

. (7.16)
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The chord C1E = α is twice the Rsine of 1121

2

′

. For evaluation of the
expressions involving this chord, we shall make the same approximation as
in (7.13), that is,

α = C1E = 2 M1P1 ≈ 225′. (7.17)

From (7.16), we have the following expressions for the first Rsine, Rversine
and Rcosine in terms of the values of these quantities for the half-arc-bit
1121

2

′

, which have been evaluated above in (7.13)–(7.15):

R sin(225′) = C1B1 = C1E ×
OP1

OM1

= α





(

R cos
(

1121

2

′
))

r



 ,(7.18)

R vers(225′) = EB1 = C1E ×
M1P1

OM1

= α





(

R sin
(

1121

2

′
))

r



 , (7.19)

R cos(225′) = OB1 = r − EB1 = r − α





(

R sin
(

1121

2

′
))

r



 . (7.20)

Now, in order to calculate the second Rsine, Rversine and Rcosine, we first
evaluate the corresponding Rsine-differences etc., between the arcs EM2 and
EM1. For this purpose we note that the triangles OC1B1 and M2M1H are
similar, Therefore,

OC1

M2M1

=
OB1

M2H
=

C1B1

M1H
. (7.21)

If we note that M2M1 is full-chord α, then the Rsine-difference M2H and
Rversine-difference M1H are given by

M2H = M2M1 ×
OB1

OC1

= α

[

(R cos(225′))

r

]

, (7.22)

M1H = M2M1 ×
C1B1

OC1

= α

[

(R sin(225′))

r

]

. (7.23)

Adding these differences to the Rsines etc. of 1121

2

′

, we get the Rsines etc.,

of 11

2
arc-bits, that is 3371

2

′

.

R sin
(

3371

2

′
)

= M2P2 = M1P1 + M2H

= R sin
(

1121

2

′
)

+ α

[

(R cos(225′))

r

]

, (7.24)

R vers
(

3371

2

′
)

= EP2 = EP1 + M1H
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= R vers
(

1121

2

′
)

+ α

[

(R sin(225′))

r

]

, (7.25)

R cos
(

3371

2

′
)

= OP2 = r − EP2

= R cos
(

1121

2

′
)

− α

[

(R sin(225′))

r

]

. (7.26)

The above values can now be used to calculate the second Rsines etc., by
evaluating the Rsine-differences etc., between the arcs EC2 and EC1. For
this purpose we note that the triangles OM2P2 and C2C1G are similar.
Therefore,

C2G = C2C1 ×
OP2

OM2

= α





(

R cos
(

3371

2

′
))

r



 , (7.27)

C1G = C2C1 ×
M2P2

OM2

= α





(

R sin
(

3371

2

′
))

r



 . (7.28)

Adding these differences to the Rsines etc. of 225′, we get the Rsines etc.,
of 2 arc-bits, that is 450′.

R sin(450′) = C2B2 = C1B1 + C2G

= R sin
(

3371

2

′
)

+ α

[

(R cos(225′))

r

]

, (7.29)

R vers(450′) = EB2 = EB1 + C1G

= R vers
(

3371

2

′
)

+ α

[

(R sin(225′))

r

]

, (7.30)

R cos(450′) = OB2 = r − EB2

= R cos
(

3371

2

′
)

− α

[

(R cos(225′))

r

]

. (7.31)

Continuing this process we can calculate all the tabulated Rsine-differences,
or equivalently, all the tabulated Rsines of multiples of the arc-bits 225′. It is
noted that in the process, we are also evaluating the Rsines of the mid-points
of the arc-bits also, that is Rsines of odd multiples of 1121

2

′

.7

7Note that the equations (7.18)–(7.31) are all exact relations. However, in order to
evaluate the Rsines etc., we need to make a suitable approximation for the Rsine of the
half-arc-bit 112 1

2

′

and the full-chord α of the arc-bit 225′, as given by equations (7.13) and
(7.17).
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7.4.3 Accurate Rsine and Rcosine at a desired point

When the desired arc is not a multiple of the arc-bit, then the Rsine etc. of
the arc have to be obtained as corrections to the Rsines etc. of the nearest
multiple of the arc-bit. The portion of the desired arc from its tip to the
nearest tip of an arc-bit is called the śis. t.a-cāpa or remainder arc. In Figure
7.6, let the tip of the i-th arc-bit Ci be closest to the tip of the desired arc
EC. Then the śis. t.a-cāpa is CCi, which may be denoted by △. The Rsine
CiBi and Rcosine CiKi of the arc ECi are tabulated Rsine and Rcosine
values, which we assume are already calculated. To determine the Rsine,
CB, and the Rcosine, CK, of the desired are EC, we need to calculate the
corrections BiB and KiK. Let CiKi and CB meet at D.

1M

1K Ki

Ci

1B

ON

E

2M
2B

2K

C B

K

Bi

F

D

E

S

Figure 7.6: Rsine at a desired point.

If M1 is the mid-point of the śis. t.a-cāpa CiC, and M1B1 and M1K1 are the
Rsine and Rcosine of the arc EM1, then we can follow the procedure outlined
above, using the similarity of the triangles OM1B1 and CCiD. We get

BiB = CiD = CCi ×
M1B1

OM1

, (7.32)

KiK = DC = CCi ×
OB1

OM1

. (7.33)
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In the above, the chord CCi of the śis. t.a-cāpa can be approximated by the arc
∆ itself.8 But, we do not know the Rsine and Rcosine, M1B1 and OB1, of
the arc EM1, which appear in (7.32), (7.33). For this purpose it is suggested
that we may consider the mid-point M2 of the arc CiM1, and the Rsine and
Rcosine, M2B2 and M2K2, of the arc EM2. If F is the point of intersection
of CiKi and M1B1, then as before the triangles OM2B2 and M1CiF are
similar and we get

BiB1 = CiF = M1Ci ×
M2B2

OM2

, (7.34)

KiK1 = FM1 = M1Ci ×
OB2

OM2

. (7.35)

As before, the chord M1Ci which appears in the above equations can be
approximated by the corresponding arc ∆

2
. But again, we do not know

the Rsine and Rcosine, M2B2 and OB2, of the arc EM2. At this stage,
it is suggested that these may be approximated by the tabular Rsine and
Rcosine, CiBi and OBi, of the arc ECi, because the portion of the arc left
over, namely CiM2, may be considered negligible.9

From equations (7.32)–(7.35), we get

R sin(EC) = R sin(ECi + ∆) = CB

= CiBi + KiK

= R sin ECi + CCi ×
OB1

OM1

= R sin ECi + CCi ×
(OBi − BiB1)

OM1

= R sin ECi +
CCi

r
R cos ECi −

CCi

r

(

M1Ci

r

)

M2B2 . (7.36)

8Note that the śis.t.a-cāpa is always so chosen as to be less than or equal to half the
arc-bit, or 112 1

2

′

, an arc which has already been assumed to be approximately equal to its
Rsine, in (7.13), while calculating the tabulated Rsines.

9If, instead of going through all this, we had taken the arc CiM1 itself to be negligible
and merely used equations (7.32) and (7.33) with the assumption that the Rsine and Rco-
sine, M1Bi and OB1, of the arc EM1, may themselves be approximated by the tabulated
Rsine and Rcosine, CiBi and OBi of the arc ECi, then we would obtain the first order
approximations:

R sin(ECi + ∆) ≈ R sin(ECi) +
(

∆

r

)

R cos(ECi).

R cos(ECi + ∆) ≈ R cos(ECi) −
(

∆

r

)

R sin(ECi).
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With the approximations that the chords CCi and M1Ci may be equated
with ∆ and ∆

2
, and the assumption that M2B2 may be approximated by the

tabulated sine R sin(ECi), we get

R sin(ECi + ∆) ≈ R sin ECi

+

(

∆

r

)

R cos ECi −

(

1

2

)(

∆

r

)2

R sinECi . (7.37)

Similarly for the Rcosine of the arc EC we get,

R cos(ECi + ∆) ≈ R cos ECi

−

(

∆

r

)

R sin ECi −

(

1

2

)(

∆

r

)2

R cos ECi . (7.38)

These are the approximations to the Rsine and Rcosine of a desired arc as
given in the rule is. t.adoh. kot.idhanus.oh. . . . (Tantrasaṅgraha, 2.10). It is also
suggested that if this approximation is not good enough, then we may iterate
the above process one more step by considering the midpoint of the arc CiM2

and so on.10

7.5 Computations of Jyā and Śara by Saṅkalita-s

7.5.1 First and second order differences of Rsines

So far we had considered the tabular Rsines (pat.hita-jyā) obtained by divid-
ing the quadrant of a circle into 24 equal arc-bits. We shall now consider the

10If we do not approximate the Rsine and Rcosine, M2B2 and OB2, of the arc EM2

by the nearest tabulated Rsine and Rcosine, but derive them in terms of the Rsine and
Rcosine at the midpoint M2 of the arc CiM2 and then make a similar approximation, we
will get the third order approximation,

R sin(ECi+∆) ≈ R sin ECi+
(

∆

r

)

R cos ECi−
1

2

(

∆

r

)2

R sin ECi+
1

2.4

(

∆

r

)3

R cos ECi,

R cos(ECi+∆) ≈ R cos ECi−

(

∆

r

)

R sin ECi−
1

2

(

∆

r

)2

R cos ECi+
1

2.4

(

∆

r

)3

R sin ECi.

In this context, it should be noted that while the first order approximation, given in the
previous footnote, and the second order approximation, given in equations (7.37) and
(7.38), appear like the first and second order terms in a Taylor’s series expansion, there
is no reason that the further terms should correspond to the terms in a Taylor’s series
expansion.
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more general case of a given arc (is. t.a-cāpa) of arc-length s, which is divided
into n equal arc-bits. At this stage, the general results derived are equally
applicable to the particular case of the quadrant divided into 24 equal parts.
Later, we shall obtain approximate results for the Rsine and Rversine of an
arbitrary arc, which become more and more accurate as n becomes larger
and larger.

We first define the constituent Rsines (pin. d. a-jyā, or more accurately pin. d. a-
bhujā-jyā) and the corresponding Rcosines and Rversines. If s = rθ, then
the j-th pin. d. a-jyā, Bj is given by

Bj = R sin

(

js

n

)

= r sin

(

jθ

n

)

= r sin

(

js

rn

)

. (7.39)

The corresponding kot.i-jyā Kj , and the śara Sj, are given by

Kj = R cos

(

js

n

)

= r cos

(

jθ

n

)

= r cos

(

js

rn

)

, (7.40)

Sj = R vers

(

js

n

)

= r

[

1 − cos

(

jθ

n

)]

= r

[

1 − cos

(

js

rn

)]

. (7.41)

In Figure 7.7, EC is the desired arc of length s, and CjCj+1 is the (j +1)-th
arc bit. Then the arc ECj = js

n
, and its pin. d. a-jyā Bj = CjPj , and the

corresponding kot.i-jyā and śara are Kj = CjTj , Sj = EPj . Similarly we
have Bj+1 = Cj+1Pj+1, Kj+1 = Cj+1Tj+1, and Sj+1 = EPj+1.

Let Mj+1 be the mid-point of the arc-bit CjCj+1 and similarly Mj the mid-
point of the previous (j-th) arc-bit. We shall denote the pin. d. a-jyā of the arc
EMj+1 as Bj+ 1

2

and clearly

Bj+ 1

2

= Mj+1Qj+1 .

The corresponding kot.i-jyā and śara are

Kj+ 1

2

= Mj+1Uj+1 and Sj+ 1

2

= EQj+1 .

Similarly,

Bj− 1

2

= MjQj, Kj− 1

2

= MjUj and Sj− 1

2

= EQj .

The full-chord of the equal arc-bits s
n

may be denoted α as before. Thus,

CjCj+1 = MjMj+1 = α.
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Figure 7.7: Computation of Jyā and Śara by Saṅkalita-s.

Let F be the intersection of CjTj and Cj+1Pj+1, and G of MjUj and
Mj+1Qj+1. As discussed before, the triangles Cj+1FCj and OQj+1Mj+1are
similar, as their sides are mutually perpendicular. Thus we have

Cj+1Cj

OMj+1

=
Cj+1F

OQj+1

=
FCj

Qj+1Mj+1

. (7.42)

Hence we obtain

Bj+1 − Bj =

(

α

r

)

Kj+ 1

2

, (7.43)

Kj − Kj+1 = Sj+1 − Sj =

(

α

r

)

Bj+ 1

2

. (7.44)

Similarly, the triangles Mj+1GMj and OPjCj are similar and we get

Mj+1Mj

OCj

=
Mj+1G

OPj

=
GMj

PjCj

. (7.45)

Thus we obtain

Bj+ 1

2

− Bj− 1

2

=

(

α

r

)

Kj, (7.46)

Kj− 1

2

− Kj+ 1

2

= Sj+ 1

2

− Sj− 1

2

=

(

α

r

)

Bj . (7.47)



224 7. Derivation of Sines

We define the Rsine-differences (khan. d. a-jyā) ∆j by

∆j = Bj − Bj−1 , (7.48)

with the convention that ∆1 = B1. From (7.43), we have

∆j =

(

α

r

)

Kj− 1

2

. (7.49)

From (7.47) and (7.49), we also get the second order Rsine-difference (the
differences of the Rsine-differences called khan. d. a-jyāntara).11

∆j − ∆j+1 = (Bj − Bj−1) − (Bj+1 − Bj)

=

(

α

r

)

(

Kj− 1

2

− Kj+ 1

2

)

=

(

α

r

)

(

Sj+ 1

2

− Sj− 1

2

)

=

(

α

r

)2

Bj . (7.50)

Now, if the sum of the second-order Rsine-differences, are subtracted from
the first Rsine-difference, then we get any desired Rsine-difference. That is

∆1 − [(∆1 − ∆2) + (∆2 − ∆3) + . . . + (∆j−1 − ∆j)] = ∆j . (7.51)

From (7.50) and (7.51) we conclude that

∆1 −

(

α

r

)2

(B1 + B2 + . . . + Bj−1) = ∆j . (7.52)

7.5.2 Desired Rsines and Rversines from Jyā-saṅkalita

We can sum up the Rversine-differences (7.47), to obtain the śara, Rversine,
at the midpoint of the last arc-bit as follows:

Sn− 1

2

− S 1

2

=
(

Sn− 1

2

− Sn− 3

2

)

+ . . . . . .
(

S 3

2

− S 1

2

)

=

(

α

r

)

(Bn−1 + Bn−2 + . . . + B1) . (7.53)

11This formula for the second order Rsine-difference, when applied to the tabulated
Rsines obtained by dividing the quadrant of a circle into 24 parts, is nothing but the
well-known relation given in the Āryabhat. ı̄ya for the second order Rsine-differences.

Āryabhat. ı̄ya gives the approximate value
(

1

225′

)

for the quantity
(

α

r

)2

in (7.50); Nīlakan. t.ha

(Tantrasaṅgraha 2.4) gives the more accurate value 233 1

2

′

for the divisor, and Śaṅkara, in
his commentary Laghuvivr. tti, refines it further to 233′32′′.
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Using (7.50), the right hand side of (7.53) can also be expressed as a summa-
tion of the second order differences. From (7.52) and (7.53) it follows that
the Rversine at the midpoint of the last arc-bit is also given by

(

α

r

)

(

Sn− 1

2

− S 1

2

)

= (∆1 − ∆n). (7.54)

Now, since the first Rsine-difference ∆1 = B1, any desired Rsine can be
obtained by adding the Rsine-differences; these Rsine-differences have been
obtained in (7.52). Before discussing the general result which is going to
be obtained this way, a particular case, the eighth pin. d. a-jyā, is evaluated
to elucidate the general result. From the definition (7.48) of the Rsine-
differences, We have

B8 = ∆8 + ∆7 + . . . + ∆1 . (7.55)

By using (7.52), equation (7.55) becomes

B8 = 8∆1−

(

α

r

)2

[(B1 + B2 + . . . + B7) + (B1 + B2 + . . . + B6) + . . . + B1]

= 8B1 −

(

α

r

)2

(B7 + 2B6 + . . . + 7B1). (7.56)

In the same way, by making use of (7.52), the last pin. d. a-jyā can be expressed
as follows:

Bn = ∆n + ∆n−1 + . . . + ∆1

= n∆1 −

(

α

r

)2

[(B1 + B2 . . . + Bn−1) + (B1 + B2 . . . + Bn−2) + . . . + B1]

= nB1 −

(

α

r

)2

[Bn−1 + 2Bn−2 + . . . + (n − 1)B1] . (7.57)

Equations (7.53) and (7.57) express the Rsines and Rversines around the
tip of the desired arc in terms of the summations and repeated summations
(saṅkalita) of the pin. d. a-jyā-s, Rsines at the tips of the arc-bits. By employing
(7.53), we can also re-express the expression (7.57) for the last (pin. d. a-jyā)
in the form

Bn = nB1 −

(

α

r

)

[

Sn− 1

2

+ Sn− 3

2

+ . . . + S 1

2

− nS 1

2

]

(7.58)

The results (7.46)–(7.58), obtained so far, involve no approximations. It is
now shown how better and better approximations to the Rsine and Rversine
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can be obtained by taking n to be very large or, equivalently, the arc-bit s
n

to
be very small. Then, we can approximate the full-chord and the Rsine of the
arc-bit by the length of the arc-bit s

n
itself. Also, as a first approximation,

we can approximate the pin. d. a-jyā-s Bj in the equations (7.53), (7.57) or
(7.58) by the corresponding arcs themselves. That is

Bj ≈
js

n
. (7.59)

The result for the Rsine obtained this way is again used to obtain a better
approximation for the pin. d. a-jyā-s Bj which is again substituted back into the
equations (7.53) and (7.57) or (7.58) and thus by a process of iteration suc-
cessive better approximations are obtained for the Rsine and Rversine. Now,
once we take Bj ≈

js
n

, we will be led to estimate the sums and repeated sums
of natural numbers (ekādyekottara-saṅkalita), when the number of terms is
very large. This topic has been dealt with earlier in Chapter 6 and is briefly
recalled here.

7.5.3 First, second, etc. repeated summations (Ādya-dvit̄ıyādi-

saṅkalita)

The first summation (ādya-saṅkalita) is that of the natural numbers

V (1)

n = n + (n − 1) + . . . + 1. (7.60)

This can be easily obtained from the series figure (saṅkalita-ks.etra, see Figure
7.8) to be

V (1)

n =
n(n + 1)

2
. (7.61)

The second summation (dvit̄ıya-saṅkalita) is given by

V (2)

n = V (1)

n + V
(1)

n−1
+ . . . + V

(1)

1

=
n(n + 1)

2
+

(n − 1)n

2
+ . . . +

(1.2)

2
. (7.62)

This summation is stated to be

V (2)

n =
n(n + 1)(n + 2)

1.2.3
. (7.63)
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Figure 7.8: Saṅkalita-ks.etra for first summation.

Similarly the general k-th (repeated) summation is stated to be 12

V (k)

n = V (k−1)

n + V
(k−1)

n−1
+ . . . + V

(k−1)

1

=
n(n + 1)(n + 2) . . . (n + k)

1.2.3. . . . (k + 1)
. (7.64)

What is needed for the evaluation of the Rsines and Rversines is the value of
these summations for large n. They were derived earlier in Section 6.4.5 and
are briefly recalled at this point. Clearly, for large n, the first summation is
essentially half the square of the number terms n:

V (1)

n ≈
n2

1.2
. (7.65)

Using the estimate (7.65) in (7.62) it follows that

V (2)

n ≈
n2

1.2
+

(n − 1)2

1.2
+ . . . . (7.66)

Thus, what we have is essentially half the summation of squares (varga-
saṅkalita). When n is large, the sum of squares has been shown to be

12As we noted earlier, the result for the second (repeated) summation is given in
Āryabhat. ı̄ya, Gan. ita 21. The general result (7.64) for the k-th (repeated) summation
is also given by Nārāyan. a Pan.d. ita (c.1350) in his Gan. itakaumud̄ı, 3.19.
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one-third the cube of the number of terms and thus we get

V (2)

n ≈
n3

1.2.3
. (7.67)

This way we can show that for large n, the k-th order (repeated) summation
is given by

V (k)

n ≈
nk+1

1.2.3. . . . (k + 1)
. (7.68)

7.5.4 Successive corrections to Jyā and Śara

We first recall the equations (7.53) and (7.57) which give the Rsine and
Rversine near the tip of the desired arc in terms of saṅkalita-s of the pin. d. a-
jyā-s:

Sn− 1

2

− S 1

2

=

(

α

r

)

(Bn−1 + Bn−2 + . . . + B1), (7.69)

Bn = nB1 −

(

α

r

)2

[(B1 + B2 + . . . + Bn−1)

+ (B1 + B2 + . . . + Bn−2) + . . . + B1]. (7.70)

As we noted earlier, these relations are exact. But now we shall show how
better and better approximations to the Rsine and Rversine of any desired
arc can be obtained by taking n to be very large or, equivalently, taking
the arc-bit s

n
to be very small. Then both the full-chord α, and the first

Rsine B1 (the Rsine of the arc-bit), can be approximated by the arc-bit s
n

itself, and the Rversine Sn− 1

2

can be taken as Sn and the Rversine S 1

2

may

be treated as negligible. Thus the above relations become

S = Sn ≈

(

s

nr

)

(Bn−1 + Bn−2 + . . . + B1), (7.71)

B = Bn ≈ s −

(

s

nr

)2

[(B1 + B2 + . . . + Bn−1)

+ (B1 + B2 . . . + Bn−2) + . . . + B1], (7.72)

where B and S are the Rsine and Rversine of the desired arc of length s and
the results will be more accurate, larger the value of n.
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It is possible to obtain another approximation for the Rsine by considering
equation (7.58). When n is very large, it can be assumed that the Rversines
at the mid-points are practically the same as the Rversines at the junctions
of the arc-bits, and that the term involving nS 1

2

can be neglected.13 We thus

obtain

B = Bn ≈ s −

(

s

nr

)

(Sn + Sn−1 + . . . + S1). (7.73)

Either of the equations (7.72) or (7.73) can be used in tandem with equation
(7.71) to obtain successive corrections to Rsines and Rversines.

Now, as a first approximation, we take each pin. d. a-jyā Bj in (7.71) and (7.72)
to be equal to the corresponding arc itself, that is

Bj ≈
js

n
. (7.74)

Then we obtain for the Rversine

S ≈

(

s

nr

)[

(n − 1)

(

s

n

)

+ (n − 2)

(

s

n

)

+ . . .

]

=

(

1

r

)(

s

n

)2

[(n − 1) + (n − 2) + . . .]. (7.75)

Now, from the estimate (7.65) for the saṅkalita on the right hand side of
(7.75), we obtain

S ≈

(

1

r

)

s2

2
. (7.76)

Equation (7.76) is the first śara-sam. skāra, correction to the Rversine. We
now substitute our first approximation (7.74) to the pin. d. a-jyā-s Bj in (7.72),
which gives the Rsine of the desired are as a second order repeated sum of
the pin. d. a-jyā-s Bj . We then obtain

B ≈ s−

(

1

r

)2 ( s

n

)3

[(1+2+ . . .+(n−1))+(1+2+ . . . (n−2))+ . . .]. (7.77)

The second term in (7.77) is a dvit̄ıya-saṅkalita, the second order repeated
sum, and using the estimate (7.67), we obtain

B ≈ s −

(

1

r

)2 s3

1.2.3
. (7.78)

13Unlike the Rsines which are proportional to the arc-bit when the arc-bit is small, the
Rversines are proportional to the square of the arc-bit and thus nS 1

2

can be neglected,

unlike nB1, when the arc-bit
(

s

n

)

is very small.
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Thus we see that the first correction obtained in (7.78) to the Rsine-arc-
difference (jyā-cāpāntara-sam. skāra) is equal to the earlier correction to the
Rversine (́sara-sam. skāra) given in (7.76) multiplied by the arc and divided
by the radius and 3.

Another way of deriving (7.78) is by employing the result (7.76) for the
Rversines, for the pin. d. a-śara-jyā-s Sn, Sn−1 etc. which appear in (7.73);
then we obtain

B ≈ s −

(

1

r

)2 ( s

n

)3 (1

2

)

[n2 + (n − 1)2 + . . .]. (7.79)

Now, the second term in (7.79) can either be estimated using (6.54) as a sum-
mation of squares (varga-saṅkalita), or by using (7.67) as a dvit̄ıya-saṅkalita,
second order (repeated) summation, because each individual term there has
been obtained by doing a summation as in (7.75). The equation (7.79) then
reduces to (7.78). This procedure can be adopted also for deriving the higher
order corrections to the Rsine-arc-difference.

It is noted that the results (7.76) and (7.78) are only approximate (prāyika),
since, instead of the saṅkalita of the pin. d. a-jyā-s in (7.71) and (7.72), we have
only carried out saṅkalita of the arc-bits. Now that (7.78) gives a correction
to the difference btween the Rsine and the arc (jyā-cāpāntara-sam. skāra), we
can use that to correct the values of the pin. d. a-jyā-s and thus obtain the next
corrections to the Rversine and Rsine.

Following (7.78), the pin. d. a-jyā-s may now be taken as

Bj ≈
js

n
−

(

1

r

)2







(

js
n

)3

1.2.3






. (7.80)

If we introduce (7.80), in (7.71), we obtain

S ≈

(

1

r

)(

s

n

)2

[(n − 1) + (n − 2) + . . .]

−

(

s

nr

)(

1

r

)2 ( s

n

)3 ( 1

1.2.3

)

[(n − 1)3 + (n − 2)3 + . . .]. (7.81)

The first term in (7.81) was already evaluated while deriving (7.76). The sec-
ond term in (7.81) can either be estimated as a summation of cubes (ghana-
saṅkalita), or as a trit̄ıya-saṅkalita, third order (repeated) summation, be-
cause each individual term there has been obtained by doing a second-order
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(repeated) summation. Hence, recollecting our earlier estimates for these
saṅkalita-s, we get

S ≈

(

1

r

)

s2

1.2
−

(

1

r

)3 s4

1.2.3.4
. (7.82)

Equation (7.82) gives a correction (́sara-sam. skāra) to the earlier value (7.76)
of the Rversine, which is nothing but the earlier correction to the Rsine-arc
difference (jyā-cāpāntara-sam. skāra) given in (7.78) multiplied by the arc and
divided by the radius and 4.

Again, if we use the corrected pin. d. a-jyā-s (7.80) in the expression (7.71) for
the Rsine, we obtain

B ≈ s −

(

1

r

)2 ( s

n

)3

[(1 + 2 + .. + (n − 1)) + (1 + 2 + .. + (n − 2)) + ..]

+

(

1

r

)4 ( s

n

)5

×

(

1

1.2.3

)

[

(13 + 23 + ... + (n − 1)3) + (13 + 23 + ... + (n − 2)3) + ..
]

≈ s −

(

1

r

)2 s3

1.2.3
+

(

1

r

)4 s5

1.2.3.4.5
, (7.83)

where, while evaluating the second order repeated summation in the third
term, we have used the estimate (7.68) for the case of a fourth order repeated
summation, as each individual term there has been obtained by a second
order repeated summation as given in (7.77). Again, we may note that
the second correction obtained in (7.83) to the Rsine-arc-difference (jyā-
cāpāntara-sam. skāra) is equal to the earlier correction to the Rversine (́sara-
sam. skāra) given in (7.82) multitplied by the arc and divided by the radius
and 5.

The above process can be repeated to obtain successive higher order correc-
tions for the Rversine and Rsine: By first finding a correction (jyā-cāpāntara-
sam. skāra) for the difference between the Rsine and the arc, using this correc-
tion to correct the pin. d. a-jyā-s Bj , and using them in equations (7.71) and
(7.72) get the next correction (́sara-sam. skāra) for the Rversines, and the
next correction (jyā-cāpāntara-sam. skāra) for the Rsine-arc-difference itself,
which is then employed to get further corrections iteratively.
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7.5.5 Accurate computation of Rsines and Rversines, with-

out using tables

The successive corrections to Rsine and Rversine, obtained as stated above,
are going to be subtractive from the previous correction as they are based
upon improving the estimate of the difference between the Rsine and the
arc in our expression for the pin. d. a-jyā-s. We therefore obtain the following
series of correction terms for the Rsine and Rversine:14

R sin(s) ≈ s −

(

1

r

)2 s3

(1.2.3)
+

(

1

r

)4 s5

(1.2.3.4.5)

−

(

1

r

)6 s7

(1.2.3.4.5.7)
+ . . . , (7.84)

R vers(s) ≈

(

1

r

)

s2

2
−

(

1

r

)3 s4

(1.2.3.4)
+

(

1

r

)5 s6

(1.2.3.4.6)
− . . .(7.85)

These can also be re-expressed in the following form given by the rule nihatya
cāpavargen. a...(cited also in Yuktid̄ıpikā, II. 440–443)

R sin(s) ≈ s − s

(

s

r

)2

(22 + 2)
+ s

(

s

r

)4

(22 + 2)(42 + 4)
− . . . , (7.86)

R vers(s) ≈
r

(

s

r

)2

(12 + 1)
−

r

(

s

r

)4

(12 + 1)(32 + 3)
+ . . .

≈
r

(

s

r

)2

(22 − 2)
−

r

(

s

r

)4

(22 − 2)(42 − 4)
+ . . . . (7.87)

The above expressions for jyā and śara can be employed to calculate them
without using the tabular values, by using the sequence of numerical values

14Using the standard relations (7.4), (7.6) between jyā and sine and śara and versine,
(7.84) and (7.85) reduce to the series

sin θ = θ −
θ3

(1.2.3)
+

θ5

(1.2.3.4.5)
−

θ7

(1.2.3.4.5.6.7)
+ . . . ,

vers θ =
θ2

(1.2)
−

θ4

(1.2.3.4)
+

θ6

(1.2..4.5.6)
− . . . .
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given by the formulae, vidvān etc and stena etc.15 This is indeed the method
of deriving the required Rsine and Rversine without using the regular tabular
values.

7.6 Accurate circumference from an approximate

value

If d be the diameter of a circle and if we only know the approximate cir-
cumference c*, a way to find a more accurate value of the circumference c,
is the following. First evaluate the auxiliary Rsine value B∗, of the arc c∗

4
in

a circle of radius d, as accurately as is desired. That is,

B∗ =
c∗

4
−

(

1

d

)2 1

1.2.3

(

c∗

4

)3

+

(

1

d

)2 1

1.2.3.4.5

(

c∗

4

)5

. . . . (7.88)

Let K∗ be the corresponding Rcosine, namely

K∗ = (d2 − B∗2)
1

2 . (7.89)

Let ∆ be given by

∆ =

(

B∗2

2

) 1

2

−

(

K∗2

2

) 1

2

. (7.90)

Let δ be the arc corresponding to the Rsine value of ∆, which can be calcu-
lated by the relation

∆ +

(

1

d

)2 1

1.2.3
∆3 ≈ δ. (7.91)

15The formulae vidvān etc. and stena etc., are attributed to Mādhava by Nı̄lakan. t.ha in
his Āryabhat. ı̄ya-bhās.ya, Gan. itapāda, 17 (see also, Yuktid̄ıpikā, II. 437–438). If the quad-
rant of a circle is assigned the measure q = 5400′, then for a given arc s, the corresponding
Rsine given by (7.86) can be expressed in the form:

R sin(s) ≈ s −

(

s

q

)3
(

u3 −

(

s

q

)2
(

u5 −

(

s

q

)2
(

u7 −

(

s

q

)2
(

u9 −

(

s

q

)2

u11

))))

,

where, the values of u11, u9, u7, u5, and u3 are given by the formulae vidvān etc., as follows:
u11 = 44′′′, u9 = 33′′06′′′, u7 = 16′05′′41′′′, u5 = 273′57′′47′′′ and u3 = 2220′39′′40′′′.
The above expression gives the values of Rsine of any arc accurately up to the thirds.
Similarly, the formulae stena etc., are used to calculate the Rversine of any arc accurately
up to the thirds. Mādhava has also given the tabulated sine values (for arcs in multiples of
225′) accurately to the thirds in the rule śres. t.ham. nāma varis. t.hānām. ...(cited by Nı̄lakan. t.ha
in his Āryabhat. ı̄yabhās.ya, Gan. itapāda, 12).
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Then, an accurate circumference is given by

c = 4

[(

c∗

4

)

+ δ

]

. (7.92)

The rationale for this procedure is also explained. If c∗ is the accurate
circumference itself, then B∗2 and K∗2 will be the squares of the Rsine and
Rcosine of one-eighth the circumference of a circle with radius (and not

diameter) d, and hence will be equal to d2

2
. Hence (by the j̄ıve-paraspara-

nyāya to be stated shortly), ∆ is nothing but the Rsine of the difference
of one-eighth the true circumference and rough circumference of that circle.
Therefore four times the corresponding arc will give the correction to the
approximate value of the circumference c*.

7.7 Square of Rsine

The square of the Rsine of an arc is given by the rule nihatya cāpavargen. a ...
(Yuktid̄ıpikā II. 455–456)

R sin2(s) = s2 − s2

(

s

r

)2

(

22 − 2

2

) + s2

(

s

r

)4

(

22 − 2

2

) (

32 − 3

2

) − . . . . (7.93)

The values of this can also be found by using the formulae śaurirjayati...(cited
also in Yuktid̄ıpikā II. 457–458)

7.8 Derivation of Rsines from J̄ıve-paraspara-nyāya

7.8.1 J̄ıve-paraspara-nyāya

The j̄ıve-paraspara-nyāya is the famous rule of Mādhava (cited for instance,
in Tantrasaṅgraha 2.12), which corresponds to the following result. If s1 and
s2 are two arcs then

R sin(s1 ± s2) =

(

1

r

)

[R sin(s1) R cos(s2) ± R cos(s1) R sin(s2)]. (7.94)
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The proof of this is illustrated for the case when s1 is the arc composed of
the first and the second arc-bits and s2 is the third arc-bit, when a quadrant
is divided as usual into 24 equal arc-bits. In the figure 7.9 below (which is
not to scale), s1 is the arc EA2 and s2 is the arc A2A3. Join the radius
OA2 and let it meet the full-chord of the arc A1A3 at its midpoint L. Now,
R sin(s1) = A2B2, R cos(s1) = A2S2, and since A3L is the half-chord of the
arc A1A3 which is double s2, we have R sin(s2) = A3L and R cos(s2) = OL.
From L draw LC parallel to the north-south line LD parallel to the east-
west line. Let the third Rsine A3B3 meet LD at P and let the first Rcosine
A1S1 meet LC at Q.

ON

E
B

B

1
1

S 1

B

S3

3 3

2
2

2 S

CL

P

Q

A

A

A

S

D

E

Figure 7.9: J̄ıve-paraspara-nyāya.

Now, the triangles A3PL and A2S2O are similar as the sides are mutually
perpendicular. Hence,

A3P

A2S2

=
A3L

A2O
=

PL

S2O
. (7.95)

Hence, we get

(

1

r

)

R sin(s1)R sin(s2) = PL, (7.96)
(

1

r

)

R cos(s1)R sin(s2) = PA3. (7.97)
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Then, triangles OLC and OA2B2 are similar. Hence,

LC

A2B2

=
OL

OA2

. (7.98)

Therefore,
(

1

r

)

R sin(s1)R cos(s2) = LC. (7.99)

Then again, triangles OLD and OA2S2 are similar. Hence,

LD

A2S2

=
OL

OA2

. (7.100)

Hence,
(

1

r

)

R cos(s2)R cos(s1) = LD. (7.101)

Now we have the relations

LC + A3P = A3B3,

LC − A3P = A1B1.

These correspond to the relations

R sin(s1 ± s2) =

(

1

r

)

[R sin(s1) R cos(s2) ± R cos(s1)R sin(s2)]. (7.102)

Similarly, we have

LD − PL = A3S3,

LD + PL = A1S1.

These correspond to the relations

R cos(s1 ± s2) =

(

1

r

)

[R cos(s1) R cos(s2)− (±)R sin(s1)R sin(s2)]. (7.103)

These relations (7.102) and (7.103) can be used to calculate various tabulated
Rsines, starting from the first Rsine. They can also be used to find the Rsine
and Rcosine of a desired arc from the nearest tabular values and the Rsine
and Rcosine of the remaining arc (́sis. t.a-cāpa).
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7.8.2 J̄ıve-paraspara-nyāya: An alternative proof

The second proof is also for the same case and we can refer to the same
figure 7.9. We start with the evaluation of A3P and PL which has already
been done in equations (7.96) and (7.97). Now consider the triangle A3LB3.
Here, it has already been noted that A3L is R sin(s2). It is noted that
LB3 is R sin(s1).

16 The perpendicular LP divides the base A3B3 into the
two intercepts (ābādhā-s), A3P and B3P . It is well known that these base-
intercepts are equal to the difference of the squares of the corresponding side
and the perpendicular. We have already evaluated one intercept A3P and
the perpendicular LP in equations (7.96) and (7.97). The other intercept

B3P
2 = B3L

2 − LP 2

= R sin2(s1) −

(

1

r

)2

R sin2(s1)R sin2(s2). (7.104)

Therefore,

B3P =

(

1

r

)

R sin(s1)R cos(s2). (7.105)

The expression (7.97) for A3P can also be derived in this way. Now using
(7.97) and (7.105), we get

R sin(s1 + s2) = A3B3 = B3P + A3P

=

(

1

r

)

[R sin(s1)R cos(s2) + R cos(s1)R sin(s2)]. (7.106)

7.9 Principle of the area of a triangle

With a view to arrive at a method for deriving the Rsines without using the
radius, the principles of the area of a triangle and a cyclic quandrilateral are
dealt with. First the area of a triangle is discussed:

Consider a general scalene triangle (vis.ama-tryaśra) ABC, with vertex A
and base BC as in Figure 7.10. Draw the perpendicular AD from the vertex

16This can be shown by noting that LB3 is half the full-chord of an arc which is double
of the arc A1A3 which is equal to s1. For this, produce A3B3 to meet the circle at D1

(not shown in the figure). Then, in the triangle A3A1D1, L is the midpoint of A3A1 and
B3 the midpoint of A3D1. Hence LB3 is half the chord A1D1, which is the full chord of
an arc equal to four arc-bits, or an arc which is double the arc A1A3.
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Figure 7.10: Area of a triangle.

to the base. Then the two base-intercepts BD, DC and the attitude AD
can be evaluated in terms of the sides as follows.

BD2 = AB2 − AD2, (7.107)

CD2 = AC2 − AD2. (7.108)

Hence

BD2 − CD2 = AB2 − AC2. (7.109)

Since BC = BD + CD, we get (assuming AB > AC, which implies BD >
CD)

BD =
1

2

[

BC +
AB2 − AC2

BC

]

, (7.110)

CD =
1

2

[

BC −
AB2 − AC2

BC

]

, (7.111)

and

AD = (AB2 − BD2)
1

2 . (7.112)

The area of the triangle is half the base BC multiplied by the altitude AD.
This can be seen by cutting the triangle along the lines joining the midpoints
of the sides with the midpoints of the base-segments and reconstituting them
into a rectangle as shown in Figure 7.10.
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7.10 Diagonals of a cyclic quadrilateral

Before proceeding to evaluate the area of a cyclic quadrilateral, we first
obtain expression for its diagonals in terms of its sides. In Figure 7.11 we
consider a cyclic quadrilateral ABCD, such that its base AB on the western
side is the largest side and the face CD on the east in the smallest. The side
BC to the south is smaller than AB, but larger than the other side DA to
the north. The sides are full-chords of the associated arcs, and the diagonals
AC and BD are full-chords of arcs which are sums of the arcs associated
with adjacent sides. First we shall obtain a result about such chords.

7.10.1 Product of two full-chords is equal to the difference

in the squares of the full-chords associated with half

the sum and difference of the arcs

A B

C

D

E

P

M

E

S

Figure 7.11: Cyclic quadrilateral.

In Figure 7.11, if DM is the perpendicular from the vertex D of the cyclic
quadrilateral ABCD onto the diagonal AC, then in the triangle ADC, the
difference in the squares of the sides AD, DC is equal to the difference in
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the square of the base segments (ābādhā)

AD2 − DC2 = AM2 − MC2. (7.113)

Hence,

AD2 − DC2 = (AM + MC)(AM − MC)

= AC(AM − MC). (7.114)

Now, AM + MC = AC is the full-chord associated with sum of the arcs
associated with the chords AD and DC. Similarly, AM − MC is the chord
associated with the difference of the arcs associated with AD and DC. To
see this, mark off E on the circle, such that arc AE is equal to the arc CD.
Then, chord AE is equal to the chord CD and hence, DE is parallel to AC
and ACDE is a trapezium and DE = PM = AM − MC.

Hence AM − MC is the chord associated with the arc DE which is the
difference between the arc AD and arc CD. If we denote these arcs by
s1, s2, then we have shown17 (with our convention that s1 > s2)

Chord2(s1) − Chord2(s2) = Chord(s1 + s2)Chord(s1 − s2). (7.115)

Equation (7.115) is also equivalent to the following:

Chord(s1)Chord(s2) = Chord2

[

(s1 + s2)

2

]

− Chord2

[

(s1 − s2)

2

]

. (7.116)

7.10.2 Sum of the products of the two pairs of sides associ-

ated with a diagonal is equal to the product of the

diagonal with the third diagonal

In Figure 7.12 we consider the cyclic quadrilateral ABCD with the specifi-
cations mentioned above, namely that, the base AB on the western side is
the largest side and the face CD on the east is the smallest side and the side
BC to the south is smaller than AB, but larger than the other side DA to
the north.

17Relations (7.115) and (7.116) are equivalent to the trigonometric relations:

sin2(θ1) − sin2(θ2) = sin(θ1 + θ2) sin(θ1 − θ2),

sin(θ1)sin(θ2) = sin2

[

(θ1 + θ2)

2

]

− sin2

[

(θ1 − θ2)

2

]

.
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Figure 7.12: Diagonals of a cyclic quadrilateral.

In the arc AC, mark the point E such that arc AE is equal to the arc of the
face DC . Then the chord ED is parallel to AC and

Arc(ED) = Arc(AD) − Arc(DC). (7.117)

In the same way mark the point F in the arc AB such that arc AF is equal
to the arc BC. Then the chord FB is parallel to AC and

Arc(FB) = Arc(AB) − Arc(BC). (7.118)

Let H be the midpoint of arc ED and HG be the diameter of the circle.
Then, we have

Arc(AH) = Arc(AE) + Arc(EH)

= Arc(CD) + Arc(DH)

= Arc(HC). (7.119)

Also, since HG is the diameter,

Arc(HA) + Arc(AG) = Arc(HC) + Arc(CG). (7.120)

From (7.119) and (7.120) it follows that.

Arc(AG) = Arc(GC). (7.121)
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Since, arcs AF and BC are equal, it follows that G is the midpoint of FB,
and

Arc(FG) = Arc(GB) =
1

2
[Arc(AB) − Arc(BC)]. (7.122)

Now BD may be termed the first diagonal of the quadrilateral and AC the
second diagonal. As mentioned earlier, these are full-chords associated with
sums of the arcs associated with different pairs of adjacent sides. There
is one more “diagonal” which is the full-chord associated with the sum of
the arcs associated with the opposite sides. This can also be obtained, say
by interchanging the sides AB and BC in the quadrilateral, which leads to
the quadrilateral AFCD, which has the diagonal DF . This is the “third
diagonal” of the original quadrilateral ABCD, and

Arc(DF ) = Arc(DC) + Arc(CF ) = Arc(DC) + Arc(AB). (7.123)

Now, if we instead interchange the sides AD and DC, then we get the
quadrilateral ABCE, which has the diagonal EB. But

Arc(EB) = Arc(EA) + Arc(AB)

= Arc(DC) + Arc(AB)

= Arc(DF ). (7.124)

Hence, we are led to the same third diagonal EB = DF . It is also noted
that since, we have exhausted all the possibilities of choosing pairs from a
given set of four arcs, there are no more diagonals possible.

Now we consider the sum AD.DC + AB.BC. This is said to be the prod-
uct of the sides associated with the first diagonal DB (ādyakarn. āśrita-
bhujāghātaikya). From the earlier result (7.116) on the product of two
full-chords being equal to the difference in the squares of the full-chords
associated with half their sum and half their difference, we get

AD × DC = Chord2

[

1

2
(Arc(AD) + Arc(DC))

]

− Chord2

[

1

2
(Arc(AD) − Arc(DC))

]

, (7.125)

AB × BC = Chord2

[

1

2
(Arc(AB) + Arc(BC))

]

− Chord2

[

1

2
(Arc(AB) − Arc(BC))

]

. (7.126)
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Now, since the sum of the arcs AB, BC, CD and DA is the circumference,
half the sum of the arcs AB and BC will be the complement of half the
sum of the arcs CD and DA and hence the first terms in equations (7.125),
(7.126) are the bhujā and kot.i of each other in a semicircle. Thus, if d is the
diameter of the circle

Chord2

[

1

2
(Arc(AD) + Arc(DC))

]

+ Chord2

[

1

2
(Arc(AB) + Arc(BC))

]

= d2. (7.127)

Now, the diameter is the full-chord associated with arc GH, and half the
difference of the arcs AD and DC is given by the arcs HE and HD. Hence,
applying (7.115), we get

d2 −Chord2

[

1

2
[Arc(AD) − Arc(DC)]

]

= Chord(GE).Chord(GD). (7.128)

Now, since the arcs GE and GD are obtained by subtracting equal amounts
from the diameter, the corresponding chords are equal and hence,

d2 − Chord2

[

1

2
[Arc(AD) − Arc(DC)]

]

= GD2. (7.129)

Finally, if we note that half the difference of the arcs AB and BC is given
by the arc GB, we get from (7.125)–(7.129) that

AD × DC + AB × BC = GD2 − GB2. (7.130)

On using the relation (7.115), equation (7.130) becomes

AD × DC + AB × BC = Chord[Arc(GD) + Arc(GB)] ×

Chord[Arc(GD) − Arc(GB)]

= Chord[Arc(GD) + Arc(GF )] ×

Chord[Arc(GD) − Arc(GB)]

= DF × DB. (7.131)

Thus we have shown that the sum of the products of the two pairs of sides
associated with the first diagonal is equal to the product of the first diagonal
with the third diagonal.
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7.10.3 The area of a cyclic quadrilateral is equal to the prod-

uct of the three diagonals divided by twice the circum-

diameter

In Figure 7.12, consider the second diagonal AC as the base of the two
triangles ABC and ADC. Now from the vertex D draw the perpendicular
DM to AC and produce it to meet FB at O, and from the vertex B draw
the perpendicular BN to AC. Since we have already noted that the chords
DE and FB are both parallel to AC, it follows that BN and DM are also
parallel and the sum of the perpendiculars is given by

DM + BN = DM + MO = DO. (7.132)

The area of the cyclic quadrilateral ABCD is the sum of the areas of the
two triangles ABC and ACD, and is hence given by

A =
1

2
AC(DM + BN) =

1

2
AC × DO. (7.133)

We now employ the result (which shall be proved later in Section 7.13) that
the product of two sides of triangle divided by the diameter is equal to the
altitude drawn to the third side. Using this in the triangle DBF , we get the
altitude DO to be

DO =
DB × DF

d
. (7.134)

From (7.133) and (7.134) we obtain

A =
AC × DB × DF

2d
. (7.135)

Thus, the area of a cyclic quadrilateral is given by the product of the three
diagonals divided by twice the circum-diameter.

7.10.4 Derivation of the Karn. as (diagonals)

We have already shown in (7.131) that the sum of the products of the two
pairs of sides related to the first diagonal is equal to the product of the first
and third diagonals. Similarly, we can show that the sum of the products of
the two pairs of sides associated with the second diagonal is the product of
the second and the third diagonals. That is

AB × AD + DC × BC = DF × AC. (7.136)
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Finally, it can be shown in the same way that the sum of the products of
the opposite sides is equal to the product of the first and second diagonals.
That is

AB × CD + AD × BC = BD × AC. (7.137)

From the equations (7.131), (7.136) and (7.137), we can obtain the three
diagonals in terms of the sides of the cyclic quadrilaterals. We shall adopt
the notation: AB = a, BC = b, CD = c, and DA = d (not to be confused
with the diameter) for the sides and DB = x, AC = y and DF = z for the
diagonals. Then we obtain

x =

[

(ab + cd)
(ac + bd)

(ad + bc)

]

1

2

, (7.138)

y =

[

(ac + bd)
(ad + bc)

(ab + cd)

]

1

2

, (7.139)

z =

[

(ab + cd)
(ad + bc)

(ac + bd)

]

1

2

. (7.140)

The expression (7.135) for the area of the cyclic quadrilateral becomes

A =
x.y.z

2d
. (7.141)

7.11 Cyclic quadrilateral and J̄ıve-paraspara-nyāya

It is now shown that the result (7.137) that the sum of the product of
opposite sides is equal to the product of the diagonals can be viewed as a
result for Rsines, and then it will be the same as the j̄ıve-paraspara-nyāya
discussed earlier. First the proof of the j̄ıve-paraspara-nyāya given in Section
7.8 is recalled.

Now, to understand that the j̄ıve-paraspara-nyāya is equivalent to the result
(7.137), we shall consider in Figure 7.13, the quadrant of a circle EA divided
into a number of equal arc-bits as before. A2A4 is the full-chord of the third
and fourth arc-bits together and the radius OA3 bisects it perpendicularly
at L. Let A2M2 be the second sine. Since both L and M2 lie on semi-circles
with OA2 as the diameter, OLA2M2 is a cyclic quadrilateral with the radius
OA2 as a diagonal. The side A2L, being a half-chord of two arc-bits, is
nothing but the Rsine of one arc-bit. Then OL will be the corresponding
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A1
A2

A3

A4

ON

E

M 2

M 4
L

E

S

Figure 7.13: Cyclic quadrilateral and J̄ıve-paraspara-nyāya.

Rcosine. As already noted A2M2 is the Rsine of two arc-bits, and then OM2

will be the corresponding Rcosine. It is said that the other diagonal LM2

will be the Rsine of three arc-bits.18

If we now denote one arc-bit by s1 and two arc-bits by s2, then the j̄ıve-
paraspara-nyāya, (7.102),

R sin(s1)R cos(s2) + R cos(s1)R sin(s2) = r R sin(s1 + s2), (7.142)

becomes

LA2 × OM2 + OL × A2M2 = OA2 × LM2 . (7.143)

This is the same as the relation (7.137) for the sum of the product of opposite
sides of the cyclic quadrilateral OLA2M2.

18This can be proved by showing that LM2 is equal to the half-chord of an arc which is
double the arc EA3. The procedure is similar to the one outlined in fn.16.
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7.12 Derivation of tabular Rsines without using

the radius

If B1, B2 . . ., are the various tabulated Rsines when the quadrant is divided
into a number of equal arc-bits, then we can use the equation (7.115) for the
difference in the squares of chords of two arcs to obtain

B2

2 − B2

1 = B3B1, (7.144)

B2

3 − B2

1 = B4B2 . (7.145)

In general, we have

Bj+1 =
(B2

j − B2
1)

Bj−1

. (7.146)

This can be used to calculate the tabulated Rsines without using the radius.

7.13 Altitude and circum-diameter of a triangle

Now is proved the result that the product of two sides of a triangle divided
by its circum-diameter is equal to the altitude on the third side, which was
used to obtain the expression (7.135) for the area of the cyclic quadrilateral
in terms of its diagonals. In Figure 7.14, A4B4, A6B6 and A10B10 are the
full-chords associated with the fourth, sixth and tenth tabulated Rsines; A2

is the tip of the second arc-bit. Then A2B10 is the full-chord associated with
12 arc-bits and A2A10 is the full chord associated with 8 arc-bits. In the
triangle, A2A10B10, draw the altitude A2P to the base A10B10.

Draw the chords A6C6 and B4D4 parallel to the east-west line and hence per-
pendicular to the full-chord A10B10 associated with the tenth Rsine. Draw
also the diameters A6OD6 and B4OC4. These diameters intersect the full-
chords A2A10 and A2B10 perpendicularly. Now the triangles A2A10P and
D6A6C6 are similar as their sides are mutually perpendicular. Hence

A2P

D6C6

=
A2A10

D6A6

=
A10P

A6C6

. (7.147)

Hence

A2P = A2A10 ×
D6C6

D6A6

. (7.148)
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Figure 7.14: Altitude and circum-diameter of a triangle.

If we note that D6A6 is the diameter and D6C6, the full-chord associated
with 12 arc-bits, is equal to A2B10, then we obtain

A2P = A2A10 ×
A2B10

d
. (7.149)

Thus we have proved that in the triangle A2A10B10, the product of the sides
A2A10 and A2B10 divided by the diameter is equal to the altitude A2P to
the third side A10B10.

Now, we may also note that the triangle A2B10P and C4B4D4 are similar
as their sides are mutually perpendicular. Hence

A2P

C4D4

=
A2B10

C4B4

=
B10P

B4D4

. (7.150)

From (7.147) and (7.150), we obtain19

A10B10 = A10P + PB10 =
A2A10 × A6C6

A6D6

+
B4D4 × A2B10

C4B4

19It may be noted that equation (7.151) is essentially the j̄ıve-paraspara-nyāya for the
Rsines (which are half the full-chords) of the sum of 4 and 6 arc-bits, and the above
constitutes one more demonstration of this rule.
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=

(

1

d

)

(A2A10 × A6C6 + B4D4 × A2B10) . (7.151)

Thus have been derived both the altitude and the base of the triangle
A2A10B10.

7.15 Area of a cyclic quadrilateral

The earlier result (7.141) gave the area of a cyclic quadrilateral in terms of
the three diagonals and the circum-diameter. Though the three diagonals
can be expressed in terms of the sides by equations (7.138) to (7.140), the
expression for the area still involves the circum diameter. Now is shown
a way of calculating the area of a cyclic quadrilateral given only the four
sides (without employing the diameter), so that this expression for the area
can also be used in conjunction with (7.138)–(7.141), to obtain the circum-
diameter also in terms of the sides.

The final result to be derived is given by the rule sarvadoryutidalam...(L̄ılāvat̄ı,
169), which may be expressed as follows using the same notation used in
equations (7.138)–(7.140):20

A = [(s − a)(s − b)(s − c)(s − d)]
1

2 , (7.152)

where, the semi-perimeter s is given by

s =
(a + b + c + d)

2
. (7.153)

A problem given in L̄ılāvat̄ı 171, is also cited in this connection, where
a = 75, b = 40, c = 51 and d = 68. The corresponding first diagonal
(which may be calculated by (7.138)) is noted to be 77. This example is

20Combining (7.152) with (7.138) - (7.141),we are lead to the following formula for
the circum-radius of a cyclic quadrilateral, in terms of its sides (cited by Parameśvara
in his commentary Vivaran. a on L̄ılāvat̄ı; also cited by Śaṅkara in his commentary
Kriyākramakar̄ı on L̄ılāvat̄ı):

r =
(

1

4

)

[

(ab + cd)(ac + bd)(ad + bc)

(s − a)(s − b)(s − c)(s − d)

] 1

2

.
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cited to illustrate the set up or the kind of arrangement of the sides that is
being considered here.21

7.15.1 Area in terms of the Lamba-nipātāntara and Lamba-yoga

(interstice between the altitudes and the sum of alti-

tudes)

A B

C

D

E

M

P

E

S

a

b

c

d

F
x

y

Q

Figure 7.15: Area of a cyclic quadrilateral.

In Figure 7.15 we consider a cyclic quadrilateal ABCD of the type mentioned
above. Draw the altitudes AE and CF to the diagonal DB, which may be
considered as the base of the two triangles CDB and ADB. Produce these
altitudes such that they form the opposite sides of a rectangle, whose length
AP = CQ is the sum of the altitudes (lamba-yoga) and breadth CP = AQ
is equal to EF , the interstice (lamba-nipātāntara) between the feet of the
perpendiculars AE and CF .

The procedure for deriving the area of the cyclic quadrilateral is the same
as followed earlier, namely express it as the sum of the areas of the two
triangles into which it is divided by a diagonal and calculate the area of the

21Note that this arrangement differs slightly from the arrangement considered in Section
7.10, where it was assumed that a > b > d > c. Now we have a > d > c > b.
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triangles by using the diagonal as the base and the perpendiculars drawn to
it as the altitudes. Only difference, now, is that the sum of these altitudes
(lamba-yoga) will be obtained in terms of the sides of the quadrilateral.

The square of the area of the quadrilateral is given by

A2 =

[

1

2
BD × (AE + CF )

]2

=

(

1

4

)

BD2 × AP 2. (7.154)

Now the lamba-yoga AP and the lamba-nipātāntara EF are related to the
other diagonal AC as they are the sides of the rectangle of which AC is the
diagonal. Hence

AP 2 + EF 2 = AC2. (7.155)

Hence the area of the cyclic quadrilateral can be expressed in terms of the
diagonals BD, AC and the lamba-nipātāntara EF as follows:

A2 =

(

1

4

)

[BD2 × (AC2 − EF 2)]. (7.156)

7.15.2 Derivation of the Lamba-nipātāntara

In Figure 7.15 we have the situation (same as in the example of L̄ılāvat̄ı,
cited above) that AB > AD and CD > CB. That is, in the triangles ABD
and CBD, the longer sides AB and CD meet different vertices of the base
BD . Then the feet of the perpendiculars AE and CF fall on different sides
of the mid-point M of the diagonal BD. Then the lamba-nipātāntara, EF ,
is given by the sum of the distances of the feet of the perpendiculars from
the mid-point M .

EF = ME + MF. (7.157)

The distance of the foot of the perpendicular to the centre of the base is
nothing but half the difference between the base-segments (ābādhā) of a
triangle. That is

ME =
1

2
(BE − DE). (7.158)

MF =
1

2
(DF − BF ). (7.159)
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The difference between the base-segments in a triangle is nothing but the
difference of their squares divided by the base, which is the sum of the base-
segments. And as has been noted in equation (7.109), the difference in the
squares of the base-segments is equal to the difference between the squares
of the sides of the triangle. Thus

ME =
1

2
(BE − DE) =

1

2

(AB2 − DA2)

BD
, (7.160)

MF =
1

2
(DF − BF ) =

1

2

(CD2 − BC2)

BD
. (7.161)

Hence, we obtain from (7.157)–(7.161) that the lamba-nipātāntara is given
by

EF =
1

2

(AB2 + CD2) − (BC2 + DA2)

BD
. (7.162)

A
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M
E

F

C
E
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d

x

y

Figure 7.16: Area of a cyclic quadrilateral.

If we consider a different situation as shown in Figure 7.16, where though
AB > AD as before, we have BC > CD. That is, in the triangles ABD and
CBD, the longer sides AB and BC meet at the same vertex B of the base
BD. Then the feet of the perpendiculars AE and CF fall on the same side
of the mid-point M of the diagonal BD. Then the lamba-nipātāntara, EF ,
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is given by the difference of the distances of the feet of the perpendiculars
from the mid-point M .

EF = MF − ME. (7.163)

Again as before we get

ME =
1

2
(BE − DE) =

1

2

(AB2 − DA2)

BD
, (7.164)

MF =
1

2
(BF − DF ) =

1

2

(BC2 − CD2)

BD
. (7.165)

Thus, from (7.163)–(7.165), we again obtain

EF =
1

2

(AB2 + CD2) − (BC2 + DA2)

BD
. (7.166)

This is the same as (7.162). Thus we see that in each case the lamba-
nipātāntara is given by the half the difference between the sums of the squares
of the opposite sides of the cyclic quadrilateral divided by the diagonal.

7.15.3 First result for the area

From the above results (7.156) and (7.166), we obtain the following for the
square of the area of the cyclic quadrilateral:

A2 =

(

1

4

)

[BD2(AC2 − EF 2)]

=

(

1

4

)[

BD2 × AC2 −
1

4
{(AB2 + CD2) − (BC2 + DA2)}2

]

=

[

BD ×
AC

2

]2

−

[{

(

AB

2

)2

+

(

CD

2

)2
}

−

{

(

BC

2

)2

+

(

DA

2

)2
}]2

.(7.167)

Thus in order to obtain the square of the area of a cyclic quadrilateral half
the product of the diagonals and the difference of the sums of the squares of
half the opposite sides can be squared and one subtracted from the other.
This is as per the rule given by the verse pratibhujadala...
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7.15.4 Second result for the area

Once again, adopting the notation AB = a, BC = b, CD = c and DA = d
(not to be confused with the diameter) for the sides and BD = x, AC = y
for the diagonals, equation (7.167) for the area becomes

A2 =

[

xy

2

]2

−

[{

(

a

2

)2

+

(

c

2

)2
}

−

{

(

b

2

)2

+

(

d

2

)2
}]2

. (7.168)

Now, using (7.138) and (7.139), (7.168) becomes

A2 =

[

(ac + bd)

2

]2

−

[{

(

a

2

)2

+

(

c

2

)2
}

−

{

(

b

2

)2

+

(

d

2

)2
}]2

. (7.169)

We can express the above difference of squares in the form of a product of
sum and difference and obtain

A2 =

[

(ac + bd)

2
+

{

(

a

2

)2

+

(

c

2

)2
}

−

{

(

b

2

)2

+

(

d

2

)2
}]

×

[

(ac + bd)

2
−

{

(

a

2

)2

+

(

c

2

)2
}

+

{

(

b

2

)2

+

(

d

2

)2
}]

=

[

{(

a

2

)

+

(

c

2

)}2

−

{(

b

2

)

−

(

d

2

)}2
]

×

[

{(

b

2

)

+

(

d

2

)}2

−

{(

a

2

)

−

(

c

2

)}2
]

. (7.170)

7.15.5 Final result for the area

Again expressing each of the factors in (7.170), which is a difference of
squares, as a product of a sum and a difference we obtain

A2 =

(

a

2
+

c

2
+

b

2
−

d

2

)(

a

2
+

c

2
+

d

2
−

b

2

)

×

(

b

2
+

d

2
+

a

2
−

c

2

)(

b

2
+

d

2
+

c

2
−

a

2

)

. (7.171)

If we denote the semi-perimeter of the cyclic quadrilateral by

s =
a

2
+

b

2
+

c

2
+

d

2
, (7.172)
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then the above expression (7.171) for the area reduces to

A = [(s − a)(s − b)(s − c)(s − d)]
1

2 . (7.173)

This is the result given by the rule samadoryutidalam... (L̄ılāvat̄ı, 169).

7.15.6 Area of triangles

A

B C

h

a

b
c

d d

H

1 2

Figure 7.17: Area of a triangle.

In the case of triangle also, the area can be expressed in a manner similar to
(7.173). In Figure 7.17, ABC is a triangle, AH is the altitude from vertex
A to the base BC. We adopt the notation BC = a, AC = b and AB = c
for the sides, AH = h for the altitude and BH = d1 and CH = d2, for the
base-segments (ābādhā). Let the semi-perimeter s be given by

s =
(a + b + c)

2
. (7.174)

Now it will be shown that square of the area of the triangle is given by

A2 = [s(s − a)(s − b)(s − c)]. (7.175)

It is noted that

s(s − a) =

[

(b + c)

2

]2

−

(

a

2

)2

=

[

(b + c)

2

]2

−

[

(d1 + d2)

2

]2

, (7.176)

may be considered to be nearly equal to the square of the perpendicular,
which is given by

h2 = b2 − d2

2
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= c2 − d2

1

=
(b2 + c2)

2
−

(d2
1
+ d2

2
)

2
. (7.177)

Similarly, it is also noted that

(s − b)(s − c) =

(

a

2

)2

−

[(

b

2

)

−

(

c

2

)]2

, (7.178)

may be considered to be nearly equal to the square of half the base. It is
therefore argued that the expression (7.175) for the square of the area may
be considered to be nearly the same as the one which was obtained earlier
in Section 7.9:

A2 = h2

(

a

2

)2

. (7.179)

The exact equivalence of the expressions (7.175) and (7.179) is now proved
as follows: From (7.176) and (7.177) we note that

s(s − a) = h2 +

[

(d2 − d1)

2

]2

−

[

(b − c)

2

2
]2

. (7.180)

Thus the product of the first two factors in the right hand side of (7.175)
is in excess of the square of the altitude, the first factor in the right hand
side of equation (7.179), by the amount given in equation (7.180). Equation
(7.178) itself gives the amount by which the product of last two factors in
the right hand side of (7.175) is deficient from the square of half the base,
the second factor on the right hand side of (7.179.

Now, we recall that the difference in the squares of the base-segments (ābādhā)
is also the difference in the squares of the sides

d2

2 − d2

1 = b2 − c2. (7.181)

Therefore
(d2 − d1)

(b + c)
=

(b − c)

(d2 + d1)
. (7.182)

The above equation can be viewed as a trairāśika, rule of proportion, which
will therefore hold for half their squares and even their sums and differences.
Thus from (7.182), we obtain

[

(d2 − d1)

2

]2

[

(b + c)

2

]2
=

[

(b − c)

2

]2

[

(d2 + d1)

2

]2
. (7.183)
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From (7.183) it follows that

[

(b − c)

2

]2

[

(d2 + d1)

2

]2
=

[

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2
]

[

(

(b + c)

2

)2

−

(

(d2 + d1)

2

)2
] , (7.184)

or, equivalently

[

(b − c)

2

]2

(

a

2

)2
=

[

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2
]

[

(

(b + c)

2

)2

−

(

(d2 + d1)

2

)2
] . (7.185)

Now, in order to show that (7.175) follows from (7.179), let us first consider
an example. Suppose we want to multiply 5 by 3. But if instead of 5, say
6 = 5 + 5.1

5
, is chosen as the multiplicand, then the multiplier 3 will have to

be reduced by an amount 3

6
, obtained by dividing it by a divisor one larger

than the divisor used in the additive term to the multiplicand.22 That is

5 × 3 = 15 =

[

5 + 5

(

1

5

)] [

3 − 3

(

1

(5 + 1)

)]

= 6 × 2
1

2
. (7.186)

Now, we start with (7.179), and show how it leads to (7.175), by employing
the method of equation (7.186). It follows from (7.186) that

A2 = h2

(

a

2

)2

=

[

h2 +

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2
]

×











(

a

2

)2

−

(

a

2

)2

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2

+ h2











. (7.187)

22This has been explained in Section 1.6 as the third special method of multiplication.
Equation (7.187) follows directly from the identity

pq = (p + r)

(

q −
qr

p + r

)

.



258 7. Derivation of Sines

Now, by employing (7.176) and (7.180), (7.187) becomes

A2 = s(s − a)











(

a

2

)2

−

(

a

2

)2

(

(d2 − d1)

2

)2

−

(

(b − c)

2

)2

(

(b + c)

2

)2

−

(

(d1 + d2)

2

)2











. (7.188)

If we now employ (7.185) in (7.188), we get

A2 = s(s − a)











(

a

2

)2

−

(

a

2

)2











(

(b − c)

2

)2

(

a

2

)2





















= s(s − a)

[

(

a

2

)2

−

(

(b − c)

2

)2
]

. (7.189)

Now by using (7.178) in (7.189), we finally obtain the desired relation (7.175)
for the area of the triangles as given by the rule sarvadoryutidalam... (L̄ılāvat̄ı
169).

A2 = [s(s − a)(s − b)(s − c)]. (7.190)

7.16 Derivation of the Sampāta-śara

In Figure 7.18 we consider two circles intersecting each other. Let AB and
CD be the overlapping diameters and EF the common chord which is bi-
sected perpendicularly by the diameters. CB, the portion of the diameters
between the two circles is called the grāsa, the erosion and GB and GC are
the the sampāta-śara, arrows of intercepted arc. The smaller circle will have
the larger intercepted arc and vice versa.

If we employ the rule vyāsāt śaronāt...(L̄ılāvat̄ı, 204), that the product of
the arrow and diameter minus arrow is the square of the perpendicularly
bisected chord, we have

AG × GB = EG2 = CG × GD . (7.191)

Therefore, we have

(AB − GB) × GB = (CB − GB)(CD − CB + GB). (7.192)



7.17 Derivation of the shadow 259

A D

E

F

G
C B

Figure 7.18: Sampāta-śara.

Therefore

AB × GB = CB × (CD − CB) + CB × GB − (CD − CB)GB . (7.193)

Thus

GB =
(CD − CB) × CB

[(AB − CB) + (CD − CB)]
. (7.194)

Similarly the other arrow of the intercept is given by

GC =
(AB − CB) × CB

[(AB − CB) + (CD − CB)]
. (7.195)

Equations (7.194) and (7.195) are according to the rule śarone dve vr. tte...
(Āryabhat. ı̄ya, Gan. ita, 18).

7.17 Derivation of the shadow

In Figure 7.19 are shown the shadows cast by a lamp LM when a gnomon
of height 12 units is placed in two different positions AH and PQ. Let
HB, QR be the corresponding shadows and AB, PR, the corresponding
shadow hypotenuses (chāyā-karn. a). Now, mark C on the ground such that
HC = QR. Then AC = PR.

The problem is to calculate the shadows given the difference between them
as also the difference between the shadow-hypotenuses. We can see in Fig-
ure 7.19 that in the triangle ABC, the sides AB, AC are the shadow-
hypotenuses, the altitude AH = 12 is the gnomon and the base-segments
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B
H

A

C

L

M

P

Q
R

Figure 7.19: Derivation of the shadow.

BH and HC are the shadows. Thus the problem may be considered to
be one of determining the base-segments given their difference, as also the
altitude and the difference of sides in the triangle ABC. We shall adopt
the notation of Section 7.15.6, namely AB = c, AC = b, BC = a, AH =
h, BH = d1, CH = d2.

As before, we start with the relation that the difference in the squares of the
sides is equal to the difference in the squares of the base segments.

d2

1 − d2

2 = c2 − b2. (7.196)

which is equivalent to the relation

(d1 + d2)

(c − b)
=

(c + b)

(d1 − d2)
. (7.197)

Viewing the above relation as a trairāśika, rule of proportion, we can derive
the relation

(d1 + d2)
2

(c − b)2
=

(c + b)2

(d1 − d2)2

=
[(c + b)2 − (d1 + d2)

2]

[(d1 − d2)2 − (c − b)2]
. (7.198)

If we now recall that the altitude is given by the relation (7.177)

h2 =
(b2 + c2)

2
−

(d2
1
+ d2

2
)

2
, (7.199)
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it follows that

(d1 + d2)
2

(c − b)2
=

[4h2 + (d1 − d2)
2 − (c − b)2]

[(d1 − d2)2 − (c − b)2]
. (7.200)

Since the height of the gnomon h = 12, (7.198) becomes

d1 + d2 = (c − b)

[

1 +
576

[(d1 − d2)2 − (c − b)2]

] 1

2

. (7.201)

Equation (7.201) gives the sum of the shadows d1 + d2 given the difference
d1−d2 between the shadows as also the difference c−b between the shadow-
hypotenuses. Then the shadows d1 and d2 can be obtained and this is as per
the rule chāyayoh. karn. ayor...(L̄ılāvat̄ı, 238).

7.18 Surface area of a sphere

The area of a sphere will now be obtained using the earlier result (7.50) for
the pin. d. ajyā-s, Rsines, in terms of khan. d. a-jyāntara-s, second order Rsine-
differences, and the fact that knowing the circumference and diameter of a
circle the circumference or the diameter of any desired circle can be obtained
in terms of the other by the rule of three.

A B

C D

E F

N

S

G

Figure 7.20: Surface area of a sphere.
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In Figure 7.20 is shown a sphere with the north-south circle NASBN per-
pendicular to the equatorial plane AGB. Divide the north-south circle into
a large number of equal arc-bits and divide the sphere into slices of equal
thickness by planes parallel to the equatorial plane passing through the junc-
tions of the arc-bits. If we cut the surface of any slice and stretch the piece
flat, what results is a trapezium, as shown in Figure 7.21. If we cut the
triangle at one edge and fix it at the other suitably, we get a rectangle whose
width is the thickness of the slices and length is the mean of the perimeters
of the top and bottom circles of the slice. The surface area of the sphere is
the sum of the areas of these rectangles.

A B

CD
E F

A B

CD F

D

Figure 7.21: Surface area of the slices.

Let r be the radius of the sphere and C the circumference of any a great
circle. The radius of the middle of the j-th slice will be a half chord at
the middle of the corresponding arc-bit in the north-south circle. When the
number of slices are very large we can approximate the half-chords at the
middle of the arc-bits by the corresponding pin. d. ajyā-s Bj at the junction of
the arc-bits. The common thickness of the slices, which we shall denote by
∆, is nothing but the Rsine of the arc-bit.

Now, the area of the j-th rectangle will be
(

C
r

)

Bj ∆. Therefore the surface

area of the northern hemisphere is given by

S

2
=

(

C

r

)

(B1 + B2 + . . . Bn)∆ . (7.202)

If we recall the relation (7.50) between the pin. d. ajyā-s and the second order
sine-differences, then the sum of Rsines in (7.202) can be expressed as a sum
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of the second-order sine-differences

B1 + B2 + . . . + Bn =

(

r

α

)2

[(∆1 − ∆2) + (∆2 − ∆3)+

. . . + (∆n−1 − ∆n)]

=

(

r

α

)2

(∆1 − ∆n), (7.203)

where ∆1, ∆2 . . . are the Rsine-differences and α is the full-chord of the
arc-bit. When n is very large, ∆n becomes negligible23 and the first Rsine,
B1 = ∆1 = ∆, can be approximated by the arc-bit or by its full-chord α.
Thus, when n is very large, (7.202) becomes

S

2
=

(

C

r

)(

r

α

)2

(∆1 − ∆n)∆

≈

(

C

r

)(

r

α

)2

(α)2 = Cr . (7.204)

Thus the surface area of the sphere is given by the product of the circum-
ference C and the diameter d

S = C × d . (7.205)

7.19 Volume of a sphere

To find the volume of sphere, it is again divided into large number of slices
of equal thickness. The volume of each slice is the average of the areas of the
top and bottom circles multiplied by the thickness. Thus we need to know
the area of a circle which is derived first.

7.19.1 Area of a circle

As shown in Figure 7.22, cut each half of the circle into a large number
sections from the centre to the circumference. Then as in Figure 7.23, spread

23This can be seen for instance from relation (7.49), which shows that ∆n is proportional
to the pin. d. a-kot.i-jyā, Kn−

1

2

at the mid-point of the last arc-bit, and by noting that the

Rcosine becomes negligible as n becomes very large.



264 7. Derivation of Sines

these out and place the sections of the upper half so as to fit the interstices
when the sections of the lower half are spread out. The area of the circle
is equal to that of the resulting rectangle, namely half the circumference
multiplied by the radius.

A =
1

2
C × r . (7.206)

Figure 7.22: Division of a circle into sections.
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Figure 7.23: Area of a circle.

7.19.2 Derivation of the volume of a sphere

As before, let r be the radius of the sphere and C the circumference of a great
circle. Again the half-chord Bj is the radius of the j-th slice into which the

sphere has been divided. The corresponding circumference is
(

C
r

)

Bj and

from (7.206) the area of a circular section of this slice can be taken to be
1

2

(

C
r

)

B2
j . Therefore, if ∆ is the thickness of the slices, then the volume of
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the j-th slice is given by 1

2

(

C
r

)

B2
j ∆. To obtain the volume of the sphere,

we need to therefore evaluate the sum of the squares of the Rsines B2
j .

V ≈
1

2

(

C

r

)

[B2

1 + B2

2 + . . . B2

n]∆ . (7.207)

In Figure 7.24, AP = PB = Bj is the jth half-chord, starting from N , the
north point. By the rule vr. tte śarasam. vargo... (Āryabhat. ı̄ya, Gan. ita 17),

B2

j = AP × PB = NP × SP

=
1

2
[(NP + SP )2 − (NP 2 + SP 2)]

=
1

2
[(2R)2 − (NP 2 + SP 2)]. (7.208)

A B

N

P

O

S

Bj

Figure 7.24: Half-chord square equals product of śara-s.

If ∆ = 2 r
n
, be the thickness of each slice, the j-th Rversine NP = j∆ and

its complement SP = (n − j)∆. Hence, while summing the squares of the
Rsines B2

j , both NP 2 and SP 2 add to the same result. Thus, using (7.208),
we can re-express (7.207) in the form

V ≈
1

2

(

C

r

)(

2r

n

)(

1

2

)

[(2r)2 + (2r)2 + . . . + (2r)2]

−
1

2

(

C

r

)(

2r

n

)(

1

2

)(

2r

n

)2

(2)[12 + 22 + ...n2]. (7.209)

Recalling the result that, for large n, the sum of the squares (varga-saṅkalita)
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is essentially one-third the cube of the number of terms, (7.209) becomes

V =

(

C

2r

)

(

4r3 −
8r3

3

)

=

(

C

6

)

d2. (7.210)

Thus has been shown that the volume of a sphere is one-sixth the circum-
ference times the square of the diameter.





Epilogue

Proofs in Indian Mathematics1

1 Alleged Absence of Proofs in Indian

Mathematics

Several books have been written on the history of Indian tradition in math-
ematics.2 In addition, many books on history of mathematics devote a
section, sometimes even a chapter, to the discussion of Indian mathemat-
ics. Many of the results and algorithms discovered by the Indian mathe-
maticians have been studied in some detail. But, little attention has been
paid to the methodology and foundations of Indian mathematics. There is
hardly any discussion of the processes by which Indian mathematicians ar-
rive at and justify their results and procedures. And, almost no attention
is paid to the philosophical foundations of Indian mathematics, and the In-
dian understanding of the nature of mathematical objects, and validation of
mathematical results and procedures.

Many of the scholarly works on history of mathematics assert that Indian
Mathematics, whatever its achievements, does not have any sense of logical
rigor. Indeed, a major historian of mathematics presented the following
assessment of Indian mathematics over fifty years ago:

The Hindus apparently were attracted by the arithmetical and
computational aspects of mathematics rather than by the geo-
metrical and rational features of the subject which had appealed

1This Epilogue is an updated version of the article, M. D. Srinivas, “The Methodology
of Indian Mathematics and its Contemporary Relevance”, PPST Bulletin, 12, 1-35, 1987.
See also, M. D. Srinivas, ‘Proofs in Indian Mathematics’, in G. G. Emch, R. Sridharan,
and M. D. Srinivas, (eds.) Contributions to the History of Indian Mathematics, Hindustan
Book Agency, New Delhi 2005. p. 209-248.

2We may cite the following standard works: B. B. Datta and A. N. Singh, History of
Hindu Mathematics, 2 parts, Lahore 1935, 1938, Reprint, Delhi 1962, 2001; C. N. Srini-
vasa Iyengar, History of Indian Mathematics, Calcutta 1967; A. K. Bag, Mathematics in
Ancient and Medieval India, Varanasi 1979; T. A. Saraswati Amma, Geometry in An-
cient and Medieval India, Varanasi 1979; G. C. Joseph, The Crest of the Peacock: The
Non-European Roots of Mathematics, 2nd Ed., Princeton 2000.
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so strongly to the Hellenistic mind. Their name for mathe-
matics, gan. ita, meaning literally the ‘science of calculation’ well
characterises this preference. They delighted more in the tricks
that could be played with numbers than in the thoughts the
mind could produce, so that neither Euclidean geometry nor
Aristotelian logic made a strong impression upon them. The
Pythagorean problem of the incommensurables, which was of in-
tense interest to Greek geometers, was of little import to Hindu
mathematicians, who treated rational and irrational quantities,
curvilinear and rectilinear magnitudes indiscriminately. With
respect to the development of algebra, this attitude occasioned
perhaps an incremental advance, since by the Hindus the irra-
tional roots of the quadratics were no longer disregarded as they
had been by the Greeks, and since to the Hindus we owe also the
immensely convenient concept of the absolute negative. These
generalisations of the number system and the consequent free-
dom of arithmetic from geometrical representation were to be
essential in the development of the concepts of calculus, but the
Hindus could hardly have appreciated the theoretical significance
of the change. . .

The strong Greek distinction between the discreteness of number
and the continuity of geometrical magnitude was not recognised,
for it was superfluous to men who were not bothered by the
paradoxes of Zeno or his dialectic. Questions concerning incom-
mensurability, the infinitesimal, infinity, the process of exhaus-
tion, and the other inquiries leading toward the conceptions and
methods of calculus were neglected.3

3C. B. Boyer, The History of Calculus and its Conceptual Development, New York 1949,
p. 61-62. As we shall see, Boyer’s assessment – that the Indian mathematicians did not
reach anywhere near the development of calculus or mathematical analysis, because they
lacked the sophisticated methodology developed by the Greeks – seems to be thoroughly
misconceived. In fact, in stark contrast to the development of mathematics in the Greco-
European tradition, the methodology of Indian mathematical tradition seems to have
ensured continued and significant progress in all branches of mathematics till barely two
hundred year ago, it also lead to major discoveries in calculus or mathematical analysis,
without in anyway abandoning or even diluting its standards of logical rigour, so that
these results, and the methods by which they were obtained, seem as much valid today as
at the time of their discovery.



1 Alleged Absence of Proofs in Indian Mathematics 269

Such views have found their way generally into more popular works on his-
tory of mathematics. For instance, we may cite the following as being typical
of the kind of opinions commonly expressed about Indian mathematics:

As our survey indicates, the Hindus were interested in and con-
tributed to the arithmetical and computational activities of math-
ematics rather than to the deductive patterns. Their name for
mathematics was gan. ita, which means “the science of calcula-
tion”. There is much good procedure and technical facility, but
no evidence that they considered proof at all. They had rules,
but apparently no logical scruples. Morever, no general methods
or new viewpoints were arrived at in any area of mathematics.

