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11.5 Mahā-śaṅku and Mahācchāyā . . . . . . . . . . . . . . . . . . 545
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11.7 Dr. ggolacchāyā . . . . . . . . . . . . . . . . . . . . . . . . . . 546
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11.20.3 Derivation of Nata-jyā (Rsine hour ang1e) . . . . . . 565
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8.15 The Ś̄ıghra-sphut.a of Mercury and Venus . . . . . . . . . . . . 648
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9.6 Vāyugola for a non-equatorial observer . . . . . . . . . . . . . 677

9.7 Zenith and horizon at different locations . . . . . . . . . . . . 677

9.9 Distance from a Valita-vr. tta to two perpendicular circles . . . 680

9.10 Some Vipar̄ıta and Nata-vr. tta-s . . . . . . . . . . . . . . . . . 682

9.11 Declination of a planet with latitude . . . . . . . . . . . . . . 685

9.12 Apakrama-kot.i . . . . . . . . . . . . . . . . . . . . . . . . . . 689

CHAPTER 10 The Fifteen Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

10.1 The fifteen problems . . . . . . . . . . . . . . . . . . . . . . . 695

10.2 Problem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 698

10.3 Problem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 700

10.4 Problem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701

10.5 Problem 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701



Contents xi

10.6 Problem 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 703

10.7 Problems six to nine . . . . . . . . . . . . . . . . . . . . . . . 704

10.7.1 Problem 6 . . . . . . . . . . . . . . . . . . . . . . . . . 705

10.7.2 Problem 7 . . . . . . . . . . . . . . . . . . . . . . . . . 705

10.7.3 Problem 8 . . . . . . . . . . . . . . . . . . . . . . . . . 705

10.7.4 Problem 9 . . . . . . . . . . . . . . . . . . . . . . . . . 706

10.8 Problems ten to twelve . . . . . . . . . . . . . . . . . . . . . . 706

10.8.1 Problem 10 . . . . . . . . . . . . . . . . . . . . . . . . 707

10.8.2 Problem 11 . . . . . . . . . . . . . . . . . . . . . . . . 707

10.8.3 Problem 12 . . . . . . . . . . . . . . . . . . . . . . . . 708

10.9 Problems thirteen and fourteen . . . . . . . . . . . . . . . . . 708

10.9.1 Problem 13 . . . . . . . . . . . . . . . . . . . . . . . . 708

10.9.2 Problem 14 . . . . . . . . . . . . . . . . . . . . . . . . 709

10.10 Problem 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

CHAPTER 11 Gnomonic Shadow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714

11.1 Fixing directions . . . . . . . . . . . . . . . . . . . . . . . . . 715

11.2 Latitude and co-latitude . . . . . . . . . . . . . . . . . . . . 718

11.3 Time after sunrise or before sunset . . . . . . . . . . . . . . . 719
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11.22 Problem three: Śaṅku and Āśāgrā . . . . . . . . . . . . . . . 755
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13.1 Occurence of Vyat̄ıpāta . . . . . . . . . . . . . . . . . . . . . 810

13.2 Derivation of declination of the Moon . . . . . . . . . . . . . 810

13.3 Viks.epa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 810

13.4 Viks.epa-calana . . . . . . . . . . . . . . . . . . . . . . . . . . 814

13.5 Karn. ānayana . . . . . . . . . . . . . . . . . . . . . . . . . . . 815

13.6 Determination of Viks.epa-calana . . . . . . . . . . . . . . . . 817
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Chapter 8

Computation of Planets

8.1 Planetary motion

Now, all planets move in circular orbits. The number of degrees which each

planet moves in its orbit in the course of a day is fixed. There again, the

number of yojana-s moved per day is the same for all planets. For planets

which move along smaller orbits, the circle would be completed in a shorter

time. For those which move along larger orbits, the circle would be completed

only in a longer period. For instance, the Moon would have completely

moved through the twelve signs in 28 days, while Saturn will complete it

only in 30 years. The length of time taken is proportional to the size of the

orbit. The completion of the motion of a planet once in its orbit is called

a bhagan. a of that planet. The number of times that a planet completes its

orbit during a catur-yuga is called its yuga-bhagan. a (revolutions per aeon).

Now, if the Moon is seen with an asterism on a particular day, it will be

seen the next day with the asterism to the east of it. From this, it might be

understood that the Moon has proper motion (relative to the stars), and that

the motion is eastwards. The sequence of the signs can also be understood

to be eastwards. For all these orbits, a particular point is taken as the

commencing point. This point is termed as the first point of Aries (Mes.ādi).

All the circles considered in a sphere are divided into 21,600 equal parts.

Each part is a minute (ili). They are larger in bigger circles and smaller

in smaller circles, the number of parts being the same in all. The number

of minutes that a planet will move along its orbit during the course of a
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day is fixed. If one observes the said motion placing himself at the centre

of the orbit of a planet, then the motion of the planet would appear equal

every day. The centre of the planetary orbit is slightly above the centre of

the Earth. The observer is, however, situated on the Earth. Conceive a

circle touching the planet and with the observer at its centre. The observer

would find the planet that much advanced from the first point of Aries as it

has advanced in the said circle. The method by which this is ascertained is

called the ‘computation of the true planet’ (sphut.a-kriyā). We state it here,

deferring the specialties to later sections.

8.2 Celestial Sphere (Bhagola)

Now, there is what is called bhagola-madhya (centre of the celestial sphere).

That is a point from where the stars in general are all taken to be at the

same distance. There, it would seem that the centre of the Earth and the

bhagola-madhya are one and the same. Whatever difference there might be,

will be dealt with later.

8.3 Motion of planets: Conception I

First is stated the computation of the true positions of the Sun and the Moon,

for the reason that it is simple. Now, consider a circle with its centre at the

centre of the celestial sphere. This circle is much smaller than the orbital

circle of the planet. The centre of the orbital circle of the planet (graha-

bhraman. a-vr. tta) will be on the circumference of this (smaller) circle. This

smaller circle is called mandocca-n̄ıca-vr. tta (or manda-n̄ıca-vr. tta, manda-

circle). The orbital circle of the planet is called pratiman. d. ala (eccentric

circle). The centre of the pratiman. d. ala will move on (the circumference of)

the ucca-n̄ıca-vr. tta. The rate of motion of this circle (pratiman. d. ala) will be

the rate of motion of the mandocca. The rate of motion of the planet on

the circumference of the pratiman. d. ala will be the same as the mean motion
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(madhya-gati) of the planet. The circles should be so constructed that there

is no gap between the centre (of the pratiman. d. ala) and the circumference

(of the manda-vr. tta), both touching each other.

In the methodologies of computation of true planets, where the centre of a

circle is assumed to be moving on the circumference of another circle, the

east-west line of the moving circle should always be conceived to be along

the east-west direction. The transverse of this line, viz., the north-south line,

is the same as the the up-down line (i.e., the ūrdhvādho-rekhā). That line

should always be positioned the same way. There should not be any change

in their directions. It is in this way that the motion should be conceived.

This being the case, when the centre of this circle moves a certain extent on

the circumference of a circle of a certain size, it would be that all the parts

of that moving circle would be moving together on the circle of that size.

When the centre of the moving circle has completed one cycle, it would be

that all the parts of the moving circle have also completed one cycle. Here,

for a planet situated on the circumference of a circle, even if it (the planet)

does not have a motion on its own, it would ultimately result that the planet

would be executing a motion along the same (similar) circle, which the centre

of the circle supporting the planet is executing; the rate of motion being the

same as that of the mandocca. (This motion is) similar to the motion of

persons travelling in a vehicle. Thus, this motion of the planet is due to the

motion of the centre of the pratiman. d. ala.

Now, the Sun and the Moon have manda-n̄ıcocca-vr. tta-s, with their centres

at the centre of the bhagola (celestial sphere). Further, they have a planetary

orbital circle (graha-bhraman. a-vr. tta) with their centres on the circumference

of these (manda-n̄ıcocca-vr. tta-s). The centre of the planetary orbital circle

will move on the circumference of this mandocca-vr. tta with a rate of motion

equal to that of the mandocca. Besides (this motion), the planets will also

move on their orbital circles with their own mean rates of motion. Thus, the

motion of the planets and the graha-bhraman. a-vr. tta-s have to be conceived.

This is the actual situation.
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8.4 Motion of planets: Conception II

The same result can be achieved also through another conception. Construct

a circle which is similar to the graha-bhraman. a-vr. tta, with its centre at the

centre of the celestial sphere. This is called kaks.yā-vr. tta (orbital circle).

Construct an ucca-n̄ıca-vr. tta (or n̄ıcocca-vr. tta) with its centre on the cir-

cumference of the above-said (orbital) circle. The size of the ucca-n̄ıca-vr. tta

will be the same as stated earlier (in conception I). The centre of the ucca-

n̄ıca-vr. tta will move on the circumference of the orbital circle at the rate of

the mean planet. And, along the circumference of the ucca-n̄ıca-vr. tta, the

planet will move with the speed of the mandocca. Here the ucca-n̄ıca-vr. tta

is the support for the motion of the planet. Then, conceive that the centre

of the ucca-n̄ıca-vr. tta has the same rate of motion as had been previously

proposed for the planet on the pratiman. d. ala (eccentric circle). Also, suppose

the rate of motion originally proposed for the centre of the pratiman. d. ala (ec-

centric circle) earlier, to be the rate of motion of the planet moving on the

ucca-n̄ıca-vr. tta, whose centre is now supposed to move on the circumference

of the kaks.yā-vr. tta (orbital circle). Even in this conception, the result will be

the same. In this case, when the centre of the ucca-n̄ıca-vr. tta moves on an

orbital circle equal in size to the eccentric circle, every part of this ucca-n̄ıca-

vr. tta will move on a circle with the same size as the orbital circle. Hence, the

planet moving on the circumference of the ucca-n̄ıca-vr. tta, on account of its

support on the (orbital) circle, will consequently be moving on an eccentric

circle of the same size. Here, for the motion of the centre of ucca-n̄ıca-vr. tta,

the support is the kaks.yā-man. d. ala: note its centre; the centre of the eccen-

tric circle, which is the support of the motion of the circumference of the

ucca-n̄ıca-vr. tta, will be removed from the (previously mentioned) centre by

the radius of the ucca-n̄ıca-vr. tta.

In the present section on (the computation of) true planets, the motion of the

orbital and other circles must be conceived in such a way, that the ( north-

south and east-west) direction lines marked (on them) remain unchanged

in all cases. Then, it is also to be noted that the measure of the circle, on

which the centre of a circle moves, will be same as the measure of the circle
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on which all its parts move. Therefore, the mean motion of a planet can be

conceived for the centre of the n̄ıcocca-vr. tta, which lies on the circumference

of the orbital circle (kaks.yā-vr. tta), or for the planet on the pratiman. d. ala,

which has its support on the circumference of this (i.e., n̄ıcocca-vr. tta with

centre at the centre of the celestial sphere), since in both cases the result

is the same. In other words, for computing the true planet it is sufficient

to have the two circles, the kaks.yā-man. d. ala (orbital circle) with its centre

at the centre of the bhagola, and the ucca-n̄ıca-vr. tta with its centre on the

circumference of the kaks.yā-man. d. ala; or the ucca-n̄ıca-vr. tta with its centre

at the centre of the bhagola and the pratiman. d. ala (eccentric circle) with its

centre on the circumference of the ucca-n̄ıca-vr. tta. One can also have all the

four circles.

8.5 The position of Ucca

Now, find the deviation from the first point of Aries of the apogee of the

Moon (candra-tuṅga) as calculated by the rule of three. Mark that point on

the ucca-n̄ıca-vr. tta, whose centre is at the centre of the bhagola, and with

that as the centre, construct the eccentric circle. The location of the mean

planet must be marked on the circumference of the eccentric circle by finding

the mean position using the rule of three. Let the centre of the ucca-n̄ıca-

vr. tta be marked on the circumference of the kaks.yā-vr. tta at the point where

the mean planet should be. Then, place the planet on the circumference

of the ucca-n̄ıca-vr. tta where the apogee (tuṅga) should be. In this model,

the planet will be located at that point of intersection of the circumferences

of the ucca-n̄ıca-vr. tta on the kaks.yā-vr. tta and the pratiman. d. ala, which is

close to the location of the ucca. (In fact) the circumferences of these circles

intersect at two places. The planet will be at that point of intersection of the

circumferences which happens to be in the region of the ucca (ucca-pradeśa).

8.6 Ucca, Madhyama and Sphut.a

When the ucca and madhya as derived using the rule of three coincide, then

the centres of all the four circles will be on the same line. Assuming this



476 8. Computation of Planets

(phenomenon) to occur on the east-west line (pūrva-sūtra), herein below is

described how to ascertain the difference between the ucca and the madhya

and the motion of the circles and of the planet.

There, the centre of the kaks.yā-man. d. ala and that of the ucca-n̄ıca-vr. tta

have been presumed to be at the centre of the bhagola. The centre of the

pratiman. d. ala had been presumed to be at the eastern point on the ucca-

n̄ıca-vr. tta. Now, presume another ucca-n̄ıca-vr. tta on the east-west line itself

with its centre on the circumference of the kaks.yā-vr. tta. The tip of the

east-west line of this (second) ucca-n̄ıca-vr. tta and the tip of the east-west

line of the pratiman. d. ala will touch one another. Since the intersection of

the circumferences of the ucca-n̄ıca-vr. tta and of the pratiman. d. ala is at the

tip of the east-west line, the planet will also be at the tip of the east-west

line. At this moment, since the line from the centre of the kaks.yā-man. d. ala

and that from the centre of the pratiman. d. ala touching the planet are the

same, there is no difference between the true and mean planets. Now, the

difference between the true and mean (positions of the planet) commences

from this situation where the mean meets the ucca.

8.7 Computation of true Sun

First, the procedure for obtaining true Sun is being explained. Since, the

motion of the centre of the pratiman. d. ala in this case is so small, it might

be considered as if the motion does not exist. The advantage in this pre-

sumption is that it would then be sufficient to consider the motion of the

planet alone. This is so in the first conception. In the second conception, we

suppose that the centre of the ucca-n̄ıca-vr. tta alone moves on the circum-

ference of the kaks.yā-vr. tta; then also, the result will be the same. It will

also be advantageous to explain the two types of motion considering them

simultaneously.

Now, when the madhya has moved three signs from its ucca, the centre of

the ucca-n̄ıca-vr. tta will be (at the north-point) on the circumference of the
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kaks.yā-vr. tta. Also, the east-point of the ucca-n̄ıca-vr. tta would be touch-

ing the north-point of the pratiman. d. ala. The planet will be at that point

at that time. Here, the motion of the planet on the circumference of the

pratiman. d. ala and the motion of the centre of the ucca-n̄ıca-vr. tta on the

circumference of the kaks.yā-vr. tta would be the same.

Now, two bodies, starting from the same point and at the same time and

moving at the same rate on circles having the same dimension, actually

move through the same degrees in their respective circles. Hence, when

the planet and the centre of the ucca-n̄ıca-vr. tta have travelled through one-

fourth the circumference in their respective circles, they will be at the north-

point of their circles. Here, the east-west line (pūrva-sūtra) common to the

kaks.yā-vr. tta and the pratiman. d. ala is called ucca-n̄ıca-sūtra. (This is called

so) because it touches the points on the circumference of the pratiman. d. ala

farthest from (i.e., ucca), and nearest to (i.e., n̄ıca), the centre of the bhagola.

Here, the madhyama would be on the pratiman. d. ala at a distance of three

signs from the east-point.

Now, the sphut.a (true longitude of the planet) is equal to the distance moved

on that circle, whose centre is the centre of the bhagola and whose radius

is equal to the line joining the said centre and the planet. Here, when the

(mean) planet is on the circumference of the kaks.yā-vr. tta at the north point,

the sphut.a would have moved three signs from the ucca. Therefore, when

the madhyama has moved three signs, the planet would be towards the east

of the north-point of the kaks.yā-vr. tta, at a distance separated from it by

the radius of the ucca-n̄ıca-vr. tta. Hence, at that moment, the difference

between the sphut.a and madhyama will be equal to the radius of the ucca-

n̄ıca-vr. tta. In other words, the sphut.a will be less than the madhyama by a

measure equal to the radius of the ucca-n̄ıca-vr. tta when it (the madhyama)

has moved by three signs.

Now, the circle that is constructed with its centre at the centre of the bhagola

and with radius equal to the distance therefrom to the planet, would be called

karn. a-vr. tta (hypotenuse-circle). Since this circle and the kaks.yā-vr. tta have
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their centres at one place, the number of minutes of arc (ili) in both are the

same. Hence, the mean planet, which has been presumed (above) to be at

the centre of the ucca-n̄ıca-vr. tta on the circumference of the kaks.yā-vr. tta at

the tip of its north-line, can be assumed to be at the north-point of the karn. a-

vr. tta. Now, the difference from that point (the mean planet on the karn. a-

vr. tta) to the point where the planet lies, will be the sput.a-madhyāntarāla-

cāpa (arc of the difference between the true and mean). Hence, this sphut.a-

madhyāntarāla-cāpa would be got by taking the radius of the ucca-n̄ıca-vr. tta

as the jyā (Rsine) in the karn. a-vr. tta and finding its arc. Now, since the

madhyama has moved by three signs from the east-point which is on the

ucca-sūtra, if this sphut.a-madhyāntarāla-cāpa is subtracted from three signs,

the remaining part will be the difference between the planet and the ucca-

sūtra on the circumference of the karn. a-vr. tta. When the ucca (the longitude

of apogee) is added to this, the true position of the planet from the first point

of Aries will result. The above result for the true planet, i.e., how far has

the planet moved in the karn. a-vr. tta, can be obtained even by subtracting,

from the madhyama, that portion of the arc in the hypotenuse circle which

is equal to the difference between sphut.a and madhyama.

Now, when it has been conceived that the ucca is on the east-line and the

madhya is at the ucca, it has also been conceived that the planet is at the

east-point of the pratiman. d. ala, and that the centre of the ucca-n̄ıca-vr. tta is

at the east-point of the kaks.yā-vr. tta. In both these conceptions, the east-line

is the same for both the kaks.yā-vr. tta and the pratiman. d. ala. Thus, since the

minutes of motion is the same (in both these conceptions) at that instant,

the mean and the true are also the same.

Now, when the planet and the centre of the ucca-n̄ıca-vr. tta, both of which

have the same rate of motion, move by three signs, the planet will reach the

north-point on the pratiman. d. ala and the centre of the ucca-n̄ıca-vr. tta will

be at the north-point of the kaks.yā-vr. tta. While the centre of the ucca-n̄ıca-

vr. tta is conceived to move in such a manner that there is also no change in

the direction lines (drawn on these circles), the planet will not deviate from

the east-point of the ucca-n̄ıca-vr. tta. Therefore, at that time, the difference
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between the true and mean planet (sphut.a-madhyāntarāla) will be equal to

the radius of the ucca-n̄ıca-vr. tta.

Then, when it moves by another quarter of a circle, (i.e., three signs), the

planet will be at the west-point on the pratiman. d. ala, and the centre of the

ucca-n̄ıca-vr. tta will be on the west-point of the kaks.yā-vr. tta. Then also it will

be the case that the planet is at the east-point of the ucca-n̄ıca-vr. tta. Since,

the west-line of the kaks.yā-vr. tta is the same as that of the pratiman. d. ala,

and the minutes of arc at that place is also the same, the true and the

mean planets are the same even at that situation. Thus, even when the

madhyama and the n̄ıca are the same, there will be no difference between

the true (sphut.a) and the mean (madhyama).

Now, when the two move by still another quarter of a circle, they will be

at the south-point. Here also, since the planet is at the east-point of the

ucca-n̄ıca-vr. tta, the centre of the ucca-n̄ıca-vr. tta is to the west of the planet,

by a measure equal to the radius of the ucca-n̄ıca-vr. tta. Hence, here, the arc

of the radius of the ucca-n̄ıca-vr. tta should be added to the madhyama. That

will be the true planet (sphut.a). Again, moving three signs further, when

(the planet) reaches the ucca, there will be no difference between the sphut.a

and the madhyama.