It is fairly certain that the Hindus did not appreciate the sig-
nificance of their own contributions. The few good ideas they
had, such as separate symbols for the numbers from 1 to 9, the
conversion to base 10, and negative numbers, were introduced
casually with no realisation that they were valuable innovations.
They were not sensitive to mathematical values. Along with the
ideas they themselves advanced, they accepted and incorporated
the crudest ideas of the Egyptians and Babylonians.4

The burden of scholarly opinion is such that even eminent mathematicians,
many of whom have had fairly close interaction with contemporary Indian
mathematics, have ended up subscribing to similar views, as may be seen
from the following remarks of one of the towering figures of twentieth century
mathematics:

For the Indians, of course, the effectiveness of the cakravāla could
be no more than an experimental fact, based on their treatment
of great many specific cases, some of them of considerable com-
plexity and involving (to their delight, no doubt) quite large num-
bers. As we shall see, Fermat was the first one to perceive the
need for a general proof, and Lagrange was the first to publish
one. Nevertheless, to have developed the cakravāla and to have

4Morris Kline, Mathematical Thought from Ancient to Modern Times, Oxford 1972,
p. 190.
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applied it successfully to such difficult numerical cases as N = 61,
or N = 67 had been no mean achievements.5

Modern scholarship seems to be unanimous in holding the view that In-
dian mathematics lacks any notion of proof. But even a cursory study of
the source-works that are available in print would reveal that Indian math-
ematicians place much emphasis on providing what they refer to as upa-
patti (proof, demonstration) for every one of their results and procedures.
Some of these upapatti-s were noted in the early European studies on Indian
mathematics in the first half of the nineteenth century. For instance, in
1817, H. T. Colebrooke notes the following in the preface to his widely cir-
culated translation of portions of Brāhmasphut.asiddhānta of Brahmagupta
and L̄ılāvat̄ı and Bı̄jagan. ita of Bhāskarācārya:

On the subject of demonstrations, it is to be remarked that the
Hindu mathematicians proved propositions both algebraically
and geometrically: as is particularly noticed by Bhāskara him-
self, towards the close of his algebra, where he gives both modes
of proof of a remarkable method for the solution of indeterminate
problems, which involve a factum of two unknown quantities.6

5Andre Weil, Number Theory: An Approach through History from Hammurapi to Leg-
endre, Boston 1984, p. 24. It is indeed ironical that Prof. Weil has credited Fermat, who is
notorious for not presenting any proof for most of the claims he made, with the realisation
that mathematical results need to be justified by proofs. While the rest of this article is
purported to show that the Indian mathematicians presented logically rigorous proofs for
most of the results and processes that they discovered, it must be admitted that the par-
ticular example that Prof. Weil is referring to, the effectiveness of the cakravāla algorithm
(known to the Indian mathematicians at least from the time of Jayadeva, prior to the
eleventh century) for solving quadratic indeterminate equations of the form x2 −Ny2 = 1,
does not seem to have been demonstrated in the available source-works. In fact, the first
proof of this result was given by Krishnaswamy Ayyangar barely seventy-five years ago
(A. A. Krishnaswamy Ayyangar, “New Light on Bhāskara’s Cakravāla or Cyclic Method of
solving Indeterminate Equations of the Second Degree in Two Variables’, Jour. Ind. Math.
Soc. 18, 228-248, 1929-30). Krishnaswamy Ayyangar also showed that the Cakravāla algo-
rithm is different and more optimal than the Brouncker-Wallis-Euler-Lagrange algorithm
for solving this so-called “Pell’s Equation.”

6H. T. Colebrooke, Algebra with Arithmetic and Mensuration from the Sanskrit of
Brahmagupta and Bhāskara, London 1817, p. xvii. Colebrooke also presents some of the
upapatti-s given by the commentators Pr.thūdakasvāmin, Gan. eśa Daivajña and Kr.s.n. a
Daivajña, as footnotes in his work.
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Another notice of the fact that detailed proofs are provided in the Indian
texts on mathematics is due to Charles Whish who, in an article published in
1830s, pointed out that infinite series for π and for trigonometric functions
were derived in texts of Indian mathematics much before their ‘discovery’ in
Europe. Whish concluded his paper with a proof which he ascribed to the
Malayalam text Yuktibhās. ā of the theorem on the square of the hypotenuse
of a right angled triangle and also promised that:

A further account of the Yuktibhās. ā, the demostrations of the
rules for the quadrature of the circle of infinite series, with the
series for the sines, cosines, and their demostrations, will be given
in a separate paper: I shall therefore conclude this, by submitting
a simple and curious proof of the 47th proposition of Euclid [the
so called Pythagoras theorem], extracted from the Yuktibhās. ā.7

It would indeed be interesting to find out how the currently prevalent view,
that Indian mathematics lacks the notion of proof, obtained currency in the
last 100-150 years.

2 Upapatti-s in Indian Mathematics

2.1 The tradition of upapatti-s in Mathematics and

Astronomy

A major reason for our lack of comprehension, not merely of the Indian
notion of proof, but also of the entire methodology of Indian mathematics,
is the scant attention paid to the source-works so far. It is said that there
are over one hundred thousand manuscripts on Jyotih. śāstra, which includes,

7C. M. Whish, ‘On the Hindu Quadrature of the Circle, and the infinite series of
the proportion of the circumference to the diameter exhibited in the four Shastras, the
Tantrasangraham, Yucti Bhasa, Carana Paddhati and Sadratnamala’, Trans. Roy. As. Soc.
(G.B.) 3, 509-523, 1834. (As regards the year of publication of this article, refer to fn. 6 on
page xxxiii.) Notwithstanding what he promised in the above paper, Whish, it appears,
did not publish anything further on this subject. Incidentally, the proof of the Bhujā-kot.i-
karn. a-nyāya (Pythagoras theorem) given in the beginning of Chapter VI of Yuktibhās. ā is
much simpler than that outlined by Whish at the end of his paper (p. 523); in fact, the
latter proof is not found in the available texts of Yuktibhās. ā.
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apart from works in gan. ita-skandha (mathematics and mathematical astron-
omy), also those in sam. hitā-skandha (omens) and hora (astrology).8 Only a
small fraction of these texts have been published. A recent publication lists
about 285 published works in mathematics and mathematical astronomy. Of
these, about 50 are from the period before 12th century AD, about 75 from
12th − 15th centuries, and about 165 from 16th − 19th centuries.9

Much of the methodological discussion is usually contained in the detailed
commentaries; the original works rarely touch upon such issues. Modern
scholarship has concentrated on translating and analysing the original works
alone, without paying much heed to the commentaries. Traditionally the
commentaries have played at least as great a role in the exposition of the
subject as the original texts. Great mathematicians and astronomers, of the
stature of Bhāskarācārya I, Bhāskarācārya II, Parameśvara, Nīlakan. t.ha So-
masutvan, Gan. eśa Daivajña, Mun̄ísvara and Kamalākara, who wrote major
original treatises of their own, also took great pains to write erudite com-
mentaries on their own works and on the works of earlier scholars. It is
in these commentaries that one finds detailed upapatti-s of the results and
procedures discussed in the original text, as also a discussion of the various
methodological and philosophical issues. For instance, at the beginning of
his commentary Buddhivilāsin̄ı, Gan. eśa Daivajña states:

There is no purpose served in providing further explanations for
the already lucid statements of Śr̄i Bhāskara. The knowledgeable
mathematicians may therefore note the speciality of my intellect
in the statement of upapatti-s, which are after all the essence of
the whole thing.10

Amongst the published works on Indian mathematics and astronomy, the
earliest exposition of upapatti-s are to be found in the bhās.ya of Govin-
dasvāmin (c.800) on Mahābhāskar̄ıya of Bhāskarācārya I, and the Vāsanā-
bhās.ya of Caturveda Pr.thūdakasvāmin (c.860) on Brāhmasphut.asiddhānta of
Brahmagupta.11 Then we find very detailed exposition of upapatti-s in the

8D. Pingree, Jyotih. śāstra: Astral and Mathematical Literature, Wiesbaden 1981, p. 118.
9K.V. Sarma and B.V. Subbarayappa, Indian Astronomy: A Source Book, Bombay

1985.
10Buddhivilāsin̄ı of Gan. eśa Daivajña, V.G. Apte (ed.), Vol I, Pune 1937, p. 3.
11The Āryabhat. ı̄yabhās.ya of Bhāskara I (c.629) does occasionally indicate derivations of

some of the mathematical procedures, though his commentary does not purport to present
upapatti-s for the rules and procedures given in Āryabhat. ı̄ya.
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works of Bhāskarācārya II (c.1150): His Vivaran. a on Śis.yadh̄ıvr. ddhidatantra
of Lalla and his Vāsanābhās.ya on his own Siddhāntaśiroman. i. Apart from
these, Bhāskarācārya provides an idea of what is an upapatti in his Bı̄javāsanā
on his own Bı̄jagan. ita in two places. In the chapter on madhyamāharan. a
(quadratic equations) he poses the following problem:

Find the hypotenuse of a plane figure, in which the side and
upright are equal to fifteen and twenty. And show the upapatti-s
(demonstration) of the received procedure of computation.12

Bhāskarācārya provides two upapatti-s for the solution of this problem, the
so-called Pythagoras theorem; and we shall consider them later. Again,
towards the end of the Bı̄jagan. ita in the chapter on bhāvita (equations in-
volving products), while considering integral solutions of equations of the
form ax + by + d = cxy, Bhāskarācārya explains the nature of upapatti with
the help of an example:

The upapatti (demonstration) follows. It is twofold in each case:
One geometrical and the other algebraic. The geometric demon-
stration is here presented. . . The algebraic demonstration is next
set forth. . . This procedure (of demonstration) has been earlier
presented in a concise instructional form (sam. ks.iptapāt.ha) by an-
cient teachers. The algebraic demonstrations are for those who
do not comprehend the geometric one. Mathematicians have said
that algebra is computation joined with demonstration; other-
wise there would be no difference between arithmetic and alge-
bra. Therefore this explanation of bhāvita has been shown in two
ways.13

Clearly the tradition of exposition of upapatti-s is much older and Bhāskarā-
cārya and the later mathematicians and astronomers are merely following
the traditional practice of providing detailed upapatti-s in their commentaries
to earlier, or their own, works.14

12Bı̄jagan. ita of Bhāskarācārya, Muralidhara Jha (ed.), Varanasi 1927, p. 69.
13Bı̄jagan. ita, cited above, p. 125-127.
14Ignoring all these classical works on upapatti-s, one scholar has recently claimed that

the tradition of upapatti in India “dates from the 16th and 17th centuries” (J.Bronkhorst,
‘Pān. ini and Euclid’, Jour. Ind. Phil. 29, 43-80, 2001).
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In Appendix A we give a list of important commentaries, available in print,
which present detailed upapatti-s. It is unfortunate that none of the pub-
lished source-works that we have mentioned above has so far been trans-
lated into any of the Indian languages, or into English; nor have they been
studied in depth with a view to analyse the nature of mathematical ar-
guments employed in the upapatti-s or to comprehend the methodological
and philosophical foundations of Indian mathematics and astronomy. Here,
we shall present some examples of the kinds of upapatti-s provided in In-
dian mathematics, from the commentaries of Gan. eśa Daivajña (c.1545) and
Kr.s.n. a Daivajña (c.1600) on the texts L̄ılāvat̄ı and Bı̄jagan. ita respectively,
of Bhāskarācārya II (c.1150). We shall also briefly comment on the philo-
sophical foundations of Indian mathematics and its relation to other Indian
śāstras.

2.2 Mathematical results should be supported by Upapatti-s

Before discussing some of the upapatti-s presented in Indian mathematical
tradition, it is perhaps necessary to put to rest the widely prevalent myth
that the Indian mathematicians did not pay any attention to, and perhaps
did not even recognise the need for justifying the mathematical results and
procedures that they employed. The large corpus of upapatti-s, even amongst
the small sample of source-works published so far, should convince anyone
that there is no substance to this myth. Still, we may cite the following
passage from Kr.s.n. a Daivajña’s commentary Bı̄japallavam on Bı̄jagan. ita of
Bhāskarācārya, which clearly brings out the basic understanding of Indian
mathematical tradition that citing any number of instances (even an infinite
number of them) where a particular result seems to hold, does not amount
to establishing that as a valid result in mathematics; only when the result
is supported by a upapatti or a demonstration, can the result be accepted as
valid:

How can we state without proof (upapatti) that twice the product
of two quantities when added or subtracted from the sum of
their squares is equal to the square of the sum or difference of
those quantities? That it is seen to be so in a few instances is
indeed of no consequence. Otherwise, even the statement that
four times the product of two quantities is equal to the square of
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their sum, would have to be accepted as valid. For, that is also
seen to be true in some cases. For instance, take the numbers
2, 2. Their product is 4, four times which will be 16, which is
also the square of their sum 4. Or take the numbers 3, 3. Four
times their product is 36, which is also the square of their sum
6. Or take the numbers 4, 4. Their product is 16, which when
multiplied by four gives 64, which is also the square of their sum
8. Hence, the fact that a result is seen to be true in some cases
is of no consequence, as it is possible that one would come across
contrary instances also. Hence it is necessary that one would have
to provide a proof (yukti) for the rule that twice the product of
two quantities when added or subtracted from the sum of their
squares results in the square of the sum or difference of those
quantities. We shall provide the proof (upapatti) in the end of
the section on ekavarn. a-madhyamāharan. a.15

We shall now present a few upapatti-s as enunciated by Gan. eśa Daivajña
and Kr.s.n.a Daivajña in their commentaries on L̄ılāvat̄ı and Bı̄jagan. ita of
Bhāskarācārya. These upapatti-s are written in a technical Sanskrit, much
like say the English of a text on Topology, and our translations below are
somewhat rough renderings of the original.

2.3 The rule for calculating the square of a number

According to L̄ılāvat̄ı:

The multiplication of two like numbers together is the square.
The square of the last digit is to be placed over it, and the rest
of the digits doubled and multiplied by the last to be placed above
them respectively; then omit the last digit, shift the number (by
one place) and again perform the like operation. . . .

Gan. eśa’s upapatti for the above rule is as follows:16 [On the left we explain
how the procedure works by taking the example of (125)2 = 15, 625]:

15Bı̄japallavam commentary of Kr.s.n. a Daivajña, T.V. Radhakrishna Sastri (ed.), Tanjore,
1958, p. 54.

16Buddhivilāsin̄ı, cited earlier, p. 19-20.
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1 5 6 2 5

25 52

20 2 × 2 × 5
4 22

10 2 × 1 × 5
4 2 × 1 × 2

1 12

1 2 5

By using the rule on multiplication,
keeping in mind the place-values,
and by using the mathematics of
indeterminate quantities, let us
take a number with three digits
with yā at the 100th place, kā at
the 10th place and n̄ı at the unit
place. The number is then [in
the Indian notation with the plus
sign understood] yā 1 kā 1 n̄ı 1.

Using the rule for the multiplication
of indeterminate quantities, the
square [of the above number] will
be yā va 1 yā kā bhā 2 yā n̄ı bhā
2 kā va 1 kā n̄ı bhā 2 n̄ı va 1
[using the Indian notation, where
va after a symbol stands for varga
or square and bhā after two sym-
bols stands for bhāvita or product].

Here we see in the ultimate place,
the square of the first digit yā; in sec-
ond and third places there are kā and
n̄ı multiplied by twice the first yā.
Hence the first part of the rule: “The
square of the last digit . . . ” Now,
we see in the fourth place we have
square of kā; in the fifth we have n̄ı
multiplied by twice kā; in the sixth
we have square of n̄ı. Hence it is said,
“Then omitting the last digit move
the number and again perform the
like operation”. Since we are finding
the square by multiplying, we have
to add figures corresponding to the
same place value, and hence we have
to move the rest of the digits. Thus
the rule is demonstrated.
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While Gan. eśa provides such avyaktar̄ıtya upapatti-s or algebraic demostra-
tions for all procedures employed in arithmetic, Śaṅkara Vāriyar, in his
commentary. Kriyākramakar̄ı, presents ks.etragata upapatti-s, or geometri-
cal demonstrations.

2.4 Square of the hypotenuse of a right-angled triangle: The

so-called Pythagoras Theorem

Gan. eśa provides two upapatti-s for calculating the square of the hypotenuse
(karn. a) of a right-angled triangle.17 These upapatti-s are the same as the ones
outlined by Bhāskarācārya II in his Bı̄javāsanā on his own Bı̄jagan. ita, and
were refered to earlier. The first involves the avyakta method and proceeds
as follows:18

3
4

ya

Take the hypotenuse (karn. a) as
the base and assume it to be
yā. Let the bhujā and kot.i (the
two sides) be 3 and 4 respec-
tively. Take the hypotenuse as
the base and draw the perpen-
dicular to the hypotenuse from
the opposite vertex as in the fig-
ure. [This divides the triangle
into two triangles, which are sim-
ilar to the original] Now by the
rule of proportion (anupāta), if yā
is the hypotenuse the bhujā is 3,
then when this bhujā 3 is the hy-
potenuse, the bhujā, which is now
the ābādhā (segment of the base)
to the side of the original bhujā
will be ( 9

yā).

17Buddhivilāsin̄ı, cited earlier, p. 128-129.
18Colebrooke remarks that this proof of the so-called Pythagoras theorem using similar

triangles appeared in Europe for the first time in the work of Wallis in the seventeenth
century (Colebrooke, cited earlier, p. xvi). The proof in Euclid’s Elements is rather com-
plicated and lengthy.
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yā =
(

9

yā

)

+
(

16

yā

)

yā2 = 25
yā = 5

Again if yā is the hypotenuse, the kot.i
is 4, then when this kot.i 4 is the hy-
potenuse, the kot.i, which is now the
segment of base to the side of the
(original) kot.i will be ( 16

yā). Adding

the two segments (ābādhā-s) of yā the
hypotenuse and equating the sum to
(the hypotenuse) yā, cross-multiplying
and taking the square-roots, we get
yā = 5, which is the square root of
the sum of the squares of bhujā and
kot.i.

The other upapatti of Gan. eśa is ks.etragata or geometrical, and proceeds as
follows:19

Take four triangles identical to the
given and taking the four hypotenuses
to be the four sides, form the square
as shown. Now, the interior square
has for its side the difference of bhujā
and kot.i. The area of each triangle is
half the product of bhujā and kot.i and
four times this added to the area of
the interior square is the area of the
total figure. This is twice the product
of bhujā and kot.i added to the square
of their difference. This, by the ear-
lier cited rule, is nothing but the sum
of the squares of bhujā and kot.i. The
square root of that is the side of the
(big) square, which is nothing but the
hypotenuse.

19This method seems to be known to Bhāskarācārya I (c.629 AD) who gives a very similar
diagram in his Āryabhat. ı̄yabhās.ya (K.S. Shukla (ed.), Delhi 1976, p. 48). The Chinese
mathematician Liu Hui (c 3rd century AD) seems to have proposed similar geometrical
proofs of the so-called Pythagoras Theorem. See for instance, D.B.Wagner, ‘A Proof of
the Pythagorean Theorem by Liu Hui’, Hist. Math.12, 71-3, 1985.
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2.5 The rule of signs in Algebra

One of the important aspects of Indian mathematics is that in many
upapatti-s the nature of the underlying mathematical objects plays an impor-
tant role. We can for instance, refer to the upapatti given by Kr.s.n. a Daivajña
for the well-known rule of signs in Algebra. While providing an upapatti for
the rule, “the number to be subtracted if positive (dhana) is made negative
(r. n. a) and if negative is made positive”, Kr.s.n. a Daivajña states:

Negativity (r. n. atva) here is of three types–spatial, temporal and
that pertaining to objects. In each case, [negativity] is indeed the
vaipar̄ıtya or the oppositeness. . .For instance, the other direction
in a line is called the opposite direction (vipar̄ıta dik); just as west
is the opposite of east. . . Further, between two stations if one way
of traversing is considered positive then the other is negative. In
the same way past and future time intervals will be mutually neg-
ative of each other. . . Similarly, when one possesses said objects,
they would be called his dhana (wealth). The opposite would be
the case when another owns the same objects. . . Amongst these
[different conceptions], we proceed to state the upapatti of the
above rule, assuming positivity (dhanatva) for locations in the
eastern direction and negativity (r. n. atva) for locations in the west,
as follows. . . 20

Kr.s.n.a Daivajña goes on to explain how the distance between a pair of sta-
tions can be computed knowing that between each of these stations and some
other station on the same line. Using this he demonstrates the above rule
that “the number to be subtracted if positive is made negative. . . ”

2.6 The Kut.t.aka process for the solution of linear indetermi-

nate equations

To understand the nature of upapatti in Indian mathematics one will have
to analyse some of the lengthy demonstrations which are presented for the
more complicated results and procedures. One will also have to analyse

20Bı̄japallavam, cited above, p. 13.



280 Proofs in Indian Mathematics

the sequence in which the results and the demonstrations are arranged to
understand the method of exposition and logical sequence of arguments.
For instance, we may refer to the demonstration given by Kr.s.n. a Daivajña21

of the well-known kut.t.aka procedure, which has been employed by Indian
mathematicians at least since the time of Āryabhat.a (c 499 AD), for solving
first order indeterminate equations of the form

(ax + c)

b
= y,

where a, b, c are given integers and x, y are to be solved for integers. Since
this upapatti is rather lengthy, it is presented separately as Appendix B.
Here, we merely recount the essential steps. Kr.s.n. a Daivajña first shows that
the solutions for x, y do not vary if we factor all three numbers a, b, c by the
same common factor. He then shows that if a and b have a common factor,
then the above equation will not have a solution unless c is also divisible by
the same common factor. Then follows the upapatti of the process of finding
the greatest common factor of a and b by mutual division, the so-called
Euclidean algorithm. He then provides an upapatti for the kut.t.aka method
of finding the solution by making a vall̄ı (column) of the quotients obtained
in the above mutual division, based on a detailed analysis of the various
operations in reverse (vyasta-vidhi). Finally, he shows why the procedure
differs depending upon whether there are odd or even number of coefficients
generated in the above mutual division.

2.7 Nīlakan. t.ha’s proof for the sum of an infinite geometric

series

In his Āryabhat. ı̄yabhās.ya while deriving an interesting approximation for
the arc of circle in terms of the jyā (Rsine) and the śara (Rversine), the
celebrated Kerala astronomer Nīlakan. t.ha Somasutvan presents a detailed
demonstration of how to sum an infinite geometric series. Though it is quite
elementary compared to the various other infinite series expansions derived
in the works of the Kerala School, we shall present an outline of Nīlakan. t.ha’s
argument as it clearly shows how the notion of limit was well understood
in the Indian mathematical tradition. N̄ilakan. t.ha first states the general

21Bı̄japallavam, cited above, p. 85-99.
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result22

a

[

(

1

r

)

+

(

1

r

)2

+

(

1

r

)3

+ . . .

]

=
a

r − 1
.

where the left hand side is an infinite geometric series with the successive
terms being obtained by dividing by a cheda (common divisor), r, assumed to
be greater than 1. N̄ilakan. t.ha notes that this result is best demonstrated by
considering a particular case, say r = 4. Thus, what is to be demonstrated
is that

(

1

4

)

+

(

1

4

)2

+

(

1

4

)3

+ . . . =
1

3
.

Nīlakan. t.ha first obtains the sequence of results

1

3
=

1

4
+

1

(4.3)
,

1

(4.3)
=

1

(4.4)
+

1

(4.4.3)
,

1

(4.4.3)
=

1

(4.4.4)
+

1

(4.4.4.3)
,

and so on, from which he derives the general result
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Nīlakan. t.ha then goes on to present the following crucial argument to derive
the sum of the infinite geometric series: As we sum more terms, the difference
between 1

3
and sum of powers of 1

4
(as given by the right hand side of the

above equation), becomes extremely small, but never zero. Only when we
take all the terms of the infinite series together do we obtain the equality

1

4
+

(

1

4

)2

+ . . . +

(

1

4

)n

+ . . . =
1

3
.

2.8 Yuktibhās. ā proofs of infinite series for π and the trigono-

metric functions

One of the most celebrated works in Indian mathematics and astronomy,
which is especially devoted to the exposition of yukti or proofs, is the Malay-

22Āryabhat. ı̄yabhās.ya of Nīlakan. t.ha, Gan. itapāda, K. Sambasiva Sastri (ed.), Trivandrum
1931, p. 142-143.
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alam work Yuktibhās. ā (c.1530) of Jyes.t.hadeva.23 Jyes.t.hadeva states that
his work closely follows the renowned astronomical work Tantrasaṅgraha
(c.1500) of Nīlakan. t.ha Somasutvan and is intended to give a detailed expo-
sition of all the mathematics required thereof.24 The first half of Yuktibhās. ā
deals with various mathematical topics in seven chapters and the second
half deals with all aspects of mathematical astronomy in eight chapters.
The mathematical part includes a detailed exposition of proofs for the infi-
nite series and fast converging approximations for π and the trigonometric
functions, which were discovered by Mādhava (c.1375).

3 Upapatti and “Proof”

3.1 Mathematics as a search for infallible eternal truths

The notion of upapatti is significantly different from the notion of ‘proof’
as understood in the Greek as well as the modern Western traditions of
mathematics. The ideal of mathematics in the Greek and modern Western
traditions is that of a formal axiomatic deductive system; it is believed that
mathematics is and ought to be presented as a set of formal derivations from
formally stated axioms. This ideal of mathematics is intimately linked with
another philosophical presupposition – that mathematics constitutes a body
of infallible eternal truths. Perhaps it is only the ideal of a formal axiomatic
deductive system that could presumably measure up to this other ideal of
mathematics being a body of infallible eternal truths. It is this quest for
securing certainty of mathematical knowledge, which has motivated most
of the foundational and philosophical investigations into mathematics and
shaped the course of mathematics in the Western tradition, from the Greeks
to the contemporary times.

The Greek view of mathematical objects and the nature of mathematical
knowledge is clearly set forth in the following statement of Proclus (c. 5th

century AD) in his famous commentary on the Elements of Euclid:

23Yuktibhās. ā of Jyes.t.hadeva, K. Chandrasekharan (ed.), Madras 1953. Gan. itādhyāya
alone was edited along with notes in Malayalam by Ramavarma Thampuran and
A. R. Akhileswarayyar, Trichur 1948.

24Yuktibhās. ā Chapter 1.
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Mathematical being necessarily belongs neither among the first
nor among the last and least simple kinds of being, but occupies
the middle ground between the partless realities – simple, in-
composite and indivisible – and divisible things characterized by
every variety of composition and differentiation. The unchange-
able, stable and incontrovertible character of the propositions
about it shows that it is superior to the kind of things that move
about in matter . . .

It is for this reason, I think, that Plato assigned different types of
knowing to the highest, the intermediate, and the lowest grades
of reality. To indivisible realities he assigned intellect, which
discerns what is intelligible with simplicity and immediacy, and
by its freedom from matter, its purity, and its uniform mode of
coming in contact with being is superior to all other forms of
knowledge. To divisible things in the lowest level of nature, that
is, to all objects of sense perception, he assigned opinion, which
lays hold of truth obscurely, whereas to intermediates, such as the
forms studied by mathematics, which fall short of indivisible but
are superior to divisible nature, he assigned understanding. . . .

Hence Socrates describes the knowledge of understandables as
being more obscure than the highest science but clearer than
the judgements of opinion. For, the mathematical sciences are
more explicative and discursive than intellectual insight but are
superior to opinion in the stability and irrefutability of their
ideas. And their proceeding from hypothesis makes them infe-
rior to highest knowledge, while their occupation with immaterial
objects makes their knowledge more perfect than sense percep-
tion.25

While the above statement of Proclus is from the Platonist school, the Aris-
totelean tradition also held more or less similar views on the nature of
mathematical knowledge, as may be seen from the following extract from
the canonical text on Mathematical Astronomy, the Almagest of Claudius
Ptolemy (c.2nd century AD):

25Proclus: A Commentary on the First Book of Euclid’s Elements, Tr.G.R.Morrow,
Princeton 1970, p. 3,10.
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For Aristotle divides theoretical philosophy too,very fittingly,
into three primary categories, physics, mathematics and theol-
ogy. For everything that exists is composed of matter, form and
motion; none of these [three] can be observed in its substratum
by itself, without the others: they can only be imagined. Now
the first cause of the first motion of the universe, if one considers
it simply, can be thought of as invisible and motionless deity; the
division [of theoretical philosophy] concerned with investigating
this [can be called] ‘theology’, since this kind of activity, some-
where up in the highest reaches of the universe, can only be imag-
ined, and is completely separated from perceptible reality. The
division [of theoretical philosophy] which investigates material
and ever-moving nature, and which concerns itself with ‘white’,
‘hot’, ‘sweet’, ‘soft’ and suchlike qualities one may call ‘physics’;
such an order of being is situated (for the most part) amongst
corruptible bodies and below the lunar sphere. That division [of
theoretical philosophy] which determines the nature involved in
forms and motion from place to place, and which serves to inves-
tigate shape, number, size and place, time and suchlike, one may
define as ‘mathematics’. Its subject-matter falls as it were in the
middle between the other two, since, firstly, it can be conceived
of both with and without the aid of the senses, and, secondly, it is
an attribute of all existing things without exception, both mortal
and immortal: for those things which are perpetually changing
in their inseparable form, it changes with them, while for eternal
things which have an aethereal nature, it keeps their unchanging
form unchanged.

From all this we concluded: that the first two divisions of theo-
retical philosophy should rather be called guesswork than knowl-
edge, theology because of its completely invisible and ungras-
pable nature, physics because of the unstable and unclear nature
of matter; hence there is no hope that philosophers will ever
be agreed about them; and that only mathematics can provide
sure and unshakeable knowledge to its devotees, provided one
approaches it rigorously. For its kind of proof proceeds by in-
disputable methods, namely arithmetic and geometry. Hence we
are drawn to the investigation of that part of theoretical philos-
ophy, as far as we were able to the whole of it, but especially to
the theory concerning the divine and heavenly things. For that
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alone is devoted to the investigation of the eternally unchanging.
For that reason it too can be eternal and unchanging (which is
a proper attribute of knowledge) in its own domain, which is
neither unclear nor disorderly.26

The view, that it is mathematics which can provide “sure and unshakeable
knowledge to its devotees” has persisted in the Greco-European tradition
down to the modern times. For instance, we may cite the popular mathe-
matician philosopher of our times, Bertrand Russel, who declares, “I wanted
certainty in the kind of way in which people want religious faith. I thought
that certainty is more likely to be found in mathematics than elsewhere”.
In a similar vein, David Hilbert, one of the foremost mathematicians of our
times declared, “The goal of my theory is to establish once and for all the
certitude of mathematical methods”.27

3.2 The raison d’être of Upapatti

Indian epistemological position on the nature and validation of mathemat-
ical knowledge is very different from that in the Western tradition. This is
brought out for instance by the Indian understanding of what indeed is the
purpose or raison d’être of an upapatti. In the beginning of the golādhyāya
of Siddhāntaśiroman. i, Bhāskarācārya says:

madhyādyam. dyusadām. yadatra gan. itam. tasyopapattim. vinā
praud. him. praud. hasabhāsu naiti gan. ako nih. sam. śayo na svayam |
gole sā vimalā karāmalakavat pratyaks.ato dr. śyate
tasmādasmyupapattibodhavidhaye golaprabandhodyatah. ||28

Without the knowledge of upapatti-s, by merely mastering the
gan. ita (calculational procedures) described here, from the mad-
hyamādhikara (the first chapter of Siddhāntaśiroman. i) onwards,

26The Almagest of Ptolemy, Translated by G.J.Toomer, London 1984, p. 36-7.
27Both quotations cited in Ruben Hersh, ‘Some Proposals for Reviving the Philosophy

of Mathematics’, Adv. Math. 31, 31-50, 1979.
28Siddhāntaśiroman. i of Bhāskarācārya with Vāsanābhās.ya and Vāsanāvārttika of

Nr.sim. ha Daivajña, Muralidhara Chaturveda (ed.), Varanasi 1981, p. 326.
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of the (motion of the) heavenly bodies, a mathematician will not
have any value in the scholarly assemblies; without the upapatti-s
he himself will not be free of doubt (nih. sam. śaya). Since upapatti
is clearly perceivable in the (armillary) sphere like a berry in the
hand, I therefore begin the golādhyāya (section on spherics) to
explain the upapatti-s.

As the commentator Nr.sim. ha Daivajña explains, ‘the phala (object) of upa-
patti is pān. d. itya (scholarship) and also removal of doubts (for oneself) which
would enable one to reject wrong interpretations made by others due to
bhrānti (confusion) or otherwise.’29

The same view is reiterated by Gan. eśa Daivajña in his preface to Bud-
dhivilāsin̄ı:

vyakte vāvyaktasam. jñe yaduditamakhilam. nopapattim. vinā tat
nirbhrānto vā r. te tām. sugan. akasadasi praud. hatām. naiti cāyam |
pratyaks. am. dr. śyate sā karatalakalitādarśavat suprasannā
tasmādagryopapattim. nigaditumakhilam utsahe buddhivr. ddhyai ||30

Whatever is stated in the vyakta or avyakta branches of math-
ematics, without upapatti, will not be rendered nirbhrānta (free
from confusion); will not have any value in an assembly of math-
ematicians. The upapatti is directly perceivable like a mirror
in hand. It is therefore, as also for the elevation of the intellect
(buddhi-vr. ddhi), that I proceed to enunciate upapatti-s in entirety.

Thus, as per the Indian mathematical tradition, the purpose of upapatti
is mainly: (i) To remove doubts and confusion regarding the validity and
interpretation of mathematical results and procedures; and, (ii) To obtain
assent in the community of mathematicians.

Further, in the Indian tradition, mathematical knowledge is not taken to be
different in any ‘fundamental sense’ from that in natural sciences. The valid

29Siddhantaśiroman. i, cited above, p. 326.
30Buddhivilāsin̄ı, cited above, p. 3.
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means for acquiring knowledge in mathematics are the same as in other
sciences: Pratyaks.a (perception), Anumāna (inference), Śabda or Āgama
(authentic tradition). In his Vāsanābhās.ya on Siddhāntaśiroman. i, Bhāskarā-
cārya refers to the sources of valid knowledge (pramān. a) in mathematical
astronomy, and declares that

yadyevamucyate gan. itaskandhe upapattimān evāgamah. pramān. am |31

For all that is discussed in Mathematical Astronomy, only an
authentic tradition or established text which is supported by up-
apatti will be a pramān. a.

Upapatti here includes observation. Bhāskarācārya, for instance, says that
the upapatti for the mean periods of planets involves observations over very
long periods.

3.3 The limitations of Tarka or proof by contradiction

An important feature that distinguishes the upapatti-s of Indian mathemati-
cians is that they do not generally employ the method of proof by contradic-
tion or reductio ad absurdum. Sometimes arguments, which are somewhat
similar to the proof by contradiction, are employed to show the non-existence
of an entity, as may be seen from the following upapatti given by Kr.s.n. a
Daivajña to show that “a negative number has no square root”:

The square-root can be obtained only for a square. A negative
number is not a square. Hence how can we consider its square-
root? It might however be argued: ‘Why will a negative number
not be a square? Surely it is not a royal fiat’. . . Agreed. Let it
be stated by you who claim that a negative number is a square
as to whose square it is: Surely not of a positive number, for the
square of a positive number is always positive by the rule. . .Not
also of a negative number. Because then also the square will be
positive by the rule. . .This being the case, we do not see any such
number whose square becomes negative. . . 32

31Siddhāntaśiroman. i, cited above, p. 30.
32Bı̄japallava, cited earlier, p. 19.
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Such arguments, known as tarka in Indian logic, are employed only to prove
the non-existence of certain entities, but not for proving the existence of an
entity, which existence is not demonstrable (at least in principle) by other
direct means of verification.

In rejecting the method of indirect proof as a valid means for establishing
existence of an entity which existence cannot even in principle be established
through any direct means of proof, the Indian mathematicians may be seen as
adopting what is nowadays referred to as the ‘constructivist’ approach to the
issue of mathematical existence. But the Indian philosophers, logicians, etc.,
do much more than merely disallow certain existence proofs. The general
Indian philosophical position is one of eliminating from logical discourse all
reference to such aprasiddha entities, whose existence is not even in principle
accessible to all means of verification.33 This appears to be also the position
adopted by the Indian mathematicians. It is for this reason that many an
“existence theorem” (where all that is proved is that the non-existence of a
hypothetical entity is incompatible with the accepted set of postulates) of
Greek or modern Western mathematics would not be considered significant
or even meaningful by Indian mathematicians.

3.4 Upapatti and “Proof”

We now summarize our discussion on the classical Indian understanding of
the nature and validation of mathematical knowledge:

1. The Indian mathematicians are clear that results in mathematics, even
those enunciated in authoritative texts, cannot be accepted as valid
unless they are supported by yukti or upapatti. It is not enough that
one has merely observed the validity of a result in a large number of
instances.

2. Several commentaries written on major texts of Indian mathematics
and astronomy present upapatti-s for the results and procedures enun-
ciated in the text.

33For the approach adopted by Indian philosophers to tarka or the method of indirect
proof see for instance, M.D.Srinivas, “The Indian Approach to Formal Logic and the
Methodology of Theory Construction: A Preliminary View”, PPST Bulletin 9, 32-59,
1986.
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3. The upapatti-s are presented in a sequence proceeding systematically
from known or established results to finally arrive at the result to be
established.

4. In the Indian mathematical tradition the upapatti-s mainly serve to
remove doubts and obtain consent for the result among the community
of mathematicians.

5. The upapatti-s may involve observation or experimentation. They also
depend on the prevailing understanding of the nature of the mathe-
matical objects involved.

6. The method of tarka or “proof by contradiction” is used occasionally.
But there are no upapatti-s which purport to establish existence of any
mathematical object merely on the basis of tarka alone.

7. The Indian mathematical tradition did not subscribe to the ideal that
upapatti-s should seek to provide irrefutable demonstrations establish-
ing the absolute truth of mathematical results. There was apparently
no attempt to present the upapatti-s as a part of a deductive axiomatic
system. While Indian mathematics made great strides in the invention
and manipulation of symbols in representing mathematical results and
in facilitating mathematical processes, there was no attempt at for-
malization of mathematics.

The classical Indian understanding of the nature and validation of math-
ematical knowledge seems to be rooted in the larger epistemological per-
spective developed by the Nyāya school of Indian logic. Some of the dis-
tinguishing features of Nyāya logic, which are particularly relevant in this
context, are: That it is a logic of cognitions (jñāna) and not “propositions”;
that it has no concept of pure “formal validity” as distinguished from “ma-
terial truth”; that it does not distinguish necessary and contingent truth or
analytical and synthetic truth; that it does not admit, in logical discourse,
premises which are known to be false or terms that are non-instantiated; that
it does not accord tarka or “proof by contradiction” a status of independent
pramān. a or means of knowledge, and so on.34

34For a discussion of some of these features, see J. N. Mohanty: Reason and Tradition
in Indian Thought, Oxford 1992.
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The close relation between the methodology of Indian mathematics and
Nyāya epistemology, has been commented upon by a leading scholar of
navya-nyāya:

The western concept of proof owes its origin to Plato’s distinc-
tion between knowledge and opinion or between reason and sense.
According to Plato, reason not merely knows objects having on-
tological reality, but also yields a knowledge which is logically
superior to opinion to which the senses can aspire. On this dis-
tinction is based the distinction between contingent and neces-
sary truths, between material truth and formal truth, between
rational knowledge which can be proved and empirical knowledge
which can only be verified . . .

As a matter of fact, the very concept of reason is unknown in
Indian philosophy. In the systems which accept inference as
a source of true knowledge, the difference between perception
and inference is not explained by referring the two to two dif-
ferent faculties of the subject, sense and reason, but by showing
that inferential knowledge is caused in a special way by another
type of knowledge (vyāpti-jñāna [knowledge of invariable con-
comitance]), whereas perception is not so caused . . .

In Indian mathematics we never find a list of self-evident propo-
sitions which are regarded as the basic premises from which other
truths of mathematics follow . . .

Euclid was guided in his axiomatization of geometry by the Aris-
totelean concept of science as a systematic study with a few ax-
ioms which are self-evident truths. The very concept of a system
thus involves a distinction between truths which need not be
proved (either because they are self-evident as Aristotle thought,
or because they have been just chosen as the primitive propo-
sitions of a system as the modern logicians think) and truths
which require proof. But this is not enough. What is important
is to suppose that the number of self-evident truths or primitive
propositions is very small and can be exhaustively enumerated.

Now there is no Indian philosophy which holds that some truths
do not require any proof while others do. The systems which ac-
cept svatah. -prāmān. yavāda hold that all (true) knowledge is self-
evidently true, and those which accept paratah. -prāmān. yavāda
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hold that all (true) knowledge requires proof; there is no system
which holds that some truths require proof while others do not
. . . 35

3.5 Towards a new epistemology for Mathematics

Mathematics today, rooted as it is in the modern Western tradition, suffers
from serious limitations. Firstly, there is the problem of ‘foundations’ posed
by the ideal view of mathematical knowledge as a set of infallible eternal
truths. The efforts of mathematicians and philosophers of the West to secure
for mathematics the status of indubitable knowledge has not succeeded; and
there is a growing feeling that this goal may turn out to be a mirage.

After surveying the changing status of mathematical truth from the Platonic
position of “truth in itself”, through the early twentieth century position that
“mathematical truth resides . . . uniquely in the logical deductions starting
from premises arbitrarily set by axioms”, to the twentieth century develop-
ments which question the infallibility of these logical deductions themselves,
Bourbaki are forced to conclude that:

To sum up, we believe that mathematics is destined to survive,
and that the essential parts of this majestic edifice will never
collapse as a result of the sudden appearance of a contradiction;
but we cannot pretend that this opinion rests on anything more
than experience. Some will say that this is small comfort; but
already for two thousand five hundred years mathematicians have
been correcting their errors to the consequent enrichment and not
impoverishment of this science; and this gives them the right to
face the future with serenity.36

Apart from the problems inherent in the goals set for mathematics, there are
also other serious inadequacies in the Western epistemology and philosophy
of mathematics. The ideal view of mathematics as a formal deductive system

35Sibajiban Bhattacharya, ‘The Concept of Proof in Indian Mathematics and Logic’, in
Doubt, Belief and Knowledge, Delhi 1987, p. 193, 196.

36N. Bourbaki, Elements of Mathematics: Theory of Sets, Springer 1968, p. 13; see also
N. Bourbaki, Elements of History of Mathematics, Springer 1994, p. 1-45.
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gives rise to serious distortions. Some scholars have argued that this view of
mathematics has rendered philosophy of mathematics barren and incapable
of providing any understanding of the actual history of mathematics, the
logic of mathematical discovery and, in fact, the whole of creative mathe-
matical activity.37

There is also the inevitable chasm between the ideal notion of infallible
mathematical proof and the actual proofs that one encounters in standard
mathematical practice, as portrayed in a recent book:

On the one side, we have real mathematics, with proofs, which
are established by the ‘consensus of the qualified’. A real proof is
not checkable by a machine, or even by any mathematician not
privy to the gestalt, the mode of thought of the particular field of
mathematics in which the proof is located. Even to the ‘qualified
reader’ there are normally differences of opinion as to whether a
real proof (i.e., one that is actually spoken or written down) is
complete or correct. These doubts are resolved by communica-
tion and explanation, never by transcribing the proof into first
order predicate calculus. Once a proof is ‘accepted’, the results
of the proof are regarded as true (with very high probability). It
may take generations to detect an error in a proof. . . On the other
side, to be distinguished from real mathematics, we have ‘meta-
mathematics’. . . It portrays a structure of proofs, which are in-
deed infallible ‘in principle’. . . [The philosophers of mathematics
seem to claim] that the problem of fallibility in real proofs. . . has
been conclusively settled by the presence of a notion of infalli-
ble proof in meta-mathematics. . . One wonders how they would
justify such a claim.38

Apart from the fact that the modern Western epistemology of mathematics
fails to give an adequate account of the history of mathematics and standard
mathematical practice, there is also the growing awareness that the ideal of
mathematics as a formal deductive system has had serious consequences
in the teaching of mathematics. The formal deductive format adopted in

37I. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery, Cambridge
1976.

38Philip J. Davis and Reuben Hersh, The Mathematical Experience, Boston 1981,
p. 354-5.
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mathematics books and articles greatly hampers understanding and leaves
the student with no clear idea of what is being talked about.

Notwithstanding all these critiques, it is not likely that, within the Western
philosophical tradition, any radically different epistemology of mathematics
will emerge; and so the driving force for modern mathematics is likely to
continue to be a search for infallible eternal truths and modes of establishing
them, in one form or the other. This could lead to ‘progress’ in mathematics,
but it would be progress of a rather limited kind.

If there is a major lesson to be learnt from the historical development of
mathematics, it is perhaps that the development of mathematics in the
Greco-European tradition was seriously impeded by its adherence to the
cannon of ideal mathematics as laid down by the Greeks. In fact, it is now
clearly recognized that the development of mathematical analysis in the
Western tradition became possible only when this ideal was given up during
the heydays of the development of “infinitesimal calculus” during 16th – 18th

centuries. As one historian of mathematics notes:

It is somewhat paradoxical that this principal shortcoming of
Greek mathematics stemmed directly from its principal virtue–
the insistence on absolute logical rigour. . .Although the Greek
bequest of deductive rigour is the distinguishing feature of mod-
ern mathematics, it is arguable that, had all the succeeding gen-
erations also refused to use real numbers and limits until they
fully understood them, the calculus might never have been de-
veloped and mathematics might now be a dead and forgotten
science.39

It is of course true that the Greek ideal has gotten reinstated at the heart
of mathematics during the last two centuries, but it seems that most of the
foundational problems of mathematics can also be perhaps traced to the
same development. In this context, study of alternative epistemilogies such
as that developed in the Indian tradition of mathematics, could prove to be
of great significance for the future of mathematics.

39C. H. Edwards, History of Calculus, New York 1979, p. 79.
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Appendices

A List of Works Containing Upapatti-s

The following are some of the important commentaries available in print,
which present upapatti-s of results and procedures in mathematics and as-
tronomy:

1. Bhās.ya of Bhāskara I (c.629) on Āryabhat. ı̄ya of Āryabhat.a (c.499),
K. S. Shukla (ed.), New Delhi 1975. Bhās.ya on Gan. itapāda translated
by Agathe Keller, 2 Volumes, Basel 2006.

2. Bhās.ya of Govindasvāmin (c.800) on Mahābhāskar̄ıya of Bhāskara I
(c.629), T. S. Kuppanna Sastri (ed.), Madras 1957.

3. Vāsanābhās. ya of Caturveda Pr.thūdakasvāmin (c.860) on Brāhmasphu-
t.asiddhānta of Brahmagupta (c.628), Chs. I-III, XXI, Ramaswarup
Sharma (ed.), New Delhi 1966; Ch XXI, Edited and Translated by
Setsuro Ikeyama, Ind. Jour. Hist. Sc. Vol. 38, 2003.

4. Vivaran. a of Bhāskarācārya II (c.1150) on Śis.yadh̄ıvr. ddhidatantra of
Lalla (c.748), Chandrabhanu Pandey (ed.), Varanasi 1981.

5. Vāsanā of Bhāskarācārya II (c.1150) on his own Bı̄jagan. ita, Jivananda
Vidya-sagara (ed.), Calcutta 1878; Achyutananda Jha (ed.) Varanasi
1949, Rep. 1994.

6. Mitāks.arā or Vāsanā of Bhāskarācārya II (c.1150) on his own Siddhānta-
śiroman. i, Bapudeva Sastrin (ed.), Varanasi 1866; Muralidhara Chatur-
veda (ed.), Varanasi 1981.

7. Vāsanābhās. ya of Āmarāja (c.1200) on Khan. d. akhādyaka of Brahma-
gupta (c.665), Babuaji Misra (ed.), Calcutta 1925.

8. Gan. itabhūs.an. a of Makk̄ibhat.t.a (c.1377) on Siddhāntaśekhara of Śr̄ipati
(c.1039), Chs. I-III, Babuaji Misra (ed.), Calcutta 1932.

9. Siddhāntad̄ıpikā of Parameśvara (c.1431) on the Bhās.ya of Govinda-
svāmin (c.800) on Mahābhāskar̄ıya of Bhāskara I (c.629), T.S. Kup-
panna Sastri (ed.), Madras 1957.
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10. Āryabhat. ı̄yabhās.ya of Nīlakan. t.ha Somasutvan (c.1501) on Āryabhat. ı̄ya
of Āryabhat.a, K. Sambasiva Sastri (ed.), 3 Vols., Trivandrum 1931,
1932, 1957.

11. Yuktibhās. ā (in Malayālam) of Jyes.t.hadeva (c.1530); Gan. itādhyaya, Ra-
mavarma Thampuran and A. R. Akhileswarayyar (eds.), Trichur 1948;
K. Chandrasekharan (ed.), Madras 1953.

12. Yuktid̄ıpikā of Śaṅkara Vāriyar (c.1530) on Tantrasaṅgraha of Nīlakan. -
t.ha Somasutvan (c.1500), K. V. Sarma (ed.), Hoshiarpur 1977.

13. Kriyākramakar̄ı of Śaṅkara Vāriyar (c.1535) on L̄ılāvat̄ı of Bhāskarā-
cārya II (c.1150), K. V. Sarma (ed.), Hoshiarpur 1975.

14. Sūryaprakāśa of Sūryadāsa (c.1538) on Bhāskarācārya’s Bı̄jagan. ita
(c.1150), Chs. I-V, Edited and translated by Pushpa Kumari Jain,
Vadodara 2001.

15. Buddhivilāsin̄ı of Gan. eśa Daivajña (c.1545) on L̄ılāvat̄ı of Bhāskarā-
cārya II (c.1150), V. G. Apte (ed.), 2 Vols, Pune 1937.

16. T. ı̄kā of Mallāri (c.1550) on Grahalāghava of Gan. eśa Daivajña (c.1520),
Balachandra (ed.), Varanasi 1865; Kedaradatta Joshi (ed.), Varanasi
1981.

17. Bı̄janavāṅkurā or Bı̄japallavam of Kr.s.n. a Daivajña (c.1600) on Bı̄jaga-
n. ita of Bhāskarācārya II (c.1150), V. G. Apte (ed.), Pune 1930;
T. V. Radha Krishna Sastry (ed.), Tanjore 1958; Biharilal Vasistha
(ed.), Jammu 1982.

18. Śiroman. iprakāśa of Gan. eśa (c.1600) on Siddhāntaśiroman. i of Bhāska-
rācārya II (c.150), Grahagan. itādhyāya, V. G. Apte (ed.), 2 Vols. Pune
1939, 1941.

19. Gūd. hārthaprakāśa of Raṅganātha (c.1603) on Sūryasiddhānta, Jiva-
nanda Vidyasagara (ed.), Calcutta 1891; Reprint, Varanasi 1990.

20. Vāsanāvārttika, commentary of Nr.sim. ha Daivajña (c.1621) on Vāsa-
nābhās.ya of Bhāskarācārya II, on his own Siddhantaśiroman. i (c.1150),
Muralidhara Chaturveda (ed.), Varanasi 1981.

21. Mar̄ıci of Mun̄ísvara (c.1630) on Siddhantaśiroman. i of Bhāskarācārya
(c.1150), Madhyamādhikara, Muralidhara Jha (ed.), Varanasi 1908;
Grahagan. itādhyaya, Kedaradatta Joshi (ed.), 2 vols. Varanasi 1964;
Golādhyāya, Kedaradatta Joshi (ed.), Delhi 1988.
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22. Āśayaprakāśa of Mun̄ísvara (c.1646) on his own Siddhāntasārvabhauma,
Gan. itādhyaya Chs. I-II, Muralidhara Thakura (ed.), 2 Vols, Varanasi
1932, 1935; Chs. III-IX, Mithalal Ojha (ed.), Varanasi 1978.

23. Śes.avāsanā of Kamalākarabhat.t.a (c.1658) on his own Siddhāntatattva-
viveka, Sudhakara Dvivedi (ed.), Varanasi 1885; Reprint, Varanasi
1991.
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B Upapatti of the Kut.t.aka Process

B.1 The Kut.t.aka Process

The Kut.t.aka process for solving linear indeterminate equations has been
known to Indian mathematicians at least since the time of Āryabhat.a (c.499
AD). Consider the first order indeterminate equation of the form

(ax ± c)

b
= y.

Here a, b, c are given positive integers, and the problem is to find integral
values of x, y that satisfy the above equation; a is called the bhājya (divi-
dend), b the bhājaka or hāra (divisor), c the ks.epa (interpolator). The ks.epa
is said to be dhana (additive) or r. n. a (subtractive) depending on whether
the ‘plus’ or ‘minus’ sign is taken in the above equation. The numbers to
be found are x, called the gun. aka (multiplier) and y the labdhi (quotient).
The process of solution of the above equation is referred to as the kut.t.aka
process. Kut.t.aka or kut.t.ākāra (translated as ‘pulveriser’) is the name for the
gun. aka (multiplier) x. As Kr.s.n. a Daivajña explains:

Kut.t.aka is the gun. aka; for, multiplication is referred to by terms
(such as hanana, vadha, ghāta, etc.), which have connotation of
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“injuring”, “killing” etc. By etymology and usage (yogarūd. hi),
this term (kut.t.aka) refers to a special multiplier. That number,
which when multiplied by the given bhājya and augmented or
diminished by the given ks.epa and divided by the given hāra,
leaves no remainder, is called the kut.t.aka by the ancients.40

The procedure for solution of the above equation is explained by Bhāska-
rācārya in his Bı̄jagan. ita in verses 1-5 of the Kut.t.akādhyāya paraphrased
below:41

1. In the first instance, as preparatory to carrying out the kut.t.aka process
(or for finding the kut.t.aka), the bhājya, hāra and ks.epa are to be fac-
tored by whatever number possible. If a number, which divides both
the bhājya and hāra, does not divide the ks.epa, then the problem is an
ill-posed problem.

2. When the bhājya and hāra are mutually divided, the last remainder
is their apavartana or apavarta (greatest common factor). The bhājya
and hāra after being divided by that apavarta will be characterised as
dr. d. ha (firm or reduced) bhājya and hāra.

3. Divide mutually the dr. d. ha-bhājya and hāra, until unity becomes the
remainder in the dividend. Place the quotients [of this mutual division]
one below the other, the ks.epa below them and finally zero at the
bottom.

4. (In this vall̄ı) the number just above the penultimate number is re-
placed by the product of that number with the penultimate number,
with the last number added to it. Then remove the last term. Repeat
the operation till only a pair of numbers is left. The upper one of these
is divided [abraded] by the dr. d. ha-bhājya, the remainder is the labdhi.
The other (or lower) one being similarly treated with the (dr. d. ha) hāra
gives the gun. a.

5. This is the operation when the number of quotients [in the mutual
division of dr. d. ha-bhājya and dr. d. ha-hāra] is even. If the number of
quotients be odd then the labdhi and gun. a obtained this way should be

40Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 86.
41Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 86-89.
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subtracted from their abraders (dr. d. ha-bhājya and dr. d. ha-hāra respec-
tively) to obtain the actual labdhi and gun. a.

B.2 An Example

Let us explain the above procedure with an example that also occurs later
in the upapatti provided by Kr.s.n. a Daivajña.

1211x + 21

497
= y.

Let bhājya be 1211, hāra
497 and ks.epa 21. The
procedure outlined is for
additive ks.epa and the
equation we have to solve
is 1211x + 21 = 497y.
The first step is to make
bhājya and hāra mutu-
ally prime to each other
(dr. d. ha) by dividing them
by their greatest common
factor (apavartāṅka). The
apavartāṅka is found, by
the process of mutual di-
vision (the so-called Eu-
clidean algorithm), to be
7. Now dividing bhājya,
hāra and ks.epa by this
apavartāṅka, we get the
dr. d. ha-bhājya, hāra and
ks.epa to be 173, 71 and
3, respectively. Thus, the
problem is reduced to the
solution of the equation

173x+3

71
= y

497) 1211 (2
994
217) 497 (2

434
63) 217 (3

189
28) 63 (2

56
7) 28 (4

28
0
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Now by mutually divid-
ing the dr. d. ha-bhājya and
hāra, the vall̄ı of quotients
(which are the same as
before) is formed, below
which are set the ks.epa 3
and zero. Following the
procedure stated (in verse
4, above) we get the two
numbers 117, 48. Now,
since the number of quo-
tients is even, we need to
follow the procedure (of
verse 4 above) and get the
labdhi, y = 117 and the
gun. a, x = 48.

2 2 2 2 117
2 2 2 48 48 48 × 2 + 21 = 117
3 3 21 21 21 × 2 + 6 = 48
2 6 6 3 × 6 + 3 = 21
3 3 2 × 3 + 0 = 6
0

Now we shall present the upapatti of the above process as expounded by
Kr.s.n.a Daivajña in his commentary on Bı̄jagan. ita.42 For convenience of
understanding we divide this long proof into several steps:

B.3 Proof of the fact that when the Bhājya, Hāra, and Ks.epa

are factored by the same number, there is no change in

the Labdhi and Gun. a
43

It is well known that whatever is the quotient (labdhi) of a given
dividend and divisor, the same will be the quotient if both the
dividend and divisor are multiplied or factored by the same num-
ber. In the present case, the given bhājya multiplied by some
gun. aka and added with the positive or negative ks.epa is the div-
idend. The divisor is the given hāra. Now the dividend consists
of two parts. The given bhājya multiplied by the gun. aka is one
and the ks.epa is the other. If their sum is the dividend and if
the dividend and divisor are both factored by the same number,
then there is no change in the labdhi. Therefore, that factor from
which the divisor is factored, by the same factor is the dividend,
which is resolvable into two parts, is also to be factored. Now

42Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 89-99.
43Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 89-90.
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the result is the same whether we factor the two parts and add
or add the two parts and then factor the sum. Just as, if the
dividend 27 is factored by 3 we get 9; alternatively the dividend
is resolved into the parts 9, 18 which when factored by 3 give 3,
6 and these when added give the same factored dividend, viz.,
9. In the same way in other instances also, if the dividend is re-
solved into two or many parts and these are factored and added,
then the result will be the same as the factored dividend.

Therefore, when we factor the given hāra, then the given bhājya
multiplied by the gun. a should also be factored and so also the
ks.epa. Now gun. a being not known, the given bhājya multiplied
by the gun. a will be another unknown, whose factoring is not
possible; still, if the given bhājya is factored and then multiplied
by the gun. a, then we get the same result as factoring that part
of the dividend which is gotten by multiplying the given bhājya
by gun. a. For, it does not make a difference whether we factor
first and then multiply or whether we multiply first and then
factor. Thus, just as the given bhājya multiplied by the gun. a will
become one part in the resolution of the dividend, in the same
way the factored bhājya multiplied by the same gun. a will become
one part in the resolution of the factored dividend. The factored
ks.epa will be the second part. In this manner, the bhājya, hāra
and ks.epa all un-factored or factored will lead to no difference in
the gun. a and labdhi, and hence for the sake of lāghava (felicity of
computation) it is said that ‘the bhājya, hāra and ks.epa have to
be factored . . . [verse 1]’. We will discuss whether the factoring is
necessary or not while presenting the upapatti of ‘Divide-mutually
the dr. d. ha-bhājya and hāra. . . [verse 3]’.

B.4 Proof of the fact that if a number, which divides both

Bhājya and Hāra, does not divide the Ks.epa, then the

problem is ill-posed44

Now the upapatti of khilatva or ill-posed-ness: Here, when the
divisor and dividend are factored, even though there is no differ-
ence in the quotient, there is always a change in the remainder.
The remainder obtained when (divisor and dividend) are fac-

44Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 90-91.
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tored, if multiplied by the factor, will give us the remainder for
the original (un-factored) divisor and dividend. For instance, let
the dividend and divisor be 21, 15; these factored by 3 give 7,
5. Now if the dividends are multiplied by 1 and divided by the
respective divisors, the remainders are 6, 2; when dividends are
multiplied by 2 the remainders are 12, 4; when multiplied by 3
they are 3, 1; when multiplied by 4 they are 9, 3; when mul-
tiplied by 5, they are 0, 0. If we multiply by 6, 7 etc. we get
back the same sequence of remainders. Therefore, if we consider
the factored divisor, 5, the remainders are 0, 1, 2, 3, 4 and none
other than these. If we consider the un-factored divisor 15, the
remainders are 0, 3, 6, 9, 12 and none other than these. Here,
all the remainders have the common factor 3.

Now, let us consider the ks.epa. When the gun. aka (of the given
bhājya) is such that we have zero remainder (when divided by
the given hāra), then (with ks.epa) we will have zero remainder
only when the ks.epa is zero or a multiple of hāra by one, two,
etc., and not for any other ks.epa. . . For all other gun. akas which
leave other remainders, (when multiplied by bhājya and divided
by hāra) then (with ks.epa) we have zero remainder when ks.epa
is equal to the śes.a (remainder) or hāra diminished by śes.a, de-
pending on whether ks.epa is additive or subtractive and not for
any other ks.epa, unless it is obtained from the above by adding
hāra multiplied by one, two, etc. Thus, in either case of ks.epa
being equal to the śes.a or hāra diminished by the śes.a, since
ks.epa will be included in the class of śes.as discussed in the ear-
lier paragraph, the ks.epa will have the same apavarta or factor
(that bhājya and hāra have). This will continue to be the case
when we add any multiple of hāra to the ks.epa. Thus we do
not see any such ks.epa which is not factorable by the common
factor of the bhājya and hāra. Therefore, when the ks.epa is not
factorable in this way, with such a ks.epa a zero remainder can
never be obtained (when bhājya is multiplied by any gun. a and di-
vided by hāra after adding or subtracting the ks.epa to the above
product); because the ks.epas that can lead to zero remainder are
restricted as discussed above. With no more ado, it is indeed
correctly said that the problem itself is ill-posed when the ks.epa
is not divisible by the common factor of bhājya and hāra.
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B.5 Rationale for the procedure for finding Apavartāṅka – the

greatest common factor44

Now the rationale for the procedure for finding the apavatāṅka
(greatest common factor). Here the apavatāṅka is to be under-
stood as the factor such that when the divisor and dividend are
factored by this, no further factorisation is possible. That is why
they are said to be dr. d. ha (firm, prime to each other) when fac-
tored by this apavatāṅka. Now the procedure for finding that:
When dividend and divisor are equal, the greatest common fac-
tor (G.C.F.) is equal to them as is clear even to the dull-witted.
Only when they are different will this issue become worthy of in-
vestigation. Now consider 221, 195. Between them the smaller is
195 and the G.C.F. being its divisor cannot be larger that that.
The G.C.F. will be equal to the smaller if the larger number is
divisible by the smaller number, i.e., leaves no remainder when
divided. When the remainder is 26, then the G.C.F. cannot be
equal to the smaller number 195, but will be smaller than that.
Now let us look into that.

The larger number 221 is resolvable into two parts; one part is
195 which is divisible by the smaller number and another part
is 26, the remainder. Now among numbers less than the smaller
number 195, any number which is larger than the remainder 26,
cannot be the G.C.F.; for, the G.C.F. will have to divide both
parts to which the large number 221 is resolved. Now the re-
mainder part 26, itself, will be the G.C.F., if the smaller number
195 were divisible by 26. As it is not, the G.C.F. is smaller than
the remainder 26. Now let us enquire further.

The smaller number 195 is resolvable into two parts; 182 which
is divisible by the first remainder 26 and the second remainder
13. Now, if a number between the earlier remainder 26 and the
second remainder 13 is a G.C.F., then that will have to somehow
divide 26, and hence the part 182; but there is no way in which
such a number can divide the other part 13 and hence it will not
divide the smaller number 195.

Thus, among numbers less than the first remainder 26, the G.C.F.
can be at most equal to the second remainder 13. That too only

44Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 91-92.
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if when the first remainder 26 is divided by the second remainder
13 there is no remainder . . . Now when the first remainder divided
by the second remainder leaves a (third) remainder, then by the
same argument, the G.C.F. can at most be equal to the third
remainder. And, by the same upapatti, when it happens that the
previous remainder is divisible by the succeeding remainder then
that remainder is the greatest common factor. Thus is proved
“When bhājya and hāra are mutually divided, the last (non-zero)
remainder is their apavarta . . . (verse 2)”.

B.6 Rationale for the Kut.t.aka process when the Ks.epa is zero45

When there is no ks.epa, if the bhājya is multiplied by zero and
divided by hāra there is no remainder and hence zero itself is
both gun. a and labdhi; or if we take gun. a to be equal to hāra,
then since hāra is divisible by hāra we get labdhi equal to bhājya.
Therefore, when there is no ks.epa, then zero or any multiple of
hāra by a desired number will be the gun. a and zero or the bhājya
multiplied by the desired number will be the labdhi. Thus here, if
the gun. a is increased by an amount equal to hāra then the labdhi
will invariably be increased by an amount equal to bhājya. . .

Now even when ks.epa is non-zero, if it be equal to hāra or a
multiple of hāra by two, three, etc., then the gun. a will be zero,
etc. as was stated before. For, with such a gun. a, there will be a
remainder (when divided by hāra) only because of ks.epa. But if
ks.epa is also a multiple of hāra by one, two, etc., how can there
arise a remainder? Thus for such a ks.epa, the gun. a is as stated
before. In the labdhi there will be an increase or decrease by an
amount equal to the quotient obtained when the ks.epa is divided
by hāra, depending on whether ks.epa is positive or negative. . .

B.7 Rationale for the Kut.t.aka process when Ks.epa is non-

zero46

Now when the ks.epa is otherwise: The upapatti is via resolving
the bhājya into two parts. The part divisible by hāra is one.

45Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 92-93.
46Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 93-98.
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The remainder is the other. When bhājya and hāra are 16, 7 the
parts of bhājya as stated are 14, 2. Now since the first part is
divisible by hāra, if it is multiplied by any gun. a it will still be
divisible by hāra. Now if the given ks.epa when divided by the
second part leaves no remainder, then the quotient obtained in
this division is the gun. a (in case the ks.epa is subtractive). For,
when this gun. a multiplies the second part of bhājya and ks.epa is
subtracted then we get zero. Now if the ks.epa is not divisible by
the second part, then it is not simple to find the gun. a and we
have to take recourse to other procedure.

When the bhājya is divided by hāra, if 1 is the remainder, then
the second part is also 1 only. Then whatever be the ks.epa, if
this remainder is multiplied by ks.epa we get back the ks.epa and
so we can apply the above procedure and gun. a will be equal to
ks.epa, when ks.epa is subtractive, and equal to hāra diminished
by ks.epa, when the ks.epa is additive. In the latter case, when the
gun. a multiplies the second part of bhājya we get hāra diminished
by ks.epa, when the ks.epa is additive. In the later case, when the
gun. a multiplies the second part of bhājya we get hāra diminished
by ks.epa. When we add ks.epa to this we get hāra, which is triv-
ially divisible by hāra. The labdhi will be the quotient, obtained
while bhājya is divided by hāra, multiplied by gun. a in the case of
subtractive ks.epa and this augmented by 1 in the case of additive
ks.epa.

Now when bhājya is divided by hāra the remainder is not 1, then
the procedure to find the gun. a is more complicated. Now take
the remainder obtained in the division of bhājya by hāra as the
divisor and hāra as the dividend. Now also if 1 is not the remain-
der then the procedure for finding the gun. a is yet more difficult.
Now divide the first remainder by the second remainder. If the
remainder is 1, then if the first remainder is taken as the bhājya
and the second remainder is hāra, we can use the above procedure
to get the gun. a as ks.epa or hāra diminished by ks.epa, depending
on whether the ks.epa is additive or subtractive. But if the re-
mainder is larger than 1 even at this stage, then the procedure
to find gun. a is even more complicated. Therefore, when we go
on doing mutual division, we want to arrive at remainder 1 at
some stage. But how can that be possible if bhājya and hāra have
a common factor, for the ultimate remainder in mutual division
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is the greatest common factor. Now if we factor the bhājya and
hāra by the apavartāṅka (greatest common factor) then the re-
mainders will also be factored by that, and the final remainder
will be unity. This is why it is necessary to first reduce both
bhājya and hāra by their greatest common factor.

Now, even when the penultimate remainder considered as a bhājya
gives unity as the remainder when divided by the next remainder
(considered as hāra) and from that a corresponding gun. a can be
obtained, how really is one to find the gun. a appropriate to the
originally specified bhājya. That is to be found by vyasta-vidhi,
the reverse process or the process of working backwards. Now
let the bhājya be 1211, hāra 497 and ks.epa 21. If bhājya and hāra
are mutually divided, the final remainder (or their G.C.F.) is 7.
Factoring by this, the reduced bhājya, hāra and ks.epa are 173,
71 and 3 respectively. Now by mutual division of these dr. d. ha-
bhājya and hāra, we get the vall̄ı (sequence) of quotients 2, 2, 3,
2 and remainders 31, 9, 4, 1 and the various bhājyas and hāras
as follows:

bhājya 173 71 31 9
hāra 71 31 9 4

Now in the last bhājya 9, there are two parts:
8 which is divisible by hāra 4 and remainder
1. Using the procedure stated above, the gun. a
will be the same as the ks.epa 3, for the case
of subtractive ks.epa. The quotient 2 (of the
division of the last bhājya 9 by the hāra 4)
multiplied by this gun. a 3 will give the labdhi
6. It is for this reason it is said that, “place the
quotients one blow the other, the ks.epa below
them and finally zero at the bottom. . . (verse
3).” Here the “last quotient multiplied by be-
low. . . (verse 4)” gives (the changed vall̄ı as
shown):

2
2
3
2
3 ks.epa
0

2
2
3
6 labdhi
3 gun. a

Now, keeping the same ks.epa, we will discuss what will be the
gun. a for the earlier pair of bhājya and hāra (given by) 31, 9. Here
also the parts (to which the bhājya is to be resolved) as stated
above are 27, 4. Now the first part, whatever be the number it
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is multiplied by, is divisible by hāra. Thus it is appropriate to
look at the second part while considering the gun. a and labdhi.
Thus we have the pair of bhājya and hāra 4, 9. This is only the
previous pair (of 9, 4) considered with the bhājya and hāra inter-
changed and this leads to an interchange of the gun. a and labdhi
also. This can be seen as follows.

The bhājya 9, multiplied by gun. a 3 leads to
27 (and this) diminished by ks.epa 3 gives 24
(and this) divided by hāra 4 gives the labdhi 6.
Now by inverse process, this labdhi 6 used as a
gun. a of the new bhājya 4, gives 24 (and this)
augmented by ks.epa 3 gives 27 (and this) is
divisible by the new hāra 9; and hence 6, the
labdhi for the last pair (of bhājya and hāra) is
the gun. a for the present. The labdhi (consid-
ering the second part alone) is 3, the gun. a for
the last pair.

2
2
3
6 gun. a
3 labdhi

But for the given bhājya (31), the labdhi for
the earlier part (27) multiplied by the gun. a
is to be added. The gun. a is the penultimate
entry (6) in the vall̄ı . The labdhi for the first
part is the quotient (3) placed above that.
And these two when multiplied will give the
labdhi (18) for the first part. This is to be
added to the labdhi for the second part which
is 3 the last entry in the vall̄ı. Thus we get a
new vall̄ı.

2
2

21 labdhi
6 gun. a
3 labdhi

The last entry 3 is no longer relevant and
omitting that we get the (transformed) vall̄ı.
So it is said “multiply the penultimate num-
ber by the number just above and add the
earlier term. Then reject the lowest. . . (verse
4)”. Thus for the pair 31, 9 we have obtained
by the inverse process (vyasta-vidhi) the labdhi
and gun. a, 21, 6 for additive (ks.epa).

2
2

21 labdhi
6 gun. a

Now for the still earlier pair of bhājya and hāra, namely 71, 31
and with the same ks.epa, let us enquire about the gun. a. Here
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again (the bhājya is divided into) parts 62, 9 as stated above, and
keeping the first part aside we get the pair of bhājya and hāra,
9, 31. Again, since we have only interchanged the earlier bhājya
and hāra, the same should happen to labdhi and gun. a. Thus we
have as gun. a and labdhi 21, 6. Here also the labdhi of the first
part is to be multiplied by the gun. a. The penultimate entry in
the vall̄ı, 21, which is now the gun. a is multiplied by the 2 which
is above it and which is the labdhi of the first part (62), and to
the result 42 is added the labdhi 6 of the second part (9), and
thus we get the total labdhi 48.

The last entry of the vall̄ı as shown is removed
as before, and we get the (transformed) vall̄ı.
Thus by the inverse process we get for the pair
of bhājya and hāra 71, 31, and for a subtrac-
tive ks.epa, the labdhi and gun. a 48,21.

2
48 labdhi
21 gun. a

Now the enquiry into gun. a associated with the yet earlier pair
of bhājya and hāra, 173, 71. Here also splitting (the bhājya) into
two parts 142, 31 as stated before, we get the bhājya and hāra 31,
71. Here again, we only have an interchange of bhājya and hāra
from what we discussed before and so by interchanging labdhi
and gun. a as also the (status of additivity or subtractivity of the)
ks.epa, we get the labdhi and gun. a 21, 48 for additive ks.epa. Here
again to get the labdhi of the first part, the penultimate (entry
in the vall̄ı) 48 is multiplied by the entry 2 above it to get 96.

To get the total labdhi, the last entry 21 is
added to get 117. Removing the last entry of
the vall̄ı which is no longer of use, we get the
vall̄ı as shown.

117 labdhi
48 gun. a

Thus for the main (or originally intended) pair of bhājya and hāra
173, 71 and with additive ks.epa 3, the labdhi and gun. a obtained
are 117, 48. Therefore it is said “Repeat the operation till only
two numbers are left . . . (verse[4])”
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Except for the last bhājya, in all bhājya-s, while getting the labdhi
for the first part, the gun. a will be penultimate (in the vall̄ı) and
hence it is said that the penultimate is multiplied by the number
above. That is to be added to the last number which is the
labdhi for the second part (of the bhājya). For the last bhājya,
the last entry is the gun. a and there is no labdhi for the second
part. Hence, the Ācārya has instructed the inclusion of zero
below in the end (of the vall̄ı) so that the procedure is the same
all through. Thus are obtained the labdhi and gun. a 117, 48.

Now, it has been seen earlier itself that if we increase gun. a by
hāra, then labdhi will get increased by bhājya; and by the same
argument, if the gun. a is diminished by hāra, the labdhi will get
diminished by bhājya. Hence when the gun. a is larger than hāra,
then once, twice or, whatever be the number of times it may be
possible, the hāra is to be subtracted from that gun. a so that a
smaller gun. a is arrived at. The labdhi is (reduced by a multiple
of bhājya) in the same way. Hence it is said “The upper one of
these is divided [abraded] by the dr. d. ha-bhājya, the remainder is
the labdhi. The other (or lower) one being similarly treated with
the (dr. d. ha)hāra gives the gun. a (verse 4)”. (Ācārya) also empha-
sises the above principle (in a) later (verse of Bı̄jagan. ita): “The
number of times that the gun. a and labdhi are reduced should
be the same.” If gun. a is reduced by hāra once, then the labdhi
cannot be diminished by twice the bhājya and so on.

B.8 Labdhi and Gun. a for even and odd number of quotients47

If it were asked how we are to know whether the labdhi and gun. a,
as derived above for the main bhājya, correspond to additive or
subtractive ks.epa, for, (it may be said that) in the case of the last
and penultimate bhājya-s, it is not clear whether the gun. a is for
additive or subractive ks.epa-s, we state as follows. For the last
pair of bhājya and hāra, the gun. a was derived straightaway taking
the ks.epa to be subtractive. Thus by the vyasta-vidhi (inverse
process), for the penultimate pair, the gun. a that we derived was
for additive ks.epa. For the third pair, the gun. a that we derived

47Bı̄japallavam commentary on Bı̄jagan. ita, cited above, p. 98-99.



B Upapatti of the Kut.t.aka Process 309

was for subtractive ks.epa. It would be additive for the fourth and
subtractive for the fifth pair. Now starting from the last pair,
for each even pair, the gun. a derived would be for additive ks.epa
and, for each odd pair, it would be for subtractive ks.epa. Now
for the main (or originally given) pair of bhājya and hāra, this
even or odd nature is characterised by the even or odd nature
of the number of quotients in their mutual division. Hence, if
the number of quotients is even, then the labdhi, gun. a derived
are for additive ks.epa. If they are odd then the labdhi and gun. a
derived for the main (or originally given) bhājya and hāra are for
subtractive ks.epa. Since the (Ācārya) is going to state a separate
rule for subtractive ks.epa, here we should present the process for
additive ks.epa only. Hence it is said, “what are obtained are
(the labdhi and gun. a) when the quotients are even in number
. . . . . . (verse 5)”.

When the number of quotients is odd, the labdhi and gun. a that
are obtained are those valid for subtractive ks.epa. But what are
required are those for additive ks.epa. Hence it is said that “If the
number of quotients be odd, then the labdhi and gun. a obtained
this way should be subtracted from their abraders. . . (verse 5).”
The rationale employed here is that the gun. a for subtractive
ks.epa, if diminished from hāra will result in the gun. a for additive
ks.epa.

This can also be understood as follows. Any bhājya which on
being multiplied by a gun. a is divisible (without remainder) by
its hāra, the same will hold when it is multiplied by the (two)
parts of the gun. a and divided by the hāra. The labdhi will be
the sum of the quotients. If there is a remainder when one of
the partial products is divided by the hāra, the other partial
product will be divisible by the hāra when it increased by the
same remainder – or else the sum of the two partial products
will not be divisible by the hāra.

Now, if the bhājya is multiplied by a gun. a equal to hāra and then
divided by the hāra, it is clearly divisible and the labdhi is also
the same as bhājya. Since the gun. a and hāra are the same in
this case, the parts of the gun. a are the same as that of hāra.
For example if bhājya is 17, hāra 15 and gun. a is also 15, then
bhājya multiplied by gun. a is 225 and divided by hāra gives labdhi
17. If the two parts of gun. a are 1, 14, then the partial products
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are 17, 238. The first, if divided by hāra, leaves remainder 2. If
we reduce this by the same ks.epa of 2, then it will be divisible,
and labdhi will be 1. The other partial product, if increased by
the same ks.epa, becomes 240 and will be divisible by the hāra.
The labdhi will be 16. Or, if the parts of the gun. a are 2, 13,
the partial products are 34, 221. The first when divided by hāra
gives the remainder 4, and if reduced by that, it becomes 30 and
will be divisible by the hāra and labdhi will be 2 and the partial
gun. a 2. The other partial product 221, if increased by the same
remainder, will be divisible by hāra and labdhi will be 15 and
the partial gun. a 13. Or, if the parts of the gun. a are 3, 12, the
partial products will be 51, 204. The first one when reduced by
6 and the second when increased by 6, will be divisible. Thus
for ks.epa of 6, the gun. a-s when it is additive and subtractive are
respectively the parts 12, 3. The labdhi-s are correspondingly
14, 3.

Hence, the Ācārya states (later in Bı̄jagan. ita) “The gun. a and
labdhi obtained for additive ks.epa, when diminished by their
abraders, will result in those for negative ks.epa”. Thus the pro-
cedure for arriving at gun. a and labdhi as outlined in the text
starting with “Divide mutually . . .” and ending with “. . . to give
the actual labdhi and gun. a” (i.e., verses 3 to 5) has been demon-
strated (upapannam).
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KWnXbp‡n`mjm

H∂mw ̀ mKw

A≤ymbw H∂v

 ]cnI¿ΩmjvSIw

1. awKfmNcWw

1{]XyqlhyqlhnlXnImcIw ]caw alx !

A¥xIcWip≤nw ta hnZ[mXp k\mX\w II
Kpcp]mZmw_pPw \Xzm \akvImcyXaw abm I
enJytX KWnXw Ir’v\w {KlKXyp]tbmKn bXv II

2. kwJymkzcq]w

AhnsS \tS1 X{¥kw{KlsØ A\pkcn®p\n∂p2 {KlKXnbn¶¬

D]tbmKap≈ KWnXßsf apgpht\3 sNm√phm≥ XpSßpt∂SØp

\tS kmam\yKWnXßfmbncn°p∂ k¶enXmZn]cnI¿Ωßsf

s®m√p∂q.  AhnsS KWnXamIp∂Xp Nne kwtJybßfnse

kwJymhnjbambn´ncnt∏mcp ]cma¿ihntijw. kwJyIƒ ]ns∂ H∂p

XpSßn ]tØmfap≈h {]IrXnIƒ F∂t]mse Ccn°pw.  Chs‰

{]tXyIw ]Øn¬ s]cp°n \qt‰mfap≈h Ch‰ns‚ hnIrXnIƒ F∂

t]mse Ccn°pw. H∂p XpSßnbp≈h‰ns‚ ÿm\Øn¶∂v Hcp ÿm\w

1. 1. Bcw`w: lcn {io KW]Xsb \a: Ahn-Lv\-akvXpx
2. D.Missing {]Xypl.....[to]......kwJybn√mbvIbm¬ (P.7,line 12)

2. 1. C.F.om. \tS
2. F.om. \n∂p
3. B apgph\pw, C. apgph≥
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Itcdo´ncn∏qXpw sNøpw Chs‰ ]Øn¬ KpWn®ncn°p∂h‰ns‚ ÿm\w.

]ns∂4 Ch {]IrXnIƒ F∂ 5t]msebncp∂n´ v Ch‰ns‚

ÿm\Øn¶∂v Hcp ÿm\w Itcdnbncn°pw Chs‰ ]Øn¬

s]cp°nbh BbnctØmfap≈ kwJyIƒ. Cßs\ AXmXns\

]Øn¬ ]Øn¬ KpWn®h ]ns∂ ]n∂sØ kwJyIfmIp∂h.

Ah‰n\v Hmtcmtcm ÿm\w sIm≠v D¬°¿jhpap≠v.