Thus, the increase and decrease in the difference between sphut.a and mad-

hyama occur, starting from the conjunction of the (madhyama and) ucca,

in accordance with the quarter of the circle (vr. tta-pāda) occupied by the

madhyama. It is significant to note that if the jyā (Rsine) of the difference

between the ucca and the madhyama on the pratiman. d. ala is converted by

the rule of three to the ucca-n̄ıca-vr. tta, then it will be the jyā (Rsine) of the

difference between the true and the mean planet.

If it is asked, how it is so (here is the explanation): Now, consider the line

drawn from the centre of the kaks.yā-vr. tta passing through the centre of the

ucca-n̄ıca-vr. tta, which is on the circumference of the former, and meeting

the circumference on the other side (outer side of the ucca-n̄ıca-vr. tta). This
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line, will represent the minutes of the madhyama-graha. Now, the planet

is situated at the point where the east-line of the ucca-n̄ıca-vr. tta and its

circumference meet the circumference of the pratiman. d. ala. The difference

between the planet at that point and the minutes of arc of the madhyama is

the madhyama-sphut. āntara. Now, that line is the madhya-sūtra which cuts

the two points of the ucca-n̄ıca-vr. tta that are farthest from, and nearest to,

the centre of the kaks.yā-vr. tta. Therefore, the tip of this line on ucca-n̄ıca-

vr. tta is the ucca. Hence, the Rsine of the arc in the ucca-n̄ıca-vr. tta, which is

the traversed portion between the ucca on the ucca-n̄ıca-vr. tta and (the tip

of) the east-line (on it), would be the interstice between the true and mean

planets.

Now, if the centre of the ucca-n̄ıca-vr. tta is at the east-point on the circumfer-

ence of the kaks.yā-vr. tta, then the tip of east-line on the ucca-n̄ıca-vr. tta will be

the location of the ucca-point. If, however, the centre of the ucca-n̄ıca-vr. tta

is at the north-east corner in the kaks.yā-vr. tta, the north-east point of the

ucca-n̄ıca-vr. tta would be the ucca-point. If the centre is at the northpoint,

the ucca will be at that point. Thus, the difference between the east-line (of

the kaks.yā-vr. tta) which has been conceived as the ucca-line, and the centre

of the ucca-n̄ıca-vr. tta whose centre is on the kaks.yā-vr. tta, will be equal to the

interstice between the east-line and the ucca-point on the ucca-n̄ıca-vr. tta, in

its own measure. Now, calculate the Rsine of the arc on the kaks.yā-vr. tta,

between ucca and madhyama. Convert this, by the rule of three, into Rsine

on the ucca-n̄ıca-vr. tta. This Rsine will be the Rsine of the difference between

the ucca (sphut.a?) and madhyama. The Rsine of the difference between the

sphut.a and the madhyama will be obtained, even if the rule of three is ap-

plied using the Rsine of the arc between the planet and the ucca-point on

the circumference of the pratiman. d. ala. Moreover, the separation between the

ucca-sūtra and the planet in the pratiman. d. ala is the same as the separation

between ucca-sūtra and the planet on the ucca-n̄ıca-vr. tta.

Here, when the planet makes one revolution starting from the ucca-point

which has been conceived as the east-point on the pratiman. d. ala, the ucca-

point on the ucca-n̄ıca-vr. tta will also complete one revolution. Hence, the
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difference between the ucca-sūtra and the planet in the pratiman. d. ala, and

the difference between the ucca-sūtra and the planet on the ucca-n̄ıca-vr. tta

are equal in degrees. Therefore, when the Rsine of the difference between

the ucca and madhyama is multiplied by the radius of the ucca-n̄ıca-vr. tta

and divided by Rsine of three signs (trijyā or radius), we will get the Rsine

of the difference between the sphut.a and madhyama. If this Rsine is taken as

the Rsine on the karn. a-vr. tta and converted to arc, and applied to the mean

planet, the true planet will be obtained.

8.8 Computation of the Karn. a

Now is stated the method of the computation of the Rsines in the karn. a-

vr. tta. Here, the ucca-sūtra is the line drawn from the centre of the kaks.yā-

vr. tta and passing through the centre of the pratiman. d. ala and touching the

circumference of the pratiman. d. ala (on the other side). As stated above, it has

been taken as the east-line. The (extended) part of that line towards the west

is the n̄ıca-sūtra. And the entire line is termed ucca-n̄ıca-sūtra. Consider the

Rsine of the arc on the pratiman. d. ala from the planet to this sūtra; that Rsine

will be the Rsine of the portion corresponding to the madhyama–minus–ucca.

This segment has its tip at the planet and the base on the ucca-n̄ıca-sūtra.

This will be the bhujā (lateral) for deriving the radius of the karn. a-vr. tta

(hypotenuse-circle). The kot.i (upright ) is the distance from the base of the

Rsine to the centre of the kaks.yā-vr. tta. And the karn. a (hypotenuse) is the

distance from the centre of the kaks.yā-vr. tta to the planet.

Now, when the planet is at the ucca (on the circumference) of the pratiman. -

d. ala, the kot.i would be the difference (sum?) of the Rcosine of the ucca–

minus–madhyama and the radius of the ucca-n̄ıca-vr. tta. When, however, the

planet is at the n̄ıca on the pratiman. d. ala, the kot.i would be the difference of

the Rcosine of the ucca–minus–madhyama and the radius of the ucca-n̄ıca-

vr. tta. The Rcosine of the ucca–minus–madhyama is the distance from the

centre of the pratiman. d. ala to the base of the Rsine. The radius of the ucca-

n̄ıca-vr. tta would be the distance between the centre of the pratiman. d. ala and

the centre of the kaks.yā-man. d. ala.
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When, the planet is to the east of the north-south line passing through the

centre of the pratiman. d. ala, the kot.i of the hypotenuse circle (karn. a-vr. tta-

kot.i) would be the sum of the Rcosine (found) with respect to the centre

(of the pratiman. d. ala) and the radius of the ucca-n̄ıca-vr. tta. If, however, the

planet is to the west of the north-south line passing through the centre of

the pratiman. d. ala (and lies just below it), then the base of the Rsine would

fall inside the ucca-n̄ıca-vr. tta (drawn at the centre of bhagola). Now, if the

base of the Rsine is to the east of the north-south line of the ucca-n̄ıca-

vr. tta, situated at the centre of the kaks.yā-vr. tta, the Rcosine would be the

distance from the base of the Rsine to the circumference of the ucca-n̄ıca-

vr. tta. When this (segment) lying inside the ucca-n̄ıca-vr. tta, is subtracted

from the radius of the ucca-n̄ıca-vr. tta, the remainder, which is the distance

between the centre of the kaks.yā-vr. tta and the base of the Rsine, would be

the kot.i for the hypotenuse circle. However, if the base of the Rsine is to

the west of the north-south line of the ucca-n̄ıca-vr. tta situated at the centre

of the kaks.ya-vr. tta, the kot.i of hypotenuse circle would be the Rcosine from

the centre (of the pratiman. d. ala) minus the radius of the ucca-n̄ıca-vr. tta.

Now, madhya–minus–ucca is stated to be the kendra. When the bhujā and

kot.i thus obtained and related to the karn. a-vr. tta, are squared added together

and the square root of the sum is calculated, the result obtained will be the

distance between the centre of the kaks.yā-vr. tta and the planet, which is

equal to the radius of the the karn. a-vr. tta in terms of the minutes of arc

of the pratiman. d. ala. When this itself is measured in terms of the minutes

of arc of the hypotenuse circle, it would be equal to trijyā (Rsine of three

signs). Now, if (the circumference of) any circle is divided by 21,600, each

part would be equal to one minute in that circle. And the radius of the circle

would be equal to Rsine of three signs (trijyā) in its own measure. Hence,

it was said that (the radius of the hypotenuse circle) measured in terms of

the minutes of arc of the hypotenuse circle, would be equal to trijyā. Since

there would be increase and decrease in the (dimension of) mandocca-n̄ıca-

vr. tta on account of (the increase and decrease of) the manda-karn. a (the

hypotenuse), it (i.e., the dimension of the mandocca-n̄ıca-vr. tta) is always

measured in terms of the minutes of arc of the hypotenuse circle. Only when
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this hypotenuse is calculated by avíses.a (iteration) will it be converted to

minutes of arc of the pratiman. d. ala. Thus (has been explained) the method

of knowing the measure on the karn. a-vr. tta from the minutes of arc of the

pratiman. d. ala.

8.9 Alternative method for finding the Karn. a

Here is an alternative method of deriving (the hypotenuse). Now, the line

starting from the centre of the kaks.yā-vr. tta passing through the centre of

the ucca-n̄ıca-vr. tta (which is) on the circumference of the kaks.yā-vr. tta, and

meeting its circumference (i.e., the circumference of the ucca-n̄ıca-vr. tta), is

called madhyama-sūtra, as mentioned earlier. The (perpendicular) distance

from this line to the planet is the difference between the madhyama and

sphut.a. This is called bhujā-phala (or doh. -phala). Take this as having its

tip at the planet and base on the madhyama-sūtra. The kot.i-phala would be

the distance from the foot of the bhujā and the centre of the ucca-n̄ıca-vr. tta

which is on the circumference of the kaks.yā-vr. tta.

If the planet happens to be situated on (the portion of the circumference

of) the pratiman. d. ala which is outside the circumference of the kaks.yā-vr. tta,

the foot of the bhujā-phala would also be outside the circumference of the

kaks.yā-vr. tta. In that case, if the kot.i-phala is added to the radius of the

kaks.yā-vr. tta, the result will be the interstice between the foot of the bhujā-

phala and the centre of the kaks.yā-vr. tta. If, on the other hand, the planet is

on the (portion of the) circumference of the pratiman. d. ala which happens to

be inside the circumference of the kaks.yā-vr. tta, the foot of the bhujā-phala

would be inside the circumference of the kaks.yā-vr. tta. Then, the kot.i-phala

subtracted from the radius of the kaks.yā-vr. tta will give the interstice between

the base of the bhujā-phala and the centre of the kaks.yā-vr. tta. Then, take

the difference between the foot of the bhujā-phala and the centre of the

kaks.yā-vr. tta as the kot.i and the bhujā-phala as the bhujā. Square the two,

add together (the results) and find the root; the result would be the distance

between the planet and the centre of the kaks.yā-vr. tta, in terms of the minutes
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of arc of the pratiman. d. ala, which is the same as the karn. a obtained earlier.

Thus the radius of the karn. a-vr. tta can be derived in two ways.

Now, it is learnt from the madhyama as to how far the planet has moved

in the pratiman. d. ala. The karn. a has been derived above, using which the

distance through which the planet has moved on the karn. a-vr. tta can be

found.

8.10 Vipar̄ıta-karn. a (Inverse hypotenuse)

Now, is explained the method to derive the radius of the kaks.yā-vr. tta and

the pratiman. d. ala from the minutes of arc of hypotenuse-circle (karn. a-vr. tta).

Since the working here is just the opposite of the derivation of the hy-

potenuse, this is called the (method for) inverse hypotenuse (vipar̄ıta-karn. a).

Here, in the computation of the manda-sphut.a, the difference between the

madhya and sphut.a is measured in terms of the minutes of arc of the manda-

karn. a-vr. tta. When the bhujā-phala, which is Rsine of the difference between

madhya and sphut.a, is squared and subtracted from the square of the radius

(trijyā) and the square root found, the result will be the interstice between

the base of the bhujā-phala and the centre of the kaks.yā-vr. tta. Subtract the

kot.i-phala from this, if the base of the bhujā-phala is outside the circumfer-

ence of the kaks.yā-vr. tta, and add otherwise. The result will be the radius of

the kaks.yā-vr. tta in terms of the minutes of arc of the karn. a-vr. tta.

8.11 Another method for Vipar̄ıta-karn. a

Here is another method to derive the radius of the pratiman. d. ala in terms of

the minutes of arc of the karn. a-vr. tta. Now, the bhujā-jyā or the Rsine of the

difference between the ucca and sphut.a is in terms of the minutes of arc of the

karn. a-vr. tta. As is well known, sphut.a is the distance moved by the planet on

the karn. a-vr. tta. The bhujā-jyā referred to above has its foot in the n̄ıcocca

line and its tip at the planet. The Rcosine of the difference between the
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sphut.a and ucca is the distance from the foot of the bhujā and the centre of

the kaks.yā-vr. tta. Subtract from this the radius of the ucca-n̄ıca-vr. tta which

is the distance between the centres of the kaks.yā-vr. tta and the pratiman. d. ala,

in case the foot of the bhujā-jyā is outside the circumference of the ucca-n̄ıca-

vr. tta, otherwise add. Square the kot.i which is left, and the bhujā-jyā, add

them and find the root. The result will be the distance from the centre of

the pratiman. d. ala to the planet, which is the radius of the pratiman. d. ala in

terms of the minutes of arc of the karn. a-vr. tta.

8.12 Still another method for Vipar̄ıta-karn. a

Now, a method is given to derive the radius (of the pratiman. d. ala) using the

bhujā-phala and the kot.i-phala corresponding to the difference between the

sphut.a and the ucca. Now, what is called the Rsine of the difference between

sphut.a and ucca is the Rsine of the arc between the line passing through the

planet and the ucca-n̄ıca line on the karn. a-vr. tta. When this Rsine of the arc

between the two lines (sūtra-s) is conceived with respect to the ucca-n̄ıca-

vr. tta at the centre of the karn. a-vr. tta, it will be the Rsine of the difference

between the sphut.a and the ucca (i.e., doh. -phala). This doh. -phala should be

conceived to have its tip at the centre of the pratiman. d. ala and its foot on

the planet-line. The interstice between the foot of this doh. -phala and the

centre of the karn. a-vr. tta on the planet-line will be the kot.i-phala here. And

the karn. a minus this kot.i-phala will be the kot.i. Here, the bhujā is the doh. -

phala. When the two are squared, added together and the root calculated,

the result will be the distance between the centre of the pratiman. d. ala and

planet, which is the radius of the pratiman. d. ala in terms of the minutes of

arc of the karn. a-vr. tta.

This will be the case when the planet is in the ucca region (eastern half of the

pratiman. d. ala). If it is in the n̄ıca region (western half of the pratiman. d. ala)

there is a distinction. Here, the interstice between the n̄ıca-line and the

planet-line on the karn. a-vr. tta is the Rsine of difference between the sphut.a

and the ucca. This interstice in the n̄ıcocca-vr. tta will be the doh. -phala.
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Now, there is, on the other side of the n̄ıca-sūtra, the remaining portion

of the ucca-n̄ıca-sūtra; extend the planet-line also to that side through the

centre of the karn. a-vr. tta. Now, in this case also, the Rsine of the arc between

the extension of the planet-line and the ucca-line is indeed the above-said

bhujā-phala. Here also conceive the doh. -phala with its tip at the centre of

the pratiman. d. ala and with its foot on the extended tail of the planet-line.

The kot.i-phala is the distance between the foot of the doh. -phala and the

centre of the karn. a-vr. tta along the extension of the planet-line. When this

kot.i-phala is added to the (portion of the) planet-line, which is the radius

of the karn. a-vr. tta, the result will be the distance from the planet to the

foot of the said doh. -phala. If the square of this is added to the square of

the doh. -phala and the square root is taken, the result will be the distance

from the planet to the centre of the pratiman. d. ala which is the radius of the

pratiman. d. ala in terms of the minutes of arc of the karn. a-vr. tta. It is to be

noted that taking the intervening Rsines in reverse direction does not cause

any change in their measures.

Thus has been stated the methods for deriving the radius of the kaks.yā-

vr. tta and the pratiman. d. ala in terms of the minutes of arc of the karn. a-vr. tta.

The result so obtained, is called the vipar̄ıta-karn. a (reverse-hypotenuse).

Now, the karn. a is nothing but the radius of the karn. a-vr. tta measured in

terms of the minutes of arc of the pratiman. d. ala. Since, instead, we em-

ployed the reverse process what we obtained is the vipar̄ıta-karn. a (inverse

hypotenuse). If the square of the radius is divided by this vipar̄ıta-karn. a, the

result would be the karn. a (hypotenuse) which is the radius of the karn. a-vr. tta

measured in terms of the minutes of the pratiman. d. ala. Here, the radius of

the pratiman. d. ala specified in its (pratiman. d. ala-vr. tta’s) own measure in min-

utes (anantapurām. śam or 21,600 equal parts), is equal to trijyā (Rsine of

three signs) and it is equal to the vipar̄ıta-karn. a when measured in terms

of the minutes of arc of the karn. a-vr. tta. The radius of the karn. a-vr. tta is

equal to the trijyā when specified in its own measure. Now, what would it

be if measured in terms of the minutes of arc of the pratiman. d. ala, has to

be calculated by the rule of three. The result would be the radius of the

karn. a-vr. tta measured in terms of the minutes of arc of the pratiman. d. ala.
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8.13 Manda-sphut.a from the Madhyama

Now, find the Rsine of the arc madhyama–minus–ucca. That will be the

Rsine of the portion of the pratiman. d. ala lying between the planet and the

ucca-n̄ıca-sūtra. If this Rsine is measured in terms of the minutes of arc of

the karn. a-vr. tta and converted into arc, the result will be the portion of the

karn. a-vr. tta lying between the planet and the ucca-n̄ıca-sūtra. When this

arc is applied to the ucca or n̄ıca, the angle covered by the planet along the

karn. a-vr. tta is obtained. And this will be the sphut.a (true position of the

planet).

We have here the rule of three: The radius of the karn. a-vr. tta in terms of

the minutes of arc of the pratiman. d. ala is equal to the karn. a. This is the

pramān. a. When the said radius is in terms of the minutes of arc of the

karn. a-vr. tta, it is equal to trijyā. This is the pramān. a-phala. The icchā is the

Rsine of (the portion of) the pratiman. d. ala lying between the planet and the

ucca-n̄ıca-sūtra. And, that itself, when converted in terms of the minutes

of arc and treated as a Rsine of the karn. a-vr. tta, would be the icchā-phala.

When this is applied to the ucca or to the n̄ıca in accordance to its nearness

to either, it is the sphut.a (true planet). This process of obtaining sphut.a is

called pratiman. d. ala-sphut.a.

Now, the Rsine of sphut.a–minus–ucca will be the icchā-phala which has been

mentioned above. The Rsine of madhya–minus–ucca will be the icchā-rāśi.

Therefore, when the icchā-phala is considered as pramān. a, the icchā-rāśi is

taken as pramān. a-phala and the radius of the karn. a-vr. tta which is equal to

trijyā taken as icchā-rāśi (and the rule of three applied), the icchā-phala

got would be the karn. a mentioned above. Here, since the Rsine of madhya–

minus–ucca is the Rsine of a portion of the pratiman. d. ala, it is in terms of

the minutes of arc of the pratiman. d. ala. This is the very Rsine of sphut.a–

minus–ucca also. Further, the two Rsines are equal, because this segment

is perpendicular to the ucca-sūtra and represents the distance between the

planet and the ucca-sūtra. The difference is only because of employing dif-

ferent units for measurement. Since the arc of the sphut.a-kendra (sphut.a–
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minus–ucca) is a portion of the karn. a-vr. tta, the Rsine of sphut.a-kendra is in

terms of the minutes of arc of the karn. a-vr. tta. That is, this Rsine is nothing

but the Rsine of sphut.a-kendra in terms of minutes of the karn. a-vr. tta. When

this itself is measured in terms of the arc of the pratiman. d. ala, it is Rsine of

madhya-kendra (madhya–minus–ucca). If this is equal to trijyā when mea-

sured in terms of the arc of the karn. a-vr. tta, by finding what it will be in

terms of the minutes of arc of the pratiman. d. ala (using rule of three), we

obtain the karn. a that was stated earlier.

The karn. a may also be obtained thus. In this connection, a doubt might

arise as to how the bhujā-phala of the madhya-kendra would be in terms of

the minutes of arc of the karn. a-vr. tta, when Rsine of madhya-kendra is in

terms of the minutes of arc of the pratiman. d. ala. Here is the answer: When

the karn. a is large, the mandocca-n̄ıca-vr. tta would also be correspondingly

large. When the karn. a is smaller than trijyā, the mandocca-n̄ıca-vr. tta would

also be correspondingly smaller. Hence, the Rsine in this circle would always

be in terms of the minutes of arc of the karn. a-vr. tta. Hence it is that the

manda-karn. a can be derived in this manner. It is again the reason why it

is not necessary to resort to the rule of three to convert the madhya-kendra-

bhujā-phala to minutes of arc of the karn. a-vr. tta, when it has to be applied to

the madhyama. In this manner, since there is an increase and decrease of the

dimension of the mandocca-n̄ıca-vr. tta in accordance with the manda-karn. a,

there is this distinction for the manda-karn. a and for the sphut.a derived from

the manda-bhujā-phala. (On the contrary), in the ś̄ıghra (phala) there is no

increase or decrease in the dimension of ś̄ıghrocca-n̄ıca-vr. tta with reference

to its karn. a. Thus (has been stated) the derivation of manda-sphut.a.

8.14 Śighra-sphut.a (True planets): General

Next is stated the process of ś̄ıghra-sphut.a. Since the centre of the manda-

n̄ıcocca-vr. tta of the Sun and the Moon is at the centre of the bhagola, for

the Sun and the Moon the manda-sphut.a as computed will give their (true)

motion in the bhagola. For Mars and other planets, if we presume a circle



8.14 Śighra-sphut.a (True planets): General 489

with its centre as the centre of the bhagola and joining the planet, the (true)

motion in the bhagola would be equal to the measure by which it (the planet)

has moved in that circle. The speciality of (Mars and other planets) is this:

There is a ś̄ıghra-n̄ıcocca-vr. tta with its centre at the centre of the bhagola.

The manda-n̄ıcocca-vr. tta moves on the circumference of that (́s̄ıghra-n̄ıcocca-

vr. tta) at the rate of the ś̄ıghrocca. Hence, at a particular moment, the

centre of the manda-n̄ıcocca-vr. tta is that point on the circumference of the

ś̄ıghra-n̄ıcocca-vr. tta, where the ś̄ıghrocca would lie. The mandocca moves on

this circle (manda-n̄ıcocca-vr. tta). Now, presume a pratiman. d. ala circle with

its centre on the manda-n̄ıcocca-vr. tta, at that point where the mandocca is

located on the manda-n̄ıcocca-vr. tta. Presume also that the planet (graha-

bimba) moves on the circumference of this pratiman. d. ala. Then, the extent of

motion of the planet at any time along the circumference of the pratiman. d. ala

as measured from Mes.ādi, is known by the madhyama or the mean planet.

Now, presume another circle with its centre at the centre of the manda-

n̄ıcocca-vr. tta and touching the planet. This circle is called manda-karn. a-

vr. tta. Manda-sphut.a is ascertained by calculating how much the planet has

moved from Mes.ādi on this manda-karn. a-vr. tta by taking it as the prati-

man. d. ala. Now, presume a circle with its centre at the centre of the ś̄ıghra-

n̄ıcocca-vr. tta and touching (i.e., having at its circumference at) the planet.

This (circle) is called ś̄ıghra-karn. a-vr. tta. The ś̄ıghra-sphut.a (true planet)

is known by ascertaining the the number of signs etc., through which the

planet has moved in this circle from Mes.ādi.

Ś̄ıghra-sphut.a can be ascertained by presuming the manda-karn. a-vr. tta as the

pratiman. d. ala and the manda-sphut.a-graha as the mean planet (madhyama)

and carrying out computations in a manner similar to that (followed in the

case) of manda-sphut.a, and thus the number of signs etc. traversed by the

planet from Mes.ādi, in the ś̄ıghra-karn. a-vr. tta, would be obtained.

There is a special feature in the case ś̄ıghra-sphut.a. Here, if the ś̄ıghra-

bhujā-phala is calculated and measured in terms of the minutes of arc of the

ś̄ıghra-karn. a , it will become a jyā (Rsine) of the ś̄ıghra-karn. a-vr. tta. If this is
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converted into arc and applied, the result would be the distance traversed by

the planet in the ś̄ıghra-karn. a-vr. tta. For this purpose, the ś̄ıghra-bhujā-phala

should be multiplied by trijyā and divided by the ś̄ıghra-karn. a. Since the

ś̄ıghra-bhujā-phala is obtained in terms of the minutes of manda-karn. a-vr. tta,

it should be multiplied by trijyā and divided by ś̄ıghra-karn. a. In this way, the

ś̄ıghra-bhujā-phala is in terms of the minutes of arc of the ś̄ıghra-karn. a-vr. tta.

Here, in order to get the manda-bhujā-phala in terms of manda-karn. a-vr. tta,

it is not necessary to do such an application of the rule of three. If the

manda-kendra-jyā-s are multiplied by the radius of the mandocca-n̄ıca-vr. tta

and divided by trijyā, the result will be in terms of the minutes of arc of

the manda-karn. a-vr. tta. The reason for this is this: when the manda-karn. a

becomes large, the mandocca-n̄ıca-vr. tta will also become large; when it be-

comes small, the other will also become small. Thus, the manda-bhujā-phala

and kot.i-phala are always measured in terms of the degrees of the manda-

karn. a-vr. tta. On the other hand, there is no increase or decrease for the

ś̄ıghrocca-n̄ıca-vr. tta in relation to the ś̄ıghra-karn. a-vr. tta. Hence, the ś̄ıghra-

kot.i-phala and ś̄ıghra-bhujā-phala will be only in terms of the pratiman. d. ala.

So, in order to reduce them in terms of the ś̄ıghra-karn. a-vr. tta, another ap-

plication of the rule of three is required.

When the dimensions of the manda-n̄ıcocca-vr. tta and ś̄ıghra-n̄ıcocca-vr. tta

were given earlier, it was in terms of the dimensions of their own pratiman. d. ala.

Hence, they have to be first determined in terms of the minutes of arc of

the pratiman. d. ala. But, there is a distinction: the manda-n̄ıcocca-vr. tta has

increase and decrease, but the ś̄ıghra-n̄ıcocca-vr. tta has no increase and de-

crease.

Now, the jyā-s for the differences between the manda-sphut.a-graha and its

ś̄ıghrocca are called ś̄ıghra-kendra-jyā-s . Since these jyā-s are measured in

the manda-karn. a-vr. tta they are in terms of the minutes of arc of the manda-

karn. a. Since the ś̄ıghra-vr. tta is measured in terms of the pratiman. d. ala, if

the ś̄ıghrocca-n̄ıca-vr. tta and its radius, which is the ś̄ıghrāntya-phala, are

multiplied by trijyā and divided by the manda-karn. a, the results will be

the ś̄ıghrocca-n̄ıca-vr. tta and its radius in terms of the manda-karn. a-vr. tta. If
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these are considered as pramān. a and phala, and also the manda-karn. a-vr. tta,

measured in terms of the minutes of arc of itself, and its radius are considered

as pramān. a and phala and the ś̄ıghra-kendra-bhujā and kot.i as icchā-rāśi,

(and the rule of three applied), the icchā-phala-s thereby obtained would

be the ś̄ıghra-bhujā-phala and ś̄ıghra-kot. i-phala in terms of the minutes of

arc of the manda-karn. a-vr. tta. Then, apply this kot.i-phala to the radius of

the manda-karn. a-vr. tta which is equal to trijyā as measured by itself; add

its square to the square of the bhujā-phala, and find the square root. The

result would be the distance, in terms of the manda-karn. a-vr. tta, from the

planet to the centre of the ś̄ıghrocca-n̄ıca-vr. tta which is also the centre of the

bhagola. This will be the ś̄ıghra-karn. a. This (́s̄ıghra-karn. a) can be computed

in different ways.

The ś̄ıghra-antya-phala which has been measured in terms of the manda-

karn. a-vr. tta, has to be added or subtracted, depending on whether it is

Makarādi or Karkyādi, to the ś̄ıghra-kot.i-jyā; the result thus obtained and

the ś̄ıghra-kendra-bhujā-jyā have to be squared, added together and the

square root found; this will be the ś̄ıghra-karn. a, the one which is stated

earlier.

Here, if the manda-sphut.a-graha and the ś̄ıghrocca, which is the āditya-

madhyama (mean Sun), are subtracted from each other, the result will be

ś̄ıghra-kendra. The bhujā and kot.i-jyā-s of this are measured in terms of the

minutes of arc in the manda-karn. a-vr. tta. Since these are the jyā-s measured

in this circle, if they are multiplied by the manda-karn. a and divided by

trijyā, the result will be jyā-s of the manda-karn. a-vr. tta measured in terms of

the minutes of arc of the pratiman. d. ala. Now, if these are multiplied by the

ś̄ıghrāntya-phala (radius of the ś̄ıghrocca-n̄ıca-vr. tta) stated earlier in terms of

the dimensions of the pratiman. d. ala and divided by the manda-karn. a, we get

the ś̄ıghra-bhujā-phala and ś̄ıghra-kot.i-phala in terms of the minutes of arc

of the pratiman. d. ala. Now, if the kot.i-phala thus obtained is applied to the

manda-karn. a, and its square and the square of this bhujā-phala are added

together and the root found, the result will be ś̄ıghra-karn. a in terms of the

degrees of the pratiman. d. ala.



492 8. Computation of Planets

Again, if the ś̄ıghra-kendra-kot. i-jyā and the antya-phala which are measured

in terms of the minutes of arc of the pratiman. d. ala are added to or sub-

tracted from each other, as the case may be, and the square of the result

and the square of the bhujā-jyā are added together and the square root found,

then also will be obtained the ś̄ıghra-karn. a in terms of the degrees of the

pratiman. d. ala.

Now, multiply the ś̄ıghra-kendra-bhujā-jyā by the trijyā and divide by the

(́s̄ıghra) karn. a. The result will be the jyā of the interstice between the planet

and the ś̄ıghrocca-n̄ıca-sūtra, in terms of the minutes of arc of the ś̄ıghra-

karn. a-vr. tta. If this is converted to arc and applied to the ś̄ıghrocca, one can

find the position of the planet in the ś̄ıghra-karn. a-vr. tta which has its centre

at the bhagola-madhya. Now, multiply the bhujā-phala by trijyā and divide

by the (́s̄ıghra) karn. a and find the arc. Apply it to the manda-sphut.a-graha,

and this will be the sphut.a as above. Here, if either the bhujā-jyā or the

bhūjā-phala, measured in terms of the manda-karn. a, is multiplied by trijyā,

it has to be divided by the ś̄ıghra-karn. a which is in terms of the minutes of

arc of the manda-karn. a. (On the other hand) if it is measured in terms of

the minutes of arc of the pratiman. d. ala, then the division has to be made by

the ś̄ıghra-karn. a measured in terms of the pratiman. d. ala. This is the only

distinction.

Jñāta-bhoga-graha-vr. tta is that circle on whose circumference the planet’s

motion is known. This is taken to be the pratiman. d. ala. Then, we have

the circle passing through the planet with an appropriate centre (bhagola-

madhya), on whose circumference the portion traversed is desired to be

found. Such a circle is called jñeya-bhoga-graha-vr. tta. This circle is taken to

be the karn. a-vr. tta. Then we construct a circle whose centre is the same as

that of the jñeya-bhoga-graha-vr. tta and whose circumference passes through

the centre of the jñāta-bhoga-graha-vr. tta. Such a circle is called ucca-kendra-

vr. tta. Constituting the three circles as above, derive the karn. a according to

the ś̄ıghra-nyāya, and find the sphut.a as instructed above. If this is done, we

can ascertain the motion of the planet on a circle with the desired centre,

and on whose circumference the planet moves. Thus has been explained the

general procedure for finding true planets.
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Now, we describe the construction of the kaks.yā-vr. tta, when the motion of

the planet is conceived of in terms of the kaks.yā-vr. tta and the ucca-n̄ıca-vr. tta

on the circumference of it. With the centre of the jñeya-bhoga-graha-vr. tta as

centre, construct another circle (whose radius is) equal to the jñāta-bhoga-

graha-vr. tta. This is the kaks.yā-vr. tta. On the circumference of this construct

the ucca-n̄ıca-vr. tta, with a radius equal to the distance between the centres

of the jñāta and jñeya-bhoga-vr. tta-s. Here, the centre of the ucca-n̄ıca-vr. tta

has to be fixed at that point on the kaks.yā-vr. tta by considering the measure

of arc traversed by the planet in the jñāta-bhoga-graha-vr. tta. In this manner,

the rationale behind the ś̄ıghra-sphut.a can be explained by constructing five

circles. The above is the method for ascertaining true Mars, Jupiter and

Saturn.

8.15 True Mercury and Venus

There is a distinction (in the method to be adopted) for Mercury and Venus.

There too the computation of manda-sphut.a is as above. In the case of

ś̄ıghra-sphut.a, the ś̄ıghrocca-n̄ıca-vr. tta is large and the manda-karn. a-vr. tta is

small. Therefore, the centre of the ś̄ıghrocca-n̄ıca-vr. tta will fall outside the

circumference of the manda-karn. a-vr. tta. In such cases where the radius of

the ucca-n̄ıca-vr. tta, which is the distance between the centres of the jñāta

and jñeya-bhoga circles, is larger than the radius of the jñāta-bhoga-graha

circle, the circle which stands for the ucca-n̄ıca-vr. tta is to be considered

as the kaks.yā-vr. tta, and the jñata-bhoga-graha-vr. tta which stands for the

pratiman. d. ala is to be considered as the ucca-n̄ıca-vr. tta, lying on the circum-

ference of the kaks.yā-vr. tta. Construct the karn. a-vr. tta, which is said to be

the jñeya-bhoga-graha-vr. tta, in such a way that its centre is the centre of the

kaks.yā-vr. tta itself and the planet is on its circumference. The sphut.a-kriyā

has to be done with the above as the basis.

Now, if two more circles have to be constructed, construct one circle with its

centre at the centre of the kaks.yā-vr. tta and of size equal to that of the jñāta-

bhoga-graha-vr. tta, which has its centre on the circumference of the kaks.yā-

vr. tta. Since this new circle is equal in size to jñāta-bhoga-graha-vr. tta and
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has the same centre as the jñeya-bhoga-graha-vr. tta, this should be considered

as the kaks.yā-vr. tta in accordance with the arguments stated earlier. Still,

since it does not touch the jñāta-bhoga-graha-vr. tta, consider it as the ucca-

n̄ıca-vr. tta. Now, construct a second circle, a pratiman. d. ala equal in size to

the kaks.yā-vr. tta with its centre on this ucca-n̄ıca-vr. tta at the point, which

corresponds in minutes to the distance traversed by the manda-sphut.a on the

jñāta-bhoga-graha-vr. tta. Thus, in this set up, it would be as if the kaks.yā

and pratiman. d. ala would have been taken as the ucca-n̄ıca-vr. tta-s and the

ucca-n̄ıca-vr. tta-s as the kaks.yā-pratiman. d. ala-s. The jñeya-bhoga-vr. tta would

have been taken as the karn. a-vr. tta. Therefore, it would result that the centre

of the assumed pratiman. d. ala will be moving with the velocity of the planet.

Still its motion should be considered as the ucca-gati and its centre should

be considered as ucca. Though the motion of the centre (kendra-gati) of the

jñāta-bhoga-graha-vr. tta is to be taken as the the ucca-gati, since the jñāta-

bhoga-graha-vr. tta has been considered as the ucca-n̄ıca-vr. tta, we should take

it as the graha-gati.

Now, take the centre of the jñāta-bhoga-graha-vr. tta on the circumference of

the kaks.yā-vr. tta at the point which has the same measure in minutes as the

madhyama-graha. Then the planet will move along the pratiman. d. ala which

has been conceived in accordance with the proposed picture. Thus, in this

case, the planet will lie where the circumferences of the jñāta-bhoga-graha

and the assumed pratiman. d. ala intersect each other, and this will always be

the intersection near the ucca. Now assume the graha-gati on the jñāta-

bhoga-graha-vr. tta to be the same as the graha-gati on the circumference of

the ucca-n̄ıca-vr. tta, which has its centre on the circumference of the kaks.yā-

vr. tta. In this set up, it would be as if the graha is taken as ucca, and the ucca

is taken as the graha. Hence, the ś̄ıghra-bhujā-phala which is to be applied to

manda-sphut.a is applied to ś̄ıghrocca, and the ś̄ıghra-kendra-bhujā-jyā which

has been measured by the minutes of ś̄ıghra-karn. a is applied to manda-

sphut.a-graha. Thus the true motion of Mercury and Venus will be obtained.

Since it is necessary, we have shown here the motions of the grahocca-s and

the rationale of true planets in terms of the scheme of five circles discussed

earlier. Thus when carefully set forth, these concepts will become clear.
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Here, the measures of the manda-vr. tta-s and ś̄ıghra-vr. tta-s for Mars etc.

(i.e., Mars, Jupiter and Saturn) have been set out in tables in terms of

the minutes of arc of the pratiman. d. ala. For Mercury and Venus, however,

since the ś̄ıghra-vr. tta-s are large, it is the pratiman. d. ala which is measured

in terms of the minutes of arc of this (i.e., ś̄ıghra-vr. tta) and set out as the

ś̄ıghra-vr. tta in the text Tantrasaṅgraha. In other texts, the manda-vr. tta-s of

Mercury and Venus are also measured by the measure of the ś̄ıghra-vr. tta and

set out (in tables). In Tantrasaṅgraha, the manda-n̄ıcocca-vr. tta-s have been

measured by the minutes of arc of the pratiman. d. ala and set out. For this

reason, the mandocca is subtracted from the madhyama and the manda-phala

is calculated according to the manda-sphut.a-nyāya. Applying this result to

the madhyama the manda-sphut.a is derived. This (manda-sphut.a) is taken

as the ś̄ıghrocca and the āditya-madhyama (the mean Sun) is taken as graha-

madhyama and the ś̄ıghra-sphut.a is calculated. Since the mandocca-n̄ıca-

vr. tta is smaller than the pratiman. d. ala for these two, calculating the manda-

sphut.a for Mercury and Venus is similar to that for the other planets. Only,

in the ś̄ıghra-sphut.a, it is necessary to reverse their grahocca-s, their gati-s

and vr. tta-s. There, if the manda-karn. a is multiplied by the ś̄ıghra-antya-

phala, and divided by trijyā, we get the radius of the manda-karn. a-vr. tta

in terms of the minutes of arc of the ś̄ıghra-vr. tta. The reason is that the

pratiman. d. ala has been taken as ś̄ıghra-karn. a-vr. tta and therefore the manda-

karn. a-vr. tta has to be taken as ś̄ıghra-karn. a-vr. tta. This is all the distinction

in the case of Mercury and Venus. Thus has been stated the derivation of

true planets when there is no viks.epa (latitude).

8.16 Ś̄ıghra correction when there is latitude

Now, for the situation when there is viks.epa (latitude), there is a difference.

That is stated here. Now, at the centre of the bhagola (with its centre as the

centre), there is a circle called apakrama (ecliptic). For the present calcula-

tions, a consideration of its change of position with reference to place and

time is not required and hence it might (simply) be taken as an exact vertical

circle, situated east-west. Mark off on its circumference twelve (equal) di-

visions, then construct six circles, passing through those two division-marks
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which are diametrically opposite. These (circles) will meet at the north and

south directions of the apakrama as seen from its centre. These two meeting

points (of the circles) are called rāśi-kūt.a-s (poles of the ecliptic). There will

result twelve interstices due to the six circles. The interstices between two

circles will make the twelve rāśi-s (signs). The middle of these signs will be

in the apakrama circle and the two meeting points at the two rāśi-kūt.a-s.