Cßs\bncn°p∂h ]Xns\´p ÿm\Øn¶teh‰n∂p≈ kw⁄Iƒ

Ch˛

GI˛Zi˛iX˛kl{km˛bpX˛e£˛{]bpX˛tImSbx {Iaix !

A¿_pZ˛a_vPw6 J¿∆˛\nJ¿∆˛alm]fl-̨ i¶hkv Xkvam¬ !!

Pe[n˛›m¥yw a≤yw ]cm¿≤anXn ZiKptWmØcmx kw⁄mx !

kwJymbmx kvYm\m\mw hyhlmcm¿∞w IrXmx ]q¿ss∆x !!

eoemhXn. 10

CXn

Cßs\ kwJybv°p KpW\hpw ÿm\t`Zhpw Iev]nbmbvIn¬

kwtJysS t]¿°v Ahkm\an√mbvIbm¬ kwJyIƒ Xßtfbpw

Ah‰ns‚ {IatØbpw Adn™pIqSm.  F∂n´p hyhlmcØn∂mbn

s°m≠v7 C∆Æw Iev]n∏q.  AhnsS H∂p XpSßn HºtXmfap≈

kwJyIƒ°p ÿm\w \tStØXv.  ]ns∂, Chs‰ F√mt‰bpw ]Øn¬
8KpWn®h‰ns‚9 ÿm\w c≠maXv.  AXv10 CSØp11Iev]n°p∂p.
12GIÿm\w, Ziÿm\w F∂nßs\ XpSßn Ch‰ns‚ t]cv.  Cßs\

kwJymkzcq]w.13

2. 4. C. om. ]ns∂
5. F. om.  F∂
6. B. F. A¿_pZhrtµx
7. B. om. sIm≠v
8. B. F. KpWn®ncn°p∂
9. B. C KpWn®ncn°p∂h‰ns‚bpw, F.h‰n\v
10. B. C. c≠masØXv
11. B. ASpØSpØv
12. F. adds Cßns\
13. B. om. Cßs\ kwJymcq]w

I. ]cnI¿ΩmjvSIw
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3. KWnXt`Zßƒ

A\¥cw Chs‰s°m≠p≈1 KWnXt`Zßsf Im´p∂q.  AhnsS

c≠p {]Imcap≈p2 KWnXw, hr≤nkzcq]ambn´pw,3 £bkzcq]ambn´pw.

AhnsS4 hr≤n°p ÿm\amIp∂Xp KWnXw, tbmKw, KpWw, h¿§w,

L\w F∂nh. ]ns∂5 £bØn\p ÿm\amIp∂Xp hntbmKw,

lcWw, h¿§aqew, L\aqew F∂nh. ChnsS6 tbmKØn∂p

KpW\Øn¶ep]tbmKap≠v; KpW\Øn∂p h¿§Øn¶¬, h¿§-Øn∂p

L\Øn¶¬.  C∆Æta7 hntbmKØn∂p lc-W-Øn-¶-ep-]-tbm-K-ap-≠v,

lcWØn∂p h¿§aqeØn¶¬, h¿§aqeØn∂p L\aqeØn¶¬.

Cßs\ apºnteh 8]n∂tØh‰nep]tbmKn°pw.

4. kwIenXhyhIenXßƒ

A\¥cw Cu1 D]tbmK{]ImcsØ Im´p∂q. AhnsS2 Hcp3

kwJybn¬ cq]w {ItaW Iq´nbm¬ AXn¶∂p XpSßn \nc¥tcW

D≈ tate tate kwJyIfmbn´p hcpah.  ]ns∂ Htcdnb

kwJybn¶∂p Hmtcm∂ns\ {ItaW IfbpI F∂ncn°ptºmƒ4

AXn¶∂p XpSßn \nc¥tcW Iosg Iosg kwJyIfmbn´p hcpw.

F∂nßs\ F√m wJyIƒ XßfpsS kzcq]w Ccn°p∂q.  AhnsS5

HcnjvSkwJybn¶∂p {ItaW tate tate6 kwJyIsf Hm¿°ptºmƒ

3. 1. B. kwJyIsfs°m≠v
2. B. {]ImcamWv
3. C. F. hr≤ncq]ambn´pw; £bcq]ambn´pw
4. B. C. om. AhnsS
5. B. om. ]ns∂
6. B. om. ChnsS
7. B. F. A∆Æta
8. C. ]n∂sØh‰n-¶¬; F. h‰n-¶-ep-]-tbm-Kn°pw

4. 1. C. B ; F. om. Cu
2. B. om. AhnsS
3. B. Hmtcm
4. F. Hscb kwJybmIp∂ Hmtcm∂ns\ {ItaW If™, If™mXncn°ptºmƒ
5. B. om. AhnsS
6. B. om. tase tase

I. 3. KWnXt`Zßƒ
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{ItaW Hmtcm7 kwJyIfpsS tbmKcq]ambn´ncn°pw8 AXv.  ]ns∂

CjvSØn¶∂p Xs∂ {ItaW Iosg  Iosg kwJyIsf Hm¿°ptºmƒ

{ItaW Hmtcmtcm kwtJysS hntbmK9cq]ambn´ncn°pa wJyIƒ.

F∂m¬ kwJymkzcq]sØ {ItaW taevt]m´pw Iogvt]m´pw

Hm¿°ptºmƒ Xs∂ Hmtcmtcm kwtJysS tbmKhntbmKßƒ

kn≤n°pw. ]ns∂ BbnjvSkwJybn¬ H∂ns\ F{X BhrØn

Iq´phm≥ \n\®p A{X H∂ns\ thsd10 HtcSØp Iq´n AXns\
11Hcn°mse 12CjvSkwJybn¬ 13Iq´q, F∂mepw sht∆sd Iq´nbt]mse14

kwJyXs∂ hcpw, F∂nXpw Hm¿°ptºmƒ Adnbmbn´ncn°pw. A∆Æw

F{X BhrØn H∂ns\°fhm≥ \n\®q, Ahs‰ H° Hcn°mse15

IfInepw CjvSØn¶∂v16 A{X Iosg kwJy hcpw F∂pw Adnbmw.

BIbm¬ taevt]m´pw Iogvt]m´pap≈ FÆw17 Adnbt∏mIpsa¶n¬18

tbmKhntbmKßƒ kn≤n°pw. Cu tbmKhntbmKßsf “kwIenX-

˛hyhIenXßƒ” F∂p sNm√p∂p. H∂ns\ ‘cq]w ’ F∂pw

‘hy‡n’sb∂pw sNm√p∂p. Cßs\ kwIenX hyhIenXßƒ19.

4. 7. F. Hmtcmtcm
8. C. F. tbmK-am-bn-´n-cn°pw
9. F. cq]-ß-fm-bn-´n-cn°pw
10. B. om. thsd
11. B.C. Hcn-°se
12. B. CjvS-Øn¬
13. F. t]mse kwJy-Xs∂ hcpw b∂nXyw H°pw s]mfcn-bm-bn-´n-cn°pw
14. B. om. t]mse
15. F. Hcn-°se
16. B. CjvS-Øn-∂{X
17. B. adds kwJy-Iƒ FÆ-ßƒ
18. C. Gdn-t∏m-Ip-sa-¶n¬; F. Adn-bt∏mw
19. B. om. Cßs\ ......to..... enX-ßƒ

I. ]cnI¿ΩmjvSIw
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5. kmam\yKpW\w

5.i. KpW\{]Imcßƒ

A\¥cw KpW\w1.- AXmIp∂Xp2 kwIenXw Xs∂bs{X3

Hm¿°ptºmƒ. AhnsS H∂ns\ H∂ns\s°m≠p4 KpWn°ptºmƒ

bmsXm∂ns\ KpWn°p∂p AXn\v ‘KpWyw ’ F∂p t]¿.

bmsXm∂psIm≠p KpWn°p∂q AXn\v ‘KpWImcw’ F∂p t]¿5.

AhnsS KpWyØn¬ Iq´p∂q, KpWysØØs∂ Iq´p∂qXpw6 F∂p

hntijamIp∂Xv 7.  AhnsS KpWImcØn¶¬ 8 F{X

kwJymhy‡nIfp≈q A{X BhrØn KpWysØ Iq´p∂qXpw9, F∂o10

\nbatØmSpIqSnbp≈11 tbmKw12 “KpW\”amIp∂Xv13. CXns\14

Im´p∂p.

5.ii. H∂masØ KpW\{]Imcw

ChnsS15 KpWyØns‚16 HSp°sØ ÿm\sØ KpWImcw sIm≠p

\sS KpWnt°≠q. F∂m¬ KpWn® kwJyIfpw KpWnbmØ

kwJyIfpw XΩn¬ IqSpIbn√ Fs∂mscfp∏ap≠v17. AhnsS

KpWyØns‚ HSp°sØ ÿm\Øv Hcp kwJy D≠v F∂ncn∏q. AXns\

5. 1. B. AY KpW\w
2. B. KpW-\-am-Ip-∂Xv
3. B. om. As{X
4. B. H∂ns\ as‰m-∂p-sIm≠v
5. B. reads KpWy-sa∂pw GXp-sIm≠v KpWn-°p∂p AXn\v KpW-Im-c-sa∂pw sNm√pw.
6. B. Iq´p∂p; F. Iq´p-∂Xpw
7. B. om. F∂p hnti-j-am-Ip-∂Xv; CXn-s\ -Im-´p∂p
8. B. KpW-Im-c-Øn¬
9. B. hy‡nIfpt≠m A{X BhrØn Iq´p∂p
10. B. Cu
11. B. IqSnb
12. B. tbmKsØbmWv
13. B. KpW\sa∂p ]dbp∂Xv
14. B. AXns\
15. F. ChnsS; AhnsS; ]ns∂ AhnsS
16. B. KpWyØnse
17. B. om. Fs∂mscfp∏ap≠v

I. 5. kmam\yKpW\w
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\qdpsIm≠p KpWnt°≠q F∂pw18 Iev]n∏q19. At∏mƒ B20 H∂ns\

\q‰n¬ Bh¿Ønt°Ww. AhnsS AXns\ ]Øn¬ Bh¿Øn°ptºmƒ

Ziÿm\Øv H∂p Itcdpw, apºn¬ sNm√nb21 \ymbw sIm≠v.

]nt∂bpw Hcn°¬ B22 H∂ns\ ]Øn¬ Bh¿Øn°ptºmƒ

Ziÿm\Øv c≠p≠mIpw. Cßs\ \qdph´w Bh¿Øn°ptºmƒ

iXÿm\Øv H∂p D≠mIpw.

BIbm¬ KpWImcØn¶¬ 23 iXÿm\Øv Hcp

kwJybp≠mbvIn¬24 KpWyØns‚ A¥yÿm\sØ AhnSp∂p

iXÿm\Øp shbv∏q. F∂m¬ AXns\ \q‰n¬ 25 KpWn®q

Xmbn´phcpw26. At∏mƒ27 KpWyØn¶¬28 Iogp Nne kwJybps≠∂p

Iev]nt°≠m. At∂cØv Ahs‰s°m≠p]tbmKan√ F∂n´v.

A∆ÆamIptºmƒ KpWyØns‚ A¥yÿm\Øn\pt\sc

BZyÿm\w hcpamdp KpWImcsØ shbv∏q29. ]ns∂30 KpWyØns‚

A¥yÿm\sØ KpWImcØns‚ A¥yÿm\Øn\pt\sc shbv∏q,

5. 18. B. KpWnt°Wsa∂p
19. F. Iev]n®p
20.C. om. B
21. F. ap≥sNm√nb
22.B.c. om. B
23.B. ImcØn¬; C. om. iXÿm\Øv
24.B. bps≠¶n¬; F. bp≠msb¶n¬
25.B. C. \qdn¬
26.B. C. KpWn∏pXmIpw; F. ®XmIpw
27.F. Ct∏mƒ
28.B. KpWyØn¬
29.B. hbv®v
30.B. for ]ns∂ KpWyØns‚; to Duln®psIm≈p substitutes the following:
A¥yw sIm≠p s]cp°n KpWIm¥yØns‚ t\tc GIÿm\w hcpamdp hbv°q. ]ns∂

KpWIØns‚ D]m¥yw sIm≠pw KpWym¥ysØØs∂ s]cp°n KpWtIm]m¥yØn\p
t\tc AXns‚ GIÿm\w hcpamdp hbv°q. Cßns\ KpWIØnep≈ F√m ÿm\ßƒ
sIm≠pw KpWym¥ysØ sht∆sd s]cp°n ÿm\{IaØn¬ h®m¬ KpWIsØ
KpWyØns‚ D]m¥yØn∂p t\tc GIÿm\w hcpamdp h®v. ta¬{]Imcw Xs∂
KpWIØnse F√m ÿm\ßƒ sIm≠pw KptWym]m¥ysØ s]cp°n AXmXp
ÿm\Øv h®v KpWIsØ Hcp ÿm\w Iq´n Iogvt∏ms´d°n hbv°pI. Cßns\
KpWIØnse F√m ÿm\wsIm≠pw KpWyØnse Hmtcm ÿm\ßtfbpw C{]Imcw
{]tXyIw s]cp°q. KpWyØn¬ h√ ÿm\hpw iq\yamsW¶n¬ B ÿm\Øn\pt\tc
KpWIsØ h®v s]cpt°≠. ASpØ kwJybp≈ ÿm\tØmfw H∂n®p s]cp°nbm¬
aXn. ]ns∂ KpWytØtbm KpWItØtbm, KpWyKpWIßtf c≠nt\bptam JWvUn®pw
s]cp°mw. CjvSw t]mse JWvUn°pIbpw sNømw. 9 x 8 = (4+5) x 8 = (5+4) x (3+5) =
(7+2) x (2+5) = (8+1) x 8 = 72

I. ]cnI¿ΩmjvSIw
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KpWImcm¥yÿm\Øn¶¬ H∂p kwJy F∂pIn¬31. AhnsS kwJy

cs≠¶n¬ KpWym¥yÿm\sØ c≠n¬ Bh¿Øn®n´p shbv∏q.

At∏mƒ KpWImcØns‚ A¥yÿm\sØs°m≠p KpWn®qXmbn.

]ns∂ 32A¥yÿm\Øv ASpØp IotgXn∂v "D]m¥y'sa∂p t]¿.

Cßs\ D]m¥yÿm\Øn¶¬ F{X KpWImcØn∂p kwJy D≈q,

B ÿm\Øv A{Xbnemh¿Øn®n´p shbv∏q KpWym¥yÿm\sØ.

F∂meXns\s°m≠p KpWn®qXmbn. Cßs\ KpWImcØns‚

BZyÿm\tØmfap≈ht‰s°m≠p KpWn®v AXXns‚ ÿm\Øp

t\sc hbv∏q KpWym¥yÿm\kwJysb. F∂m¬ KpWyØns‚

A¥yÿm\sØ KpWImcÿm\ßƒ F√mwsIm≠pw KpWn®qXmbn´p

hcpw. AhnsS KpWImcØns‚ bmsXmcp ÿm\Øp

kwJybn√mbvIbm¬ AhnSw iq\yÿm\amIp∂p33. AXn\pt\sc

C\nbpw GXp {]ImcØnse¶nepw JWvUn°mw.

KpWnXsØ t£{X^eambn´p ImWn°mw. KpWyw = 5. KpWIw = 3 F¶n¬ Cu
KpWyKpWIßfpsS KpWnXsØ A‰Øp ImWn®n´p≈Xpt]mse Hcp BbX
NXpc{it£{Xambn ImWn°mw.

ChnSsØ Hmtcm hcnIfnepw KpWytØmfw I≈nIfp≠v. KpWItØmfw hcnIfpap≠v.
KpWytØmfw Bh¿Øn KpWItØtbm KpWItØmfw Bh¿Øn KpWytØtbm
kwIe\w sNbvXm¬ Cßns\ Ccnbv°psa∂v Cu t£{XØn¬ t\m°nbm¬
kv]jvSamIpw. ]ns∂ KpWKpWyßfn¬ HcnjvSkwJysb Iq´ntbm Ipdt®m
KpWn°ptºmƒ AXmXn¶¬ Iq´ntbStØmfw kwJysb EWambn´pw Ipd®nStØmfw
kwJysb [\ambn´pw tN¿Øv KpWn°Ww. AXns\ AhnsS [\ßƒ XΩn¬ KpWn®Xpw
EWßƒ XΩn¬ KpWn®Xpw, [\w Xs∂. EW[\ßƒ XΩn¬ KpWn®Xv EWambncn°pw.
]Xnt\gv KpWyw ]Xn\mev KpWIw F∂v Iev]n°q. ChnsS KpWyØns‚ CjvSw aq∂v,
KpWIØn¬ lmcw Iq´nbm¬ KpWyKpWIßƒ c≠pw 20x20. Ch XΩn¬
KpWnbv°ptºmƒ KpWyØn¬ aq∂pw KpWIØn¬ Bdpw EWambn tN¿°Ww. F∂n´v
KpWn®m¬ ]Xnt\gns\ ]Xn\mepsIm≠v KpWn® ^ew hcpw. Cßns\ k¿∆w
{Kln®psIm≈Ww.

20- ˛ 3 x 20 --˛6 = 238
20 x 20 = 400
20 x --˛3 = ˛60
-˛6 x 20 = -̨120
-˛6 x ˛3 = 18
418 ˛ 180 = 238

31. F.F¶n¬ ;
32.F.A¥y-ÿm-\-Øn-∂-SpØv
33.D.Damaged upto this portion

I. 5. kmam\yKpW\w
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KpWysØ shbvt°≠m. at‰ ÿm\ßfnse kwJyIƒ Itcdn

D≠mIpat{X AhnsS kwJy. ]ns∂ KpWyØns‚

D]m¥yÿm\Øn\p t\sc GIÿm\w hcpamdp shbv∏q

KpWImcsØ. AXnt\bpw C∆Æw KpWn∏q. C∆Æw

KpWym¥yÿm\tØmfhpw. At∏mƒ KpWysØ apgph\pw

KpWn®qXmbn.

5.iii. c≠masØ KpW\{]Imcw

]ns∂34 C∆ÆamInepamw KpW\{]Imcw. KpWyØns‚ Hmtcm

ÿm\ßfnse kwJysb thsd FSpØpsIm≠p KpWImcsØ35

C∆Æw KpWn®v36 AXmXp ÿm\amZnbmbn´p Iq´n Hcpan®psIm≈q

F∂mInepamw. AhnsS A¥yÿm\w XpSßq F∂p≈ \nbaw th≠m,

kwJyIƒ37 IecpIbn√ At∏mƒ, F∂n´v.38 KpWysØ F∂hÆw

KpWImcsØ JWvUn®p KpWn°nepamw. AhnsS KpWImcØn\p

aq∂pÿm\w F∂ncn∏q. Ccp∂q‰nap∏Øn\mev F∂ncn∏q kwJy.

AXns\ JWvUn∏q aq∂mbn´v. AhnsS39 H∂v Ccp∂qdv, H∂v ap∏Xv,

H∂p \mev Cßs\ aq∂p KpWImcw F∂p Iev]n∏q40. ]ns∂ KpWysØ

apgpht\ aqt∂SØpsh®v Ch Hmtcm∂ns\s°m≠v KpWn∏q.41 ]ns∂

ÿm\w ]IcmsX Xßfn¬ Iq´q. CXpw apºnset∏mse KpWn®Xmbn

hcpw42.  AhnsS Ccp∂q‰n¬ Bh¿Øn®Xv H∂v, ap∏-Xn-em-h¿Øn-®Xv

thsd H∂v, \menemh¿Øn®Xv thsd H∂v.  ]ns∂ Ch H° Iq´ptºmƒ

Ccp\q‰nap∏Øn\men¬ KpWn®Xmbn´phcpw.

5.iv. aq∂masØ KpW\{]Imcw.

A\¥cw ÿm\\nbaw IqSmsX as‰mcp{]Imcw kwJyIsfs°m≠p

s]cp°nepamw. AhnsS H∂p \qs‰mcp]Xv, H∂p \q‰ncp]Øn\mev.

5. 34. D.F. om. ]ns∂
35. C. F. adds sIm≠v
36. D. ChnsS \n∂pw HmebpsS apgph≥ `mKhpw \in®p t]mbncn°p∂p. heXphiw
    aq∂nsem∂v {Zhn® cq]Øn¬ am{Xw D]e`yamWv.
37. F. JyIfnS
38. F. adds. Cu
39. C. om. AhnsS
40. F. Iev]n®v
41. F. KpWn®v
42. C. Xmbn´phcpw; F. Xmbn´pw BIpw

I. ]cnI¿ΩmjvSIw
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Cßs\ Xm≥ JWvUn∏q43. C∆Æw44 KpWysØ BInepamw. Cßs\

cq]hn`mKhpw ÿm\hn`mKhpw F∂p c≠p {]Imcw JWvUn°mw.

Cßs\ KpW\{]Imcw sIm≠p Xs∂ JWvUKpW\

{]Imchpap≠mIpw.

5.v. LmXsØ t£{Xambn Iev]n°¬

]ns∂ Cßs\ KpWn®ncn°p∂ kwJysb t£{Xambn´pw

Iev]n°mw45. F∂mep≠p Nne Ffp∏w. AhnsS “t£{X”sa∂Xp

kaXeambn NXpc{iambncnt∏mcp {]tZiw. AXp46 \o≠n´ncn°nepamw

kaNXpc{iambn´mInepamw47. AhnsS KpWyw hepXv KpWImcw sNdpXv

F∂ncn°ptºmƒ tIm¬, hnc¬ F∂nh‰n¬ GXm\pw Hcp am\w

sIm≠p KpWykwJytbmfw \ofambn KpWImckwJytbmfw CSambn

Ccps∂m∂v Cu t£{XamIp∂Xv F∂p Iev]nt° th≠phXv. ]ns∂

CXn¶¬ tIm¬am\amIp∂Xv F¶n¬ Hcnt°msemcnt°m¬

AIeØn¬ \ofhpw hneßpw48 Nne tcJIsf D≠m°q. At∏mƒ

Hcnt°m¬ t]mt∂m Nneh kaNXpc{ißsfs°m≠p \ndbs∏´ncn°pw

Cu t£{Xw. Cu JWvUßƒ ]w‡nIfmbn´v49 Ccn∏qXpw sNøpw.

AhnsS \ofØnep≈ Hmtcm hcnbn¬ KpWyØns‚ kwJytbmfw

JWvUßfp≈h, KpWImckwJytbmfw hcnbpap≈h50. ]ns∂

hneßØn¬ hcnbmIp∂p F∂p Iev]n°p∂XmIn¬

hcnbntemtcm∂n¬ KpWImctØmfw JWvUßƒ KpWykwJytbmfw

hcnIƒ F∂mInepamw. Cu JWvUßƒ°v "t£{X^ew51' F∂p t]¿.

CuhÆw Iev]n°ptºmƒ t£{XØns‚ \ofhpw CShpw Xßfn¬

KpWn®m¬ NXpc{it£{X^eßfp≠mw F∂phcpw. ]ns∂

KpWysØs°m≠v Bh¿Øn®ncn°pw KpWImcsa∂pw

KpWImcsØs°m≠v Bh¿Øn®ncn°pw KpWysa∂pw hy‡amIpw.

5. 43.F. Jfin®p
44.F. AXn≥hÆw
45.D. Iev]n°pInepamw
46.F. CXv; D. \o≠ncn°nepamw
47.C. kaNXpc{iamInepamw; F. kaNXpcambncn°nepamw
48.F. \ofambpw hneßs\bpw
49.D. ]ØnIfmbn´v; F. hcnIfmbn´v
50.F. hcnbp≈h
51. D. t£{X^eßƒ

I. 5. kmam\yKpW\w
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KpWnX^eØn¶¬ CXp kaI¿Æambncns∏m∂p t£{Xw. ChnsS

]ns∂ NXpc{it£{XØns‚ Hcp tImWn¬\n∂p 52 XpSßn

t£{Xat≤y IqSn as‰ tImWn¬ kv]¿in°p∂ kq{Xw

I¿ÆamIp∂Xv. CXn∂p "LmXt£{X'sa∂pt]¿ 53.  ]ns∂

h¿§tØbpw t£{Xcqt]W Iev]n°mw. AhnsS h¿§t£{Xsa¶n¬54

kaNXpc{iambnt´ Ccn°pat{X F∂p \nbXw. Cßs\

kmam\yKpW\w.

6. KpW\Øn¶se hntijXIƒ

6.i. H∂masØ hntijX

A\¥cw KpWyØn¶Øm≥ KpWImcØn¶Øm≥ HcnjvSkwJy1

Iq´nØm≥ If™p Xm≥ Ccn°p∂hs‰ Xßfn¬ KpWn®psh¶n¬

tIheßfmIp∂ KpWKpWyßfpsS LmXØn¶∂v F{X GdnØm≥

Ipd™pXm≥ Ccn°p∂q Cu LmXw F∂Xns\ Adnbpw {]Imcw.

ChnsS2 KpWKpWyßfn¬h®v sNdnbXn¶∂v HcnjvSkwJysb

If™n´p tijsØs°m≠p henbXns\ KpWn∏qXmIn¬3 B t£{Xw

A{X CSw Ipd™ncn°pw. BIbm¬ B CjvSsØs°m≠p KpWn®v

henbXns\ Iq´Ww. F∂m¬ XnIbpw hcn, CjvSkwJysb Iq´o´v

F¶n¬ A{X hcn Gdn F∂n´ v 4.  CuhÆw henbXn¶∂v

HcnjvSkwJytb IfIXm≥ Iq´pIXm≥ sNbvXn´v KpWn∏qXmIn¬

CjvSsØs°m≠p sNdnbXns\ KpWn®n´p Iq´pIXm≥ IfIXm≥

sNtøWw F∂Xv5 hntija√.

5. 52.C. om. \n∂p
53.C. D. F. add LmXsa∂pw kwh¿§sa∂pw KpW\Øn\p t]¿
54. F. t£{XamIn¬

6 1. C. kwJysb
2. D. F. AhnsS
3. F. KpWn®qXmIn¬
4. C. D. add CjvSw sIm≠p KpWn®p henbXns\ IfbWw CuhÆw
5. F. F∂nXp

I. ]cnI¿ΩmjvSIw
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6.ii. c≠masØ hntijX

A\¥cw KpWKpWyßfn¬ sNdnbXn¬ hensbmcnjvSw Iq´q,

henbXn¶∂p sNdnsbmcnjvSw Ifbq. ]ns∂ Ch Xßfn¬

KpWn®qsh¶n¬ AhnsSsb{X Iq´n A{X hcn Gdnt∏mbn.  F{Xbp≠p

at‰Xn¶∂p If™Xv, A{X® hcnbnse JfikwJybpw Ipd™p

t]mbn. Cßs\ Ccns∏m∂v At£{Xw6.  AhnsS henb KpWyØn¶∂p

Ipds™mcp kwJy If™Xv, sNdnb KpWImcØn¶¬ Gdnb kwJy7

Iq´nbXv F∂p I¬]n°ptºmƒ CjvSw t]mb KpWytØmfw \ofap≈

hcnIƒ GdnbXv. AhnsS8 ]nt∂bpw KpWImcØn¶se CjvStØmfw

hcnIƒ Gdn. F∂n´p KpWImcØn¶¬ Iq´nb CjvSsØs°m≠p

CjvSw t]mb KpWysØ KpWn®n´p≈Xv Cu t£{XØn¶∂p

IftbWw. ]ns∂ KpWyØn¶se CjvStØmfw hneßp≈ hcnIƒ

Iqt´≠phXv. BIbm¬ tIheKpWImcsØ KpWyØn¶se

CjvSsØs°m≠p KpWn®p9 Iqt´≠q F∂nßs\ ÿnXanXv.

CuhÆw KpWKpWyßfn¬ c≠n¶epw CjvSsØ Iq´pIXm≥

IfIXm≥ sNøpt∂SØpw Duln®psIm≈p.

6.iii. aq∂masØ hntijX

A\¥cw KpWImcsØ GXm\pw HcnjvSsØs°m≠p lcn®

^esØ X∂n¬ Xs∂ Iq´n ]ns∂ AXns\s°m≠p KpWysØ

KpWn∏q10, F¶n¬ AXn¶∂v11 F{X Iftb≠q F∂v. AhnsS

KpWImckwJy12 ]{¥≠v F∂pw I¬]n∏q13.  ]{¥≠n¬ Xs∂ lcn®

^ew H∂pw Iq´nbXv14 F∂p I¬]n∏q15. ]ns∂ CXns\s°m≠p

6. 6. C. B t£{Xw
7. C. kwJybpw
8. F. AhnsSbpw
9. D. KpWn®n´v
10. B. C. KpWn®q
11 B. AXn¬ \n∂v
12. B. KpWImcw
13. B. Iev]n®v; B. ]{¥≠v sIm≠v
14. B. Iq´nbm¬ ]Xnaq∂v
15. B. F. Adds F∂v Iev]n∏q

I. 6. KpW\Øn¶se hntijXIƒ
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KpWn∏q16 KpWysØ. F∂m¬v17 KpWytØmfw \ofap≈18 ]XnΩq∂p

hcnIƒ D≠mIpw. AhnSp∂v Hcp hcn t]mhm\mbns°m≠vv19 ]Xnaq∂n¬

lcn® ^ew 20 Iftb≠phXp 21 ]{¥≠n¬ lcn® ^ea√ 22.

tIheØns‚23 ]{¥≠msem∂p bmsXm∂v Cu AwitØmSp24

Iq´nbXn¶∂v ]Xnaq∂msem∂mbncn°pw25 Cu26 ^ew. F∂ohÆw27

hy‡amIbm¬ bmsXmcp lmcIw sIm≠p \tS28 lcn®q AXn¬ Hcp

kwJy Iq´nbXp ]n∂bv°p lmcIamIp∂Xv29. ]XnΩq∂p hcnbp≈30

AwiIt£{XØn¶∂v31 Hcp hcn Iftb≠ptºmƒ AXp

]XnΩq∂msem∂mbncn°pw32,  \tS ]{¥≠msem∂p Iq´o´p

]XnΩq∂mbn. ]ns∂ ]XnΩq∂msem∂p If™m¬33 ]{¥≠p hcp∂q

F∂n´v.

]ns∂ C∆Æw ]{¥≠msem∂p IfIsNbvXXp ]{¥≠n¶∂v

F¶n¬ ]ns∂ tijØn¶∂p≈ ]Xns\m∂msem∂p Iq´nbm¬

]{¥≠mIp∂p. BIbm¬, bmsXmcp lmcIw sIm≠p lcn®p34

KpWImcØn¶∂p If™pthm35, KpWn® ^eØn¶∂v36 AXnsem∂p

Ipd™ lmcIw sIm≠p lcn® ^ew37 Iqt´Ww. F∂m¬

6. 16. F. adds Cu
17. B. KpWysØ KpWn®m¬
18. B.C.F. \ofØn¬
19. B. om. s°m≠v
20.B. ^eamWv
21. B. Iftb≠Xv; F. Iftb≠q
22.F. ^ea√msX, ^eØns‚
23.F. om. tIheØns‚
24.F. AwKtØmSp
25.C. F. H∂mbn´ncn°pw
26.F. om. Cu
27.F. F∂nhnsS
28.C.D.om. \tS
29.B. amIp∂p
30.F. hcnbps≈mcp
31. B. D. F. om. AwiI
32.B. C. ∂mbn´ncn°pw
33.B. ™mepw
34.B. adds ]ns∂
35.B. IftbWw; F. C. If™v
36.B. ^ew AXnt¶∂v
37.B. F. ^esØ

I. ]cnI¿ΩmjvSIw
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hmkvXhambncn°p∂ ^ew38 hcpw. Cßs\39 KpWn® ^eØn¶∂p

sNm√nb lmcIw sIm≠plcn® ^esØ Iq´pIXm≥ IfIXm≥

sNømw, HuNnXyØn\p X°hÆw. KpWn°p∂Xn\p apºnse

KpWKpWyßfn¬ H∂n¶∂v CubwisØ D≠m°n X∂n¬Xs∂

IfbpIXm≥ Iq´pIXm≥ sNbvInepamw. F∂mepw ^esam°pw.

AhnSbv°p lmcIw apºn¬40 sNm√nbXp Xs∂. H∂p IfIXm≥

Iq´pIXm≥ sNbvXXp apºnse lmcIØn¬, AXp ]ns∂bv°p

lmcIamIp∂Xv F∂p sNm√s∏´Xv. AhnsS bmsXmcp{]Imcw

KpWImcØn¶¬41 Iq´nb AwisØ AXn¶∂pXs∂ If™m¬

hmkvXhambncn°p∂ ^ew hcp∂p, A∆Æw KpWyØns‚

BbwisØ AXn¶∂p42 If™mepw ̂ ew Xpeyw. KpWImcØn¶∂p

Xs∂ Ifbptºmƒ hmkvXhambncn°p∂ hcnIƒ D≠mhpw43 F∂p

hcp∂Xv44 KpWyØn¶∂p Ifbp∂XmIn¬ hcnbnse45 JWvUkwJy

IpdI sNøp∂Xv Ft∂ hntijap≈q. hmkvXht£{XtØ°mƒ

CStadn \ofwIpd™p F∂p hcp∂tX D≈q46. t£{X^ew Xpeyw.

6.iv. \memasØ hntijX

A\¥cw KpWKpWyßfn¬ sh®p KpWImcw ]{¥≠v F∂p

Iev]nt®SØv AXns\ ]{¥≠n¬ lcn°p∂p47 F∂ncn°p∂p. ̂ esØ

]ns∂ GXm\psam∂p sIm≠p KpWn®p, ]{¥≠n¬Iq´n

F∂ncn°p∂XmIn¬48 AhnsS hntijw. ChnsS ]{¥≠n¬ lcn®

^esØ A©n¬ KpWn®n´p KpWImcamIp∂ ]{¥≠n¬ Iq´n F∂p

Iev]n°p∂p. AhnsS49 A§pWImcw sIm≠p KpWn®ncn°p∂50

38.B. F. hmkvXh^ew
39.B. F. Cßns\

6. 40.B. AhnsS ap≥t]; F. ap≥]v
41. B.C.D.F. KpWImcØn¬
42.C. D. F.add Xs∂
43.F. D≠mhp
44.B. hcp∂p, B
45.F. hcnIfnse
46.B. Ft∂bp≈p; D. F∂memhp∂tXbp≈p; F. F∂v h∂tXbp≈p
47.B. lcn°q
48.B. F∂ncn°n¬
49.B. F B
50.B. adds. cn°p∂ ]{¥≠n¬ Iq´n F∂p Iev]n°p∂p. AhnsS B KpWImcw sIm≠v

KpWn®ncn°p∂ ^ew t£{XØn¶¬

I. 6. KpW\Øn¶se hntijXIƒ
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^et£{XØn¶¬ ]Xnt\gphcnbp≠mhpw51. AhnsS Hcp hcnbnse
JfikwJy D≠mhm≥ t£{X^esØ ]Xnt\gn¬ lcnt°≠q.
]ns∂ B kwJysb A©n¬ KpWn®n´v D≠mbXns\ apºn¬ D≠mb
t£{X^eØn¶∂p 52 IfIthWw, hmkvXhambncn°p∂
t£{X^eap≠mhm≥. AhnsS \tSsØ lmcIØns‚ ^esØ
F{XsIm≠p KpWn®v A§pWImcsØ Iq´nb lmcIw ]ns∂bv°p
lmcIamIp∂Xv F∂p hcpw. CuhÆw ^esØ Ifbp∂XmIn¬
AhnsS t£{X^ew Ggp hcnbmbncn°pw. AhnsS Ggn¬ lcn®n´p
hcnbnse JWvUkwJy D≠mt°≠q 53.  BIbm¬ AhnsS
^eKpWImcamIp∂ A©ns\ IfIth≠Xv54 ]{¥≠n¶∂v. AXp
]ns∂bv°p lmcIamIp∂sX∂pw hcpw. KpWImcw ^eØnt‚Xp
\tSsØ A©pXs∂bs{X Xm\pw ct≠SØpw F∂nßs\
C{]Imcßsf√mt‰bpw Adnbp∂ Cu55 LmXsØ t£{X^eam°o´p
\ncq]n°ptºmƒ Adnbpt∂StØbv°v Ffp∏ap≠v.

6.v. A©masØ hntijX

]ns∂ ]{¥≠p KpWImcamIpt∂SØv A∏{¥≠ns\ \men¬
lcn®m¬ A]v^ew56 aq∂v. B aq∂ns\s°m≠p KpWn∏q KpWysØ.
]ns∂ A§pWn®ncn°p∂Xns\ Xs∂ \memIp∂ lmcIw sIm≠pw
KpWn∏q. At∏mƒ AXp ]{¥≠n¬ KpWn®Xmbn´p hcpw. AhnsS
\tS KpWysØ aq∂n¬ KpWn°ptºmƒ KpWyw
aq∂phcnbmbn´p≠mhpw. ]ns∂ AXns\ \men¬ KpWn°ptºmƒ
apΩq∂p hcnbmbn´p≠mIpw \mteSØv. At∏mƒ ]{¥≠phcn D≠mIpw.
BIbm¬ KpWKpWyßfn¬sh®v H∂ns\ GXm\pw Hcp lmcIw
sIm≠p lcn®m¬ apSnbpsa¶n¬ Cu lmcIw sIm≠p
KpWKpWyßfn¬ at‰Xns\ KpWn∏q. ]ns∂ KpWn®Xns\ Xs∂
lcn® ^esØs°m≠pw KpWn∏q. At∏mƒ CjvSKpWKpWyßƒ
Xßfn¬ KpWn®qXmbn´p hcpw. Cßs\ 57]e{]ImcØnep≈ KpW-

\sØ sNm√oXmbn.

51. B. F. hcnbp≠mhq
6. 52.B. reads KpWn®n´v D≠mb t£{X^eØnt¶∂v

53.D. reads D≠mhm≥ t£{X^esØs°m≠v BIbm¬
54.B. th≠q
55.D. om. Adnbp∂ Cu
56.B. lcn® ^ew
57.B. C.D ]e {]Imcw; D. F. ]e {]Imcap≈ KpW\{]ImcsØ sNm√oXmbn

I . ]cnI¿ΩmjvSIw
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7. lcWw

A\¥cw1 “lcWw”. AhnsS bmsXm∂ns\ lcn°p∂q AXn∂p

"lm¿ø'sa∂p t]¿. bmsXm∂ns\s°m≠p lcn°p∂q2 AXn∂p

"lmcI'sa∂p t]¿. AhnsS3 lm¿øsØ Hcp LmXt£{Xsa∂p

Iev]n®v CXns‚ Hcp ]m¿izØns‚ \ofw Hcp lmcIkwJytbmfsa∂p

Iev]n∏q. ]ns∂ Cu lmcsØ F{X BhrØn Ifbmw

lm¿øØn¶¬\n∂v A{Xhtc4 D≠v B LmXt£{XØn¶¬5

lmcItØmfw hcnbn¬ Hmtcm∂nse JWvUkwJy. Cßs\ ^ehpw

lmcIhpw Xßfn¬ KpWn®ncnt∏mcp LmXt£{Xw Cu

lm¿øamIp∂Xv. AhnsS lmcIsØ lm¿øØns‚

iXÿm\amZnbmbn´psh®n´p hmßmsa¶n¬6 \qd v BhrØn

If™Xmbn´phcpw lmcIw. AhnsS ^ew \qdp≠mbn´p hcpw.

iXÿm\Øv H∂p shbv°ptºmƒ AXp \qdmbn´ncn°pw7. BIbm¬

bmsXmcnSamZnbmbn´p8 lm¿øØn¶∂p lmcIsØ If™p B

ÿm\Øp ^esØ sht°≠q. F{X BhrØn AhnS∂p If™p

A{X ^ew B ÿm\Øp≈qXpw. Cßs\ BZyÿm\tØmfw9 ^ew

D≠m°q10. F∂nßs\ lcW{]Imcw.

7 1. B. AY
2. D. F.adds ]ns∂
3. B. om. AhnsS
4. B. hcn
5. C.D. Øn¬; C. Øo∂v
6. C. D. F. hmßmsa∂ncn°n¬
7. B. D. F \qdmbn´phcpw
8. B. om. ´p; F. cnSambn´p
9. B. tØmfhpw
10. B. F. D≠mIpw

I. 7. lcWw
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8. h¿§w

8.i. H∂masØ h¿§{]Imcw

A\¥cw ‘h¿§w’1. AhnsS h¿§amIp∂Xp KpW\w Xs∂bs{X.

KpWyhpw KpWImchpw2 kwJysIm≠p3 Xpeysa∂p hntijamIp∂Xv.

BIbm¬ ‘h¿§t£{Xw’ kaNXpc{iambn´ncn°pw4. BIbm¬ c≠p

hcnbnse JWvUkwJyIfpw Xpeyßfmbn´ncn°pw5, ChnsS. apºn¬

KpW\sØ sNm√ntbSØp KpWyØns‚ A¥yÿm\Øn∂p t\sc

BZyÿm\w hcpamdp KpWImcsØsh®v6 KpWym¥yÿm\sØ

KpWImcØns‚ AXXp ÿm\sØ kwJysIm≠p KpWn®v, AXXp

ÿm\Øns‚ t\sc sh∏q F∂s√m apºn¬ sNm√nbXv .

A∆ÆamIptºmƒ KpWKpWyßfpsS ÿm\tbmKØn¶∂v

H∂pt]mb ÿm\kwJybn¶¬ KpWn®Xns\ tht°≠q F∂p

h∂ncn°pw.  ChnsS ]ns∂ KpWKpWyßƒ°p ÿm\w XpeyamIbm¬

h¿§yÿm\sØ Cc´n®Xn¬ 7 H∂p Ipd™Xv Hcp

HmPÿm\ambn´ncn°pw. BIbm¬ A¥ysØ A¥yw sIm≠p

KpWn®Xv Hcp HmPÿm\Øp hcpw8. A¥ysØ D]m¥ywsIm≠p

KpWn®Xv AXn\SpØp Iosg bp‹ÿm\Øn¶¬, D]m¥ysØ A¥yw

sIm≠p KpWn®Xpw B ÿm\ØpXs∂9 hcpw. ]ns∂ D]m¥ysØ

D]m¥ywsIm≠p KpWn®Xv AXn\p Iosg HmPÿm\Øn¶¬. Cßs\

Xpeyÿm\ßƒ Xßfn¬ KpWn®Xn∂v HmPÿm\amIp∂Xv.

AXpeyÿm\ßƒ Xßfn¬ KpWn®Xn∂p bp‹w.

BIbm¬ A¥yÿm\Øns‚ h¿§sØ \tS HcnSØpshbv]q.

]ns∂ h¿§Øn¶¬ h¿§yØns‚ F√mÿm\tØbpw

F√mÿm\sØs°m≠pw KpWnt°≠pIbm¬ Xpeyÿm\

8 1. B. AY h¿§w
2. B. KpWIhpw
3. B. XpeykwJybmsW∂v
4. F. NXpcambn´ncn°pw
5. F. Bbncn°pw
6. B. KpWIsØ sh
7. F. Cc´n®Xn¶∂v
8. B. HmPÿm\ambncn°pw
9. F. Aÿm\Øn¶¬

I. ]cnI¿ΩmjvSIw
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LmXØn∂p "h¿§w' F∂pw, AXpeyÿm\ßƒ Xßfn¬

KpWn®Xn\p "LmX'sa∂pw t]¿. F∂n´p ]dbp∂q H‰s∏´Xn\v

"HmP'sa∂pw Cc´s∏´Xn∂p "bp‹'sa∂pw t]¿. H´pkwJy Iq´nbXn∂p

"cmin' F∂pw t]¿. AhnsS10 A¥yh¿§wsh®v11 A\¥cw12

KpWyØns‚ A¥yhpw KpWImcØns‚ D]m¥yhpw ]ns∂

KpWyØns‚ D]m¥yhpw KpWImcØns‚ A¥yhpw Xßfn¬

KpWn®m¬ ÿm\hpw kwJybpw H∂v13. BIbm¬ A¥yÿm\sØ14

Cc´n®v D]m¥yÿm\sØ KpWn®v15 D]m¥yÿm\Øn∂p t\sc

shbv]q. A¥yÿm\Øns‚ h¿§sØ sh®Xn\SpØp

Iosgbncn°paXv. ]ns∂ CuhÆw Xs∂ Cc´n® A¥ysØs°m≠p

KpWn® D]m¥yØn∂p Iosg kwJy-Iƒ F√m-t‰bpw AX-Xn-\p-t\sc

Iosg shbv]q. ]ns∂ A¥yÿm\sØ16 Ifbmw. KpWym¥yw sIm≠pw

KpWImcm¥yw sIm≠pw KpWnt°≠phXv H° Ign™p F∂n´v.

]ns∂ D]m¥ymZnÿm\ßsf H° Hcp ÿm\w Ingn®n´p shbv]q.

At∏mƒ apºn¬ A¥yÿm\Øns‚  h¿§sØ bmsXmcnSØp sh®q17

AXn¶∂v ASpØp18 IntgXn∂p t\sc Iosg Ccn°pw.  AhnsSØs∂

D]m¥yÿm\Øns‚ h¿§sØ Iq´q. ]ns∂ D]m¥yÿm\sØ

Cc´n®Xns\s°m≠p AXn\p Iosgÿm\ßsf KpWn®v AXXn∂p

t\sc Iq´q.  ]ns∂ D]m¥ysØ Ifhq19.  ]ns∂ Hcp ÿm\w Ingn®v

D]m¥yØn∂p Iosg ÿm\Øns‚ h¿§w Iq´q. ]ns∂ CXns\ Cc´n®v

AXn∂v Iosg ÿm\ßsf KpWn®n´ v20 At∂cØncn°p∂21

ÿm\Øn∂p t\sc Iq´q ]ns∂ Ingn®n´p h¿§w. Cßs\ 22

ÿm\samSpßpthmfw Cs®m√nb {Inbsb sNbvI. Cßs\

8. 10. B.om. AhnsS
11. B. ¿§sØ
12. B. om. A\¥cw (to) A¥yÿm\sØ
13. F. Ht∂
14. B. A¥ysØ
15. B. D]m¥ysØ s]cp°n
16. D. Iosg t\sc shbv∏q; F. t\tc sh®v A¥ysØ Ifbmw
17. B. sht®bv∏q
18. D. ASpØp IotgXn∂pIosg t\tc Ccn°pw; F. bmtXmtcSØv sh®v A{X Xs∂ ASpØv Iosg
19. B. C. D. F om. ]ns∂ D]m¥ysØ Ifhq
20.B. KpWn®v
21. C. om. At∂cØncn°p∂; F. At∂csØ
22.B. C. F. om. Cßs\ (to) {Inbsb sNbvI

I. 8. h¿§w
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h¿§amIp∂Xp KpW\w Xs∂.23 KpW\amIp∂Xp kwIenXw

Xs∂bt{X Ft∂m apºn¬ sNm√nbt√m. F∂menXpw

kwIenXhntijat{X.  Cßs\ Hcp {]Imcw h¿§sØ sNm√oXmbn24.

8.ii. c≠masØ h¿§{]Imcw

A\¥cw CXns\Øs∂25 t£{XØn¶¬ Im´p∂q.  AhnsS26

h¿§sas∂mcp kaNXpc{it£{Xw27. CXns‚ A¥yÿm\Øns‚

h¿§sØ shbv°ptºmƒ A{Xt]ms∂mcp kaNXpc{i

t£{Xap≠mIpw28.  AsXmcp tImSnbnep≠mIpw.  AXpw ]ns∂bnhnsS29

h¿§ycmin30 Jfin®n´p31 h¿§n°pamdv Hm¿°p∂p. AhnsS AXns‚32

A¥yÿm\w Hcp Jfiw. Iosgÿm\ßƒ H° IqSnbXv Hcp Jfiw.

Cßs\ KpWImctØbpw ]ns∂ KpWytØbpw33 Jfin∏q34 C∆Æw

Xs∂.  F∂m¬35 KpWImcØns‚ A¥yJfiw sIm≠p KpWyØns‚

A¥yJfisØ36 KpWn®Xv H∂v. KpWyØns‚ BZyJfisØ

KpWn®Xp c≠maXv37. ]ns∂ KpWImcØns‚ BZyJfisØs°m≠p

KpWyØns‚ A¥yJfisØ KpWn®Xv aq∂maXv38.  CXns\s°m≠v

BZyJfisØ KpWn®Xv \memaXv39. Cßs\ h¿§t£{Xw40

\mepJfiambn´ncps∂m∂v41. AhnsS \tStØ Jfihpw \memaXpw

kaNXpc{iambn´ncps∂m∂v. F∂n´v Ch c≠pw h¿§t£{Xw42.

8. 23.B. om. Xs∂
24.B. om. Cßs\ (to) sNm√oXmbn
25.B. om. CXns\Øs∂
26.B. om. AhnsS
27.C. kaNXpct£{Xw
28.C. D. F kaNXpc{iap≠mIpw
29.B. om. AXpw ]ns∂
30.C. D. F. h¿§ycminsb
31. B. Jfin®v
32.B. om. AhnsS AXns‚
33.B. KpWysØbpw KpWIsØbpw
34. F. Jfin®v
35.B. om. C∆Æw Xs∂ F∂m¬
36.B. KpWym-¥y-J-fisØ
37.B. KpW-Im¥y KpWym-Zy-LmXw c≠m-a-tØXv; KpWn-®Xp Xs∂
38.B. KpW-ImZy KpWy-¥ym-LmXw ap∂m-a-tØXv
39.B. BZy-J-fi-h¿§w \mem-a-tØXv
40.B. \mep-J-fi-ap≈ Hcp ka-N-Xp-c-{i-am-Ip∂p
41. F. Jfi-am-bXv
42.B. CXn¬ H∂pw \mepw Jfi-ßƒ h¿§-ß-fm-I-bm¬ ka-N-Xp-c-{i-ß-fm-bn-cn-°pw.

c≠pw aq∂pw LmX-ß-fm-sW-¶n¬ ka-N-Xp-c-{i-am-hp-I-bn-√.

I. ]cnI¿ΩmjvSIw
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c≠maXpw aq∂m-aXpw LmX-t£{Xw. AhnsS \q‰n Ccp]Ønaq∂ns‚

h¿§w th≠phXv F∂ncn°ptºmƒ, iXÿm\Øn¶se H∂v Hcp

JfiamIp∂Xv43 Iosg ÿm\ßƒ c≠pw IqSn44 Ccp]Ønaq∂p at‰

JfiamIp∂Xv. AhnsS \tS \q‰ns‚ h¿§w shbv°ptºmƒ

\qdphcnbpw45 Hmtcm hcnbn¬ \qdp \qdp Jfißfpw IqSnbncnt∏mcp

kaNXpc{iap≠mIpw. CXv CuitImWn¬ F∂p Iev]n∏q.  ]ns∂

LmXßƒ c≠pw CXns‚ sX°pw46 ]Sn™mdpw shbv]q.  Ah47 c≠pw

\qdp48 \ofhpw Ccp]Ønaq∂v CShpw49 Cßs\ Ccnt∏m Nne c≠p

t£{Xßƒ Ch. ]ns∂50 Ccp]Ønaq∂ns‚ h¿§w \ncrXntImWn¬

hcpw. ]ns∂ B t£{XØn¶epw Ccp]Xpw aq∂pw Cßs\

ÿm\sØ51 Jfin®p h¿§n°mw. AhnsS Ccp]Xns‚ h¿§w

AhnSpsØ CuitImWn¶¬ I¬]n∏q. ]ns∂ Ccp]Xp \ofhpw

aq∂nShpw52 Cßs\ c≠p LmXt£{Xw, sX°pw ]Sn™mdpw.  ]ns∂53

aq∂ns‚ h¿§w CXns‚ \ncrXntImWn¬54. Cßs\ ÿm\-sam-Sp-ßp-

thmfw. Cßs\ Hcp h¿§{]Imcw.  Cßs\55 Hcp cminsb

h¿§nt°≠ptºmƒ AXns\ c≠mbn Jfin®p Xßfn¬ KpWn®nc´n®p

8. 43.B. amIp∂p
44.B. om c≠pw IqSn
45.B. \qdv hcn-Ifpw Jfi-ßfpw D≠m-Ip-∂p. CXv Hcp ka-N-Xp-c{iw
46.C. CXns‚
47.B. Ch
48.B. om. c≠pw
49.B. Ccp-]-Øn-aq∂p hoXnbpw D≈ Hmtcm
50.B. om. ]ns∂
51. B. om. ÿm\sØ
52.B. aq∂p hoXn-bp-amb Hmtcm t£{X-ßƒ sX°pw ]Sn-™mdpw Iev]n-∏p.
53.B. F. om. ]ns∂
54.B. Wnepw Iev]n∏q
55.B. reads, Cßns\ h¿§-tbm-Khpw LmXhpw \ncrXntImWnepw Iev]n-∏q. Cßns\

h¿§-tbm-Khpw LmXN-XpjvSbhpw IqSn-bm¬ tbmKh¿§w F∂v sNm√nb-Xmbn. LmX-N-
Xp-jvS-bhpw A¥-c-h¿§hpw Iq´n-bmepw tbmKh¿§amIpw. LmXNXp-jvS-b-ßƒ°v henb
Jfi-tØmfw \ofhpw sNdnb Jfi-tØmfw CShpw D≠mIpw. LmX-t£-{X-ß-fn¬ H∂n\v
CuitImWn¬ \n∂v sXt°m´pw, H∂ns\ A·n-tIm-Wn¬ \n∂p ]Sn-™m-tdm´pw H∂ns\
\ncrXntImWn¬ \n∂pw hS-t°m´pw, H∂ns\ hmbptImWn¬ \n∂pw Ing-t°m´pw ASp-
∏n®p tN¿Øm¬ \Sp-hn¬ Htc ÿew _m°n-bp-≠mhpw. AhnsS A¥-c-h¿§-tØbpw
tN¿Øm¬ ÿew _m°n-bn-√. F√mw Iq´n-bm¬ -tbm-K-h¿§t£{Xam-bn-´n-cn-°pIbpw
sNøpw. LmXNXp-jvS-bhpw A¥ch¿§hpw Iq´n-bm¬ h¿§-tbm-K-am-bn-cn-°pw. CXn¬ Jfi-
Lm-XsØ Cc-´n-®-Xns\ Iq´n-bXv ap≥h¿§sØ D≠m-°n-sb-∂n´v. ChnsS ]ns∂ Jfi-
h¿§sØ Hcp t£{X-sa∂p Iev]n-°p-tºmƒ LmX-t£-{XI¿Æka-N-Xp-c{i_mlp-hm-
bn-´n-cn-t∏mcp h¿§-t£-{X-a-sX∂pw hcpw. (C-Xn≥ {]Im-cw.....)

I. 8. h¿§w
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c≠p JfiØnt‚bpw h¿§hpw Iq´nbm¬ JfitbmKØns‚

h¿§ambn´ncn°pw F∂p sNm√o.

8.iii. aq∂masØ h¿§{]Imcw.

A\¥cw JfiLmXsØ \men¬ KpWn®n´ v AXn¬

Jfim¥ch¿§hpw Iq´q. F∂mepw Cu h¿§ap≠mIpw. CXn≥{]Imcw˛

ChnsS LmXt£{XamIp∂Xp henb JfitØmfw \ofhpw sNdnb

JfitØmfw CShpw D≠mbncn°pw. CXn¶¬ Hcp I¿ÆtcJbpw

hc∏q. Cßs\ \mep≈ Chs‰s°m≠p h¿§t£{Xap≠m°pw {]Imcw.

Cu LmXt£{X-Øn¬ H∂ns\ h¿§t£{XØns‚ CuitImWn¬

\n∂p XpSßn sXt°m´p shbv]q. ]ns∂ H∂ns\ CXns‚

A·ntImWn¬56 \n∂p ]Sn™mtdm´v. ]ns∂ \ncrXntImWn¶∂p

hSt°m´v. ]ns∂ hmbptImWn¶∂p Ingt°m´v. Cßs\ sh®m¬

t£{Xa≤yØn¬ Jfim¥ch¿§tØmfw t]mcmsXbncn°pw.  AXpw

Iq´nbm¬ XnIbpw. sNdnb JfitØmfw Ccp]pdhpap≠mIptºmƒ

\Sphn¬ A¥ctØmfw tijn°pw, F∂n´v. BIbm¬ \mepLmXhpw

A¥ch¿§hpw Iq´nbmepw JfitbmKh¿§w D≠mIpw. ]ns∂

Cs®m√nbXp sIm≠p Xs∂ JfißfpsS h¿§tbmKw LmXsØ

Cc´n®Xpw A¥ch¿§hpw IqSnbmbncn°pw F∂p57 hcpw. CXn¬

JfiLmXsØ Cc´n®Xns\ Iq´o´t√m apºn¬ h¿§sØ D≠m°n58

F∂n´v.

8.iv. `pPmtImSn I¿Æ\ymbw.

ChnsS ]ns∂ Jfih¿§tbmKsØ Hcp t£{Xsa∂p

Iev]n°ptºmƒ LmXt£{XØns‚ I¿Æw59 kaNXpc{i

_mlphmbn´ncnt∏mcp h¿§t£{XaXv F∂p hcpw. CXn≥{]Imcw.

AhnsS60 \mep LmXt£{XsØ sh®v Ah‰n∂v Hmtcm I¿ÆtcJIƒ.

apºn¬61 sNm√nbh‰ns‚ A{Kw kaNXpc{itImWn¬ A√m th≠q,

8. 56.D. tImWn-¶∂v
57.C. IqSn-bm-bn-´n-cn°pw; IqSn-b-Xm-bn-´p-hcpw; D. IqSn-b-Xm-bn-´n-cn°pw F∂v
58.F. h¿§-tØmfw
59.B. Jfi-_mlp
60.F. ChnsS
61. F. tcJ; ap≥sNm-√nb

I. ]cnI¿ΩmjvSIw
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at‰62 tImSnIsf kv]¿in°pamdv Ccnt°≠q. Cßs\ Ccn°pt∂SØv

B I¿ÆtcJmam¿t§W s]fn®p ]pdØp JWvUßƒ Hmtcm∂p

\men¶∂pw Ifbq63. At∏mƒ AXn∂Iw64 A°¿ÆtcJIƒ

NXpc{i_mlp°ƒ \mepambn´ncnt∏mcp kaNXpc{iw tijn°pw.

]ns∂ If™ JWvUßƒ \men¬ Cuc≠p Xßfn¬ Iq´nbm¬ c≠p

LmXt£{Xßƒ D≠mIpw. CuhÆamIptºmƒ h¿§tbmKw

I¿Æh¿§sa∂pw h¿§tbmKØn¶¬ Cc´nbn¶∂p tbmKh¿§w

A¥ch¿§w sIm≠p Ipd™ncn°psa∂pw hcpw. BIbm¬ ChnsS

h¿§tbmKØn¶∂p LmXØnenc´n If™mepw tbmKh¿§Øn¶∂p

LmXØn¬65 \m∑Sßp t]mbmepw h¿§tbmKØn¬ Cc´nbn¶∂p

tbmKh¿§w t]mbmepw aq∂n¶epw A¥ch¿§w tijn°pw F∂p hcpw.

8.v. \emasØ h¿§{]Imcw

A\¥cw h¿§nt°≠p∂ cminsb ct≠SØph®v H∂p

KpWImcsa∂pw H∂p KpWysa∂pw Iev]n®v CXn¬66 H∂n¶∂v

HcnjvSkwJysb67 Ifhq. AXns\Øs∂ at‰Xn¬ Iq´q. ]ns∂

Xßfn¬ KpWn∏q. B t£{Xw CjvtSm\tØmfw CShpw

CjvSm[nItØmfw \ofhpambn´ncn°pw68. AhnsS \ofw GdnbXns\

apdn®v CSw t]mcmtØSØp shbv]q. At∏mƒ Hcp tImWn¬

CjvSh¿§tØmfw t]mcmsXbncn°pw69. AXpw Iq´nbm¬ h¿§t£{Xw

apºnetØXp Xs∂.

8.vi. tbmKm¥cmlXn h¿Km¥cw

A\¥cw Cu Jfih¿§\ymbw sNm√nbXns\s°m≠p Xs∂

HcnjvScminsb h¿§n®Xns\ ct≠SØpsh®p c≠masXmcp

CjvSkwJysb Iev]n∏q. ]ns∂ {]YaZzoXotbjvSßfpsS LmXsØ

Cc´n®v AXns\ H∂n¬ Iq´q. H∂n¬ Ifbq. ]ns∂ ZznXotbjvSh¿§w

8. 62.B. Aht‰
63.F. Ifhq
64.F. CXn-\Iw
65.B. Øn¶∂v
66.B. AXn¬
67.C. D. F. Hcn-jvSsØ Ifhq
68.B. ambn-cn°pw
69.C. t]mcm-Xn-cn°pw

I. 8. h¿§w
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c≠nepw Iq´q. At∏mƒ {]YtajvSØn¬ ZznXotbjvSw Iq´nbXnt‚bpw

If™Xnt‚bpw h¿§ambn´ncn°pah c≠pw. Ahs‰ aqen®m¬70 Hcp

tbmKh¿§aqehpw Hc¥ch¿§aqehpambn´ncn°pah.

ChnsS bmsXm∂p apºn¬ Jfih¿§t£{Xw sNm√s∏´Xv

CuitImWn¬ henb JfiØns‚ h¿§w, \ncrXntImWn¬

sNdnbXns‚ h¿§w71, at‰ tImWpIfn¬ JfiZzbLmXt£{Xßfpw

Cu \mep t£{Xhpw IqSnbXv B JfitbmKh¿§t£{XamIp∂Xv

F∂nßs\72 sNm√ntbSØv B \ncrXntImWnse Jfit£{Xw

HcnjvSh¿§t£{Xw; ]ns∂ CuitImWnteXp as‰mcp

CjvSh¿§t£{Xw. ChnsS CuitImWnse h¿§t£{XsØ°m´n¬

as‰ aq∂p t£{Xßfpw IqSnbXv AJfiambncn°p∂ henb

cminbpsS73 h¿§t£{XØn¬74 Gdnb `mKamIp∂Xv. BIbm¬ B

t£{Xßƒ aq∂pw IqSnbXv h¿§m¥camIp∂Xv.

Cu75 h¿§m¥ct£{XamIp∂Xns\ hcpØpw{]Imcw ]ns∂. ChnsS

CuitImWnse h¿§t£{XØns‚ sXt° ]pdØpw ]Sn™msd

]pdØpw Hmtcm LmXt£{Xap≈h ChntSbv°p sNdnb cminsb

cmiy¥cw sIm≠p KpWn®Xmbn´ncn°pah. ]ns∂76 \ncrXntImWnteXv

A¥ch¿§ambn´ncn°pw. BIbm¬ sNdnb cminsb Cc´n®Xnt\bpw

cminIƒ c≠nt‚bpw A¥ctØbpw A¥cw sIm≠p KpWnt°Ww.

BIbm¬ sNdnb cminbpw henb cminbpw IqSnbp≈ tbmKsØ

cmiy¥cw sIm≠p KpWn®n´p≈Xmbn´ncn°pw77. sNdnbcminbpw

A¥chpap≈ tbmKw henb cminbmbn´ncn°pw, F∂n´ v .

tbmKm¥cmlXn h¿§m¥csa∂pw hcpw.

8. 70.F. Hcp h¿§-tbmKaqehpw h¿§m-¥-caqehpw, Bbn-´n-cn°pw aqen-®m¬
71. F. sNdnb Jfi-Øns‚
72.F. Cßns\
73.F. om. henb
74.B.F. Øn¶¬
75. B. BIp∂ henb cmin-bpsS h¿§-t£-{X-Øn-¶¬ Gdnb ̀ mK-am-Ip-∂-Xns\ hcpØpw {]Imcw
76.D. A¥-chpw D≈ tbmKw henb cminbmbn-´n-cn-°pw. F∂n´v (]n-s∂.....)
77.D. F. KpWn-®-Xm-bn-´n-cn°pw

I. ]cnI¿ΩmjvSIw
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8.vii. GImZnZznNb t{iVot£{Xw

C∆ÆamIptºmƒ78 H∂ns‚ h¿§w H∂n¬ \n∂p iq\yh¿§amb

iq\ysØ If™m¬ tijw H∂v. H∂pw c≠pw D≈ tbmKw BIp∂79

aq∂ns\ A¥camIp∂ H∂ns\s°m≠v KpWn®m¬

kwJym80t`Zan√mbvIbm¬ ap∂p Xs∂ tbmKm¥cmlXnbmIp∂Xv.

BIbm¬ H∂pw c≠pw Xßfnep≈ h¿§m¥cw aq∂v. Cu aq∂ns\

H∂ns‚ h¿§amIp∂ H∂n¬ Iq´nbm¬ \mep c≠ns‚

h¿§ambn´ncn°pw81. CuhÆw c≠pw aq∂pw IqSnb A©p c≠nt‚bpw

aq∂nt‚bpw h¿§m¥camIp∂Xv. ]ns∂ aq∂nt‚bpw \ment‚bpw

h¿§m¥cw Ggv. \mepa©pap≈ h¿§m¥cw HºXv. Cßs\ H∂p

XpSßn Cuc≠oc≠p kwJy \nc¥tcW Gdn Gdnbncn°pw H∂p

XpSßnbp≈ \nc¥ckwJyIfpsS h¿§m¥cw. BIbm¬ H∂p

XpSßn82 Cuc≠oct≠dn Ccnt∏mcp ‘t{iVot£{X’ambncn°paXv83.

GImZn{ItaWbp≈ kwJyIfpsS h¿§t£{Xambn´ncn°paXv84.

Cßs\ BIptºmƒ85 GImZnZznNb t{iVot£{Xambn´pw Iev]n°mw

h¿§t£{XsØ86. AhnsS NXpc{i_mlphn¶se kwJytbmfw hcn,

\tSsØ hcnbn¬ Hcp Jfiw, ]n∂tØXn¬87 aq∂p Jfiw, ]n∂sØ

hcnbn¬ A©v, Cßs\ hcnbn¬ JfikwJyIƒ

Cuc≠oct≠do´ncpt∂m Nneh. C{]Imcw t{iVot£{Xkz`mhw.

CXns\ taen¬ hnkvXcn°p∂p Pym{]IcWØn¶¬. Cßs\

sNm√oXmbn h¿§]cnI¿Ωw.

8. 78.B. C.D.F. om. tºmƒ
79.B. D. om. BIp∂
80.F. om. kwJy
81. C. D. F. adds ]ns∂
82.F. XpSßn Gdn Gdn
83.F. om. Bbn-cn-°paXv
84.C. t£{X-am-bn-´n-cn-°p-aXv; AXv
85.F. adds h¿§-t£{Xw
86.B. Awi-t£-{XsØ
87.B. ]nt∂-Xn¬

I. 8. h¿§w
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9. h¿§aqew

A\¥cw h¿§aqew. AXp h¿§Øns‚ hn]coX{Inbbmbncps∂m∂v.

AhntSbpamZyÿm\Øn¶∂p XpSßn  A¥yÿm\samSp°ambn´p≈

h¿§{Inbbn¶∂p hn]coXambncps∂m∂p aqe{Inb1. AhnsS2

\q‰ncp]Ønaq∂ns\ BZyÿm\Øn¶∂p XpSßn h¿§n°pw{]Imcw.

BZyÿm\sØ aq∂ns‚ h¿§w HºXns\ BZyÿm\Øn\v t\sc

shbv]q. AXp \tSsØ {InbbmIp∂Xv. ]ns∂ Cu aq∂ns\ Cc´n®

BdpsIm≠v c≠mwÿm\sØ c≠nt\bpw ap∂mwÿm\sØ

H∂nt\bpw KpWn®v AXXn\pt\sc \tS h¿§w h®Xns‚ hcnbn¬

shbv]q. CXp c≠mw {Inb. ]ns∂ ZznXobÿm\sØ c≠nt\bpw

XrXobÿm\sØ H∂nt\bpw Hmtcm ÿm\w ta¬t∏m´p \o°n

c≠ns‚ h¿§w \mens\ iXÿm\Øp shbv]q F∂p aq∂mw{Inb.

]ns∂ c≠ns\ Cc´n® \mens\s°m≠p aq∂mw ÿm\sØ H∂ns\

\o°n \memwÿm\Øn∂p t\sc Ccn°p∂Xns\ KpWn® \mens\

kl{kÿm\Øn∂p t\sc hbv∏p. CXp \memw{Inb. ]ns∂3

aq∂mwÿm\Øncp∂ H∂ns\ \o°n \memw4 ÿm\Øm°nsh®Xp

bmsXm∂v, ]ns∂bpaXns\ \o°n A©mw ÿm\Øn¶¬ CXns‚

h¿§sam∂p hbv]q. CXp A©mw {Inb 5.  Cßs\ aq∂p

ÿm\ap≈Xns‚ {Inb6.

CXns‚ aqew Cs®m√nb h¿§{Inbbn¶∂p hn]coXambn´ncns∏m∂v.

ChnsS7 F√mbnepw HSp°sØ {InbbmIp∂Xv A©mw ÿm\Øn¶¬8

H∂ns‚ h¿§w sh°. AhnSp∂p9 H∂ns‚ h¿§w hmßpI. AhnsS

\tSsØ {Inb BIp∂Xv. ]ns∂ Iosg ÿm\Øn¶∂v CXns\ Cc´n®p

9. 1. B. C. D aqeo-I-c-W-{Inb
2. D. AXn¬
3. F. Xs∂ aq∂mw ÿm\sØ
4. F. ÿm\-Øn-cp-∂-Xns\
5. B. A©mw ÿm\-tØ°p \o°n AXns‚ h¿§-sam∂p hbv]p CXv A©m-asØ {Inb
6. B. ap∂mw ÿm\-Øns‚ h¿§w; C. ap≈-Xns‚ h¿§-{Inb
7. F. om. ChnsS
8. F. ÿm\Øv
9. F. AhnsS

I . ]cnI¿ΩmjvSIw
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lcn°pI10. apºn¬ \memaXp KpWn®p sh°pI11. ]ns∂ ^eØns‚

h¿§w AXn∂p12 Iosg ÿm\Øn¶∂p hmßpI. ]ns∂ Cu

ÿm\ßƒ c≠pw IqSn Iosg ÿm\Øn¶∂p lcn°. ]ns∂

^eØns‚ h¿§w AXn∂p Iosg ÿm\Øn¶∂p hmßpI. Cßns\13

hn]coX{InbbpsS {]Imcw. HSp°sØ {Inb \tSsØ {Inb, \tSsØ

{Inb HSp°sØ {Inb. Iq´pt∂SØp IfbpI14, Ifbpt∂SØp Iq´pI.

ÿm\w Itc‰pt∂SØp Ingn°15. Cßs\ aqeoIcWamIp∂Xv

h¿§{InbbpsS hn]coX{Inb.

10. h¿§tbmKaqehpw h¿§m¥caqehpw

]ns∂ Cu \ymbwsIm≠p Xs∂ c≠p h¿§ßsf Iq´n1 aqen®p

aqeap≠m°Wsa¶n¬ sNdnb cminbpsS h¿§Øn¶∂p henb cminsb

Cc´n®Xns\s°m≠p lcn∏q2. ]ns∂ ^eØns‚ h¿§w hmßq.

^esØ Cc´n®p lmcIØn¬ Iq´q. ]ns∂bpanßs\. ChnsS

lmcyØns‚3 F{Xmw ÿm\Øn¶∂p lcn®q ^esØ Cc´n®Xns\

lmcIØns‚ A{Xmw ÿm\Øp Iqt´≠q F∂p \nbaw4. ]ns∂

HSp°sØ lmcm¿≤w5 tbmKaqeamIp∂Xv. AhnsS lcn®m¬ F{X

^eap≠mIpsa∂v6 Duln®n´v B ^esØ Cc´nbmsX lmcIØn¬

Iq´o´mhp lcn∏Xv. F¶n¬ ]ns∂ ^eØns‚ h¿§sØ thsd

hmtß≠m. AXpIqSn t]mbn´ncn°pw. ]ns∂ lcn®mepw ^esØ7

9. 10. C. D. lcn°
11. C. D sh°
12. C. D. F.om. AXn∂p
13. A. CXns\
14. B. IfI
15. B. Ingn-°pI

10.1. C. D. Iq´n®p
2. F. lcn®p
3. C. AhnsS lmcIØns‚
4. B. F∂p \nbaw
5. B. lmcIm¿≤w
6. C. D. F∂Xns\
7. B. C. ^ew

I. 10. h¿§tbmKaqehpw h¿§m¥caqehpw
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lmcIØn¬ Iq´q. At∏mƒ Cc´n®p Iq´nbXmbncn°pw8. ]ns∂ Iosg

ÿm\Øn¶∂p lcn°ptºmƒ F{X ^eap≠mIpsa∂Xns\°≠v

AXns\ lmcIØns‚ Iosg ÿm\Øp9 Iq´o´p lcn∏q. ]ns∂bpw

^esØ Iq´q. Cßs\ lmcysamSpßpthmfw {Inb ssNhq.

lmcIm¿≤w tbmKh¿§aqew10. ChnsS h¿§tbmKØn¶∂p henb

cmiosS h¿§sØ If™p aqesØ Cc´n®p sh®ncn°p∂Xp11

lmcIamIp∂Xv12 F∂p Iev]n°p∂Xv ÿm\hn`mKØn∂p

X°hÆa√, \tSsØ h¿§sØ If™p, kwJymhn`mKØn∂p

X°hÆas{X F∂p apºn¬ sNm√nb aqeoIcW{Inbbn¶∂p

hntijamIp∂Xv. Cßs\13 h¿§tbmKaqeoIcWw.

]ns∂ h¿§m¥caqeadntb≠nhcnIn¬ C{]Imcw Xs∂

lmcytØbpw lmcItØbpw sh®p lcn°pt∂SØp lmcIØn¶∂p

^esØ If™n´p lcnt°Ww. lcn®\¥cw ^esØ IfhqXpw

ssNhq14. ]ns∂ ÿm\w Ingn®n´p lcn°pt∂SØp≠mIp∂ ^esØ

Duln®n´p aptº lmcIØn¶∂v A{Xmw ÿm\Øn¶∂p

If™tijsØs°m≠p lcn∏q. lcn®\¥cw ^esØ Ifhq.

Cßs\ lmcym¥w {Inbm. HSp°sØ lmcIsØ A¿≤n®Xp

h¿§m¥caqeambn´ncn°pw. Cßs\ h¿§m¥caqew.

[KWn-X-bp‡ǹ mj-bn¬

]cn-I¿Ωm-jvSIsa∂

H∂m-a-≤ymbw kam]vXw]

10.8. C. D. Iq´nbXmbn´ncn°pw; F. Iq´nbXmbn´pw Ccn°pw
9. F. ÿm\Øn¶¬
10. B. C. D. F. h¿§tbmKaqew
11. F. adds. Cu
12. C. F. lmcIamIp∂Xv
13. F. om. Cßs\
14. F. Ifhq

I. ]cnI¿ΩmjvSIw



339

A≤ymbw c≠v

 Zi{]ivt\mØcw
A\¥cw c≠p cminIfpsS tbmKw, A¥cw, LmXw, h¿§tbmKw,

h¿§m¥cw F∂o A©p hkvXp°fn¬ Cuc≠p hkvXp°sf

Adn™m¬ Ah km[\ambn´p c≠p cminItfbpw thsd Adnbpw

{]Imcw.

1. H∂masØ {]iv\w

ChnsS1 c≠p cminbpsS tbmKØn¬ Ah‰ns‚ A¥csØ Iq´nbm¬

henb cminbpsS2 Cc´nbmbn´ncn°pw. ]ns∂ B tbmKØn¶∂pXs∂

Bb¥csØ If™m¬ sNdnb cminbpsS Cc´nbmbn´ncn°pw3. ]ns∂

c≠ns\bpw A¿≤n®m¬ cminIƒ c≠papfhmIpw.

2. c≠masØ {]iv\w

A\¥cw4 tbmKhpw, LmXhpw Adn™m¬ cminIsf Adnbpw

{]Imcw. AhnsS apºn¬ ]d™5 \ymbØn\p X°hÆw tbmKØns‚

h¿§Øn¶∂p \men¬ KpWn® LmXsØ If™ tijsØ

aqen∏n®Xp cmiy¥cw. ]ns∂ apºn¬ ]d™Xpt]mse 6

th¿s∏SpØns°m≈q cminIƒ c≠nt\bpw7.

1. 1. B. C. D. F. AhnsS
2. B. C.D. F. cminbn¬
3. F. cminsb Cc´n®Xmbn´phcpw
4. F. om. A\¥cw
5. B. C. D.F. sNm√nb
6. C. D. F. sNm√nb
7. B. om. cminIƒ c≠nt\bpw
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3. aq∂masØ {]iv\w

]ns∂ tbmKhpw h¿§tbmKhpw. AhnsS8 h¿§tbmKsØ

Cc´n®Xn¶∂p tbmKh¿§sØ If™paqen®Xp A¥cw.

4. \memasØ {]iv\w

]ns∂ tbmKsØs°m≠v h¿§m¥csØ lcn® ^ew

cmiy¥cambn´phcpw9, apºn¬10 sNm√nb \ymbw sIm≠v.

5. A©masØ {]iv\w

A\¥cw A¥chpw LmXhpw. AhnsS LmXsØ \men¬

KpWn®Xn¬ A¥ch¿§sØ Iq´n aqen®Xp10 cmintbmKambn´ncn°pw11.

6. BdmasØ {]iv\w

]ns∂ A¥chpw h¿§tbmKhpw12. h¿§tbmKsØ Cc´n®Xn¶∂v

A¥ch¿§sØ If™q aqen®Xp cmintbmKw13.

7. GgmasØ {]iv\w

]ns∂ A¥csØs°m≠p h¿§m¥csØ lcn®Xp tbmKw.

8. F´masØ {]iv\w

A\¥cw LmXhpw h¿§tbmKhpw. AhnsS LmXsØ Cc´n®Xns\

h¿§tbmKØn¶∂p If™p14 tijØns‚ aqew A¥cw. \men¬15

KpWn® LmXØn¬ A¥ch¿§w Iq´n aqen®Xp tbmKw16.

9. HºXmasØ {]iv\w

]ns∂ LmXhpw h¿§m¥chpw. AhnsS cminIƒ c≠nt‚bpw

1. 8. F. tbmKh¿§Øn¶∂v h¿§tbmKsØ Cc´n®v If™ tijsØ aqen®\¥cw
9. B. om. Bbn´phcpw
10. B. C aqen®m¬ tbmKw
11. F. Bbncn°pw
12. A. B. om. this sentence
13. F. h¿§w t]mb tijØns‚ aqew cmintbmKw
14. D. If™paqen®Xv A\¥cw; F. If™tijw A\¥ch¿§ambn´ncn°pw
15. F. add. ]ns∂ CXnt\bpw
16. F. Ah cmin A¥ctbmKßƒ

II . Zi{]ivt\mØcw
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h¿§ßfp≠mIp∂Xv. AXn≥ {]Imcw17. ChnsS cminIsfs°m≠p

sNøp∂ {InbIsf h¿§ßfp≠mIp∂ cminIsfs°m≠p sNømw.

F∂m¬ ^eßfpw h¿§cq]ßfmbn´ncn°pw18 Ft∂ hntijap≈q.

AhnsS LmXsØ h¿§n®m¬ h¿§ßfpsS LmXambn´ncn°pw,

KpW\Øn¶¬ {Iat`Zw sIm≠p ^et`Zan√. BIbm¬ h¿§ßfpsS

LmXhpw A¥chpw Adn™Xv19 F∂p Iev]n®n´p cmiy¥chpw

LmXhpw Adn™n´p cmintbmKsØ D≠m°pwhÆw h¿§tbmKsØ

D≠m°mw. AhnsS LmXh¿§sØ \men¬ KpWn®p h¿§m¥ch¿§hpw

Iq´n aqen®Xp h¿§tbmKambn´ncn°pw. ]ns∂ Cu h¿§tbmKsØ

ct≠SØp sh®v H∂n¬ h¿§m¥csØ Iq´q. at‰Xn¶∂p Ifhq. ]ns∂

c≠ns\bpw A¿≤n∏q. Ah cminIƒ c≠nt‚bpw h¿§ambn´ncn°pw20.

10. ]ØmasØ {]iv\w

]ns∂ h¿§tbmKhpw h¿§m¥chpw Adn™Xp ]ØmaXv. AXpw

sNm√oXmbn. Cßs\ Zi{]iv\ßƒ. Ch‰n∂p ]teSØpw

D]tbmKap≠v, F∂n´p sNm√n.

L\aqeßƒ°p {KlKWnXØn¶se21 D]tbmKan√. F∂n´p22

Ahs‰ ChnsS sNm√p∂oe. Cßs\ Hcp hgn ]cnI¿Ωßƒ23.

[KWn-X-bp‡n`mj-bn¬

Zi-{]-ivt\m-Øcsa∂

c≠ma-≤ymbw kam]vXw]

1. 17. F. CXn≥ {]Imcw
18. B. om. cq]
19. F. Adn™n´v
20.F. adds Cßs\ HºXmw {]iv\w
21. F. KWnXØn¶¬ Gsd
22.F. C√m™n´v
23.B. Cßs\ Zi{]iv\ßƒ

II . Zi{]ivt\mØcw



342

A≤ymbw aq∂v

 ̀ n∂KWnXw
1. ̀ n∂kzcq]w

A\¥cw \m\m{]Imcßfmbn Ahbhßfmbn´ncn°p∂ cminIfpsS

kwIenXmZnIsf sNm√p∂p. AhnsS XnI™ncn°p∂ H∂n\p

‘cq]'sa∂p t]¿. Cßs\ ]q¿Æ-cq -] -am -bn -cn -°p∂ H∂n¬

]q¿Æcq]ambnt´ Ccn°p∂ H∂ns\ Iq´nbm¬ c≠mIpw.