These signs will be such that the middle portions are broad and the ends

are pointed. These signs have then to be divided into minutes, seconds, etc.

In the above set up, the ś̄ıghra-vr. tta is presumed with its centre at the centre

of the apakrama circle and its circumference along the mārga (in the plane)

of the apakrama circle. It may be recalled that the apakrama circle near

the centre is called ś̄ıghrocca-n̄ıca-vr. tta. The size of the ś̄ıghra-vr. tta-s will

be different for the different planets. That is all the difference (between

the ś̄ıghra-vr. tta-s) and there is no difference in their placement as they are

located the same way (i.e., with their centre at the centre of the apakrama

circle and also lying in the same plane).

Now, the manda-n̄ıcocca-vr. tta is a circle having its centre on the circumfer-

ence of the ś̄ıghra-vr. tta at the point where the mean Sun is. This is the

case for all (the planets). The ascending node (pāta) has its motion along

the circumference of the manda-n̄ıcocca-vr. tta in the retrograde manner. The

point in the manda-n̄ıcocca-vr. tta where the pāta is, will touch the apakrama-

man. d. ala. One half of the manda-n̄ıcocca-vr. tta, commencing from the pāta

will lie on the northern side of the apakrama-man. d. ala. Again, the point

which is six signs away from the pāta will touch the apakrama-man. d. ala.

The other half (of the manda-n̄ıcocca-vr. tta) will lie on the southern side of

the apakrama-man. d. ala. Here, that point, which is displaced maximum from

the (plane of the) apakrama-man. d. ala, will indicate the maximum viks.epa

(parama-viks. epa) of the planets in terms of the minutes of arc of their re-

spective mandocca-vr. tta-s. Further, the plane of this n̄ıcocca-vr. tta itself will

be the plane of the pratiman. d. ala. Hence, the pratiman. d. ala too will be in-

clined towards the north and south from the plane of apakrama-man. d. ala

in accordance with the n̄ıcocca-vr. tta. The manda-karn. a-vr. tta will also be
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inclined accordingly. Now, the viks.epa has to be obtained from the manda-

sphut.a.

Here, since the centre of the manda-karn. a-vr. tta is the same as the centre of

the mandocca-vr. tta and since it will be inclined to the plane of apakrama-

man. d. ala, south and north, accordingly as the mandocca-vr. tta, the maximum

divergence of the circumference of the manda-karn. a-vr. tta from the plane of

the apakrama-man. d. ala will be the maximum viks.epa in the measure of the

manda-karn. a-vr. tta. Hence, if the Rsine of the manda-sphut.a minus pāta is

multiplied by the maximum viks.epa and divided by trijyā, the result will

be the is. t.a-viks.epa of the planet on the manda-karn. a-vr. tta. This inclination

(deflection from the ecliptic) is called viks.epa.

This being the situation, when the position of the planet is displaced from

the (plane of the) apakrama-man. d. ala, since the dik (direction or plane) of

the ś̄ıghrocca-n̄ıca-vr. tta is not the same as that of the manda-karn. a-vr. tta, it

would not be proper to consider the manda-karn. a-vr. tta as the pratiman. d. ala

in (evaluating) the ś̄ıghra-sphut.a. However, when the pāta and manda-sphut.a

occupy the same position (i.e., they have the same longitude), the manda-

karn. a-vr. tta can be taken to be in the plane of the ś̄ıghrocca-n̄ıca-vr. tta. (In

other words) when the planet has no viks.epa, this manda-karn. a-vr. tta need

not be conceived to be inclined. However, if the planet in the manda-karn. a-

vr. tta is assumed to be removed maximum from plane of the apakrama-

man. d. ala, then by moving a quarter of a circle it will be in the plane of

the apakrama-man. d. ala, and from the viks.epa of the planet the inclination

(of the planetary orbit) can be obtained.

(We shall consider the case) when there is no viks.epa for manda-karn. a-vr. tta

(́s̄ıghrocca-n̄ıca-vr. tta ?). Now, calculate the viks.epa-kot.i by subtracting the

square of viks.epa from the square of manda-karn. a-vyāsārdha (radius of the

manda-karn. a-vr. tta) and taking the root (of the difference). This viks.epa-kot.i

would be (the base of a triangle) with its tip at the planet and having its base

along the line from the centre of the manda-karn. a-vr. tta to the viks.epa (foot

of the perpedicular from the planet on the apakrama-man. d. ala). Construct
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a circle with its radius parallel to this viks.epa-kot.i, with the viks.epa-kot.i as

radius. This viks.epa-kot.i-vr. tta would have all its parts (i.e., centre and the

circumference) equally away (i.e., parallel) from the apakrama-man. d. ala just

as the ahorātra-vr. tta would be from the ghat.ikā-man. d. ala. Construct the

ś̄ıghra-n̄ıcocca-vr. tta parallel and away from it.

Since the viks.epa-kot.i-vr. tta is now parallel to the ś̄ıghra-n̄ıcocca-vr. tta, it

(the viks.epa-kot.i-vr. tta) will be the pratiman. d. ala for the (calculation of)

the ś̄ıghra-sphut.a. Subtract the square of the viks.epa in the measure of

the pratiman. d. ala from the square of the manda-karn. a (in the same mea-

sure) and find the square-root. This is the viks.epa-kot.i in the measure of

the pratiman. d. ala and the ś̄ıghra-phala shall have to be calculated with this

viks.epa-kot.i. Taking the viks.epa-kot.i mentioned above as the semi-diameter

and taking it as the manda-karn. a, calculate the ś̄ıghra-sphut.a as directed

above. The result will be the graha-sphut.a (true planet) on the ś̄ıghra-

karn. a-vr. tta which has its circumference touching the planet and its centre

at a place removed from the centre of the apakrama-man. d. ala to the south

or north by the extent of the viks.epa . This itself will be the sphut.a on the

apakrama-man. d. ala. The minutes (kalā) in the (viks.epa) kot.i-vr. tta on either

side of the apakrama-man. d. ala will be the same as in the apakrama-man. d. ala

itself. In the kot.i-vr. tta the kalā-s will be smaller (in length) but there is

equality in number. Just as the measures in the svāhorātra-vr. tta-s will be

the same in number as in the bigger ghat.ikā-man. d. ala, so also the kalā-s in

the viks.epa-kot.i-vr. tta. This will be clear later.

Now, when the square of viks.epa is added to the square of the ś̄ıghra-karn. a

and the root calculated, the result will be the distance from the centre of

the apakrama-man. d. ala to the planet. This is called the bhū-tārāgraha-vivara

(the distance between the Earth and the planet). Now, the viks.epa got

by multiplying the previously stated viks.epa by trijyā (radius) and dividing

by bhū-tārāgraha-vivara will be the bhagola-viks.epa. Bhagola-viks.epa is the

extent by which the circumference of the bhū-tārāgraha-vivara-vr. tta, which

has its centre at the centre of the apakrama-man. d. ala, is inclined from the

plane of the latter. For computing the true planet, the bhū-tārāgraha-vivara
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is not needed. Here, the minutes (ili-s) are small in accordance with the

nearness of the rāśi-kūt.a-s, since the number of rāśi-s etc., in the (viks.epa)

kot.i-vr. tta and the apakrama-vr. tta are same. This case is similar to the

case of the svāhorātra-vr. tta-s and ghat.ikā-man. d. ala, with reference to the

prān. a-s. Hence, there is no need for the bhū-tārāgraha-vivara for calculating

the ś̄ıghra-bhujā-phala. Thus has been stated the calculation of sphut.a.

Now, when the ś̄ıghrocca-n̄ıca-vr. tta itself has a viks.epa from the plane of the

apakrama-man. d. ala, and that viks.epa is not along the path of the manda-

karn. a-vr. tta: If the manda-karn. a-vr. tta has a different viks.epa than the ś̄ıghra-

vr. tta, it is shown below how to know the sphut.a and viks.epa .

For this, first ascertain the position of the pāta in the ś̄ıghrocca-n̄ıca-vr. tta and

the maximum viks.epa therefor. Then ascertain the viks.epa at that moment

for the centre of the corresponding manda-karn. a-vr. tta. For this, subtract

the pāta of the ś̄ıghra-vr. tta from the ś̄ıghrocca; find the Rsine of the dif-

ference, multiply by its maximum viks.epa and divide by trijyā; the result

will give the viks.epa of the centre of the manda-karn. a-vr. tta on the circum-

ference of the ś̄ıghrocca-n̄ıca-vr. tta from the plane of the apakrama-man. d. ala.

Like in the case of the desired apakrama, find its square and subtract it

from the square of trijyā. The square root of the result will be viks.epa-kot.i.

Then with this viks.epa-kot.i as radius, draw a circle parallel to the plane

of apakrama-man. d. ala. Then that (viks.epa-kot.i-vr. tta) will be removed from

the plane of the apakrama-man. d. ala by the extent of the viks.epa. Now, if

the viks.epa-kot.i is multiplied by ś̄ıghra-antya-phala and divided by trijyā,

the radius of the viks.epa-kot.i-vr. tta in terms of the minutes of arc of the

pratiman. d. ala would result. Now, taking this viks.epa-kot.i-vr. tta as the ś̄ıghra-

n̄ıcocca-vr. tta and the earlier stated viks.epa-kot.i-vr. tta of the manda-karn. a-

vr. tta as the pratiman. d. ala, the ś̄ıghra-bhujā-phala has to be derived. This

has to be applied to the manda-sphut.a (to find the sphut.a).

Thus, if the ś̄ıghra-n̄ıcocca-vr. tta has a deflection in some other direction,

then the measure by which the manda-karn. a-vr. tta will be deflected from the

ś̄ıghra-n̄ıcocca-vr. tta, which itself is deflected (from the apakrama-man. d. ala)
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as described above, will be known. Then, if the planet has a viks.epa directly

to the south along the manda-karn. a-vr. tta whose centre lies on the circumfer-

ence of the ś̄ıghra-vr. tta, which has a northerly viks.epa from the path of the

apakrama-man. d. ala, then the viks.epa of the planet at that moment would be

the difference between the viks.epa of the ś̄ıghra-n̄ıcocca-vr. tta and the manda-

karn. a-vr. tta. If both the viks.epa-s are either to the north and or to the south,

then the viks.epa of the planet would be the sum of the two. This would be

the viks.epa from the plane of the apakrama-man. d. ala.

Thus have been specified the method for the derivation of the sphut.a and

the viks.epa when there is viks.epa for the jñāta-bhoga-graha (the true planet)

and the ucca-n̄ıca-vr. tta which is (i.e., whose radius is) the difference between

the jñāta-(bhoga-graha-vr. tta) and the jñeya-(bhoga-graha-vr. tta). Here, the

method for sphut.a has been stated to show the procedure for all possible

situations that can occur, not that it has actually occurred here.

If it is desired to compute how much Mars has travelled in the circle with

its centre at the centre of the lunar sphere, when the measure by which it

has travelled in a circle with its centre at the centre of the bhagola is known,

then the kaks.yā-vr. tta of the Moon has to be taken as the ucca-n̄ıca-vr. tta for

finding the sphut.a. In such a case, the above situation may occur. This is

also the case (that is, the above procedure has to be adopted) even when the

computations (of the planetary motion) are known for the centre of Moon,

and they need to be converted in terms of the circle with centre at the centre

of the bhagola (celestial sphere).

8.17 Calculation of the mean from true Sun and
Moon

Now is described the method of calculating the mean (planet) from the true

(planet). Here, for the Sun and Moon, the Rsine of the distance between the

planet and the ucca-n̄ıca-sūtra is the bhujā-jyā of sphut.a–minus–ucca. If this
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is multiplied by the karn. a and divided by trijyā and the quotient reduced in

terms of the minutes of arc of pratiman. d. ala, the result will be the Rsine of

the relevant portion of the pratiman. d. ala. If the arc of this is found, and is

applied to the ucca or the n̄ıca, the extent to which the planet has travelled

along the pratiman. d. ala is known. If the doh. -phala (bhujā-phala) is similarly

reduced in terms of the minutes of arc of the pratiman. d. ala, converted to

arc, and applied to the sphut.a reversely (when it lies between) Mes.a and

Tulā, then also the mean planet would result. The rationale here is as

follows: The difference (ratio) between Rsine of the ucca–minus–sphut.a and

the ucca–minus–madhyama will be similar to the difference (ratio) between

the trijyā and the karn. a; also the relation between pramān. a and its phala

and icchā and its phala are similar.

8.18 Another method for the mean from true Sun
and Moon

Now, even by a successive iteration process (avíses.a-karma) involving the

doh. -phala, the mean planet can be obtained from the true planet. Here is

the method therefor: The ucca is subtracted from the sphut.a (true planet)

and doh. -phala is found. If that is applied inversely to the sphut.a, according

to Mes.a-Tulādi, the approximate mean planet is obtained. Subtract the

ucca from this madhyama, find the doh. -phala and apply it to the sphut.a.

Again, from this mean, subtract the ucca, find the doh. -phala and apply it

to the original sphut.a itself. When these (successive approximations), lead

to indistinguishable results (avíses.a), the madhyama will be exact. (In this

method) the karn. a need not be found at all for deriving the manda-sphut.a.

Now, instead of the doh. -phala of the sphut.a–minus–ucca, being multiplied by

the karn. a and divided by trijyā, if the trijyā–minus–karn. a is multiplied by

sphut.a-doh. -phala and divided by trijyā, the phalāntara (difference between

the phala-s) will result. Add this to the sphut.a-doh. -phala if Makarādi, and

subtract if Karkyādi. The result will be the doh. -phala of madhya–minus–
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ucca. Here trijyā–minus–karn. a is practically the kot.i-phala, since the contri-

bution (to the karn. a) due to the square of the doh. -phala would be very little

(negligible).

Here, if the doh. -phala is multiplied by the kot.i-phala and divided by trijyā,

the result will be the difference between the sphut.a-doh. -phala and the madhya-

kendra-doh. -phala. And these will practically be the current khan. d. a-jyā-s of

the sphut.a-doh. -phala. Since, it is common knowledge that (the value of) the

bhujā-khan. d. a is according to the kot.i-jyā, the bhujā-phala-khan. d. a will be ac-

cording to the kot.i-phala. Take the bhujā-phala-cāpa as the jyā (manda-jyā),

multiply it by the kot.i-phala and divide by trijyā; the bhujā-phala-khan. d. a

would be obtained. Here, multiply the bhujā-phala by the khan. d. a-jyā and di-

vide by its cāpa. Then also we will get the bhujā-phala-khan. d. a of this bhujā-

phala. Here, the bhujā-phala-khan. d. a of this bhujā-phala might be greater

or less than the bhujā-phala calculated from the kendra to which has been

applied the bhujā-phala derived from itself. Thus, the madhya-kendra-bhujā-

phala can be obtained by applying reversely the sphut.a-kendra-bhujā-phala

successively. When this is applied to the true planet the mean planet is

obtained. Through the above methods, the mean of Sun and Moon can be

derived from their true positions.

8.19 Calculation of the mean from true planet

In the same manner, the mean of the other planets can be derived from their

manda-sphut.a. The method of deriving the manda-sphut.a from the bhujā-

phala of the ś̄ıghra-sphut.a-kendra is also similar. But there is a difference

that the avíses.a (successive iteration to near equality) need not be done.

Multiplication by the karn. a and division by trijyā too are not necessary.

The manda-sphut.a can be got thus: Multiply the kendra-bhujā-jyā of the

ś̄ıghra-sphut.a by the vr. tta (360) and divide by 80, and convert this Rsine

(jyā) in the ś̄ıghra-n̄ıcocca-vr. tta to arc and apply the result to the ś̄ıghra-

sphut.a inversely for Mes.a and Tulā, then the manda-sphut.a is obtained.
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Here, it may be noted that when the bhujā-phala is calculated for deriving

the (manda) sphut.a from the madhyama, the rule of three using the karn. a

should not be resorted to. On the other hand, there is a need for iteratively

finding the bhujā-phala (doing avíses.a), when the madhyama is calculated

using the said manda-sphut.a. The rationale for this has been stated. It

will be clear from this that, because karn. a is required for calculating ś̄ıghra-

sphut.a from the manda-sphut.a, it (the karn. a) is not required for calculating

manda-sphut.a from ś̄ıghra-sphut.a. Therefore, it is not necessary to iterate

the bhujā-phala till avíses.a, since the rationale is the same.

That being the case, when ś̄ıghra-sphut.a is calculated from the manda-sphut.a

without using the karn. a, if the ś̄ıghra-bhujā-phala is iterated till avíses.a and

applied, the ś̄ıghra-sphut.a would result. On the other hand, if the bhujā-phala

is calculated by the rule of three using the karn. a, even if successive iteration

is done without the use of the karn. a, the bhujā-phala will be the same.

Here, in the rule of three using kot.i-phala and trijyā, the icchā-phala should

be obtained using the sum of the bhujā-phala-khan. d. a and the cāpa-khan. d. a.

This has been stated elaborately in the section on Rsines (jyā-prakaran. a)

and so might be referred to there.

8.20 Computation of true planets without using

Manda-karn. a

By using the same reasoning, it would be possible to obtain the difference

which arises in the ś̄ıghra circumference due to the manda-karn. a, and the

consequent difference which occurs in the ś̄ıghra-bhujā-phala may be obtained

as manda-phala-khan. d. a. To derive this, first calculate the ś̄ıghra-bhujā-phala

from madhyama–minus–ś̄ıghrocca; apply this to the madhyama and subtract

from it the mandocca and get the manda-phala. In that manda-phala, the

manda-phala-khan. d. a-jyā-s of the ś̄ıghra-bhujā-phala-bhāga might be increas-

ing or decreasing. Now, when this (manda) phala is derived in this manner,

the difference that occurs in the ś̄ıghra-phala due to the manda-karn. a, would
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have been included also. Now, when this manda-phala is applied to the mad-

hyama, it would be that the difference in phala that occurs in the ś̄ıghra-

bhujā-phala due to manda-karn. a too would have been (automatically) ap-

plied.

Here, when it is intended to separately obtain (in a different manner) the

difference that occurs in the ś̄ıghra-bhujā-phala due to the manda-karn. a, two

trairāśika-s shall have to be used. The first is to multiply the ś̄ıghra-bhujā-

phala by trijyā and divide by manda-karn. a. The second is to multiply the

result by trijyā and divide by ś̄ıghra-karn. a. Then apply the result according

to the ś̄ıghra-kendra.

Now is set out as to how these three, viz., the two trairāśika-s and the

third being the condition for their positive or negative nature, arise when we

calculate manda-phala after first applying ś̄ıghra-doh. -phala. There (in the

first trairāśika), the ś̄ıghra-doh. -phala is multiplied by trijyā and divided by

manda-karn. a. The difference, between the result obtained and the original

ś̄ıghra-doh. -phala, is the difference between the icchā and its phala of the first

trairāśika. This result will practically be the same if the first gun. ya is mul-

tiplied by the difference of the multiplier and the divisor (gun. a-hārāntara)

and divided by the divisor. This is practically the same as multiplying by

the manda-kot.i-phala and dividing by the trijyā.

Here, if the manda-doh. -phala is read off after applying the ś̄ıghra-doh. -phala

there-through, there also the manda-khan. d. a-jyā-s related to the ś̄ıghra-doh. -

phala are obtained. And this will be the distinction in the ś̄ıghra-doh. -phala

due to the manda-karn. a. Hence, the phala of the first trairāśika in the ś̄ıghra-

doh. -phala can be derived by applying it to the manda-doh. -phala. Here again,

the difference in the ś̄ıghra-doh. -phala due to the manda-karn. a will be the dif-

ference between ś̄ıghra-doh. -phala and the manda-doh. -phala calculated from

the basic madhyama, and that obtained after applying to the basic mad-

hyama the manda-doh. -phala and ś̄ıghra-doh. -phala. This will be the result of

the first trairāśika.
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The result of the second trairāśika is derived thus: Find the ś̄ıghra-doh. -phala

calculated from the madhyama to which has been applied the manda-phala

which latter has been derived from the basic madhyama; find also the ś̄ıghra-

doh. -phala calculated from that madhyama, which is obtained by applying

ś̄ıghra-doh. -phala to the madhyama which has been obtained by applying the

manda-phala, which latter has been derived from the basic madhyama. The

difference between the two is the required result. (It might be noted that)

the difference arising from the ś̄ıghra-karn. a will result in the ś̄ıghra-karn. a-

bhujā-khan. d. a-s, and that from the manda-karn. a will result in the manda-

bhujā-khan. d. a-s.

Now, we consider the karn. a as the trijyā, the difference between the trijyā

and karn. a as the kot.i-phala, the arc of the doh. -phala as the full chord (i.e.,

double the Rsine), and the kot.i-phala of the cāpa-khan. d. āgra as a part of the

madhyama, and we also ignore the grossness (sthaulya) in the calculations

mentioned above. Then, just as the difference that occurs in the ś̄ıghra-

doh. -phala due to the manda-karn. a is added to the manda-doh. -phala, the

correction need not be carried out for the manda-kendra, but has to be

appropriately carried out for the ś̄ıghra-kendra.

Now, it will be shown that even if the correction is made in terms of the

manda-kendra, the result will be same. Here, as regards the increase and

decrease of the ś̄ıghra-doh. -phala due to the manda-karn. a, the increase will

be when the trijyā becomes greater than the manda-karn. a, and the decrease

will be when it is less. This will be according to whether the manda-kendra

is Karkyādi or Makarādi. This result would be reduced in the same manner,

as was the case when earlier, the ś̄ıghra-phala was corrected by the manda-

phala. Now, when first the ś̄ıghra-phala is positive and the manda-kendra is

within the three signs from Mes.a, then since the manda-karn. a is large, the

corresponding ś̄ıghra-phala would be small. In this case, the ś̄ıghra-phala

corresponding to the manda-kot.i should be subtracted. The manda-phala

should also be subtracted. So the two can be subtracted together. However,

when the ś̄ıghra-phala is positive and the manda-kendra is in the three signs

beginning with Karki, then the contribution to the ś̄ıghra-phala due to the
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manda-karn. a will be positive. Then the ś̄ıghra-bhujā-phala–plus–manda-

kendra would be greater than the basic manda-kendra. When, however, it

is in the even quarters, the further away it moves, the bhujā-phala will be

less. When this bhujā-phala becomes negative, it is so small that in effect the

ś̄ıghra degrees will be positive. Then, when the ś̄ıghra-phala is positive and

the manda-kendra is within the three signs beginning with Tulā, the manda-

karn. a will be less than trijyā, and the ś̄ıghra-phala derived from it will be

more. And, since the manda-phala is Tulādi, it is positive. When however,

the manda-kendra is in the odd quandrants, the manda-phala, calculated

from the madhyama to which ś̄ıghra-phala had been applied, would be large.

Since this phala is Tulādi, it is positive. Here also it would be proper to

apply the ś̄ıghra degrees in accordance with the manda-kendra.

When the manda-kendra is in the three signs beginning with Makara, and

the ś̄ıghra-phala is positive, then the manda-kendra with the ś̄ıghra-phala

applied to it will be greater than the basic manda-kendra. Since this is an

even quadrant, and the part passed over is more, the part to be passed over,

which is the bhujā-cāpa is smaller. Therefore its manda-phala will be less

than the manda-phala of (i.e., computed from) the basic madhyama. When

this is added to the madhyama and (the manda-phala) is slightly increased,

the correction due to the ś̄ıghra degrees which is negative would also be

effected herein, since the negativity is due to the manda-karn. a being larger

than trijyā.

Thus, it is seen that when the ś̄ıghra-phala is positive in all the four quad-

rants of the manda-kendra, it would be appropriate if the correction due to

ś̄ıghra is done in accordance with the manda-kendra. In the same manner,

the positive and negative nature of the ś̄ıghra derived in accordance with

the manda-kendra is to be inferred even when the ś̄ıgrhra-phala is negative.

Thus, though the correction to the ś̄ıghra-phala due to the manda-karn. a is

normally to be applied in accordance with the ś̄ıghra-kendra, if that is added

to the manda-phala and applied according to the manda-kendra, there will

not be any appreciable difference in the result. This being the case, there

is no necessity of the manda-karn. a for (the derivation of) the ś̄ıghra-phala.
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Therefore, for ease in the computation of sphut.a, the ś̄ıghra-phala can be

computed and listed (in a table) for making calculations and so also (a ta-

ble can be made) for the manda-phala. Here, by obtaining the three bhujā-

phala-s and applying two of them to the madhyama (mean), the sphut.a (true

planet) is obtained. This is one School (of explanation).

There is another School which explains that the ś̄ıghrocca-n̄ıca-vr. tta increases

and decreases in accordance with half the difference between the manda-

karn. a and the trijyā. In that School, the ś̄ıghra-doh. -phala has to be multi-

plied by trijyā and divided by half the sum of manda-karn. a and trijya. The

result in degrees has to be added to the manda-phala; for this, the manda-

phala has to be derived from the madhyama to which has been applied half

the ś̄ıghra-phala. This is the only difference (in this School). Other things

are as stated earlier. This is the idea behind the sphut.a correction that is

stated in the Parahita (School) for Mercury and Venus.

The author of Laghumānasa (i.e., Muñjāla) follows the School, which states

that the manda-n̄ıcocca-vr. tta also increases and decreases in accordance with

the half the difference between manda-karn. a and trijyā. According to that

School, the manda-phala and ś̄ıghra-phala should be multiplied by trijyā

and divided by half the sum of the manda-karn. a and trijyā. The manda-

phala should be corrected having obtained the result thus. The ś̄ıghra-phala

should be multiplied by this difference between the multiplier and divisor

(gun. a-hārāntara) and divided by the divisor. The result should again be

multiplied by trijyā and divided by the ś̄ıghra-karn. a, and the correction

applied. Thus is explained the computation of the sphut.a in that School.

Therefore, it was directed in the Laghumānasa to correct the manda-phala

and the ś̄ıghra-phala by the mandaccheda, which has been obtained by apply-

ing half-kot.i. According to this School, if the manda-phala is to be obtained

without the use of manda-karn. a, the manda-phala and the ś̄ıghra-phala have

to be halved and applied to the madhyama. Then, the manda-phala thus

derived is applied to the basic madhyama (to get the manda-sphut.a). The

ś̄ıghra-phala derived from this is now applied to the manda-sphut.a. The re-

sult will give the sphut.a. The computation, as described in this school, is set
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down as four sphut.a-s in several places. In case the manda-karn. a is not used,

the ś̄ıghra-karn. a-bhujā-phala may be set out in a table. Here, since both the

bhujā-phala-s are to be multiplied by half the manda-kot.i-phala, and manda-

phala has to be derived for both the halves of manda and ś̄ıghra-phala-s, the

manda-phala is calculated after first applying half of both the bhujā-phala-s.

This is the reason for the above-said calculation. Thus has been stated the

‘computation of true planets’.

Now, for Mercury and Venus, the true planet is to be found using the

manda-n̄ıcocca-vr. tta and pratiman. d. ala, which are tabulated in terms of their

ś̄ıghrocca-vr. tta. Here, after mutually interchanging the ś̄ıghra-n̄ıcocca-vr. tta

and pratiman. d. ala, their manda-sphut.a and ś̄ıghra-sphut.a can be computed

in the same manner as in the case of Mars etc (i.e., Mars, Jupiter and Sat-

urn). Their manda-sphut.a could be supposed to be obtained by applying the

manda-phala to the mean Sun which is conceived as the madhyama. The

manda-karn. a-vr. tta would be that circle whose circumference meets the cen-

tre of the pratiman. d. ala, which is taken as the ś̄ıghra-n̄ıcocca-vr. tta which in

turn is constructed at the centre of the bhagola. The centre of the manda-

pratiman. d. ala will be on the circumference of the manda-n̄ıcocca-vr. tta. (In

this set up) it would be as if the planet is at the circumference of the

manda-n̄ıcocca-vr. tta (whose centre is) on the circumference of the kaks.yā-

vr. tta. Hence, the ś̄ıghra-phala derived from the manda-sphut.a is multiplied

by trijyā and divided by the manda-karn. a, so as to convert it to minutes of

arc of the manda-karn. a. If it is desired to derive this without the use of the

manda-karn. a, (the method is this): Now, the manda-sphut.a is obtained by

applying the manda-phala on the mean Sun. Apply the ś̄ıghra-phala calcu-

lated from that manda-sphut.a to the basic madhyama. Since that has to be

applied to the manda-sphut.a, apply on itself the manda-phala obtained from

that ś̄ıghra-sphut.a. The sphut.a (true planet) will be the result. It has to

be remembered here that the difference arising due to the ś̄ıghra-karn. a has

been incorporated in the table. Hence (the computation) has to be done as

above. Thus (has been stated) the computation of true planets.



Chapter 9

Earth and Celestial Spheres

9.1 Bhūgola : Earth sphere

Now is demonstrated the situation and motion of the bhūgola, vāyugola and

bhagola. The Earth is a sphere supporting on its entire surface all things,

moving and non-moving, maintaining itself (suspended) in the sky at the

centre of the celestial sphere (naks.atra-gola) by its own power, and not de-

pending on any other support. Now, it is the nature of all heavy things to

fall on the Earth from all regions of the sky all around. Hence, the Earth,

everywhere, is below the sky. Similarly, from all locations on the Earth, the

sky is above. Now, the southern half of the Earth-sphere is abundant with

regions of water. And, in the northern half, the land region is in profusion

and watery region less. Then, with the land of India (Bhārata-khan. d. a) ap-

pearing to be in the upward (northern) direction, at the confluence of the

landed and watery division (of the Earth), there is a city known as Laṅkā.

Conceive a circular line (vr. ttākāra-rekhā) from that place, east-west, cycling

round the Earth. On this line are situated four cities (including Laṅkā), to

the west Romakapur̄ı, to the other (diametrically opposite) side Siddhapura,

and to the east Yavakot.i.

Similarly from Laṅkā, conceive another circle round the Earth, which is

north-south across and passing through the upper and lower halves of the

Earth. On this line (are situated), Mahāmeru to the north, Bad. avāmukha

to the south, Siddhapura on the opposite side. This line is the samarekhā

(north-south standard meridian line). In this line is a city called Ujjayin̄ı.
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Now, the places lying on the east-west line mentioned above are called

niraks.a-deśa (equatorial places having no latitude).

From all places on that (equatorial) line, can be seen two naks.atra-s (stars)

called Dhruva-s (pole stars), one in the north and the other in the south,

which have no rising or setting. If one moves towards the north from this

line one can see only the northern Dhruva. This Dhruva would have as much

altitude as one moves towards the north. This altitude of the Dhruva is called

aks.a (the terrestrial latitude). From this point on the surface, the southern

Dhruva cannot be seen, since it has gone down (i.e., lies below the horizon).

Where the Dhruva is seen at a particular altitude, there will be seen near

the Dhruva certain stars, some below and moving towards the east and some

above and moving towards the west, but without rising or setting. On the

other hand, similar stars around the southern Dhruva can never be observed

as they are moving below the horizon. However, from the niraks.a-deśa (the

equator), it would be possible to see the rising and setting of all the stars,

in regular order. There again, for an observer on the equator, the measure

by which a star is removed at its rise from the east towards the north or

south, is the same as the measure by which it is removed from the zenith

of the observer at the meridian transit. It will also set in the west, at a

point which is exactly opposite to the (rising point on the) east. Rising and

setting (of stars) take place in this manner at the equator (for an observer on

the equator). Even for a place having latitude, the phenomenon is similar.

But the meridian transit would be shifted a little towards the south, if one’s

place has a northern latitude.

9.2 Vāyugola: Equatorial celestial sphere

Now, (for an observer) on the equator, for a particular star at a particular

place, the vertical circle from the east to the west passing through it would

seem to be the rising-setting path (diurnal circle). Here again, for a star

rising exactly in the east (point on the horizon), the diurnal path would be

the biggest circle. The path of the stars on its either side would be smaller

circles. These circles would gradually become smaller, and the diurnal path
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of the stars very close to the Dhruva will be the smallest of all. This being

the situation, it would seem that this celestial sphere is like a sphere with an

axis fixed at two posts at its two ends, here the posts being the two Dhruva-s.

Now, (for an observer) at the equator, the circle passing through the east-

west points and touching the top and the bottom, right above the top (of the

observer) is known as ghat.ikā-vr. tta (celestial equator). The several smaller

circles on the two sides of the (ghat.ikā-vr. tta) are known as svāhorātra-vr. tta-s

(diurnal circles).

Now, from Laṅkā, there is another (great) circle rising right above (and be-

low) touching the two Dhruva-s. This is known as daks. in. ottara-vr. tta (prime

meridian). Then there is another (great) circle around the Earth, passing

through the east and west points, and touching the two Dhruva-s (the north

and the south poles). This is Laṅkā-ks. itija (horizon at Laṅkā). The stars are

said to rise (at the equator) when they touch this Laṅkā-ks.itija along that

half of it which lies to the east of the daks. in. ottara-vr. tta, and are said to set

when they touch its western half. And, when they touch the daks. inottara-

vr. tta, the stars have their meridian transit.

Thus, the three (great) circles, ghat.ikā, daks. in. ottara, and Laṅkā-ks. itija are

mutually perpendicular to each other. The points where they meet each

other are known as svastika-s (cardinal points). There are six of them: i.e.,

along the horizon on the four directions, and at the top and at the bottom.

Between the interstices of all these svastika-s, one-fourth of a (great) circle

will be contained. Therefore, there will be formed eight divisions of a sphere

of equal sizes, cut off by these three circles, four being below the horizon (at

the equator) and four above.

9.3 Bhagola: Zodiacal celestial sphere

Now, the path traced by the Sun in its eastward (annual) motion is known as

apakrama-man. d. ala (ecliptic). This will intersect the ghat.ika-man. d. ala (celes-

tial equator) at two points. From these (two points), at the distance of one-
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fourth of a circle (vr. tta-pāda), the apakrama-man. d. ala will be removed from

the ghat.ikā-man. d. ala by 24 degrees towards north and south. (These points)

will move further westwards along with the ghat.ikā-man. d. ala. The first point

of contact between the ghat.ikā-man. d. ala with the apakrama-man. d. ala is near

the first point of Aries (Mes. ādi). Then it (apakrama-man. d. ala) will gradually

separate away from it (ghat.ikā-man. d. ala) towards the north. When a semi-

circle has been completed, the second contact occurs, near Tulādi (beginning

point of Libra). From there, it (apakrama-man. d. ala) will again be oriented

towards the south. Again, when half the circle has been completed they will

meet each other. These two points of contact are respectively called pūrva-

vis.uvat (vernal equinox) and uttara-vis.uvat (autumnal equinox). Now, the

points that are at the middle of these two contacts (equinoxes), where the

circles are separated away the most, are called ayana-sandhi-s (solstices).

Now, when on account of the motion caused by the Pravaha wind, the

Mes.ādi (first point of Aries) rises, at that time Tulādi (first point of Li-

bra) sets, Makarādi (first point of Capricorn) will touch the daks. inottara

towards the south from the zenith (kha-madhya) and Karkyādi (first point of

Cancer) will touch the daks. in. ottara-vr. tta towards the north from the ghat.ikā-

man. d. ala right below. There, the difference between the apakrama-man. d. ala

and the ghat.ikā-man. d. ala along the daks. in. ottara-vr. tta will be 24 degrees, as it

is the place of maximum divergence (between them). Now, this (apakrama-

man. d. ala) will rotate according to the ghat.ikā-man. d. ala. Thus when Mes.ādi

(first point of Aries) is at the peak (on the prime meridian), Tulādi (first

point of Libra) is at the bottom, Makarādi (first point of Capricorn) would

touch the ks.itija (horizon) at a point which is shifted towards the south

from the west point by 24 degrees, and Karkyādi (first point of Cancer)

would touch the ks.itija (horizon) at a point which is shifted towards the

north from the east point by that much (i.e., 24 degrees). The apakrama-

man. d. ala would be a vertical circle at that time. When, however, the Mes.ādi

is at the west point, Tulādi will be at the east point, Karkyādi would be on

the prime meridian, separated away from the kha-madhya (zenith) towards

the north by 24 degrees, and Makarādi would be on the prime meridian,

separated from the bottom-most point (nadir), towards the south (by 24 de-
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grees). When Tulādi is at the peak (on the prime meridian), Mes.ādi would

be at the bottom, Makarādi would touch the ks.itija towards the south of

east point and Karkyādi would touch the ks.itija, towards the north of the

west point. At this time also, the apakrama-man. d. ala would be vertical (i.e.,

a vertical circle). Thus, the situation of the apakrama-man. d. ala changes ac-

cording to the rotation of the ghat.ikā-man. d. ala, the reason being that the

two are bound together, in a specific way.

Then again, just as the ghat.ikā-man. d. ala is the central (great) circle of the

Pravaha-vāyugola (equatorial celestial sphere), the apakrama-man. d. ala will

be the central (great) circle of the bhagola (zodiacal celestial sphere). Just

as the two Dhruva-s are situated on the two sides of the ghat.ikā-man. d. ala,

on the two sides of the apakrama-man. d. ala are situated the two rāśi-kūt.a-s

(poles of the ecliptic). At one of the poles (rāśi-kūt. ā-s) the southern heads

(ends) of all the rāśi-s (signs) would have gathered together, and at the

other, all the northern heads (i.e., ends) meet. The points where the ends

of rāśi-s meet are called the rāśi-kūt.a-s.

Herein below is described the situation of the rāśi-kūt.a-s when the pūrva-

vis.uvad (vernal equinox) is at the centre of the sky (zenith). At that time, the

apakrama-man. d. ala would be a vertical (circle). The ayanānta-s (solstices)

of the apakrama-man. d. ala would touch the ks.itija (horizon) north of the

eastern cardinal point and south of the western cardinal point. Between

the ayanānta-s and the eastern and the western cardinal points, there would

be a difference of 24 degrees.

Again at that time, the rāśi-kūt.a-s (poles of the ecliptic) would be on the

horizon (ks. itija), 24 degrees west of the north Dhruva and that much to

the east of the south Dhruva. Conceive a (great) circle touching the two

rāśi-kūt.a-s and kha-madhya (zenith). This will be a raśi-kūt.a-vr. tta. Now

conceive of another rāśi-kūt.a-vr. tta towards the east of Mes.ādi at a distance

equal to one-twelfth of the apakrama-man. d. ala and passing through the rāśi-

kūt.a-s. That (rāśi-kūt.a-vr. tta) would touch a point that much to the west

from Tulādi at the bottom. The distance would be 30 degrees. This will
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be the second rāśi-kūt.a-vr. tta. Now, the interstice stretching between these

two rāśi-kūt.a-vr. tta-s, east of kha-madhya, is the rāśi of Mes.a (Aries). Down

below, the interstitial stretch between these two rāśi-kūt.a-vr. tta-s would be

the rāśi of Tulā (Libra).

Now, construct another rāśi-kūt.a-vr. tta from the second rāśi-kūt.a-vr. tta this

much degrees (i.e., 30 degrees) to the east and down below that much to

the west. The intersticial stretch between the second rāśi-kūt.a-vr. tta and the

third one is the rāśi of Vr. s.abha (Taurus); down below it is Vr. ścika (Scor-

pio). Now, the intersticial stretch between the third (rāśi-kūt.a-vr. tta) and

the ks.itija is the rāśi of Mithuna (Gemini), and down below their intersticial

stretch is Dhanus (Sagittarius). Thus are the six rāśi-s.