]ns∂bpaXn¬ A∆Æancns∏m∂p1 Iq´nbm¬ aq∂mIpw. ]ns∂ Cu

aq∂n¶∂p ]q¿Æcq]ambncn°p∂ H∂ns\ If™m¬ c≠p≠mIpw.

CXn¶∂p2 cq]w t]mbm¬ H∂mIpw. Cßs\ kZrißfmIp∂h‰ns‚

tbmKw sIm≠p aosØ aosØ kwJy Bbn´phcpw3.

A∆Æta kZrißfpsS hntbmKw sIm≠p Iosg Iosg kwJybpw

hcpw. kZrißf√mØh‰ns‚ tbmKamIp∂Xv H∂n¬   AcXm≥ Im¬

Xm≥ Iq´pI. F∂m¬ AXp cs≠∂p hcm. c≠n¬ Ac Xm≥ Im¬

Xm≥ Ipd™Xp H∂mIpIbpan√. BIbm¬ kZrißƒt°

tbmKhntbmKßƒ°v BRvPkyap≈p. tbmKhntbmKßƒ sIm≠p

kwJy GdpIbpw IpdbpIbpw sNtøWw. AtX BRvPkmep≈

tbmKhntbmKßfmbn´ncn∏q. Ht∂Im¬ Ipdb c≠v F∂p

XpSßnbpt≈SØv F√mw tbmKhntbmKßƒ D≠mboem,

th¿s∏´ncn°p∂s{X4. BIbm¬ `n∂{]amWßfmIp∂ Ahbhßƒ

XßfnØm≥ Ahbhhpw Ahbhnbpw XßfnØm≥

tbmKhntbmKßƒ sNtø≠p¶n¬, hÆsam∏n®n´v Hcp Xcta

B°ns°m≠n´pthWw.

1. 1. B. Ccn°p∂ H∂ns\ Iq´nbm¬
2. F. AXn¶∂v
3. F. Bbn´ncn°pw
4. D. s]´ncn°p∂psht{X
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2. kh¿ÆoIcWw

hÆsam∏n°pw {]Imcw, ]ns∂. Hcp cq]Øns‚ As©m∂pw

\msem∂pw XΩn¬1 Iqt´Wsa¶n¬ AhnsS H∂ns\s°m≠p \mep ˛

s]fn®Xn¬ Hcp Iqdp \msem∂mIp∂Xv. AXns\ A©p s]fn®m¬

Ccp]Xps]fn®Xn¬ A©p Iqdmbn´ncn°pw. cq]Øn¬ As©m∂p

]ns∂ cq]sØ A©v 2Awin®Xn¬ Hcp Iqdv. AXns\ ]ns∂ \mep

s]fn -®m¬ Ccp -]Xv Awin -® -Xn¬ \mepIqdmbn´ncn°pw.

C∆ÆamIptºmƒ As©m∂mbncn°p∂ \mepw \msem∂mbncn°p∂

A©pw Xßfn¬ hÆsam°bm¬ tbmKhntbmKßƒ sNømw. c≠p

hIbpw Ccp]Xmsem∂mIbm¬ hÆsam°p∂p. ChnsS

\msem∂nsem∂mIp∂h \mepIq´nbh ]q¿Æcq]amIp∂Xv

F∂dnhm≥ ASbmfambn´p \mens\ tOZambn´p Iosg sh∏q3, H∂ns\

Awiambn´p tatebpw sh∏q. ]ns∂ As©m∂n¶¬ A©ns\4 Iosg

tOZambn´pw H∂ns\ aosØ Awiambn´pw sh∏q. ]ns∂ \msem∂ns‚

tOZamb5 \mens\s°m≠v As©m∂ns‚ tOZamb A©nt\bpw

Awiamb H∂nt\bpw KpWn∏q6. ]ns∂ A©mIp∂ tOZsØs°m≠p

\msem∂ns‚7 tOZamIp∂ \ment\bpw AwiamIp∂ H∂nt\bpw

KpWn∏q. CuhÆamIptºmƒ c≠n¶epw tOZkwJy Ccp]Xmbn´n

cn°pw. Awißƒ \msem∂n¶¬ A©pw As©m∂n¶¬ \mepw

Bbn´ncn°pw. ChntSbpw \msem∂pw As©m∂pambn´ncn°p∂Xn\p

hntijan√. Ht´sd sNdnb \pdp°pIƒ Ct∏mƒ Ft∂ hntijap≈p.

Cßs\ H∂ns‚ tOZsØs°m≠p at‰Xns‚ tOZtØbpw

AwitØbpw KpWn∏q. ]ns∂ at‰Xns‚ tOZw sIm≠v Cu

2. 1. C. D. F. Xßfn¬
2. F. Awin-®m¬ Hcp Iqdns\
3. F. tatebpw hbv∏p
4. F. As©m-∂n≥ A©mw
5. C. D tOZ-am-Ip∂
6. C. As©m-∂n-t\bpw As©m-∂ns‚ tOZ-sØbpw; F. om. As©m∂ns‚ (......to) KpWn-∏p.
7. C. D. \mens‚

III.  2. kh¿ÆoIcWw
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tOZtØbpw AwitØbpw KpWn∏q. At∏mƒ8 kat—Zßfmbn

hÆsamØncn°pw. BIbm¬ tbmKm¥cßƒ°p tbmKyßfmbn´p

hcpw9. BIbm¬ Ch‰ns‚10 tbmKØn¶¬ HºXmbn´ncn°pw.

A¥cØn¶¬ H∂pambn´ncn°pw. Ch ]q¿Æcq]ambncn°p∂ H∂ns‚

Ccp]Xmsem∂p Xm\pw.

Cßs\11 ]ehI D≠mbncn°nepw kat—Zßfm°mw12. AhnsS

tOZw sIm≠p Xt∂bpw Xs‚ AwisØbpw Hgn®v F√mt‰bpw

KpWn∏q. F∂m¬ kat—Zßfmbn13 kwIenXhyhIenX

tbmKyßfmbn´p hcpw. ]ns∂ Cht‰mSv Hcp ]q¿Æcq]sØ

Iqt´Wsa¶n¬ Cu kat—ZsØs°m≠p KpWn®psIm≈p. F∂m¬

AhbhßtfmSp hÆsam°pamdp hcpw14 ]q¿Æcq]ambn´ncn°p∂Xv.

Cßs\ kh¿Æ\w.

3. AwiKpW\w

A\¥cw AhbhØns‚ KpW\w. AhnsS Hcp cq]Øns‚

NXpcwiw KpWyw, Nne ]q¿Æcq]ßƒ KpWImcßƒ F∂pw

hcptºmƒ KpWImcØns‚ hy‡nIƒ F{X A{X ÿm\Øp sh∏q

KpWyamIp∂ NXpcwisØ1, ]ns∂ Xßfn¬ Iq´qXpw ssNhq.

At∏mƒ apºn¬ sNm√nb JfiKpW\\ymbØn∂p X°hÆw B

KpWysØ KpWn®Xmbn´p hcpw. AhnsS KpWImcØn¶¬ ]Øp

cq]hy‡nIƒ D≠v F∂ncn∏q. At∏mƒ cq]NXpcwisØ ]tØSØv

D≠m°q. Ah‰ns‚ tbmKw KpWn®Xmbn´ncn°pw. AXp ]ns∂

kat—Zßfmbncnt∏m Nneh ]Øv Awißfmbn´ncn°pw.

CXptlXphmbn´pXs∂ cq]NXpcwisØs°m≠p2 ]Øns\

KpWn®mepw hntijan√. ]Øp NXpcwiambnt´ Ccn°pat{X.

2. 8. C. D. Ct∏mƒ
9. F. tbmKy-ß-fm-bn-´n-cn°pw
10. B. Ah-‰ns‚ tbmKw HºXv. A¥cw H∂v Ch ]q¿Æ-cq-]-am-bn-cn-°p∂
11. F. Ch ]ns∂
12. F. adds CuhÆw
13. B. reads Hgn®v as‰-√m-tØbpw KpWn-®m¬ ka-t—-Z-ß-fmbn
14. F. A∆-Æ-sam°pw

3. 1. F. cq] NXp-cw-KsØ
2. F. Xs∂

III. `n∂KWnXw
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KpWymhrØambncn°p∂ KpW-Im-chpw KpW-Im-cm-hr-Ø-am-bn-cn-°p∂

KpWyhpw H∂pXs∂ F∂p apºn¬3 sNm√o, F∂n´v4. Cßs\

BIptºmƒ tOZap≠mIbm¬ tOZw sIm≠p lcnt® KpWn®p≠mb

]q¿Æcq]ßfmbn´p hcq Ft∂ hntijap≈q. Cßs\

KpWyKpWImcßfn¬ h®v H∂n¶¬ tOZap≠mbncn°ptºmƒ ]ns∂

c≠n¶epw IqSn tOZap≠mbncn°n¬5 tOZßƒ c≠ns\s°m≠pw

lcnt°Ww. BIbm¬ tOZßƒ Xßfn¬ KpWn®Xns\s°m≠p

lcnt°Ww. BIbm¬ AhbhKpW\Øn¶¬ KpWy

KpWImcßfpsS Awißƒ Xßfn¬6 KpWn∏q. tOZßƒ Xßfnepw7

KpWn∏q. At∏mƒ KpWyKpWImcßƒ Xßfn¬ KpWn®qXmbn´phcpw.

BIbm¬ As©m∂pw \msem∂pw Xßfn¬ KpWn®m¬

Ccp]Xmsem∂mbn´ncn°pw. Cßs\ AwiKpW\w.

4. Awi`mKlcWw

A\¥cw Awi`mKlcWw. ChnsS Awicq]ambncn°p∂

lmcIsØ A∆Æancn°p∂ lmcyØn¶∂v F{X BhrØn Ifbmw

A{X ]q¿Æcq]ßfmbn´ncn°p∂ ^eßfpfhmIpw F∂p apºn¬

sNm√nb \ymbw Xs∂ At{X ChntSbv°pamIp∂Xv. AhnsS Hcp

cq]Øns‚ NXpcwisØ ]q¿Æcq]ßƒ ]Øns\s°m≠p KpWn®m¬

cq]NXpcwißƒ ]Øv DfhmIpw. \men¬ Cdßnb ]Øv F∂pw

]dbpanXns\1. Cßs\ Ccn°p∂ CXns\ KpWImcw sIm≠p

lcn°n¬2 KpWyw ^eambn´p hcpw. KpWyw sIm≠p lcn°n¬

KpWImcw ^eambn´p hcpw. AhnsS KpWyamIp∂ \men¬ Cdßnb

H∂ns\ ]ØmhrØn3 Ifbmw. At∏mƒ ]q¿Æcq]ßƒ ]Øv Dfhmw4.

3. 3. F. ap≥]v
4. B. om F∂n´v
5. F. bncn-°q-∂-Xm-In¬
6. B. XΩn¬
7. B. XΩn¬

4. 1. B. sNm√p; C. D. sNm√p-an-Xns\; F. sNm√pw
2. F. lcn-®m¬
3. F. ]Øm°n
4. B. Df-hmIpw

III.  4. Awi`mKlcWw



346

AXp ̂ eambn´phcpw5, sNm√nb \ymbw sIm≠v. ]ns∂ ]q¿Æcq]ßƒ

]Øns\ CXn¶∂p Iftb≠ptºmƒ Cu lmcyamIp∂6 ]Øp

NXpcwias√m. BIbm¬ CØcw \mev]Xp IqSntb

]q¿Æcq]ßfmbncn°p∂ ]Øns\ HcmhrØn Ifhm≥ t]mcq.

At∏mtf ^ew Hcp cq]w XnIhq7. BIbm¬ Cu lmcyØn¶¬ ^ew

cq]NXpcwita D≈p F∂p h∂q8. CuhÆamIptºmƒ AXns‚ {Inb

]ns∂ lmcIsØ sNdpXm°nepamw. lmcysØ s]cp°nepamw. AhnsS

\menendßnb ]Øns\ \menendßnb9 H∂ns\s°m≠p lcn°ptºmƒ

lmcIamIp∂ H∂n\p lmcIw \mev . B \mens\s°m≠p

lmcyamIp∂ ]Øns\ KpWn∏q. ]ns∂ H∂ns\s°m≠p Xs∂ lcnt°

th≠q. lmcyØn∂p \tSbp≈ tOZsØs°m≠pw. BIbm¬ H∂pw

\mepap≈ LmXw \mev. AXns\s°m≠p \mev]Xns\ lcn® ^ew

]Øp≠mIpw. Cßs\10 lmcIØns‚ tOZw sIm≠p lmcyØns‚

AwisØ KpWn∏q. AXv Awiambn´ncn°pw. ]ns∂ lmcIØns‚

AwiwsIm≠v lmcyØns‚ tOZsØ KpWn∏q. AXv tOZambn´ncn°pw.

At∏mƒ lcn®qXmbn´ncn°pw. ]q¿Æcq]ßfmbn´p ^eßƒ F{X

D≈h F∂v Adnbth≠pIn¬ tOZsØs°m≠p lcnt°Ww Ft∂

D≈q. Cßs\ \msem∂pw As©m∂pw Xßfn¬ KpWn®v

Ccp]Xmsem∂mbn´ncn°p∂Xns\ lmcyw F∂p Iev]n®v CXns\

As©m∂ns\s°m≠p lcn®m¬ Ccp]Xnendßnb A©v. ]ns∂ Cu

tOZmwißƒ c≠nt\bpw A©n¬ lcn®m¬ \menendßnb H∂p

^ew hcpw. ]ns∂ Cu lmcysØØs∂ \msem∂ns\s°m≠p

lcn®m¬ A©nendßnb H∂mbn´ncn°pw11.

Cßs\ KpW\hpw lcWhpw Hcp {]Imcw Xs∂ an°hmdpw.

4. 5. D. ^e-ß-fm-bn-´p-hcpw
6. B. adds Cu
7. F. XnIbpw
8. B. om. F∂p h∂p
9. B. reads 10/4 s\ 1/4 sIm≠v lcn-°p-tºmƒ lmc-I-am-Ip∂ 1/4 \v lmcIw4. B

\mens\s°m≠p 10/4 s\ KpWn-∏p.
10. B. F. reads Cßs\ Ccn-°p∂ ]Øns\ KpWn-∏p. ]ns∂ H∂ns\s°m≠p Xs∂ lcn-°-

th-≠q. B lmcyØn\p \tS D≈ tOZw sIm≠pw ]ns∂ lmcy-Øns‚
11. B. F. reads A©n-sem-∂m-bn-´n-cn°pw

III. `n∂KWnXw
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KpWKpWyßfpsS tOZßƒ Xßfnepw12 Awißƒ Xßfnepw13

KpWn∏q. CXp KpW\w14. ]ns∂ lmcIØns‚ tOZsØ Awisa∂pw

AwisØ tOZsa∂pw Iev]n®n´pXs∂15 KpW\{Inb sNøptºmƒ16

lcn®Xmbn´p hcpw. Ct{X hntijap≈p. Cßs\ KpW\lcWßƒ.

5. ̀ n∂h¿§hpw aqehpw

]ns∂ kt—Zambn´ncn°p∂ cminsb h¿§nt°≠ptºmƒ

tOZtØbpw AwitØbpw h¿§n°Ww. Ah h¿§n® cminbpsS

tOZmwißfmIp∂h. ]ns∂ tOZw IqSn Ccn°p∂ cminsb

aqent°≠ptºmƒ1 tOZtØbpw AwitØbpw aqent°Ww. Ah

]ns∂ aqen® cmin°p tOZmwißfmIp∂h. Cßs\ kat—ZØns‚

aqeoIcWßƒ2.

[KWn-X-bp‡n`mj-bn¬

`n∂-K-WnXsa∂

aq∂ma-≤ymbw kam]vXw]

4. 12. B. XΩnepw
13. B. XΩnepw
14. B. ]ns∂ tOZmw-i-ßsf Xncn®v adn®v KpW-\{Inb Xs∂ sNbvXm¬ lmc-I-ambn
15. C. D. om. Xs∂
16. B. om. Ct{X (......to......) lc-W-ßƒ; D.adds Xs∂

5. 1. B. aqen-°p-tºmgpw Cßs\ Xs∂
2. D. h¿§-aq-eo-I-c-W-ßƒ; F h¿§-aq-e-I-cWw

1. 1. B. AY

III.  5. `n∂h¿§hpw aqehpw
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 A≤ymbw \mev

 ss{XcminIw
1. ss{XcminIkzcq]w

A\¥cw1 ss{XcminIw. AhnsS Hcp2 Ahbhn°p c≠p Ahbhw

D≠mbn´ncn∏q. AXn¬3 Hcp4 Ahbhw, C{X ]cnamWtØmSp

IqSnbncps∂m∂v \nbXambn´ncn∏q, C∂nbasØ Adn™n´pw Ccn∏q.

At∏mƒ as‰mcnSØv Cß\sØ Hcp Ahbhnbn¶se GItZiØns‚6

]cnamWsØ A\pam\n°mw. CXv ‘ss{XcminI ’amIp∂Xv.

CXn\pZmlcWw. A™mgn s\√n∂v Ccp\mgn Acn F∂nßs\

Adn™n´ncn°ptºmƒ CXns‚ tijw s\√ns∂m°bv°pw7

Cßs\sØmcp8 AcntbmSp≈ am\kw_‘\nbaap≠v F∂ncnt°Ww.

BIbm¬ ]¥ncp\mgns\√n∂v F{X Acnbps≠∂v Adntb≠ptºmƒ

Css{ØcminIamIp∂ {Inb D]tbmKn°p∂q. ChnsS9 ]¥ncp\mgn

s\√ns‚ Acn Adntb≠pt∂SØbv°v Adn™ s\√v A©n\p

‘{]amWw’ F∂p t]cv. Acn c≠n∂p ‘{]amW^e’sa∂pw, ]{¥≠p

s\√n∂v ‘C—’sb∂pw, ]{¥≠ns‚ Acn Adnhm\ncn°p∂Xn∂v

‘C—m^e’sa∂pw t]¿.

AhnsS A©n∂v C{X F∂p Adn™Xns\s°m≠p Xs∂ H∂n\v

C{X10 F∂p \tS Adn™psIm≠m¬ C—mhy‡nIƒ Hmtcm∂n\v

1. 1. B. AY-
2.F. Hcp Ah-b-h-sa-¶n¬ c≠-h-b-hn°p c≠p Ah-b-h-ap-≠m-bn-cn∏q
3.F. At∏mƒ Ah-b-hm-¥cw C{X ]cn-amW
4.D. AXn¬ (......to......) \nb-X-am-bn-´n-cn∏q
5.F. Adn™pw
6.B. C. D. F. ]cn-am-Wadnhq. F∂m¬ GI-tZi¥mc-Øns‚ ]cn-am-WsØ
7.F. s\√p-Iƒ°pw
8.F. Aß-s\-sØm∂v
9.F. AhnsS
10.F. F{X
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A{Xb{X11 D≠mIpw ^ew F∂dnhms\fp∏ap≠v. CXns‚ {]Imcw12.

AhnsS {]amWhy‡nIƒ A©n∂p ^ehy‡nIƒ c≠v, Ft∂SØv

B c≠ns\ At©SØp ]IpØm¬ Hcp Iqdp {]amWhy‡n H∂ns‚

^eambn´ncn°paXv13. CXns\ C—mcminsbs°m≠p KpWn®m¬

C—mhy‡nIƒ F√m‰nt‚bpw ^etbmKap≠mIpw. AhnsS c≠ns\

At©SØp ]Ip°pIbmIp∂Xv A©n¬ lcn°; A©n¬ Hcp Iqdv

lcn® ^eamIp∂Xv. AhnsS lcn®m¬ apSnbmbptºmƒ c≠n∂v

A©p tOZambn´ncn°pw. BIbm¬ H∂n\v A©n¬ Cdßnb c≠pw

^eamIp∂Xv F∂pw hcpw. C∆ÆamIptºmƒ {]amWw

{]amW^eØn\p tOZambn´ncn°pw. CXp KpWyamIp∂Xv. C—mcmin

KpWImcamIp∂Xv. C∆ÆamIptºmƒ {]amW^esØ

C—sbs°m≠p KpWn®p A]v^eØn\p tOZambn´ncn°p∂14

{]amWcminsbs°m≠p lcn∏q. ^ean—m^eambn´p hcpw. ChnsS15

At©SØp ]IpØn´v Hcp Iqdv F∂pw A©n¬ lcn® ^esa∂pw

H∂pXs∂. bmsXmcp {]Imcw LmXt£{XsØ Hcp hI hcnbnse

JfikwJysbs°m≠p lcn®m¬ as‰ ]cnjbnse Hcp hcnbnse

JfikwJybp≠mIpw ^eambn´v, At{XSØp ]IpØmepw Hcp hcn

Hcp Iqdmbn´ncn°pw F∂hÆw. Cß\sØm∂p ss{XcminIamIp∂16

KWnXw.

ChnsS s\√v  ‘Ahbhn’ BIp∂Xv. Danbpw Acnbpw XhnSpw

AhbhßfmIp∂Xv. AhnsS aq∂v Dan°p c≠p Acn F∂mInepamw

hym]vXn{KlWw. A©p s\√n∂p aq∂v Dan F∂mInepamw. Cßs\

D]m[nhim¬ {]amW^eßƒ AXXmbn´p Iev]n°mw. HcnSØp

Pn⁄mkmhim¬ c≠p Acn°v A©p s\√v, C{X Acn°p F{X

s\√v F∂pw hcpw {]amtW—m^et`Zßƒ. Cßs\ Hcp hI

ss{XcminIw.

1. 11. F. adds kwJy
12. D. CXn≥ {]Imcw; F. CXn≥ {]Imcw sNm√mw
13. F. om. AXv
14. D. F. tOZ-am-bn-cn-°p∂
15. F. AhnsS
16. B. ss{Xcm-in-I-am-Ip-∂Xv

IV . 1.ss{XcminIkzcq]w
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2. hykvXss{XcminIw

]ns∂ hykvXss{XcminIhnjbw. AhnsS F´p am‰n¬ Cu hnebv°v

C{X ]WØq°w s]m∂p thWw, At∏mƒ ]Øp am‰n¬ F{X

]WØq°w F∂ ss{XcminIØn¶¬ {]amWtØ°mƒ F{Xtbdpw

C—mcmin {]amW^etØ°mƒ A{Xtbdpw C—m^ew F∂t√m

Ccn∏q, A{X Ipdbpsa∂v. Cßs\ Ccn°pt∂SØp

hykvXss{XcminIw th≠phXv. AXmIp∂Xv {]amWhpw

{]amW^ehpw Xßfn¬1 LmXØn¶∂v C—mcminsbs°m≠p

lcn®Xv ChnsS2 C—m^eamIp∂Xv F∂p hntijw.

“hykvXss{XcminI^ean—m`‡x {]amW^eLmXx” F∂p≠v.

Cßs\ ss{XcminIØns‚ ZnMvam{Xw.

]ns∂3 Css{ØcminI\ymbhpw `pPmtImSnI¿Æ\ymbhpw4 Ch

c≠ns\s°m≠pw hym]vXw KWnX{Inb an°Xpw. Ch‰n∂v AwKambn´p

kwIenXmZn ]cnI¿Ωßƒ Ccn∏q. Cßs\ KWnX\ymbßƒ an°Xpw

sNm√oXmbn.

[KWn-X-bp‡ǹ mj-bn¬

ss{Xcm-inIsa∂

\mema-≤ymbw kam]vXw]

2. 1. F. Xß-fnse
2. F. Ahn-tSbv°v
3. B. om. ]ns∂ (.......to.....) sNm√o-Xmbn
4. F. om. `pPm-tIm-Sn-I¿Æ-\ymbhpw

IV. ss{XcminIw
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A≤ymbw A©v

 Ip´mImcw
1. Al¿§Wm\b\w

A\¥cw Al¿§Ww hcpØpI XpSßnbp≈ KWnXsØ Cu

\ymbmXntZi{]ImcsØs°m≠p sNm√p∂q. AhnsS1

IeymZyl¿§WsØ c≠p ss{XcminIw sIm≠dnbp∂q. CXn¶¬

IeymZyXoXkwh’csØ ‘skucw ’ sIm≠v Adnbp∂q,

kwh’cØn¶¬ skucw {]kn≤amIp∂Xv, F∂n´v . ]ns∂

h¿Øam\kwh’cØn¶¬ Ign™ amkßsf ‘Nm{µw’ sIm≠v

Adnbpw. ]ns∂ h¿Øam\amkØn¬ Ign™ Znhkßsf ‘kmh\w’
sIm≠p Adn™ncn°p∂q, {]kn≤nhim¬. ]ns∂2 Chs‰s°m≠p

IeymZyXoXkmh\Znhkßsf3 Adntb≠p∂q. ChnsS4 ]ns∂

NXp¿øpKØn¶se `KW`qZn\ßft√m ]Tn®Xv5. Ahs‰s°m≠p

IeymZnbn¶∂p XpSßn Ign™Xns\ hcpØp∂q. AhnsS bpKØn¶¬

‘skucNm{µ`KWm¥cw’ ‘Nm{µamk’amIp∂Xv.

AXn¶∂p bpKskuc`KWsØ ]{¥≠n¬ KpWn®p≠mb

‘bpKskucamk ’sØ If™ tijw ‘bpKm[namkw ’. ]ns∂

bpKskucamkØn∂v C{X ‘A[namkw’, IeymZyXoXskucamkØn∂v

F{X A[namkw F∂ ss{XcminIsØs°m≠v AXoXm[namksØ

D≠m°n AXoXskucamkØn¬ Iq´nbXv AXoXNm{µamk

ambn´ncn°pw. CXn¬ ]ns∂ h¿Øam\h¿jØnse ssN{XmZnIsf

Iq´n ap∏Xn¬ KpWn®v h¿Øam\amkØnse AXoXZnhktØbpw

1. 1. B. om. AhnsS; C. adds AhnsS \tS
2. B. om. {]kn-≤n-h-im¬ ]ns∂
3. C. Zn\-ßsf; F. kmh--\-ßsf
4. B. om. ChnsS ]ns∂
5. F. lcn-®Xv
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Iq´nbXv ‘IeymZyXoXXnYnIƒ’. ]ns∂ bpKXnYnbpw bpKkmh\hpw6

Xßfnep≈ A¥cw ‘bpKmhaw’. ]ns∂ bpKXnYn°v C{X Ahaw,

AXoXXnYn°v F{X Ahaw F∂ ss{XcminIsØs°m≠v D≠mb

AhasØ AXoXXnYnbn¶∂p If™Xv ‘IeymZyXoXkmh\’Znhkw.

2. {Kla≤yam\b\w

A\¥cw1 IeymZyXoXa≤yam\b\w. AhnsS bpKkmh\Øn\v C{X

`KWw, AXoXkmh\Øn\v F{X `KWw F∂p XnI™ `KWßƒ

DfhmIpw. ]ns∂ tijØn¶∂v `KWmhbhambncn°p∂

cmiywien]vXmZnsb2 ]{¥≠v, ap∏Xv, Adp]Xv F∂hs‰s°m≠p

KpWn®p≠m°q. Ah a≤yaßfmIp∂h. Cßs\ Hcp {]Imcw. ]ns∂

amkm[namkmha`KWßfn¬h®v IeymZyXoXßfn¬ bmsXm∂ns\

C—mcminbmbn´p Iev]n°p∂q, bpKkw_‘nIfmbncn°p∂

X÷mXobsØ {]amWam°n3 ]ns∂ bpKkw_‘nIfnenjvSsØ

{]amW^eam°q. ]ns∂ ss{XcminIw sIm≠p≠mb C—m^ew

{]amW^etØmSp kam\PmXobambn´ncn°pw. Cßs\

{Kla≤yam\b\w.

3. {Klm\b\Øn¬ Iṕ mImcw

A\¥cw Cs®m√nbh bpKkw_‘nIƒ KpWlmcßƒ

F∂ncn°ptºmƒ {Inb s]cpXv F∂n´ v . {InbbpsS

Npcp°Øn∂mbns°m≠v KpWlmcßsf Npcp°phm\mbns°m≠v

A]h¿Ø\{Inbtbbpw, {]kwKm¬ Ip´mImctØbpw sNm√p∂q.

3.i. `KWtijmZntijßƒ

AhnsS C—m^esØ {]amWwsIm≠v KpWn®Xpw {]amW^esØ

C—sIm≠p KpWn®Xpw XpeykwJyambn´ncn°pw. BIbm¬ Cu

1. 6. F. bpK-k-wh-’cw
2. 1. B. AY

2. C. D. F. en]vX-Im-Znsb
3. D. {]am-W-^-ehpw B°pI

V. Ip´mImcw
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LmXØn¶∂v C—sIm≠p lcn®Xp {]amW^eambn´phcpw.

{]amWsØs°m≠p lcn®Xv C—m^eambn´phcpw.

{]amW^esØs°m≠p lcn®Xv C—m. C—m^esØs°m≠p

lcn®Xp {]amWw. CuhÆamIptºmƒ C—m^esØ \tS

Adn™ncn°ptºmƒ AXns\ {]amWsØs°m≠p KpWn®v

{]amW^esØs°m≠p lcn®Xv1 C—mcminbmbn´p hcpw, lcn®m¬

tijw apSnbpt∂SØv apSnbmtØSØp t]mcmØ kwtJy Iq´o´v,

GdpIn¬ If™n´p lcn®m¬ C—mcminbmbn´p hcpw. C—m^ew

]q¿Æcq]ambncn°p∂Xns\s°m≠p2 {]amWcminsb KpWn®q F¶n¬

tijsØ Iq´pIXm≥ IfIXm≥ th≠nbncn°pw.

{]amW^esØs°m≠p lcn®n´v Ct— hcpØpt∂StØbv°v

C—m^emhbhsØs°m≠pIqSn KpWn°n¬3 tijap≠mbncn°bn√4.

AhnsS CjvSml¿§WØn¶∂v C—m^eambn´v5 AXoX`KWßƒ

D≠mbm¬ lcn®tijØn¶∂p ̀ KWmhbhambn v́ AXoXcmiymZnIƒ

D≠mIp∂p. `KWw ]q¿Æcq]ap≠mbmsd bmsXm∂p lcn∏m≥

t]mcmsX lmcyØn¶¬ tijn®Xv AXns\ “`KWtij”sa∂p

sNm√p∂q. AhnsS `KWØn∂p \tSsØ AhbhamIp∂Xp cmin.

AXp ]{¥≠pIqSnbXv Hcp ‘`KWw’. BIbm¬ cmin°p tOZamIp∂Xv

]{¥≠v BIbm¬ `KWsØ ]{¥≠n¬ KpWn®v apºnse {]amWw

Xs∂s°m≠p lcn®m¬ AXoX`KWmhbhambn´p cminbp≠mw.

AhntSbpw6 tijap≠v lmcyØn¶¬ F¶n¬ AXn∂p

‘cmintij’sa∂p t]¿. AXn¶∂p cmiyhbhw `mKw; ap∏XpsIm≠p

KpWn®v {]amWw sIm≠p lcn®Xp `mKw. tijw ‘`mKtijw'.

AXn¶∂v Adp]Xn¬ KpWn®v apºnse lmcIw Xs∂s°m≠p lcn®Xp

'Ie'. AhnsS tijn®Xp ‘Iemtijw'.

CuhÆamIptºmƒ IemtijØn¶∂p hn]coX{InbsIm≠v

CjvSml¿§Ww hcpw. AXv FhÆsa∂v. AhnsS lmcIsØs°m≠v

3. 1. F. lcn® ^ew
2. F. cq]-ß-fm-bn-´n-cn-°p-∂-Xns\
3. F. Iq´n KpWn-®Xn
4. B. tij-ap-≠m-bn´v
5. F. ^e-cq]w ]q¿Æ-am-bn´v
6. F. D≠mIpw. Chn-tSbpw

V. 3. {Klm\b\Øn¬ Ip´mImcw
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Cu Ite KpWn®v IemtijsØ Iq´n Adp]Xn¬ lcn® ^ew

`mKtijambn´p hcpw.  ]ns∂ lmcIsØs°m≠pXs∂7

KpWn®ncn°p∂ `mKØn¬ `mKtijsØ Iq´n ap∏Xn¬ lcn® ^ew

cmintijw.  AXns\ cminsbs°m≠p KpWn®ncn°p∂ lmcIØn¬

Iq´n ]{¥≠n¬ lcn®Xp `KWtijw.  AXns\ AXoX`KWw

sIm≠p KpWn®ncn°p∂ lmcIØn¶¬8 Iq´n bpK`KWsØs°m≠p

lcn∏q. ^ew ‘AXoXml¿§Ww’.

3.ii. Ip´mImcw

ChnsS KpWKpWyLmXambn´ncn°p∂ lm¿øsØ `mPysa∂p
sNm√phm≥ tbmKyambn´ncn°pt∂SØv Ip´mImcØn¶¬
{]amW^eßƒ°p ‘`mPy’sa∂p t]¿ sNm√p∂q.  AhnsS `KWmZn
tijØn¬ cmiym`ntOZßƒ ]{¥≠pw, ap∏Xpw, Adp]Xpw {ItaW
`mPyßfmIp∂Xv9.

{]amWsam∂pXs∂ F√mShpw `mPIamIp∂Xv.  apºnse apºnse
tijw C—mcminbmbncn°p∂Xv10 AhnsS AhnsSbv°v
km≤yamIp∂Xv.  A m≤yØn∂p ‘KpWImc’sa∂p Ip´mImcØn¶¬
t]¿. {]amW^esØs°m≠v C—mcminsb KpWn®v {]amWw sIm≠p
lcn®m¬ lmcyØn¶¬ tijn®Xv F{X kwJy AXns\ Adnbq11,
H∂p XnIbm≥ t]mcmØXv C{X kwJysb∂p Xm≥. CXv Hcp
cminbmIp∂Xv. ]ns∂ {]amWhpw {]amW^ehpw Ch aq∂ns\
Adn™ncn°pw hnjbØn¶¬12 C—mcminsb Adnhm\mbns°m≠p≈

KWnXØn\v ‘Ip´mImc’sa∂v t]¿ BIp∂p.

3.iii. BZnXy`KWtijw

AhnsS BZnXys‚13 A]h¿ØnX`KWw ‘X’a≥’ (576) F∂v.
AXns‚ ZypKWw [oPK∂q]pcw (2103897). CXp {]amWw. X’a≥
{]amW^ew. ‘Ahm¥cbpKw’, ‘bpK`KW’sa∂pap≠v Ch‰n∂p t]¿.

3. 7. C. D. F. om. Xs∂
8. D. F. lmc-I-Øn¬
9. B. Ip∂p
10. C. Bbn-´n-cn-°p-∂Xv
11. C. Adn-bp-∂Xv
12. C. D. Adn-™n-cn-°p-tºmƒ
13. B. kqcys‚

V. Ip´mImcw
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‘ZrV`mPy `mPIßƒ ’ F∂pap≠v t]¿. Chs‰s°m≠p≈

`KWtijØn¶se Ip´mImcsØ ChnsS \tS Im´p∂q.

AhnsS Ahm¥cbpKw apSnbp∂ Znhkw DZbØn∂v

ao\m¥yØn¶¬ AIs∏´ncn°pw BZnXya≤yaw. BIbme∂v

`KWtijan√. ]ns∂14 AXn¶¬ \n∂p sN∂ ZnhksØ

X¬kas\s°m≠p KpWn®v [oPK∂q]pcsØs°m≠p lcn®v a≤yaw

hcpØp∂p. BIbm¬ Ahm¥cbpKmZnbn¶∂v Hcp Znhkw

sN√ptºmƒ ‘X’a'Xpeyw `KWtijw. c≠p Znhkw sN√ptºmƒ

AXnenc´n. Cßs\ Znhkw{]Xn Hmtcm Hmtcm ‘X’a≥' Gdn Gdn

Ccn°pw `KWtijØn¶¬. `KWØn¶¬ CXv

A[nItijambn´ncps∂m∂v. ]ns∂ ‘amXpe'(365)t\mfw Znhkw

sN√ptºmƒ amXpe\pw X’a\pw Xßfn¬ KpWn®Xn¶∂p

‘[oPK∂q]pc’Øn∂v t]mcmØXp ‘[ohµyx', (149) F∂mIbm¬ A∂v

Du\tijamIp∂Xv AXv. BIbm¬15 ASpØp ]nt‰ Znhkw Cu

LmXØn¬ Hcp X’a≥ Iqt´≠pIbm¬16 AXn¬ ‘[ohµy's\s°m≠p

`KWw XnI™v, [ohµy≥ t]mb X’atijw

ZznXobkwh’cmZyZnhkØn¶se A[nItijw ‘kpc`n' (427) F∂v.

]ns∂ CXn¬ Hmtcm X’a≥ Iq´n Iq´n Ccn°p∂Xv

ZznXobkwh’cØn¬ Znhkw{]Xnbp≈ `KWtijw. ]ns∂ aq∂mw

kwh’cmZnbn¶se ZnhkØn¬ [ohµys\ c≠n¬ KpWn®Xv

X’a\n¬ \n∂p If™tijw `KWamIp∂Xv ‘Zmko kv{Xo'(278)

F∂v. ]ns∂ AXv BZnbmbn Znhkw{]Xn X’a≥ Gdn Ccn°p∂Xv

aq∂mw kwh’cØn¬ `KWtijw. Cßs\

kwh’cmZyZnhkØnse `KWtijØn∂p {]Xnkwh’cw

t`Zap≠v. ]ns∂ Znhkw{]Xnbp≈ hr≤n°p kmayap≠v. BIbm¬

Hcp ZnhksØ tijtØmSp Xpeyambn v́ as‰mcp Znhkw B bpKØn¬

D≠mIbn√. BIbm¬ [oPK∂q]pcØn¬ Ipd™Xn¬ bmsXmcp

kwtJys°m≠p X’as\ KpWn®m¬ [oPK∂q]pcw sIm≠p

lcn°ptºmƒ C{X t]mcmsXbncn°pw C{X A[nIambn´ncn°pw F∂p-

3. 14. D. AXp-]ns∂
15 C. AXv Du\-am-I-bm¬
16. B. Iqt´≠q BI-bm¬

V. 3. {Klm\b\Øn¬ Ip´mImcw
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Xm≥ A§pWImckwJy F∂ tNmZyw D]]∂as{X. Cßs\

Ccn°pt∂SØv KpWImckwJysb Adnhm\mbns°m≠p≈

KWnXØn\p ‘Ip´mImc'sa∂p t]cmIp∂p.

3.iv. Dt±iyIw

AhnsS GXm\psamcp kwJymhntijsØ Dt±in®v Hm¿°ptºmƒ
Ffp∏ap≈p. F∂n´v CuhÆw \ncq]n∏q. AhnsS X’a≥ `mPyw,
[oPK∂q]pcw ̀ mPIw, Du\mwiambncn°p∂ ̀ KWtijw \qdv, Cßs\
Ccn°pt∂SØv bmsXmcp ZnhkwsIm≠v X¬kas\ KpWn®m¬
EWt£]ambncn°p∂ Cu `KWtijw hcq F∂v Dulnt° th≠q17

F∂ph®m¬ "ap\nKmY’ (7305) F∂Xns\s°m≠p KpWn®m¬ hcpw

F∂v Adn™psIm≈mw F¶n¬ A∆Æw Iev]nt° th≠q. ^ew
]ns∂ ss{XcminIw sIm≠pw Adnbmw. AhnsS X’a\pw bmsXmcp
kwJybpw Xßfnep≈ LmXtØ°mƒ [oPK∂q]pchpw bmsXmcp
kwJybpw Xßfnep≈ LmXw \qdp kwJysIm≠p
A[nIambn´ncn°pw, Cßs\ Ccn°p∂ KpWImckwJyIƒ c≠pw,
ap\nKmY, 2018 F∂XnhnsS hkvXphmIp∂Xv. AhnsS X¬kas\
ap\nKmY F∂Xns\s°m≠p19 KpWn®Xnt\°mƒ [oPK∂q]pcsØ
Ccp]Xn¬ KpWn®Xp \qdpkwJy20 sIm≠p A[nIw, F∂o
KpWImcßsf `mPy`mPIßƒ C{X hepXmbn´ncn°ptºmƒ Duln®v
Adn™pIqSm. F∂m¬ `mPy`mPIßsf sNdpXm°ns°m≠n´p
Duln®psIm≈q. F∂msefp∏ap≠v.

sNdpXm°pw{]Imcw ]ns∂. AhnsS Znhkw{]Xn X’akwJy
`KWØn∂p21 hr≤nbmIp∂p. BIbm¬ X’as\
[oPK∂q]pcØn¶¬22 hmßn hmßn Ccn∏q. AhnsS
amXpekwJytbmfamhrØn hmßnbm¬ ]ns∂ [ohµy F∂p
tijn°pw. F∂n´p amXpeZnhkØn∂v X’at\°mƒ Ipdbpw tijw.

AXp EWt£]w Xm\pw. ]ns∂ [ohµyt\°mfpw tijw Ipdbq23

3. 17. D. F. Duln-∏m≥ and om. F∂p h®m¬
18. B. C. D. F. ap\n-KmY 20
19. C. F. ap\n-Km-Y-sb-s°m≠p
20.B. om. kwJy
21. F. `K-W-Øn-\p-ti-j-Øn\p
22. F. ∂q]p-c-Øn-¶∂v
23.C. Ipd-bp-sa∂v

V. Ip´mImcw
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F∂p \ncq]n°p∂Xv. ]ns∂ amXpes‚ ]ns‰ Znhkw [ohµy≥ t]mb

X’a≥ `KWtijamIp∂Xv. AXp [ohµyt\°mtfdpw. ]ns∂

Znhkw{]Xn Gdpas{X. ]ns∂ ‘\mKÿm\’ (730) sa∂ ZnhkØn∂p

[ohµy\nenc´n t]mcmsXbncn°pw. ]ns∂ "Imeÿm\’sa∂ (731)

Znhkw [ohµys\ c≠mhrØn X¬ka¶¬ \n∂p hmßnb tijw

A[nItijambn´ncn°pw. ]ns∂ ‘ip≤\bx’ (1095) F∂ Znhkw

[ohµy≥ ap∑Sßp Du\tijw. ]ns∂ "kvX_v[\b’(1096) F∂

Znhkw {XnKpW[ohµys\ X’a¶∂p If™ tijw ‘[o{]nb’  (129)
F∂ A[nItijambn´ncn°pw24. ]ns∂ [o{]nb F∂Xnt¶∂p Ipdbq

F∂v. kvX_v[-\b F∂-Xn∂p [o{]nb A[nItijw, amXpe∂p

[ohµys\∂ Du\tijw, BIbmenh‰ns‚ tbmKw "Im¿Øhocy’ (1461)
F∂ Znhkw "[o{]nb ’ (129) F∂pw, [ohµy F∂pw, Ch

c≠nt‚bpa¥cw Ccp]Xv Du\tijambn´ncn°pw. ]ns∂25 ̀ KWtijw

Ccp]Xn¬ Ipdbq F∂v. ]ns∂ Im¿Øhocys\ Bdn¬ KpWn® Znhkw

Ccp-]-Xns\ Bdn¬ KpWn-®-Xv Du\tijambn´ncn°pw. kvX_v[\bx

F∂ Znhkw [o{]nb F∂v A[nItijw. C±nhkßfpsS tbmKw

"{]oXnZpKvt≤’ (9862) F∂Znhkw. Bdn¬ KpWn®ncn°p∂ Ccp]Xpw

"[o{]nb' (129) F∂pap≈ A¥cw HºXv A[nItijambn´ncn°pw.

Cßs\ A[nItijZn\hpw Du\tijZn\hpw Xßfnse tbmKØn∂v

tijm¥cw tijambn´ncn°pw. ]ns∂ Znhkßƒ c≠nt\bpw KpWn®p

Iq´q. tijßƒ c≠nt\bpw AXXp ZnhkKpWImcwsIm≠p KpWn®v

A¥cn∏qXpw sNøq. F∂memb¥cw tbmKZnhkØn∂p

tijambn´ncn°pw. AhnsS26 `mP-I-Øn¬ tijn-°n¬ Du\-tijw,

`mPyØn¬ tijn°n¬ A[nItijw F∂p \nbXw.

BIbm¬ [ohµyt\bpw [o{]nbt\bpw Aø©n¬ KpWn®v

A¥cn®m¬ [ohµy¶¬ \qdp Gdnbncn°pw. ]ns∂ amXpet\bpw

kvX_v[\bt\bpw Aø©n¬ KpWn®pIq´nb "ap\nKmY’ F∂

ZnhkØn∂p \qdp Du\tijambn´ncn°pw. ]ns∂ Ccp]Xns\

]Xn\menepw HºXns\ Ccp]Xnepw KpWn∏q. Xßfne¥cw \qdv. ]ns∂

3. 24.C. ambn-cn°pw
25.B. F. om. ]ns∂; C. D. A\-¥cw
26.F. adds B

V. 3. {Klm\b\Øn¬ Ip´mImcw
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{]oXnZpKv≤ F∂Xns\ Ccp]Xnepw Im¿Øhocys\ ]Xn∂menepw

KpWn®v Xßfn¬ Iq´q. ]ns∂ AXn¶∂p [oPK∂q]pcw t]mbtijw

ap\nKmY F∂Xn∂v Du\tijw \qdv F∂p sNm√nsbt√m. BIbm¬

tijsa{X sNdpXmbm¬ KpWImcsØ Duln°mhq A{X sNdpXmbn v́

Duln®psIm≈q KpWImcßsf. F∂m¬ F√mShpw ^ekmayap≠v.

F∂n´p KpWImcsafpXmbn´p hcpw {]Imcap≠p eoemhXnbn¶¬

sNm√o v́:

4. Ip´mImc{]{Inb

"`mtPym lmcx t£]I›m]h¿Øyx

tI\m]ymsZu kw`th Ip´Im¿∞w I

tb\ Ons∂u `mPylmscu \ tX\

t£]ss›XZv ZpjvSap±njvStah II
]ckv]cw `mPnXtbmcytbmcy˛

t—jwXtbm ymZ1]h¿Ø\w XXv2 I

tkz\m]h¿tØ\3 hn`mPnsXu sbu

sXu `mPylmscu ZrVkw⁄nsXu kvXx4 II
antYm `tPsØu ZrV`mPylmscu

bmhZzn`t‡ `hXol cq]w I

^em\yt[mf[kvXZt[m \nthiyx

t£]kvXYmt¥ Jap]m¥nta\5 II
tkzm¿t≤z ltXft¥y\ bptX XZ¥yw

XytP∑plpx kymZnXn cminbp‹w I

Du¿t≤zm hn`mtPy\ ZrtV\ XjvSx

^ew KpWx kymZ]tcm ltcW II
4. 1. F. kvXtbm; kymZv

2. F. kx
3. F. tX\m
4. F. kw⁄-sIu kvXx
5. B. om. this verse

V. Ip´mImcw
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Ghw XssZhm{X bZm kamkvXm˛

 yp¿√_v[bt›ZznjamkvXZm\ow I

bYmKsXu e_v[nKpsWu hntims≤yu

kzX£Wmt—jansXu Xp sXu kvXx II

CXn. (eoemhXo, 242˛46)

ChnsS6 sNdnb c≠p `mPy`mPIßsf Dt±in°p∂q. \tS AXn¶¬

{Inb tbmPn®m¬ th≠pt∂SØv AXntZin®p sIm≈mw ]ns∂. F∂n v́

7DZmlcWw˛

GIhnwiXnbpXw iXZzbw

bZvKpWw KWI ]©jjvSnbpIv I

]©h¿÷nXiXZztbm≤rXw

ip≤ntaXn KpWIw hZmip ta II

(eoemhXo, 247)

CXn≥ s]mcpƒ: Ccp∂q‰nCcp]sØm∂ns\ bmsXm∂p sIm≠p

KpWn®m¬ Adp]Ø©p Iq´n \q‰nsXmÆq‰©psIm≠p lcn®m¬

tijnbmsX Ccn∏q B KpWImcsa{X F∂p8 tNmZyw. CXv9

Ip´mImcØn∂p hnjbamIp∂Xv.

4.i. A]h¿Ø\{]Imcw

A\¥cw A]h¿Ø\{]Imcw10. `mPyamIp∂ Ccp\q‰n

Ccp]sØm∂ns\ `mPIamIp∂ \q‰nsXmÆq‰©psIm≠p lcn®m¬

4. 6. B. om. (ChnsS...............-D-Zm-l-c-Ww)
7. B. om. the verses
8. B. F. F{X -kwJy F∂
9. B. om. (CXp...........A\¥cw)
10. F. B {]Imcw

V. 4. Ip´mImc{]{Inb
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tijw Ccp]Ønbmdv. ]ns∂11 AXns\s°m≠v12 \q‰nsXmÆq‰©ns\13

lcn®m¬ tijw ]Xnaq∂v. AXns\s°m≠v Ccp]Ømdns\ lcn®m¬
tijsam´pan√mbvIbm¬ ]Xnaq∂ns‚ BhrØn Ccp]Ømdv. AXp
tlXphmbn´pXs∂ Ccp]Ømdns\s°m≠v lcn®pt]mb `mKhpw
]Xnaq∂ns‚ BhrØn Xs∂bmIbm¬ Cu `mKhpw ]Xnaq∂pw
IqSnbXns\s°m≠v \tS `mPyØn¶∂p If™Xpw ]Xnaq∂ns‚
BhrØnXs∂. Cu \ymbwsIm≠p Xs∂ CXn¶∂p apºnepw
At\ym\yw lcn®XmIn¬14 HSp°sØ tijn®Xns‚ BhrØn
Xs∂bmbn´ncn°pw15 t]mb `mKßsfm°. F∂m¬ ]ckv]cw  lcn®p
tijn®Xns\s°m≠v \tSsØ `mPy`mPIßsf lcn®m¬
tijnbmsX apSnbpw. Aßs\ lcn®ncn°p∂ ^eßƒ°p
"ZrV`mPy`mPIßƒ' F∂p t]¿. F∂menhnsS ZrV`mPyw ]Xnt\gv,
ZrV`mPIw ]Xn\©v. ]ns∂ t£]w Adp]ØnA©ns\ ]Xnaq∂n¬
lcn®m¬ ̂ ew  A©v ChnSbv°p t£]amIp∂p16. ChnsS t£]sØ
]Xnaq∂n¬ lcn®m¬ apSnbmsX Ccn°bn√. AXn∂p tlXp,
`mPIØn¶∂17 A[nIamIp∂ `mKw `mPyØn¶¬ Ccp]Ømdv D≈q.
AXns\ KpWn®Xp tijØn¶se hr≤nbmIp∂Xv. BIbmse
]Xnaq∂n¬ lcn®m¬ apSn™ncn°pas{X. A√mbvIn¬ Cu
`mPy`mPIßfn¬ kw`hn°p∂ t£]a√ Dt±in®Xv F∂v
AdntbWw. BIbmse Dt±ia\p]]∂w CuhÆancn°p∂Xv F∂p

Iev]nt°Ww18.

4.ii. h√o

A\-¥-c-an -∆-Æ-a-]h¿Øn® ZrV-ß-fm-bn-cn -°p∂ `mPy`mPI

t£]ßƒ ]Xnt\gpw ]Xn\©pw, A©pw, 19 Chs‰s°m≠p

`mPyØns‚ KpWImcsØ D≠m°pw{]Imcw. AhnsS `mPyw

]Xnt\gns\ `mPIambncn°p∂ ]Xn\©psIm≠p lcn® ^ew H∂v,
4. 11. B. om. ]ns∂

12. B. CXp-sIm≠v
13. B. sIm≠v lcn-®p-t]mb`mKhpw ]Xn-aq-∂ns‚ BhrØnXs∂. BI-bm¬
14. F. lcn-∏q-Xm-In¬
15. F. Bbn-´p-X-s∂-bn-cn°pw
16. F. BIp-∂Xv
17. F. `mPy-Øn-¶∂v
18. B. C. D. F. om. F∂p Iev]n-t°Ww
19. B. ZrV-`mPyw, ]Xn-t\-gv, ZrV-`m-PIw, ]Xn-\©,v ZrV-t£-]w A©v. Chs‰s°m≠p

V. Ip´mImcw
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tijw c≠v. ]ns∂20 B c≠ns\s°m≠p ]Xn\©ns\ lcn∏q. ^ew

Ggv, \tSsØ ̂ eØn∂p Iosg sh∏q; tijw H∂v. ̀ mPy`mPIßfn¬
HcnSØp tijsam∂mthmfw At\ym\yw lcn∏q. ^eßsf {ItaW
Iosg Iosg sh∏q. A]v^e]cºcbv°p "h√o' F∂p t]¿. A\¥cw21

Cu h√o^eßƒ H∂pw, Ggpw, tijßƒ c≠pw H∂pw Chs‰ {ItaW
Iosg Iosg sh®p heym\b\\ymbhn]coX{Inbsbs°m≠v

`mPy`mPIßsf D≠m°pw {]ImcsØ22 Im´p∂q.

4.iii. h√p]kwlmcw

AhnsS HSp°sØ {Inb \tS th≠phXv. AXmIp∂Xv ̀ mPyØn¶se
tijw c≠v. AXpsIm≠p23 `mPIw ]Xn\©ns\ lcn®p≠mb ^ew
Ggv. F∂n´v AhnSpsØ lmcIamIp∂ c≠ns\s°m≠p Xs‚
^eamIp∂ Ggns\ KpWn∏q. F∂m¬ Xs‚ lm¿øap≠mbnhcpw,
lrXtijan√mtØSØv. Dt≈SØp ]ns∂ tijsØ Cu LmXØn¬
Iq´nbm¬ lm¿øambn´p hcpw. ChnsS c≠pw Ggpw Xßfnep≈ LmXw
]Xn\men¬ tijn® H∂ns\ Iq´nbm¬ c≠ns‚ lm¿øambn´ncp∂
]Xn\©p hcpw. ]ns∂ B ]Xn\©ns‚ lm¿øsØ hcpØpw{]Imcw.
]Xn\©ns\s°m≠p lcn®p≠mb ^ew H∂v. AXns\
]Xn\©psIm≠p KpWn∏q. F∂m¬ ]Xn\©p Xs∂. AXn¬ ]ns∂
AhnsS tijn® tijw c≠nt\bpw Iq´nbp≈ ]Xnt\gv B
]Xn\©ns‚ lm¿øamIp∂Xv. ]ns∂ apºnepw h√o^eßƒ
D≠mbn´ncn°p∂XmIn¬ C∏Xnt\gns\s°m≠v X\n°SpØ apºnse
^esØ KpWn®Xn¬ ]Xn\©ns\ Iq´q. F∂m¬ ]Xnt\gns‚ lm¿øw
hcpw. C{]Imcw F√mShpw D]m¥ysØs°m≠p X\n°SpØ apºnse
^esØ KpWn∏q. A¥ysØ Iq´q.

]ns∂ B A¥ysØ If™v ]ns∂ D≈Xn¬h®v
D]m¥ysØs°m≠v AXn∂SpØ apºnteXns\24 KpWn®Xn¬
A¥ysØ If™v Iq´n Bb¥yambn´psh®ncn°p∂Xns\ Ifhq.

Cßs\bmIptºmƒ bmsXmcn°¬ c≠p ]w‡nsb25 D≈q F∂p

4. 20.B. adds At»jw
21. B. om. A\-¥cw
22.B. reads {]Imcw
23.C. AXns\s°m≠p
24 F. ap≥]n-e-tØ-Xns\
25.F. ]Ønsb

V. 4. Ip´mImc{]{Inb
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hcp∂q, At∏mƒ D]m¥yan√mbvIbm¬ {Inb HSpßn. ]ns∂ B c≠p

cminIfn¬sh®p tateXp `mPyambn´ncn°pw, IotgXp `mPIhpw.

Cßs\ `mPItØ°mƒ `mPyw hepXmbn´ncn°pt∂SØv.
sNdpXmbn´ncn°pt∂SØp ]ns∂ `mPyw IotgXv, `mPIw tateXv

Bbn´ncn°pw. ̀ mPyØn¶∂p≠mb ̂ eØns‚ ÿm\Øp ̀ mPyw hcpw;

`mPIØn¶∂p≠mb ^eØns‚ ÿm\Øp `mPIhpw F∂p
\nbaamIp∂Xv26. Cu {Inbbv°p ‘heyp]kwlmc’sa∂v t]¿.

CXn∂p hn]coX{Inbbn¶∂p Ipds™mcp hntijap≠v F∂p

tXm∂pw. h√o^eßsf D≠m°pt∂SØv lcWwXt∂ D≈q. AXns‚
D]kwlmcØn¶¬ KpW\w Xs∂ A√m D≈q; KpWn®Xn¬27

AhnShnSpsØ28 lrXtijsØ Iq´pI Fs∂mcp {Inb IqsS D≠v.

F∂n´p tIhew hn]coX{Inbbn¶∂p Ipds™mcp hntijaps≠∂p
tXm∂pw. D]]Ønsb \ncp]n°ptºmƒ hn]coX{Inb Xs∂. \tSbpw

tijsØ If™n´v As{X Ccn°p∂ ^ew sIm≠v F∂n´v.

4.iv. KpWe_v[ym\b\w

A\¥cw ̀ mPy`mPIßsf∂p th¿s]´ncn°p∂ {]amW^etØbpw

{]amWtØbpw hcpØnb heyp]kwlmc\ymbw sIm≠pXs∂

C—m^etØbpw C—tbbpw hcpØpw {]ImcsØ Im´p∂q. AhnsS
ZrV`mPy`mPIßsf At\ym\yw lcn® ̂ eßsf Iosg Iosg sh∏q.

Cßs\ `mPy`mPIßfn¬ HcnSØp cq]w am{Xw tijnt∏mfw. ]ns∂

h√o^eßfpsS Iosg A]h¿ØnXt£]tØbpw sh∏q. AXns‚
Iosg  iq\ytØbpw sh∏q. A∆ÆamIptºmƒ ChnSbv°v H∂pw, Ggpw,

A©pw, iq\yhpw Cßs\ Ccn∏q h√o. ]ns∂ CXns\s°m≠pw

apºnset∏mse D]kwlmcw ssNhq. AhnsS Ifbp∂ A¥ysØ
thsd HcnSØp {ItaW sh®ncn°nepamw. At∏mfh Iog∂p XpSßo´p

iq\yw, A©v, ap∏Ø©v, \mev]Xv F∂nßs\ Ccn°pw. Ch‰n¬sh®p

iq\yhpw ap∏Ø©pw KpWImcw; A©pw \mev]Xpw ^ew. Ch‰n∂p
lmc`mPyßfmIp∂h H∂pw c≠pw ]Xn\©pw ]Xnt\gpw. AhnsS

H∂pw ]Xn\©pw lmcw, c≠pw ]Xnt\gpw `mPyw.

4. 26.B. hcpw for \nb-a-am-Ip-∂Xv
27.C. D. AhnsS ASpØ
28.F. adds \tS

V. Ip´mImcw
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AhnsS \tS29 `mPytijw c≠ns\ iq\ysØs°m≠p KpWn®Xp

iq\yw. AXn¬ t£]w A©p Iq´n lmctijw H∂ns\s°m≠p lcn®

^ew A©v. ]ns∂ c≠maXp ̀ mPytijw c≠ns\Øs∂ ap∏Ø©n¬

KpWn®v A©pIq´n ]Xn\©n¬ lcn∏q. ̂ ew A©v30. ]ns∂ aq∂maXv

]Xnt\gns\ ap∏ØnA©n¬ KpWn®v31 A©pIq´n ]Xn\©n¬32 lcn∏q.

^ew \mev]Xv. Cßs\ Ccp]pdsØ KpWImcßsf°pdn®p

\SphnteXp ^eamw. CuhÆta Xs‚ Iogpw taepap≈

^eßsf°pdn®p \Sphnencn°p∂Xp Xm≥ KpWIcamw. CuhÆw

`mPylmcßfpw Xs‚ Xs‚ Ccp]pdtØXns\°pdn®pw

`mPylmcßfmw. ]ns∂ ap∏Ø©ns\ ]Xn\©n¬ lcn® tijw

A©p KpWImc amInepamw33. \mev]Xns\ ]Xnt\gn¬ lcn® tijw

Bdp ^eamInepamw34. CXn∂p ‘X£W’sa∂p t]¿. Cßs\

CjvSt£]Øn¶se KpWe_v[nIƒ D≠m°pw{]Imcw.

4.v. BZnya≤yaØns‚ Ip´mImcw

A\¥cw heyp]kwlmc\ymbsØ X’a\pw [oPK∂q]pchpw

`mPy`mPIßfmIptºmsgbv°p Im´p∂q. AhnsS

At\ym\ylcWtijßƒ {IaØmse "[ohµyx', "[o{]nbx', "\mco'(20)

"[nIv' (9) "{iox' (2), "Inw' (1) F∂n-h. h√o-^-e-ßƒ ]ns∂

"am¿Ømfiwx'(365) "sKux' (3) "Inw' (1), "X¬' (6), "{iox' (2), "hn¬'(4)

F∂nh. ChnsS `mPyØn¶¬ cq]w tijn°bm¬ t£]sØ

[\ambn´p Dt±in®qXmInepw EWsa∂p Iev]n°p∂q. F∂n´nhnsS

cq]w EWt£]sa∂p Iev]n®v h√o^eßfpsS Iosg H∂ns\ hbv∏q.

AXn∂p Iosg iq\ytØbpw. ]ns∂ heyp]kwlmcss©Xv

D]kwlrXh√o^eßsf {ItaW Iotg∂p ta∏´p sh∏q. Ah‰ns‚

kwJy ˛"\p'(0), "Inw'(1), "hn¬'(4), "[ox'(9), "tlmax'(58), "kqX'(67),

"[oi{Xpx'(259), "J Cujth[x' (94602) F∂nßs\.

4. 29.D. F. om. \tS
30.D. F. A©p-Xs∂
31. D. F. ap∏Ønb©psIm≠p Xs∂ ]Xn-t\-gns\ KpWn-®v
32.C. adds Xs∂ lcn∏q
33.B. F. A©p KpW-Im-cIw
34.D. F. F∂m-In-ep-amw

V. 4. Ip´mImc{]{Inb
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A\¥cw [ohµy\mZnIfn¬ HSp°sØ `mPytijw H∂v. AXns\

EWt£]w H∂ns\s°m≠p KpWn®p EWt£]w If™m¬

iq\yamIbm¬ ^ew iq\yw. C∆ÆamIbm¬ ss{XcminIØn¶¬

c≠p lmcw, H∂p `mPyw, H∂p KpWImcw, H∂p iq\yw ^ew. c≠mw

ss{XcminIØn¶¬ lmcw "{iox' (2) F∂p Xs∂, `mPyw CXns‚

tase "[ox'(9) F∂v. KpWw \tSsØ "Inw' (1) F∂p Xs∂, ^ew

CXns‚ tase "hn¬'(4) F∂v ap∂maXn¶¬ tase "\cx' (20) F∂p

lmcw, `mPyw \tSsØ "[ox' (9) F∂p Xs∂ KpWw at‰Xns‚ tase

"[ox' (9), ^ew apºnse Iosg "hn¬' (4) Xs∂. \memaXn¶¬ ]ns∂

lmc`mPyKpWe_v[nIfmIp∂h {IaØmse35 "\cx'(20), "[o{]nbx'(129),

"[ox'(9), "tlmax'(58) F∂nh. A©maXn¶¬ "[ohµyx'(149),

"[o{]nbx'(129), "kXo',(67) "tlmax'(58). BdmaXn¶¬ "[ohµyx',(149)

"X’ax' ,(576) "kXo',(67) "[oi{Xpx' ,(259) . GgmaXn¶¬

"[oPK∂q]pcw'(210389) lmcw, "X¬ka≥'(576) `mPyw,

"cXv\kvXw`m¿≤w'(94602) KpWw, "[¿Ωcmƒ'(259) ^ew Cßs\ Cu

`mPy`mPIßƒ°p cq]w EWt£]amIptºmsf KpWe_v[n

IfmIp∂Xv.

]ns∂ Cu \ymbwsIm≠p Xs∂ cq]w [\t£]amIptºmsf

KpWe_v[nIfmIp∂Xv. EWt£]Øns‚ KpWe_v[nIsf

lmc`mPyßfn¬ \n∂p If™ tijßƒ "kqtZmsku ambbm'

(115,787), "kIpex'(317) F∂nh. Cßs\ t£]Øns‚ [\¿ÆX

]Icptºmsf KpWImce_v[nIƒ36 hcpw {]Imcw. ]ns∂ Cu

cq]t£]Øns‚ KpWe_v[nIsf CjvSt£]w sIm≠p KpWn®m¬

CjvSt£]Øns‚ KpWe_v[nIfpfhmIpw. Cßs\ sNm√nbXmbn

Ip´mImcw kwt£]n®n´v37.

[KWn-X-bp‡ǹ mj-bn¬

Ip´m-Imcsa∂

A©ma-≤ymbw kam]vXw]

4.35. F. {ItaW
  36. D. KpW-e-_v[n-Iƒ
  37. B. CXn- Ip´m-Imcw

V. Ip´mImcw
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A≤ymbw Bdv

 ]cn[nbpw hymkhpw
1. ̀ pPmtImSnh¿§tbmKw:

I¿Æh¿§tbmK\ymbw

A\¥cw Hcp kaNXpc{it£{XsØ tIm¬, hnc¬ F∂p XpSßn

\ofsØ Af°p∂ am\ßfm¬ H∂p sIm≠p F{X F∂p Iev]n®v1

AXns‚ Hcp _mlp hymkamIptºmƒ hrØsa{X am\sa∂dnbpw

{]ImcsØ sNm√p∂q.

AhnsS2 `pPmh¿§hpw tImSnh¿§hpw IqSnbm¬ I¿Æh¿§amIpw

F∂Xns\ sNm√p∂q. ChnsS bmsXm∂ns‚3 h¿§amIp∂q, AXp

_mlphmIp∂ Hcp kaNXpc{it£{X^ew h¿§amIp∂Xv. ]ns∂

kaNXpc{it£{XØn¶¬ Xm≥ Zo¿LNXpc{it£{XØn¶¬ Xm≥

Hcp tImWn¶∂p4 t£{XØns‚ \Spth5 as‰ tImWn¶¬ sN√p∂

kq{Xw ‘I¿Æ’amIp∂Xv. ChnsS Hcp NXpc{iØn∂p6 c≠p ]m¿izhpw

tImSnXpeyambn \o≠n´ncn∏q7, c≠pXebpw `pPmXpeyambn CSw

Ipd™ncn∏q8. Cßs\ ChnsS Iev]n°q∂q. Cu t£{XØns‚9

I¿Æsa{X F∂v Adnbp∂Xv.

ChnsS tImSnXpeyambn´ v Hcp kaNXpc{iap≠m°q,

`pPmXpeyambn´pw. Cßs\ c≠p kaNXpc{it£{Xßsf D≠m°q.

1. 1. F. Iev]n-®m¬
2. B. C. D. F adds \tS
3. F. om. bmsXm-∂ns‚ to h¿§-am-Ip-∂Xv
4. C. D. F tImWn-¶∂p XpSßn
5. B. om. \Spth
6. F. adds ka
7. D. F. \o≠n-cn∏q
8. C. F. CXv
9. F. At£{X-Øns‚
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]ns∂ `pPmNXpc{iw hSt°]pdØv, tImSnNXpc{iw sXt°]pdØv,

c≠nt‚bpw Ings° ]m¿izw Hcp kq{X-Øn-¶¬ hcp-amdp Xß-fn¬

tN¿∏q, `ptPsS sXs° -]m¿izw tImSosS hSs° ]m¿iztØmSp

tNcpamdv. Cu ]m¿izw `pPm]m¿izw Ign™n´pw ]Sn™mtdm´p H´p

tijn°pw. `ptPsS hS°p Ings° tImWn¶∂p sXt°m´p

tImSntbmfw Af∏q. AhnsS Hcp _nµphnSq. ChnS∂p sXt°Sw \ofw

`pPtbmfap≠mbncn°pw. ]ns∂10 _nµphn¶∂p tImSosS

sX°p]Sn™msd tImtWmfhpw `ptPsS hS°p]Sn™msd

tImtWmfhpap≈ tcJmam¿t§W s]fn∏q. tImWn¶¬ c≠n¶epw

Ipds™m∂p th¿hnSmsX Ccn∏q. ]ns∂ _nµphn¶∂p sNdnb c≠p

s]fnbpw th¿s]SpØn _nµphn¶¬ IqSnbncp∂ tcJm{Kßƒ c≠pw

Xßfn¬ tImSosS hS°p]Sn™mdp k‘n°pΩmdp I≠v henb

NXpc{iØns‚ Ccp]pdhpw Xncn®p11sIm≠pt]mbn tN¿∏q. F∂m¬

apdnhm ]pdhmbn¬ hcpamdpI≠p tbmPnt°≠Xpw. F∂meXv Hcp

kaNXpc{it£{Xambn´ncn°pw. CXns‚ _mlp°ƒ Cu

`pPmtImSnIfpsS I¿ÆtØmSv H°pw Xm\pw. F∂m¬ Cu12

`pPmtImSnIfpsS h¿§tbmKw I¿Æh¿§w, I¿Æh¿§Øn¬ H∂ns‚

h¿§w If™m¬ `pPmtImSnIfn¬ at‰Xns‚ h¿§w F∂p ÿnXambn

Ct∏mƒ. CXv F√mShpw Adntb≠pshm∂v.

2. NXpc{iØn¬ \n∂v

A„m{i--̨ tjmUim{imZn]cn[nIƒ

A\¥cw 1NXpc{isØs°m≠ hrØsØ D≠m°pw {]Imcw.

CjvSam\ambn´v Hcp NXpc{isØ Iev]n∏q. CXns‚ _mlp

hymkambn´ncnt∏mcp hrØØn∂v F{X am\sa∂v Adnbp∂Xv. Cu

Iev]n® NXpc{iØn∂v \Spth ]q¿∆m]ctcJbpw

Z£ntWmØctcJbpw D≠m°q. F∂m¬2 \mep NXpc{iambn´ncn°pw.

2. 10. F. adds B
11. C. D. F Ccp ]pd-tabpw Xncn®p
12. C. F. Cu

2. 1. B. C. F. add ka
2. D. F∂nh

VI.  ]cn[nbpw hymkhpw
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]ns∂ henb NXpc{iØns‚ a≤yØn¶∂p tImtWmfw Hcp tcJ

D≠m°q. AXp I¿ÆamIp∂Xv. Cu I¿ÆsØ A·ntImWn¬

Iev]n®n´p3 sNm√p∂q. ]ns∂ Z£nWkq{Xm{KØn¶∂v

]q¿∆kq{Xm{KtØmSv Hcp I¿Æw Iev]n∏q. ChnsS NXpc{ia≤yw

tI{µambn´v C\n D≠mIp∂4 hrØw D≈q. ChnsS bmsXmcp

{Xy{iØn¶epw aq∂p `pPIfnepw sh®v henb `ptPsS Hcp ]m¿izw

apgph≥ \neØp X´pamdp Iev]n®v AXns‚ CcpXebv°∂pap≈

`pPIfpsS tbmKw t\sc taemΩmdp Iev]n∏q. ]ns∂ Cu5

tbmKØn¶∂p I\sØmcp hkvXp sI´nb6 kq{Xw Xq°q7. B8

kq{XØn∂p "ew_’sa∂p t]¿. taevt]m´p≈ `pPIƒ°v "`pPIƒ’
F∂p t]¿. `qankv]rjvSambncn°p∂9 `pP°v ‘`qan’ F∂p t]¿.

`qanbn¶¬ bmsXmcnSØp ew_w kv]¿in°p∂q AhnS∂v

Ccp]pdhpap≈ `qJfiØn∂v ‘B_m[Iƒ’ F∂p t]¿.

ChnsS ]ns∂ tI{µØn¶∂p tImtWmfap≈ I¿Æw `qan F∂p

Iev]n°p∂q. ]q¿∆kq{Xhpw ]q¿∆`ptPsS sXt°∏mXnbpw

`pPIfmIp∂Xv. ]q¿∆kq{Xm{KØn¶∂p≈ I¿ÆØns‚ A¿≤w

ew_amIp∂Xv. C∆Æw Z£nWkq{Xhpw sXt° `ptPsS

Ings°∏mXnbpw `pPIfmbn´v Hcp {Xy{iw. `qanbmIp∂Xp \tSsØ

`qan Xs∂10. Cßs\ Hcp NXpc{iw sIm≠p c≠p {Xy{iw.

ChnsS tImWn¶¬ kv]¿in°p∂ B_m[ bmsXm∂v11 AXp

{]amWamIp∂Xv. tImWn¶∂p12 ZnI vkq{Xm{Kap≈ `pPm

{]amW^eamIp∂Xv. `qanbn¶∂p hymkm¿≤w t]mb tijw

tImWn¶¬ tijn®Xv C—mcminbmIp∂Xv. ChnSp∂v D≠mb13

2. 3. B. Iev]n®p; F. sh®n´v
4. F. om. C\n D≠m-Ip∂
5. F. om. Cu
6. F. sI´n-sbmcp
7. F. Xq°p∂p
8. F. om. B
9. B. kv]rjvS-amb
10. B. C. D. F om. `qan-bm-Ip-∂Xp \tSsØ
11. D. F. om. bmsXm∂v
12. F. om. tImWn-¶∂p to ^e-am-Ip-∂Xv
13. C. D. D≠m-Ip∂; F. D≠m-°p∂p

VI. 2. NXpc{iØn¬ \n∂v A„m{i--˛tjmUim{imZn]cn[nIƒ
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C—m^esØ tImWn¶∂v Ccp]pdhpw `pPbn¶∂v Af∂p \o°n

_nµp°ƒ D≠m°n AXn\p t\sc tIm¨ apdn®p Ifbq14. F∂m¬

AjvSm{iamIpw. Cu D≠mb C—m^esØ Cc´n®v

NXpc{i_mlphn¶∂p Ifbq. tijw AjvSm{i`ptPsS \ofw.

]ns∂ tI{µØn¶∂v AjvSm{i`pPma≤ytØmfap≈

hymkm¿≤Ønt‚bpw AjvSm{i`pPm¿≤Ønt‚bpw h¿§tbmKaqew

tI{µØn¶∂p XpSßn AjvSm{itImtWmfap≈ I¿Æambn´p≠mIpw15.

CXp `qanbmbn´v B {Xy{itImWn¶∂v16 Hcp ew_w Iev]n∏q. AXv17

AjvSm{i`pPma≤yØn¶∂p I¿ÆØn¶¬ ]Xn°pamdv Ccn°pw. Cu

ew_w kv]¿in°pt∂SØp∂v Ccp]pdhpap≈ I¿ÆØns‚

Jfißƒ B_m[IfmIp∂Xv. hymkm¿≤hpw AjvSm{i`pPm¿≤hpw

`pPIfmIp∂Xv. `pPIƒ Xßfnse18 h¿§m¥chpw B_m[IfpsS

h¿§m¥chpw  Ht∂19. ew_m_m[IfpsS I¿Æw `pPIƒ, F∂n´p

ew_h¿§w c≠n¶epw Xpeyw. B_m[IfpsS h¿§t`Zas{X ]ns∂

`pPIfpsS h¿§m¥camIp∂Xv20. F∂m¬ `pPmh¿§m¥csØ I¿Æw

sIm≠p lcn®m¬ B_m[m¥cap≠mIpw, I¿ÆamIp∂Xv21

B _m[mtbmKw F∂n v́22. h¿§m¥csØ tbmKw sIm≠p lcn®m¬

A¥cap≠mIpw F∂n´v. ]ns∂ B_m[m¥csØ I¿ÆØn¶∂v

If™v23 A¿≤n®m¬ sNdnb B_m[ D≠mIpw . ]ns∂ Cu B_m[

{]amWamIp∂Xv. AjvSm{i`pPm¿≤w {]amW^ew, hymkm¿≤sØ

I¿ÆØn¶∂p24 If™tijw I¿Æm{Kw C—mcminbmIp∂Xv25. CXp

sNdnb B_mss[ItZiw Bbn´p≠mIpw26. B B_m[bv°p

2. 14. F. Ifhq
15. D. I¿Æ-am-bn-´m-bn-cn°pw `pPm-I¿Æw
16. F. AjvSm{i tImWn-¶∂v
17. F. om. AXv
18. F. Xß-fpsS
19. B. Xpeyw
20.C. `pPmh¿§-ß-fnse A¥-c-am-Ip-∂Xv
21. B. I¿Æw; D. om. I¿Æ-am-Ip-∂Xv
22.B. C. om. F∂n´v
23.F. If-™-tijw h¿≤n-®m¬
24.F. I¿Æ-Øn¬
25.B. C. D. F. C—m-cmin
26.B. C. D. F om. Bbn-´p-≠mIpw
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369

I¿ÆamIp∂Xv AjvSm{i`pPm¿≤w, Cu C—m`mKØn∂p

I¿ÆamIp∂Xv F¥v F∂ ss{XcminIw sIm≠v27 tImWn¶∂v

AjvSm{i`ptPsS GItZiw D≠mIpw. ChnsS _nµp°fp≠m°n

AjvSm{iØns‚ tIm¨ apdn®p Ifhq28. F∂m¬ tjmUim{iamIpw.

Cu C—m^esØ Cc´n®v AjvSm{i_mlphn¶∂p If™ tijw

tjmUim{i_mlphns‚ \ofw Bbn´phcpw29.

]ns∂ Cu tjmUim{i_mlp D≠m°nb \ymbw sIm≠v

Zzm{XnwiZ{i_mlp XpSßn Cc´n®v Cc´n® A{ißfpsS

_mlpam\sØ D≠m°nbm¬ tImWkwJybmthmftadnbm¬

hrØ{]mbw. CXns\ hrØsa∂p Iev]n∏q. Cu hrØØn∂p apºnse

NXpc{i_mlp hymkamIp∂Xv. ]ns∂ Cu hrØhymkßsfs°m≠v

CjvSØn¶¬ ss{XcminIw sNbvXp≠m°q30 hymksØXm≥

hrØsØXm≥.

3. h¿§aqe{InbIƒ IqSmsX ]cn[ym\b\w

3.i. ]cn[nhn`mKw

A\¥cw CjvSambn´v1 Hcp hymksØ Iev]n®v2 AXn¶∂p

h¿§aqe{InbIƒ IqSmsX ]cn[nsb hcpØpw {]ImcsØ sNm√p∂q3.

AhnsS \tS4 \mep _mlp°tfbpw5 CjvShymkXpeyambn´p Iev]n®v

Ccnt∏mcp kaNXpc{it£{XsØ Iev]n∏q6. AXns‚ AIØv Hcp

hrØtØbpw Iev]n∏q7. hrØt\an \mep `pPma≤yØn¶epw

kv]¿in°pamd v Ccnt°Ww. ]ns∂ hrØa≤yØqsS

2. 27.C. F. om. ss{Xcm-inIw sIm≠v
28.D. Ifbq
29.C. om. Bbn-´p-hcpw
30.D. adds hrØsØ

3. 1. F. CjvS-ambn
2. F. Iev]n∏p
3. B. hcpØpw {]Imcw
4. B. F. om. AhnsS \tS
5. B. _mlp-°-fpsS; F. `pP-I-tfbpw
6. F. Iev]n®p
7. F. om. Iev]n∏p
8. B. ]q¿∆m-]-c-tc-Jbpw Z£n-tWm-ØctcJbpw

VI. 2. NXpc{iØn¬ \n∂v A„m{i--˛tjmUim{imZn]cn[nIƒ
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]q¿∆m]ckq{XtØbpw Z£ntWmØckq{XtØbpw8 hrØt\anbpw

`pPma≤yhpw Xßfnep≈ kw]mXØn¶¬ A{KamIpamdp9 Iev]n∏q.

]ns∂ ]q¿∆kq{Xm{KØn¶∂p NXpc{iØns‚ A·ntImtWmSnS

hymkm¿≤Xpeyambn´ncn°pw10. ChnsS s]cnsI ASps° CSIƒ

F√msam°pamdpI≠v11 Nne hn`mKsØ Iev]n®v Nne _nµp°sf

D≠m°q. F{X Gd kwJy12 D≠mbn A{X kq£vaamIpw ]cn[n.

]ns∂ hrØtI{µØn¶∂p XpSßn B _nµp°fne{KamIpamdv A{X

I¿ÆtcJItfbpw Iev]n∏q. AhnsS ]q¿∆kq{Xw tImSnbmIp∂Xv.

]q¿∆kq{XtØmSp I¿Æm{KtØmSnSbnteSw ]q¿∆`pPm`mKw `pP

BIp∂Xv. AhnsS ]q¿∆kq{XØn∂SpØp sXs° I¿ÆØn∂v Hcp

Jfiw `qPbmIp∂Xv. c≠mw I¿ÆØn∂v c≠p Jfiw IqSnbXp

`qPbmIp∂Xv. Cßs\ ]ns∂ ]ns∂ I¿ÆØn∂v Hmtcmtcm

`pPmJfißtfdnbXp13 ̀ pPIfmbn´ncn°pw. Cßs\ NXpc{itImWnse

I¿ÆØn∂v F√mbnepw henb `pPm. ]ns∂ tImSn F√m

I¿ÆØn∂pw hymkm¿≤-am-Ip∂ ]q¿∆-kq{Xw Xs∂. BI-bm¬

hymkm¿≤h¿§hpw AXXp `pPmh¿§hpw Iq´n aqen®Xv AXXp

I¿Æambn´ncn°pw.