Then, from the zenith (kha-madhya) towards the western side of the apakrama-

man. d. ala, conceive of two vr. tta-s of equal interstice as above. Then the other

six rāśi-s can be identified, as was done with the first rāśi-kūt.a-vr. tta and

ks.itija. Now, inside the different rāśi-s, conceive various circles to represent

the divisions of the rāśi, viz., degrees, minutes, and seconds. It is to be noted

that here, in the case of the horizon (ks. itija) and daks. in. ottara-vr. tta, there is

no rotation due to the Pravaha-vāyu as in the case of the ghat.ikā-vr. tta and

apakrama-man. d. ala. Therefore, conceive of another rāśi-kūt.a-vr. tta similar to

(i.e., along) the ks.itija for conceiving its rotation. Thus, the entire celes-

tial globe (jyotir-gola) is completely filled by the twelve rāśi-s. When this

celestial globe is conceived with the apakrama-man. d. ala as the centre and

the rāśi-kūt.a-s on the sides (pārśva), it is known as bhagola (zodiacal celes-

tial sphere). When the ghat.ikā-man. d. ala is conceived as the centre with the

Dhruva-s on the sides, it is known as vāyu-gola (equatorial celestial sphere).

When the point of intersection of ghat.ikā-man. d. ala and apakrama-man. d. ala,

at Mes.ādi, is at the zenith, the solstice which is at the end of Gemini

(Mithuna) and the southern pole of the ecliptic (rāśi-kūt.a) will rise (in the

east). Similarly, (the solstice at) the end of Sagittarius (Cāpa or Dhanus)

and the northern rāśi-kūt.a will set (in the west). Then, on account of the

rotation caused by the Pravaha-wind, those that have risen, reach up to the
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prime meridian, in other words, they touch daks. in. ottara-vr. tta (in the visible

hemisphere), and those that had set will touch the daks. in. ottara down below.

Then, when the end of Gemini and the southern rāśi-kūt.a set, the end of

Sagittarius and northern rāśi-kūt.a will rise. Thus, the southern rāśi-kūt.a

will revolve in consonance with the end of Gemini, and the northern rāśi-

kūt.a in consonance with the end of Sagittarius. Now, on both sides of the

ghat.ikā-man. d. ala, at 24 degrees (from it), there are two solsticial diurnal cir-

cles. Again, from the two Dhruva-s, at a distance of 24 degrees, there are two

diurnal circles corresponding to the two rāśi-kūt.a-s. They (the two solstices

and the rāśi-kūt.a-s) have constant motion along these diurnal circles.

9.4 Ayana-calana: Motion of the equinoxes

Now, on a day when there is no motion of the equinoxes (ayana-calana), the

ends of Virgo and Pisces will be the meeting points of the (great circles of

the) spheres (i.e., the equinoxes); and the ends of Gemini and Sagittarius

will be the meeting points of the ayana-s (solstices). And, on a day when

precession of equinoxes is to be added, the said four points will be at places

removed from the aforesaid ends along the earlier rāśi by a measure equal

to the degrees of the precession of the equinoxes. Again, on a day when

precession of the equinoxes is to be deducted, the four points will be at places

removed from the aforesaid ends along the next rāśi by a measure equal to

the degrees of the motion of the equinoxes. These four points are the points

where the ghat.ikā-man. d. ala and apakrama-man. d. ala meet and where they are

most apart respectively. The distance of separation is of course equal to

24 degrees. It is to be noted that what moves would only be the points of

contact of the ghat.ikā-man. d. ala and apakrama-man. d. ala.

9.5 The manner of Ayana-calana

Now the manner of the motion. Ascertain the point on the apakrama-

man. d. ala which the ghat.ikā-man. d. ala cuts on the day when there is no motion.
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Then, for any day for which motion has to be added, the intersection of these

two circles will be at a point behind the first mentioned point by the measure

of the motion (of the equinoxes) for that day. In the same manner, for a day

for which the motion has to be deducted, the intersection of the two circles

will take place at a point in advance of the first mentioned point. (Actually),

the ghat.ikā-man. d. ala will not be moving, and the movement therein would

only be for the point of intersection. (On the other hand), the apakrama-vr. tta

will be moving. On account of this, the rāśi-kūt.a-s will also have a motion.

But they will not move away from their svāhorātra-vr. tta-s. The motion is

only backward and forward in the rāśi-kūt.a-svāhorātra-vr. tta. Again the de-

viation of the rāśi-kūt.a-s from the Dhruva-s and that of the ayanānta-s (sol-

stices) in the apakrama-vr. tta from the ghat.ikā-man. d. ala is always 24 degrees.

All these four deviations, (two above and two below), can be demonstrated

on an ayanānta-rāśi-kūt.a-vr. tta. Thus, when one leg of a pair of compasses is

fixed at a point and the other leg is turned to make a circle, the centre of the

circle would be at the point of the fixed leg. That centre is called nābhi and

also ‘kendra’. The line around (traced by the moving leg) is called ‘nemi’

(circumference).

Now, when considering the great celestial circles, it is always taken that the

centre of all of them is the centre of the bhagola which is (practically) the

same as the centre of the Earth, and that the magnitude of all these circles

is the same. This is the general conception except in the case of the diurnal

circles (svāhorātra-vr. tta) and the (ucca-n̄ıca-vr. tta) circles conceived in the

computation of true positions of the planets. Now, the two great circles,

ghat.ikā-man. d. ala and apakrama-man. d. ala, which have a common centre, in-

tersect each other at two points. But the diameter of the two circles that

passes through the centre and touches the two points of intersection is the

same. But the two diameters which touch the points of maximum divergence

(paramāntarāla) are different for the two circles. The term paramāntarāla

means the place of (or the extent of) the maximum separation (i.e., solstices).

The diameters at the points of maximum divergence of the two circles would

be at right angles to the diameter passing through the intersection of the
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ghat.ikā-vr. tta and apakrama-vr. tta. Hence the ayanānta-rāśi-kūt.a-vr. tta which

touches the points of maximum divergence, will be perpendicular to the two

circles (ghat.ikā-vr. tta and apakrama-vr. tta). It is always the case that this per-

pendicular circle touches the poles (pārśva) of both circles; (and conversely)

touching the poles would imply that the circles are mutually perpendicular.

Here, the ayanānta-rāśi-kūt.a-vr. tta is at right angles, both to the ghat.ikā-

vr. tta and apakrama-vr. tta. Hence, it will touch the two Dhruva-s and the

rāśi-kūt.a-s which are the poles of the two (circles namely ghat.ikā-vr. tta and

apakrama-vr. tta respectively). Thus, it is definitely the case that they, the

poles of the two circles ghat.ikā and the apakrama, lie in the same circle, and

the distance between the poles and the maximum divergences between the

two circles are equal.

Taking account of the fact that, when on account of motion of the equinoxes

the ayanānta (solstice) moves, the circle which passes through the ayanānta

will also pass through the rāśi-kūt.a, it follows that the ayanānta-raśi-kūt.a

(poles of the ecliptic) too would have moved in the direction in which the

apakramāyanānta (solstices) has moved. Since it is also the rule that the

ayanānta (solsticial point) on the apakrama-man. d. ala would on all days (i.e.,

always) be removed from the ghat.ikā-man. d. ala by 24 degrees, it follows that

the rāśi-kūt.a-s on the two sides (pārśva) of the apakrama-man. d. ala would be

removed by the same extent, on all days (i.e., always) from the two Dhruva-s

on the sides of the ghat.ikā-man. d. ala. Hence, the svāhorātra-vr. tta of the two

rāśi-kūt.a-s will be the same always. Thus, it has to be understood that the

two rāśi-kūt.a-s will swing to the east and the west, on account of the motion

of equinoxes, in their own svāhorātra-vr. tta-s. Then, the distance which a

planet has moved from Mes.ādi can be ascertained through computing the

true planet.

And in order to learn how much it has moved from the point of contact of

the ghat.ikā-man. d. ala and apakrama-man. d. ala, the amount of motion of the

equinoxes (ayana-calana) has to be applied to it (i.e., to the true planet).

Then it (i.e., the corrected true planet) is said to be golādi. Thus (has been

stated) the mode of the motion of the equinoxes.
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9.6 Changes in placement due to terrestrial lati-
tude

What is explained above is applicable when one considers the celestial sphere

for an observer having zero-latitude (i.e., on the equator). For him it would

appear that it (the celestial sphere) is rotating towards west (from the east)

due to the (motion of the) vāyu-gola. It has been stated that, because of this,

it would appear that all the diurnal circles beginning with the circle at the

centre of the vāyu-gola, namely the ghat.ikā-vr. tta, would appear as vertical

circles. It has also been stated that the bhagola is inclined to the vāyu-gola

and that it has a slow motion. Now, when the celestial sphere is considered

from a place having a latitude, it would appear that the vāyu-gola itself has

an inclination, and that the bhagola too has an inclination in accordance

with the former. This is being explained below.

9.7 Zenith and horizon at different locations on
the surface of the Earth

Now, what is perfectly spherical is called a gola (sphere). The Earth is in

the form of a sphere. On the Earth, which is of this shape, there are people

all over its surface. The feeling that anybody has at any place would be

that the place that he is standing on is the top (of the Earth), that the

surface of the Earth (over which he stands) is flat (horizontal), and that he

is standing perpendicular (to the Earth’s surface). Consider the spherical

Earth, which is suspended in the centre of the sky, as having two halves, the

upper half and the lower half. Then, for the upper half, the centre seems to

be the place where one stands. Then, the sky below the horizon around on

the sides (pārśva) would be hidden by the Earth. This being the case, when

celestial bodies enter the horizon (bhū-pārśva), their rising and setting take

place. The sky will be visible above this (horizon). The centre of the (visible

portion) is the kha-madhya (zenith). It will be right above the head of the

observer. Here, what has been stated as ghat.ikā-man. d. ala is the east-west
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vertical circle at the place with no latitude. Its centre will be exactly at the

centre of the Earth. At the two far sides of this will be the two Dhruva-s

(poles). In this configuration, consider a north-south axis passing through

the centre of the Earth and extending to the two poles. Let it be called the

aks.a-dan. d. a (polar axis). This would be like an axle. Consider the celestial

sphere to be attached to it so that when it spins the celestial sphere will

also spin according to it. If so, it is easy to conceive of the variation in the

inclination of the vāyu-gola in accordance with the difference in the locations

on the Earth.

Here, in the region of no latitude, the ghat.ikā-man. d. ala is a circle which

is exactly east-west, and passes through the zenith. It has been stated

earlier that at the place of no latitude, the horizon (horizontal circle) passing

through the poles at the two sides of the Earth, is the ‘equatorial horizon’

(niraks.a-ks.itija). Now, if looked at from the Meru in the North (pole) of the

Earth, the Dhruva will appear at the zenith. Then the equatorial horizon

would be vertical and the ghat.ikā-man. d. ala will appear as the horizon. There,

everybody will have the feeling that the place they are located is one of

uniform motion around (sama-tiryak-gata); and there too, they will feel that

their posture is vertical. This accounts for the difference between the zenith

(kha-madhya) and the horizon (bhū-pārśva) at each place (on the surface of

the Earth). This being the case, as one moves from the equator northwards,

the pole will be seen higher and higher up from the horizon. And, as one

moves from the Meru (north pole) southwards, it (Dhruva) will be seen

lower and lower with respect to the zenith, up to the equator. Thus, for

each (observer) in different parts of the Earth, the zenith and the horizon

are different.

Now, conceive one’s place to be on the meridian (sama-rekhā) right north-

wards of Laṅkā. Then, conceive of a (great) circle passing through the zenith,

which is a point lying towards the north of the point of intersection of the

ghat.ikā-vr. tta and the daks. in. ottara-vr. tta on the daks. in. ottara-vr. tta, and pass-

ing through the previously mentioned east and west cardinal points. This

circle is called sama-man. d. ala (prime vertical). Ascertain on the daks. in. ottara-
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vr. tta, the distance between the ghat.ikā-man. d. ala and the sama-man. d. ala.

Conceive of a circle passing through the east and west cardinal points and

the two points on the daks. in. ottara-vr. tta, one below the north pole by the

abovesaid difference, and another by the same measure above the south pole.

That circle is called the svadeśa-ks. itija (local horizon). The portion lying to

the north of the east and the west cardinal points of the equatorial horizon

described above, will be above the local horizon, and the portion lying to

the south of it (i.e., the east and the west cardinal points) will be below (the

local horizon). Now, when such a local horizon is conceived of separately,

the equatorial horizon is called unman. d. ala. Now, just as the six equidistant

cardinal points generated by the three (circles), viz., daks. in. ottara, ghat.ikā

and equatorial horizon circles (unman. d. ala) gave rise to eight equal spheri-

cal sections, in a similar manner, eight equal divisions of the sphere can be

conceived of by (the set of three circles) daks. in. ottara, sama-man. d. ala (prime

vertical) and the local horizon (svadeśa-ks. itija). In this manner, six equidis-

tant cardinal points and eight equal spherical divisions are formed whenever

we have three mutually perpendicular great circles.

Now conceive of a fourth circle. Let it be constructed such that, it passes

through the cardinal points (svastika-s) formed by two of the said three cir-

cles. Then, by means of this circle, it would seem as if four of the eight

spherical sections (mentioned above) are divided apart. This circle is called

valita-vr. tta (deflected circle). The computation of the distance of the other

two circles from this valita-vr. tta is carried out using the rule of three pertain-

ing to the difference in the circles, and this will be explained later, in detail.

Thus has been explained the nature of vāyu-gola. The locational distinction

between the vāyu-gola and the bhagola has already been stated.

Since the Earth is spherical, for observers on different locations of the surface

of the Earth, the altitude of the pole (Dhruva) that is along the tip of the

aks.a-dan. d. a (polar axis) will appear different. Therefore, the vāyu-gola that

rotates in accordance with the spin of the said axis will appear to rotate with

different inclinations, as has been mentioned earlier. Then, it is to be noted

that the nature of the vāyu-gola, the difference in the location (sam. sthāna-
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bheda) of the bhagola from that of the vāyu-gola, and the spherical shape of

the Earth – these three provide the basis for those calculations pertaining to

the planets, which are to be carried out after the computation of true planets

(graha-sphut.a). Hence, their nature has been stated here in advance.

9.8 Construction of the armillary sphere

Now, in case a clear mental conception of the the circles mentioned above

and their rotation has not been achieved, then construct an armillary sphere

with the necessary circular rings tied appropriately (rotating around the

polar axis) and having a spherical object representing the Earth fixed to

the middle of the axis, and perceive the rotation of the sphere. In this

construction, the prime vertical, north-south circle, the local horizon and the

equatorial horizon need not have to revolve. So, to keep them fixed, employ

a few larger circles and tie them up from outside. The other circles have to

revolve. Hence, tie them up inside by choosing them to be smaller circles.

Represent the jyā-s by means of strings. Thus (experimenting with this),

clearly understand the situation of (the circles making up) the armillary

sphere and their revolutions.

9.9 Distance from a Valita-vr. tta to two perpendic-
ular circles

Now, let there be certain (say, three) great circles with same dimension and

with a common centre. Herein below is described a method to ascertain the

distance from one circle, namely the valita-vr. tta to the other two. This is

first illustrated by the derivation of the apakrama-jyā and its kot.i. For this,

suppose the vernal equinox to be coinciding with the zenith for an equatorial

observer. There, the vis.uvad-vipar̄ıta-vr. tta (the circle passing through the

vernal equinox and the north-south poles) which is perpendicular (vipar̄ıta)

to the ghat.ikā-man. d. ala at the vernal equinox would also (incidentally) coin-
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cide with the daks. inottara-vr. tta. The ayanānta-vipar̄ıta-vr. tta (the perpen-

dicular circle passing through the solstice) will coincide with the equatorial

horizon. When this is the situation of the celestial sphere, construct the

apakrama-man. d. ala, which is nothing but the locus (mārga) of the eastward

motion of the Sun, such that it passes through (1) the svastika-s (cardinal

points) at the top and bottom (zenith and the nadir), (2) the point on the

horizon which is 24 degrees away from the eastern svastika towards the north

and (3) the point on the horizon which is 24 degrees away from the western

svastika towards the south. Then, conceive of a desired Rsine (is. t.a-jyā) with

its foot at the place which forms the śara with its beginning at the equinox,

and with the tip at the desired point on the apakrama-man. d. ala which lies

to the east of the zenith. This will be the Rsine of the desired part of

the arc of the apakrama-man. d. ala. Now, first it has to be ascertained as to

what would be the distance between the tip of the desired Rsine and the

ghat.ikā-man. d. ala along the north-south direction, and secondly it has also

to be ascertained as to what would be the distance between the tip of the

Rsine and the daks.in. ottara-man. d. ala along the east-west direction. Herein

below (is given) a method to ascertain the above.

Now, the maximum divergence between the apakrama-man. d. ala and ghat.ikā-

man. d. ala can be found on the horizon which is the same as the ayanānta-

vipar̄ıta-vr. tta. Here, the maximum divergence is the Rsine of 24 degrees and

this is the Rsine of the maximum declination (paramāpakrama). Then again,

the maximum divergence between the apakrama-vr. tta and the daks. in. ottara-

vr. tta can also be seen from the ayanānta-vipar̄ıta-vr. tta itself. Here, the Rco-

sine of the maximum declination would be the divergence of the apakrama-

man. d. ala from the pole (i.e., the line joining the north and the south pole).

This is called parama-svāhorātra.

Now, conceive as the pramān. a the hypotenuse (karn. a), the radius of the

apakrama-man. d. ala, which is the distance between the centre and the cir-

cumference of the ayanānta-vipar̄ıta-vr. tta. Conceive the two maximum di-

vergences, the bhujā and kot.i of this hypotenuse, as the respective pramān. a-

phala-s. Then conceive as icchā, the desired Rsine (is. t.a-dorjyā) which has its
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tip at the desired place on the apakrama-man. d. ala. Apply the rule of three.

Then the bhujā and kot.i of the is. t.a-dorjyā will be got as icchā-phala-s, being

respectively the distances from the tip of the dorjyā to the ghat.ikā-man. d. ala

and to the daks. in. ottara-vr. tta. These two are called is. t.āpakrama (Rsine of

the desired declination) and is. t.āpakrama-kot. i. This is the rationale of the

rule of three for finding the distances between great circles having the same

dimension and a common centre.

9.10 Some Vipar̄ıta and Nata-vr. tta-s

Herein below (is stated) the method to arrive at the above in an easy manner.

There, we have the ghat.ikā-man. d. ala, vis.uvad-vipar̄ıta-vr. tta and ayanānta-

vipar̄ıta-vr. tta, being three circles mutually perpendicular (tiryak-gata) to

each other. Construct an apakrama-vr. tta, a little inclined to the ghat.ikā-

man. d. ala. Then, conceive of three more circles besides these four circles (as

follows). First, a circle which passes through the two poles and the desired

place in the apakrama-vr. tta is constructed. This (circle) is called ghat.ikā-

nata-vr. tta. The maximum divergence from this circle to the vis.uvad-vipar̄ıta-

vr. tta and the ayanānta-vipar̄ıta-vr. tta can be seen on the ghat.ikā-man. d. ala.

Construct (the second) circle touching the point of intersection of the ghat.ikā-

vr. tta and the ayanānta-vipar̄ıta-vr. tta, and the desired point on the apakrama-

man. d. ala. This is called vis.uvad-vipar̄ıta-nata-vr. tta , and since the vis.uvad-

vipar̄ıta is the same as the daks. in. ottara-vr. tta, it is (also) called daks. in. ottara-

nata-vr. tta. The maximum divergence between this circle and (i) the ayanānta-

vipar̄ıta-vr. tta and (ii) the ghat.ikā-vr. tta can be seen along the vis.uvad-vipar̄ıta-

vr. tta.

It might be noted that in the above-said situation of the apakrama-man. d. ala,

the two rāśi-kūt.a-s (poles of the ecliptic) would be situated on the horizon,

which is the ayanānta-vipar̄ıta-vr. tta, at 24 degrees towards the east from the

south pole and by the same amount towards the west from the northern pole.