A\¥cw ZnIvkq{Xm{KtØmSv AXn\SpØp≈ BZyI¿Æm{KtØmSv

D≈ CS NXpc{i_mlphn¶se Hcp Jfiw bmsXm∂v AXns\

ZnIvkq{Xm{KamIp∂ hymkm¿≤wsIm≠p KpWn®v BZyI¿Æw sIm≠p

lcn® ^ew14 ZnIvkq{Xm{KØn¶∂v BZyI¿ÆtØmSnS

BZyI¿Æhn]coXambn´p≠mIpw15. Cu tcJ Hcp tImSnbmbn´ncn°pw.

Ct°mSnbpw BZyI¿Æhpap≈ kw]mXØn¶∂v B I¿ÆØns‚

A{Kw `pPbmIp∂Xv. BZyI¿Æhpw16 ZnIvkp{Xm{Khpap≈ CS

NXpc{i_mlphn¶se Jfiw I¿ÆamIp∂Xv. CXv Hcp C—mt£{Xw.

3. 9. F. A{K-am-°p-amdp
10. B. Xpey-am-bn-cn°pw
11. F. kpam-dp-I≠p
12. B. Cu kwJy
13. F. IqSn-bXv
14. F. lcn-®Xv
15. F. Zn°m-bn-´p-≠mIpw
16. F. BZn-I¿Æm-{Khpw
17. F. Bbn-´n-cn-°p∂
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CXn∂p XpeymImcambncn°p∂17 {]amWt£{XamIp∂Xp ]ns∂.

hrØtI{µØn¶∂p ]q¿∆`pPma≤ytØmfap≈ ZnIvkq{Xw tImSn.

BZyI¿ÆtcJ I¿Æw. I¿ÆtImSnIfpsS A{Km¥cw `pP. Cu

{]amWt£{XtØmSp XpeymImcambn´ncpt∂mcv C—mt£{Xw. CXn∂p

tlXp. {]amWt£{X`pPtbmSp XpeyZnIv C—mt£{XI¿Æw, C—m

t£{X`pPtbmSp XpeyZnIv18 {]amWI¿Æw F∂v BInepamw. ]ns∂

{]amWt£{XtImSnbmIp∂ ZnIvkq{XØn¶∂p hn]coXambn´n

cps∂m∂v C—mt£{XI¿Æambn´ncn°p∂ NXpc{i`pPmJfiw.

ChnsS C—m^eambn´p hcpØnb C—mtImSn {]amWt£{X

I¿ÆØn∂p hn]coXZn°mbn´ncps∂m∂v F∂mInepamw19. c≠p

t£{Xßfpw XpeymImcßƒ F∑m≥ tlXphmIp∂Xv20. Cßs\

ChnsS c≠p t£{Xßfnepw At\ym\yw `pPmI¿Æßƒ°p

ZnIvkmayw, tImSnI¿Æßƒ°p ZnssKz]coXyw, F∂n´v BImckmayw

D≠mIp∂q. AhnsS aq∂n\pw IqSn ZnssKz]coXyw Xm≥ ZnIvkmayw

Xm≥ D≠v F¶nepw21 XpeymImcßfmbn´ncn°pw.

bmsXmcp {]Imcw kaNXpc{iambn´ncn°p∂ afi]Øns‚

sNcn™ncn°p∂ Igpt°m¬ {]amWt£{XI¿Æambn´ncn°p∂Xn∂v

hmaS22 `pPbmbn´ncn°p∂q, CXn∂p XpeyZn°mbn´ncn°pw

C—mt£{XI¿Æambn´ncn°p∂ hfØpf. C°¿ÆØns‚

`pPbmIp∂Xp Igpt°meqsS ]m¿izØn¶se hfØptfsS sNcnhv,

`pPmI¿Æßƒ CXtcXcXpeyZn°pIfmIbm¬ Igpt°m¬

sNcnhpsIm≠p hfØptfsS Ncnhp≠mIp∂q. F∂nßs\ F√mw

\ncq]nt°≠q. BIbm¬ ss{XcminIw sIm≠p hcpØmw Cs®m√nb

C—mt£{XØn¶se tImSnsb.

A\¥cw ap∂maXpap≠v ChnsS Hcp {Xy{iw. AXn∂p ZnIvkq{Xw

I¿ÆamIp∂Xv. ZnIvkq{XØn¶∂v BZyI¿ÆtØmSp≈ A¥cmfw

3. 18. B. C. F. hn]-co-X-Zn-°m-bn-´n-cp-s∂∂v
19. F. F∂n-Xp-am-In-epamw
20.D. tlXp
21. B. D≠m-Inepw
22.F. om. hmaS to hf-Øf
23.C. D. E om. Cu
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Cs®m√nb C—mt£{XtImSn ChnS°p `pPbmIp∂Xv. Cu23 `pPbpw

BZyI¿Æhpap≈ tbmKØn¶∂v BZyI¿ÆØns‚ Jfiw

hrØtI{µtØmfap≈Xp tImSn BIp∂Xv. Cßs\ CXv.

A\¥cw c≠maXpap≠v Hcp {]amWt£{Xw. AXn∂p

ZnIvkq{XwXs∂ tImSnbmIp∂Xv. tImSy{KØn¶∂p NXpc{i

_mlphn¶se c≠p Jfiw IqSnbXp `pPbmIp∂Xv. hrØtI{µ

Øn¶∂p XpSßnbp≈ I¿ÆØn¬ c≠maXp I¿ÆamIp∂Xv.

Cßs\sØm∂p ZznXob{]amWt£{XamIp∂Xv. ]ns∂ CXns‚

C—mt£{Xw. {]YaI¿Æm{KØn¶∂p XpSßn ZznXobI¿ÆØn∂v hn]-

co-X-ambn ZznXobI¿ÆsØ kv]¿in°pamdp≈ tcJ tImSnbmIp∂Xv.

Cu tImSnkw]mXØn¶∂p ZznXobI¿ÆØns‚ A{Kw `pPm.

NXpc{i_mlphn¶se c≠mw Jfiw I¿ÆamIp∂Xv. Cßs\

c≠man—mt£{Xw. bmsXmcp{]Imcw \Sphn¶∂p c≠mw Igpt°m¬

{]amWt£{XI¿ÆamIptºmƒ Igpt°m¬]w‡n c≠p IqSnbXv

{]amW`pPbmIp∂Xv. BIbm¬ \tSsØ Igpt°mte°mƒ \oftadpw

c≠mw Igpt°m¬. AXn\p X°hÆw AXnt∑se24 hfØpfbpw

\oftadpw, AXv ChnS°v C—mt£{XI¿Æambn {]amWt£{X

`pPbmIp∂ hmaStbmSp XpeyZn°mbn Ccps∂m∂v24a Cßs\

Igpt°m¬sNcnhpw AXmXp¶se hfØpfbpsS sNcnhpw Hcp

{]Imcsa∂Xp bmsXm∂v A∆Æancns∏m∂v ChnSpsØ {]amtW—m

t£{Xßƒ. ChnsS ZnIvkq{Xm{KØn¶¬ NXpc{i_mlphn¶se

c≠mwJfisØ {]amWt£{XtImSnbmbncn°p∂24b hymkm¿≤

sØs°m≠p KpWn®v {]amWamIp∂ ZznXobI¿ÆsØs°m≠p

lcn∏q. ^ew ZznXotb—mt£{XØn¶se tImSn. ]ns∂ Cu tImSnsb

`qPsb∂p Iev]n®v CXns‚ kw]mXØn¶∂p hrØtI{µtØmfap≈

ZznXobI¿ÆJfiw tImSn, BZyI¿ÆamIp∂Xp I¿ÆamIp∂Xv25

F∂pw Iev]n∏q. Cßs\ aq∂maXv Hcp {Xy{iap≠v ChntSbpw.

Cßs\ ZnIvkq{Xm{KØn¶∂p XpSßn NXpc{i_mlphn¶se

3. 24a. F. add Bbn-´n-cn°pw
24b. B. tImSn-bmbn \n¬°p∂
25.B. C. D. F BZy-I¿Æw I¿Æ-am-Ip-∂Xv

VI.  ]cn[nbpw hymkhpw
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tImtWmfap≈ NXpc{i_mlpJfißƒ Hmtcm∂n¶se apΩq∂p

{Xy{it£{Xßfp≈q. AhnsS ZnIvkq{Xm{KØn¶∂p XpSßn NXpc{i

tImtWmfap≈ `pPmJfißsf Hmtcm∂ns\ ZnIvkq{XsØs°m≠p

KpWn®v AXXpJfißfpsS A{Kßsf kv]¿in°p∂Xn¬ henb

I¿Æßsfs°m≠p lcn®p≠mIp∂ ^ew CXn\SpØp apºnse

I¿ÆØns‚ A{KØn¶∂p XpSßn AXn\SpØ henb I¿ÆØn∂p

hn]coXambn´ncn°p∂ A¥cmfßfmbn´ncn°pw. Ch C—mt£{X

tImSnIƒ. Ch Xs∂ ]ns∂bv°p `pPIfmbn´ncn°pw. Cu

`pPmkw]mXØn¶∂p XpSßn henb I¿ÆØns‚ Jfiw

hrØtI{µtØmfap≈Xp tImSn. ]ns∂ Cu hrØtI{µØn¶∂p

XpSßn AXXp `pPmJfißsf kv]¿in°p∂ I¿Æßƒ c≠n¬

sh®p sNdnbXv ChnS°p I¿ÆamIp∂Xv. Cßs\ Ccnt∏m Nneh

{Xy{ißƒ. Ch ]n∂°p {]amWt£{Xßfmbncnt∏m Nneh.

ChnSbv°v C—mt£{XßfmIp∂h Cu26 {]amWt£{Xßsf Xs∂,

hrØØns‚ A¥¿`mKØn¶¬ Iev]n°s∏´ncn°p∂h. ChnsS27 Cu

{]amWI¿ÆØns‚ GItZiambn´ncn°p∂ hrØhymkm¿≤w

C—bmIp∂Xv. Cu hymkm¿≤m{KØn¶∂p henb I¿ÆØn∂p

hn]coXambn´p≈28 A¥cmfan—m^ew.

Cßs\ AXXp29 I¿Æm¥cßfnse ]cn[n`mKØn¶se

A¿≤Pym°fmbn´v DfhmIpw Cs®m√nb C—m^eßƒ. F∂m¬

ZnIvkq{Xm{KØn¶∂p XpSßnbp≈ NXpc{i_mlpJfißfXXns\

hymkm¿≤w sIm≠p c≠p h´w KpWn®v AXXp JfisØ

kw_‘n®p≈ I¿Æßƒ c≠nt‚bpw LmXw sIm≠p lcn®m¬ ̂ ew

AXXp I¿Æm¥cmfØn¶se ]cn[ywiØn¶se A¿≤Pymhmbn´p

hcpw. ChnsS NXpc{itZmxJfißƒ s]cnsI sNdpXv F¶n¬ Cu

A¿≤Pym°ƒ Xs∂ Nm]Jfißfmbn´ncn°pw {]mtbW.

3.ii. I¿Æßfpw ]cn[nbpw

AhnsS NXpc{i`pPsb Xpeyambn´p Jfin°bm¬ KpWyßƒ

3. 26.B. om. Cu; F. Ch
27.B. C. F AhnsS
28.F. hn]-co-X-Zn-°mbn´p≈
29.F. CXv

VI. 3. h¿§aqe{InbIƒ IqSmsX ]cn[ym\b\w
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Xpeyßƒ, hymkm¿≤h¿§w H∂pXs∂ KpWImcamIp∂Xpw. AXXp

JfiØn∂v ASpØp30 Iotgbpw aotXbpap≈ I¿ÆßfpsS LmXw

lmcIamIbm¬ lmcIw \m\mcq]w. Cßs\ Ccn°pt∂SØv Cu

I¿ÆLmXsØ c≠p I¿ÆßfptSbpw h¿§tbmKm¿≤sa∂v

Iev]n°Ww, an°hmdpw Xßfn¬31 kwJymkmayap≠v, F∂n´v.

CuhÆamIptºmfXXp lmcysØ c≠p I¿Æh¿§ßsfs°m≠pw

sht∆sd lcn®p≠mb ^eßsf32 c≠nt\bpw Iq´n A¿≤n®psIm≈q.

CXnt\mSp Xpeyambn´ncn°pw h¿§tbmKm¿≤w sIm≠p lcn® ^ew.

AhnsS ]q¿∆kq{Xm{KØn¶∂p XpSßn tZmxJfißfpsS hSs°

A{KsØ kv]¿in°p∂ I¿ÆßfpsS h¿§ßsfs°m≠p \tS33

lcn°pamdp \ncq]n∏q. AhnsS \tStØXmIp∂Xv ‘ZnIvkq{Xw’ ,
CXns‚ h¿§wsIm≠p lcn°ptºmƒ KpWImchpw CXpXs∂

BIbm¬ tZmxJfiw Xs∂ ^eamIp∂Xv. ]ns∂ HSp°sØ I¿Æw

‘ tImWkq{Xw ’ .  CXns‚ h¿§w sIm≠p lcn°ptºmƒ

tZmxJfim¿≤ambncn°pw ^ew. hymkm¿≤h¿§sØ Cc´n®sXs√m

B¥yI¿Æh¿§amIp∂Xv, F∂n´ v . KpWImcØnenc´n

lmcIamIpt∂SØp KpWyØne¿≤w ^ew. ChnsS F√m34

tZmxJfißfptSbpw BZyZznXobm{Kßsf kv]¿in®n´v Cu c≠p

I¿Æßfp≈q35. Ch‰ns‚36 BZyI¿Æh¿§ßsfs°m≠p lcn®p≈

^eßfpsS tbmKw bmsXm∂v, bmsXm∂v ]ns∂

ZznXobI¿Æh¿§ßsfs°m≠p lcn® ^eßfpsS tbmKw37, Ch

XßfpsS38 A¥camIp∂Xp \tSsØ ]cnjbnse BZy^ehpw c≠mw

]cnjbnse HSp°sØ ^ehpw Xßfnse A¥cw. Ah39 ]ns∂

3. 30.F. AXmXp
31. B. XΩn¬
32.F. ^e-ßƒ
33.F. om. \tS
34.F. Ft∏mƒ
35.C. I¿Æ-ßfpfhmw
36.A. Ch-‰n¬
37.B. tbmKhpw
38.B. C. D. Xß-fnse
39.B. D. F. om. Ah (......to.......) A¿≤-am-bn-´n-cn°pw

VI.  ]cn[nbpw hymkhpw
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tZmxJfiØns‚ A¿≤ambn´ncn°pw. CSbnse ^eßƒ c≠p

hIbnepw lmcIßƒ40 Ht∂ BIbm¬ ^eßfpw Ht∂

Bbn´ncn°pw41. c≠maXp XpSßn D]m¥yw HSp°ambn´p≈ ̂ eßƒ°p

t`Zan√. AXp ]ns∂ tZmxJfiØns‚ A¿≤ambn´ncn°pw. AhnsS

BZylmcIw42 sIm≠p lcn® ^ew43 tZmxJfiw Xs∂, A¥ylmcw

sIm≠p lcn® ^ew tZmxJfim¿≤w. I¿Æh¿§tbmKm¿≤wsIm≠p

lcn°p∂ ]£Øn¶¬ A¥cw tZmxJfiØns‚ \msem∂v.

tZmxJfiw sNdpXmIptºmƒ Cu NXpcwisØ Dt]£n°mw.

BIbm¬ Hcp I¿Æh¿§sØ lmcIambn´p sIm≈Wsat∂ D≈q.

3.iii. tim≤y^eßƒ

AhnsS44 tZmxJfisØ kw_‘n®p≈Xn¬ henb I¿Æh¿§sØ

lmcIambn´p ChnsS \ncq]n°p∂q. F∂n´p hymkm¿≤

h¿§sØs°m≠v AXXp tZmxJfisØ45 KpWn®v AXmXns‚46 henb

I¿ÆØns‚ h¿§w sIm≠p lcn∏q. ^eßƒ AXXp

I¿Æm¥cmfØn¶se ]cn[ywiØn¶se47 A¿≤Pym°ƒ. ChnsS48

KpWlmcm¥cwsIm≠v AXXp tZmxJfisØ KpWn®v AXXp

I¿Æh¿§sØs°m≠p lcn® ^esØ AXXp tZmxJfiØn¶∂p

If™tijw AXXp I¿Æm¥cmf]cn[ywiPymhmbn´pXs∂49

Ccn°pw. AhnsS ZnIvkq{Xm{KØn¶∂v AXXv CjvSI¿Æm

{KtØmSp≈ A¥cmfØn¶se tZmxJfitbmKØns‚ h¿§w

KpWlmcm¥camIp∂Xv. hymkm¿≤h¿§w KpWImcamIp∂Xv. AhnsS

KpWlmcm¥cwsIm≠p KpWn®v KpWImcw sIm≠p Xs∂ lcn°p∂q

F¶n¬ KpWImcw lmcItØ°mƒ sNdpXmIbm¬ ^ew

Gsdbp≠mIpw. AhnsS ^esØ ct≠SØph®v H∂ns\

3. 40.C. D. lmc-ßƒ
41. C. D. F. om. Bbn-´n-cn°pw
42.B. C. D BZy-lmcw
43.C. F. read ^ew BI-bm¬ ^e-tbm-K-ß-fpsS A¥cw tZmxJ-fim¿≤w I¿Æm
44.F. ChnsS
45.F. om. AXXv tZmxJfisØ
46.A. F. A-Xns‚
47.F. Awi-Øns‚
48.F. AhnsS
49.F. I¿Æm-¥-cm-f-Øn-¶se ]cn-[yw-i-Øns‚ A¿≤-Pym-°ƒ
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KpWlmcm¥cwsIm≠p KpWn®v lmcIw sIm≠p lcn® ^esØ

at‰Xn¶∂p50 IftbWw. AXp hmkvXhambncn°p∂ ^eamIp∂Xv.
AhnsS51 tim≤y^eap≠m°pt∂SØpw ]ns∂ KpWlmcm¥cw

sIm≠p KpWn®p KpWImcw sIm≠p Xs∂ lcn°p∂q F¶n¬52

A]v^eØn¶∂pw H´pIftbWw apºnset∏mse D≠m°o´v, F∂p
hcpw53. AhnsS B c≠maXp tim≤y^eap≠m°nbXnt\bpw

KpWlmcm¥cwsIm≠p KpWn®p lmcIwsIm≠p lcn®^ew

tim≤y^eØn¶∂p tim≤yambn aq∂maXv Hcp ^eap≠mIpw.
ChntSbpw KpWImcw sIm≠p lcn°n¬ AXn∂p \memaXv Hcp

tim≤y^eap≠mt°Ww54. Cßs\55 KpWImcwsIm≠p F√mt‰bpw

lcn°n¬ tim≤y]cºc56 HSpßpIbn√, HSp°sØ lmcIwsIm≠p
lcnt∏mfhpw. lmcIwsIm≠p lcn°mbvIn¬ ^e]cºc

HSpßpIbn√. s]cnsI sNdpXmbm¬ Dt]£n°msat∂ D≈q.

3.iv. ^etbmKßfpw ^e]cºcbpw

Cßs\ D≠m°nbm¬ \tStØXp KpWytbmKw. AXp

NXpc{i_mlpJfißfpsS tbmKamIp∂ hymkm¿≤w. ]ns∂

c≠maXv CXn¶∂pw Iftb≠pw ^ew. c≠maXn¶∂p Iftb≠phXp
aq∂maXv. Cßs\ BIptºmƒ HmPßƒ H°Øßfn¬ Iq´q,

bp‹ßƒ Xßfnepw Iq´q. ]ns∂ HmPtbmKØn¶∂p bp‹tbmKw

Ifbq. tijw ]cn≤yjvSmwiw. Cßs\ KpWImcw sNdpXmIbm¬.
ChnsS bmsXmcnSØp ]ns∂ KpWImcw henbXv AhnsS KpWyØn¬

Iq´ptIth≠q ^eßƒ F√mw.

ChnsS ]ns∂ tImSnI¿Æh¿§ßƒ KpWlmcßfmIbm¬
`pPmh¿§ßƒ KpWlmcm¥cßfmIp∂h. AhnsS ]ns∂57 kaambn

]IpØncn°p∂ NXpc{i_mlpJfißfn¬ H∂p \tSsØ

`pPbmIp∂Xv. c≠p Jfiw IqSnbXp c≠mw `pP. aq∂p Jfiw

3. 50.F. thsd sh®-Xn-¶∂p If-bWw
51. B. C. F. ChnsS
52.B. C. D. ∂p Xm-In¬
53.B. C. om F∂p-hcpw
54.F. ^e-ap-≠m-t°≠p
55.F. F∂n-ßs\
56.B. F. tim≤y-^-e-]-c-ºc
57.C. D. F. Ah ]ns∂
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IqSnbXp ap∂mw`pP. Cßs\ {ItaW GImtZytImØc

Jficq]ßfmbn´ v Ccn°pw B `pPIƒ. Ahs‰ ]ns∂

AWp]cnamWambn´p Iev]nt°≠q, ^eØns‚ kq£vaX°mbn

s°m≠v. ]ns∂ Chs‰ cq]ßsf∂pw Iev]n®v H∂p XpSßn

Hmtcmt∂dnb kwJyIfpsS h¿§tbmKsØs°m≠p KpWyamIp∂

_mlpJfiw AWp]cnanXambn cq]ambn Iev]n®ncn°p∂Xns\

KpWn®v hymkm¿≤h¿§w sIm≠p lcn∏q. ^ew BZy^etbmKw.

]ns∂ ZznXob^etbmKØn∂p {]Ya^ew KpWyamIbm¬

KpWyßƒ \m\m`qXßƒ, KpWlmcm¥cw CjvSamIp∂58

`pPmh¿§hpw \m\mcq]ßƒ, BIbm¬ KpWlmcm¥ctbmKw sIm≠p

KpWn∏m≥ D]mban√. F∂n´p59 KpWlmcm¥ctbmKambncn°p∂

`pPmh¿§ kwIenXsØs°m≠p cq]amIp∂ \tSsØ KpWysØ

c≠ph´w KpWn®v hymkm¿≤w sIm≠p c≠p h´w lcn∏q. ^ew

ZznXob^etbmKw. ChnsS60 GImtZytImØcßfpsS h¿§h¿§ßfpsS

kwIenXw KpWImcw, hymkm¿≤h¿§h¿§w lmcIw F∂ncn°pw.

kwIenXØn∂p hymkm¿≤w ]ZamIp∂Xv ChnsS. ]ns∂

aq∂mw^etbmKhpw C∆Æw Xs∂ BZyKpWyØn¶∂p Xs∂

D≠m°q. AhnsS61 GImtZytImØcßfpsS kajƒLmXkwIenXw

KpWImcw, hymkm¿≤kajƒLmXw lmcIw. Cßs\ aosØ aosØ

kabpKvLmXw lmcIw, AXns‚ kwIenXw KpWImcambn´pancn°pw.

AhnsS ka{XnLmXØn¶∂p h¿§kwIenXw, ka]©LmXØn¶∂p

h¿§h¿§kwIenXw, kak]vX-Lm-X-Øn-¶∂p kajƒLmX

kwIenXw D≠mIp∂q. AhnsS KpWImcamIp∂ ka{XnLmXsØ

lmcIamIp∂ kaZznLmXsØs°m≠p lcn∏q. ^ew hymkm¿≤w

Xs∂. CuhÆw Xs∂ F√mShpw AXXp lmcIsØs°m≠v AXXp

KpWImcsØ lcn®m¬ ^ew hymkm¿≤w Xs∂ Bbn´ncn°pw62.

]ns∂ ka{XnLmXsØ aq∂n¬ lcnt°≠pIbm¬ aq∂n¬ lcn®p

3. 58.B. C. D. om. CjvS-am-Ip∂
59.C. D. F. add {]Ya-^-e-Øns‚ KpWysØØs∂
60.B.C. D. F. om. ChnsS
61. C. D add hymkm¿≤-Øns‚
62.B. om. Bbn-´n-cn°pw; F. Bbn-´n-cn-°p∂p
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sIm≈q hymkm¿≤sØ. F∂m¬ hymkm¿≤h¿§kwIenXsØ

hymkm¿≤h¿§w sIm≠p lcn®qXmbn´ncn°pw63. Cßs\

hymkm¿≤sØ A©n¬ lcn®Xp kaNXp¿LmXkwIenXsØ

kaNXp¿LmXw sIm≠p lcn®Xmbn´ncn°pw. Cßs\

hymkm¿≤Øn¶∂p {XnicmZnhnjakwJyIsfs°m≠p lcn®^ew

Cs®m√nb ^e]cºcbn¬64 tateXp tateXmbn´ncn°pw. F∂n´p

sNm√o ˛

{XnicmZnhnjakwJym`‡arWw kzw ]rYIv {Iam¬ Ip¿øm¬

F∂v. AhnsS ^e]cºcbn¬ IotgXn¶∂p IotgXn¶∂p

Iftb≠pt∂SØv HmPIfpsS tbmKsØ KpWytbmKØn¶∂p Ifbq,

bp‹tbmKsØ Iq´q, F∂mInepamw. F∂n´p  ‘EWw kzw

]rYIv{Iam¬ Ip¿øm¬’ F∂p sNm√o.

A\¥cw kaLmXkwIenXm\bt\m]mbsØ ChntS°v

D]Imcnbmbn´p Imt´≠pIbm¬ aqeh¿§mZytijkwIenXtØbpw

Im´p∂q. {]kw-Km¬ DØtcmØckwIenssXIym\bt\m]mbtØbpw

{ItaW Im´p∂q65.

3.v. tim≤y^ehpw ^etbmKhpw

ChnsS Znt{KJmh¿§w KpWImcw, AXXp I¿ÆtcJmh¿§w lmcIw.

BIbm¬ AXXp I¿Æm{KtØmSp Znt{KLm{KtØmSp≈

A¥cmfØn¶se66 NXpc{i_mlp`mKØns‚ h¿§w KpWlmcm¥cw.

]ns∂ CjvSI¿Æm{KØn¶∂v AXn\SpØ sNdnb I¿Æm{KtØmSp≈

A¥cmfØn¶se NXpc{i_mlpJfiw KpWyamIp∂Xv. Cu c≠p

I¿Æm¥cmfØnse ]cn[ywiØn¶se67 A¿≤Pymhv C—m^ew.

Cßs\ F√m ^ehpw hcp∂q. AhnsS KpWyßsf√mw Xpeyw,

3. 63.F.  ´p hcpw
64.D. F. ^e-tbmK ]c-º-c-bn¬
65.C. D. add AXn≥ {]Imcw
66.C. A¥-cm-f-Ønse
67.F. Awi-Øns‚
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I¿ÆtcJm{Km¥cw XpeyamIbm¬. Cßs\ ^eßfp≠m°n

^etbmKw sNbvXm¬ ZnIvkq{XtØmSp NXpc{itImWn¶se

I¿ÆtcJtbmSp≈ A¥cmfØn¶se ]cn[n`mKw hcpw.

ChnsS ZnIvkq{Xm{KØn∂SpØp≈ I¿ÆØn∂p

NXpc{i_mlpJfißfnsem∂p `pPbmIp∂Xv. c≠mw I¿ÆØn∂p

`pPmJfißfm¬ c≠p IqSnbXp `pPbmIp∂Xv68. Cßs\ Hmtcmtcm

`pPmJfiw GdnbXp ]ns∂ ]n∂sØ I¿ÆØns‚ `pPbmIp∂Xv.

F∂msem∂p XpSßn Hmtcmt∂dn Ccn°p∂ `pPmJfißfpsS

tbmKßƒ `pPIfmIp∂Xv69. F∂menh‰ns‚ h¿§tbmKßƒ

KpWlmcm¥cßfpsS tbmKamIp∂Xv. KpWysa√msam∂mIbm¬

AXns\s°m≠p70 KpWlmcm¥ctbmKsØ KpWn®v

lmcIsams∂¶n¬71 AXns\s°m≠p lcn®m¬ ^etbmKw hcpw.

ChnsS lmcIsamt∂ F∂p Iev]n∏q. AXp hymkm¿≤h¿§wXs∂

Xm\pw F∂p Iev]n®n´p {Inb sNøp∂p. ChnsS Cßs\ D≠m°nb

^ehpw KpWmlmcm¥chpw Xßfnep≈72 LmXw lmcyØn¶¬

tijn®ncn°ptºmƒ73 lmcIw sIm≠p lcn® ^etØmsSm°pw

KpWImcw sIm≠p lcn® ̂ ew. CXv tijnbmsX74 Iq´nt∏mbn F¶n¬

B75 ^ehpw KpWlmcm¥chpw Xßfn¬ KpWn®p lmcIw sIm≠p

lcn®p≠mb ^esØ KpWImcw sIm≠p lcn®p≠mb ^eØn¶∂p

IftbWw. F∂mepw ^esam°pw. C°ftb≠pw^ew

D≠m°ptºmgpw KpWlmcw sIm≠p lcn∏q F¶n¬76 Ht´do´ncn°pw.

F∂meXn¶∂pap≠mt°Wsamcp tim≤y^ew. ]nt∂bpanhÆamIn¬

]ns∂ ]ns∂ ^eØn¶∂pw Ipds™m∂p Ipds™m∂p

Iftb≠nhcpw. BIbm¬ HSp°Øo∂p XpSßn Ch H° If™p

3. 68 C. D. `pPI-fmIp∂Xv
69.C. D. `pP-bm-Ip-∂Xv
70.B. AXp-sIm≠v
71. C. lmc-sas∂-¶n¬
72.B. XΩn-ep≈
73.F. tijn-∏n-°p-tºmƒ
74.C. D. F. IqSn-t∏mbn lcn® ^e-Øn¬
75.C. D. B
76.B. C. add ^ew; D. adds B ^ew; F. adds ^ehpw
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Iq´ptºmƒ ^esam°pw.

3.v(i). tim≤y^ew˛Hcp DZmlcWw

ChnsS lmcyØn¶¬77 kwJy \qdv F∂p Iev]n∏q. lmcIw ]Øv,

KpWImcw F´v. CXns\s°m≠p KpWn®n´v \qdp D≠mbn F∂pw

Iev]n∏q. . ChnsS lmcIw sIm≠p lcn®m¬ ^ew ]Øv D≠mIpw.

ChnsS ]Øp kwJybmIp∂78 lmcIw lmcyØn¶¬ \n∂v Hcn°¬

Iftb≠n Ccn°pt∂SØv F´p Ifbptºmƒ KpWlmcm¥camIp∂

c≠p lmcyØn¶¬ tijn°pw. ]nt∂bpsa{X BhrØn If™q A{X

KpWlmcm¥cw tijn°pw lmcyØn¶¬. F∂m¬ ^ehpw

KpWlmcm¥chpap≈ LmXsØ lmcyØn¶¬79 If™v tijsØ

KpWImcwsIm≠p80 lcn®m¬ Cu KpWImcw sIm≠p lcn®^ew

lmcIw sIm≠p lcn®^etØmSp Xpeyambncn°pw. ChnsS

AXnt\bpw IqsS81 KpWImcw sIm≠p lcn°ptºmƒ ^ew ]{¥≠c.

Cu ̂ esØ KpWlmcm¥cwsIm≠p KpWn®m¬ Ccp]Ø©v. CXns\

lmcIamIp∂ ]ØpsIm≠v lcn®^ew c≠c. CXns\ apºnse

]{¥≠cbn¬82 \n∂p Ifbptºmƒ tijw ^ew ]ØpXs∂. ChnsS

Ccp]ØnA©nt\bpw F´n¬ lcn°n¬ AjvSmwiwIqSnb aq∂p ̂ ew.

CXp tim≤yw, hmkvXhØn¶∂v Gdpw. F∂m¬ Cu ^etØbpw

KpWlmcm¥cw sIm≠p KpWn®v lmcIw sIm≠p lcn® ^ew

AjvSmwitØmSpIqSnb Ac. CXns\ c≠mw ^eØn¶∂p If™m¬

c≠c. At∏mƒ AXp \tSsØ ^eØn¶∂p Ifhm≥ aXn. Cßs\

AXXp ^esØ KpWlmcm¥cw sIm≠p KpWn®p lmcIw sIm≠p

lcn® ^ew AXn\SpØp apºnse ^eØn¶∂p If™m¬

A]v^ew83 kq£vaamIpw. F∂m¬ AXv AXn∂p Iosg ^eØn¶∂p

tim[n°mw, ]ns∂ AXv AXn¶∂p IotgXn¶∂v, Cßs\. F∂m¬

\tSsØ ^ew hmkvXhtØmSv H°pw.

3. 77.D. F. lmcy-Øns‚
78.B. ]Øm-Ip∂
79.D. lmcy-Øn-t¶∂v
80.D. F. om. KpW-Imcw sIm≠p lcn-®m≥
81. F. IqSn
82.C. D. om. CXns\ apºnse ]{¥-≠-c-bn¬ \n∂p If-bp-tºmƒ
83.F. om. B
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ChnsS ]ns∂ AXXp `pPmh¿§ßƒ AXXp `pPmJfiØn∂p

KpWlmcm¥camIbm¬ AXXn¶∂v D≠mb ^esØ ]nt∂bpw

AXXp `pPmh¿§w Xs∂s°m≠p KpWnt°≠q. AXn∂v ^ew thsd

C√mbvIbm¬ \tSsØ KpWyamIp∂ `pPmJfiØn¶∂pXs∂

D≠m°q c≠mw^ew. AXn∂v, c≠p ^eØn∂pw `pPmh¿§w

KpWImcamIbm¬, `pPmh¿§w sIm≠p c≠p h´w KpWn∏q

`pPmJfiamIp∂ KpWysØ∏ns∂. \tSsØ ^eØns‚ lmcIw

hymkm¿≤h¿§w. AXnt‚bpw h¿§w sIm≠p lcn∏q. F∂mep≠mw

c≠mw^ew. ChnsS84  KpWyßƒ Xpeyßfmbm¬ KpWImctbmKsØ

KpWn°mw. ChnsS KpWImcIßfmIp∂Xp ]ns∂ H∂p XpSßn

Hmtcmt∂d Iq´nbncn°p∂ `pPmJfißfpsS h¿§h¿§ßƒ.

Ah‰ns≥d tbmKw KpWlmcm¥ctbmKamIp∂Xv. Cu tbmKØn\v

‘GImtZytImØch¿§h¿§kwIenXw ’ F∂p t]¿. ChnsS

lmcIamIp∂Xp hymkm¿≤h¿§w. ]ns∂ ChnsS \tSsØ ^ew

D≠m°pt∂SØp Xpeyßfmbncn°p∂ `pPm`mKßƒ c≠p85 Xßfn¬

KpWn®Xp KpWImcw, hymkm¿≤w c≠p86 Xßfn¬ KpWn®Xp lmcIw.

]ns∂ aq∂mw ^eØn∂p kaßfmbncn°p∂ `pPm`mKßƒ \mep

Xßfn¬ KpWn®Xp KpWImcw87, hymkm¿≤ßƒ \mep Xßfn¬

KpWn®Xp lmcIw. ]ns∂ aq∂mw ^eØn∂p88 kaßfmbncn°p∂

Bdp Xßfn¬ KpWn®Xp KpWImchpw lmcIhpw BIp∂Xv. Cßs\

\memaXn∂p kaßƒ F´p Xßfn¬ KpWn®Xp

KpWlmcßfmIp∂Xv89. KpWyamIp∂Xv F√mShpw ̀ pPmJfiw Xs∂.

ChnsS F√mShpw ^etbmKw hcpØphm≥ KpWImctbmKw

KpWImcamIp∂Xv. ChnsS \tSsØ ^etbmKw hcpØpt∂SØp

ZnIvkq{XØn¶∂p XpSßn NXpc{itImWkq{XtØmfap≈

I¿Æßƒ°v `pPIfmIp∂Xv Hcp `pPmJfiw XpSßn Hmtcmtcm

Jfiw Gd°qSn HSp°tØXp hymkm¿≤tØmSp Xpeyambncn°p∂

3. 84.C. D. F Chn-tSbpw
85.B. C. D. F om. c≠p
86.C. D. F. c≠mw
87.F. KpW-Im-c-am-Ip-∂Xv
88.F. ^e-Øns‚
89.B. F. KpW-Im-c-lm-c-ß-fm-Ip-∂Xv
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NXpc{i_mlp`mKw `pPbmIp∂X. v Ch‰ns≥d h¿§tbmKw

KpWImctbmKamIp∂Xv. CXn∂p ‘GImtZytImØch¿§kwIenXw’
F∂p t]¿. Cßs\ c≠mw^etbmKw hcpØphm≥ Hcp Jfiw XpSßn

Hmtcmt∂d IqSnbncn°p∂90 `pPIƒ F√mbnepw hepXp91

hymkm¿≤Xpeyambncn°p∂h‰ns≥d h¿§h¿§kwIenXw

KpWImctbmKamIp∂Xv. Cßs\ Bdp, F´p F√mw Xßfn¬

KpWn®h‰ns‚ kwIenXw ]ns∂ ]n∂sØ KpWImctbmKamIp∂Xv.

4. kwIenXßƒ

ChnsS Cu kwIenXßsf D≠m°pw{]ImcsØ1 C\n sNm√p∂Xv

AhnsS \tS2  tIhekwIenXsØ sNm√p∂q3 ]ns∂ kaßƒ c≠pw

Xßfn¬ KpWn®Xns‚ kwIenXw. ]ns∂ ChnsS

D]tbmKan√mbvInepw kaßƒ aq∂v, A©v F∂nh Xßfn¬4

KpWn®h‰ns≥d kwIenXhpw IqSn sNm√p∂p≠v, D]tbmKap≈

h‰ns≥d \Spth D≠mbncn°bm¬.

4.i. aqekwIenXw

ChnsS aqekwIenXØn¶¬ HSp°sØ `pPmhymkm¿≤tØmSv

H°pw, AXn∂p Iosg Hcp Jfiw Ipdbpw, AXn∂p Iosg c≠p

JWvUw Ipdbpw F∂ncn°pt∂SØv F√m ̀ pPIfpw hymkm¿≤tØmSv

Xpeyßƒ F∂ncn°p∂qXmIn¬ `pPmkwJy sIm≠p Xs∂

hymkm¿≤sØ KpWn®m¬ AXXp kwIenX^eamIp∂Xv. ChnsS

Hcp ̀ pP Fs√m hymkm¿≤Xpeyambn´p≈q. AXn¶∂p {ItaW sNdnb

sNdnb I¿ÆßfpsS `pPIƒ Hmtcmtcm kwJy Ipd™ncn°p∂q

Fs√m. ChnsS hymkm¿≤w F{X kwJy Bbn Iev]n°p∂q, `ptPsS

JWvUkwJybpw A{Xbmbn Iev]n∏q. F∂m¬ Ffp∏ap≠v Hm¿∏m≥.

3. 90.F. Iq´n \n°p∂
91. F. hen-bXp

4. 1. D. {]Imcw
2. D. \tStØ
3. D. F sNm√p-∂p≠v
4. B. XΩn¬
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F∂menhnsS D]m¥y`pPbn¶¬ kwJy H∂p Ipdbpw, AXn¬

sNdnbXn¶¬ hymkm¿≤kwJybn¶∂v c≠p Ipdbpw. C°pdbp∂

Awiw H∂p XpSßn {ItaW Hmtcmt∂dn Gdn Ccn°pw, HSp°sØ

Du\mwiw t]mcmbn∂Xp hymkm¿≤tØmSp an°Xpw H°pw, Hcp kwJy

Ipdbpsas{X. F∂m¬ Ipdbp∂ Awiw H° Iq´nbmepw H∂p XpSßn

Hmtcmt∂dn hymkm¿≤samSp°ambncn°p∂ kwIenXtØmSp kwJy

{]mtbW H°pw, Hcp hymkm¿≤ta Ipdbq. F∂m¬ `pPmkwJybn¬

H∂p IqSnbXns\s°m≠p hymkm¿≤kwtJy KpWn®v AXns≥d

A¿≤w `pPmkwIenXambn´ncn°pw. ‘`pPmkwIenXw’ F∂v F√m

I¿ÆØnt‚bpw `pPIsfm° IqSnbXv.

]ns∂5 Jfiw sNdpXmtbmfw ^ew kq£vaamIpw. F∂n´p

`pPmkwJy Hmtcm -∂ns\ AWphmbn \pdp°pamdp

Iev]n®Xns\s°m≠pw  kwIenXw sNbvhq. ChnsS ]cm¿≤wsIm≠v

Awin°p∂qXmIn¬ ]cm¿≤kwJysIm≠p KpWn® `pPbn¬

]cm¿≤mwiØmsem∂p Iq´n hymkm¿≤wsIm≠p KpWn®v A¿≤n∏q.

]ns∂ ]cm¿≤wsIm≠p lcn∏qXpw sNbvhp. AXp an°hmdpw

hymkm¿≤h¿§m¿≤sas{X. apgph≥ kwJybmhm≥ ]ns∂6

]cm¿≤wsIm≠p7 lcn°p∂q. Cßs\ Jfiw sNdpXmtbmfw ̀ pPbn¬

Ipds™mcv  Awita Iqt´≠q kwIenXw hcpØphm≥. F∂m¬

`pPbn¬8  H∂pw Iq´msX hymkm¿≤w sIm≠p KpWn®v A¿≤n®Xpv

AXy¥w kq£vaambn Jfin®ncn°p∂ `ptPsS kwIenXsa∂p

h∂ncn°pw9. Cßs\ hymkm¿≤h¿§m¿≤w kq£vaambncn°p∂

`pPmJfikwIenXamIp∂Xv.

4.ii. h¿§kwIenXw

]ns∂ h¿§kwIenXsØ sNm√p∂p≠pv10. ChnsS11 C wIenXw

4. 5. C. D. F. om. ]ns∂
6. D. om. ]ns∂
7. C. D. F. add ]ns∂
8. C. D. F adds Ipd-s™m∂pw
9. C. sa∂n-cn°pw; D. h∂n-cn-°p∂p
10. F. sNm√p∂p
11. C. D. F. AhnsS
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sNbvX `pPIfn¬ Hmtcmt∂ Xs∂Øs∂ sIm≠pXs∂

KpWn®sXt√m `pPmh¿§ßfmIp∂Xpv. ChnsS KpWImcßfmIp∂

`pPIsf√mw hymkm¿≤tØmSp v H°pw F∂ncn°p∂qXmIn¬

hymkm¿≤w sIm≠p KpWn® kwIenXw ‘h¿§kwIenX’ambn´ncn°pw12

ChnsS ]ns∂ Hcp KpWImcta hymkm¿≤tØmSp Xpeyambn´p≈q.

AXpv HSp°tØXpv. AXn∂p \tStØXn∂p hymkm¿≤Øn¬ H∂p

Ipdbpw KpWImc`pPmkwJy. AXnt\bpw hymkm¿≤w sIm≠p

KpWn°n¬ H∂p sIm≠p KpWn® D]m¥y`pPm Gdpw

h¿§kwIenXØn¶∂v. ]ns∂ AXn∂p IntgXpv HSp°tØXn∂p

ap∂maX.v AXv hymkm¿≤Øn¶∂p c≠p Jfiw Ipdbpw. F∂m¬

`pPsb c≠n¬ KpWn®Xp Gdpw. Cßs\ {ItaW sNdnb sNdnb

`pPIsf {ItaW Gdnb kwJysIm≠p KpWn®Xp hymkm¿≤w

sIm≠p KpWn® kwIenXØn¬  h¿§kwIenXØn¶∂v Gdnt∏mb

`mKamIp∂Xv. AXpIf™m¬ h¿§kwIenXambn´p hcpw

hymkm¿≤KpWnXambn´ncn°p∂ kwIenXw.

ChnsS ZnIvkq{Xm{KØn¶∂v ASpØ `pPbn¬ Ipd™Xv H∂p

Ipd™ hymkm¿≤amIbm¬, ChnsS Gdnt∏mIp∂13 Awiw H°

Iq´nbm¬ aqeØns≥d kwIenXkwIenXambn´p hcpw14. F¶nsem15

kwIenXßfpsS tbmKat√m16 kwIenXkwIenXamIp∂Xv. AhnsS

HSp°sØ kwIenXw F√m `pPIfpw IqSnbXv. A¥yØn\SpØp

IosgkwIenXw ]ns∂. HSp°sØ ̀ pP H∂p IqSmsX as‰ ̀ pPIsf√mw

IqSnbXp  HSp°tØXn¶∂p Iogv. aq∂mw kwIenXØn¶¬17 `pPIƒ

c≠p IqSmsX a‰p≈ `pPIfpsS tbmKw AXns≥d Iosg

kwIenXamIp∂Xv. AXp HSp°ambncn°p∂ `pPIsf√m‰nt‚bpw

tbmKw, C∆Æw Iogvt]m´p≈sXms° Htcmtcm `pP Ipd™ncn°pw

4. 12. F. Bbn-cn°pw
13. D. C. Gdn-t∏mb `mK-am-Ip∂
14. C. D. F. ambn-´n-cn°pw
15 C. D. F. om. F¶nsem
16. C. D. F. adds. Cu
17. B. Øn¶¬ HSp-°sØ `pP-Iƒ c≠pw IqSmsX

VI.  ]cn[nbpw hymkhpw
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\tSsØ \tSsØ kwIenXØn¶∂v.

F∂m¬ F√m‰nepw henb `pP°v Hcp kwIenXØn¶te

tbmKap≈q. ]ns∂ HSp°tØXn∂v ASpØ Iosg `pP°v  HSp°sØ

kwIenXØnepw AXn∂SpØp IotgXnepw tbmKap≠v. AhnSp∂p

Iosg Iosg `pPIƒ°v {ItaW aq∂p, \mep XpSßnbp≈

kwIenXßfn¬ tbmKap≠v. F∂m¬ HSp°sØ `pP°SpØp Iosg

`pP XpSßnbp≈ sNdnb sNdnb `pPIsf H∂p18  XpSßnbp≈

kwJyIsfs°m≠v {ItaW KpWn®ncn°p∂Xp kwIenXIkwIenX

sa∂p h∂pIqSn. Ct∏mfnhnsS AXnkq£vaambn Jfin®ncn°p∂

`ptPsS kwIenXamIp∂Xpv HSp°sØ `ptPsS h¿§Øn¬ ]mXn

Ft∂m \tS sNm√nsbmt√m. F∂meXXp `pP HSp°ambncn°p∂

kwIenXap≠mhm≥ AXXp `pPsb h¿§n®¿≤nt° th≠phXv F∂p

h∂p. F∂m¬ F√m `pPIfptSbpw h¿§tbmKsØ A¿≤n®m¬

kwIenXkwIenXap≠mw. F∂m¬ h¿§kwIenXØns‚ ]mXn

aqeØns‚19 kwIenXkwIenXamIp∂sX∂p h∂q. F∂m¬

kwIenXsØ hymkm¿≤w sIm≠p KpWn®m¬ X∂n¬ ]mXn

Iq´nbncn°p∂ h¿§kwIenXambn´ncn°paXv.20 h¿§m¿≤kwIenXw

IqSn Ccn°p∂p F∂pw sNm√maXns\. F∂m¬ hymkm¿≤h¿§Øns‚

A¿≤sØ hymkm¿≤w sIm≠p KpWn®p X∂nse aqs∂m∂p

If™m¬ tijn°p∂Xp21  apgph\n¬ aqs∂m∂mbn´ncn°pw. F∂m¬

hymkm¿≤L\Øn¬ aqs∂m∂p  h¿§kwIenXamIp∂Xv F∂pw

hcpw.

4.iii. L\kwIenXhpw h¿§h¿§kwIenXhpw

]ns∂ L\kwIenXsØ hcpØpw {]Imcw22. Cu

h¿§kwIenXØn¶se AXXp `pPmh¿§sØ AXXp

4. 18. B. H∂p c≠p
19. D.F. kwI-en-X-Øn¬
20.C. D. F add F∂m¬ X∂nse aqs∂m∂v If-™m¬ h¿§-kw-I-en-X-am-bn-´n-cn-°p-aXv
21. C. tijn-°p-∂h; Ftijn-°p-∂-Xn¬
22.C. D. F. kwI-enXw hcpw {]Imcw
23.C. F√m-‰n-t‚bpw
24.D. hymkm¿≤sØsIm≠v

VI. 4. kwIenXßƒ
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`pPXs∂s°m≠p  KpWn®sXt√m ‘L\kwIenX’amIp∂Xv. ChnsS

F√mt‰bpw23 hymkm¿≤w sIm≠p24 Xs∂ KpWn°ptºmƒ F{X D≠p

L\kwIenXØn¶∂v GdphXv F∂v Hm¿°pw{]Imcw. ChnsS apºn¬

sNm√nb \ymbw sIm≠pXs∂ HSp°tØXn∂SpØpIosg `pPmh¿§w

H∂n¬ KpWn®Xv Gdpw. ]ns∂ AhnSp∂p apºnse `pPmh¿§ßsf

c≠v, aq∂v25 XpSßnbp≈ kwJyIsfs°m≠p {ItaW KpWn®Xv Gdpw.

AXp h¿§kwIenXkwIenXsa∂pw hcpw. L\{Xywiw

h¿§kwIenXsas∂m apºn¬ sNm√nbt√m. F∂meXXp

`pPmL\Øns‚ {Xywiw AXXp `pP HSp°ambncn°p∂

h¿§kwIenXambn´ncn°pw, F∂m¬ L\kwIenXØns‚ aqs∂m∂p

‘h¿§kwIenXkwIenX’sa∂pw hcpw. F∂m¬ h¿§kwIenXsØ

hymkm¿≤wsIm≠p KpWn°ptºmƒ X∂n¬ aqs∂m∂p IqSnbncn°p∂

L\kwIenXambn´ncn°pw. F∂m¬ CXp X∂n¬ \msem∂p

If™m¬ L\kwIenXw tijn°pw. F∂m¬  h¿§h¿§Øns‚

\msem∂p L\kwIenXsa∂pw h∂q. ]ns∂ Cu L\kwIenXsØ

hymkm¿≤w sIm≠p KpWn®m¬ ‘h¿§h¿§kwIenX ’hpw

‘L\kwIenXkwIenX’hpw IqSn hcpw F∂p apºn¬ sNm√nb \ymbw

sIm≠p h∂ncn°p∂q. h¿§h¿§Øn¬26  \msem∂p L\kwIenXw

F∂pw sNm√o. CXptlXphmbn´p h¿§h¿§kwIenXØn¬ \msem∂p

‘L\kwIenXkwIenXw’ F∂pw hcpw, sNm√nb \ymbwsIm≠v.

F∂m¬ NXpcwiw IqSnbncn°p∂Xn¶∂p27 ]©mwiw If™m¬

hymkm¿≤ßƒ A©p Xßfn¬ KpWn®Xns‚ As©m∂mbn´ncn°pw28

h¿§h¿§kwIenXw F∂pw h∂q.

4.iv. kwIenXm\b\kmam\y\ymbw

]ns∂ h¿§h¿§sØ Xs∂s°m≠p KpWn®m¬ ‘ka]©LmXw’
F∂p t]¿. Cßs\ ka]©mZnLmXkwIenXw F∂p aosØ aosØ

4. 25.F. adds F∂v
26.C. D. h¿§-kw-I-en-X-Øn¬
27.C.F. IqSn-b-Xn-¶∂v
28.C. As©m-∂m-bn-cn°pw
29.C. F. apºnse

VI.  ]cn[nbpw hymkhpw
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kwIenXßƒ°pt]¿. AXn∂p apºnesØ29 kwIenXsØ

hymkm¿≤w sIm≠p KpWn®Xv A§pWyØns‚ kwIenXkwIenXhpw

AXn∂p aotØ kaLmXkwIenXhpw IqSn hcpw. F∂m¬ aosØ

aosØ kaLmXkwIenXap≠m°phm≥ AXXp kwIenXsØ

hymkm¿≤w sIm≠p KpWn®Xn¶∂v Hmtcmt∂dnb kwJysIm≠p

lcn® ^esØ If™m¬ tase tase kaLmXkwIenXap≠mIpw.

F∂m¬ hymkm¿≤ßƒ c≠p Xßfn¬ KpWn®Xns\ c≠n¬ lcn∏q.

L\sa¶n¬ aq∂n¬ lcn∏q. h¿§h¿§sa¶n¬ \men¬,

ka]©LmXsØ30 A©n¬, F∂nßs\ GssItImØcka

LmXsØ GssItImØc kwJyIsfsIm≠p lcn∏q. ^eßƒ

{ItaW D≈ kaLmXkwIenXambn´ncn°pw. ChnsS h¿§Øn¶∂p

aqekwIenXw, L\Øn¶∂p h¿§kwIenXw, h¿§h¿§Øn¶∂p

L\kwIenXw F∂nßs\ cminIsf Xs∂s°m≠v F{X BhrØn

KpWn®Øn¶∂v GImZnkwJyIfn¬ A{XmaXpsIm≠p lcn®^ew

bmsXm∂v31 B cminsb HcmhrØn Ipd®p KpWn®Xns‚32

kwIenXambn´ncn°pw. Cßs\ aqeh¿§mZnkwIenXßsf33 hcpØpw

{]Imcw

4.v. BZyZznXobmZnkwIenXkwIenXßƒ

A\¥cw BZyZznXobmZnkwIenXsØ Im´q∂q. AhnsS34

BZykwIenXamIp∂Xp aqekwIenXw Xs∂. AXp

]Zh¿§m¿≤sat∂m apºn¬ sNm√nsbt√m. Zz nXobw ]ns∂

aqekwIenssXIyw. AXpw35 ]ns∂ h¿§kwIenXm¿≤tØmSp Xpeyw

F∂p sNm√oXmbn. AXmIp∂Xp ]ZØns‚ L\Øn¬

Bsdm∂mbncn°pw36.

4. 30.B. ]©-Lm-X-sa-¶n¬
31. B. D. F. add AXv, C. AXo∂v
32.B. Ipd™p KpWn-®-Xn¬; C. Ipdb KpWn-®-Xn¬
33.C. F. kwI-en-XsØ
34.D. C. AXn¬
35.C. AXv
36.C. Bbn-´n-cn°pw
37.C. D. F kwI-en-XsØ
38.F. ap≥

VI. 4. kwIenXßƒ
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‘XrXobkwIenXw’ ]ns∂. ZznXobkwIenXw37 A¥ysa∂p

Iev]n®n´p v ]ns∂ ]ZØn¬ Hcp kwJy Ipd®n´p v , apºn¬38

sNm√nbt]mse Hcp kwIenssXIysØ D≠m°p. AXns\
D]m¥ysa∂p Iev]n∏q. ]ns∂ ]ZØn¶∂p c≠p kwJy Ipd®n´pv Hcp
kwIenssXIysØ hcpØq. AXpv D]m¥yØn¶∂p39 IntgXmbn´n
cn°pw40. F∂nßs\41 GssItIm\ßfpsS kwIenssXIysØ
D≠m°phm≥ GssItIm\ßfpsS L\jjvTmwißfpsS tbmKsØ
D≠mt°Ww. AXp ‘L\jjvTmwikwIenX’ambn´ncn°pw. AXv
L\kwIenXØns‚ Bsdm∂mbn´ncn°pw

L\kwIenXw ]ns∂ h¿§h¿§NXpcwiambn´ncn°pw F∂p apºn¬
sNm√nbXmbn Ft√m. F∂m¬ h¿§h¿§NXpcwiØns‚ jjvTmwiw
L\jjvTmwikwIenXambn´ncn°pw. BIbm¬ h¿§h¿§
NXp¿∆nwimwiw L\jjvTmwikwIenXamIp∂Xv F∂p hcpw42.
]ns∂ \memaXv Cu \ymbØn∂p X°hÆw h¿§h¿§
NXp¿∆nwimwikwIenXambn´ncn°pw. CXp43 ]ns∂
ka]©LmX]©mwiØns‚ NXp¿∆nwimwiw F∂p hcpw. BIbm¬
]ZsØ F{X44 BhrØn ]ZsØ Xs∂s°m≠p KpWn∏q AXn¶∂pvv
GIZzn{XymZn45 A{X kwJyIƒ Xßfn¬ KpWn®Xns\s°m≠p lcn∏q.
^ew BZyZznXobmZnkwIenXØn¬ A{XmaXmbn´ncn°pw F∂Xp46

X¬{]Imcw.

5. D]kwlmcw

ChnsS ]ns∂ h¿§kwIenXw, h¿§h¿§kwIenXw,

kajƒLmXkwIenXw F∂nhs‰ D≠mt°≠q. F∂n´pv aq∂pv A©p

XpSßnbp≈ kwJyIsfs°m≠p lcn∏m≥ sNm√o. Ch‰n∂p

lmcIßfmIp∂Xp hymkm¿≤h¿§w, ]ns∂ h¿§h¿§w F∂nh.

4. 39.C. D. F D]m-¥yØo∂v
40.B. Xmbn-cn°pw
41. B. C. D. F adds ]Øn¬
42.B. om. F∂p-hcpw
43.C. AXv
44 F. A{X
45.B. C. GI-Zzn-{Xym-Zn-Iƒ
46.F. F∂v

VI.  ]cn[nbpw hymkhpw
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F∂m¬ hymkm¿≤h¿§w sIm≠pv hymkm¿≤L\sØ lcn®m¬

^ew hymkm¿≤w Xs∂. F∂m¬ hymkm¿≤sØ aq∂n¬ lcn®Xp

\tSsØ ^etbmKamIp∂Xp. CXp ]ns∂ AXXp KpWyhpw AXXp

^ehpw Xßfnse A¥cßfpsS tbmK¥m≥. F∂meXns\

KpWytbmKØn¶∂p Ifbq. AXmIp∂Xp ZnIvkq{Xm{KØn¶∂p

XpSßn tImtWmfap≈Xp NXpc{i_mlphns‚ ]mXn. C∆Æw

ka]©LmXsØ h¿§h¿§wsIm≠p lcn®mepw hymkm¿≤w Xs∂

^ew. F∂m¬ hymkm¿≤sØ A©n¬ lcn®Xp c≠mw ^ew.

Cßs\ Ggv, HºXv XpSßnbp≈ H‰s∏´ kwJyIsfs°m≠p

hymkm¿≤sØ lcn®m¬ aosØ aosØ ̂ ew hcpw. D≠mb ̂ esØ

{ItaW hymkm¿≤Øn¬ IfbpIbpw Iq´pIbpw ssNhq. F∂m¬

]cn[osS Fs´m∂p≠mIpw. Cßs\ KpWImcw lmcItØ°mƒ

sNdpXmIpt∂SØp ]ns∂ ]ns∂ ^ew IpdIsIm≠p s]cnsI

Ipd™m¬ ]ns∂ ^eßsf Dt]£n®v HSp°mw {Inb. F∂m¬

an°Xpw kq£vaamIpw. F∂m¬ ZnIvkq{Xm{KtØmSp

tImWkq{XtØmSv CSbnse hrØ`mKw hcpw. CXns\ F´n¬

KpWn®m¬ hrØw apgph\mbn´ncn°pw. lm¿øamIp∂ hymkm¿≤sØ

F´n¬ KpWn°nepamw \tS. F∂m¬ \men¬ KpWn® hymkaXvv.

At∏mƒ AXn¶¬Xs∂ ^ew kwkvIcnt°≠Xpw. F∂m¬ hrØw

hcpw.

6. Nm]oIcWw

Cu \ymbw sIm≠p Xs∂ Pymhns\ Nm]n°mw˛

CjvSPym{XnPytbm¿LmXm¬ tImSym]vXw {]Yaw ^ew I

Pymh¿§w KpWIw IrXzm tImSnh¿§w N lmcIw II

{]YamZn^tet`ymfY t\bm ^eXXn¿ aplpx I

GI{XymtZymPkwJym`n¿ `t‡tjztXjz\p{Iam¬ II

HmPm\mw kwbptXkv Xy‡zm bp‹tbmKw [\p¿ `th¬ I

tZmxtImtSymcev]tathjvSw Iev]\obanl kvarXw II

VI. 6. Nm]oIcWw
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e_v[o\mahkm\w kym∂m\yYm]n aplpx IrtX I

hymkh¿§mZv chnlXm¬ ]Zw kym¬ {]Yaw ^ew I

XZmZnXkv {XnkwJym]vXw ^ew kymZpØtcmØcw

cq]mZybp‹kwJym`n¿ lrtXtjzjp bYm{Iaw I

hnjamWmw bptXkv XyIvXzm kaw ln ]cn[n¿ `th¬

(X{¥kw{KlhymJym II 206˛11)

ChnsS `pPmtImSnPym°fn¬ Ipd™Xp bmsXm∂v AXns\

Nm]n°pw{]Imcw sNm√p∂Xpv1. AhntSbpw `pP sNdpXv F∂p \tS

Iev]n°p∂Xpv. Cu2 CjvSPymhns\ hymkm¿≤w sIm≠p KpWn®

tImSnPymhns\s°m≠p lcn®Xp \tSsØ ^eamIp∂Xpv. ]ns∂ Cu

^esØØs∂ `pPmh¿§wsIm≠p KpWn®v tImSnh¿§wsIm≠p

lcn®Xp c≠mw^eamIp∂Xv. ]ns∂ Cu c≠mw^esØ `pPmh¿§w

Xs∂sIm≠p KpWn®v tImSnh¿§w sIm≠p lcn∏q. c≠mw^ew

D≠m°nbt]mse aq∂mw^etØbpap≠m°q. ]ns∂ AXXn¶∂p

aosØ aosØ ^eßsf D≠m°q, C§pWImclmcIßsfs°m≠p

Xs∂. D≠mb ̂ e]cºtc {IaØn¬, H∂pv, aq∂v, A©v, F∂ H‰s∏´

kwJyIsfs°m≠p lcn∏q. ^eßfn¬ \tStØXv, aq∂maXv,

A©maXp F∂nh H°Øßfn¬3 Iq´n CXn¶∂p c≠maXv, \memaXv,

XpSßnbp≈h‰ns‚ tbmKw Ifbq, tijw Nm]w. AXns\4  aq∂p

cminbn¬\n∂p If™Xp tImSnNm]w. tImSnNm]w sNdpXmIn¬ \tS

tImSnNm]w D≠m°q.

ChnS°p D]]ØnbmIp∂Xv. hymkm¿≤w sIm≠p hrØw

hcpØphm≥ sNm√nb t]mse Xs∂ ChnsS NXpc{ia≤yØn¶se

hrØØn¶¬ ZnIvkq{XØn¶¬ ichpw hcpamdp Pymhp Iev]n°p∂q.

hrØtI{µØn¶∂p Pymhns‚ Xebv°¬ kv]¿in°p∂ I¿Ækq{Xw

hrØØns‚ ]pdsØ NXpc{itØmfw \osf Iev]n∏q. CXv ChnsS°v

6. 1. B. om. sNm√p-∂Xvv
2. F. om. Cu
3. B. tbmKsØ
4. F. CXns\

VI.  ]cn[nbpw hymkhpw
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F√mbnepw henb I¿Ækq{XamIp∂Xv. C°¿Ækq{Xm{KtØmSv

ZnIvkq{Xm{KtØmSp≈ A¥cmfØn¶se NXpc{i`pPm`mKw ChnsS

\tSsØ ^eambn´p hcpØnbXv. ]ns∂ CXp KpWyambn CXns‚

h¿§w KpWImcambn ZnIvkq{Xh¿§w lmcIambn´p aosØ aosØ

^eßsf hcpØphm≥ \tS sNm√o. AhnsS F√m ^eØn∂pw

`pPm`mKw Xs∂ KpWyambn Iev]n°ptºmƒ, KpWlmcßƒ

Xpeyßfmbn´ncn°pw. AXp tlXphmbn´ v KpWywXs∂

^eambn´ncn°pw F√mShpw. F∂n´ v KpWysØØs∂

HmPkwJyIsfs°m≠p lcn°p∂q. ChnsS ]ns∂

`pPmtImSnIfmIp∂ KpWlmcßƒ Xpeyßf√mbvIbm¬ ^eßƒ

]ns∂ ]ns∂ Ipd™nt´ hcq. F∂n´p ^eßsf√mt‰bpw {ItaW

D≠mt°Ww. F∂msem sNdnb KpWlmcßsf sIm≈pI Fs√m

FfnbXv. F∂n´v HSp°sØ I¿Æhpw ZnIvkq{Xhpw D≈ A¥cmfw

NXpc{i`pPm`mKa√ ChnsS KpWImcambn´p sIm≈p∂Xv,

hrØØns‚ AIØqsS A¥cmfw. AXp PymhmIp∂Xv. At∏mƒ

AXns‚ tImSn lmcIhpw AXXp ^ew KpWyhpw F∂nhnsS

hntijamIp∂Xv. ChntSbpw HmPkwJyIsfs°m≠p lcn°p∂q,

h¿§kwIenXmZn hcpØphm≥, Cßs\5 Nm]oIcWw.

7. {]Imcm¥tcW ]cn[ym\b\w

A\¥cw1 Cu2 hntij\ymbØn∂p X°hÆw hymkw sIm≠p

hrØw hcpØpw3 {]Imcw. ChnsS4 CjvShymkh¿§sØ ]{¥≠n¬

KpWn®p aqen®Xp \tSsØ ^ew. CXns\ aq∂n¬ lcn®Xv5  c≠mw

^ew. c≠mw ^esØ aq∂n¬ lcn®Xpv aq∂maXv. ]ns∂ AXns\

AXns\ aq∂n¬ lcn®Xp aosØ aosØ ^ew. ]ns∂ Cßs\

6. 5. B. CXn
7. 1. B. AY

2. C. om. Cu
3. F. hcp-tØ≠pw
4. B. om. ChnsS; C. D. F AhnsS
5. D. C. c≠mw ^ew \tSsØ ap∂n¬
6. F. ^e-ß-fn¬

VI. 7. {]Imcm¥tcW ]cn[ym\b\w
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D≠m°nb ^eßsf {ItaW H∂,v aq∂v F∂p XpSßnbp≈

HmPkwJyIsfs°m≠pw lcn∏q. ̂ eßƒ6 \tStØXp aq∂matØXp

XpSßnbp≈hs‰ Xßfn¬7Iq´nbXn¶∂p c≠maXv, \memaXv

XpSßnbp≈8  tbmKsØ Ifbq. tijw ]cn[n.

ChnsS hrØØn¬ ]{¥≠msem∂p \tS D≠mIp∂Xv. ]ns∂

]{¥≠n¬ KpWn∏q. bmsXmcp{]Imcw \tS hrØØn¬ Fs´m∂ns\

D≠m°n A∆ÆanhntSbpw. apºn¬ Nm]oIcWØn¶¬ sNm√nbt]mse

hrØØn¶¬ Pymhp Iev]n∏q. ZnIvkq{XØn¶∂p Ccp]pdhpw

hrØØn¬ ]{¥≠msem∂p sNt∂SØp Pymhns‚ c≠{Khpw

hrØsØ kv]¿in°pamdp Iev]n∏q. At∏mƒ AXp hrØØns‚

Bsdm∂ns‚ kakvXPymhmbn´p Ccn°pw. ZnIvkq{XØn¶¬ \Sphv,

CXn¬ ]mXn ]{¥≠msem∂ns‚ A¿≤Pymhv. AXp hymkØns‚

\msem∂v F∂p \nbXw, Bsdm∂ns‚ kakvXPymhv

hymkm¿≤tØmSp Xpeyw F∂n´v. Cßs\ hymkm¿≤Xpeyßfmbn´p9

BdpPym°sfs°m≠p10 hrØw XnIbpw. ChnsS hrØtI{µØn¶∂p

Pymhns‚ Xe°¬ hrØsØ kv]¿in°p∂ I¿Ækq{Xw

bmsXmcnSØp NXpc{i_mlphn¶¬ kv]¿in°p∂q AhnS∂p

ZnIvkq{Xm{KtØmfap≈ NXpc{i_mlp`mKw11 ChnsS \tSsØ ^ew,

F∂n´p hcpØp∂q.  CXns\s°m≠p ]ns∂ C°¿Ækq{Xm{KtØmSp

ZnIvkq{Xm{KtØmSp≈ A¥cmfØn¶se hrØ`mKsØ hcpØp∂p.

AXns\ ]ns∂ ]{¥≠n¬ s]cpt°≠pIbm¬ \tSsØ ^esØ

Xs∂ ]{¥≠n¬ s]cp°nbXns\ \tS D≠m°p∂q. ChnsS

hymkØn¬ \msem∂p ]cn[nZzmZimwiPymhv F∂ncn°bm¬ Cu

Pymh¿§w hymkh¿§Øn¬ ]Xn\mdmsem∂v. Cu Pymh¿§Øns‚

\m∑Sßp hymkm¿≤h¿§w. hymkm¿≤h¿§Øn¬ \msem∂p

t]mbtijw ap°qdpw tImSnh¿§w. ChnsS Cu tImSnh¿§w lmcIw,

hymkm¿≤h¿§w KpWImcw Cu Pymh¿§Øn∂v. F∂n´ v

7. 7. B. XΩn¬
8. B. XpS-ßn-bp-≈-hs‰
9. D. F. Pymhp-sIm≠p
10. B. C. D. Xpey-am-bn-cn-°p∂; F. Bbn-´n-cn-°p∂
11. B. gap for _mlp-`m-Kw, C. D. F NXp-c-{i-`m-KsØ

VI.  ]cn[nbpw hymkhpw
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A]h¿Øn®m¬ \mep KpWImcw. aq∂p lmcIw F∂p hcpw.

hymkh¿§sØ ]Xn\mdn¬ lcn®ncn°p∂ Pymh¿§w KpWyw, ^ew

I¿Æm{KtØmSp ZnIvkq{Xm{KtØmSp≈ A¥cmfØn¶se

NXpc{i_mlp`mKh¿§w. AXns\ ]{¥≠ns‚ h¿§wsIm≠p KpWn®p

aqen∏q. F∂menhnsS ]{¥≠ns‚ h¿§hpw \mepw KpWImcw.

Xßfn¬12 KpWn®m¬ Ccp]Øn\mens‚ h¿§w. ]Xn\mdpw aq∂pw

lmcIw Xßfn¬ KpWn® \mev]sØ´psIm≠p Ccp]Øn\mens‚

h¿§sØ lcn®m¬ ^ew ]{¥≠pv. F∂n´p ]{¥≠n¬ KpWn∏m≥

sNm√o hymkh¿§sØ. CXns‚ aqew hrØØn∂p ]pdta Hcp

jU{i_mlz¿≤w. ChnsS hrØØn∂IsØ jU{itImWn¶¬

kv]¿in°p∂ I¿Ækq{Xhpw ]pdtØ jU{itImWn¶epw

kv]¿in°pw. Cßs\ kwÿm\w.

]ns∂ ]pdsØ jU{i_mlphns‚ A¿≤w KpWyw, Pymh¿§w

KpWImcw, tImSnh¿§w lmcIw, Cßs\ c≠mw ^ew hcpØq,

Nm]oIcWØn¶¬ sNm√nbXpt]mse. ]ns∂ Cu c≠maXp

XpSßnbp≈ ^eßsf KpWyam°n C§pWlmcßsfs°m≠pXs∂

aosØ aosØ ^eßtfbpw D≠m°q. ChnsS ]ns∂ KpWlmcßsf

A]h¿Øn°ptºmƒ H∂p KpWImcw, aq∂p lmcIw F∂p hcpw,

GIcminPymhp hymkØn¬ \msem∂pv F∂n´pv. F∂m¬ AXXp

^esØ aq∂n¬ Xs∂ lcn®m¬ aosØ aosØ ^ew hcpw. ]ns∂

H∂v, aq∂p XpSßnbp≈ HmPkwJyIsfs°m≠pw lcn∏q. ]ns∂

^eßfn¬ HmPßfpsS tbmKØn¶∂p bp‹ßfpsS tbmKsØ

Ifbq. tijw ]cn[n. Cßs\ hymkw sIm≠p ]cn[nZzmZimwisØ

hcpØpw {]Imcw.

8. kq£va]cn[ym\b\Øn¶¬ kwkvImcßƒ

Fßs\ ]ns∂ ChnsS ]ns∂bpw ]ns∂bpw aosØ aosØbp≈

hnjakwJysIm≠p lcn® ^e-ßsf kwkvIcn®ncn°p∂Xp

7. 12. B. XΩn¬
8. 1. F. hcp∂p

VI. 8. kq£va]cn[ym\b\Øn¶¬ kwkvImcßƒ
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]cn[ntbmSv ASpØp h∂q1 HSp°sØ kwkvImcw sNbvXm¬ F∂

{]ImcsØ sNm√p∂q.

AhnsS Cs®m√nb kwkvImcw Xs∂ kq£vatam A√tbm F∂p

\tS \ncp]nt°≠phXv. AXn\mbns°m≠v GXm\pw Hcp

hnjakwJysbs°m≠p  lcn® ^ew kwkvIcn®v A\¥cw thsd

sh®p kwkvImcw ssNhq. A\¥cw thsd Ccn°p∂Xn¬ aosØ

hnjakwJymlrX^esØ kwkvIcn®v AXn\p aosØ

kakwJysIm≠p kwkvImcw ssNhq. F∂mep≠mIp∂ ]cn[nIƒ

c≠pw Xpeyßƒ F∂mhq Ccn∏Xv F¶n¬ kwkvImcw kq£vasa∂p

Iev]n®mepw. Fßs\ F∂v. c≠p ]cn[n°pw kwJymkmayap≠v

F∂mhq Ccn∏Xv F¶n¬ kwkvImcØn∂p k¿∆km[mcWXzap≠v.

F∂m¬ aosØ aosØ hnjakwJymlcWm\¥cw kwkvImcw

ssNXmepw AhÆw hcpsas{X. F∂m¬ apºnse kwJyIƒsIm≠p

kwkvImcw ssNXXp Xs∂ kq£vasas{X F∂pv AdntbWw. A∆Æw

hcq ]ns∂.

aosØ hnjakwJysIm≠p lcn® ^ehpw AXns‚

kwkvImc^ehpw Xßfnep≈ A¥chpw apºnse kwkvImctØmSp2

Xpeyw F¶nte ]cn[nIƒ c≠pw Xpeyambn´p hcq. F∂m¬ GXm\pw

Hcp hnjakwJysIm≠p lcn® ^etØmSp Xpeyambn´ncn∏q Iosg

kwkvImc^ehpw aosØ3 kwkvImc^ehpw D≈ tbmKw.

bmsXmcp{]Imcw Xpeyambn´p4 hcq5  A∆Æw kwkvImcw sNtøWw

ChnsS c≠p kwkvImclmcIßfpw Cc´n® hnjakwJytbmSv

HØphcpw F∂mhq Ccn-∏-Xv. F¶n¬6  c≠p kwkvImc^eßfpsS

tbmKw hnjakwJym^etØmSv HØncn°pw. ChnsS c≠p

8. 2. F. kwkv°m-c-^-e-tØmSp
3. D. adds AXv
3. F. om. aosØ kwkv°mc
4. B. Xpey-ambn
5. F. hcp∂p
6. C. D. F. Ccn-∏-sX-¶n¬
7. B. lmcIw
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kwkvImclmcIhpw IqSn Cc´n® hnjakwJytbmSp Xpeyambn´pv

Hcn°epw kw`hn°bn√. AXp Fßs\ F∂v. ChnsS hnjakwJysb

Cc´n®Xnt\mSp XpeyamtIWsat√m kwkvImclmcw7. F∂n´pv ChnsS

GsXmcp8 hnjakwJysb HSp°sØ lmcIambns°m≠Xv AXn\p

aosØ  hnjakwJysb Cc´n®Xp \tSsØ kwkvImclmcIw F∂p

sNm√q. F¶n¬ c≠mw kwkvImclmcIw AXn\p aosØ

hnjakwJysb Cc´n®Xp F∂p hcpw; Hcp{]Imcw9  sNmt√Wsat√m

F∂n v́. At∏mƒ CXv10 Iosg hnjakwJy11 Cc´n®Xn¬ \mtedo´ncn°pw.

F∂nsb CXp ZznLv\hnjakwJytbmSp XpeyamIp∂Xv F∂mhq

Iev]n®Xv F¶n¬ IotgXv \mep Ipd™n´ncn°pw. F∂m¬ c≠p

kwkvImclmcIhpw IqSn ZznLv\hnjakwJytbmSv HØncn°pamdv hcm

Hcp {]Imchpw kwkvImclmcIw.

F∂n´p c≠p kwkvImclmcIhpw Hcp ZznLv\hnjakwJytbmSp

AWhv12 D≠mhq F∆ÆamIptºmƒ  A∆Æw sNm√ptI At∏mfp≈q.

F∂n´nhnsS c≠p kwJysIm≠p A¥cap≈hs‰ Cc´n®m¬ Xßfn¬

\mev A¥cn®ncn°pw. Ch‰n¬ GXm\pw Iq´nØm≥ If™p

Xm\ncn°p∂hs‰ Cc´n®mepa∆Æ¥s∂ A¥cambn´ncn°psas{X.

F∂n´v Hcp lmcIw Cc´n® hnjakwJybn¶∂p c≠p Ipd™ncn∏q,

at‰Xp ct≠do´pancn∏q. A∆Æw htcWsa∂Xn\mbns°m≠v aosØ

kakwJysb Cc´n®Xp kwkvImclmcIsa∂p sNm√o.

A\¥caohÆap≠m°ptºmsf{Xbp≠p kwkvImcØn∂p

sÿueyap≈Xv F∂v Adnhm\mbns°m≠v c≠p kwkvImc

^eßfpsS tbmKhpw \Sphnse hnjakwJym^ehpw Xßfnse

A¥cmfsØ13 D≠m°phm\mbns°m≠v kwkvImclmcIßƒ

c≠nt\bpw hnjakwJybpw Ch aq∂nt\bpw katNvOZßfm°n

Na°q. F∂m¬ Xßfn¬ A¥cn°mw.

8. 8. F. bmsXmcp
9. C. D. F.Add. Xs∂
10. C. om. CXp
11. F. add. B. sIm≠p lcn® ^ew kwkvI-cn®v
12. F. AWp-hp-≠mhpw A∆Æ
13. F. A¥-csØ
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8. 14. F. adds c≠pw
15. F. [\-ß-fm-bn-cn-°p∂
16. F. [\-am-bn-´n.......

ChnsS kwJy Adnt™ kat—Zßfm°mhq. kwJy Cßs\ F∂p

hcpIn¬ F√mStØbv°pw sIm≈cpsX∂p hcpw. Ft∂StØbv°p

kwJy AdnbmtXbpw kat—Zßfm°phm\p≠p]mbw,

[\¿Æ]cnIev]\wsIm≠v. AXv Fßs\ F∂v. AXp≠p sNm√o´v˛̨

EWarW[\tbm¿ LmtXm

[\arWtbm¿ [\ht[m [\w `hXn

({_“-kv^p-S-kn-≤m-¥w, 18.33)

F∂p XpSßo´v. bmsXmcp cmin EW`qXambncn°p∂q, bmsXmcp cmin

[\`qXambn´pw Ccn°p∂qXpw Ah14 Xßfn¬ KpWn®p≠mb kwJysb

EWambn´ncns∏m∂v F∂dntbWw. ]ns∂ [\ambn´ncn°p∂15 c≠p

cminIƒ Xßfn¬ KpWn®Xv [\ßfm-bn-́ ncnt∏m∂v16, ]ns∂ EWßƒ

Xßfn¬ KpWn®Xpw [\ambn´ncnt∏m∂v, F∂nßs\ AdntbWw.

]ns∂ kwJy AdnbmsX cminsh°pw{]Imcw Cßs\ F∂pw

AdntbWw. AXp Fßs\ F∂v. ChnsS kwJy AdnbmØ cmin

F{X kwJybmbn´p≈q F∂p≠t√m D≈q A{X kwJysIm≠v AXXp

ÿm\Øn¶∂p aosØ ÿm\Øp Itcdp∂p F∂p Iev]n°p∂Xv,

as‰√mwt]mse H∂v, ]Øv, \qd v F∂nßs\ ]Xn∑Sß√

ÿm\m¥cßsf Iev]n°p∂q. CuhÆamIptºmƒ BZnbn¶se

cq]ÿm\w. AhnsS B cminbn¶se kwJytbmfw XnI™m¬ c≠mw

ÿm\Øp Itcdq. F∂n´v c≠maXp cminÿm\w, c≠mwÿm\Øv

H∂p≠mIptºmƒ cminXpeykwJy AXv F∂p Adntb≠q. F∂n´v

c≠mwÿm\Øn∂pw A{X kwJysIm≠p ItcdpIbm¬

aq∂mwÿm\w cminbpsS h¿§ÿm\w. ]nt∂bpa∆ÆamIbm¬

\memaXp L\ÿm\w. ]ns∂ h¿§h¿§ÿm\w. A∆Æw

ka]©LmX˛kajƒLmXmZnÿm\ßƒ aosØ aotØXv F∂v

Adntb≠q. AXp≠p sNm√o´v˛̨

“Ahy‡˛h¿§˛L\˛h¿§h¿§˛]©lXjUvVXmZo\mw ÿm\m\n”

VI.  ]cn[nbpw hymkhpw
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F∂p XpSßo´v.

ChnsS HSp°sØ hnjakwJy cmin F∂p Iev]n®psh°pw

{]ImcsØ Im´p∂q. AhnsS c≠p hcnbmbn Nne JWvUßsf

FgpXq, Hmtcm ÿm\w Hmtcm JWvUØn¬ AIs∏Spamdv. AXn¬

aosØ hcn AwitImjvTßƒ, Iosg hcn tOZtImjvTßƒ

F∂nßs\ Iev]n®pshbv°pw {]ImcsØ Im´p∂q. hnjakwJy

1 0 . ChnsS EW`qXambncn°p∂ cmin°v GXm\pw Hcp ASbmfw

IqSn sh®psIm≈Ww. iq\yØn∂v bmsXmcp  hkvXp sh°p∂Xv

AXp Xm≥. ChnsS \tSsØ kwkvImclmcIw cminsb

Cc´n®Xn¶∂p c≠p Ipdbpw. AXn∂p c≠mw ÿm\Øp c≠v.