Conceive of still another circle, which passes through the two rāśi-kūt.a-s and
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a point on the apakrama-man. d. ala, which is one-fourth of the circumference

(90 degrees) away from the desired point on the apakrama-man. d. ala and lies

to the west of the zenith. This is called the rāśi-kūt.a-vr. tta. The maximum

divergence between the rāśi-kūt.a-vr. tta and the ghat.ikā-man. d. ala occurs at a

point which is one-fourth of the circumference (90 degrees) removed from

the place where these two circles intersect. This (maximum) divergence will

occur on the ghat.ikā-nata-vr. tta.

Since, however, this ghat.ikā-nata-vr. tta passes through the two poles, it is

vipar̄ıta (perpendicular) to the ghat.ikā-man. d. ala. Then again, the tip of

the desired Rsine of the declination (krānt̄ıs. t.a-jyāgrā) on the ecliptic forms

the pole (pārśva) of the rāśi-kūt.a-vr. tta. Since it passes through that point,

the ghat.ikā-nata-vr. tta is perpendicular also to the rāśi-kūt.a-vr. tta. Since, as

indicated here, the ghat.ikā-nata-vr. tta is perpendicular both to the ghat.ikā

and the rāśi-kūt.a-vr. tta-s, the maximum divergence of the latter two will

occur on this ghat.ikā-nata-vr. tta. And, that will be equal to the desired

dyujyā. Thus, the maximum divergence between the rāśi-kūt.a-vr. tta and the

daks. in. ottara-vr. tta, which itself is perpendicular to the vis.uvad-vr. tta (celestial

equator), would occur on the yāmyottara (i.e., daks. in. ottara-nata-vr. tta) which

is perpendicular to both these circles.

Since the yāmyottara-nata-vr. tta touches the east and west cardinal points

and the tip of the desired Rsine, the yāmyottara-nata circle is vipar̄ıta (per-

pendicular) to both (the above circles). As is known, when two (equal)

circles (inclined to each other) intersect at two points, a third (equal) circle

passing through the points which are at one-fourth the circumference (90 de-

grees) away from these two intersecting points, happens to be a vipar̄ıta-vr. tta

(perpendicular circle). Thus it is appropriate that the maximum divergence

that occurs between the first mentioned two circles is on this (perpendicular)

circle.

Here, the circles, viz., the daks. in. ottara-vr. tta which is the same as the vis.uvad-

vipar̄ıta-vr. tta, and the ayanānta-vipar̄ıta-vr. tta which is the same as the hori-

zon, and the ghat.ikā-man. d. ala are mutually perpendicular. Here is a set
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up where the division into quadrants (pāda-vyavasthā) and division of the

sphere (gola-vibhāga) have been determined by the said three circles. In this

set-up, the divergence amongst the circles is determined by the two nata-

vr. tta-s, the apakrama-vr. tta and the rāśi-kūt.a-vr. tta. There, the maximum

divergence between the ghat.ikā and apakrama circles is equal to the maxi-

mum declination and occurs in the horizon. The desired Rsine (dorjyā) is

the distance (agra) from the vis.uvad (equinox) to the desired point on the

apakrama-man. d. ala . Rcosine thereof (dorjyā-kot.i) is the distance from the

ayanānta-vipar̄ıta-vr. tta to the point of desired declination. The declination

at the desired place is the Rsine on the ghat.ikā-nata circle from the point

of contact of the nata (ghat.ikā-nata) and apakrama circles to the ghat.ikā-

man. d. ala. And the is. t.a-dyujyā (day radius) is the Rsine on the nata-vr. tta

from the pole to the desired point on the apakrama-vr. tta.

9.11 Declination of a planet with latitude

It might be noted that the is. t.āpakrama (declination at a desired point) is

also to be found in the above-said circle. Now, the is. t.āpakrama-kot. i is the

Rsine on the daks. in. ottara-nata-vr. tta which is from the daks. in. ottara-vr. tta to

the desired point which is the tip of the (previously stated) dorjyā. The

Rsine on the daks. in. ottara-vr. tta from the east-west cardinal points to the

tip of the dorjyā is the kot.i of this is. t.āpakrama-kot. i. Laṅkodaya-jyā, which

is nothing but the kāla-jyā, is the Rsine from the equinox to the point of

contact of the ghat.ikā and nata-vr. tta-s. Laṅkodaya-jyā-kot.i is the one which

has its tip at the tip of the above jyā and extends up to the east-west cardinal

points. Kāla-kot.i-jyā is that which starts from the zenith and with its tip at

the point of contact of the rāśi-kūt.a and ghat.ikā-vr. tta on the ghat.ikā-vr. tta.

The kāla-kot.yapakrama (declination of the kāla-kot.i on the rāśi-kūt.a-vr. tta)

is that which has its tip at the tip of the kāla-kot.i and commences from the

point of contact of the rāśi-kūt.a-vr. tta and the apakrama-man. d. ala. This has

to be derived from the maximum declination which has been specified as the

hypotenuse in the ghat.ikā-man. d. ala.
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If a planet has a latitudinal deflection from the point of contact of the rāśi-

kūt.a and the krānti-vr. tta (ecliptic), then the deflection would be along the

rāśi-kūt.a-vr. tta and so the latitude arc (viks.epa-cāpa) would be a remainder

(i.e., extension) of the arc of the kāla-kot.yapakrama. The sum or difference of

these arcs would be the distance between the latitudinally deflected planet

and the point of contact of the ghat.ikā and rāśi-kūt.a-vr. tta-s. Now, the

maximum divergence between the ghat.ikā and rāśi-kūt.a-vr. tta-s is seen in

the ghat.ikā-nata-vr. tta. And, that is equal to the desired dyujyā.

Now, the poles (pārśva) of the rāśi-kūt.a-vr. tta are the points of contact of the

nata and apakrama circles. Since it is a fact that from the poles (samapārśva)

all its (i.e., the circle’s) parts are away by one-fourth of a circle (90 degrees),

the distance between the (point of intersection of) rāśi-kūt.a and apakrama

is one-fourth of a circle (90 degrees) away from the (point of intersection of)

ghat.ikā-nata and the daks. in. ottara-nata. These quadrants would have been

divided into two by the ghat.ikā-man. d. ala and the yāmyottara (north-south

circle). Here, the northern part of the ghat.ikā-man. d. ala would be the desired

declination. But the southern part would be the dyujyā. This would be the

maximum divergence between the ghat.ikā-vr. tta and the rāśi-kūt.a-vr. tta.

Now, the ghat.ikā-nata passes through the poles (pārśva) of ghat.ikā and the

rāśi-kūt.a-vr. tta-s. Since the ghat.ikā and rāśi-kūt.a-vr. tta-s are passing through

the poles of the ghat.ikā-nata-vr. tta, (we have the following): (Consider) the

radius hypotenuse (trijyā-karn. a) of the rāśi-kūt.a-vr. tta which commences

from the point of intersection of the ghat.ikā and rāśi-kūt.a-vr. tta-s, and having

its tip at its contact with the nata-vr. tta. For this karn. a, the maximum di-

vergence stated above, viz., the desired dyujyā, would be kot.i. If the above is

the case, how much will be the kot.i of the jyā which is the hypotenuse on the

rāśi-kūt.a-vr. tta stretching from the point of intersection of the ghat.ikā-vr. tta,

and having its tip at the planet with latitude (viks.ipta-graha). (This kot.i

will be) the distance between the planet-with-latitude and the ghat.ikā-vr. tta.

This will be the declination of the planet that has a latitudinal deflection.
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This is the method of deriving the declination of the planet-with-latitude

by applying the rule of three using the Rsine of the arc got by finding the

sum or difference of the arc of the kāla-kot.i-krānti and the arc of the viks.epa.

This icchā-phala and the pramān. a-phala might be taken as triangles. In-

stead of adding the arcs, the Rsines might be added. There again, by mutu-

ally multiplying the kot.i-s with the jyā-s and dividing the product by trijyā

and adding or subtracting the results appropriately, and again multiply-

ing by the is. t.a-dyujyā and dividing by trijya, the declination of the planet-

with-latitude is obtained. Here, the viks.epa-kot.i and is. t.a-dyujyā are the

gun. akāra-s (multipliers) for kāla-kot.i-krānti. Multiply first the kāla-kot.i-

krānti by is. t.a-dyujyā and divide by trijyā. The result will be the distance

from the point of contact of the rāśi-kūt.a-vr. tta and the krānti-vr. tta to the

ghat.ikā-vr. tta. This will be the jyā on the apakrama-man. d. ala, from that

point on it from which the planet has a latitudinal deflection, if it is pre-

sumed that it has no latitude. Here, instead of multiplying the latitude by

dyujyā, one might multiply the kāla-kot.i-krānti-kot.i, which is the multiplier

of the latitude, by the is. t.a-dyujyā and divide by trijyā since, both ways,

the result will be the same. Then it would be as if the kāla-kot.i-krānti and

its kot.i had been multiplied by is. t.a-dyujyā and divided by trijyā. The re-

sults obtained will then be the bhujā and kot.i of a circle having its radius

equal to that of the is. t.a-dyujyā. So, multiply the kāla-kot.i-krānti and its

kot.i by the is. t.a-dyujyā-vyāsārdha, and respectively by the viks.epa-kot.i and

the viks.epa. It has already been stated that if kāla-kot.i-krānti is converted

in terms of is. t.a-dyujyā-vr. tta, the result will be the declination of the planet

with latitude.

Now, when the square of the declination of the planet without latitude

(aviks.ipta-graha) is subtracted from the square of the is. t.a-dyujyā, the re-

sult will be the square of the ādyanta-dyujyā (antya-dyujyā). Its root is the

kālakot.i-krānti-kot.i on the dyujyā-vr. tta. That will also be the kot.i of the

maximum declination. Now, when the square of the is. t.a-dorjyā-krānti is

subtracted from the square of trijyā, the result will be the square of is. t.a-

dyujyā. Here, suppose the planet without latitude is at the tip of the dorjyā.

Then, its krānti-kot.i will be its krānti (declination). When the square of
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this declination is also subtracted, it would be as if the square of the kot.i-

krānti and the square of the bhujā-krānti have also been subtracted. When

the square of the kot.i-krānti and the square of the bhujā-krānti are added

together, the sum would be the square of the parama-krānti (maximum dec-

lination). When it is subtracted from the square of trijyā the result would be

the square of the parama-krānti-kot. i (Rcosine maximum declination). The

square root thereof is the parama-krānti-kot. i. Hence multiply the viks.epa

by parama-krānti-kot. i. Multiply also the krānti-jyā of the planet-without-

latitude (aviks. ipta-graha) by the viks.epa-kot.i. These two added together or

subtracted from one another appropriately, and divided by trijyā will result

in the declination of the planet with latitude. Thus has been explained the

method of arriving at the declination of a planet with latitude.

9.12 Apakrama-kot.i

Now is explained the method of ascertaining the apakrama-kot. i of a planet-

with-declination, extending east-west, being the distance between the planet

and the north-south circle which is the same as the vis.uvad-vipar̄ıta-vr. tta.

The east and west cardinal points are the poles of the north-south circle.

The tip of the jyā of the desired declination is the pole of the rāśi-kūt.a-vr. tta.

Now, consider the location on the daks. in. ottara-nata-vr. tta passing through

the poles of these two circles, which touches the tip of the jyā of the de-

sired declination. A point that is one-fourth circumference (90 degrees)

away from this will touch the rāśi-kūt.a-vr. tta, since all the points in a cir-

cle from its pole are at a distance of one quadrant. Divide this quadrant

into two parts by the daks. in. ottara-vr. tta. The distance between the tip of

the is. t.a-kranti-dorjyā and the north-south circle is the is. t.ā-kranti-kot.i. This

remainder of kot.i extends from the north-south circle to the rāśi-kūt.a-vr. tta

and is the kot.i of the is. t.āpakrama-kot. i. In all circles, quadrants divided into

two will have complementary bhujā and kot.i. Thus, it follows that the kot.i

of the is. t.āpakrama-kot. i is the maximum divergence between the rāśi-kūt.a

and daks. in. ottara-vr. tta-s. Here the pramān. a is the trijyā-karn. a which ex-

tends from the point of intersection of the north-south and rāśi-kūt.a circles
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to the daks. in. ottara-nata-vr. tta along the rāśi-kūt.a-vr. tta. The Rsine of this

maximum divergence is the pramān. a-phala. The distance from the point

of contact of the north-south circle up to the planet with latitude on the

rāśi-kūt.a-vr. tta could be taken as the icchā. From this the distance between

the planet and the north-south circle can be got as the icchā-phala.

Here is the method for the derivation of the icchā-rāśi. Now, for a circle with

its tip at the southern cardinal point and having a radius equal to the radius

of the north-south circle, its divergence from the apakrama-vr. tta that occurs

on the horizon and is equal to the maximum dyujyā (i.e., antya-dyujyā) is

the pramān. a-phala. How much is the distance between the apakrama-vr. tta

and the yāmyottara-vr. tta-jyā, the Rsine which starts from the zenith and has

its tip on the contact with the rāśi-kūt.a-vr. tta. The icchā-phala would be the

divergence between the north-south and apakrama circles which will be seen

on the rāśi-kūt.a-vr. tta. Then to this jyā add or subtract, appropriately, the

viks.epa-jyā (Rsine latitude). The result would be the jyā on the rāśi-kūt.a-

vr. tta being the jyā which commences from the point of contact of the north-

south circle, and having its tip on the planet-with-latitude. Multiply this by

the maximum divergence between the rāśi-kūt.a and north-south circles, and

divide by trijyā. The result is the distance from the deflected planet to the

north-south circle.

Here, when for the purpose of deriving the icchā-rāśi, addition and sub-

traction of viks.epa-jyā is carried out, mutual multiplication of the kot.i-s and

division by trijyā are required. Multiplication by maximum divergence is also

needed. For this the following order might be employed: that is, first mul-

tiply by the maximum divergence and then multiply by viks.epa-kot.i, since

there will be no difference in the result. Here, when the jyā on that part of

the rāśi-kūt.a-vr. tta which lies on the divergence between the north-south and

apakrama circles, is multiplied by the jyā of maximum divergence between

the rāśi-kūt.a and north-south circles, and divided by trijyā, the result will be

the distance between the point of contact from the rāśi-kūt.a and apakrama

circles to the north-south circle. And that will be the kot.i of the declination

which is the hypotenuse to the jyā of the planet-without-latitude.
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Now, multiply the kot.i of the jyā of the divergence between the north-south

and apakrama-vr. tta-s by the maximum divergence between the north-south

circle and the rāśi-kūt.a-vr. tta and divide the product by trijyā. The result

will be the square root of the difference between the square of the Rcosine

of the declination of the planet-with-latitude, and the square of the above-

derived maximum divergence. The rationale here is that in a circle which

has trijyā (Rsine 90 degrees) as radius, if any Rsine and Rcosine therein

are multiplied by the same multiplier and divided by trijyā, they will be

converted respectively into the Rsine and Rcosine of a circle having the said

multiplier as radius.

In the above case, the Rcosine in the circle with trijyā as radius, the max-

imum divergence will be the maximum declination. Then again, when the

square of the desired declination is subtracted from the square of the is. t.a-

dorjyā, the remainder is the square of the Rcosine of the desired declination.

If this is subtracted from the square of trijyā, the remainder will be the

square of the maximum divergence between the north-south circle and the

rāśi-kūt.a-vr. tta. Subtract from this the square of the Rcosine of the declina-

tion of the planet-without-latitude. The result will be the desired square of

the Rcosine. That will be the square of maximum declination.

Now, when the square of the bhujāpakrama-kot. i and that of the kot.yapakrama-

kot.i are added, the sum will be the square of the antyāpakrama-kot. i. When

that is subtracted from the square of trijyā, the result will be the square

of antyāpakrama. The root thereof is the antyāpakrama. Now, the viks.epa

(Rsine of the latitude) is multiplied by the maximum declination and viks.epa-

kot.i (Rcosine of the latitude) by the Rcosine of the declination of the planet-

with-latitude. When these two results are added or subtracted appropriately

and divided by trijyā, the result obtained would be the distance from the

planet-with-latitude to the north-south circle.

Suppose, however, that it is not divided by trijyā and the square of the

declination of the planet with latitude is subtracted from the square of trijyā.

The root thereof would be the dyujyā of the planet. By this, divide the earlier
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result and the result will be the kāla-dorgun. a (kāla-jyā) of the planet-with-

latitude. This kāla-dorgun. a has been explained earlier.

Now, besides (the above circles), conceive of still another circle passing

through the planet with latitude, and the two poles. (Ascertain) the Rsine

starting from the point where it intersects the ghat.ikā-vr. tta up to vis.uvad

(the intersection point of the ecliptic and the celestial equator) along the

ghat.ikā-man. d. ala. This Rsine is called kāla-dorgun. a (kāla-jyā). The arc of

this Rsine is measured in prān. a-s (units of time equal to one-sixth of a

vinād. ı̄).

It is the case that the portion between the planet-with-latitude and the

equinox will revolve during this specified time (i.e., above said prān. a-s).

The Rsine of this, which is in time units, is kāla-jyā. The number of prān. a-s

in the ghat.ikā-vr. tta are equal to the number of minutes (ili) in the twelve

rāśi-s. This will revolve once in 21,600 (anantapura in kat.apayādi notation)

prān. a-s or minutes. Hence, the identity in the number of prān. a-s and time

(kāla). This being the case, just as in the ghat.ikā-vr. tta, in all the svāhorātra-

vr. tta-s (diurnal circles) also, there will be a revolution of one minute (anan-

tapurām. śa = 1/21,600) in one prān. a. Hence, all the svāhorātra-vr. tta-s have

to be divided into the number of minutes in a circle (i.e., 21,600), when

the measure of time is required. Then, the distance between the planet-

with-latitude and the north-south circle would be as derived above. Since,

that (21,600) is the number (of kalā-s) when measured on the svāhorātra-

vr. tta of the planet-with-latitude, kāla-dorgun. a can be taken also as the jyā

on that svāhorātra-vr. tta. The arc thereof can also be the kāla-arc, being

the measure of difference between the north-south circle and the rāśi-kūt.a-

vr. tta, as seen on the svāhorātra-vr. tta of the planet with latitude. Thus

has been stated the method to ascertain the distance of the ghat.ikā-vr. tta

and of the vis.uvad-vipar̄ıta-vr. tta from the planet with latitude. The Ācārya

(Nı̄lakan. t.ha Somayāj̄i) has stated so in his Siddhānta-darpan. a .

antyadyujyes. t.abhakrāntyoh. ks.epakot.ighnayoryutih. |
viyutirvā grahakrāntistrijyāptā kāladorgun. ah. ||
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antyakrānt̄ıs. t.atatkot.yoh. svadyujyāptāpi pūrvavat |
[Siddhānta-darpan. a, 28-29]

‘Mutiply the Rcosine of the maximum declination (24 degrees)

and the declination of the (aviks.ipta) planet, separately, by the

Rsine and Rcosine of the latitude, and add or subtract the prod-

ucts (as the case may be). The result is the declination of the

planet (with latitude).

‘Multiply (separately) the maximum declination (24 degrees) and

the kot.i of the is. t.āpakrama of the (aviks.ipta) planet as before

(by the Rcosine and Rsine of the latitude); add or subtract the

products (as the case may be), and divide by the dyujyā. The

result will be the kāla-jyā.

Thus have been described the derivation of the declination of a planet-with

latitude, and also the kāla-jyā. And therethrough have been described also

the complete details of the rule of three (for calculating) the divergences

between the (great) circles.



Chapter 10

The Fifteen Problems

10.1 The fifteen problems

Now, towards demonstrating in detail, the above-stated principles, fifteen

problems are posed in relation to the divergence between the said seven

(great) circles.

Now, there are the six items to be known: the maximum declination (antya-

krānti), the desired declination (is. t.a-krānti), the is. t.a-krānti-kot.i, the Rsine

of the desired longitude (dorjyā), Rsine of the right ascension (kāla-jyā) and

the nata-jyā. When two of these (six) are known, herein below (are) the

methods to derive the other four. This can occur in fifteen ways. When one

item is known, mostly, its kot.i can be found by subtracting its square from

the square of trijyā and finding the root of the result.