\tSsØ ÿm\Øv EWcq]ambn´p c≠v 2 2 0 . ]ns∂ c≠mw

kwkvImclmcIw cminsb Cc´n®Xn¶∂p ct≠dpw. AXn∂p c≠mw

ÿm\Øv cmin Cc´n, F∂n v́ c≠p \tSsØ ÿm\sØ [\cq]ambn´p,

c≠p cq]hpw  2 2 . Cßs\ sh°pw {]Imcw.

]ns∂ Ch aq∂pw tOZßƒ F∂p Iev]n®v Ch‰bv°v Hmtcm cq]w

Awisa∂pw Iev]n®v,

At\ym\ylmcm`nlsXu lcmwsiu

cmtiym at—Zhn[m\tahw. (eoemhXn, 30)

F∂Xn∂p X°hÆw kat—Zßfm°ptºmƒ Chs‰s°m≠p lcn®

kat—Zßfmbn´p≠mIpw. tOZsamt∂ hcpw17. AXmIp∂Xp

\tStØXp18 iq\yw, c≠mw ÿm\Øp EWambn´p \mev ,

aq∂mwÿm\Øp EWhpw [\hpw \∂mep≠mIsIm≠p Xßfn¬

amdo´p iq\yw, \memw ÿm\Øp \mev. Cßs\ tOZkwJy. ]ns∂

hnjakwJysIm≠p19 lcn® Awiw \tSsØ ÿm\Øp EWambn´pv

\mev. c≠mw ÿm\Øp iq\yw, aq∂mw ÿm\Øp \mev. c≠mw

kwkvImclmcIwsIm≠p lcn® ̂ eØn¶se Awiw20 ]ns∂ \tSsØ

ÿm\Øp iq\yw, c≠mw ÿm\Øp EWambn´p c≠v, aq∂mwÿm\Øp

8. 17. F. H∂p hcpw
18. F. \tStØ ÿm\Øv
19. E. Xß-fn¬ amdo´p lcn∏v
20.F. Awi-I-Øo∂v; om. ]ns∂
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[\ambn´p c≠v. ]ns∂ \tSsØ kwkvImclmcIwsIm≠p lcn®

^eØn¶se AwiØn∂v \tSsØ ÿm\Øp iq\yw, c≠mw

ÿm\Øpw aq∂mwÿm\Øpw Cuc≠v. ‘kwkvImc^etbmKw’ ]ns∂

\tSsØ ÿm\ßƒ c≠n¶epw iq\yw aq∂mwÿm\Øp \mev.

hnjakwJym]vXw

{]Yalmcm]vXw

ZznXoblmcm]vXw

kwkvImc^etbmKw

F∂m¬ kwkvImc^etbmKw hnjakwJysIm≠p lcn® ̂ eØn¬

\mtedpw. F∂m¬ aosØ akwJy Cc´n®Xv kwkvImclmcIsa∂p

Iev]n°ptºmƒ HSp°sØ hnjakwJymL\sØ Xs‚ aqew

If™ncn°p∂XpsIm≠p21 \men¬ KpWn®ncn°p∂22 hymksØ

lcn®^ew sÿueyamIp∂ Awiw F∂v Adntb≠phXv .

C∆ÆamIptºmƒ kwkvImc^ew th≠Xn¶∂v Gdnt∏msbt√m.

F∂n´p23 kwkvImcm¥csØ Hm¿°pw {]Imcw. ChnsS c≠p

lmcIØnepw24 Hmtcm∂p Iq´ns°m≈q F∂p Iev]n°p∂Xv. ChnsS

8. 21. F. °p∂-Xn-s\-s°m≠p
22.D. F. KpWn®
23.B. ]ns∂ Cu
24.F. lmc-I-Øn-¶epw
25.F.om. lmc-I-ßfpw

4 0 4O O

4 0 4O

4 0 4O 0

2 2 0

4 0 4O 0

2 2O 0

4 0 4O 0

4 4 0
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aq∂p lmcIßfpw25 XΩn¬ KpWn®sXt√m kat—ZamIp∂Xv

AXXns‚ AwiamIp∂Xp as‰ lmcIßƒ c≠pw Xßfn¬ KpWn®Xv

AhnsS26 hnjakwJy AwiamIp∂Xv kwkvImclmcIßƒ c≠pw

Xßfn¬ KpWn®X.v ChnsS27 A wkvImclmcIßfn¬28 c≠n¶epw29

Hmtcm kwJyIq´n Xßfn¬ KpWn°ptºmƒ F{X D≠v GdphXv

\tStØXn¬ F∂p Hm¿°p∂Xv. AhnsS H∂n¬ Iq´nb H∂ns\ as‰

lmcIwsIm≠p KpWn∏q. AhnsS Iq´nbXns\ as‰ lmcIØn¬ H∂p

Iq´nbXns\s°m≠p KpWn∏q. ]ns∂ Ah c≠pw Xßfn¬30 Iq´q.

AXpv Hmtcm∂p Iq´nbm¬ Gdp∂ AwiamIp∂Xv. ChnsS c≠p

lmcIßtfbpw Hcp cq]w sIms≠s√m KpWnt°≠q. F∂n´v Cu

kwkvImclmctbmKsØ cq]sØs°m≠p KpWn®psIm≈mw.

kwkvImclmctbmKw ]ns∂. \men¬ KpWn® cmintbmsSm°pw Hcp

lmcIw, cminsb Cc´n®Xn¬ c≠p Ipdbpw at‰Xp ct≠dpw F∂n´v.

F∂m¬ kat—Zambncn°p∂ hnjakwtJysS AwiØn¶¬ \men¬

KpWn® cminbpw Hcp cq]hptadpw \tSsØ kwkvImclmcIØn¶se

Awiw. ]ns∂ hnjakwJybpw c≠mw kwkvImclmcIhpw Xßfn¬31

KpWn®Xv. AhnsS c≠mwlmcIØn¬32 Ht∂dpIsIm≠v cminXs∂

Gdpsas{X. ZznXoblmcmwiØn¶epw C{XXs∂ Gdpsas{X33. F∂m¬

kwkvImclmcIßfpsS AwitbmKØn¶¬34 apºnteXn¬ cminsb

Cc´n®Xp Gdpw. hnjakwJymwiØn¶¬35 \men¬ KpWn® cminbpw

Hcp cq]hpw Gdpw. F∂m¬ Ct∏mƒ cminÿm\Øn¶epw36IqSn

sÿueyap≠mbn F∂p37 h∂q. apºn¬ cq]ÿm\Ønte

sÿueyap≈q.

8. 26.B.C. F. om. AhnsS
27.B. B
28.C. D. F lmc-I-ß-fn¬
29. F. c≠nepw
30.B. XΩn¬
31. B. XΩn¬
32.C. D lmc-I-Øn-¶¬
33. F. om. At{X
34.B. F. tbmK-Øn-¶∂v
35.C. D. F. add ]ns∂
36.B. C. D. F. ÿm\Øpw
37.B. aps≠∂p
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F∂m¬ kwkvImclmcIßfn¬ H∂p XnIsb Iq´cpsX∂p h∂q.

F¶n¬ ]ns∂ F{X Iq´q? F∂n´v H∂p XnIsb Iq´nbmsd

hnjakwtJysS AwiØn¶¬ \men¬ KpWn® cmin Gdpw. at‰h‰ns‚

tbmKØn¶¬ c≠n¬ KpWn®Xv Gdpw. ChnsS ]ns∂  Xs∂s°m≠p

lcn® cq]sØ Iq´ptºmƒ  CXn¬ ]mXn cq]ta Gdn Ccn∏q,

kwkvImclmcIßƒ Cc´n® cmintbmSp an°Xpw Xpeysat√m, F∂n v́.

ChnsS cq]m¥cw Ht∂bp≈q.  \mep cq]m¥cw D≠mIbpw thWw,

hnjakwJymwiØn¶¬ at‰h c≠nt‚bpw tbmKØn¶∂p \mep

Ipdbpsas√m F∂n´ v . F∂m¬ apºn¬ Iev]n®

kwkvImclmcIßfn¬ Xs∂s°m≠p lcn® \mep cq]ßƒ

Iqt´Ww. At∏mƒ hnjakwJybn¶se AwiØn¶¬ an°hmdpw F´p

cq]tadpw, at‰h c≠nt‚bpw tbmKØn¶¬ \mep cq]tadpw. F∂m¬

Ct∏mƒ an°Xpw kq£vaambn F∂p Iev]n®n´v, Xs∂s°m≠p lcn®

\mep cq]ßƒ Iq´phm≥ sNm√o BNmcy≥.

ChnsS Cc´n® hnjakwJybn¬ c≠p Ipd™Xpw c≠p GdnbXpw

Ft√m apºn¬ kwkvImclmcIßfmbn´p Iev]n®Xv .

hnjakwJybpsS ASpØv38 Ccp]pdhpap≈ kakwJyIsf Cc´n®h

]nt∂h BIp∂Xv. F∂menhs‰ kam\PmXnIfm°ptºmƒ Cc´n®

kakwJymh¿§Øn¬ \mep GdnbXp tOZw, Cc´n® kakwJyXs∂

AwiamIp∂Xv. Ch c≠nt\bpw \men¬ A]h¿Øn®m¬

kakwtJysS A¿≤w AwiamIp∂Xv, kakwJymh¿§Øn¬ cq]w

IqSnbXp39 tOZamIp∂Xv F∂n´p sNm√o˛

“Xkym Du¿[zKXm bmx

kakwJym X±fw KptWmft¥ kym¬

XZz¿t§m cq]bptXm lmcx”

F∂nßs\.

]ns∂ C wkvImcØn∂pw F{Xbp≠p sÿueyw F∂v

8. 38.B. ASp-Ø-SpØv
39.F. Iq´n-bXv
40.B. ap≥

VI.  ]cn[nbpw hymkhpw
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Adntb≠pIn¬ apºn¬40 sNm√nbhÆw Xs∂s°m≠p lcn® \mep

cq]w Iq´nb kwkvImclmcIßƒ°pw hnjakwJy°pw

kat—Zap≠m°q. Ch sh°pw{]Imcw. \tS Iev]n® kwkvImclmcIw

Cc´n® cminbn¬ c≠p IpdIsIm≠p c≠mwÿm\Øp c≠v, \tSsØ

ÿm\Øv EWambn´v c≠v. Cßs\ \tSsØ kwkvImclmcIw.

c≠maXp ]ns∂ ZznLv\cminbn¬ ct≠dpIbm¬ c≠p ÿm\Øpw

[\ambn´v c≠v. Ch‰n∂v Awiw Hmtcm∂v. ]ns∂ Cu tOZßfn¬

Xs∂s°m≠p lcn® \mep cq]w Iq´ptºmƒ tOZh¿§Øn¬ \mep

IqSnbXp41 tOZw. \tSsØ tOZtØmSp Xpeyw Awiw. ]ns∂

tOZmwißsf A¿≤n°mw. F∂m¬ {]YakwkvImc

lmcIt—ZØn¶¬ aq∂mwÿm\Øp c≠v, c≠mwÿm\Øp

EWambn´p \mev, \tSsØ ÿm\Øp [\ambn´v \mev. c≠maXn¶¬

]ns∂ hntijw. c≠mwÿm\sØ \mepwIqSn [\w F∂v Awißƒ

]ns∂ c≠n∂pw c≠p ÿm\ßfnepw Hmtcm∂v. AhnsS \tStØXns‚

\tSsØ ÿm\tØXpv EWw F∂p hntijw. ]ns∂

hnjakwJymt—Zw. c≠mwÿm\Øp H∂v, \tSsØ ÿm\Øp iq\yw.

Awiw H∂v42. ]ns∂ Ch aq∂n∂pw “At\ym\ylmcm`nlsXu

lcmwiu” ,  (eoemhXo, 30) F∂p kat—Zam°q. At∏mƒ

kat—ZØn∂vv  Bdp ÿm\w, Bdp JfiØn¬. ChnsS \tSsØ

JfiØn¬ iq\yw, c≠mwJfiØn¬ ]Xn\mdv, ]ns∂ aq∂nepw

iq\yw, ]ns∂ BdmwJfiØn¬ \mev. ChnsS \tSsØ ÿm\w

IqSmbptºmƒ hnjakwJymwiw. ChnsS Hcp JfiØnse kwJy

aotØ JfiØn¬ ItcdpIbn√. ]Øntednbmepw ]Ønset√m

Itcdp≠q. F∂n´ v A wJy AdnbmØ cmin BIbm¬

cminXpeykwJysIm≠p Itcdphmt\m D]mbans√s√m. F∂n´v

ChntSbpw Hcp ÿm\Øp hcp∂ kwJyIƒ [\¿Æw, Hs∂¶n¬

Iqt´Ww,  c≠v F¶n¬ A¥cn°mw. At{X Bhq. ChnSpsØ \tSsØ

8. 41. B. F. Iq´p-I-bm-Ip-∂Xv. Ch tOZ-ß-fmbn aosØ \∂memwißfpw D≠m-bn-cn-°pw.
]ns∂ Ahs‰ ka-t—-Z-ß-fmbn A]-h¿Øn-°p-tºmƒ tOZ-Øn∂v kwJy ap∂mw -
ÿm-\w. AXv c≠pw \tSsØ ÿm\Øp c≠pw. AXpw \∂mewiØn-¶¬. ]ns∂
{]Ya lmc-Øo∂v c≠mw ÿm\Øp H∂v. \tSsØ ÿm\Øv EW-am-bn´v H∂v. c≠mw
lmcIw c≠ns‚ Awi-Øn-¶¬ c≠p ÿm\Øpw Hmtcm∂p hnj-a-kwJymtOZw.
c≠mw ÿm\Øv H∂v, \tSsØ ÿm\Øp iq\yw.

42.B. Awi-Øn∂v H∂v

VI. 8. kq£va]cn[ym\b\Øn¶¬ kwkvImcßƒ
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kwkvImcmwiw ]ns∂. CXn∂pw A©pÿm\w. \tStØXp iq\yw,

c≠mwÿm\Øv EWw \mev, aq∂maXp iq\yw, ]ns∂ c≠pÿm\Øpw

Cuc≠v. ZznXobkwkvImclmcIØns‚ Awiw ]ns∂. \tSsØ

ÿm\Øp iq\yw, c≠mtΩSØp  \mev, ]ns∂ iq\yw, ]ns∂ EWw

c≠v, ]ns∂ A©mw ÿm\Øp [\ambn´p c≠v, Cßs\ {Iaw.

kwkvImc^etbmKw ]ns∂. A©mwÿm\Øp \mev at‰h iq\yw.

CXns\ hnjakwJym^eØn¶∂p If™m¬ \tSsØ ÿm\Øp

]Xn\mdp tijn°pat{X. ]ns∂ tijn® AwitØbpw tOZtØbpw

\men¬ A]h¿Øn®m¬ Awiw \mepw, tOZw Bdmwÿm\Øv H∂pw,

c≠mwÿm\Øp \mev , at‰h iq\yw. C∆ÆamIptºmƒ

hnjakwJybpsS 43]©mlXnbn¬ \men¬ KpWn® aqew Iq´nbXp

tOZw. CXnendßnb44 \mewiw sÿueyamIp∂Xv F∂v h∂p.

9. kq£va]cn[ym\b\{]Imcm¥cßƒ

Ct∏mƒ CXn∂p X°hÆw ]cn[nsb1 hcpØmw. AXns‚ {]ImcsØ

sNm√q∂q2:

     ka]©mlXtbm bm

cq]mZybpPmw NXp¿Lv\aqebpXmx |

     Xm`nx tjmUiKpWnXmXv

hymkmXv ]rYKmltXjp hnjabptX: |

     ka^ebpXna]lmb

kymZnjvShymkkw`hx ]cn[nx ||

(X{¥kw{KlhymJym II. 287)

CXn

8. 43. F. ka-]©m
44.C. D. CXn¬ Ipd-bp∂

9. 1. C. D. F. ]ns∂; ]cn[n
2. B. {]Imcw
3. B.C. D.F. om.  ChnsS; (......to......) sNm√p∂p

VI.  ]cn[nbpw hymkhpw
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ChnsS3 ]cn[n hcpØphm≥ AXns‚ {]ImcsØ sNm√p∂q. ChnsS

{]mbnIambncn°p∂ ]cn[n°v C wkvImcw ssNXm¬ C{X

sÿueyaps≠∂dn™m¬ AXp Iq´oXmIn¬ Gdnt∏mbn F∂m¬

AXn\p aosØ hnjakwJysIm≠v D≠m°nb kwkvImc^ew

If™m¬ H´p kq£vaamIpw. ]n∂bpw ]n∂bpw kwkvImcw ssNXm¬4

kq£vaamIpw F∂p h∂ncn°ptºmƒ BZnbn¶∂p XpSßo´p Xs∂

Cu5 kwkvImcw ssNXpsIm≠mepw ]cn[n kq£vaamIpsa∂p hcpw

F∂v CXn∂v D]]Øn.

tIhew hnjakwtJy Cc´n®Xp Xs∂ kwkvImclmcIw F∂p

Iev]n®m¬ AhnSpsØ sÿueymwisØ ]cnlcn®p ]cn[n hcpØpw

{]Imcw˛

     hymkmZv hmcn[n\nlXmXv

]rYKm]vXw {XymZybpKznaqeLss\x |

    {XnLv\hymtk kzarWw

{Iaix IrXzm ]cn[ncmt\bx ||

CXn.

F∂nsb HSp°sØ hnjakwJym^eØns‚ A¿≤w

kwkvIcn°p∂Xv F∂mhq Ccn∏Xv  F¶n¬ B hgnbp≠p ]cn[n

hcpØpw {]Imcw˛

ZzymZnbpPmw hm IrXtbm

thyIm  lmcm Zzn\nLv\hnjvIwt` |

[\arWat¥ft¥ym¿≤zKsXuP˛

IrXn¿ZznklnXm lckym¿≤w II

]nt∂bpap≠v˛

9. 4. B. kwkv°-cn-®m¬
5. D. om Cu

VI. 9. kq£va]cn[ym\b\{]Imcm¥cßƒ
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ZzymtZ›XpcmtZ¿∆m

NXpc[nIm\mw \ntcIh¿§mt›Xv I

       lmcmx IpRvPcKpWntXm

hnjvIw` zanXn Iev]ntXm `mPyx II

       ^e-bp-Xn-tc-I{X hrXn¿˛

`mPyZfw ^elo\a\y{X I

CXn, F∂nßs\ XpSßn.

10. kq£vaXcamsbmcp kwkvImcw

A\¥cw hnjakwJymlcWm\¥cw sNm√nb kwkvImcw

\tStØXn¬ kq£vaXcambncnt∏mcp kwkvImcsØ sNm√p∂q ]ns∂.

At¥ kakwJymZf˛

h¿§ ssktIm KpWx k Gh ]p\x

bpKKpWntXm cq]bpX-x

kakwJymZfltXm `thZvlmcx

CXn.

[KWn-X-bp‡n`mj-bn¬

]cn-[nbpw hymk-hpw F∂

Bdma-≤ymbw kam]vXw]

VI.  ]cn[nbpw hymkhpw
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A≤ymbw Ggv

 Pym\b\w
1. hrØm¥¿§XjU{i˛

_mlphymkm¿≤Xpey\ymbw

C∆Æw N{IIemkakwJyambn hrØmImcambncn°p∂ ]cn[n°p

hymkap≠m°n AXns‚ A¿≤wsIm≠p Hcp hrØw hoin1 B2

hrØa≤yØn¶¬ ]q¿∆m]ctcJbpw Z£ntWmØctcJbpw3 D≠m°n

]ns∂ Z£ntWmØctcJbpsS Ccp]pdhpw Cuc≠p ka{Xy{ißƒ

Iev]n∏q. Ah‰ns‚ `pPIsf√mw hymkm¿≤tØmSp Xpeyambn´p4

Iev]nt°≠q. AhnsS Z£ntWmØctcJbpsS c≠v A{KØn¶epw

A{Kw kv]¿in°pamdp hymkm¿≤Xpeyßfmbn´ v \mep

kakvXPym°sf Iev]n∏q. Ch {Xy{iØns‚ Hmtcm `pPIfmIp∂Xv.

]ns∂ tI{µØn¶∂p kakvXPym{Kßfn¬ kv]¿in°pamdp \mep

hymkm¿≤ßsf Iev]n∏q. Ch Hmtcm `pPIfmIp∂Xv. ]ns∂

`£ntWmØctcJm¿≤ßƒ Hmtcm∂v Cuc≠p {Xy{ißƒ°v

km[mcWßfmbncn°p∂5 `pPIƒ. Cßs\6 Z£ntWmØctcJbpsS

Ccp]pdhpw Cuc≠p {Xy{ißƒ. Cßs\ hymkm¿≤Xpey`pPIfmbn´v

\mep ka{Xy{ißsf Iev]n∏q. ChnsS bmsXmcp {Xy{iØn¶epw Hcp

`pP apgpht\ \neØp kv]¿in°amdp Iev]nt°≠q. CXn∂p7 ‘`qan’
F∂p t]¿.

1. 1. F. hobn
2. B. om. B
3. B. ]q¿∆m-]-c-Z-£n-tWm-ØctcJ-Isf
4. C. Xpey-ambn; F. Xpey-ß-fm-bn´p
5. B. C. km[m-c-W-ß-fm-bn-´n-cn-°p∂ D. km[m-c-Wam-bn-´n-cn-
6. C. adds ]ns∂
7. B. F. AXn∂p
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]ns∂8 `panbpsS c≠{KØn¶epw kv]¿in°p∂9 `pPIƒ c≠pw

taevt]m´m°n10 Iev]n∏q. ]ns∂ B `pPIƒ c≠pw Xßfn¬11 IqSp∂

tImWn¶¬ \n∂p I\sØmcp hkvXp sI´nsbmcp kq{Xw Iogvt]m´p

Xq°q. AXn∂p ‘ew_’sa∂p t]¿. taev]´p Iev]n®12 `pPIƒ c≠pw

Xßfn¬13 \ofsam°psa¶n¬ ew_w `qa≤yØn¬ kv]¿in°pw; H∂p

sNdpXmIn¬ A∏pdØp \oßpw. ChnsS ]ns∂ ]q¿∆kq{XØns‚

Ings° A{Kw t\sc taemIpamdv Db¿Øpamdv14 Iev]n∏q. At∏mƒ

`£ntWmØckq{Xw ‘kahnXm\’ambn´ncn°pw.

]ns∂ Z£ntWmØckq{XØns‚ Ings° ]pdsØ {Xy{ißƒ

c≠nt‚bpw aosØ tImWn¶¬\n∂p15 c≠p ew_kq{Xßƒ XmgvØq.

Ah Z£ntWmØckq{XØns‚ c≠¿≤ßfptSbpw \Sphn¬

kv]¿in°pw. At∏mfh c≠p kq{XßfptSbpw CS

hymkm¿≤tØmfap≠v. Z£ntWmØckq{XØn¶¬ tI{µØn¶∂pv

Ccp]pdhpap≈ hymkm¿≤ßƒ c≠nt‚bpw \Sphn¬ kv]¿in°bm¬

c≠p hymkm¿≤ßfptSbpw c≠¿≤ßƒ16 IqSpIbm¬ Hcp

hymkm¿≤tØmfw \ofambn´ncn°pw AXv 17. F∂m¬ B

ew_kq{XßfpsS A{KßfpsS CSbpw A{XXs∂

hymkm¿≤Xpeyambnt´18 Ccn°pw. AXp ew_m{Km¥cNm]Øn¶se

kakvXPymhmIbpap≠pv. ]ns∂ c≠p ew_ßfptSbpw Hmtcm ]pdsØ

`pPIfpw hymkm¿≤Xpeyßfmbn kakvXPymcq]ßfmbn´ncn°pw.

F∂m¬ Z£ntWmØckq{XØns‚ Ingt°]pdsØ ]cn≤y¿≤w

hymkm¿≤Xpeyßfmbncn°p∂19 aq∂p kakvXPym°sfs°m≠p20

1. 8. B. om. ]ns∂
9. F. kv]¿in-®n-cn-°p∂
10. B. Bbn; F.om. B°n
11. B. XΩn¬
12. B. taevt]m-´p≈
13. B. om. Xßfn¬
14. F. Af-sh-Øp-amdv
15. B. om. \n∂p
16. D. F. c≠¿≤w
17. B. om. AXv
18. C. ambn´p
19. F. Bbn-´n-cn-°p∂
20.F. adds hrØw

VII. Pym\b\w
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XnIbpw F∂p h∂q. C∆Æw21 as‰ ]cn≤y¿≤Øn¶epw. F∂m¬

hymkm¿≤Xpeyßfmbn´ncn°p∂ Bdp kakvXPym°sfs°m≠p

hrØw apgph\pw XnIbpw F∂p hcpw. C∆ÆamIptºmƒ c≠p cmiosS

kakvXPymhp hymkm¿≤Xpeyw F∂p hcpw. hrØjƒ`mKamsWs√m

c≠p cminbmIp∂Xv2 F∂n´v. CXpsIm≠p Xs∂ hymkm¿≤Øns‚

A¿≤w GIcmiosS A¿≤Pymhv F∂p hcpw.

2. Pymich¿§tbmKaqeØn¬\n∂p Pym\b\w

2.i. PymtImSnicßƒ

Nm]tØbpw Pymhnt\bpw IqSn A¿≤n®ncn°p∂Xns\ Cu

Nm]Øns‚ ‘A¿≤Pymhv ’ CXv F∂p sNm√p∂q. Nm]w

apgph\mbn´ncn∏q, Pymhv A¿≤hpw, Cßs\ Ccn°p∂hs‰ A√

C®m]Øns‚ A¿≤Pymhv CXv F∂p sNm√p∂q. ChnsS ]ns∂

{Klhnjbambncn°p∂ {InbIfn¬ A¿≤PymhpsImt≠

D]Imcap≈q. F∂n´v A¿≤Pymhns\ At{X  ‘Pymhv’ F∂p sNm√p∂q

ChnsS ]ns∂ kakvXPyma[yØn¶∂p kakvXPymNm]a[yØns‚

AIew ‘ic’amIp∂Xv A¿≤Pymhn∂pw kakvXPymhn∂pw Ht∂

icamIp∂Xv. AXp hrØtI{µØn¶∂p Nm]a≤yØn¶¬

kv]¿in°p∂ hymkm¿≤kq{XØns‚ JWvUamIp∂Xv.

ChnsS hrØw \neØp hc°pamdp Iev]n°ptºmƒ

]q¿∆kq{Xm{KØn¶∂p  hSt°]pdw ]cn[osS ]{¥≠msem∂ns\

taSsa∂p Iev]n°pamdp \ncq]n°p∂q. At∏mƒ

]q¿∆m]ckq{XØn¶¬  icw BIpamdp1 t\sc sX°phS°p Iev]n∏q

`pPmPymhns\. t\sc Ing°p]Sn™mdp tImSnPymhnt\bpw Iev]n∏q2.

At∏mƒ DØckq{Xm{Kw tImSnicambn´ncn°pw3. ChnsS

{]YacminPym{KØn¶∂p Ing°p]Sn™mdp≈ tcJ

1. 21. B. A∆Æw
22.B. om. BIp-∂Xv

2. 1. B. hcp-amdp
2. B. Rmdp Iev]n∏p tImSn Pymhns\
3. B. Bbn-cn°pw

VII. 2. Pymich¿§tbmKaqeØn¬\n∂p Pym\b\w
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{]YacminPymtImSnbmIp∂Xv. AXp c≠p cmiosS A¿≤Pymhv.

CXns\ ]q¿∆kq{XØn¶∂p hmßnbtijw {]YacminPymicw.

{]YacminPymhns\ DØckq{XØn¶∂p hmßnbtijw

GIcminPymhns‚ tImSnbmIp∂ ZzncminPymhp bmsXm∂pv AXns‚

icambn´ncn°pw.

2. ii. Pym\b\w

{]YacminPymhnt\bpw AXns‚ ichpw Xßfn¬4 `pPmtImSnIƒ

F∂p Iev]n°mw, At\ym\yw hn]coXZn°mIbm¬. F∂m¬ Ch

c≠nt‚bpw h¿§tbmKaqew ]q¿∆tcJm{KØn¶∂p

{]YacminPym{KtØmSpff A¥cmfw Hcp cminbpsS kakvXPymhv.

CXns\ ]ns∂ ]q¿∆tcJbn¶¬5 C akvXPyma≤yw hcpamdp

sh°pamdp Iev]n∏q. F∂m¬ t\sc sX°phS°mbn

]q¿∆m]ctcJbn¶¬ icambn´ncn°pw. Cu Pymhns‚ A¿≤w

A¿≤cmiosS A¿≤Pymhv. CXns\ h¿§n®p hymkm¿≤h¿§Øn¶∂p

If™p aqen®m¬ c≠c cmiosS A¿≤Pymhv . CXns\6

hymkm¿≤Øn¬ If™tijw ]q¿∆kq{Xm{KØn¶¬

A¿≤cminPymicw. CuhÆw A¿≤cminPymhns\ hymkm¿≤Øn¶∂p

If™tijw DØckq{Xm{KØn¶¬ c≠c cmin Pymhns‚ icw.

Cßs\7 A¿≤Pymh¿§hpw ich¿§hpw Iq´naqen®v A¿≤n®m¬

Cu Pymhns\ kw_‘n®p≈ Nm]sØ A¿≤n®n´p≈Xns‚

A¿≤Pymhp hcpw. Cßs\ Pymich¿§tbmKaqew sIm≠p Pym°sf

D≠m°mw. ]ns∂ hymkm¿≤h¿§sØ Cc´n®p aqen®v A¿≤n®m¬

H∂ccmiosS A¿≤Pymhp≠mIpw. Cu hgnbpw Nne Pym°ƒ

DfhmIpw.

2. 4. B. XΩn¬
5. B. D. ]q¿∆m-]c
6. B. F. CXns\ h¿§n®v hykm¿≤h¿§-Øn¬ If™Xv aqen®m¬ c≠p cmiosS A¿≤-

Pymhpw CXns\ hymkm¿≤-Øn¬ If-™-tijw DØ-c-kq-{Xm-{K-Øn-¶¬ c≠p cmin-
Pym-hns‚ icw ]q¿∆ kq{Xm-{K-Øn-¶¬ A¿≤-cm-in-Pym-i-cw.

7. B. F. C∆Æw

VII. Pym\b\w
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3. kmt¶XnIkw⁄Ifpw \n¿∆N\ßfpw

3. i. `pPmtImSnPym°ƒ

Cßs\ ]q¿∆kq{Xm{KØn¶∂v DØckq{Xm{KØn∂nS

hrØØns‚1 \msem∂v. CXns\ CS H°pamdp I≠v2

Ccp]Øn\mepXm≥ GdØm≥ ]Ip°pamdp I≠p _nµp°ƒ D≠m°q.

]ns∂ A∆Æw as‰ aq∂p ]Zßfnepw3. ChnsS _nµp°fpsS CS Hmtcm

‘Nm]JWvUw' BIp∂Xv. Nm]Jfim{Kßfn¬ \n∂v4 sX°p

hS°mΩmdp ]q¿∆m]ckq{XØn¶¬ t\sc \Sphv AIs∏Spamdv D≈

tcJIƒ ‘`pPmPym°ƒ’ BIp∂Xv. CuhÆw c≠p Nm]JfißfpsS

A{Kßƒ Xßfn¬5 kv]¿in°p∂ k‘nbn¶∂pXs∂

Ing°p]Sn™mdmbn Z£ntWmØckq{XØn¶¬ a≤yw

kv]¿in°pamdp≈ tcJIƒ ‘tImSnPym°ƒ' BIp∂Xv. AXpsIm≠v

h∂q, ‘HmP]Z’Øn¶¬ KXw `pPm, Gjyw tImSn, ‘bp‹]Z’Øn¶¬6

adn®v F∂pw, ]ns∂ `pPmtImSnPym°ƒ°p ]p¿t∆mØckq{Xßfn¬

‘aqew', Nm]k‘nbn¶¬ Pym°fpsS ‘A{Kw’ F∂pw sNm√p∂q. C∆Æw

Nm]JfißfptSbpw Hc{KsØ ‘aqew' F∂pw Hc{KsØ ‘A{Kw'

F∂pw sNm√pw. hyhlmcm¿∞ambn´v ChnsS7 ̀ pPmNm]Jfißƒ°p

]q¿∆m]ckq{XØn∂SpØp≈ A{KsØ ‘aqew' F∂pw Z£n-tWm-

Ø-c -kq - {X -Øn -\ -Sp -Øp≈ A{KsØ ‘ A{Kw'F∂pw sNm√pw.

tImSnJfißƒ°p adn®p aqem{Kßƒ.

3. ii. Ccp]Øn\mev Pym°ƒ

]ns∂ ChnsS Hcp cminsb F´v, Hcp ]ZsØ Ccp]Øn\mepw

hn`Pn°amdp Iev]n®v Pym°sf D≠m°pamdv sNm√p∂q. AhnsS

]q¿∆kq{XØns‚8 hSs° ]pdsØ hrØØn¶¬ cmiosS Fs´m∂p

sN∂nSØp \tSsØ Nm]Øns‚ A{Kw F∂p Iev]n∏q. B

3. 1. F. hrØ-Øn¬
2. B. om. I≠v
3. F. ]mZ-ß-fnepw
4. B. A{K-Øn-¶∂v

5. B. ]Z-Øn¬
6. F. sNm√pw
7. F. AhnsS
8. B. F. ]q¿∆-kq-{Xm-{K-Øn-¶∂v; D. ]q¿∆-kq-{X-Øn-¶∂v
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Nm]Øns‚ A¿≤Pymhp {]YaPymhmIp∂Xv. AXp

]q¿∆kq{XØn¶∂p {]YaNm]m{KtØmfap≈Xp {]YaNm]Øns‚

JfiPymhmIp∂Xpw Xs∂. ]ns∂ {]YaNm]m{KØn¶∂p ]nt∂bpw

cmiyjvSamwiw sNt∂Sw9 Zz nXobNm]m{Kw. Cu CS

c≠mwNm]JfiamIp∂Xv. CXns‚ A{KØn¶∂p ]q¿∆kq{XtØmfw

t\sc sX°phS°p≈ A¿≤Pymhp c≠mwPymhmIp∂Xv. ]ns∂

{]YaNm]Øns‚ A{KØn¶∂pw10 Zz nXob Nm]Øns‚

A{KØn¶∂pw11 DØckq{XtØmfw t\sc Ing°p]Sn™mdp≈

A¿≤Pym°ƒ {]YaZznXobPym°fpsS tImSnIfmIp∂Xv. ]ns∂

CuhÆw F√m Nm]m{KØn¶∂pw sX°phS°pw Ing°p]Sn™mdpw

Pym°sf Iev]n∏q. Ccp]Øn\memaXp hymkm¿≤amIp∂Xv.

3. iii. `pPmtImSnJfißƒ

]ns∂ ]q¿∆kq{XØns‚ A{KØn¶se hrØkºmXØn¶∂p

{]YaPymaqetØmSv CS ]q¿∆kq{Xm{Kw {]YaNm]Øns‚ tImSn ˛

JfiamIp∂Xv. ]ns∂ {]YaNm]Øns‚ `pPmJfiamIp∂Xp

`pPmPymhp Xs∂. ]ns∂ ZznXobPym{KØn¶∂p {]YaPymhns‚

tImSntbmfap≈ ZznXobPym`mKw c≠mw Nm]Øns‚

`pPmJfiamIp∂Xv. ]ns∂ {]YaPymtImSosS A{Kw

{]YaNm]m{KØn¶∂p ZznXobPymthmfap≈ CS ZznXobNm]Øns‚

tImSnJfiamIp∂Xv.

CuhÆw XrXobNm]Øns‚ A{KØn¶∂p12 sX°phS°pw

aqeØn¶∂p Ing°p]Sn™mdpw D≈ `pPmtImSnPym°fpsS A{Kw

Xßfnse13 kºmXtØmSv hrØtØmSv CS XrXobNm]Øns‚

`pPmtImSnJfißfmIp∂Xv14. CuhÆw F√m Nm]JfißfptSbpw

Xs‚ Xs‚ c≠p Xe°∂pw XpSßnb15 `pPmtImSnPym°fpsS

A{Kßƒ Xßfnse kºmXØn¶∂p hrØtØmSp≈ CS bmsXm∂v

Cu Jfißƒ Xßfn¬ `pPmtImSnIfmbncnt∏m Nneh.

3. 9. B. sNt∂-SØv
10. B. Nm]m-{K-Øn-¶∂v
11. B. ZznXobNm]m-{K-Øn-¶∂pw
12. B. Nm]m-{K-Øn-¶∂v

13. B. A{K-ß-fnse
14. B. BIp∂p; F. Jfi-am-Ip-∂Xv
15. B.C.D. F add XpSßn

VII. Pym\b\w
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Ch‰ns‚ I¿ÆamIp∂Xv AXXp Nm]Jfißƒ°p sht∆sd D≈

kakvXPymhv. Chsb√mw \ofsamØncnt∏m Nneh. Nm]Jfißƒ

F√mw XpeyßfmIbm¬ kakvXPym°fpw Xpeyßƒ. Ch

I¿Æßfmbn´p≈ `pPmtImSnIƒ16 Hmtcm I¿ÆØn∂v Hmtcm {]Imcw

\ofambncn°pw. `pPmtImSnJfiPym°fmbn´ncn°p∂ `pPmtImSnIƒ

Ch. XpeyI¿Æßfmbn \m\mcq]ßfmbncn°p∂ `pPmtImSnItfmSp

IqSnbncn°p∂ {Xy{ißƒ Ccp]Øn\mev.

]ns∂ `pPmtImSnIƒ°p I¿ÆßfmIp∂Xp hrØtI{µØn¶∂v

AXXp `pPmtImSn tbmKtØmfap≈h. Nm]Jfim{Kßfn¬

kv]¿in°p∂hbmIbm¬ F√m I¿Æßfpw Xpeyßƒ. ChntSbpw

`pPmtImSnIƒ \m\mcq]ßƒ.

3. iv. sht∆sd ]mZßfn¬ `pPmtImSnNm]ßƒ

ChnsS ]q¿∆kq{Xm{Kw hrØsØ kv]¿in°pt∂Sw tajcmiosS

BZn. AhnSp∂p hrØØns‚ ]{¥≠msem∂p sNt∂Sw taSØns‚

HSp°w17. ]nt∂bpa{XsNt∂Sw CShØns‚ HSp°w18, DØckq{Xm{Kw

anYp\Øns‚ HSp°w19. F∂nßs\ Iev]n®n´p ]dbp∂q. ChnsS

]q¿∆kq{Xm{Khpw hrØhpap≈ kºmXØn¶¬ aqeambn

CjvS{]tZiØn¶¬ A{Kambn´p≈Xv "CjvS`pPmNm]w'.

DØckq{Xm{KØn¶∂v At{XSap≈Xp ‘CjvStImSn  Nm]w'.

F∂m¬ \tSsØ ]ZØn¶¬ ]ZmZnbn¶∂p XpSßn Ign™ `mKw20

‘`pPmNm]w'. CjvS{]tZiØn¶∂p XpSßn ]Zw XnIhm≥ t]mcmØXp

‘tImSnNm]w'. c≠mw]ZØn¶¬ sN∂Xp tImSnNm]w, DØckq{Xm{Kw

]ZmZnbmIbm¬. tImSnNm]m{KØn¶∂p ]Zw XnIhm≥ t]mcmØXp

`pPmNm]w; `pP°p ]›nakq{Xm{Kw ]ZmZnbmIbm¬.

aq∂mw]ZØn¶¬ \tSsØ ]ZØn¶set∏mse21. \memw]ZØn¶¬

c≠mw]ZØn¶set∏mse22 `pPmtImSnNm]ßƒ. \tSsØ ]ZØn¶¬

]q¿∆kq{XØn¶¬23 `pPmNm]Øn∂p aqew, CjvS{]tZiØn¶e{Kw.

Cu CjvS{]tZiØn¶¬Xs∂ A{Kambn DØckq{XØn¶¬24

3. 16. D. `pPm-tImSn Jfi-ßƒ 20. H. Nm]w
17. B. taSm-h-km\w 21. B. ]Z-sØ-t∏mse
18. B. CS-hm¥yw 22. B. c≠mw ]Z-wt]mse
19. B. anYp-\m¥yw 23. B. F. ]q¿∆-kq-{Xm-{K-Øn-¶¬

VII. 3. kmt¶XnIkw⁄Ifpw \n¿∆N\ßfpw
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aqeambncn°pw B `pPmNm]Øns‚ tImSnNm]w. Ch‰ns‚

A¿≤Pym°ƒ `pPmtImSnPym°fmIp∂Xv.

3. v. `pPmtImSnicJfißƒ

F∂m¬ hrØ]mZsØ Ccp]Øn\mev CS25 Jfin°pamdp

Iev]n°ptºmƒ \tSsØ Nm]Jfiw CjvS`pPmNm]w F∂pw

Iev]n°ptºmƒ `pPmNm]w Hcp Jfiw t]mbtijw Ccp]Ønaq∂p

Jfiw IqSnbXp tImSnNm]w. F∂m¬ \tSsØ Pymhn∂p tImSn

Ccp]Ønaq∂mw Pymhv. c≠maXn\v Ccp]Ønc≠maXv. Cßs\

I≠psIm≈q.

ChnsS `pPmPymaqeßƒ F√mw ]q¿∆kq{XØn¶¬ kv]¿in°pw.

Cu kq{XØn¶¬ PymaqekºmXßfpsS CS hrØtI{µØn¶∂p

XpSßn {ItaW tImSnPymJfißƒ. ChnsS `pPmPymhns‚

Ccp]Ønaq∂maXns‚ aqehpw hrØtI{µhpw Xßfnep≈26 CS

]q¿∆kq{XØn¶se Jfiw \tSsØ tImSnJfiw. ]ns∂

Ccp]Ønaq∂mw Pymhns‚ aqeØn¶∂v Ccp]Ønc≠mw ̀ pPmPymhns‚

aqetØmSnS ]q¿∆kq{XØn¶se Jfiw tImSnPymhn¶se c≠mw

Jfiw. Cu Jfißƒ c≠pw Iq´nbm¬ c≠mw Pymhv. C∆Æw {ItaW

D≈ Jfißfm¬ Hmtcm∂p {ItaW Iq´nbm¬ {ItaW aosØ aosØ

Pym°fmbn´ncn°pw. ]ns∂ ChnsS ]q¿∆kq{XØn¶se A{KØn¶se

Jfiw \tSsØ `pPmPymhns‚ icw. CXn¬ ]ns∂bpw27 ASpØ Hcp

Jfiw Iq´nbm¬ c≠mw Pymhns‚ icw. Cßs\

]q¿∆kq{Xm{KØn¶∂p XpSßn JfitbmKw sNbvIn¬ {ItaW

`pPmicßƒ. tI{µØn¶∂p XpSßpIn¬ tImSnPym°ƒ. Jfißƒ

sht∆sd Ccn°ptºmƒ, tI{µØn¶∂p XpSßpIn¬ tImSnJfißƒ

A{KØn¶∂p XpSßpIn¬ {ItaW icJfißƒ. C∆Æw

DØckq{XØn¶¬ hrØtI{µØn¶∂p XpSßpIn¬ `pPmJfißƒ

JfitbmKØn¶¬ `pPmPym°fmbn´ncn°pw. DØckq{Xm{KØn¶∂p

XpSßpIn¬ tImSnicJfißfpw tImSnicßfpw {ItaW. Cßs\

hymkm¿≤kq{XØn¶¬ PymJfißsf Iev]n°pw {]Imcw.

3. 24.B. F. kq{Xm-{K-Øn-¶¬
25.B. F. om. CS

26.B. XΩn¬
27.C. Adds ChnsS

VII. Pym\b\w
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4. Pym\b\w

4.i. ]TnXPym°ƒ

]ns∂ AXXp Nm]JfißfpsS kakvXPym°ƒ

Xpeyßfmbn´ncn°p∂h I¿Æßfmbn´p I¿ÆßfpsS c≠v
A{Kßfnepw kv]¿in°p∂ Pym°ƒ Xßfnep≈ kºmXØn¶∂v

kakvXPym°fmIp∂ I¿ÆßfpsS A{KtØmfap≈ CS

`pPmtImSnIfmbn kakvXPymhnt\mSpIqSnb {Xy{ißfmbn´ncn°pw.
Cu `pPmtImSnIsf BInepamw `pPmtImSnJfiPym°ƒ F∂p

Iev]n∏m≥. CuhÆambncn°p∂ PymJfißsf D≠m°n ]Tnt°Ww.

Ah‰n∂p "]TnXPym°ƒ' F∂p t]cp≠v ]q¿∆imkv{Xßfn¬
]Tn°bm¬. hyp¬{ItaW IqSn ]Tn∏q. AXv1 "D¬{IaPym°ƒ'2.

]ZmZnbn¶∂p XpSßn C{X Nm]Jfiw Ign™ k‘n

CjvS{]tZisa∂p hcptºmƒ3 A{X4 ]TnXPymhpXs∂
CjvSPymhmIp∂Xv. ]ns∂ C ‘nbn¶∂p ]n∂sØ

Nm]JfiØn¬5 H´psNt∂Sw CjvS{]tZisa∂p hcptºmƒ Cu

]TnXPymhn¬ Iq´q , aosØ Nm]JssfiItZiØns‚
PymJssfiItZiw. F∂menjvSPymhXv.

ChnsS PymJssfiItZiap≠m°pw {]Imcw ]ns∂. C®m]Jfiw

{]amWamIptºmƒ Cu JfiPym°fn¬ C{XmaXp {]amW^ew,
C®m]JssfiItZiØn∂v F{X PymJssfiItZiw F∂v Cu

ss{XcminIw sIm≠p≠m°mw6 AXp ÿqeas{X. AXn∂p tlXp

\tSsØ Nm]Ønenc´n c≠mw Nm]w, apΩSßp aq∂mwNm]w, Cßs\
Nm]ßƒ7. \tSsØ Pymhnenc´n C√ c≠mw Pymhv, apΩSßn√

aq∂mwPymhv F∂nhÆancn°pw. AXn∂p tlXp \tSsØ Nm]Øn∂p

hfhn√, icw s]cnsI°pdIbm¬; Pymhnt\mSp an°hmdpw kaw. Nm]w
hepXmtbmfw hfhv Gdpw. AhnsS8 Pymhp Ipdth \ofap≠mbncn∏q,

icw \oftadpIbm¬. F∂m¬ Nm]w {]amWambn´p Pymhns\

ss{XcminIw sNøcpXv, ^ew ÿqeamIbm¬.

4. 1. B. Ah 5. D. Nm]-J-fi-Øn-¶¬
2. B.C.D. Add F∂m¬ 6. F. D≠m-°p-∂Xv
3. B. C.D.F. {]tZ-i-hr-Ø-Øn-se∂p hcp-tºmƒ 7. F. Nm]-J-fi-ßƒ
4. F. A{Xm-hsX 8. B. ChnsS
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4.ii. ]TnXPym°sf kq£vaambn´p hcpØpw {]Imcw

A\¥cw ]TnXPym°sfØs∂ kq£vaambn´dnbpw  {]ImcsØ

sNm√p∂p≠v9. AhnsS \tSsØ Nm]JfiØns‚ aqeamIp∂

]q¿∆kq{Xm{KØn¶epw ChnSp∂p hS°p\oßn cmiyjvSamwiw

Ccp∂q‰n Ccp]Ø©v Cen sNt∂Sw10A{Kw AhntSbpw kv]¿in®n´v

BZyNm]JfiØns‚ kakvXPymhns\ Iev]n∏q. bmh Nneh ]ns∂

A®m]JfiØns‚ aqem{Kßfn¬ \n∂p XpSßnb `pPmtImSn

JfiPym°ƒ, Ahs‰ At\ym\yw ̀ pPm-tImSnIfm-bn´p Iev]n-°p-tºmƒ

Ch-‰ns‚ I¿Æ-am-bn-´n-cn-°pw11 A -a-kvX-Pym-hv. ]ns∂ hrØ-tI-{µ-

Øn¶∂v C®m-]-J-fi-a-≤y-Øn-¶¬ kv]¿in-°p-amdv Hcp hymkm¿≤sØ

Iev]n-∏q. CXns‚ A{Kw C -a-kvX-Pym-hns‚ icamIp∂Xv. BIbm¬

Cu hymkm¿≤hpw kakvXPymhpw Xßfn¬ hn]coXZn°v BIbm¬

]q¿∆kq{Xm{KØn¶¬\n∂pv Cu hymkm¿≤m{Kw F{X hS°p \oßn

Ccn°p∂q, Z£ntWmØckq{XØns‚ Z£nWm{KØn¶¬\n∂v

A akvXPym{Kw BbwiwsIm≠p Ing°p \oßn Ccn°pw. ChnsS

BZyNm]kakvXPymhns\°pdn®p Z£ntWmØckq{XamIp∂Xpv

BZyPymhp Xs∂. ]ns∂ Cu hymkm¿≤m{KØn¶¬ A{Kambn´p c≠p

`pPmtImSnPym°sf Iev]n∏q.

AhnsS Jfim¿≤amIp∂ \qs‰mcp]Øp c≠c Cen

`pPmNm]amIp∂Xv. hfhp IpdbpIbm¬ C®m]sØØs∂

A¿≤Pymhpv F∂p Iev]n®v CXns‚ h¿§sØ hymkm¿≤h¿§Øn¶∂p

If™p aqen®Xp tImSnPymhv Ccp]Ønaq∂c Nm]JfiØns‚

Pymhv . CXpt]mb hymkm¿≤tijw `pPmicw. ChnsS

{]YaNm]Jfia≤yØn¶¬ kv]¿in°p∂ hymkm¿≤I¿ÆØn∂p

\qs‰mcp]Øpc≠c Cen `pPmPymhmIp∂X. v Cu

Pymhnenc´nt]m∂ncn°p∂ kakvXPymI¿ÆØn∂v F¥p `pP F∂

Css{ØcminIw sIm≠p kakvXPymI¿ÆØns‚ `pP Bbncn°p∂

4. 9. C. sNm√p∂p, B.om, sNm√p-∂p≠v.
10. F. sN√p-t∂-SØv
11. C.D.F. I¿Æ-ß-fm-bn-´n-cn°pw
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{]YaPymicap≠mIpw. ChnsS {XnPymI¿ÆØn∂p sX°phS°p ̀ pPm.

C{ØnPymI¿ÆØn∂p hn]coXamIbm¬ kakvXPymI¿ÆØn∂p

Ing°p]Sn™mdp `pPm. ]ns∂ Cu hymkm¿≤I¿ÆØn∂v

Ccp]Ønaq∂c Nm]JfiØns‚ Pymhp tImSnbmIp∂Xv,

C akvXPymI¿ÆØn∂v F¥p tImSn F∂v  BZyPymhp≠mIpw.

ChnsS {XnPymI¿ÆØn∂p tImSn Ing°p]Sn™mdv ,

kakvXPymI¿ÆØn∂p sX°phS°p tImSn. ]ns∂ {]YaPymicw

hymkm¿≤Øn¶∂p12 If™m¬ {]YaPymtImSn D≠mIpw13

Cu \ymbw sIm≠pXs∂ ZznXobmZnPym°sf D≠m°q14. AXv

Fßs\ F∂v. ChnsS C\n {]YaPym{KØn¶¬ A{Kambn´v Hcp

hymkm¿≤I¿ÆsØ Iev]n∏q. CXn∂p `pPmtImSnIfmIp∂Xp

\tSsØ Pymhpw Ccp]Ønaq∂mw Pymhpw. Ch ChnsS

{]amW^eßfmIp∂Xv. ]ns∂ \tSsØ Nm]JfiØns‚ \Sphnepw

c≠mwNm]JfiØns‚ \Sphnepw kv]¿in®n´ v 15  Hcp

kakvXPymI¿ÆsØ Iev]n∏q. CXp16 C—mcminbmIp∂Xv.

C akvXPymhpw cminbn¬ Fs´m∂mbn´ncn°pw17 c≠p

Nm]JfiØmepw ]∏mXn IqSpIbm¬. CXn∂pv C—m^eßfmIp∂Xpv

c≠mw Nm]JfiØns‚ a≤yØn¬ A{Kambncn°p∂

`pPmJWvUPymhp \tSsØ Nm]JfiØns‚ \Sphne{Kambncn°p∂

tImSnPymthmfap≈Xp H∂v Cu `pPmJfiPymkºmXØn¶∂p

XpSßo´p tImSnPymhns‚ A{Kw H∂v. CXp tImSnJfiamIp∂Xv.

Cu tImSnJfiw t]mbtijw tImSnPymhp

ZznXobNm]Jfia≤yØn¶e{Kambncn°p∂ tImSnPymhmbncn°pw18.

]ns∂ Cu `pPmJfiw {]YaNm]Jfia≤yØn¶¬

A{Kambncn°p∂ `pPmPymhn¬ Iq´q . F∂m¬

ZznXobNm]Jfia≤yØn¶e{Kambncn°p∂ `pPmPymhp≠mIpw.

4. 12. B. hymkm¿≤-Øo∂p
13. F. Pymhp-≠mIpw
14. C. D≠m-°p∂p
15. B. kv]¿in-°p-amdv
16. B.D.R AXp
17. B. Fs´m-∂m-bn-cn°pw
18. D. F. tImSn-Pym-hm-bn-´n-cn°pw
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]ns∂ Cu Pym°ƒ {]amW^eßfmbn Cu Pym{KßfpsS

kwºmXØn¶¬ A{Kambncn°p∂ hymkm¿≤I¿Æw {]amWambn

ZznXobNm]JfiØns‚ kakvXPymhv C—bmbn, Iev]n®n´p≠m°nb

C—m^eßƒ ZznXobNm]JfiØns‚ `pPmtImSnPym°fmIp∂Xv.

CXn¬ `pPmJfiw {]YaPymhn¬ Iq´q . tImSnJfisØ

Ccp]Ønap∂mwPymhn¬ Ifbq. F∂m¬ c≠mw Pymhpw

Ccp]Ønc≠mw Pymhpw D≠mIpw. Ch `pPmtImSnIfmbn´pancn°pw.

]ns∂ Ch {]amW^eßfmbn´p XrXobNm]Jfia≤yØn¶¬

A{Kambncn°p∂ `pPmtImSnPym°sf D≠m°q. ]ns∂  Ah {]am-W-

-̂e-ß-fm-bn´p XrXobNm]-Øns‚ A{K-Øn-¶¬ A{K-am-bn-cn-°p∂ ̀ pPm-

tIm-Sn-Pym-°sf D≠m°q. ]ns∂ HSp°tØmfaohÆw. AhnsS19

Nm]a≤yØn¶∂v D≠mIp∂Xp a≤yØn¶teXn¬ kwkvIcn∏q.

Nm]Jfim{KØn¶∂v D≠mIp∂ JfiPym°ƒ Jfim{KØn¶¬

D≠mbh‰n¬ kwkvIcn∏q. F∂m¬ Nm]Jfia≤yØn¶teh Hcp

]cnj; A{KØn¶teh Hcp ]cnj. Ch‰ns‚20 a≤yØn¶tehs‰

Dt]£n®v A{KØn¶tehs‰ ]Tnt®∏q. Ch ]TnXPym°fmIp∂Xv.

4.iii. CjvS{]tZiØn¶se Pym\b\{]Imcw

]ns∂ Hcp Nm]JfiØns‚ A{KØn¶semgnb CSbnsemcp

CjvS{]tZiamIptºmƒ CjvS{]tZiØn¶e{Kambncn°p∂

`pPmtImSnIsf Adnhm\pw CXpXs∂ D]mbw. 21C ao]Øn¶se

Nm]-J-fim-{K-Øn-¶∂v CjvS{]-tZ-i-tØm-SnS°p “injvSNm]w” F∂p

t]¿. A»njvSNm]sØ Xs∂ kakvXPymhmbn C—mcminbmbn

Iev]n®v ss{XcminIw sNbvXp≠m°p∂ C—m^eßƒ

A»njvSNm]Øns‚ `pPmtImSnJfiPym°ƒ Bbn´ncn°pw. Ahs‰

CjvS{]tZiØn∂SpØp≈ Nm]Jfim{KØn¶se ]TnXPym°fn¬

kwkvIcn®m¬ hrØØn¶se CjvS{]tZiØn¶e{Kßfmbncn°p∂

`pPmtImSn Pym°fp≠mIpw.

4. 19. F. ChnsS
20.C. Ch-‰n¬
21. D. Chn-sS, kao]; F. AhnsS
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AhnsS injvSNm]a≤yØn¶¬ A{Kambncn°p∂ hymkm¿≤I¿Æw

{]amWamIp∂Xv. CXns‚ ̀ pPmtImSnPym°ƒ {]amW^eßfmIp∂Xv.

Chs‰ Adn™oe ]ns∂. F∂n´v ChnS°panXpXs∂ D]mbw. ChnsS

injvSNm]a≤yØn¶epw ]TnXPym{KØn¶epw kv]¿in®n´ v

injvSNm]Øn¬ ]mXn°v Hcp kakvXPymhns\ I¿Æambn Iev]n®v

C°¿ÆØns‚ `pPmtImSnJfißsf C—m^eßfmbn D≠m°n

]TnXPym°fn¬ kwkvIcn®m¬ injvSNm]a≤yØn¶¬

A{Kambncn°p∂22 Pym°fp≠mIpw. Ch‰n∂p ]ns∂

injvSNm]m¿≤Øns‚ a≤yØn¶¬ A{Kßfmbncn°p∂ Pym°sf

At]£ D≠v. Ah ]TnXPym°ƒXs∂ F∂p Iev]n∏q,

Cuj¬t`Zta D≈q F∂n´v. CXpsIm≠v23 kq£vaX t]mcmbvIn¬

injvSNm]Øn¬ \msem∂n∂p kakvXPymhns\ Iev]n®v24 CXn∂p

JfiPym°sf D≠m°q25 \tS. CXpw t]mcmbvIn¬

CXnt‚bpa¿≤Øn¶tebv°p Iev]n®psIm≈q26. CXns\

‘CjvStZmxtImSn[\ptjmx’ , (X{¥-kw-{K-lw. II.10 B) F∂XpsIm≠p

sNm√nbXv.

5. kwIenXßsfs°m≠v CjvSPymicm\b\w

5. i. PymJfißfpw Jfim¥cßfpw

Cßs\ Nm]Jfia≤yØn¶e1{Kambncn°p∂2 Pym°sf

{]amW^eßfmbn Iev]n°ptºmƒ Nm]k‘nbn¶¬

A{Kßfmbncn°p∂ kakvXPymI¿ÆØns‚ `pPmtImSnIfmbn´p

Nm]k‘nbn¶se `pPmtImSnPym°ƒ DfhmIpw. AhnsS

{]YaNm]a≤yØn¶ehs‰s°m≠p {]YaNm]Jfim{KØnteh3.

AhntSbpw {]amW^ew ]p¿∆m]csa¶n¬ C—m^ew ̀ £ntWmØcw,

{]amW^ew Z£ntWmØcsa¶n¬ C—m^ew ]q¿∆m]cw F∂nXp

\nbXw. ]n∂bpap≠v . Nm]Jfia≤y-Øn-¶e{Kw {]amW^eßƒ°v4

4. 22. S. F. Bbn-´n-cn-°p∂
23. B.C.D.F om. Ah ]Tn-X-Pym-°ƒ; [...to...] CXp-sIm≠v
24. C. Iev]n-®n v́
25. B. D≠m-°p∂p
26 B.C.D.F Add Cßs\ kq£vaX D≠m-°n-s°m≈q

5. 1. F. a≤y-Øp-¶¬
2. B. F. A{K-ß-fm-bn-cn-°p∂
3. F. A{K-Øn-¶-teh
4. C. {]am-W-^-e-ßƒ
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F¶n¬ Nm]Jfim{KØn¶e{Kw C—m^eßƒ°v. Nm]Jfim{KØn¶¬,

{]amW^eßƒ°v A{Ksa¶n¬, Nm]Jfi a≤yØn¶¬ A{Kßƒ

C—m^eßƒ°v, F∂nXp \nbXw. ChnsS F√m JfiPym°fpw

hcpØpt∂SØp kakvXPym{XnPym°ƒ Xs∂ C—m

{]amWßfmIp∂Xv. F∂n´p Xpeyßƒ Ah5. {]amW^eßƒ°p

t`Zap≠mI sIm≠s{X C—m^eßƒ°p t`Zap≠mIp∂q.

ChnsS Nm]Jfia≤yØn¶e{Kßfmbncn°p∂ tImSnIfpsS

A¥cwsIm≠v C—mcminsb KpWn∏q F¶n¬

Nm]Jfim{KØn¶e{Kambncn°p∂ ̀ pPmJfißfpsS A¥cw hcpw.

]ns∂ Nm]Jfia≤yØn¶se tZm:Jfiw sIm≠p KpWn°n¬6

Nm]Jfim{KØn¶se tImSnJfim¥cw hcpw. F∂menhnsS

{]YaNm]k‘nbn¶se `pPmPymhns\7 Nm]JfikakvX

PymhpsIm≠p KpWn®v {XnPysIm≠p lcn®m¬ {]YaNm]a≤yØn¶¬

A{Kambncn°p∂ tImSnJfiw hcpw. ]ns∂ B JfisØ

kakvXPymhpsIm≠p KpWn®v {XnPysIm≠p lcn∏q. F∂m¬

{]YaNm]Jfim{KØn¶¬ A{Kambncn°p∂ `pPmJfiØn¶∂p

c≠mwNm]JfiØns‚ A{KØn¶¬ A{Kambncn°p∂ `pPmJfiw

F{X Ipdbpw AXp≠mIpw. F∂m¬ {]YaPymhns\

Nm]JfikakvXPymh¿§wsIm≠p KpWn®v {XnPymh¿§w sIm≠p

lcn®m¬8 ̂ ew {]Ya9JfiPymhpw ZznXobJfiPymhpw Xßfnep≈10

A¥cambn´ncn°pw.

]ns∂ Nm]k‘nbn¶se ]TnXmPym°ƒ°v ‘]nfiPym°ƒ’ F∂pw

D≠p t]¿. F∂meXXp ]nfiPym°sf kakvXPymh¿§w sIm≠p

KpWn®v {XnPymh¿§wsIm≠p lcn∏q. ^ew JfiPym¥cw. ChnsS

5. 5. F. Ch
6. 6. B. KpWn-®m¬

7. F. Add sIm≠p
8. F. lcn∏q
9. C.D.add ChnsS bmsXmcp Nm]-J-fi-k-‘n-¶¬ A{K-am-bn-´n-cn∏p Cu Jfi-Pymhv
10. B. XΩn-ep≈
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bmsXmcp Nm]Jfik‘nbn¬ A{Kambn´ncn°p∂q11 ]nfiPymhv

CXns‚ Ccp]pdhpap≈ Nm]JfißfpsS JfiPym°ƒ bmhNneh,

Ch‰ns‚ A¥cßƒ ^eambn´p≠mIp∂Xv. ChnsS ]ns∂

KpWImcØns‚ ÿm\Øp ^ehpw lmcIØns‚ ÿm\Øp

KpWyhpw sIm≈mw. F∂n´v AXXp Jfim¥cw sIm≠p KpWn®v

AXXp ]nfiPymhns\s°m≠p lcn∏q AXXp ]nfiPymhns\.

F∂mepw AXXp Jfim¥cßƒ hcpw. Cßs\ Jfißfpw

Jfim¥cßfpw  hcpØpw {]Imcw.

A\¥cw Jfim¥ctbmKw, Jfim¥ckwIenXw F∂p

XpSßnbp≈hs‰ hcpØpw {]ImcsØs°m≠v CjvSPymicßsf

hcpØpw {]ImcsØ sNm√p∂q. AhnsS {]YaNm]JfiØns‚

JfiPymhmIp∂Xpw ]nfiPymhmIp∂Xpw Ht∂ Ft∂m

sNm√nsbt√m apºn¬. CXns\ kakvXPymh¿§w sIm≠p KpWn®v

{XnPymh¿§w sIm≠p lcn∏q. ^ew12 \tSsØ JfiPymhpw c≠mw

JfiPymhpw Xßfnep≈13 A¥cw. Cu A¥csØ \tSsØ

JfiPymhn¶∂p If™m¬ tijw c≠mw JfiPymhv. ]ns∂

AXns\ \tSsØ JfiPymhn¬ Iq´nbm¬ c≠mw ]nfi-Pym-hmIpw.

CXns\ ka-kvX-Pym-h¿§w sIm≠p KpWn®v {XnPym-h¿§w sIm≠p lcn-

®m¬ ^ew c≠mw JfiPymhpw aq∂mw JfiPymhpw14 Xßfnep≈

A¥cw. CXns\ c≠mw JfiPymhn¶∂p If™m¬ aq∂mw

JfiPymhp≠mIpw. CXns\ c≠mw ]nfiPymhn¬ Iq´nbm¬ aq∂mw

]nfiPymhp≠mIpw. C∆Æw AXXp ]nfiPymhns\ KpWn®p

lcn®m¬ AXns‚15 aosØ Jfim¥cw hcpw. ]ns∂ \tSsØ XpSßn

CjvSNm]JfitØmfap≈ Jfim¥cßsf H°Iq´n \tSsØ

JfiPymhn¶∂p Ifhq. injvSw CjvSJfiPymhmbn´ncn°pw16. ]ns∂

5. 11. F. Bbn-cn-°p∂
12. B. lcn-®m¬ ^ew
13. B. XΩn-ep≈
14. B. c≠mw-Pymhpw aq∂mw Pymhpw XΩn-ep≈
15. F. AXm-Xns‚
16. B. C.D.F. Bbn´phcpw
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Cu JfiPym¥cßsf H°Iq´n Hcn°se hcptØWsa¶n¬

CjvSPymhn¶∂p \tSsØ ]TnXPym°sf H°Iq´n

kakvXPymh¿§wsIm≠p KpWn®v. {XnPymh¿§w sIm≠p lcn∏q. ̂ ew

Jfim¥ctbmKw. CXns\ {]YaJfiPymhn¶∂p If™m¬17 injvSw

CjvSJfiPymhmbn18 hcpw. ChnsS Nm]Jfia≤yØn¶se

icJfitbmKsØ kakvXPymhns\ sIm≠p KpWn®v, {XnPysIm≠p

lcn-®mepw Jfim-¥ctbmKw hcpw. ic-J-fi-tbmKw  ]ns∂ a≤y-

Øn-¶-teXv D≠m-hm≥ Nm]-J-fim-{K-Øn-¶se ̀ pPm-Pym-]n-fi-tbm-KsØ

Nm]-J-fi-k-a-kvX-Pym-hn-s\-s°m≠v KpWn®v {XnPy-sIm≠p lcn∏q

F∂m¬ Nm]Jfiat≤ym∞icJfitbmKw D≠mIpw.

5.ii. CjvSPymicßsf PymkwIenXw sIm≠v

    hcpØpw{]Imcw

JfiPymtbmKsØ hcpØpw{]Imcw ]ns∂. ]ZØn¬19

Ccp]Øn\mep Pymhv F∂ncn°pt∂SØv F´mwPymhns\ hcpØphm≥

sNm√p∂q. B20 {]Ya]nfiPymhns\ Ggn¬ KpWn∏q; c≠mw

]nfiPymhns\ Bdn¬ KpWn∏q; aq∂maXns\ A©n¬, \memaXns\

\men¬, A©maXns\ aq∂n¬, BdmaXns\ c≠n¬, Ggmw

]nfiPymhns\ H∂n¬21 KpWn∏q22. Ch H° Xßfn¬ Iq´q. CXn∂p

‘PymkwIenXw’ F∂p t]¿. kwIenXtØtbm apºn¬  hnkvXcn®p

sNm√nbt√m23, hrØhymksØ24 hcpØpt∂SØv. F∂m¬  Cu

PymkwIenXsØ Nm]JfikakvXPymh¿§w sIm≠p KpWn®v

5. 17. F. Ifhq
18. C. D.F. Bbn-´p-hcpw
19. C. D. ]Z-Øn-¶¬
20.B. C. om. B
21. B. KpWn°q
22.C. D. R. add ]ns∂
23.B. kwI-enXw ap≥ sNm√n-bt√m
24.C.F. hrØ-hym-k-ßsf
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{XnPymh¿§w sIm≠p lcn∏q. ^esØ {]YaJfiPymhns\ F´n¬
KpWn®Xn¶∂p Ifhq. injvSw F´mw Pymhmbn´ncn°pw25a

Cßs\ bmsXmcp Nm]Jfim{KØn¶se PymkwIenXw ssNXXv
AXns‚ aosØ Nm]Jfim{KØn¶se PymNm]m¥cw hcpw F∂p
\nbXw. ChnsS Nm]Jfiw F{Xbpw sNdpXmbn´p Iev]nt°≠q;
At∏mƒ JfiPymhpw BZyØnt‚Xp Nm]w Xs∂bmbn´ncn°pw.
F∂m¬ AXns\ CjvSkwJysIm≠p25b KpWn®m¬ AXp CjvSNm]w
Xs∂ Bbn´ncn°pw. F∂m¬ kwIenXØns‚ ^ew26

CjvSNm]Øn¶∂p If™m¬ CjvSPymhp hcpw.

ChnsS Hcp {]Imcw ]d™psImt≈Wsas√m27 F∂n´p sNm√o,
]ZØn¶¬ Ccp]Øn\mep Pymhv F∂. v F∂n´nhnsS
CjvSNm]Øn¶se HSp°sØ Jfim¥cw XpSßn
BZyZznXobJfim¥ctØmfap≈hs‰ {ItaW H∂p XpSßn
Hmtcmt∂dnbp≈ kwJyIsfsIm≠p KpWn®m¬ Jfim¥ckwIenXw
hcpw. CXp CjvSNm]hpw CjvSPymhpw XΩnep≈ A¥camIp∂Xv
F∂p h∂p28.

ChnsS CjvSNm]Øn∂v ASpØp IotgXnt\mfap≈ Pym°sft√m
PymNm]m¥cØn∂p km[\amIp∂Xv. Cu Pym°fm¬ H∂pw
Adn™oem F∂ncn°bm¬ Nm]sØØs∂ Pymsh∂p Iev]n®p
Nm]kwIenXw ssNhq. ChnsS CjvSNm]wXs∂ HSp°sØ
PymhmIp∂Xv. CXn¬29 Hcp Nm]Jfiw Ipd™Xv ASpØp Iosg
Pymhv. ]ns∂ CXn¶∂pw Hmtcmtcm Jfiw Ipd™Xp Iosg Iosg
Pym°ƒ F∂p Iev]n∏q. ChnsSbpw ]ns∂ CjvSNm]Øn¶¬ F{X
Cen D≈q A{X Nm]Jfiap≈q F∂q Iev]n∏q. F∂m¬ ]ns∂
C wJyIfpsS GImtZytImØckwIenXw ssNhq. AXp bmsXm∂v
AXp PymtbmKamIp∂Xv F∂p hcpw. CXns\ kakvXPymhmIp∂
Hcp Censbs°m≠p KpWn®m¬ kwJymt`Zw hcm. F∂m¬
CXns\Xs∂ {XnPys°m≠p lcn∏q. ^ew Nm]Jfia≤yØn¶se
5. 25a.B F´mw Pymhm-bn-cn°pw

25b.B.C. Jfi-kw-Jy-sIm≠v
26.C. adds Ccp-]-Ø-©mse Pymhv F∂n-hnsS CjvS-Nm-]-Øn-¶se ^ew
27.B. ]d-tb-W-at√m D. F. add At{X
28.F. XΩn-ep≈ A¥-c-am-Ip∂p
29.F. ChnsS
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icJfitbmKw. Jfiw sNdpXmIbm¬ Jfim{KØn¶se

icJfitbmKhpw an°XpanXn∂p kaw. F∂n´v CXpXs∂ F∂p

Iev]n°mw. Jfiw sNdpXmtbmfw Pymhpw kq£vaambncn°pw30. F∂n v́

CeosS ]cm¿≤mwiw Xm≥ Jfi-sa∂p Iev]n®v ]cm¿≤amIp∂ tOZw

sIm≠p KpWn®v kwIenXw ssNXp tOZw sIm≠p lcn®m¬ ^ew,

tOZwsIm≠p KpWnbmsX kwIenXw ssNXXnt\mSp an°Xpw

Xpeyambn´ncn°pw.31

iii. BZyZznXobmZn kwIenXßƒ

F∂menhnsS F{X cq]hy‡nIfp≈q, AWp]cnamWambn´ncnt∏m

Nneh, CjvSNm]Øn¶e{X kwJy Dt≈mcp cminsb kwIenXw

sNøp∂q32. A wJy ]Zambn´ncns∏m∂v. A wIenXt£{Xw

]ZtØmfw hcn, hcnbn¬ \tStØXn¬ kwJy H∂v. AXp

kaNXpc{iambn´ncnt∏mcp Jfisa∂p Iev]n®m¬ Ffp∏ap≠v. c≠mw

hcnbn¬ c≠p Jfiw, ap∂mw hcnbn¬ aq∂v33 Cßs\ Hmtcmt∂do´v

HSp°sØ hcnbn¬34 ]ZkwJytbmfw JfikwJybmbn´ncn°pw35.

ChnsS36 cminbmIp∂Xv CjvSNm]w. CXn¶se CenIsf

AWpt—ZwsIm≠p KpWn®v AWphmbn´p≈ AWpkwJy ]ZkwJy

BIp∂Xv. ]ns∂ ]Zhpw ]ZØn¬ Hcp kwJy GdnbXpw Xßfn¬37

KpWn®v H∂pw c≠pw Xßfnep≈ LmXw c≠psIm≠v38 lcn®m¬

^ew kwIenXambn´ncn°pw39 Cßs\ \tSsØ kwIenXw.

c≠mw kwIenXw ]ns∂. C wIenXhpw CXn¬ Hcp hcn Ipd™

kwIenXhpw, c≠p hcn Ipd™ kwIenXhpw, aq∂phcn Ipd™Xpw

Cßs\ {ItaW Hmtcmtcm ]Zw Ipd™ kwIenXßsf H° Iq´nbXp

c≠mw kwIenXamIp∂Xv. ]ns∂ C wIenXw A¥y]ZØns‚

kwIenXsa∂p Iev]n®v DØcßsf Htcmtcm ]Zw Ipd™hs‰ H°

Iq´nbXp aq∂mw kwIenXw.

5. 30. F. C. Bbn-´n-cn°pw 35. B. Bbn-cn°pw
31. B. Xpey-am-bn-cn°pw 36. C. ChnsS ]ns∂
32. F. ssNhq 37. B. XΩn¬
33.C. aq∂v Jfiw 38. F. AXn-s\-s°m≠v
34.B. HSp-°-tØ-Xn¬ 39. B. kwI-en-X-am-bn-cn°pw

VII. Pym\b\w



423

CXns\ hcpØpw{]Imcw. ]Zhpw ]ZØn¬ H∂p IqSnbXpw ]ZØn¬

c≠p IqSnbXpw aq∂pw40 Xßfn¬ KpWn®Xns\ H∂pw c≠pw aq∂pw

Xßfn¬ KpWn®v  BdpsIm≠p lcn®^ew c≠mw kwIenXw.

CuhÆw Htcmt∂mtcmt∂dnb cminIƒ F{X41 Ah Xßfn¬ KpWn®q

A{X H∂v, c≠v kwJyIƒ Xßfn¬ KpWn®Xns\s°m≠p lcn∏q.

^ew H∂p Iosg kwIenXw. ChnsS Nm]Jfiw AXy¥w AWphmbn

Iev]n®m¬ Pymhp kp£vaamIpw42. F∂n´p iq\y{]mbamb43

cq]ßsfs°m≠p ]ZØn¬ Htcmt∂dptºmƒ kwJybv°v F{Xbpw

hntijan√. F∂n´v CjvSNm]Øns‚ h¿§L\mZnIsfØs∂

GImZnLmXwsIm≠p lcnt° th≠q. F∂m¬ ^ew

kq£vaambn´ncn°pw44.

F∂n´p Nm]h¿§m¿≤w \tSsØ kwIenXw. ]ns∂45

CjvSNm]L\Øn¬ Bsdm∂p c≠mw kwIenXw. AhnsS \tSsØ

kwIenXw h¿§m¿≤sa∂ncn°bm¬ c≠mw kwIenXØn∂v AXv

A¥y]Zw F∂p Iev]n®v AXn¬ H∂p Ipd™ ]ZØns‚ h¿§m¿≤w

D]m¥y]Zw. Cßs\ {ItaW tbmKw ssNXm¬ CjvSNm]Øns‚

h¿§m¿≤Øns‚ kwIenXambn´ncn°pw. AXp h¿§kwIenXØns‚

A¿≤w. ]ZØns‚ L\Øn¬ aqs∂m∂p h¿§kwIenXsat∂m

apºn¬ sNm√nsbt√m. F∂m¬ CXns‚ A¿≤amIp∂Xp L\Øn¬

Bsdm∂v. ]ns∂ aq∂mw kwIenXamIp∂Xp L\kwIenXØns‚

Bsdm∂v F∂ncn°pw Cu \ymbw sIm≠v46. F∂m¬ AXp

h¿§h¿§Øn¬ Ccp]Øp\msem∂mbn´ncn°pw. F∂m¬ kacminIsf

F{Xhs‰47 Xßfn¬48 KpWn∏49 H∂v, c≠v XpSßnbn´p≈h‰ns‚

At{XSap≈ kwtJysS LmXw lmcIamIp∂Xv AXn\v F∂p apºn¬

kwIenXw hnkvXcn®p sN√nbXns\s°m≠v h∂pIpSqw.

5. 40. B. F. aq∂v cminbpw XΩn¬
41. B.C.D. F. kwJy-Iƒ
42. F. Bbn-cn°mw
43. C. D. R. iq\y-{]m-b-am-Ip∂
44. B. kq£va-amIpw
45. F. adds h¿§m¿≤-sa-∂n-cn-°-bm¬ c≠mw kwI-en-X-Øn\v
46. B. om. Cu \ymbw sIm≠v
47. F. F{X-h-s‰-I-fn¬
48. B. XΩn¬
49. C. KpWn∏q
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5. iv. C„Pymicßƒ°v aosØ kwkvImcßƒ

F∂menhnsS \tSsØ  kwIenXamIp∂Xv BZyPymhp XpSßn
CjvSPymthmfap≈ Pym°fpsS tbmKw. CXns\ kakvXPymkwJy
H∂50 F∂n´v AXns\s°m≠p KpWn®m¬ kwJymt`Zan√. F∂n´v
hymkm¿≤wsIm≠p lcn∏q. ^ew icJfitbmKamIp∂
icambn´phcpw. ]ns∂ C»csØ51 Nm]JfitbmKwsIm≠p KpWn®p
hymkm¿≤wsIm≠p lcn®v aq∂nepw lcn®m¬ PymNm]m¥cw hcpw52.
]ns∂ CjvSNm]L\Øns‚ Bsdm∂ns\ hymkm¿≤h¿§w sIm≠p
lcn®^ehpw PymNm]m¥cambn´ncn°pw.

]ns∂ CjvSPymicsØ hymkm¿≤wsIm≠v lcn®m¬ ^ew
BZym¥yJfim¥cw. ]n∂sØ PymtbmKwsIm≠p
BtZym]m¥yJfim¥cw D≠mIpw. C∆ÆamIptºmƒ
L\jjvTmwiamIp∂ c≠mw kwIenXØn¶∂v BZyJfiPymhn¶∂v
F√m JfiØns‚bpw A¥cßƒ H° IqSnbXp
Jfim¥ckwIenXw -˛ CXp Xs∂ PymNm]m¥camIp∂Xpw
AXp≠mIpw.

CXp {]mbnIsas{X Xm\pw, PymkwIenXØns‚ ÿm\Øp
Nm]kwIenXsat√m sIm≠Xv F∂n´.v

F∂m¬ CuhÆw53 Iosg Iosg PymNm]m¥cßƒ H° Xßfn¬54

Iq´nbXp PymkwIenXØn¶∂p Nm]kwIenXØn¬ Gdnt∏mb
AwiamIp∂Xv. F{X Nm]ßfpsS tbmKØn¶∂p icsØ D≠m°n
A{X PymNm]m¥cßsf D≠m°n hymkm¿≤w sIm≠p lcn®
^esØ55 icØn¶∂p If™m¬ icsam´p kq£vaamIpw.

F∂menhnsS c≠mw kwIenXØn¶∂v Ft√m56 HSp°sØ
PymNm]m¥csØ D≠m°n, C∆Æw ]ZØns‚57 Hmtcmt∂mtcm∂p
Ipd™Xns‚ c≠mw kwIenXØn¶∂p D]m¥ymZn Iosg Iosg
PymNm]m¥cßƒ H° D≠mt°≠q. F∂m¬ aq∂mw

5. 50.B. C. om. F∂n´v AXns\
51. B. C. Cu ic-ßsf
52.B. C. D hcpw
53.B. C. F. F∂o-hÆw

54.B. Pymhm-¥-c-ß-sfms° Xß-fn¬
55.B. F. ^ew
56.F. Øn¬ Xs∂-t√m
57.C. D. F. ]Z-Øn¬
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kwIenXØn¶∂p PymNm]m¥ctbmKap≠mIpw. F∂m¬ \memw

kwIenXØn¶∂p PymNm]m¥ckwIenXsØ D≠mt°≠q58, apºn¬

sNm√nbhÆw. ]ns∂ C wIenXw bmsXm∂v AXp apºn¬

PymkwIenXw th≠nbncpt∂SØp Nm]kwIenXw sIm≠msd

Gdnt∏mb AwiaXv. C®m]kwIenXØn¶∂v hymkm¿≤h¿§wsIm≠p

lcn®^ew apºnep≠m°nb PymNm]m¥cØn¶∂p If™m¬

CjvSPymNm]m¥csam´p kp£vaamIpw.

ChnsS \tS D≠m°nb PymNm]m¥csØ CjvSNm]wsIm≠p

KpWn®v hymkm¿≤w sIm≠p lcn®m¬ ickwkvImcap≠mIpw59.

C»ckwkvImcsØ ]ns∂bpw CjvSNm]wsIm≠p KpWn®v60

hymkm¿≤wsIm≠p lcn®m¬ PymNm]m¥ckwkvImcap≠mIpw.

CuhÆap≠m°nb PymNm]m¥c kwkvImcw

PymNm]m¥ctbmKØn¶∂p D≠m°q. AXmIp∂Xv Cu

kwkvImcsØ Nm]wsIm≠p KpWn®v ]ns∂ AXns\

hymkm¿≤wsIm≠p lcn®Xp apºnse ickwkvImcØn¶∂p

If™m¬ C»ckwkvImcw kq£vaamIpw. C»ckwkvImcsØ ]ns∂

CjvSNm]wsIm≠p KpWn®v hymkm¿≤wsIm≠p lcn®^ew

PymNm]m¥ckwkvImcØns‚ kwkvImcw. ChnsS F√mShpw ̂ esØ

Nm]wsIm≠v KpWn®m¬ H∂v, c≠v F∂pXpSßnbp≈

kwJyIfne{XmaXpsIm≠p lcn®Xns\ hymkm¿≤w sIm≠p

lcnt°≠q, kwIenXØn¶∂p thWw kwkvImcap≠m°phm≥

F∂n v́61 Cßs\ Hcp kwIenXØns‚ ̂ eØn¶∂p aosØ kwIenXw

sIm≠p≠m°p∂ ̂ eØn¶¬62 A¥csØ D≠m°pw {]Imcw. ChnsS

Nm]sØ F{X BhrØn Nm]w sIm≠pKpWn®q, CXn∂p lmcIw

hymkm¿≤sØ hymkm¿≤wsIm≠v A{X BhyØn KpWn®v A{X

GImtZytImØcßfpsS LmXhpw IqSn lmcIw.  Hcp  ^eØn¶∂p

aosØ ^eap≠m°phm≥ CjvSNm]wsIm≠p ^esØ Hcn°¬

KpWn∏q, hymkm¿≤w sIm≠v Hcn°¬ lcn∏q. F∂mepw ̂ ew Xpeyw.

5. 58.F. PymNm-]m-¥-c-tbmKw D≠mIpw
59.B. F. B; C. D. A»c 61. F. F∂n-ßs\
60.F. adds ]ns∂ AXns\ 62. B. C. D. ^e-Øns‚
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5. v. ]TnXPym°ƒ C√msX kq£va Pymicm\b\w

Cßs\ ^eßsf√mw PymtbmKØn¶∂v D≠mt°≠q

F∂ncn°pt∂SØp Nm]tbmKØn¶∂v D≠m°bm¬

kwkvImc^eßsf√mw hmkvXh^eØn¶∂v Gd D≠mbncn°pw.

F∂n´p aosØ aosØ kwkvImc^ew \tSsØ \tSsØ

kwkvImc^eØn¶∂p IftbWw, F∂menhÆw th≠q63 ChnSpsØ

{Inbm{Iaw. CjvSNm]w \tSsØ cminbmIp∂Xv. CXns\ h¿§n®v

A¿≤n®v {XnPysIm≠p lcn®Xp c≠mw cminbmIp∂Xv. c≠mw

cminsb thsd HcnSØp sh∏q. ]ns∂ CXnt\bpw Nm]wsIm≠p

KpWn®v aq∂nepw {XnPysIm≠pw lcn∏q. Cu ^esØ64

{]Ya^eØns‚ Iosg shbv∏v. ]ns∂ CXnt\bpw Nm]wsIm≠p

KpWn®v \menepw {XnPysIm≠pw lcn∏q. ^ew ZznXob^eØns‚

Iosg sh∏q. Cßs\ AXXp ^eØn¶∂p Nm]wsIm≠p KpWn®v

hymkm¿≤wsIm≠pw H∂v c≠v XpSßnbh‰n¬ aosØ aosØ

hs‰s°m≠pw lcn®m¬65 aosØ aosØ ^eßfp≠mIpw. ChnsS

aq∂maXv A©maXv F∂p XpSßnbp≈ HmP^eßƒ {]YacminbpsS

]Mv‡nbn¬ Iosg Iosg sh∏q. \memaXv BdmaXv XpSßnbp≈

bp‹^eßsf ZznXobcminbpsS ]Mv‡nbn¬ Iosg Iosg sh∏q. ]ns∂

F√mbnepw IotgXv ASpØp aotØXn¬ Ifbq. injvSw ASpØp

aotØXn¬, Cßs\ Hcp ]Mv‡nbn¬ {]Yacmin tijn°pw. at‰

]Mv‡nbn¬ ZznXobcmin tijn°pw. Ah CjvSPymicßƒ.

ChnsS HmP^eßsf Xs∂ thsd D≠m°n66 CjvSPymhp≠m°q.

bp‹^eßsf D≠m°n CjvSichpap≠m°p, Cßt\bpamw. ChnsS67

CjvSPymhns\ D≠m°pw{]Imcw. CjvSNm]sØ CjvSNm]h¿§w

sIm≠p KpWn®v hymkm¿≤h¿§w sIm≠p lcn∏q.  ]ns∂ c≠pw

aq∂pw Xßfnep≈ LmXw BdpsIm≠pw lcn∏q. ̂ ew PymNm]m¥cw.

]nt∂bpw {ItaWbp≈ ^eßƒs°ms° Nm]h¿§w KpWImcw,

hymkm¿≤h¿§w lmcIw, bp‹kwJybpw aosØ  HmPkwJybpw

5. 63.F. th≠p-hXv
63.D. E. ^esØ
65.F. lcn∏q. ^esØ

66.F. B CjvS-Pym-^-e-ßƒ
67.B. om. ChnsS

VII. Pym\b\w
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Xßfn¬ KpWn®Xpw lmcIw. AXXp68 bp‹-kw-Jym-h¿§-Øn¬ Xs‚

aqew Iq´n-b-Xm-bn-́ n-cn-°p-an-Xv, bp‹kwJybn¶∂v H∂v Ft√m aosØ

HmPkwJybn¬ Gdq, F∂n´v. Cßs\ CjvSPymhp Xs∂69 thsd

hcpØpw {]Imcw.

]ns∂ ZznXobcminsb C∆Æw AXns‚ ^eßtfbpw KpWn®v

lcn®m¬ CjvSicw hcpw. ChnsS HmPkwJymh¿§Øn¬ Xs‚ aqew

IqSnbXp70 lmcIamIp∂Xv Ft∂ hntijap≈q.

]ns∂ C∆Æw hrØ]mZØn¶se CjvSPymicßsf hcpØphm≥

D≠m°nb ^eßsf ]Tn®ntb®v Chs‰s°m≠v

CjvSNm]Øn¶tebv°p ss{XcminIw sIm≠p hcpØq. HmP^ehpw

bp‹-^-ehpw sht∆sd ]Tn∏q, c≠p ]cnjbmbn´v. ChnsS c≠p

hIbnepw HSp°sØ ^eßsf  CjvSNm]h¿§w sIm≠p KpWn®v

hymkm¿≤h¿§w sIm≠p lcn®^ew D]m¥y^eØn¶∂p Ifhq.

]nt∂bpw C∆Æw KpWn®p, lcn®p, \tStØXn¬71 \tStØXn¬

Ifhq. ]ns∂ ‘hnZzm≥’ F∂p XpSßnbp≈h‰ns‚ HSp°sØ ^esØ

CjvS-Nm-]-Øn-¶∂p If-hq. injvSw CjvSPymhv ‘kvtX\’ F∂p

XpSßnbp≈h‰n¬ CuhÆw {InbsNbvXm¬ HSp°tØXp Xs∂

CjvSicw, Cßs\ ]TnXßƒ IqSmsX CjvSPymicßsf hcpØpw

{]Imcw72.

6. {]mbnI]cn[nsb kq£vaam°pw {]Imcw

A\¥cw1 Cu \ymbØn∂p X°hÆw CjvShymkØn∂p

{]mbnIambn v́2 Hcp ]cn[nsb D≠m°nbncn°p∂Xns\ kq£vaam°pw

{]ImcsØ sNm√p∂q.

AhnsS \tS CjvSambn Hcp hymksØ Iev]n®v AXns\

68.C. D. F. AXm-Xns‚ ^ew Iq´n-b-Xm-bn-´ncn°pw
69.F. CjvS-Pym-i-c-ßsf
70.E.F Iq´n-bXv
71. B. F.om. \tS-tØ-Xn¬
72.B. D≠m°pw {]Imcw

6. 1. B.om. A\-¥cw
2. B. {]mbn-I-am-sbmcp

VII. 6. {]mbnI]cn[nsb kq£vaam°pw {]Imcw
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{]mbnIambn´v Hcp ]cn[nsb D≠m°q3. Ggn∂v Ccp]Ønc≠p F∂p

XpSßnbpff {]mbnIhymk]cn[nIsfs°m≠v ss{XcminIØn∂p

X°hÆw. ]ns∂ CjvShymksØ hymkm¿≤sa∂p Iev]n®v

Cs®m√nb {]mbnI]cn[osS \msem∂v AhnsS an°hmdpw

Fs´m∂mbn´ncn°pw. CXn∂v Cs®m√nb \ymbØn∂p X°hÆw

Pymhns\ D≠m°q. At∏mfXv CjvShymkw hymkm¿≤ambn´ncn°p∂

hrØØn¶¬4 bmsXm∂v kq£vaambn´ncn°p∂ ]cn[osS

AjvSmwiamIp∂Xv AXns‚ Pymhnt\mSp an°XpsamØncn°pw Cu

D≠m°nb Pymhv. ChnsS "\nlXy Nm]h¿t§W' F∂ \ymbØn∂p

X°hÆw Pymhns\ hcpØpt∂SØv \tSsØ5 lmcIamIp∂

{XnPymh¿§Øns‚ ÿm\Øv CjvShymkh¿§sØ sIm≈q, ZznKp-W-

hym-k-hr-Ø-Øn-¶se hymkm¿≤h¿§-am-I-bm¬. Ct{X CjvS-hym-k-Øn-

¶¬ Cu Pymhp-≠m-°p-t∂-SØp hnti-j-ap-≈q.

]ns∂ Cu Pymhns‚ h¿§sØ hymkm¿≤-h¿§-Øn-¶∂p If-bq6.

tijw tImSn-h¿§-am-bn-́ n-cn-°pw. ]ns∂ kq£va-am-bn-́ n-cn-°p∂ ]cn-[y-

jvSmw-i-Øn‚ Pymh¿§w hymkm¿≤-h¿§-Øn¬ ]mXn Bbn-´n-cn-°pw.

tImSn-h¿§-hpw7 A{X-Xs∂ Bbn-́ n-cn-°pw. AjvSmwiw ]cn-[n-]m-Z-Øn¬

A¿≤-am-I-bm¬ `pPm-tIm-Sn-Iƒ ka--ß-fm-bn-́ n-cn-°pw.

]ns∂ {]mbn-I-ambn D≠m-°nb ]cn-[y-jvSmw-i-Øn-t‚bpw kq£va-

am-bn-cn-°p∂ ]cn-[y-jvSmw-i-Øn-t‚bpw A¥-c-Øns‚ Pymhns\ taen¬

sNm√p-hm-\n-cn-°p∂ "Poth ]c-kv]cw' F∂ \ymb-Øn∂p X°-hÆw

D≠m-°mw. AXn\p {]mbn-I-̀ p-Pm-tIm-Sn-I-fpsS h¿§-ßsf kq£vatIm-

Sn-̀ p-Pm-h¿§-ßsfs°m≠p KpWn®v hymkh¿§w sIm≠p lcn-∏q. ^e-

ßƒ {]mbn-I`pPm-tImSnh¿§-ß-fpsS A¿≤-ß-fm-bn-́ n-cn-°pw, KpW-Im-

c-ßƒ ]mXnbpw Cc-́ nbpw Bbn-́ n-cn-°-bm¬. ]ns∂ Ch-‰ns‚ aqe-ßƒ8

Xß-fn¬ A¥-cn-∏q. tijw kq£va-{]m-bnI]cn-[n-I-fpsS AjvSmw-i-

ß-fpsS A¥-c-Øns‚ Pymhv. CXns\ Nm]n-∏q. AXn∂v CXns‚ L\-

6. 3. B. ]cn[n D≠m°q
4. B. C. hrØ-Øn¬
5. B.C. D. F \tSsØ
6. B.D If-bq; D.C.kq£-a-am-bn-cn-°p∂
7. B.C. ]ns∂ {]mbn-I-ambn D≠m-°nb tImSn-h¿§hpw A{X-Xs∂ Bbn-cn-°pw.
8. B. C. D.F. aqe-ßsf

VII. Pym\b\ww
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Øn-¶∂p hymkh¿§sØ Bdn¬ KpWn®v AXn-s\-s°m≠p lcn®

^esØ Cu A¥-c-Pym-hn¬ Iq´q. CXv A¥-c-Nm-]-am-Ip-∂-Xv. ]ns∂

CXns\ {]mbn-Im-jvSmwi-Nm-]-Øn¬ Iq´q, {]mbn-I-Pym-h¿§w hymk-

h¿§m¿≤-tØ-°mƒ sNdpXv F∂n-cn-°n¬, hepXv F∂n-cn-°n¬ If-hq.

At∏mƒ kq£vam-jvSmw-i-am-bn´p hcp-aXp ]cn-[o-sS, ZznKpWhymk-Øn-

¶¬. CjvS-hym-k-Øn-¶¬ ]cn-[osS NXp-cwiw Bbn-́ n-cn-°pw. AXns\

\men¬ KpWn-®m¬ kq£va-am-bn-cn-°p∂ ]cn-[n. Cßs\ {]mbn-I-]-cn-

[nsb kq£va-am°pw {]Im-cw.

7. Pymh¿§m-\-b\w

A\-¥cw "\nlXy Nm]-h¿t§W' F∂ \ymb-Øn-¶∂p Ipd-s™mcp

hntijw sIm≠p Pymh¿§-ap-≠mIpw F∂-Xns\ sNm√p-∂q. ChnsS

Nm]-h¿§sØ Nm]-h¿§w-sIm-≠p-Xs∂ KpWn-°p-∂q. Nm]-h¿§-tØbpw

^eßtf-bpw1 Iosg Iosg sh°p-∂qXpw. ]ns∂ c≠p XpSßn aq∂v,

\mev, A©v F∂n-ß-s\-bp≈ \nc-¥-c-kw-Jy-I-fpsS h¿§-ß-fn¬\n∂p

Xs‚ Xs‚ aqem¿≤sØ If™ tij-sØ-s°m≠v hymkm¿≤-

h¿§sØ KpWn®v Ah-s‰-s°m≠p lcn-∏q. Ct{X hnti-j-ap-≈q.

HSp°tØXp tijn-°p-∂Xv Pymh¿§w. ]ns∂ Cu \ymbw-sIm≠p ic-

h¿§-tØbpw D≠m-°mw. ChnsS "hnZzmw-kvXp-∂-_ex' F∂-Xns‚

ÿm\Øp "siucn¿÷-bXn' F∂p XpS-ßn-bp-≈-h.

8. Poth- ]-c-kv]c\ymbhpw XZzmcm Pym°sf

hcpØpw {]Im-chpw

8.i Poth- ]-c-kv]c\ymbw

Cs®m-√nb \ymb-Øn-¶¬ F√m-Shpw Nm]-J-fi-Øns‚ ka-kvX-

Pymhp apgpht\ C—m-cm-in-bm-Ip-∂-Xv. C\n- ta-en¬ sNm√p∂Xn¶¬

ka-kvX-Pym-hns‚ A¿≤w C—m-cmin F∂p t`Z-am-Ip-∂-Xv. ChnsS {]Y-

7. 1. Add {ItaW

VII. 7. Pymh¿§m-\-b\w
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a-Nm-]-J-fim-{K-Øn-¶epw XrXobNm]-J--fim-{K-Øn-¶epw kv]¿in®p

c≠p Jfi-Øn-∂pw- IqSn Hcp ka-kvX-Pymhp Iev]n-∏q. ]ns∂ ZznXo-b-

Pym-{K-Øn-¶¬ kv]¿in-®n´v Hcp hymkm¿≤sØ Iev]n-∏q. B

hymkm¿≤-I¿Æ-Øn∂p ZznXo-b-Pymhpw Ccp-]-Øn-c≠mw Pymhpw `pPm-

tImSnIfm-Ip-∂-Xv. Chn-tSbpw ka-kvX-Pym-a≤yw hymkm¿≤-I¿ÆØn-

¶¬ kv]¿in-°pw. CXns‚ A¿≤-ßƒ c≠pw Hmtcm Nm]-J--fi1-Øns‚

A¿≤-Pym-°-fm-bn-́ n-cn-°pw. Cu A¿≤-Pym-°ƒ ChnsS C—m-cm-in-bm-Ip-

∂-Xv2. F∂m¬ ZznXo-b-Pym-hn-s\-s°m≠p Nm]-J--fim¿≤Pym-hns\

KpWn®v hymkm¿≤w sIm≠p lcn-®m¬ ^ew ka-kvX-Pym-a-≤y-Øn-

¶∂p Ing-°p-]-Sn-™m-dm-bn-cn-t∏mcp tImSn-Pym-J--fi-ap-≠m-Ipw. ]ns∂

Ccp-]-Øn-c≠mw Pymhn-s\-s°m≠p KpWn®v {XnPy-sIm≠p lcn-®m¬

^ew XrXo-b-Nm-]m-{K-Øn-¶∂p tImSn-J-fi-aq-e-tØm-f-ap≈ ̀ pPm-J-fi-

ap-≠m-Ipw, sX°p-h-S-°m-bn-´v.

]ns∂ c≠p Nm]-J--fi-Øn∂pw IqSn-bp≈ ka-kvX-Pym-I¿Æ-a-≤yhpw

hymkm¿≤-I¿Æhpw Xß-fn¬3 kv]¿in-t®-S-Øp∂p ]q¿∆m-]-c-kq-{X-

tØm-fhpw Z£n-tWm-Øckq{X-tØm-f-hpap≈ AI-e-ap-≠m-t°-Ww.

ChnsS {XnPymhp I¿Æ-am-Ip-tºmƒ c≠mw Pymhpw Ccp-]-Øn-c≠mw

Pymhpw `pPm-tIm-Sn-I-fm-Ip-∂-Xv, ka-kvX-Pym-i-tcm-\-am-bn-cn-°p∂

hymkm¿≤-̀ mKw I¿Æ-am-Ip-tºmƒ F¥p ̀ pPm-tIm-Sn-Iƒ F∂ ss{Xcm-

inIw sIm≠p-≠m-Ip-w A-h- c-≠pw. ]ns∂ ChnsS itcm-\-hym-km¿≤-

Øns‚ `pP-bn-¶¬ `pPm-J-fiw Iq´q. F∂m¬ aq∂mw Pymhp-≠mIpw;

If-In¬ {]Y-a-Pym-hp-≠mIpw; ]ns∂ itcm-\-hym-km¿≤-Øns‚ tImSn-

bn-t¶∂v tImSn-J-fiw If-hp4. F∂m¬ Ccp-]-sØm∂mw Pymhp-≠m-

Ipw. B tImSn-bn¬ tImSn-Jfiw Iq´p-In¬ Ccp-]-Øn-aq∂mw Pymhp-

≠m-Ipw. ka-kvX-Pym-I¿Æ-Øns‚ A¿≤-ßƒ c≠pw C—m-cm-in-bm-bn5

Iev]n-°p-tºmsf `pPm-tIm-Sn-J-fi-ßƒ Xpey-ßƒ c≠p Jfi-Øn-

∂pw, F∂n-́ v. itcm-\-hym-km¿≤-Øn-¶∂v D≠mb ̀ pPm-tIm-Sn-Iƒ A¿≤-

Pym-I¿Æ-Øn-¶∂p D≠mb Jfi-Pym-°ƒ°v Ah-[n-I-fm-Ip-∂-Xv, F∂n-

´v6. Cßs\ ]TnX-Pym-°sf hcpØpw {]Im-cw.

8. 1. B.C. D. om. Jfi
2. B. BIp∂p; E. cmin-I-fm-Ip-∂Xv
3. B. XΩn¬

4. F. adds tijw F∂m¬
5. B. D. cmin-I-fmbn
6. F. F∂p≠v

VII. Pym\b\w
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]ns∂ C∆-Æw-Xs∂ injvS-Nm-]-Øns‚ A¿≤-Pym-I¿Æ-Øn∂v

D≠mb7 `pPm-tIm-Sn-J-fi-ßfpw injvS-Nm-]-i-tcm-\-hym-km¿≤-Øn∂pw

`pPm-tIm-Sn-Isf D≠m°n Ah-bpw-IqSn CjvS-Pym-°sf D≠m-°n-s°m≈q.

8.ii. Poth ]c-kv]-c\ymbw : {]Im-cm-¥cw

A\-¥cw Cu \ymb-Øn-∂p-Xs∂ {]Im-c-t`Zw sNm√p-∂q. ChnsS

XrXo-b-Nm-]-J--fim-{K-Øn-¶∂p ]q¿∆-kq-{X-tØm-f-ap-≈Xp XrXob

Pymhm-Ip-∂-Xv. CXn-¶¬8 ka-kvX-Pym-a-≤y-Øn-¶∂v D≠m-Ip∂ tImSn-

J--fiw bmsXm-cn-SØp kv]¿in-°p∂q XrXo-bPym-hn-¶¬, Ahn-Sp∂v

Ccp-]p-dhpw Hmtcm -J-fiw. CXn¬9 hSs° J-fiw `pP-bmbn, tImSn-J-

-fiw10 tImSn-bmbn, ka-kvX-Pym¿≤w I¿Æ-am-bn-´n-cn-t∏mcp {Xy{iw.

]ns∂ XrXo-b-Pym-hn-¶se sXs° J-fiØn∂pw Cs®m-√nb tImSn-J-

fiw Xs∂ tImSn-bm-Ip-∂-Xv. ZznXo-b-Pym-hn-t\mSp Xpey-am-bn-cn-°pw

I¿Æw. Chn-Sbv°p ka-kvX-Pym-a-≤y-Øn-¶∂p XrXo-b-Pymhpw ]q¿-hkq-

{Xhpw Xß-fn-ep-≈11 kw]m-X-tØm-f-ap-≈Xp I¿Æ-am-Ip-∂-Xv. ChnsS12

CXp ZznXo-b-Pym-hn-t\mSp Xpey-am-Ip-∂p. C∆Æw {XnPym- {]-am-Ww, ka-

kvX-Pym¿≤hpw CXns‚ itcm-\-hym-km¿≤-am-Ip∂ tImSnbpw c≠13

{]am-W-^-e-ßƒ. ZznXo-b-Pymhv C—m. ka-kvX-Pym-a-≤y-Øn-¶-∂p≈

tImSn-J--fihpw CXns‚ kw]m-X-Øn-¶∂p XrXo-b-Pym-hns‚ Z£n-W-

J--fihpw Ch c≠pw C—m-^-e-ßƒ. bmsXm-cp-{]-Imcw `pPm-tIm-Sn-I-

fm-bn-cn-°p∂ {]am-W-^-e-ßƒ°p I¿Æ-am-bn-cn-°p∂q {]am-W-cmin

C∆Æw ̀ pPm-tIm-Sn-I-fm-bn-cn-°p∂ C—m-̂ -e-ßƒ°p I¿Æ-am-bn-́ n-cn°pw

C—m-cmin F∂p \nb-Xw.

Cßs\ ZznXo-b-Pym -I¿Æ-ambn XrXo-b-Pym-hns‚ sXs° J-fiw

`pP-bmbn ss{Xcm-inIw sIm≠p hcp-Ønb tImSn-J-fiw tImSn. Cßs\

Hcp {Xy{iw. ka-kvX-Pym-hns‚ hSs° A¿≤w I¿Æw, XrXo-b-Pym-

8.. 7. B. C. D. F. D≠m-°nb
8. F. CXn-¶∂v
9. B. AXn¬
10. C. F. Ct°mSn Jfiw; C. Adds Xs∂
11. B. XΩn-ep≈
12. B.C. D AhnsS
13. C. D. F. c≠pw

VII. 8. Poth- ]-c-kv]c\ymbhpw XZzmcm Pym°sf hcpØpw {]Im-chpw
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hns‚ hSs° J-fiw14 `pP. tImSn-J-fiw-Xs∂ tImSn-bm-Ip-∂-Xv.

Cßs\ Hcp {Xy{iw. C∆-Æ-am-Ip-tºmƒ {]Y-a-Pymhpw ZznXo-b-Pymhpw

`pP-I-fmbn XrXo-b-Pymhp ̀ qan-bmbn tImSnJ-fiw ew_-ambn Ccn-t∏mcp

{Xy{i-an-Xv. F∂m¬ ew_-h¿§sØ ̀ pPm-h¿§-ßƒ c≠n-¶∂pw If™p

aqen-®m¬ sht∆sd c≠v B_m-[-Iƒ D≠m-Ipw. Ch-‰ns‚ tbmKw `qan-

bm-Ip∂ XrXo-b-Pym-hv. Cßt\bpw ]Tn-X-Pym-°-tfbpw CjvS-Pym-°-tf-

bp-ap-≠m-°mw. Cßs\ c≠v A¿≤-Pym-°sf sht∆sd Adn-™m¬

c≠p Pym°-fp-tSbpw Nm]-tbm-K-Øns‚ Pymhp hcp-Øp-hm-\p≈ D]mbw

sNm√o-Xm-bn.

9. hymkm¿≤w IqSmsX Pym°sf hcp-Øpw-

{]-Imcw˛{Xy{i-t£-{X-\ymbw

A\-¥-cw1 hymkm¿≤w IqSmsX Pym°sf hcp-Øpw-{]-Im-csØ

sNm√p-∂q2. {Xn`p-P-t£-{X-\ym-b-sØ-s°m≠p kn≤n-t°-Ww, F∂n-´v

AXns\ \tS3 sNm√p-∂q. Chn-sS4 hnj-a{Xy-{i-Øn-¶¬5 aq∂n-epw-sh®v

henb `pPsb ]Sn-™msd sX°p--h-S°p \of-am-bn´p Iev]n-∏q. CXn∂p

"`qan' F∂p t]¿. ]ns∂6 as‰ `pP-Iƒ c≠n-t\bpw `qay-{K-ßƒ c≠n-

¶∂p XpSßn Ing-°p- X-ß-fn¬7 kv]¿in-°p-amdp Iev]n-∏q. Ch-‰n∂p

"`pP-Iƒ'8 F∂p t]¿. ]ns∂ Cu `pP-Iƒ Xß-fn¬ Iq´p-t∂-S-Øp-

\n∂p ̀ qan°p hn]-co-X-ambn ̀ qan-tbmfw Hcp kq{XsØ Iev]n-∏q. CXn∂p

"ew_w' F∂p9 t]¿. ew_-kw-]m-X-Øn-¶∂p Ccp-]p-d-hp-ap≈ `qJ-WvU-

ßƒ°v "B_m-[-Iƒ' F∂p t]¿. `pPm-tIm-Sn-I-fm-bn-cn-°p∂ B_m-

[m-ew-_-ßƒ°p I¿Æ-am-bn-́ n-cnt∏m Nneh {Xy{i-̀ p-P-Iƒ. ChnsS henb

8. 14. D. A¿≤w
9. 1. D. AY

2. B.F. {]Imcw; AXv
3. C. D. om \tS
4. B. om. ChnsS
5. B. C. Xy{i-t£-{X-Øn¬
6. B. om. ]ns∂; B. `pP-I-tfbpw
7. B. XΩn¬
8. B. CXp-Iƒ `pP-Iƒ
9. B. CXp ew_w

VII. Pym\b\w
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`pPm-h¿§-Øn-¶∂p sNdnb `pPm-h¿§sØ If-™m¬10 sNdnb B_m-

[m-h¿§tØ°mƒ F{X hepXv henb B_m-[m-h¿§w, AXv ChnsS

tijn∏-Xv, ew_-h¿§w c≠p I¿Æ-h¿§-Øn-¶epw Xpey-at√m F∂n-́ v.

BI-bm¬ B_m-[m-h¿§m-¥-chpw `pPm-h¿§m-¥-chpw Hs∂ Bbn-́ n-cn-

°pw.

F∂m¬ `pPm-tbm-KsØ `pPm-¥-cw-sIm≠p KpWn-®-Xv11 `pPm-h¿§m-

¥-cw. AXp-Xs∂ B_m-[m-h¿§m¥chp-am-I-bm¬ B_m[m-tbm-K-cq-

]-am-bn-cn-°p-∂12 ̀ qan-sb-s°m≠p lcn-®m¬ ̂ ew B_m-[m-¥-cw. CXns\

`qan-bn¬ Iq´p-I-bpw13 If-Ibpw sNbvXn´v A¿≤n-®m¬ B_m-[-I-fp-

≠mIpw. ]ns∂ AXXv B_m[m-h¿§sØ AXXp `pPm-h¿§-Øn-¶∂p

If™p aqen-®m¬ ew_-ap-≠m-Ipw. ew_sØ `qay¿≤wsIm≠p KpWn-

®m¬ t£{X-^-e-ap-≠m-Ipw.

ChnsS c≠p `pPm-a-≤y-Øn-¶∂pw AXXv B_m-[m-a-≤y-Øn-¶¬

kv]¿in-°p∂ kq{X-am¿t§W s]mfn®p {Xy{i-J-WvU-ßƒ c≠nt\bpw

ew_m-{K-Øn-¶¬ `qay-{K-am-Ip∂ {]tZ-ihpw I¿Æ-tc-Jm-am¿§Øn¶¬

I¿Æ-tc-Jbpw kv]¿in-°p-amdp sh∏q. At∏mƒ `qay¿≤-Xp-ey-am-bn´p

c≠p `pP-Iƒ, ]ns∂ ew_-Xp-ey-ß-fm-bn´p c≠p `pP-Iƒ Cßs\ Ccn-

t∏mcp NXp-c-{i-ap-≠m-Ipw. BI-bm¬ `qay¿≤-ew-_-ß-fpsS LmXw

t£{X-̂ ew Bbn-́ n-cn-°pw. CXp {Xy{it£{X\ym-b-am-Ip-∂-Xv14.

10. hrØm¥¿§XNXp-c-{i-I¿Æßƒ

A\-¥cw CXn-s\-s°m≠v NXp-c-{i-t£-{X-\ym-b-sØ1 Adn-bpw-{]-Im-

cw2 sNm√p-∂q. AhnsS \tS Hcp hrØsØ Iev]n-∏q. ]ns∂ hrØm-

¥-¿`m-K-Øn-¶¬ Hcp NXp-c-{isØ tImWp \mepw hrØsØ kv]¿in-

°p-amdp Iev]n-∏q. C®Xpc{i-Øns‚ ̀ pP-Iƒ \mepw At\ym-\y-Xp-eyß-

9. 10. B. C. D. F. add tijw
11. B. KpWn-®m¬ AXv
12. B.C. F. cq]-am-Ip∂
13. F. Iq´nbpw If-™pw; om. sNbvXn v́
14. B. Cßs\ {Xy{i-\ymbw

10. 1. B. {Xy{i-\ymbw sIm≠v NXp-c-{i-\ymbw Adnbpw {]Imcw
2. D. F. {]Im-csØ

VII. 10. hrØm¥¿§XNXp-c-{i-I¿Æßƒ
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f-√m-tXbpw3 Ccn-∏q. ]ns∂ Cu NXp-c-{i-_m-lp-°-fpsS ]cn-am-W-sØ-

s°m≠v CXn-¶-se4 I¿Æ-ß-tf-bp-a-dn-tb-Ww. CXn-s‚5 {]Imcw.

ChnsS hyh-lm-cm¿∞-am-bn´p `pP-Iƒ°v Hcp \nb-asØ Iev]n®p

sIm≈q. Cu `pP-Ifn¬ F√m-bnepw hep-Xp6 ]Sn-™m-td-Xv. AXn∂p

"`qan' F∂p t]¿. ]ns∂ sXt°-Xv, ]ns∂ hS-t°-Xv. Ch c≠n∂pw

"`pP-Iƒ' F∂p t]¿. ]ns∂ F√m-bnepw sNdn-bXp Ing-t°-Xv. CXn∂p

"apJw' F∂p t]¿. F∂n-ßs\ Iev]n-∏q. C∫m-lp-°ƒ c≠v A{Khpw

hrØsØ kv]¿in-°-bm¬ ka-kvX-Pym-°-fm-bn-´n-cnt∂m Nne-h. Cu

\mep ka-kvX-Pym-°-sf-s°m≠pw hrØw apgp-h≥ XnI-™n-cn-°pw,

Pym{K-ßƒ Xß-fn¬ kv]¿in-°-bm¬. ChnsS ASp-Ø7 Pym°ƒ

Cuc≠ns‚ Nm]-tbm-K-ß-fm-Ip-∂h bmh- Nn-e-h. Ch-‰ns‚ Pym°ƒ

NXp-c-{i-Øn-¶se I¿Æ-ß-fm-Ip-∂-h. C°¿Æ-ß-fm-sem-∂n-s\-s°m≠p

NXp-c-{isØ c≠mbn ]Ip-Øm¬ C°¿Æ-Øns‚ c≠p ]m¿iz-Øn-

¶epw Hmtcm {Xy{i-ß-fp-≠m-Ipw8. c≠p {Xy{i-ßƒ°pw km[m-c-W-am-

bn-́ n-cn-t∏mcp `qan Bbn-́ n-cn-s∏m∂v C°¿Æw9. `pP-Iƒ Cuc≠pw `pP-

I-fm-bn-́ n-cn-s∏m-∂v. ]ns∂ CuhÆwXs∂ as‰ I¿Æ-sØ-s°m≠pw Xm≥

`qan-bm-bn´p c≠p {Xy{i-ßƒ Df-hm-Ipw.

10.i. kakvXPymLmXw tbmKm-¥-c-Nm-]-Øns‚

      kakvXPymh¿§m-¥-c--Øn\v kaw

]ns∂ C°¿Æ-ß-fn-enjvSw BIp∂Xns‚ Hcp ]m¿iz-Øn-¶se `pP-

Iƒ c≠n-t‚bpw tbmKsØ Xß-fn-se10 A¥-cw-sIm-≠p KpWn-®m¬

AXv B_m-[m-tbmK-Øn-t‚bpw B_m-[m-¥-c-Øn-t‚bpw LmX-am-bn-

´n-cn-°pw. B_m-[m-tbm-K-am-Ip-∂Xp ]ns∂ Cu c≠p `pP-I-fp-tSbpw

tbmK-Nm-]-Øns‚ ka-kvX-Pym-hm-bn-´n-cn-°pw. ]ns∂ Ch-‰ns‚ Xs∂

10. 3. A. om. hrØsØ kv]¿in-°p-amdv Iev]n-∏q. Cu NXpc-{i-Øns‚
`pP-Iƒ \mepw At\ym\yw

4. B. C. D. F. add c≠pw
5. F. AXns‚
6. B. D. hen-bXv
7. B. ASpØ ASpØ
8. B. Cu I¿Æw c≠p {Xy{i-ß-fp-tSbpw `qan
9. B. F. C°¿Æ-`p-P-Iƒ
10. B. XΩnse

VII. Pym\b\w
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A¥-c-Nm-]-Øns‚ ka-kvX-Pym-hm-bn-´n-cn°pw B_m-[m-¥-cw. ]ns∂

Cu B_m-[m-tbm-K-am-Ip∂ CjvS-I¿ÆsØ ̀ qan-bmbn Iev]n®v B_m-

[m-¥-csØ apJ-am-bnbpw sNdnb `pP-tbmSp Xpey-am-bn´p henb `pP-

tbbpw Iev]n-®m¬ Cu CjvS-I¿Æ-Øns‚ Hcp ]m¿izØn¶¬ ka-ew-

_-am-bn-cn-t∏mcp NXp-c-{i-ap-≠m-Ipw. ChnsS ew_m-{Km-¥cw B_m-[m-

¥-c-am-Ip-∂-Xv. F∂m¬ Nm]m-¥-c-k-a-kvX-Pymhv B_m-[m-¥-c-am-bn-´n-

cn-°pw. NXp-c-{i-Øn-¶¬ ]m¿iz`pP-Iƒ ka-ßƒ F¶n¬ ew_-ßfpw

ka-ß-fm-bn-́ n-cn-°pw. Ch-‰ns‚ B_m-[-Ifpw ka-ß-fm-bn-́ n-cn-°pw. BI-

bm¬ `qan-bn-¶se ew_-aq-em-¥-cw11 B_m-[m-¥-c-am-Ip-∂Xv. ew_m-{Km-

¥-c-hpw12 CXp-X-s∂.

BI-bm¬ Nm]m-¥-c-k-a-kvX-Pymhv B_m-[m-¥-c-am-Ip-∂-Xv. Nm]-

tbmK-k-a-kvX-Pymhv `qan BIp-∂-Xv. CXp-Xs∂ CjvS-I¿Æ-am-Ip-∂-

Xpw. BI-bm¬ CjvS-I¿Æ-Øns‚ Hcp ]pdsØ `pP-Iƒ c≠n-t‚bpw

h¿§m-¥cw Cu Pym°-fpsS tbmK-Nm-]-Pymhpw A¥-c-Nm-]-Pymhpw Xß-

fn-ep-≈13 LmX-am-bn-́ n-cn-°pw. C∆-Æ-an-cn-°-bmse tbmKm-¥-c-Nm-]-Pym-

°-fpsS LmXw bmsXm∂v CXp tbmKm-¥-c-Nm-]m¿≤-Pym-°-fpsS h¿§m-

¥-c-hp-am-bn-´n -cn -°pw14. F∂m-enXp h∂p-Iq-Snb \ymb-am-Ip-∂Xv.

bmhNneh c≠p Pym°fp-tSbpw LmXw bmsXm∂v AXv A®m-]-ßƒ

c≠n-t‚bpw tbmKm-¥-c-ß-fpsS A¿≤-ßsf kw_-‘n-®p≈ Pym°ƒ

bmh-Nn-eh Ah-‰ns‚ h¿§m-¥cambn-´n-cn°pw15. ]ns∂ c≠p Pym°-

fpsS h¿§m-¥cw bmsXm∂v AXv C÷ym-°-sf16 kw_-‘n-®p≈ Nm]-

ß-fpsS tbmKm-¥-c-ßƒ bmh-Nn-eh Ahs‰ kw_-‘n-®p≈ Pym°-

fpsS LmX-am-bn-́ n-cn-°pw. Cu \ymbsØ I¿Æm-\-b-\Øn¬ \tS Adn-

tb-Ww.

10.11. F. add CXp Xs∂
12. F. ew_m-{K-m¥-chpw CXp Xs∂
13. B. XΩn-ep≈
14. B. Nm]m¿≤m-¥-c-ß-fpsS Pym°-fpsS h¿§-am-bn-´n-cn°pw,

C. h¿§m-¥-c-am-bn-cn-°pw, D. ambn´pw Ccn°pw
15. B. Bbn-cn°pw
16. F. `pPm-Pym-°sf

VII. 10. hrØm¥¿§XNXp-c-{i-I¿Æßƒ
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10.ii. BZyI¿Æm{inX `pPmLmssXIyw, BZyXrXob
      I¿ÆLmXkaw

A\-¥-cw17 Cu \ymb-sØ-s°m≠p I¿Æ-ap-≠m-°pw- {]-Im-csØ

sNm√p-∂q. AhnsS hrØm-¥-¿§-X-am-bn-cn-°p∂ hnj-a-N-Xp-c-{i-Øn-¶se

F√m-bnepw henb ̀ pPsb ]Sn-™msd ̀ qan18 F∂pw F√m-bnepw sNdnb

`pPsb Ing°papJ-sa-∂pw19 ]ns∂ Ah-‰n¬20 hen-bXp Z£nW`pP,

sNdn-bXv DØ-c-̀ pP F∂n-ßs\ apºn¬21 sNm√n-b-h-Æw-Xs∂ Iev]n-®,

]ns∂22 ̀ qaosS sXs° A{K-Øn-¶∂p apJ-Øns‚ hSs° A{K-tØmfw

D≈Xp \tSsØ I¿Æw, ]ns∂ `qansS hSs° A{KØn¶∂p

apJØns‚ sXs° A{KØn¶¬ kv]¿in°p∂Xp c≠mwI¿Æw

F∂pw Iev]n®v, ]ns∂ ASpØv Cu c≠p I¿Æm{KßfpsS

A¥cßfnse hrØ`mK-ßsf Hmtcm `pP-I-fpsS Nm]-ßƒ F∂pw

Iev]n®v, C®m-]-J-fi-ß-fn¬ Nne _nµp°sf D≠m°q.

AhnsS `qaosS hSs° A{KØn¶∂p skuay`pPmNm]Øn¶¬

apJNm]tØmfw sNt∂SØv Hcp _nµphnSq23. Cu _nµphn¶∂p

hrØØn¬24 apJØns‚ hSs° A{KtØmSnSbv°p

"apJskuay`pPmNm]m¥cw' F∂p t]¿. CXns‚ \Sphn¬ kv]¿in°pw

hymktcJbpsS Hcp A{Kw. ]ns∂ `qaosS hSs° A{KØn¶∂p

`qNm]Øn¬25 bmay`pPmNm]tØmfw sNt∂SØv Hcp _nµphnSq. Cu

_nµphn¶∂p26 `qaosS bmaym{KtØmSnSbv°p "`qbmayNm]m¥cw'27

F∂p t]¿. CXns‚ a≤yØn¬28 kv]¿in°pw hymktcJbpsS as‰

A{Kw. CXp hymkØns‚ aqew. ]ns∂ hymkaqeØn¶∂p `qaosS

bmaym{KtØmfap≈ ]gpXp `qbmay`pPmNm]m¥cm¿≤w. BIbm¬

hymkaqeØn¶∂p `qaosS hSs°Øebpw sXs° `ptPsS

1017. B. om. A\-¥cw 23.C. _nµp-hn´v
18. B. ]Sn-™msd `pP ˛ `qan 24.B. C. D. F. hrØ-Øn-¶¬
19. B.C.]n∂-tØ-Xn¬hen-bXv,]n∂-tØXvDØ-c-̀ p-P 25.B. C. F. Nm]-Øn-¶¬

F√m-bnepw sNdn-b-Xv, Ing-°p-apJw 26.B. CXn-¶∂p
20.C. D. Ch-‰n¬ 27.B. C. D bmay-̀ pP Nm]m-¥-c-sa∂p
21. B. om. apºn¬ sNm√nbhÆw 28.B. C. F a≤y-Øn-¶¬
22.B. adds Cßs\

VII. Pym\b\w
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Ings°Øebpw AIesam°pw hrØØn¶¬.

]ns∂ hymkm{KØn¶∂pw hSs° `ptPsS ]Sn™msd A{Khpw

Ings° `ptPsS sXs° A{Khpw AIesam°pw. Cßs\
Ccn°pt∂SØp apJhpw skuay`pPbpw  Xßfn¬29 KpWn∏q. AXns\

bmay`pPbpw `qanbpw Xßfn¬30 KpWn®Xn¬ Iq´q. F∂meXp c≠p

h¿§m¥cßfpsS tbmKambn´ncn°pw. ChntSbpw31

apJskuayNm]ßsf Xßfn¬ Iq´nbpw A¥cn®pw

A¿≤n®ncn°p∂h‰ns‚ kakvXPym°fpsS h¿§m¥cw \tStØXv.

]ns∂ `qbmayNm]ßfpsS32 tbmKm¥cm¿≤ßsf kw_‘n®p≈
kakvXPym°sf h¿§n®v A¥cn®Xv c≠maXv. CXp apºn¬ sNm√nb

\ymbwsIm≠p hcpw.

ChnsS apJskuayNm]tbmKm¿≤hpw `qbm-ay-Nm-]-tbm-Km¿≤hpw
Ch c≠pw Iq´n-bm¬ ]cn≤y¿≤ambn´ncn°pw. Cu tbmKm¿≤Nm]ßƒ

c≠nt‚bpw Pym°fpsS h¿§tbmKw hymkh¿§ambn´ncn°pw, Cu

Pym°ƒ c≠pw33 `pPmtImSnIfmIbm¬. bmsXmcp{]Imcw ]cn[osS
\msem∂ns\ c≠mbn hn`Pn®ncn°p∂ JfißfpsS A¿≤Pym°ƒ

Xßfn¬ `pPmtImSnIƒ34, hymkm¿≤w I¿Æhpw Bbn´ncn°p∂q,

A∆Æw ]cn≤y¿≤sØ c≠mbn Jfin®h‰ns‚ kakvXPym°ƒ
Xßfn¬ `pPmtImSnIfmbn´ncn°pw, hymkw I¿Æhpambn´ncn°pw.

BIbm¬ Cs®m√nb tbmKm¿≤Pym°fpsS h¿§tbmKw

hymkh¿§ambn´ncn°pw35

BIbm¬36 hymkh¿§Øn¶∂p c≠p A¥cm¿≤Nm]ßfpsS

kakvXPym°fpsS h¿§ßƒ c≠pw t]mbXmbn´ncn°pw Cs®m√nb

Pym°fpsS LmXtbmKw. AhnsS hymkh¿§Øn¶∂p \tS Hcp

A¥cm¿≤Nm]Pymh¿§w t]mhq. AhnsS tijn®Xv

Bb¥cm¿≤Pymhns‚ tImSnh¿§ambn´ncn°pw. CXp c≠p Pym°fpsS

10.29.13. B. XΩn¬
30. B. XΩn¬
31. B. C. ChnsS
32. C. F. Nm]m¿≤-ß-fpsS
33. B. adds XΩn¬
34. B. tImSnIfm-bn-cn°pw; hymkw I¿Æhpw Bbn-cn°pw
35. B. C. D. hymk-h¿§-am-bn-cn°pw
36. B. adds hymkm¿≤
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h¿§m¥camIbm¬ Cu Pym°ƒ c≠nt\bpw kw_‘n®p≈

Nm]ßsf Xßfn¬37 Iq´pIbpw A¥cn°pIbpw sNbvXncn°p∂

Nm]ßƒ c≠pw bmhNneh Ahs‰ kw_‘n®p≈ Pym°ƒ Xßfn¬

KpWn®Xmbn´ncn°pw, apºn¬ sNm√nb \ymbØn∂p X°hÆw.

ChnsS ]ns∂ hymkØn∂p Nm]amIp∂Xp ]cn[y¿≤amIbm¬,

hymkm{KØn¶¬ sNm√nb A¥cm¿≤Nm]sØ, ]cn-[y¿≤Øn¬

Iq´pIbpw IfIbpw ssNhq. Cßs\ Ccn°p∂ Nm]ßƒ c≠nt‚bpw

Pym°ƒ Xßfn¬ KpWn®Xmbn´p htcWw Cu h¿§m¥cw,

tbmKm¥cNm]PymLmXcq]ambn´v Fs√m Ccn∏q h¿§m¥cw, F∂n´v.

ChnsS ]ns∂38 tbmKm¥cNm]ßƒ°p c≠n∂psamt∂ Pym°ƒ,

icØn∂pw Nm]Øn∂pta t`Zap≈q. hymktcJbn¶∂p Ccp]pdhpw

Xpeyambn´v AIeptºmƒ Pym°ƒ Xpeyßfmbn´ncn°pw F∂p39

\nbXw. bmsXmcp {]Imcw ‘A\¥]pc’hrØØn¶¬ A¿≤Pym°ƒ

]Tn°pt∂SØv Ccp]Øn\memIp∂ ]£Øn¶¬ Ccp]Ønaq∂maXpw

Ccp]ØnA©maXpw Ht∂ Bbn´ncn°p∂q, A∆ÆanhntSbpw.

Pym°ƒ40 XpeyßfmIbm¬ LmXw h¿§ambn´ncn°pw.  ChnsS

hymkh¿§Øn¶∂p aptJmØcm{Khpw hymkm{Khpw Xßfnep≈

A¥cNm]Pymhns‚ h¿§sØ \tS Ifbptºmƒ hymkaqeØn¶∂p

aptJmØcm{KtØmfap≈ A¥cNm]Pymhns‚ h¿§w tijn°p∂Xv.

]ns∂ CXn¶∂p hymkaqetØmSp `qaosS Z£nWm{KtØmSp≈

A¥cNm]Pymh¿§sØ IftI th≠phXv. CXp c≠mw A¥-cm¿≤-

Nm-]-am-Ip-∂-Xv. F∂n´v CXpw c≠p Pym°-fpsS h¿§m-¥-c-am-I-bm¬

Ch-‰ns‚ tbmKm-¥-c-Nm-]-Pym-Lm-X-am-bn-́ n-cn-°pw. ChnsS apJ-skuaym{K-

Øn-¶∂p hymk-aq-e-tØm-Sn-S-bn-ep≈ ]cn-[ywiw41 Hcp Nm]-am-Ip-∂-Xv.

hymk-aq-e-Øn-¶∂p bmaym-{Km-¥cw Hcp Nm]-am-Ip-∂-Xv. Ch-‰ns‚ A¥-

c-am-Ip-∂Xp apJ-skuaym{K-Øn-¶∂p `qbm-aym-{K-tØm-Sn-S-bn-ep≈ ]cn-

[ywiw. CXp apJ-Z-£n-W-̀ pPmNm]-tbm-K-am-bn-́ n-cn-°pw. CXns‚ Pymhm-

10.37.B. kw_-‘n® Nm]-ßƒ XΩn¬
38.F. adds hymk-Øn∂v
39.B. C. F F∂nXp
40.F. adds Cu
41. B ]cn-[ymwiw CXv apJ-Z-£n-W-`p-Pm-Nm-]-tbm-K-am-bn-cn-°pw.
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Ip-∂Xv BZy-I¿Æw. F∂m¬ BZy-I¿Æw A¥-c-Nm-]-Pym-hm-Ip-∂Xv.

]ns∂ apJskuaym{K-Øn-¶∂p XpSßn hymk-aqew Ign®p `qNm-]-Øn-

¶se42 _nµp-thm-f-ap-≈Xp tbmK-Nm-]-am-Ip-∂-Xv. CXns‚ Pymhp apJ-̀ q-

Nm-]-tbm-K-Pym-hm-bn-´n-cn-°pw. Z£n-W-`p-P-mNm-]-tØ-°mƒ `qZ-£n-Wm-

{K-tØm-Sp `qNm-]-Øn-¶se _nµp-thm-Sp≈ A¥-c-ta-do-́ n-cn°pw43 `pNm-

]w. F∂m¬44 A¥-csØ Z£n-W-`q-Pm-Nm-]-Øn¬ Iq´n-bm¬ `pNm-]-

tØmSp Xpey-am-I-bm¬ `qap-J-Nm-]-tbm-K-Pymhp45 tbmK-Pym-hm-Ip-∂-Xv.

 F∂n´p apJ-bm-ay-Nm-]-tbm-K-Pymhpw apJ-̀ q-Nm-]-tbm-K-Pymhpw Xß-

fn¬46 KpWn-®-Xm-bn-́ n-cn°pw, apJ-skuay`p-Pm-Lm-Xhpw ̀ qbm-ay-̀ p-Pm-Lm-

Xhpw Xßfnse tbmKw. CXn∂v "BZy-I¿Æm-{in-X-̀ pPm47LmssXIyw'

F∂p t]¿. BZy-I¿Æ-am-Ip-∂Xv apJ-skuaym{K-tØmSp `qbm-aym-{K-

tØmSp kv]¿in-®p≈ I¿Æw. CXns‚48 A{KsØ kv]¿in-®n-cnt∏m

Nneh apJ-skuay`pP-Iƒ, aqesØ kv]¿int∏m Nneh `qbm-ay-`p-P-

Iƒ. Ch-‰ns‚ LmX-tbm-K-am-I-bm¬49 BZy-I¿Æm-{in-X-̀ p-Pm-Lm-ssX-

Iy-an-Xv. CXp ]ns∂ BZy-Xr-Xo-b-I¿Æ-Lm-X-am-bn-´n-cn-s∏m-∂v. ChnsS50

BZyI¿Æ-am-Ip-∂Xv `qZ-£n-Wm-{K-Øn-¶∂p apJ-skuaym{K-tØm-f-ap-

≈-Xv. XrXob -I¿Æ-am-Ip-∂Xv ]ns∂ `qbm-ay-`p-P-Isf ]I¿∂p-sh-

®m¬ A{Kw \tS-tØXp51 Xs∂bpw aqew as‰m-cn-SØpw kv]¿in-®n-́ n-cn-

°p∂52 Cu BZy-I¿Æw Xs∂. ZznXo-b-I¿Æw \tS-sØ-t∏mse Ccn-

°pw. apJ-skuaym{K-Øn-¶¬ kv]¿in-°p∂ {]Y-a-I¿Æ-Øns‚ aqew

as‰m-cn-S-Øm-bn-cn°pw F∂p sNm√n-b-Xv, `qNm-]-Øn-¶¬ `qZ-£n-Wm-{K-

Øn-¶∂p `qbm-ay-Nm-]m-¥cw sNt∂-SØp bmsXmcp _nµp \tS sNm√n-

bXv AXn-¶-em-bn-´n-cn-°pw. Chn-Sp∂p apJ-skuaym{K-tØm-f-ap-≈Xp

XrXo-b-I¿Æ-am-Ip-∂-Xv. `qbm-ay-`p-P-Isf ]I¿∂p-sh-°p-tºmtf CXv

10.42.C. `qNm-]-tbm-K-Nm-]-am-bn-´n-cn°pw
43.B. tadn-bn-cn°pw
44.F. CXp
45.B. apJ
46.D. F Xß-fn-ep≈
47.D. I¿Æ-`pPw
48.B. AXns‚
49.C. LmX-am-I-bm¬
50.B. C. D AhnsS
51. E. \tS-tØ-SpØ
52.B. F. kv]¿in-®n-cn°pw \tSsØ Cu BZy-I¿Æw Xs∂

VII. 10. hrØm¥¿§XNXp-c-{i-I¿Æßƒ



440

D≠m-hq. CXns\ "XrXo-b-I¿Æw' F∂p sNm√p-∂p.

10.iii. Cc´hymkØm¬ lcn® {Xnh¿ÆLmXw
       NXpc{it£{XØn\p kaw

]ns∂ Cu I¿Æ-ßƒ c≠pw `pP-I-fmbn53 C°¿Æ-aq-em-¥-c-Øn-

¶se Nm]sØ `qNm-]-sa∂pw Iev]n-∏q. AXm-Ip-∂Xp  `qNm-]-Øn-

¶se _nµphpw `qbm-aym-{Khpw Xß-fn-ep≈ A¥-c-Nm-]w. CXns‚

Pymhns\ `qan F∂pw Iev]n-®n´v Hcp {Xy{isØ D≠m-°q. ]ns∂ Cu

`qan°p hn]-co-X-am-bn´p apJ-skuaym{KØn-¶∂v Cu `qan-tbm-f-ap-≈Xv

Cu {Xy{i-Øn-¶se ew_-am-Ip-∂-Xv. AhnsS54 BZy-Xr-Xo-b-I¿Æ-ß-

fm-Ip∂ `pP-I-fpsS LmXsØ hymkw sIm≠p lcn-®m-ep-≠mIpw Cu

ew_w. F√m-bn-SØpw Pym°-fm-bn-cn-°p∂ {Xy{i-̀ p-P-I-fpsS55 LmXsØ

B hrØ-hym-kw-sIm≠p lcn-®m¬ B `pPm-Nm-]-tbm-K-Øns‚ Pymhp

`qan-bm-bn-cn-°p∂ {Xy{i-Øns‚56 ew_-ap-≠mIpw F∂p \nbXw57. CXp

"Poth- ]c-kv]c' F∂m-Zn-bm-bp≈ t«mI-Øn-¶se \ymbwsIm≠p- h-cpw.

ChnsS ]ns∂ hnj-a-N-Xp-c-{isØ ZznXo-b-I¿Æw-sIm≠p hn -̀Pn®p

c≠p {Xy{i-ß-fm-bn´p Iev]n-®m¬ c≠n¶epw Hmtcm ew_-ap-≠mIpw58.

Cu ew_-ßƒ c≠n∂pw km[m-c-W-am-bn-́ n-cn-°p∂ `qan-bm-bn-́ n-cn°pw

Cu ZznXo-b-I¿Æw. C°¿Æw ̀ qan-bm-bn-́ n-cn-°p∂59a {Xy{i-ß-fnse ew_-

ßƒ c≠n-t‚bpw tbmKw bmsXm∂v CXn-t\mSv Xpey-am-bn-́ n-cn°pw BZy-

XrXob-I¿Æ-Lm-X-Øn-¶∂p hymkw-sIm≠p lcn-®p≈ ew_w. AXv59b

Fßs\ F∂p ]ns∂.

ChnsS BZy-Xr-Xo-b-I¿Æ-ß-fpsS A{Kw apJ-sku-aym-{K-Øn-¶¬,

aqew ̀ qbm-aym-{K-Øn-¶epw ̀ qNm-]-_n-µp-hn-¶-epw. Cu aqem-¥-c-Nm-]-Pymhv60

C°¿Æß-fm-Ip∂ {Xy{i-`p-P-Iƒ°p `qan BIp-∂-Xv. Cu `qan°pw

ZznXo-b-I¿Æ-Øn∂pw Ht∂ Zn°v, ZznXo-bI¿Æ-Øns‚ c≠-{K-Øn-¶∂v

Cu Pym{K-ßƒ bmay-Nm-]-tØmSp Xpey-ß-fm-I-bm¬. ZznXo-b-I¿Æ-

10.53.B. C `pP-I-fm-bn-cn°pw aqem-¥-c-Øn-¶se 57. C. F∂v Adn-bWw
54.B. C. D. F ChnsS 58 D. Adds. F∂p \nbXw
55. F. add Bbn-´n-cn-°p∂ `qan Bbn-´n-cn-°pw. 59a.B.C.D.F. Bbn-cn-°p∂

Cu ZznXob {Xy{i-`p-P-I-fpsS 59b.C. AXv F∂n-ßs\ F∂
56.B. C. D.F. {Xy{i-Øn-¶se 60. B.C. F. add aqem-¥-cmf `qNm-]-Pymhv
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Øns‚ Nm]-Øn∂pw Cu {Xy{i-̀ q-an-Nm-]-Øn∂pw a≤y-am-Ip-∂Xp apºn¬

sNm√nb hymkaqe-Øn-¶¬ Bbn-´n-cn-°pw. BI-bm¬ ZznXo-b-I¿Æ-

Øn∂pw Cu {Xy{i-̀ q-an°pw Zn°v Hs∂ BI-bm¬ ZznXo-b-I¿Æw `qan-

bm-bn-́ p≈ ew_-ßƒ c≠n∂pw henb ew_-Øn∂pw Zn°v Hs∂. ]ns∂

ZznXo-b-I¿Æw ̀ qan-bmbn61 BZy-Xr-Xo-b-I¿Æw62 ̀ pP-I-fm-bn-cn-°p∂ {Xyi-

Øns‚ `qan apJ-ambn Ccn-t∏mcp NXp-c{iw ka-ew-_-am-bn-´n-cn-°pw.

C∆Æw Iev]n-°p-tºmƒ ew_-tbm-K-Xpeyw henb ew_-sa∂p kv]jvS-

am-Ipw.

]ns∂ Cu ew_-tbm-KsØ ZznXo-b-I¿Æ-Øns‚ A¿≤w-sIm≠p
KpWn-®m¬ ZznXo-b-I¿Æw `qan-bm-bn-́ n-cn-°p∂ {Xy{i-ßƒ c≠n-tebpw
^e-tbm-K-am-bn´p hrØm-¥-¿§-X-N-Xp-c-{i-t£-{X-^-e-ap-≠m-Ipw. BI-
bm¬ I¿Æ-ßƒ aq∂pw Xß-fn¬ KpWn-®-Xn-¶∂p63 hymkw-sIm≠p
lcn®v A¿≤n-®Xp NXp-c-{i-t£-{X-̂ eam-bn-́ n-cn°pw64. I¿Æ-{Xb-Lm-
XsØ t£{X-^ew sIm≠p lcn-®m¬ Cc-´n® hymk-am-bn-´n-cn-°pw.
I¿Æ-h¿§-ß-fpsS LmXsØ t£{X-̂ -e-h¿§w-sIm≠p lcn-®m¬ ZznKp-
W-hym-k-h¿§-ap-≠mIpw65 ew_-tbm-Kw, hymkw, t£{X-^-e-sa-∂nh
F√mw ChnsS {]kw-Km¬ ]d-™p. F∂n´v CXns‚ tijw taen¬

]d-bp-∂p-≠v.

10. iv. I¿Æßsf hcpØpw {]Imcw

ChnsS I¿Æ-ßsf hcp-Øpw-{]-Im-csØ sNm√p-∂qXv66. AhnsS BZy-

I¿Æm-{in-X-`p-Pm-Lm-ssXIyw BZy-Xr-Xo-b-I¿Æm-Lm-X-am-bn-´n-cn°pw

F∂p hnkvX-cn®p sNm√o67. Cu \ymbw-sIm-≠p-Xs∂ Zzn -Xo-b-

I¿Æm{inX-̀ p-Pm-Lm-ssXIyw ZznXo-b-Xr-Xo-b-I¿Æm-Lm-X-sa∂pw hcpw.

CXp apJ-bm-ay-̀ p-Pm-Lm-Xhpw `qsku-ay-̀ pPmLm-Xhpw IqSn-b-Xv. ]ns∂

`qbm-ay-̀ p-P-Isf ]I¿∂p Iev]n-®m-ep≈68 ZznXo-b-I¿Æm-{in-X-̀ p-PI-fpsS

LmXw, XssZ-Iy-tØbpw D≠m-°q. AXp ̀ qap-J-Lm-Xhpw sku-ay-bmay-

10.61. B. `qan-bm-bn´v
62.D. om. XrXob
63.F. KpWn-®m-e-Xn-¶∂v
64.F. adds I¿Æ-{X-bLm-XsØ t£{X-^-e-am-bn-´n-cn-°pw
65.C. h¿§-ap-≠mIpw
66.B. F. sNm√p∂p
67.F.sNm√nb
68.F. sh®m-ep≈
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`p-Pm-Lm-Xhpw IqSn-b-Xv. CXn∂p "`pPm-{]-Xn-`p-Pm-Lm-X-tbmKw' F∂p69

t]¿.

CXp {]Y-a-Zzn-Xo-b-I¿Æ-Lm-X-am-bn-´n-cn-°pw. C\n Cu `pP-Isf

]I¿∂p-sh-®m¬ \mem-aXv Hcp I¿Æ-ap-≠m-hp-I-bn-√, {]kvXmcw HSp-

ßn-t∏mIbm¬. ChnsS C∆-Æ-ap-≠m-°nb BZyXrXo-b-I¿Æ-Lm-XsØ

BZy-Zzn-Xo-b-I¿Æ-LmXw sIm≠p KpWn®v ZznXobXrXobI¿Æ-LmXw

sIm≠p lcn-∏q. ^ew BZy-I¿Æ-h¿§w. ]ns∂ ZznXo-b-Xr-Xo-b-I¿Æ-

Lm-XsØ BZy-Zzn-Xo-b-I¿Æ-LmXw sIm≠p KpWn®v BZy-Xr-Xo-b-

I¿Æ-LmXw sIm≠p lcn-∏q. ̂ ew ZznXo-b-I¿Æ-h¿§w. Cßs\ I¿Æ-

ßƒ hcpØpw {]Im-cw. XrXo-b-I¿ÆsØ hcp-tØ-≠m, Iev]n-X-sas{X

AXv, F∂n´v. C∆Æw Xs∂ D≠m-°p-I-bpamw th≠p-In¬70.

11. Poth -]-c-kv]c\ymbhpw hrØm¥¿§X

   NXpc{iI¿ÆLmXhpw

A\-¥cw `pPm-{]-Xn-̀ p-Pm-Lm-X-tbmKw BZy-Zzn-Xo-bI¿Æ-Lm-X-am-bn-

´n-cn°pw F∂p sNm√n-b-Xns\1 ]Tn-X-Pym-°-fn¬ Im´p-∂q. AhnsS c≠p

Pym°sf ]c-kv]-c-tIm-Sn-I-sf-s°m≠p KpWn®p {XnPy-sIm≠p lcn®p

Iq´n-bm¬ B Pym°-fpsS tbmK-Nm-]-Øns‚ Pymhp-≠m-Ipw F∂p2

apºn¬ sNm√o. ChnsS {XnPymhv {]Y-a-I¿Æ-am-bn-́ n-cn°pw3, tbmK-Nm-

]-Pymhv ZznXo-b-I¿Æ-am-bn-´n-cn-°pw. CX-tc-X-c-tImSn at‰-Xn∂p {]Xn-`p-

P-bm-bn-´n-cn-°pw.

AXv4 Fßs\ F∂v5. AhnsS ZznXo-b-Pym-{K-Øn-¶¬ {XnPym-I¿Æ-

Øns‚ A{Kw. ZznXo-b-Xr-XobNm]-ßƒ c≠n-∂pw -Iq-So v́ Hcp ka-kvXPym-

10.69.B. C LmX-sa∂p
70.B. C AXv Iev]n-X-sa-s{X. th≠p-In¬ Cu \ymbw sIm≠p Xs∂ D≠m°mw

11.1. F. F∂-Xns\
2. B. C. D. FF∂-Xns\
3. B. D. ambn-cn°pw
4. F. CXv
5. B. Fßn-s\-sb-∂m¬
6. C. kv]¿in-°p∂
7. B. XΩn-ep≈

VII. Pym\b\w



443

hpw. Cu Pymhns‚ a≤y-Øn-¶¬ kv]¿in°pw6 {XnPym-I¿Æw.

C°¿Æhpw ka-kvX-Pymhpw Xß-fn -ep≈7 kw]m-X-Øn-¶∂p

XrXobPym{K-tØm-f-ap≈ ka-kvX-Pym¿≤w Hcp ̀ pPm. ZznXo-b-Pym-hns\

]ns∂ C w-]m-X-Øn-¶epw XrXo-b-Pymhpw ]q¿∆m-]-c-kq-{Xhpw Xß-

fn-ep≈ kw]m-X-Øn-¶epw kv]¿in-®n´p Iev]n-°mw. F∂m-e-sXmcp ̀ pPm.

XrXo-b-Pymhv Hcp `pPm. Cßs\ Ccn-t∏mcp {Xy{i-ap-≠v. ChnsS ka-

kvX-Pym¿≤w {]Y-a-Pym-hv. CXn-t\bpw ZznXo-b-Pym-hn-t\bpw CX-tc-X-c-

tIm-Sn-I-sf-s°m≠p8 KpWn®v Xß-fn¬Iq´n {XnPy-sIm≠p lcn-®m¬

XrXo-b-Pym-hm-bn-́ p-h-cpw. F∂n-sX√mw apºn¬ sNm√o.

]ns∂ ChnsS t£{X-I-ev]-\sØ {]Im-cm-¥-tcW \ncq-]n-°mw.

ChnsS ZznXo-b-Pym-{K-Øn-¶epw NXp¿∞-Pym-{K-Øn-¶epw kv]¿in-°p-

amdp ka-kvX-Pym-hns\ Iev]n∏q. C -a-kvX-Pym-a-≤y-Øn-¶¬ kv]¿in-

°p-amdp hymkm¿≤-I¿Æ-tØbpw, ZznXo-b-Pym-hns\ bYm-ÿm-\-am-bn´pw

Iev]n®v ]ns∂ ZznXo-b-Pymhpw ]q¿∆m-]-c-kq-{X-Øn-¶se ZznXobPymtIm-

Snbpw, ]ns∂ ka-kvX-Pym¿≤-ß-fn¬ ZznXo-b-Pym-{KsØ kv]¿in-°p∂9

`mK-hpw, CXns‚ tImSn10 hymkm¿≤-Øn-¶se `mKhpw11 Cßs\ Hcp

hnj-a-N-Xp-c-{iw. ChnsS ]q¿∆-m]-c-kq-{Xhpw ZznXo-b-Pym-hp-ap≈ kw]m-

X-Øn-¶epw ka-kvX-Pym-a-≤y-Øn-¶epw kv]¿in-®n´v Hcp I¿Æw. CXp

XrXo-b-Pym-hm-bn-́ n-cn-°pw, apºn¬ sNm√nb12 \ymbw-sIm≠v; kwÿm-\-

t`Zw tXm∂p-sa-s{X. at‰ I¿Æw ZznXo-b-Pym-{K-Øn-¶¬13 kv]¿in-®n-cn-

°p∂ hymkm¿≤w. ChnsS ZznXo-b-Pymhpw {]Y-a-Pym-tIm-Snbpw Xß-

fn¬ {]Xn-`p-P-I-fm-bn-´n-cn-°pw. at‰h Xß-fn-epw. F∂m¬ 14`pPm-{]-Xn-

`p-PmLmXw15 I¿Æ-Lm-X-sa-∂Xv Chn-tSbpw hcpw.

11.8. D. F tImSn-sIm≠p KpWn®v
9. B. C. D. kv]¿in-®n-cn-°p∂
10. D. tImSnbpw; F. adds I¿Æ-Øn-¶se
11. B. `mKw
12. B. ap≥ sNm√nb
13. B. Pym{K-Øn¬
14. B. `pP-m{]-Xn-`pP
15. F. LmX-tbmKw

VII. 11. Poth -]-c-kv]c\ymbhpw hrØm¥¿§X NXpc{iI¿ÆLmXhpw



444

12. hymkm¿≤w  C√msX Pohm-\-b\w

]ns∂ {]Y-a-Pymhpw ZznXo-b-Pymhpw Xß-fn-ep≈ h¿§m-¥cw {]Y-a-

Pymhpw XrXo-b-Pymhpw Xß-fn-ep≈ Lm-X-am-bn-́ n-cn-°pw. ]ns∂ {]Y-a-

Pymhpw XrXo-b-Pymhpw Xß-fn-ep≈ h¿§m-¥cw ZznXo-b-Pymhpw NXp¿∞-

Pymhpw Xß-fn-ep≈ LmX-am-bn-´n-cn-°pw. Cßs\ c≠p Pym°-fpsS

h¿§m-¥cw Ah-‰ns‚ Nm]-tbm-K-Øn-t‚bpw A¥-c-Øn-t‚bpw Pym°ƒ

c≠pw Xß-fnse LmX-am-bn-´n-cn°pw1, apºn¬2 sNm√nb \ymbw-sIm-

≠v. F∂m¬ AXXp Pymh¿§-Øn-¶∂p {]Y-a-Pym-h¿§sØ If™v

ASpØp Iosg Pymhn-s\-s°m≠p lcn-®m¬ ASpØp aosØ Pymhp-

≠m-Ipw. C∆Æw hymkm¿≤w-Iq-SmsX ]Tn-X-Pym-°sf hcp-Ømw. ]ns∂

{]Y-a-Xr-Xo-b-Pym-Lm-X-Øn¬ {]Y-a-Pym-h¿§sØ Iq´n aqen-®m¬ ZznXo-

b-Pym-hp-≠m-Ipw. Cßs\ Pymh¿§w3 {ItaW D≠m-°mw hymkm¿≤w

IqSm-sX. Chs‰ F√mw ka-kvX-Pym-°-fm-bn´v4 Iev]n-°n-ep-amw. Cßs\

Hcp ]cnj Pohm-\-b-\--\ym-b-ßƒ.

13. ka-kvX-Pym-LmXsØ hymkw sIm≠v

lcn®m¬ ew_-ap≠mIpw

A\-¥cw c≠p Pym°-fpsS LmXsØ hymkm¿≤w-sIm≠p lcn-

®m¬ X®m-]-tbm-K-Pymhv ̀ qan Bbn-cn-°p-t∂-SsØ ew_-ap-≠mIpw F∂p

sNm√n-b-Xns‚ D]-]-Ønsb Im´p-∂q, "A\-¥-]p-c’hrØ-Øn-¶se ka-

kvX-Pym-°-sf-s°m≠v. AhnsS ]q¿∆-kq-{X-Øns‚1 Ings° Xe-s°∂v

Ccp-]p-dhpw ]Xp-∏Øp Nm]-J-fi-ßsf Ign®p t\sc sX°p-h-S°v

Hcp Pymhns\ Iev]n-∏q. CXp ]Ømw-Pym-hm-Ip-∂-Xv. ]ns∂ CXns‚

sXs° Xe-s°∂p XpSßn ]{¥≠p Nm]-J-WvU-Øn∂v Hcp ka-kvX-

Pym-hns\ Iev]n-∏q. CXns‚ A{Kw ]q¿∆m-]-c-kq-{X-Øns‚ hS-s°-]p-

dØp c≠p Nm]-JWvUw Ign-t™-SØp ]cn-[nsb kv]¿in-°pw. CXv

12. 1. B. Bbn-cn°pw
2. B. ap≥
3. F. h¿§-ßƒ
4. B. C. D. F√m-t‰bpw ka-kvX-Pym-hm-bn´p

13. 1. B. C. D ]q¿∆m-]c

VII. Pym\b\w
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Bdmw Pymhv. ]ns∂ CXns‚ hSs° Xe-°epw ]Ømw Pymhns‚

hSs° Xe-°-epw-IqSn Hcp ka-kvX-Pym-hns\ Iev]n-∏q. CXp \memw

Pymhv. ]ns∂ Bdmw- Pym-hns‚ \Sp-hnepw hrØ-tI-{µ-Øn-¶epw kv]¿in-

®n´p c≠-{K-ßfpw ]cn-[nsb2 kv]¿in-°p-amdv Hcp hymk-kq-{XsØ

Iev]n-∏q. CXpw Bdmw Pymhpw Xß-fn¬ hn]-co-X-Zn-°p-Iƒ, CXn-¶eq3

ic-sa-∂n-́ v. ]ns∂ Cu hymk-kq-{X-Øns‚ Ings° Xe-t°∂p t\sc

]Sn-™m-tdm v́ Hcp ka-kvX-Pym-hns\ Iev]n-∏q, t\sc hS-t°m-́ pw. CXn¬4

\tS-tØXp tImSn, c≠maXp `pP. Cu `pP \memw Pymhm-bn-́ n-cn-s∏m-

∂v. ChnsS ]q¿∆m-]-c-kq-{Xm-{K-tØmSp ]Ømw Pymhns‚ sXs° A{K-

tØmSv CS-bn¬ ]Øp Nm]-J-fi-ap-≈q. AhnsS Zi-a-Pym-{K-Øn-¶∂v5

Bdp-Nm-]-Jfiw Ign-™n´p hymkm{Kw ]cn-[nsb kv]¿in-°p∂q6. Chn-

Sp∂p ]q¿∆-kq{Xw7 \mep Nm]-JWvUw; Chn-Sp∂pw \mep Nm]-Jfiw

hS°p sNt∂-SØp `pPm{Kw ]cn-[nsb8 kv]¿in-°pw. Cßs\ F´p

Nm]-J-fiØn-¶¬ IqSn-bp-t≈mcp ka-kvX-Pymhv BI-sIm≠p \memw

Pymhv F∂p h∂q.

]ns∂ Zi-a-Pym-hns‚ DØ-cm-{K-Øn-¶¬ kv]¿in-®n-cn-°p∂ NXp¿∞-

Pym-a-≤y-Øn-¶¬ kv]¿in-®n´pw Hcp hymk-kq-{XsØ Iev]n-∏q. CXn-

t‚bpw Ings° Xe-t°∂p sX°p hS°v Hcp `pPm-Pym-hns\ Iev]n-∏q.

CXp ]{¥≠p Jfi-Øns‚9 ka-kvX-Pym-hm-I-bm¬ Bdmw Pymhm-bn-

´n-cn-°pw. ChnsS bmsXmcp Pymhns‚ a≤y-Øn-¶¬ hymk-am-Ip∂ I¿Æw

kv]¿in-°p∂q AXns‚ `pP CX-c-Pym-hm-bn-´n-cn-°pw. ChnsS ]q¿∆m-

]ckq{Xm-{Khpw10 tbmK-Nm-]-Pym-hm-Ip∂11 `qay-{Khpw Xß-fn¬, tbmK-

Nm]m¿≤w A¥-c-am-Ip∂q. CXn-¶∂v CjvS-Nm-]m¿≤w If-™m¬ CXc-

-Nm-]m¿≤w12 tijn°pw F∂p tlXp-hm-Ip-∂Xv13.

13. 2. F. ]cn-[n-bn-¶¬
3. F. CXnep icw
4. B. CXns‚
5. C. Pymhn¶∂v; F. ka-kvX-Pym-{K-Øn-¶∂v
6. F. Ahn-Sp∂v ]q¿hm-]-c-kq{Xw \memw
7. B. C. ]q¿∆m-]-c-kq{Xw
8. B. C. D. F. ]cn-[n-bn-¶¬
9. C. D. F Nm]-J-WvU-Øns‚
10. D. ]q¿∆m-]-c-kq-{Xhpw
11. F. Pymhm-bn-cn-°p∂

VII. 13. ka-kvX-Pym-LmXsØ hymkw sIm≠v lcn®m¬ ew_-ap≠mIpw
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ChnsS hymk-amIp∂14 I¿Æw {]am-Ww, CXns‚ `pP {]am-W-^-

ew, hymk-Øn-¶∂p15 hn]-co-X-am-bn-cn-°p∂ Pymhv C—m, hn]-co-X-Pym-

tbm-K-Øn-¶∂p tbmK-Nm-]-Pym-tbm-K-tØmfw D≈ ew_w C—-m -̂e-am-

bn-´p-≠m-Ipw16. ChnsS CjvS-Pym-°-fn¬ H∂v C—-bm-Ip-tºmƒ at‰Xp17

{]am-W-̂ -e-am-bn-́ n-cn°pw18. BI-bm¬ NXp¿∞-j-jvT-Pym-°ƒ c≠n∂pw

H∂p-Xs∂ C—m-̂ -e-am-Ip-∂-Xv, ew_w hcp-Øp-t∂-S-Øv. ]ns∂ tImSn19

hcp-Øp-t∂-SØp Nm]-a-≤y-kv]rjvS-am-bn-cn-°p∂ hymk-kq-{X-Øns‚

tImSn {]am-W-̂ -e-am-Ip-∂-Xv. ChnsS C—m-{]-am-W-̂ -e-LmXw c≠v BI-

bm¬ C—m-̂ -e-ß-fmbn B_m-[-I-fmbn Zi-a-Pym-J-fi-ß-fm-bn-cn-°p∂

Ah c≠pw Pym°ƒ°pw c≠m-bn-́ n-cn-°pw. ChnsS C—m-{]-am-W-ßƒ

c≠pw Xß-fn¬ hn]-co-X-Zn-°p-I-fm-I-bm¬ Ch-‰ns‚ ^e-ßƒ Xß-

fnepw hn]-co-X-Zn-°p-I-fm-bn-´n-cn-°pw. Cßs\ `pP-I-sf-s°m≠p ew_-

`q-an-Isf hcp-Øpw-{]-Im-csØ sNm√o-Xm-bn.

14. D]-kw-lmcw

ChnsS c≠v CjvS-Pym-°sf CX-tc-X-c-tIm-Sn-I-sf-s°m≠p KpWn®p

Xß-fn¬ Iq´n-bXv CjvS-Pym-Nm-]-ß-fpsS tbmK-Pymhpw hymkm¿≤hpw

Xß-fn-ep≈ LmX-am-bn-́ n-cn°pw F∂p sNm√n-b-Xp-sIm-≠p-Xs∂ \nb-

X-I¿Æ-am-bn-́ n-cn-°p∂ bmsXmcp NXp-c-{i-Øn-¶epw ̀ pPm-{]-Xn-̀ p-Pm-Lm-

X-tbmKw I¿Æ-Lm-X-am-bn-́ n-cn°pw F∂p h∂q. Cu \ymbwsIm≠p-

Xs∂ ASp-Øp≈ `pP-Iƒ Xß-fn¬ KpWn®p Iq´n-bXpw Nne I¿Æ-

Lm-X-am-bn-́ n-cn-°pw F∂-Xn-t\bpw sNm√o. ]ns∂ Cu \ymbw-sIm≠p

tbmKm-¥-c-Nm-]-Pym-°sf hcp-Øm-sa∂pw sNm√o. XZzmcm ]Tn-X-Pym-

°sf H° hcp-Øm-sa∂pw sNm√o. ]ns∂ {]Y-a-I¿Æm-{in-X-̀ p-P-mLmX-

13. 12. D. CX-tc-X-cm¿≤w
13. F. F∂Xv tlXp-hm-bn´v BIp∂
14. B. hymkm¿≤-am-Ip∂
15. F. hymk-Øn∂v
16. B. C—m-^ew
17. C. D. F. add AXns‚ at‰-Xns‚ at‰Xv
18. B. C. Bbncn°pw
19. F. B_m-[-Isf; for tImSn

VII. Pym\b\w



447

tbmKw {]Y-a-Xr-XobI¿Æ-LmXw F∂pw ht∂-SØv C°¿Æ-Nm-]-tbm-

K-Pymhv ̀ qan-bm-Ip∂ {Xy{i-Øn-¶se ew_w hcpw, Cu I¿Æ-Lm-XsØ

hymkw sIm≠p lcn-®m¬. ]ns∂ ZznXo-b-I¿Æw `qan-bm-Ip∂ {Xy{i-

ßƒ c≠n-¶se ew_-tbm-K-am-In-ep-amw Cu ew_w. At∏mƒ I¿Æ-

Lm-X-sa∂p hnh£nt°≠m; `pPm-Lm-X-ßƒ Ft∂ th≠q. ]ns∂

Cu ew_w sIm≠p ZznXo-b-I¿Æm¿≤sØ KpWn-®m¬ NXp-c-{i-t£-

{X-^ew hcpw F∂p kmam -\y -\ymbwsIm≠p h∂n-cn -°p -∂p.

15. hrØm-¥¿§-X-N-Xp-c-{i-t£-{X-̂ -em-\-b\w

A\-¥cw Cu \ymbw-sIm≠p ]cn-[n-Iq-SmsX \nb-X-I¿Æ-am-bn-cn-

°p∂ NXp-c{i_mlp-°-sf-s°m-≠p-Xs∂ hymksØ hcpØmw F∂-

Xns\ Im´p-hm-\m-bn-s°m≠p I¿Æhpw hymkhpw1 IqSmsX NXp-c-{i-

t£-{X-^-esØ hcp-Øpw-{]-Im-csØ Im´p-∂q. Cßs\ {Xn`p-P-t£-

{X-Øn-¶se ^e-Øns‚ h¿§-ap-≠m-°p∂ {]Im-csØ sNm√n2 A\-

¥cw C∆Æw Xs∂ NXp-c-{i-t£-{X-^-e-Øns‚3 h¿§-hp-ap≠mIpw4

F∂-Xns\ sNm√p-∂q.

AhnsS Hcp hrØ-Øns‚5 A¥¿`m-K-Øn-¶¬ Iev]n∏q NXp-c-{iw.

At∏mƒ NXp-c-{i-Øns‚ \mep-tImWpw hrØsØ kv]¿in-®n-cn-

t°Ww6. At∏mƒ B7 hrØ-Øns‚ \mep Pym°-fm-bn-́ n-cn°pw C®-Xp-

c-{i-_m-lp-°ƒ. C∂mep Pym°-sf-s°m≠p hrØw apgp-h≥ XnI-™n-

´p-an-cn°pw8. ]ns∂ C®-Xp-c-{i-Øn-¶¬ CjvS-am-bn´v Hcp I¿ÆsØ

tImtWm-Sp-tImWp kv]¿in-°p-amdp Iev]n-∏q. F∂m-en-®-Xp-c-{i-Øns‚

A¥¿`m-K-Øn-¶¬ c≠p {Xy{i-ß-fp-≠m-Ipw. ChnsS c≠p {Xy{i-

ßƒ°pw km[m-c-W-am-bn-´n-cn-t∏mcp `qan-bm-bn-´n-cn°pw C°-ev]n®

I¿Æw. C∆Æw \nb-X-am-bn-cn-°p∂ NXp-c-{i-Øn-¶se ̂ esØ "k¿∆-

15 1. B. D. I¿Æ-ßfpw hymk-ßfpw; C. F. hymk-ß-fpw I¿Æ-ßfpw
2. C. sNm√p∂p
3. B. t£{X-Øns‚
4. C. h¿§-ap-≠mIpw
5. B. hrØ-m¥¿`m-KsØ
6. B. kv]¿in-°Ww
7. B. om. B
8. B. XnI-™p-an-cn°pw

VII. 15. hrØm-¥¿§-X-N-Xp-c-{i-t£-{X-^-em-\-b\w
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tZm¿øp-Xn-Zfw' F∂m-Zn-bm-bn-cn-°p-∂-Xn-s\-s°m≠p hcp-Øp-∂q. AhnsS

]ns∂ Cu CjvS-I¿Æ-Øns‚ Hcp ]pdsØ NXp-c-{i-_m-lp-°ƒ

c≠nt\bpw {Xy{i-_m-lp-°ƒ F∂pw CjvS-I¿ÆsØ `qan F∂pw

Iev]n®v apºn¬ sNm√n-b-hÆw ew_sØ D≠m-°q. ]ns∂ CjvS-I¿Æ-

Øns‚ as‰ ]pd-sØ- {Xy-{i-Øn-¶se ew_-tØbpw D≠m-°q. ]ns∂

CjvS-I¿Æm¿≤-sØ-s°m≠v ew_-tbm-KsØ9 KpWn-∏q. AXv Cu NXp-

c-{i-t£-{X-Øn-¶se ̂ e-am-Ip-∂-Xv. ew_w sIm≠p ̀ qay¿≤sØ KpWn-

®m¬ {Xy{i-̂ -e-ap-≠mIpw F∂n´.v CXp≠p sNm√o´v

""ew_-KpWw `qay¿≤w kv]jvSw {Xn`p-tP- ^ew `hXn''

F∂v. ChnsS C w-Jy-I-sf-s°m≠p Iev]n∏q NXp-c-{i-t£-{XsØ.

""]©m-i-tZ-I-k-lnXm hZ\w bZobw

`qx ]©-k-]vX-Xn-anXm N antXm-fjvS-jjvSym |

kthym `ptPm ZznKp-W-hnw-i-Xn-k-Ωn-tXmf\y-˛

kvXkvan≥ ^e-{i-h-W-ew-_-anXn {]N£z'' ||

eoemhXn. 97

A{X -Cui-tIm-W-Km-aojvSx I¿Æ-x k-]vX-k-]vXXnkwJymx''

ChnsS ]Sn-™msd ]pdsØ _mlp-hns\ `qan F∂pw Ing-t°-Xns\

apJ-sa∂pw sNm√n10. Cuim\-tIm-tWmSp \ncr-Xn-tIm-tWm-Sp≈11 I¿Æw

Fgp-]-tØ-gv. AXns\ CjvS-I¿Æ-sa∂pw CXns\ NXp-c-{i-Øn-∂-I-

ØqsS c≠p {Xy{i-ßƒ°pw ̀ qan-bm-bn-́ n-cn-s∏m∂v F∂pw Iev]n-°p∂q12.

Cßs\ Hcp kwJym-\n-basØ B{i-bn®psIm≠m¬ Hm¿∏m-s\-fp-Xv.

15. i. ew_\n]mXm¥chpw ew_tbmKhpw sIm≠v t£{X^ew

ChnsS A·n-tIm-Wn-¶∂v D≠m-Ip∂ ew_w CjvS-I¿Æ-Øns‚13

\Sp-hn¬\n∂p sX°p \oßn kv]¿in°pw; hmbp-tIm-Wn-¶∂v D≠m-Ip-

∂Xp hS°p \oßnbpw kv]¿in-°pw. ChnsS C°¿Æ-Øn-¶¬ c≠p

ew_-ßfpw kv]¿in-°p-∂-Xns‚ \Sp-{]-tZ-i-Øn∂p "ew_-\n-]m-Xm-¥cw'

15.9. B. C. ew_sØ
10. B. ChnsS ]Sn-™mdv `qan, Ing°p apJw
11. B. Cui-\n-cr-Xn-tIm-tWm-Sp≈ I¿Æw CjvSw
12. B. Cu I¿Æw NXp-c-{im¥¿`mK-Øp≈ c≠p {Xy{i-ß-fp-tSbpw `qan-bm-Ip-∂p.
13. B. C. CjvS-I¿Æ-Øn-¶¬

VII. Pym\b\w
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F∂p t]¿. CXp `qaosS GI-tZ-i-am-I-bm¬ c≠p ew_-Øn∂pw H-cp -

Zn-°m-bn-́ n-cn-°pw14. BIbm¬ Hcp ew_Øn∂p tij-ambn15 \o´n Iev]n∏q

as‰ ew_sØ16, AXn∂p tijambn´p17 Ctß ew_tØbpw

Iev]n∏q18. Ct∏mfnXtcXcm{KØn¶temfw19 \ofw c≠p ew_ßfpw20.

]ns∂ ew_m{Kßfn¬ ct≠SØpw ew_\n]mXm¥ctØbpw

Iev]n∏q. F∂m¬ HcmbXNXpc{iap≠mIpw.

]ns∂ ew_tbmKh¿§hpw ew_\n]mXm¥ch¿§hpw Iq´n aqen®m¬

Cu BbXNXpc{iØns‚ I¿Æap≠mIpw, ew_m{Kßsf kv]¿in®n v́.

C°¿Æw21 hrØm¥¿`mKØn¶se NXpc{iØn¶¬ Iev]n®ncn°p∂

CjvSI¿ÆØns‚ as‰ I¿Æambn´ncn°paXv. CXn∂v ‘CXcI¿Æw’
F∂p t]¿. F∂menXcI¿Æh¿§Øn¶∂p ew_\n]mXm¥ch¿§w

t]mb tijw Cu ew_tbmKh¿§w. Cu ew_tbmKh¿§hpw

CjvSI¿Æm¿≤h¿§hpw Xßfn¬ KpWn®Xp NXpc{it£{X^e

h¿§ambn´ncn°pw.

15. ii. ew_\n]mXm¥cw hcpØpw {]Imcw

ChnsS ‘]©mitZIklnXm ’ F∂XpsIm≠p sNm√nb

kwJymhntijw sIm≠p Iev]n® NXpc{iØn¶¬ apJhpw

Z£nW_mlphpw  Xßfnep≈ tbmKØn¶∂p≠mIp∂ ew_w

`qa≤yØn¶∂p sX°p \oßn kv]¿in°pw, apJtØ°mƒ

Z£nW_mlp sNdnbXv, F∂n´v. ew_m{KØn¶¬ kv]¿in°p∂

_mlp°ƒ c≠n¬sh®v bmsXmcp _mlp sNdnbXv `qaosS \Sphn¬

\n∂v AXns‚ Zn°n¬ \oßo´p `qansb kv]¿in°pw ew_w F∂p

\nbXw. ew_kv]¿iØn¶∂v Ccp]pdhpap≈ `qJfißƒ°v

"B_m[Iƒ’ F∂p t]¿. B ew_sØ kw_‘n®ncnt∏m Nneh

Ah c≠pw. ]ns∂ "`qan’ F∂p sNm√nb NXpc{i_mlphpw

DØc_mlphpw Xßfnse tbmKØn¶∂p≠mIp∂ ew_w

15.14. B. hn]-co-X-Zn°v
15. F. tij-am-bn´v
16. F. tijsØ
17. B. tij-ambn
18. B. om. Iev]n∏p
19. F. tcJm-{K-Øn-¶-temfw
20.F. ew_-ß-fn¬
21. F. A°¿Æw

VII. 15. hrØm-¥¿§-X-N-Xp-c-{i-t£-{X-^-em-\-b\w
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\ncXoitImWp22 t\m°nbp≈ CjvSI¿ÆamIp∂23 `qanbn¶¬ t\sc

\Sphn¬ \n∂v hS°p \oßn kv]¿in°pw, `qantb°mƒ DØc_mlp

sNdnbXv, F∂n v́. C∆Æw Ccn°bm¬24 c≠p ew_sØ kw_‘n®p≈

B_m[Ifn¬ hSs° ]pdsØ B_m[Iƒ c≠pw Xßfnep≈

A¥cw ChnsS ew_\n]mXm¥camIp∂Xv. ChnsS CjvS-I¿Æ-am-Ip∂

`qaosS \Sp-hn∂v sX°v Hcp ew_-kw-]m-Xw, hS°v at‰Xv BI-bm¬

`qa≤ytØmSv ew_-kw-]m-X-tØm-Sp≈ A¥cm-f-ßƒ25 c≠pw IqSn-bXv

ChnsS ew_-\n-]m-Xm-¥-c-am-Ip∂-Xv. BIbm¬ c≠p ew_tØbpw

kw_‘n®n v́ Hcp Zn°nse B_m[Iƒ c≠nt\bpw hcpØn Xßfn¬

A¥cn®mepw hcpw Cu ew_\n]mXm¥cw. `qa≤y

ew_kw]mXm¥cßƒ c≠pw hcpØn Xßfn¬ Iq´n-bmepw hcpw

Cu ew_\n]mXm¥cw.

]ns∂ Z£n-W-_m-lp-hns\ apJ-am°n apJsØ Z£nW_mlphm°n

]I¿∂psh®mepw CjvSI¿Æw `qanbmbn´ncn°pw. `qa≤yØn¶∂p

hS°p \oßo´p c≠p ew_hpw `qansb kv]¿in°p∂q. BIbm¬

c≠p ew_tØbpw kw_‘n®p≈ `qa≤yew_kw]mXm¥cßƒ

c≠pw Xßfnep≈ A¥cw ChnsS ew_\n]mXm¥camIp∂Xv.

B_m[Iƒ sIm≠p hcpØpIn¬ ChntSbpw  hntijan√. Hcp Zn°nse

B_m[Iƒ c≠pw Xßfnep≈26 A¥cw Xs∂ At{X

ew_\n]mXm¥camIp∂Xv.

]ns∂ ChnsS CjvSI¿ÆsØs°m≠p NXpc{isØ c≠p

{Xy{iam°n Iev]n°ptºmƒ27 Cu c≠p {Xy{ißƒ c≠nepw28 Cuc≠p

`pPIfp≈Xn¬ sNdnbh c≠pw CjvSI¿ÆØns‚ Hc{KsØ

kv]¿in°p∂q. henb ̀ pPIƒ c≠pw as‰mcv A‰sØ29 kv]¿in°p∂q30,

F∂ncn°n¬ ̀ qanbmbn Iev]n®ncn°p∂ CjvSI¿ÆØns‚ \Sphn¶∂p

sNdnb `pPIƒ D≈ Zn°p t\m°n \oßo´ncn°pw31 c≠p

ew_ßfptSbpw `qkv]¿iw. BIbm¬ `qa≤yhpw ew_kw]mXhpw

15.22.B. F. \ncr-Xn-tIm¨
23.B. I¿Æ-amb
24.B. BI-bm¬
25.C. A¥-c-ßƒ
26.B. XΩn-ep≈; C. Xß-fn¬

27.B. {Xyiy-am-°p-tºmƒ
28.F. {Xyiy-ß-fn¬
29.B. A{KsØ
30.F. kv]¿in-®n-cn-°p∂
31. F. \oßn-s°m-≠n-cn°pw
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D≈ A¥cßƒ c≠nt‚bpw Xßfnep≈ A¥cw

ew_\n]mXm¥cambn´ncn°pw. bmsXmcnSØp ]ns∂ c≠p

{Xy{ißfn¬ sh®v H∂ns‚ henb `pPbpw H∂ns‚ sNdnb `pPbpw

IqSn I¿ÆØns‚ Hc{KsØ kv]¿in®ncn°pw, as‰ A{KtØbpw

H∂ns‚ henb `pPbpw H∂ns‚ sNdnb `pPbpw IqSn

kv]¿in®ncn°p∂q, AhnsS CjvSI¿ÆamIp∂ `qaosS a≤yØn¶∂v

Ccp]pdhpw kv]¿in°pw ew_ßƒ ̀ qa≤yØn¶∂p sNdnb ̀ pPIfp≈32

Zn°pt\m°n \oßn Ccn°pw `qew_ßfpsS kw]mXw F∂p

\nbXamIbm¬. ChnsS `qa≤yew_kw]mXm¥cßfpsS tbmKw

ew_\n]mXm¥camIp∂Xv33.

`qa≤yew_kw]mXm¥camIp∂Xp ]ns∂ B_m[m¥cm¿≤w.

henb B_mt[sS A{KØn¶epw sNdnb B_m[tbmfw

th¿s]SpØm¬34 \Sphn¬35 B_m[m¥cw tijn°pw.  CXns‚

\Sphn¬ `qa≤yamIp∂Xv36. BIbm¬ B_m[m¥cm¿≤w

`qa≤yew_kw]mXm¥camIp∂Xv F∂p h∂q37. BIbm¬

B_m[m¥cm¿≤ßfpsS tbmKw Xm≥ A¥cw Xm≥38

ew_\n]mXm¥camIp∂Xv39.

]ns∂ Hcp ew_sØ kw_‘n®p≈40 B_m[Iƒ c≠nt‚bpw

h¿§m¥csØ Cu B_m[IfpsS tbmKamIp∂ ̀ qansbs°m≠v lcn®

^ew B_m[m¥camIp∂Xv41. h¿§m¥cm¿≤sØ lcn® ^ew

B_m[m¥cm¿≤amIp∂Xv. B_m[mh¿§m¥chpw {Xy{iØn¶¬

`qansb Hgn®p≈ `pPIƒ c≠pw Xßfnep≈ h¿§m¥chpw Xpeyw,

B_m[mew_ßfmIp∂ `pPmtImSnIƒ°p I¿Æßfmbn´ncnt∏m

Nnehsbs√m {Xy{iØn¶se c≠p `pP-Ifpw, F∂n´v. ChnsS {Xy{i-̀ p-

P-Iƒ c≠n¬ henbXns‚ h¿§Øn¶∂p sNdnbXns‚ h¿§w t]mbm¬

ew_Ønt‚bpw sNdnb B_m[bptSbpw h¿§w t]mbn´ncn°pw. CXn¬

15. 32. C. F. `pP-bp≈
33. D. F ew_-\n-]m-Xm-¥-am-Ip-∂Xv
34. F. thsd h∂m¬
35. F. om. \Sp-hn¬
36. B. D. F BIp∂p

37. F. hcp∂p
38.B. D. F A¥cw Xm≥ tbmKw Xm≥
39.D. add B_m-[m-¥-c-am-Ip∂p
40.B. C.D. ew_-Øns\ kw_-‘n®
41. B. C. D. F. B_m-[-m¥-c-am-Ip∂Xv
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ew_h¿§w henb ̀ ptPsS h¿§Øn¬ \tS D≠mbn´ncp∂Xp42 t]mbXv.

]ns∂43 henb B_mt[sS h¿§w tijn-®n-́ p-≈-Xv. AXn-¶∂p sNdnb

B_m-t[sS h¿§w t]mIp∂p. BIbm¬ B_m[mh¿§m¥chpw

`qPmh¿§m¥chpw Ht∂. F∂m¬ CjvSI¿ÆamIp∂ `qaosS Hcp

]pdsØ ̀ pPIƒ c≠nepw h®v henbXns‚ h¿§Øn¶∂p sNdnbXns‚

h¿§sØ If™ tijØns‚ A¿≤hpw Cu CjvSI¿ÆØns‚ as‰

]pdsØ {Xy{i`pPIƒ c≠nt‚bpw h¿§m¥cm¿≤hpw Xßfn¬

Iq´pIXm≥ A¥cn°Xm≥ sNbvXv AXns\ B_m[mtbmKamIp∂

CjvSI¿ÆwsIm≠p lcn® ^ew ew_\n]mXm¥camIp∂Xv.

BIbm¬ CjvSI¿ÆØns‚ Hcp ]m¿izØn¶se ̀ pPIfpsS h¿§m-

¥-c-Øn¬ at‰ ]m¿iz-Øn-¶se `pP-I-fpsS h¿§m¥cw Iq´pI

th≠phXv F¶n¬ CjvSI¿ÆØns‚ c≠p ]m¿izØn¶tebpw

Cuc≠p {Xy{i`pPIƒ D≈Xn¬ Hcp {Xy{iØn¶se henb `pPm-

h¿§-tØmSv as‰ {Xy{i-Øn-¶se henb `pPmh¿§sØ Iq´q. CXn¶∂p

ct≠StØbpw sNdnb `pPIfpsS h¿§tbmKsØ Ifbq. tijw

`pPmh¿§m¥cßƒ c≠nt‚bpw tbmKambn´ncn°pw. ChnsS

ct≠StØbpw henb `pPIfn¬ Hs´m´p tijn°p∂p. At»jßƒ

c≠pw [\`qXßfmIbm¬ henb `pPIƒ c≠pw [\`qXßƒ F∂p

Iev]n°mw. BIbm¬ [\ßfpsS tbmKØn¶∂v EWßfpsS tbmKw

Ifbmw F∂p tlXphmIp∂Xv.

bmsXmcnSØp44 ]ns∂ h¿§m¥cßƒ c≠nt‚bpw A¥csØ

D≠mt°≠q, AhnsS c≠ph¿§m¥cßfn¬ sh®p sNdnb h¿§m¥cw

bmsXmcp `pPmh¿§Ønse tijw  B `pPmh¿§w apgphs\

EW`qXsa∂ncn°pw. ChnsS tijn®Xnt\bpw as‰ {Xy{iØn¶se45

henb `pPmh¿§Øn¶∂p IfIbt√m sNøp∂Xv, F∂n´v. BIbm¬

Cs®m√nb EW`qX`pPmh¿§sØ, Xs∂ kw_‘n®p≈ sNdnb

`ptPsS h¿§Øn¶∂pw as‰ {Xy{i-Øn-¶se henb `ptPsS h¿§-Øn-

15.42.F. D≠m-bn-cn-°p-∂Xv
43.C. seven # missing from ]ns∂
44. F. as‰m-cn-SØv
45.B. C. D. F {Xy{i-ß-fnse
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¶∂pw IqSn Ifbp∂q F∂p h∂ncn°pw. BIbm¬ Cs®m√nb46

EW`qX`pPmh¿§hpw as‰ {Xy{iØn¶se sNdnb `ptPsS h¿§hpw

IqSnbXv EWcmin, as‰ `pPmh¿§ßƒ c≠pw IqSnbXp [\cmin.

Xßfne¥cn® tijw [\w. Cßs\ `pPmh¿§m¥cßsf

A¥cn°pt∂SsØ {]Imcw.

"A¥ctbmtK Imtcy cminZzbtbm¿ΩlZyptXkvXymPym |

CXcbpXnc¥tc tN∂yq\m[nItbmKtXm f \ybpXn’  ||

F∂pw D≠v.

bmsXmcnSØv47 I¿ÆØns‚ Ccp]pdØpap≈ ew_ßsf

kw_‘n®p≈ Cuc≠p ̀ pPIfn¬ henb ̀ pPIƒ c≠pw ew_ßfpsS

Hcp Zn°neq, sNdnbh c≠pw Hcp Zn°neq, c≠pw sX°v F∂pXm≥48

hS°v F∂pXm≥ Cu∆Æancn°p∂q, AhnsS Cs®m√nb \ymbØn∂p

X°hÆw `qapJßfpsS h¿§tbmKhpw Z£ntWmØc_mlp°fpsS

h¿§tbmKhpw D≠m°n Xßfn¬ A¥cn∏q. F∂m¬ h¿§m¥cßfpsS

A¥cap≠mIpw. bmsXmcnSØp ]ns∂ Hcp ew_Øn\v Hcp Zn°nse

`pP henbXv, as‰ ew_Øn∂p as‰ Zn°nse `pP henbXv

F∂ncn°p∂q, ChnsS49 sNm√nb \ymbwsIm≠v h¿§m¥cßfpsS50

tbmKw D≠m°phm≥51 henb `pPIƒ c≠nt‚bpw h¿§w Xßfn¬

Iqt´≠pIbm¬ `qapJh¿§hpw Z£ntWmØc_mlp°fpsS h¿§hpw

Xßfn¬ Iqt´≠q. BIbm¬ F√mShpw52 {]Xn`pPIfpsS h¿§tbmKw

sNbvI th≠phXv F∂p \nbXw. Cßs\ {]Xn`pPmh¿§tbmKßƒ

c≠nt‚bpw A¥cØns‚ A¿≤sØ CjvSI¿Æw sIm≠p lcn®m¬

ew_\n]mXm¥cap≠mIpw.

15. iii. \tSsØ t£{X^ew

15.46.F. Cs®m∂
47.C. D. F add Cßs\
48.B. add c≠pw
49.B. C. D F AhnsS
50.B. C h¿§m-¥-c-ß-fn¬
51. C. D≠m-hm≥
52.F. ap≥ For F√m-Shpw
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Cu A¥cm¿≤Øns‚ h¿§sØ CjvSI¿ÆsØs°m≠p lcn®m¬

ew_\n]mXm¥ch¿§ap≠mIpw. ]ns∂ CXcI¿Æh¿§Øn¶∂p

ew_\n]mXm¥ch¿§w t]mbtijw ew_tbmKh¿§amIp∂Xv. ]ns∂

ew_tbmKh¿§hpw CjvSI¿Æh¿§hpw Xßfn¬ KpWn®v \men¬

lcn®^ew NXpc{it£{X^eh¿§amIp∂Xv.

ChnsS ew_\n]mXm¥ch¿§w IqSnbncn°p∂53

ew_tbmKh¿§amIp∂Xv CXcI¿Æ h¿§ambn´ncn°pw. AXns\

Xs∂ CjvSI¿Æh¿§w sIm≠p KpWn°p∂qXmIn¬

tim≤yambncn°p∂ ew_\n]mXm¥c h¿§tØbpw

CjvSI¿Æh¿§sØs°m≠p KpWn®n´p IfbWw, kat—Zßƒt°

tbmKhntbmKtbmKyXzap≈q, F∂n´v. BIbm¬ I¿Æh¿§ßƒ

Xßfn¬ KpWn®Xn¶∂v CXns\ Iftb≠q54 F∂p hcpw. ChnsS

{]Xn`pPmh¿§tbmKßfpsS A¿≤ßƒ c≠nt‚bpw A¥cw bmsXm∂v

CXns‚ h¿§sØ CjvSI¿Æh¿§w sIm≠p lcn®n´ v

ew_\n]mXm¥ch¿§sØ D≠m°p∂q55. CXns\ Xs∂ ]ns∂

CjvSI¿Æh¿§sØs°m≠p KpWn°p∂q. BIbm¬

{]Xn`pPmh¿§tbmKm¿≤ßfpsS A¥ch¿§sØ Xs∂

CjvSI¿Æh¿§hpw CX-c-I¿Æ-h¿§hpw Xßfn¬ KpWn®Xn¶∂p

Iftb≠phXv.

]ns∂ CXns‚ \msem∂v ^eh¿§amIp∂Xv. ChnsS Ch

c≠nt‚bpw56 h¿§m¥csØ \men¬ lcnt°≠p∂p57. Ah c≠nt\bpw

A¿≤n®p h¿§n®v A¥cn®m¬ B58 h¿§m¥cNXpcwiw hcpw.

BIbm¬ I¿ÆLmXm¿≤tØbpw {]Xn`pPmh¿§tbmKm¿≤ßfpsS

A¥cm¿≤tØbpw h¿§n®p A¥cn°mw. AXv ^eh¿§w.

Cu \ymbw sIm≠p Xs∂ {]Xn`pPm¿≤ßfpsS h¿§tbmKßsf

A¥cn°nepamw59 F∂phcpw.

15.53.F.adds ^ew
54.C. If-tb-≠qXpw
55.B. C h¿§w
56.C. Cu c≠n-t‚bpw
57.B. lcn-t°≠q
58.C.D. om. B
59.F. A¥-cn-°bpamw
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"{]Xn`pPZfIrXnbptXymcyZ¥cw b® I¿ÆLmXZfw |

h¿§m¥c]Za\tbm›Xp¿`pPt£{X^ea[nIw’  ||

F∂p≠v.

15. iv. c≠mw t£{X^ew

ChnsS ]ns∂ I¿Æm{inX`pPmLmssXIyw F∂Xns\s°m≠p

I¿Æh¿§ßsf hcpØp∂q F∂p apºn¬ sNm√o. bmsXmcnSØp

c≠p ^eßfpsS LmXsØ D≠mt°≠p∂q, AhnsS KpWyßƒ

c≠pw KpWImcßƒ c≠pw Ch \mepw Xßfn¬ KpWn®Xn¶∂v

c≠nt‚bpw lmcIßƒ60 Xßfn¬ KpWn®Xns\s°m≠p lcn∏q. ̂ ew

^eßƒ Xßfn¬ KpWn®qXmbn´ncn°pw.

ChnsS CjvSI¿ÆØns‚ A{KsØ kv]¿in°p∂ `pPIƒ c≠pw

Xßfn¬ KpWn®Xpw aqesØ kv]¿in®ncn°p∂ `pPIƒ c≠pw

Xßfn¬ KpWn®Xpw Cu LmXßƒ c≠pw Xßfn¬ Iq´nbXv

CjvSI¿ÆØn\v KpWyamIp∂Xv. ]ns∂ CXcI¿Æm{inX

`pPmLmssXIyw CXcI¿ÆØn∂p KpWyamIp∂Xv. ]ns∂

CjvSI¿ÆØns‚ KpWyw CXcI¿ÆØns‚61 lmc-I-am-Ip-∂Xv. CXc-

I¿Æ-Øns‚ KpWyw CjvS-I¿Æ-Øns‚62 lmc-I-am-Ip-∂-Xv. BIbm¬

Kp-Wy-ßƒ Xß-fn¬ KpWn-®Xpw lmc-I-ßƒ Xß-fn¬ KpWn-®Xpw

H∂p Xs∂. BI-bm¬ ct≠-SsØ KpW-Im-c-ßƒ Xß-fn¬ KpWn-

®Xp- Xs∂ ^e-ßƒ Xß-fn¬ KpWn-®-Xm-Ip-∂-Xv. ChnsS c≠p I¿Æ-

Øn-¶epw63 KpW-Im-c-am-Ip-∂Xv `pPm{]Xn-`p-P-Iƒ. Cu c≠p Xß-fn¬

KpWn®p Iq´n-bXmIbm¬ CXns‚ h¿§w I¿Æ-ß-fpsS h¿§ßƒ X-

ß-fn¬ KpWn-®-Xm-bn-´n-cn-°pw. h¿§n°pwapsº I¿Æ-ßƒ Xß-fn¬

KpWn-®-Xm-bn-́ n-cn-°pw. KpWn-®n´p ]ns∂64 h¿§n-®Xpw h¿§n-®n´p ]ns∂65

KpWn-®Xpw Xpeyw. F∂m-semcp `pPm{]Xn-`pPmLmX-Øn¬ as‰

`pPm{]Xn-̀ p-Pm-Lm-X-sØ- Iq´n h¿§n-®Xp I¿Æ-h¿§LmX-am-bn-́ n-cn-°pw

15.60.C. lmc-ßƒ∂v
62.D. CjvS-I¿ÆØn∂v
63.B. I¿Æ-Ønepw
64.F.om. ]ns∂
65.F. om. ]ns∂
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F∂p \nb-X-am-I-bm¬ ew_-\n-]m-Xm-¥-c-h¿§sØ CjvS-I¿Æh¿§w

sIm≠p KpWn-®-Xns\ I¿Æ-h¿§LmX-Øn-¶∂p If-™--tijw CjvS-

I¿Æ-h¿§hpw ew_-tbm-K-h¿§hpw Xß-fn¬ KpWn-®Xmbn-´n-cn-°pw.

CXn¬ \msem∂v t£{X-^-e-h¿§-am-Ip-∂Xv.

ChnsS ew_-\n-]mXm-¥-c-h¿§sØ CjvS-I¿Æ-h¿§w sIm≠p KpWn-

®-Xm-Ip-∂Xv ]ns∂ NXp-c-{i-Øn-¶se ]q¿∆m-]-c-`p-P-I-fpsS h¿§-tbm-

Khpw  Z£n-tWm-Ø-c-̀ p-P-I-fpsS h¿§-tbm-Khpw Ch c≠nt‚bpw A¥-

cm¿≤hpw A¿≤m-¥-chpw Ht∂ F∂n´v, A¿≤m-¥-c-ß-fpsS h¿§-am-bn-

´n-cn-°pw. CXns\ I¿Æh¿§LmX-Øn-¶∂p If™p \men¬ lcn-t°-

≠p-I-bm¬66 c≠n-t\bpw \men¬ lcn-®n´v A¥-cn-°mw. h¿§-cq-]-ß-fm-

bn-cn-°p∂ Ch c≠n-t\bpw \men¬ lcn-t°≠pIbm¬ Ch-‰ns‚ A¿≤-

ßsf h¿§n®v A¥-cn-°nep-amw, h¿§NXp-cwihpw A¿≤-h¿§hpw Xpey-

am-I-bm¬. F∂m¬ ̀ qay¿≤Øns‚ h¿§hpw apJm¿≤-Øns‚67 h¿§hpw

Xßfn¬ Iq´q68. ]ns∂ Z£nW_mlz¿≤-Øns‚ h¿§hpw DØ-c-_m-

lz¿≤-Øns‚ h¿§hpw Xß-fn¬ Iq´q. ]ns∂ Cu h¿§-tbm-K-ßƒ

c≠n-t‚bpa¥cw bmsXm∂v, CjvtS-XcI¿Æ-ßƒ Xß-fn¬ KpWn®v

A¿≤n-®Xpw bmsXm∂v, Ch c≠n-t‚bpw h¿§m-¥-chpw NXp-c-{i-t£-

{X-̂ -e-h¿§w. CXn-s\-s®m√o “{]Xn-̀ p-P-Zf IrXnbptXym-¿ø-Z-¥cw” F∂-

Xn-s\-s°m≠v.

Cu h¿§m-¥-csØ ]ns∂ Ch c≠pw Xß-fnse tbmKsØ Xß-

fnse A¥cw sIm≠v KpWn-®n´pw D≠m-°mw. “tbmKm¥cmlXn¿-∆¿§m-

¥-c-w” Ft√m F∂n-´v. tbmKm¥-c-ßsf D≠m°pw {]Imcw ]ns∂.

`qap-J-ß-fm-Ip∂ _mlp-°-fpsS LmXhpw Z£n-tWm-Øc_mlp-°-fpsS

LmXhpw Xß-fn¬ Iq´n A¿≤n-®-Xns\ ct≠-SØp sh®v H∂n¬ Iq´q

h¿§-tbm-Km-¥cw69, H∂n-¶∂p If-bq. Ch tbmKm-¥-c-ßfmIp-∂Xv.

Cs®m-√nb h¿§tbmKm-¥-c-tbm-K-am-Ip-∂Xv, `qap-J-ß-fpsS A¿≤-ß-

fpsS h¿§-tbm-Khpw Z£n-tWm-Øc_mlp-°-fpsS A¿≤-ß-fpsS h¿§-

tbm-Khpw Xß-fn¬ A¥-cn-®Xv. ]ns∂ bmsXm-cn-SØv Hcp cmin-bn¬

15. 66. B. lcn-°p-I-bm¬
67. C. F `qay¿≤-Øns‚
68. B. D. F h¿§m-¥cw
69. B. adds H∂ns\
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a‰p c≠p- cm-in-IfpsS A¥csØ Iqt -́≠q, AhnsS A¥-cn-°p∂ cmin-

I-fn¬ h®p hen-b-Xns\ Iq´q, sNdn-b-Xns\ Ifbq70. F∂m¬ AXv

B71 A¥-csØ Iq´n-b-Xm-bn-́ p-hcpw. bmsXm-∂n-¶∂p72 ]ns∂ A¥cw

If-tb-≠q, AXn¶¬ sNdnb cminsb Iq´q, hen-b- cm-insb If-bq73.

AXv B74 A¥cw If-™-Xm-bn-́ n-cn°pw.

ChnsS ]ns∂ C∆-Æ-am-Inepamw tbmKm-¥-c-ap-≠m-°p-hm≥. `qap-J-

Lm-Xm¿≤sØ thsd h®v Ah-‰ns‚ A¿≤-ß-fpsS h¿§-tbm-KsØ

AXn-¶¬ kwkv°-cn-∏q. ]ns∂ Z£n-tWm-Øc_mlp-Lm-Xm¿≤-Øn¬

Ah-‰ns‚ A¿≤-ß-fpsS h¿§-tbm-KsØ kwkvI-cn-∏q. ]ns∂ Cßs\

kwkv-Ir-X-ß-fm-bn-cn-°p∂ LmXm¿≤-ßƒ c≠pw Xß-fn¬ Iq´q. AXp

tbmKm-¥-c-ß-fn¬ H∂m-bn-́ n-cn-°pw.- C-hnsS `qap-Jm¿≤-h¿§-tbm-KsØ

Iq´q. B LmX-Øn¬, Z£n-tWm-Øc_mlz¿≤h¿§-tbm-KsØ Ifbq

B LmX-Øn-¶∂v. Ch76 Xß-fnse tbmKw Hcp cmin. `qap-Jm¿≤-h¿§-

tbmKw X¬Lm-X-Øn-¶∂p If™p Z£n-tWm-Øc_mlz¿≤h¿§-tbm-

Kw X¬Lm-X-Øn-¶¬ Iq´n, Ch77 c≠pw Xß-fn¬ Iq´n-bXp c≠mw

cmin. ChnsS bmsXmcp78 {]Xn-̀ pPmLmXm¿≤Øn-¶∂v Ch-‰ns‚ A¿≤-

h¿§tbmKw If-tb-≠p∂q79, AhnsS LmXm¿≤w A¿≤-ß-fpsS LmX-

Øn-e-nc-́ n-bm-bn-cn-°pw. Ch-‰ns‚ h¿§-tbmKw ]ns∂ A¥-c-h¿§w sIm≠v

A[n-I-am-bn-́ n-cn-°pw. BI-bm¬ h¿§-tbmKw ZznLv\-Lm-X-Øn-¶∂p If-

b-cp-Xv. BI-bm¬ Cu {]Xn-_m-lp-°-fpsS A¿≤-ß-fpsS A¥-c-h¿§w

EW-am-bn-´n-cn-°pw80. as‰ LmX-Øn¶¬ at‰Xp ]ns∂ {]Xn-_m-lz¿≤-

ß-fpsS tbmK-h¿§-am-bn-́ n-cn-°pw, ZznLv\-Lm-Xhpw h¿§-tbm-Khpw Iq´p-

I-bm¬.

“h¿§-tbmtKm Zztbm cmtiym-¿Zzn-Lv\-Lm-tX\ kwbpXx |

15. 70. F. hen-b-Xo∂v sNdnb cminsb
71. F. om. B; D.AXXp A¥-csØ Iq´p-∂-Xm-bn-´ncn°pw
72. B. bmsXm-∂ns\
73. F. If-bp∂p
74. D. F. om. B
75. B. C. D. F ]ns∂
76. F. Ah
77. B. adds {]Imcw
78. F.om. bmsXmcp
79. F. If-bp∂p
80. B. Bbncn°pw
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lot\m hm X¬]tZ cmtiym¿-tøm-K-t -̀sZu {]Io¿ØnXu” ||

F∂p-≠m-Ibm¬. ChnsS ]ns∂ `qay¿≤hpw apJm¿≤hpw Ch c≠n-

t‚bpw tbmK-Øn-s‚ h¿§-Øn-¶∂p Z£n-tWm-Ø-c-_m-lz¿≤-ß-fpsS

A¥-c-h¿§sØ If-™-Xm-bn-´n-cn°pw H∂v. ]ns∂ Z£n-tWm-Øc

_mlz¿≤-ß-fpsS tbmK-h¿§-Øn-¶∂p `qap-Jm¿≤-ß-fpsS A¥-c-

h¿§sØ If-™Xp c≠m-a-Xv. Ch Xß-fn¬ KpWn-®Xp t£{X-̂ -e-

h¿§-am-Ip-∂-Xv.

15. v. A¥nat£{X^ew

ChntSbpw Ch c≠pw Hmtcm h¿§m-¥-c-ß-fm-bn-́ n-cn-°-bm¬81 c≠n-

t\bpw tbmKm-¥-c-LmXw sIm≠v D≠m-°mw. ]ns∂ Cu h¿§m-¥-c-

ßƒ Xß-fn¬ KpWn-t°-≠p-I-bm¬ c≠p tbmKhpw c≠v A¥-chpw

Ch \mepw Xß-fn¬ KpWn-®-Xm-bn-́ n-cn°pw t£{X-̂ -e-h¿§w. F∂m-

en-hnsS `qap-Jm¿≤-ß-fpsS tbmKsØ ct≠-S-Øp-sh®v H∂n¬ Z£n-

tWm-Øc_mlz¿≤ßfpsS A¥-csØ If-bq. H∂n¬ Iq´p. Cßs\

Ch c≠p cmin-I-fm-Ip-∂Xv. ]ns∂ Z£n-tWm-Øc_mlz¿≤-ß-fpsS

tbmK-tØbpw ct≠-S-Øp-h®v H∂n¬ `qap-Jm¿≤-ß-fpsS A¥-csØ

Iq´q, H∂n¬ Ifbq CXn-s\. Ch as‰ c≠p cmin-I-fm-Ip-∂Xv. Ch

\mepw Xß-fn¬ KpWn-t°≠q t£{X--^-eh¿§h-ap-≠m-h-\m-bn-s°m≠v.

Chn-sS- Cs®m-√nb  \mep cmin-I-tfbpw C∆-Æ-ap-≠m-°p-∂q. NXp-c-

{i-t£-{X-Øns‚ _mlp-°ƒ \men-t\bpw Iq´nb kwJy bmsXm∂v

AXns‚ A¿≤sØ \mte-SØpsh®v \men¬ \n∂pw Hmtcm _mlp-

°sf If-bq {Ita-W. AhnsS tijn® cmin-Iƒ \mepw Cs®m-√n-bh

\mep-am-Ip-∂Xv. ChnsS _mlp-tbm-Km¿≤-am-Ip-∂Xv _mlz¿≤-ßƒ

\men-t‚bpw tbmKw. CXn-¶∂v Hcp _mlp-hns\ apgp-hs\ If-bp∂q.

AXn¬ Xs‚ A¿≤w IqSn D≠m-I-bm¬ AXn-¶∂p t]mIpw. as‰

A¿≤w. {]Xn-_m-lz¿≤-Øn-¶∂pw t]mhpw82. AhnsS {]Xn-_m-lz¿≤w

hepXv83 F∂n-cn-°n¬ Ah-‰ns‚84 A¥cw tijn-°pw. {]Xn-_m-lz¿≤w

sNdpXv F∂n-cn-°n¬ Ch-‰ns‚ A¥cw IqSn t]mbn-´ncn°pw85 as‰

15. 81. B. Bbn-cn-°-bm¬
82. B. C.F t]mhp

83. B. hep-Xmbn F∂n-cn-°n¬
84. F. Ch-‰ns‚
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_mlz¿≤-ßƒ c≠n-t‚bpw tbmK-Øn-¶∂.v ChnsS k¿∆-tZm¿-øp-Xn-Z-f-

Øn-¶∂p apJ-am-Ip∂ _mlp-hns\ If-™m¬ tijw Z£n-tWm-Ø-c-

_m-lz¿≤-ß-fpsS tbmKhpw `qap-Jm¿≤-ß-fpsS A¥-chpw IqSn-b-Xm-

bn-́ n-cn-°pw. ]ns∂ Cu A¥cw t]mb-Xm-bn-́ n-cn°pw ̀ qan-bm-Ip∂ _mlp-

hns\ If-™n-cn-°p-∂-Xv. ]ns∂ k¿∆-tZm-¿øpXn-Z-f-Øn-¶∂p Z£n-tWm-

Øc_mlp-°-fn¬ sNdn-b-Xns\ If-™m¬ `qap-Jm¿≤-ß-fp-sS

tbmKhpw Z£n-tWm-Ø-c-_m-lz¿≤-ß-fpsS  A¥-chpw IqSn-b-Xm-bn´n-

cn-°pw. hen-b-Xns\ If-™Xv Cu A¥cw t]mb-Xm-bn-́ n-cn°pw86. ]ns∂

Ch \mepw Xß-fn¬ KpWn-∏q. F∂m¬ t£{X-̂ -e-h¿§-a-Xv. CXp-≠v

sNm√o-́ v˛

k¿∆-tZm¿-øp-Xn-Z-fw NXpxÿnXw _mlp-̀ n¿∆n-c-ln-Xw N -X≤tXx/

aqe-a{X \nb-X-{ip-sXu ^ew {Xy{i-_m-lp-P-a]n kv^pSw `thXv//

(eo-em-hXo 167)

15. vi. {Xy{it£{X^ew

C∆ÆwXs∂- {Xy{i-t£-{X-Øn-¶se ^e-h¿§-hpap-≠m-Ipw. AhnsS

`qay¿≤hpw _mlp-tbm-Km¿≤hpw IqSn-bXp k¿∆-tZm-¿øp-Xn-Z-f-am-Ip-∂-

Xv. CXns\ \mte-SØv D≠m-°q. Ch-‰n¬ aq∂n¬87 \n∂pw Hmtcm _mlp-

°sf If-bq. H∂n-¶∂v GXpw Ifbm.88

Ct°-h-e-am-bn-cn-°p∂89 k¿∆-tZm¿øp-Xn-Z-fhpw `qan-bm-Ip∂ _mlp-

hns\ If™ k¿∆-tZm¿øypXn-Zfhpw Xß-fn¬ KpWn-®Xp an°Xpw

ew_-h¿§-tØmSp ka-am-bn-́ n-cn-°pw. B_m-[mtbmKm¿≤hpw `pPm-tbm-

Km¿≤hpw Xß-fn¬ D≈ h¿§m-¥-c-am-bn-́ n-cn-°p-a-Xv. B_m[bpw ̀ pPbpw

Xß-fn-ep≈ h¿§m-¥cw ew_-h¿§-am-Ip∂Xv F∂p ew_-h¿§-tØmSp

kmay-ap-≠m-hm≥  tlXp-hm-Ip-∂-Xv. ]ns∂ c≠p k¿∆-tZm¿-øp-Xn-Z-f-ß-

fn¬ \n∂v Hmtcm _mlp-°sf If™ tij-ßƒ c≠n-t\bpw Xß-

fn¬ KpWn-®Xp `qa-y-¿≤h¿§-am-bn-´n-cn°pw an°-Xpw. ]ns∂ CXpw

15.85. A. t]mbn--cn°pw
86. C. t]mb-Xm-bn-´p-an-cn°pw
87. C. D. F aq∂n∂pw

88. F. Ifhq
89a. D. F. om. Ct°he
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apºnse ew_-h¿§{]mb-am-Ip-∂Xpw Xß-fn¬ KpWn-®m¬ {Xy{i-t£-

{X-̂ -e-h¿§-ap-≠m-Ipw. ChnsS ̀ qa-≤y-h¿§-Øn¬ Ipd-bp∂ Awiw Xs∂

ew_-h¿§-Øn¬ Gdp-∂Xv. F∂n´v t£{X-̂ -e-h¿§w Xs∂ hcp-∂q.

CXns‚ {]Im-csØ sNm√p∂q. ChnsS {Xy{i-Øn-¶se c≠p _mlp-

°-fptSbpw h¿§-ß-fm-Ip-∂Xv, C°¿Æ-ß-fm-bn-́ n-cn-°p∂ Cu c≠p ̀ pP-

Iƒ°pw km[m-c-W-am-bn-´n-cn-°p∂ tImSn ew_-am-Ip-∂Xp bmsXm∂v

CXns‚ h¿§-hpw90 Xs‚ Xs‚ B_m-t[sS h¿§hpw IqSn-b-Xm-bn-

´ncn°pw. BI-bm¬ B_m-[m-h¿§m-¥-c-tØmSp Xpeyw I¿Æ-ß-fm-Ip∂

`pP-I-fpsS h¿§m-¥cw. BI-bm¬ `pPm-h¿§-tbm-Km¿≤--Øn-¶∂v B_m-

[m-h¿§-tbm-Km¿≤sØ If-™m¬ tijw tIh-e-ew-_-h¿§w.

]ns∂ `pPm-tbm-Km¿≤-h¿§-Øn-¶∂v B_m-[-mtbm-Km¿≤-h¿§sØ

If-™m¬ tijw ew_-h¿§-tØ-°mƒ Gdo-́ n-cn-°pw. ChnsS _mlp-

°ƒ c≠n-t‚bpw A¥-c-Øns‚ A¿≤w bmsXm∂v B_m[-Iƒ c≠n-

t‚bpw A¥-c-Øns‚ A¿≤hpw bmsXm∂v Ch  c≠n-t\bpw h¿§n®v

A¥-cn-®-Xn-t\mSp Xpeyw ew_-h¿§-Øn¬91 Gdp∂ Awiw F∂p -\n-b-

Xw.

ChnsS c≠p LmXhpw Hcp A¥-c-h¿§hpw IqSn-bXp h¿§-tbm-K-am-

I-bm¬ Hcp LmXhpw Hcp A¥-c-h¿§m¿≤hpw IqSn-bXv h¿§-tbm-Km¿≤-

am-Ip-∂-Xv. tbmKm¿≤-h¿§-Øn-¶¬ ]ns∂ Hcp LmXhpw A¥-c-h¿§-

Øn¬ \msem∂pw D≠m-bn-´n-cn-°pw. BI-bm¬ tbmKm¿≤-h¿§-tØ-

°mƒ h¿§-tbm-Km¿≤w A¥-cm¿≤-h¿§-sØ-s°m≠v A[n-I-am-bn-´n-

cn°pw F∂p h∂q. F∂m¬ ChnsS92 `pPm-tbm-Km¿≤-h¿§-Øn-¶¬

`pPm-¥-cm¿≤-h¿§w Ipd-bpw93, B_m-[-mtbm-Km¿≤-am-Ip∂ ̀ qay¿≤-h¿§-

Øn-¶¬ B_m-[m-¥-cm¿≤-h¿§w Ipd-bpw, h¿§-tbm-Km¿≤sØ At]-

£n-®v. ChnsS `pPm-¥-cm¿≤-h¿§-tØ-°mƒ B_m[m-¥-cm¿≤-h¿§w

hen-b-Xv. B_m-[m-tbm-Km¿≤-h¿§sØ at‰-Xn-¶-∂p If-tb-≠q-Xpw. If-

tb-≠p∂ cmin-bn¬ Ipd-bp∂ Awiw If™p tijn® cmin-bn-¶¬

Gdo-́ n-cn-°pw. X¶¬ Ipd-bp∂ Awiw-sIm≠v Du\-am-bn-́ pancn°pw94. BI-

15. 90. B. C. D ^e-h¿§hpw
91. D. h¿§-Øn-¶∂v, F. Øn¶¬
92. C. om. ChnsS
93. B. Iqd-bp∂p
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bm¬ B_m-[m-¥-cm¿≤-h¿§hpw `pPm-¥-cm¿≤-h¿§hpw Xß-fn-ep≈

A¥cw sIm≠v A[n-I-am-bn-́ n-cn-°pw ew_-h¿§w, tbmKm¿≤h¿§-ßƒ

Xßfn-e-¥-cn-°p-∂ ]£w.

Cu∆Æw, ChnsS {Xy{i-̀ p-P-Iƒ Xß-fn¬ D≈ h¿§m-¥-chpw  B_m-

[-Iƒ Xß-fn-ep≈ h¿§m-¥-chpw Ht∂ BI-bm¬, `pPm-tbm-KsØ

`pPm-¥cw sIm≠p KpWn-®mepw B_m[m-tbm-KsØ B_m-[m-¥cw
sIm≠p KpWn-®mepw Xpey-am-bn-́ p-hcpw95 F∂pw hcpw. tbmKm-¥-c-LmXw

h¿§m¥c-am-I-bm¬ Cßs\ c≠p LmX-ßfpw Xpey-ß-fm-I-bm¬ Cu

\mep cmin-I-fnepw IqSo´p {]am-tW-—m-X¬^e-ßƒ F∂-t]mse Hcp
kw_-‘sØ Iev]n-°mw. Ahn-sS {]am-W-^-ehpw C—bpw D≈

LmXhpw, C—m-̂ -ehpw {]am-W-hpap≈ LmXhpw Ht∂ At{X F∂p

kn≤-sa-t√m. F∂m¬ `pPm-tbm-KsØ {]amWw F∂-t]mse Iev]n-
°p-tºmƒ B_m-[m-¥cw {]am-W-̂ ew, B_m-[m-tbmKw C—m, `pPm-

¥cw C—m-^ew F∂-t]mse Ccn-°pw. C∆-Æ-an-h‰ns‚96 h¿§-ßƒ

Xß-fnepw h¿-§m-¥-c-ßƒ Xß-fnepw kw_-‘-ap-≠m-bn-́ ncn°pw. ChnsS
`pPm-tbm-K-tØ-°mƒ B_m[-mtbmKw F{X Ipd-bpw. B_m[m-¥-c-

tØ°mƒ `pPm-¥cw A{X Ipd-™n-cn-°p-sa∂p \nb-Xw. Ch-‰ns‚
A¿≤-ßƒ°pan∆Æw Xs∂ kw_‘w. A¿≤-ß-fpsS h¿§-ßƒ°pw

Cßs\ Xs∂ kw_-‘w. ChnsS `pPm-tbm-Km¿≤-h¿§-Øn¬ ]mXn

B_m-[m-tbm-Km¿≤-h¿§-sa-¶n¬ B_m-[m-¥-cm¿≤-h¿§-Øn¬ ]mXn-
bm-bn-´n-cn°pw `pPm-¥-cm¿≤-h¿§w. C∆ÆwXs∂ tbmKm¿≤-ß-fpsS

h¿§m-¥-chpw A¥-cm¿≤-ß-fpsS h¿§m-¥-chpw Xß-fn-ep≈ kw_‘w.

F∂m¬ ChnsS Cß-s\-sØmcp ss{Xcm-in-IsØ Iev]n-°mw. B_m-

[-mtbm-Km¿≤-h¿§w {]amWw, `pPm-¥-cm¿≤-h¿§w {]am-W-̂ ew, `pPm-
tbm-Km¿≤hpw B_m-[m-tbm-Km¿≤hpw Ch c≠n-t‚bpw h¿§m-¥cw

C—m. ]ns∂ B_m-[m-¥-cm¿≤hpw `pPm-¥-cm¿≤hpw Ch c≠n-t‚bpw

h¿§m-¥cw C—m-̂ -ew. Cu C—m-̂ ew ChnsS ew_-h¿§-Øn¬97 Gdp∂

Awi-am-Ip-∂Xv.

BI-bm¬ C§p-W-lm-c-ßsfs°m≠p-Xs∂ `qay¿≤-h¿§-Øn-¶∂v
15. 94. D. Bbn-´n-cn°pw

95. B. C. D. F Xpey-am-bn-´n-cn°pw
96. F. om. C∆Æw
97. D. ew_-h¿§-Øn-¶¬
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D≠m-Ip∂ ^ew `qay¿≤-h¿§-Øn¬ Ipd-tb-≠p-hXv. ChnsS `qay¿≤-

h¿§w KpWyw, `pPm-¥-cm¿≤-h¿§w KpW-Im-cw, B_m-[m-tbm-Km¿≤-

h¿§w lmc-Iw. F∂n´v ChnsS KpWyhpw lmc-Ihpw Ht∂ BI-bm¬

KpW-Im-chpw ^ehpw Ht∂ Bbn-́ n-cn-°pw. AXp `pPm-¥-cm¿≤h¿§w.

F∂n´v `pPm-¥-cm¿≤h¿§w `qay¿≤-h¿§-Øn-¶∂p t]mtI-≠p-h-Xv.

Cßs\ Ccn-°p∂ `qay¿≤-h¿§wsIm≠v A¥-cm¿≤-h¿§m-¥cw IqSn

Ccn-°p∂ ew_-h¿§sØ KpWn-®m¬ {Xy{i-t£-{X-^-e-h¿§w D≠m-

Ip-∂p. ChnsS `pPm-¥-cm¿≤-h¿§w  Ipd™ `qay-¿≤-h¿§w D≠m-Ip-

∂p. ]ns∂ k¿∆-tZm¿-øp-Xn-Z-f-ßƒ c≠n-¶¬ \n∂v Hmtcm {Xy{i-̀ p-P-

Iƒ hmßnb tij-ßƒ c≠n¬ h®p sNdnb `pPsb If™98 tij-

Øn-¶¬ `pPm-¥-cm¿≤w IqSnb `qay¿≤w D≠m-bn-cn-°pw. henb `pPsb

If™ k¿∆-tZm-¿øpXnZf-Øn¶¬ `pPm-¥-cm¿≤w Ipd™ `qay¿≤w

tijn°pw. ]ns∂ `pPm-¥-cm¿≤w Ipd-™n´pw Gdo´pw Ccn-°p∂ `qa-

≤y-ßƒ c≠pw -X-ß-fn¬ KpWn-®Xv ̀ pPm-¥-cm¿≤-h¿§w Ipd™ ̀ qay¿≤-

h¿§-am-bn-cn-°pw.

CjvtSm\bp{Kminh[x IrXnx kymZv˛

CjvSky h¿t§W ka\zntXm hm/ (eoemhXo, 20)

F∂ \ymbwsIm≠p hcpaXv.99

AhnsS100 A¥cm¿≤h¿§m¥cw IqSnbncn°p∂ ew_h¿§Øn¶∂v

A¥cm¿≤h¿§m¥csØ thsdbm°phm≥ bmsXm∂p

KpWlmcßfmbXv AXp Xs∂ tIhe`qay¿≤h¿§Øn\p

KpWlmcßfmtI≠phXv, tIhe ew_h¿§Øn¶se KpWlmcßsf

A√. bmsXmcp {]Imcw aq∂ns\s°m≠p A©ns\ KpWnt°≠ptºmƒ

X∂nse As©m∂p IqSnbncn°p∂ Bdns\ KpWn°p∂qXmIn¬

aq∂mIp∂ KpWlmcIØn¶∂p X∂n¬ Bsdm∂p t]mbncn°p∂

c≠csbs°m≠p KpWnt°≠q. C∆ÆanhntSbpw tIhe

`qay¿≤h¿§Øn¶∂p Iftb≠p∂ ^esØ hcptØ≠q F∂m¬

k¿∆tZm¿øpXnZfw F∂ \ymbwsIm≠p hcpØp∂

15. 98. F. If™v
99. B.C.D.F hcp-anXv
100.B.C.F. ChnsS
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{Xn`pPt£{Xh¿§w kq£vaat{X F∂p h∂q.

16. kw]mXicm\b\w

]ns∂ CXnt\mSp Xpey\ymbambn´ncnt∏m∂p˛̨˛

{Kmtkmt\ tZz hrtØ {KmkKptW `mPtb¬ ]rYt‡z\

{Kmtkm\tbmKe_v[u kw]mXiscu ]ckv]cXx//

F∂nXp, ChnsS sNdnsbmcp hrØØns‚  Ipds™mcp {]tZiw
hensbmcp hrØØns‚ AIØp ]p°ncn°pamdp Iev]n∏q. ]ns∂
c≠nt‚bpw tI{µØn¶¬ kv]¿in®p ]pdØv t\antbmfw sN√pamdv
Hcp hymktcJ Iev]n∏q. ]ns∂ c≠p hrØØnt‚bpw t\anIƒ
Xßfn¬ kv]¿in°pt∂SØp X´pamd v Cu hymktcJbv°v
hn]coXambn´ncnt∏mcp tcJ Iev]n∏q. CXp c≠p hrØØn∂pw1

km[mcWambn´ncnt∏mcp Pymhmbn´ncn°pw. Cu Pymhpw hymkkq{Xhpw
Xßfnep≈ kw]mXØn¶∂p ASpØ hrØt\antbmfap≈
hymkJWvvUßƒ icßƒ. AhnsS sNdnb hrØØn¶se icw
hepXmbn´ncn°pw, henb hrØØn¶teXp sNdpXmbn´ncn°pw.
itcm\hymkßƒ ]ns∂ adn®pw sNdnb hrØØn¶¬ sNdpXp henb
hrØØn¶¬ hepXv.

ChnsS AXXp itcm\hymkhpw ichpw Xßfn¬ KpWn®Xv c≠p
hrØØn∂p km[mcWambn´ncn°p∂2 A¿≤Pymhns‚
h¿§ambn´ncn°pw.

hymkm—tcm\m—ckwKpWm®

aqew Zzn\nLv\w `hXol Pohm | (eoemhXo, 204 )

F∂p≠mIbm¬. F∂m¬ henb itcm\hymktØ°mƒ F{X sNdpXv
sNdnb itcm\hymkw sNdnb hrØØn¶se ictØ°mƒ A{X
sNdpXv henb hrØØn¶se icw F∂ncn°pw,LmXw kaamIbm¬.

bmsXmcp {]Imcw {Xy{it£{XØn¶se `pPmtbmKhpw

16. 1. B. C. IqSnb; F. IqSn
2. F. Ccn-s∏m∂v

VII. 16. kw]mXicm\b\w
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B_m[mtbmKhpw F∂t]mse Ccn°p∂ B_m[m¥chpw

`pPm¥chpw,F∂n´p Xpey\ymbamIp∂q. ChnsS ictbmKsØ

‘{Kmkw’ F∂p sNm√p∂q. {Kmtkm\hymkßƒ Xßfnepw Cßs\

kw_‘w. bmsXmcp{]Imcw itcm\hymkßƒ Xßfn¬. ChnsS

henb itcm\hymkØn¶∂p henb ichpw sNdnb

itcm\hymkØn¶∂p sNdnb ichpw t]mb tijw

{Kmtkm\hymkßfmIp∂h. F∂n´p itcm\hymkßsfs∏mse

Ccnt∏m Nne {Kmtkm\hymkßfpw. ChnsS icßsf sht∆sd

Adn™oem F∂ncn°ptºmƒ {Kmtkm\hymkßƒ

{]amW^eßfmbn, {Kmtkm\hymktbmKw {]amWambn

{Kmkan—bmbn´p≠mIpw icßƒ. as‰ {Kmtkm\hymkØn¶∂p Xs‚

icap≠mw, Xt‚Xn¶∂p as‰ ichpw D≠mIpw3. Cßs\

{KmkØn¶∂p ichn`mKsØ Adnbpw {]Imcw.

17. Ombm\b\w

CXnt\mSp Xpey\ymbambn´ncps∂m∂v-˛̨ ˛

Ombtbmx I¿Ætbmc¥tc tb Xtbm¿˛

∆¿§hnt«j`‡m ckm{Zojhx/

sskIe_vt[x ]ZLv\w Xp I¿Æm¥cw

`m¥tctWm\bp‡w Ztf kvXx {]t`// (eoemhXo, 232)

F∂nXpw. ChnsS ka\neØp ZzmZimwKpei¶phnt\°mƒ Cb¿s∂mcp

hnf°p sh®p ]ns∂ ChnSp∂v H´v AIeØp ]{¥≠wKpew

\ofaps≈mcp i¶phns\ sh®v1  ]ns∂ C»¶phn¶∂pw H´v AIeØp

C{XXs∂ \ofaps≈mcp i¶phns\ sh®m¬ hnf°ns‚ AWbsØ

i¶phn∂v Omb sNdpXmbn´ncn°pw, AIetØXn∂p

hepXmbn´ncn°pw. ChnsS Ombm{KØn¶∂p i¶phns‚ aosØ

16.3. C. D. om. D≠mIpw
17.1. B. sh®m¬

VII. Pym\b\w
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Xebv°temfap≈ A¥cmfw OmbmI¿ÆamIp∂Xv. Omb henbXn∂v

OmbmI¿Æw hepX,v i¶p XpeyamIbm¬.

]ns∂ Cu c≠p OmbIfptSbpw2 tbmKsØ `qan F∂pw

OmbmI¿Æßsf _mlp°sf∂pw i¶phns\ ew_sa∂pw Iev]n®p

]ns∂ Ombm¥camIp∂Xv B_m[m¥csa∂pw, I¿Æm¥camIp∂Xp

`pPm¥csa∂pw, Ch c≠nt‚bpw h¿§m¥csØ {]amWsa∂pw,

OmbmtbmKhpw I¿ÆtbmKhpw D≈ h¿§m¥csØ

{]amW^esa∂pw, I¿Æm¥ch¿§sØ C—m F∂pw Iev]n®v

ss{XcminIw sNbvXm¬ OmbmtbmKh¿§w C—m^eambn´p≠mIpw.

ChnsS {]amWsØs°m≠p {]amW^esØ lcn®v aqen®v

KpWn°p∂XmIn¬ I¿Æm¥csØXs∂ KpWnt°≠q. F∂m¬

OmbmtbmKap≠mIpw. C∆ÆanhnsS D≠m°p∂p3.

tbmKh¿§amIp∂Xp4 ]ns∂ i¶ph¿§sØ \men¬ KpWn®Xn¶¬

A¥ch¿§m¥cw Iq´n Ccn°p∂Xv. ChnsS lm¿øØn¬ lmcIw

Iqt´≠pIbm¬ lcn®p≠mb ^eØn¬ H∂p Iq´nbmepw ^ekmayw

hcpw. F∂n´p tIhew NXp¿§pWi¶ph¿§sØ lcn°p∂q.

Css{ØcminI\ymbw apºn¬ sNm√nb {]ImcwsIm≠p kn≤n°pw.

Cßs\ CXn∂p t£{X^eh¿§\ymbØnt\mSp kmayw.

18. tKmf]rjvTt£{X^em\b\w

A\¥cw ]ns∂1 ]nfiPymtbmKØn¶∂p Jfim¥ctbmKw

D≠mIpw F∂nXpw2, hrØhymkßsf HcnSØp Adn™m¬

CjvSØn¶tebv°p ss{XcminIw sNømw F∂ns®m√nb c≠p \ymbhpw

IqSnbm¬ tKmf]rjvTØn¶se NXpc{it£{X^ew D≠mIpw

F∂Xns\  sNm√p∂q.

AhnsS t\sc3 Dcp≠ncn°p∂ hkvXphn∂p ‘tKmfw’  F∂p t]¿.

17. 2. B.C. D I¿Æ-ßsf _mlp-°ƒ F∂pw iwIp-hns\ ew_w F∂pw
3. B. D≠m-Ip∂p
4. F. tbmK-h¿§m-¥c

18. 1. B.C.D.F. om. ]ns∂
2. B.C.F. om. F∂nXpw to D≠mIpw,

VII. 18. tKmf]rjvTt£{X^em\b\w
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Cßs\ Ccnt∂mcp tKmfØns‚  t\sc \Spth ka]q¿∆m]cambn´pw

Z£ntWmØcambn´pw Hmtcm hrØsØ Iev]n∏q. ]ns∂

C a]q¿∆m]cØn¶∂p Ipds™m∂p sX°pw hS°pw \oßo´p  Hmtcm

hrØsØ Iev]n∏q. Ch‰n∂p ka]q¿∆m]cØn¶∂p≈ AIew F√m

AhbhØn¶∂pw Xpeyambncnt°Ww4. BIbm¬ Ch c≠pw

\tStØXnt\°mƒ Ipds™m∂p sNdpXmbn´ncn°pw5. ]nt∂bpw

Cs®m√nbhÆw Xs∂ Ch‰n¶∂pw6 XpSßn Ipds™m∂p sNdpXmbn

sNdpXmbn \m\m{]amWßfmbn, ]gpXv7 F√m‰n\pw At\ym\yw

AIew HØv, sXt°bpw hSt°bpw ]m¿izØn¶¬ HSpßpamdp Nne

hrØßsf  Iev]n∏q. Ch‰ns‚ AIew Z£ntWmØchrØØn¶¬

Xpeyambn´p ImWmbncnt°Ww. C∆Æancn°pt∂SØp c≠p

hrØßfpsS ]gpXp hrØmImtcW Ccn°p∂Xns\ HcnSØp apdn®v

Np‰p Agn®p \nh¿Øpamdp Iev]n∏q. At∏mƒ Cu ]gpXns‚

Ccp]pdhpw D≈ hrØßfn¬  henb hrØw `qan, sNdnb hrØw

apJw, ]ns∂ Z£ntWmØchrØØn¶se hrØm¥cmfambn´ncn°p∂

Nm]Jfiw ]m¿iz`pPbmbn8, kaew_ambn Ccnt∏mcp

NXpc{iambn´ncn°pw. ]ns∂ Hcp ]m¿izØn¶se ew_Øn¶∂p

]pdhm apdn®p as‰ ]m¿izØn¶¬ ta¬ Iogp ]I¿∂p Iq´q. At∏mƒ

apJ`qtbmKm¿≤w \ofambn ew_anSbmbn, Ccnt∏mcp

BbXNXpc{iambn´ncn°pw. ]ns∂ CuhÆsa√m A¥cmfßtfbpw

BbXNXpc{ißfmbn´p Iev]n∏q. At∏mƒ CSsa√m‰n∂pw

Xpeyambn´ncn°pw. \ofw \m\m{]amWßfmbn´ncn°pw. ChnsS

\ofhpanShpw Xßfn¬ KpWn®Xp t£{X^ew. AhnsS

hnkvXmcsa√m‰n∂pw XpeyamIbm¬ \ofsa√m‰nt‚bpw9 Iq´n

hnkvXmcwsIm≠p KpWn∏q. F∂m¬ tKmf]rjvT^ew hcpw.

18. 3. B.C.Ft\sc
4. F. Bbn-´n-cn-°Ww
5. B. Bbn-cn°pw
6. F. Cth-¶∂pw
7. C.D.F ]gp-Xp-Iƒ
8. D.F `pP-bmbn
9. D. F√m-‰n-t‚Xpw

VII. Pym\b\w
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ChnsS A¥cmfßƒ F{X D≈q F∂pw Ch-‰ns‚ BbmahnkvXm-

c-ßƒ F{X F∂padnhm≥ F¥p D]mbw F∂p ]ns∂. ChnsS10

Ct§mfhymkm¿≤hrØØn¶se A¿≤Pym°fmbn´ncn°pw11

C°ev]n® hrØßfpsS hymkm¿≤ßƒ. BIbm¬ Cu Pym°sf

tKmf]cn[nsbs°m≠p KpWn®p tKmfhymkm¿≤sØs°m≠p

lcn®m¬ AXXp Pymhp hymkm¿≤ambncn°p∂ hrØßfp≠mw12.

Ch Zo¿LNXp-c-{i-ß-fpsS13 \of-am-bn-´n-cn-°pw, A¥-cm-f-a-≤y-Øn-¶se

Pym°-sf Iev]n-®p-sIm-≠m¬. ]ns∂ Cu A¿≤-Pym-tbm-KsØ KpWn-

°n¬ F√m t£{Xm-bma-ß-fp-tSbpw tbmK-ap-≠m-Ipw14. CXns\

hnkvXmcw sIm≠p KpWn-∏q. At∏mƒ t£{X-^-e-tbmKap-≠m-Ipw.

apºn¬15 sNm√nb Z£n-tWm-Ø-chrØØn¶se hrØm-¥-cmf`mK-ßƒ

bmh Nn-eh Ah tKmf-]-cn-[n-bn-¶se Nm]-J-fi-am-bn-́ n-cn-°pw. CXns‚

Pymhv ChnsS t£{X-hn-kvXm-c-am-Ip-∂-Xv.

]ns∂ Pymtbm-KsØ hcpØpw {]Imcw. AhnsS Jfim-¥-c-

tbmKsØs°m≠p tKmf-hym-km¿≤-h¿§sØ KpWn®v Nm]-J-fika-

kvXPym-h¿§w sIm≠p lcn-∏q. ̂ ew A¿≤-Pym-tbm-Kw. ]ns∂ CXns\

t£{X-hn-kvXmcwsIm≠p KpWn-t°-Ww. hnkvXm-c-am-Ip-∂Xv Nm]-J-fi-

Øns‚ Pymhv. Jfim-¥-c-tbm-K-am-Ip-∂Xv BZyJfi-Pym-hv. Ch-‰n∂p

an°-hmdpw Aev]Xzw sIm≠p kakvXPymXpeyßfmbn´ncn°pw. Ch

c≠pw KpWImcßƒ, kakvXPymh¿§w lmcIw. F∂m¬ KpW\hpw

lcWhpw th≠m. hymkm¿≤h¿§w Xs∂ tijn∏q. ]ns∂

]cn[nsbs°m≠p16 KpWn®m¬ hymkm¿≤wsIm≠p lcnt°Ww.

At∏mƒ hymkm¿≤w Xs∂ tijn°pw. ]ns∂ tKmfØns‚ c≠v

A¿≤Øn¶se ^ehpw D≠mt°≠pIbm¬ hymkm¿≤sØ

Cc´nt°Ww. BIbm¬ tKmfhymksØ tKmf]cn[nsbs°m≠p

KpWn®m¬ tKmf]rjvTØn¶se NXpc{i^eap≠mIpw17.

18. 10. B. F. AhnsS
11. B. hymkm¿≤-sØ-s°m≠p lcn-®m¬ hrØ-Øn-¶se A¿≤-Pym-°-fm-bn-cn°pw
12. F. D≠mIpw
13. B.C.D.F. NXp-c-{i-t£-{X-^e-ß-fpsS \of-am-bn-´n-cn°pw
14. B.F. t£{X-^-e-tbm-K-ap-≠mIpw
15. F. apºv
16. F. ]cn-[n-sIm≠v
17. B.C.D.F.ka-N-Xp-c-{i-t£-{X-^-e-ap-≠mIpw

VII. 18. tKmf]rjvTt£{X^em\b\w
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19. tKmfL\t£{X^ew

A\¥cw tKmfØn¶se1 A¥¿`mKØn¶se2 L\t£{X^esØ

sNm√p∂q. ChnsS3 tKmf]rjvT^esØ4 Adnhm\mbns°m≠p

Iev]n∏m≥ sNm√nb hrØam¿t§W apdn∏q. At∏mƒ t\sc ]c∂p5

hrØßfmbncnt∏m Nneh Jfißfmbn´ncn°pw. AhnsS6

]rjvT^eØn¶¬ ]q¿∆m]cßfmbn´p hrØßsf Iev]n°p∂q

F¶n¬ Z£ntWmØchrØØn¶se ]cn[nJfiØns‚

\ofsamØncnt°Ww F∂p \nbXamIp∂Xv. ChnsS ]ns∂ F√m

apdnIfpw apgp∏v HØncnt°Wsa∂p \nbXamIp∂Xv. ]ns∂ F√m

hrØØn¶tebpw h¿§t£{X^eap≠m°n7 Hmtcm am\w apgp∏q F∂p

Iev]n®p Xßfn¬ Iq´nbm¬ tKmfØns‚ L\ap≠mIpw8

19. i. hrØt£{X^em\b\w

hrØt£{XØn¶se h¿§^esØ D≠m°pw{]Imcw ]ns∂.

hrØt£{XsØ hymkam¿t§W c≠p s]fn∏q9 kaambn´v. ]ns∂

c≠p s]fnbn¶epw10 tI{µØn¶∂p XpSßn t\anbn¶temfw Iodq;
t\anbn¶teSw F√m‰nepw ]c∂v, tI{µØn¶teSw Iq¿Øv Cßs\

Ccn°pw. ]ns∂ c≠p hrØJfißtfbpw t\aosS c≠p Xebpw

]nSn®p11 \nh¿Øn Xßfn¬ Iq´q, tI{µØnse12 Iq¿Ø {]tZiw
at‰Xn¶se ]gpXn¬ sN√pamdv. At∏mƒ hrØm¿≤w \ofambn

hymkm¿≤w CSbmbn Ccnt∏mcp BbXNXpc{it£{Xw D≠mIpw.

F∂m¬ hrØm¿≤hpw hymkm¿≤hpw Xßfn¬ KpWn®m¬

hrØt£{XØn¶se NXpc{i^ew D≠mIpw.

19. 1. C.D tKmf-Øns‚
2. B.tKmfm-¥¿`m-K-Øn-¶se

^ew sNm√p∂
3. B. AhnsS
4. F. ^ew
5. B.F. ]c∂
6. C.D.ChnsS

7. D. F. ^e-sØ-bp-≠m°n
8. D. tKmf-Øn-¶se

L\-^-e-ap-≠mImw
9. F. s]mfn∏q
10. F. s]mfn-sb-¶nepw
11. D. ]nsº
12. C. F tI{µ-Øn-¶se

VII. Pym\b\w
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19. ii. tKmft£{X^em\b\w

F∂m¬ AXXp A¿≤Pymh¿§sØ13 tKmf]cn[n sIm≠p KpWn®p

tKmfhymkwsIm≠p lcn®m¬ AXXp t£{X^eap≠mIpw. ]ns∂

Ch‰ns‚ tbmKw tKmft£{XL\^eambn´ncn°pw14.

A¿≤Pymh¿§ßsf D≠m°pw{]Imcw. AhnsS ichpw

itcm\hymkhpw Xßfn¬ KpWn®m¬ A¿≤Pymh¿§ambn´ncn°pw,

tImSnI¿ÆtbmKw itcm\hymkw, A¥cw icw, F∂n´v. AhnsS

ictØbpw itcm\hymktØbpw h¿§n®p Iq´n hymkh¿§Øn¶∂p

If™m¬ AXns\ A¿≤n®Xpw A¿≤Pymh¿§ambn´ncn°pw,

tbmKh¿§hpw h¿§tbmKhpw Xßfne¥cw ZznKpWLmXambn´ncn°pw,

F∂n´ v AhnsS hrØt£{Xßƒ s]cnsI Ipd™v

AWp{]mbam{Xw15 apgp∏mbn v́ Cu16 hrØßsf17 Iev]nt°≠q. AhnsS

HcWphmbn´ncns∏m∂v \tSsØ icw. Cu icØn¬ Hmtcmtcm

AWp°ƒ Gd18°qSnbXp ]ns∂ ]n∂sØ icamIp∂Xv. F∂m-e-Wp-

°-fpsS GIm-tZy -tIm -Ø-c -kw -I -en -X -ßƒ {]YaZznXobmZn

icßfmIp∂Xv. BIbm¬ GImtZytImØch¿§kwIenXw

ich¿§tbmKamIp∂Xv. hymkw 19K—ambn´ncnt∏mcp cmin CXv.

hymksØ AWphmbn Jfin®n´p h¿§kwIenXw sNøp∂q. CXns\

Cc´n®Xp ich¿§tbmKhpw itcm\hymkh¿§tbmKhpw

IqSnbXmbn´ncn°pw. ChnsS H∂p XpSßn hymkm¿≤Xpeyamthmfw

Ipd™Xp icw, hymkm¿≤Øn¶tednbXp itcm\hymkw. ]ns∂

GdnbXp icw, Ipd™Xp itcm\hymkw F∂p20 Iev]n°ptºmƒ

ich¿§tbmKhpw itcm\hymkh¿§tbmKhpw Xpeyambn´ncn°pw.

F∂n´v GImtZytImØckwIenXsØ Cc´n∏m≥ sNm√o.

c≠pw Xs∂ icat{X; henb icw H∂v, sNdnb icw H∂v, c≠n∂pw

IqSn21 Pymhv H∂v22 F∂nßs\ Iev]n°nepamw. AhntS ichpw

itcm\hymkhpw Xßfn¬ KpWn®Xp A¿≤Pymh¿§amIp∂Xv

19. 13. D. F∂m¬ Pymtbm-KsØ AXXp Pymh¿§sØ
14. D. F. add AhnsS
15. B.C.D.F AWp-am{Xw
16. B.C.D.F om. Cu
17. F. hrØ-t£-{X-ßsf

18. E.F.om. Gd
19. F. ic; For K—
20. C. D F∂n-ßs\
21. F. IqSo´v
22. B. H∂m-Ip∂p

VII. 19. tKmfL\t£{X^ew
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hrtØ ickwht§m¿≤Pymh¿§x k Jep [\ptjmx/

(Bcy`Sobw KWnX]mZw 17)

F∂p≠v.

]ns∂ ich¿§hpw itcm\hymkh¿§hpw IqSn hymkh¿§Øn¶∂p

t]mbtijØns‚ A¿≤hpw A¿≤Pymh¿§ ambn´ncn°pw,

h¿§tbmKhpw tbmKh¿§hpw Xßfn¬ A¥cw ZznKpWLmXw F∂n v́.

C∆ÆamIptºmƒ F{X A¿≤Pymh¿§sØ D≠mt°Ww, A{Xbn¬

KpWnt°Ww hymkh¿§sØ. BIbm¬ AWpt—ZwsIm≠p

KpWn®ncn°p∂ hymkØns‚ L\ambn´ncn°paXv . AhnsS

AWpt—ZwsIm≠v ]ns∂ lcnt°≠pIbm¬ tIhew

hymkL\ambnt´ Ccn°p CXv 23. ]ns∂24 AXn¶∂p25 h¿§

kwIenXsØ Cc´n®v AXns\ IftbWw. h¿§kwIenXamIp∂Xp

L\{Xywiw. CXns\ Cc´n®p Iftb≠pIbm¬ injvSw L\{Xywiw.

]ns∂ CXns\ A¿≤nt°≠pIbm¬ L\jjvTmwiw. BIbm¬

hymksØ L\n®v Bdn¬ lcn®Xp tKmfØn¶se \nc¥cw D≈

A¿≤Pym°fpsS h¿§tbmKambn´ncn°pw. ]ns∂ CXns\

]cn[nsIm≠p KpWn®p hymkw sIm≠p lcnt°Ww. BIbm¬

hymksØ \tS Xs∂ L\nt°≠m, h¿§nt° th≠q, ]ns∂

lcnt°≠pIbm¬. F∂m¬ hymkh¿§sØ tKmf]cn[nsbs°m≠p26

KpWn®v Bdn¬ lcn® ^ew tKmfØn¶se L\^eambn´ncn°pw.

Cßs\ Pymh¿§kwIenX{]kwKm¬ ich¿§kwtbmKZzmcm

D≠mIp∂ L\tKmf^esØ sNm√n, ]rjvT^etØbpw.27

[KWn-X-bp‡ǹ mj-bn¬

Pym\-b-\-sa∂

Ggma-≤ymbw kam]vXw]

19. 23. F. Ccn-°p-aXv
24. D. adds AXn¬ KpWn-t°Ww

hymk-h¿§sØ BI-bm¬
25. F. CXn-¶∂p

26. F. ]cn-[n-sIm≠p
27. C. add bp‡n-`mjm ]q¿∆m≤w

kam]vXw

VII. Pym\b\w
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