Now, the (portions of the) ghat.ikā, apakrama and vis.uvat-vipar̄ıta-nata circles

lying between the ghat.ikā-nata-vr. tta and the rāśi-kūt.a-vr. tta are separated by

a quadrant of the circle (90 degrees). The quadrants of these circles are bifur-

cated by the vis.uvad-vipar̄ıta-vr. tta. And (the portions of) vis.uvad-vipar̄ıta

and ghat.ikā-nata circles lying between the vis.uvad-vipar̄ıta-nata and rāśi-

kūt.a-vr. tta are separated by the quadrant of a circle (90 degrees). All these

quadrants are bifurcated by the ghat.ikā-vr. tta. These bifurcated parts will

mutually be bhujā and kot.i, for it follows that when quadrants are bifurcated

there will be (mutual) bhujā and kot.i.
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10.2 Problem one

Now, when the maximum declination and actual declination are known, here

is the method to find the other four. For the maximum declination, trijyā

is the hypotenuse. By finding how much is it for the desired declination,

the dorjyā can be found. Applying the rule of three: If the divergence

between ghat.ikā and apakrama is the antyāpakrama (maximum declination)

and the divergence between the north-south circle and apakrama-vr. tta is the

antya-dyujyā, what will it (i.e., divergence between the north-south circle

and apakrama-vr. tta) be when it (i.e., the divergence between ghat.ikā and

apakrama) is the desired declination (is. t.āpakrama): we get this divergence

(is. t.āpakrama-kot. i) from the tip of the dorjyā to the north-south circle. For all

these three, the kot.i-s can be got by subtracting their squares from the square

of the trijyā and calculating the roots. By the rule of three, the is. t.āpakrama

(declination) is the divergence between ghat.ikā and yāmyottara-nata while

going from the east-west cardinal points to the tip of the dorjyā along the

yāmyottara-nata-vr. tta. Then, by finding the maximum extent of these along

the north-south circle, the yāmyottara-nata-jyā is got. Again by the rule of

three: The is. t.āpakrama-kot. i is the distance from the north pole to the tip

of the dorjyā and is the divergence between the yāmyottara and (ghat.ikā)

nata. Then, by finding the maximum divergence in the ghat.ikā-vr. tta, the

laṅkodaya-jyā will be obtained. Such being the case, for the pramān. a-pha-

la-s in the form of the is. t.āpakrama-kot. i, the mutually corresponding kot.i-s

form the pramān. a-s. Since, for these pramān. a-s, dorjyā-kot.i is the pramān. a-

phala and trijyā forms the icchā, we get the divergence between (yāmyottara

or ghat.ikā) nata and ks.itija as nata-kot.i and laṅkodayajyā-kot. i. Thus is the

solution to the first problem.

10.3 Problem two

The second (problem) is when the maximum declination and is. t.a-krānti-kot.i

are known. If for the Rcosine of maximum declination (paramāpakrama-

kot.i), trijyā is the hypotenuse, then what would be the hypotenuse for
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is. t.āpakrama-kot. i. From this the dorjyā can be got. Then, calculate (the

other quantities) as in the previous case (i.e., the first problem).

10.4 Problem three

The third (problem) is when the maximum declination and dorjyā (are

known). Here, (it is to be noted that) the maximum declination is the

distance of the ghat.ikā-vr. tta from the point of contact of the apakrama-

vr. tta and the ayanānta-vipar̄ıta-vr. tta, and maximum dyujyā is the distance

from the same point to the vis.uvad-vipar̄ıta-vr. tta. Taking these as pramān. a-

phala-s and taking the dorjyā as icchā, the actual apakrama and its kot.i can

be obtained. The rest is as before.

10.5 Problem four

The fourth problem is when the maximum declination and kāla-jyā are

known. Now, the kāla-jyā is that portion of the ghat.ikā-vr. tta from the vis.uvat

to the (ghat.ikā) nata-vr. tta. Kāla-kot.i is the portion of the ghat.ikā-vr. tta from

the vis.uvat to the rāśi-kūt.a-vr. tta. By finding the divergence for this in the

apakrama-vr. tta, we get the divergence of the ghat.ikā and apakrama-vr. tta-s

on the rāśi-kūt.a-vr. tta. This would be kāla-kot.yapakrama. Now, construct a

rāśi-kūt.a-vr. tta touching the zenith which is the vis.uvat. The point of con-

tact of this (rāśi-kūt.a-vr. tta) and the earlier (referred) rāśi-kūt.a-vr. tta will

be on the rāśi-kūt.a-vr. tta at the horizon (i.e., point of contact of the earlier

rāśi-kūt.a-vr. tta and the horizon). That will be towards the west from the

north pole by a measure equal to the maximum declination, and as much to

the east from the south pole. Subtract the square of the kāla-kot.yapakrama

from the square of kāla-kot.i and find the root. The result will be the dis-

tance from the point of intersection of the ghat.ikā and rāśi-kūt.a-vr. tta-s to

the second rāśi-kūt.a-vr. tta. Now, if the square of the kāla-kot.yapakrama is

subtracted from the square of trijyā and the root extracted, the result will
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be the jyā of the arc of the rāśi-kūt.a-vr. tta from the point of contact on the

horizon to the point of contact on the ghat.ikā-vr. tta. When this jyā is taken

as the hypotenuse and considered as the pramān. a, the root derived above,

being the divergence between the rāśi-kūt.a-vr. tta-s, can be taken as the bhujā

and considered as the pramān. a-phala. In that situation, the trijyā would be

the icchā. The maximum distance between the two rāśi-kūt.a-vr. tta-s, which

is the jyā of the distance between the zenith to the rāśi-kut.a-vr. tta on the

apakrama-man. d. ala would be the icchā-phala. The kot.i of this (jyā) would

be the dorjyā of the distance on the apakrama-man. d. ala from the zenith to

the nata-vr. tta. The rest (of the calculation) is as done earlier.

10.6 Problem five

Now, the fifth problem relates to knowing the nata-jyā and maximum decli-

nation. Now, nata is that portion of the north-south circle from the zenith to

the (ghat.ikā) nata-vr. tta. And nata-kot.i is that part of the north-south circle

from the zenith to the rāśi-kūt.a-vr. tta. From the consideration that if the

antya-dyujyā is the distance on the horizon from the north-south circle to

the apakrama-vr. tta, what would be the distance from the tip of the nata-kot.i,

one would get the distance between the north-south circle and the apakrama-

vr. tta on the rāśi-kūt.a-vr. tta. Square this and subtract it separately from: (1)

the square of the nata-kot.i, and (2) the square of trijyā. When the roots

of the two remainders are extracted they would be: (1) the distance from

the point of contact of the north-south circle and the first rāśi-kūt.a-vr. tta to

the second rāśi-kūt.a-vr. tta, which is to be taken as the pramān. a-phala, and

(2) the jyā on the rāśi-kūt.a-vr. tta from the point of contact of the north-

south circle to the horizon, which is to be taken as the pramān. a and the

hypotenuse. When trijyā is the icchā, the maximum divergence of the two

rāśi-kūt.a-vr. tta-s is the icchā-phala and that is the earlier-said maximum dec-

lination. The kot.i of this is the dorjyā. The rest (of the calculation) is as

before. Thus (have been explained), the five problems involving maximum

declination.
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10.7 Problems six to nine

Then the sixth problem is the one not involving maximum declination but

involving actual declination and is. t.a-krānti-kot.i. The root of the sum of the

squares of the above (two) would be the dorjyā, which is to be taken as the

hypotenuse.

The seventh problem involves the knowledge of the actual declination and

dorjyā, and calculations are as before.

The eighth problem is when the actual declination and kāla-jyā are known.

Find the squares of these two and subtract them from the square of trijyā.

Find the roots thereof. The results will be the actual dyujyā and kāla-kot.i-

jyā, which also happens to be the maximum divergence of the nata-vr. tta and

the horizon. Here trijyā will be the pramān. a, kāla-kot.i-jyā is the pramān. a-

phala, and actual dyujyā is the icchā. The resultant icchā-phala will be

dorjyā-kot.i. The rest (of the calculation) is as before.

Then, the ninth problem is where the actual declination and the nata-jyā

are known. While nata-jyā is the distance between the yāmyottara-nata-vr. tta

and the ghat.ikā-vr. tta, the difference between nata-vr. tta and the horizon is

the nata-kot.i-jyā. From the consideration: when the actual declination is

the first difference, what will be the second difference, the result obtained

is dorjyā-kot.i; the earlier is the distance from the tip of the dorjyā to the

horizon. These are the four problems involving actual declination.

10.8 Problems ten to twelve

Then, leaving the above, there is the tenth problem when the is. t.a-krānti-

kot.i and the dorjyā (are known). The root of the difference of the squares

of these (two) is the actual declination. The rest is as before.

The eleventh problem is when the kāla-jyā and the is. t.āpakrama-kot. i are

known. From the consideration: If trijyā is the hypotenuse for kāla-jyā what
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is it for is. t.a-krānti-kot.i, the result would be dyujyā. Now, when dyujyā is

multiplied by kāla-kot.i and divided by trijyā, the result will be dorjyā-kot.i.

The first trairāśika is done by the divergence between nata-vr. tta and north-

south circle. And the second trairāśika is done by the distance between

nata-vr. tta and horizon.

The twelfth problem involves the knowledge of the is. t.a-krānti-kot.i and nata-

jyā. When the squares of these two are (separately) subtracted from the

square of trijyā and roots extracted, the two results will respectively be the

jyā of the portion of yāmyottara-nata-vr. tta from eastern cardinal point to

the tip of the dorjyā, and the maximum divergence between the yāmyottara-

nata and the horizon. When these two are multiplied together and divided

by trijyā, the result will be dorjyā-kot.i.

10.9 Problems thirteen and fourteen

Then the thirteenth problem is when the dorjyā and kāla-jyā are known.

When these two are squared separately, and each subtracted from the square

of trijyā and the roots found, their kot.i-s will be got. Then from the consid-

eration: If trijyā is the hypotenuse for the kāla-kot.i, what is the hypotenuse

for dorjyā-kot.i, we get the dyujyā.

The fourteenth problem is where the dorjyā and nata-jyā are known. By

the consideration, if trijyā is the hypotenuse for nata-kot.i, what will be the

hypotenuse for the dorjyā-kot.i, will be obtained the jyā on the (yāmyottara)

nata-vr. tta which is the line from the tip of the dorjyā to eastern cardinal

point. The kot.i of this is is. t.a-krānti-kot.i.

10.10 Problem fifteen

Now, knowing the kāla-jyā and the nata-jyā, to derive the other (four items)

is the fifteenth (problem): Here, the distance from the east-west cardinal
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points to the point of contact of the rāśi-kūt.a-vr. tta and the ghat.ikā-vr. tta

is the kāla-jyā. Then the distance between the east-west cardinal points

to the point of contact of the rāśi-kūt.a-vr. tta and the yāmyottara-nata-vr. tta

is krānti-kot.i. Now, the remaining portion of the kāla-kot.i from the zenith

is the portion between kāla-bhujā and the horizon. It is also to be noted

that the extent from the ghat.ikā-nata-vr. tta to the rāśi-kūt.a-vr. tta is a pāda

(quadrant) on the yāmyottara-nata-vr. tta. From this, (it follows that) from

the point of contact in the yāmyottara-vr. tta the horizon is also a pāda (on

the yāmyottara-nata-vr. tta). Such are the modalities here.

In the same manner, the distance between the yāmyottara-svastika and the

rāśi-kūt.a-vr. tta on the yāmyottara-nata-vr. tta will be the nata-jyā. Here the

declination is the divergence between the rāśi-kūt.a-vr. tta and horizon on the

ghat.ikā-nata-vr. tta. Here too, the extent from the point of contact of the

other nata (i.e., point of contact of yāmyottara-nata and ghat.ikā-nata) to

the rāśi-kūt.a is a pāda; the extent from the southern cardinal point to the

ghat.ikā-vr. tta is also a pāda. This will be the situation.

Here, the application of the rule of three is thus: For the hypotenuse which

is equal to the radius of the ghat.ikā-vr. tta which extends from the western

cardinal point to zenith, the nata-jyā is the maximum divergence of the

yāmyottara-nata-vr. tta; and the kāla-jyā is the jyā for the portion of the

circle from the western cardinal point to the end of the rāśi-kūt.a-vr. tta. (The

consideration is): When that (i.e., the kāla-jyā) is taken as the hypotenuse,

what will be the difference between the yāmyottara and nata-vr. tta-s. The

result will be the ghat.ikā-natāntarāla (the divergence between the ghat.ikā

and yāmyottara-nata) on the rāśi-kūt.a-vr. tta. In the same manner, the nata-

jyā from the southern cardinal point to the rāśi-kūt.a-vr. tta on the north-south

circle is the icchā. The pramān. a-phala is the kāla-jyā which is the maximum

distance from the zenith to the (ghat.ikā) nata-vr. tta. The icchā-phala is the

distance from the north-south circle to the end of the (ghat.ikā) nata-vr. tta on

the rāśi-kūt.a-vr. tta. This will be equal to the icchā-phala derived earlier. The

square of this distance, when subtracted from the square of trijyā and the

root extracted, would be the divergence between the ghat.ikā-vr. tta and north-
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south circle, a portion of the rāśi-kūt.a-vr. tta. When the jyā of this divergence

is taken as the hypotenuse and as pramān. a, there will arise two divergences

in the circles as pramān. a-phala-s. Now, the maximum divergences, being

the icchā-phala-s of these two, will be nata-jyā-s from the points of contact

between the nata and rāśi-kūt.a to the (two) svastika-s. Here, that on the

yāmyottara-nata is the is. t.āpakrama-kot. i, and that on the ghat.ikā-nata is the

is. t.āpakrama (actual declination).

The method of deriving the pramān. a-phala of them is as follows: First (we

derive), the divergence between the ghat.ikā-vr. tta and (yāmyottara) nata-

vr. tta. Subtract the square of the jyā on the (relevant) section of the rāśi-

kūt.a-vr. tta from the square of kāla-jya and find the root. The result would

be the distance of the first tiryag-vr. tta (transverse circle described below),

and when subtracted from the square of the nata-jyā and the root found,

the result would be the distance of the second tiryag-vr. tta.

Now, to the depiction of the tiryag-vr. tta-s. The first tiryag-vr. tta is to be

constructed so as to pass through the points of contact of the rāśi-kūt.a and

north-south circles, which happen to be the poles of the yāmyottara-nata

circle, and also through the east-west cardinal points. The second (tiryag-

vr. tta) is to pass through the points of contact of the ghat.ikā and rāśi-kūt.a-

vr. tta-s, which happen to be the poles of the ghat.ikā-nata-vr. tta, and also

through the north-south cardinal points. The maximum divergences of these

two circles with the rāśi-kūt.a-vr. tta-s will be at the two nata-vr. tta-s. These

will be the actual declination (is. t.āpakrama) and its kot.i.

Thus have been stated the fifteen problems. And thus are the methods of

extension of the rule of three in the case of divergences of circles.



Chapter 11

Gnomonic Shadow

11.1 Fixing directions

Now, the method to identify the (four) directions. First prepare a level sur-

face. It should be such that if water falls at its centre, the water should

spread in a circle and flow forth on all the sides uniformly. That is the in-

dication for a level surface. On this surface draw a circle (in the following

manner): Take a rod slightly bent at both ends and, with one end of the

rod fixed at the centre, rotate the other end on all sides (so that a circle

will result). The point where the end (of the rod) is fixed is known by the

terms kendra and nābhi (centre). The line resulting from the rotation of

the other end is called nemi (circumference). Fix (vertically) at the centre

a uniformly rounded gnomon (́saṅku). On any morning, observe the point

on the circumference where the tip of the shadow of the gnomon graces and

enters into the circle and, in the same manner, also the point where the

tip of the shadow graces the circumference and goes out of the circle in the

afternoon. Mark these two points on the circle with dots. These two points,

between themselves, will be almost along the east-west. For this reason,

these are termed east and west points. These would have been the exact

east and west points if they were the shadow-points of the stars which do

not have any north-south motion. The Sun has a north-south motion on

account of (its motion between) the solstices, and during the interval from

the moment, when the western shadow-point gets marked, to the moment



542 11. Gnomonic Shadow

when the eastern shadow-point is formed, if the Sun has moved north due to

the change in its declination, then to that extent the tip of the shadow would

have moved to the south. If (the correction were to be) done on the eastern

shadow-point, it has to be moved to the north, in order that (the line con-

necting the two shadow-points) is along the true east-west. The east-point

shall have to be shifted south appropriately if the Sun is moving towards

south (daks. in. āyana). This shifting would be (measured by) the difference

in the amplitude of the Sun in inches (arkāgrāṅgula) which corresponds to

the difference in the declinations at the two instants (of time at which the

shadow-points were marked). Multiply the difference in apakrama (Rsine

of declination) by the inches of the shadow-hypotenuse (chāyā-karn. āṅgula)

of that moment and divide by the local co-latitude (svadeśa-lambaka). The

result is the arkāgrāṅgula in the shadow-circle (chāyā-vr. tta). Then shift by

this measure, the east shadow-point (towards north or south), in accordance

to the ayana (northward or southward motion of the Sun). If a line is drawn

connecting the shifted point and the western shadow-point that will be the

correct east-west line. Had the above correction been done on the western

shadow-point, the shifting would have to be done in the reverse direction

of the ayana. Then, by constructing intersecting fish-figures (matsya) with

this line, obtain the north-south line. The rising and setting of stars would

be exactly east and west. From this also the directions can be identified.

11.2 Latitude (Aks.a) and co-latitude (Lamba)

Now, that day when the declinations at sunrise and sunset, which are usually

different, are equal, that would be the day of equinox when the Sun will be

at the zenith at noon. The 12-inch gnomonic shadow at that time would be

the equinoctial shadow (vis.uvacchāyā). Take the measure of this shadow as

the bhujā, and the 12-inch gnomon as kot.i, square them, add the squares

and find the square root thereof and thus derive the hypotenuse (karn. a).

This hypotenuse (should be taken as) the pramān. a and the gnomon and
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the shadow as the pramān. a-phala-s. Trijyā is the icchā. The two icchā-

phala-s are the latitude (aks.a) and the co-latitude (avalamba or lambana).

Corrections enunciated for the vipar̄ıtacchāyā (to be discussed below) have to

be applied to these. They will then be more exact. Here, the latitude is the

distance between the zenith and the ghat.ikā-man. d. ala (celestial equator). It is

the same as the distance between the Dhruva (pole star) and horizon (ks. itija),

measured on the north-south circle. And, the co-latitude is the distance

between the ghat.ikā-man. d. ala and the horizon measured on the north-south

circle. It is also equal to the distance between the zenith and the Dhruva.

11.3 Time after sunrise or before sunset

Now, the shadow. Here, for the Sun which moves eastwards on the ecliptic,

there will be a shift north and south, in accordance with the inclination of

the ecliptic. (Now, picture the following): Let the Sun (whose motion is as

stated above) be at a certain point (on the ecliptic) at a desired moment.

Then, construct a circle passing through the Sun on the ecliptic at the given

moment, with its centre on the axis which passes through the two poles and

the centre of the celestial sphere, in such a way that all its parts are equally

removed from the celestial equator (i.e., parallel to the ghat.ikā-man. d. ala) by

the measure of the declination of the Sun at that moment. This circle is the

diurnal circle (svāhorātra-vr. tta) at that moment. Its radius would be the

is. t.a-dyujyā (day-radius). Its quadrants shall have to be demarcated through

the six-o’clock circle (unman. d. ala) and the north-south circle. On account of

the motion along the diurnal circle, which occurs due to the Pravaha-vāyu,

the sunrise and sunset occur. Here, the rate of motion of the Pravaha-vāyu

is constant and so it is possible to ascertain in a definitive manner by how

much the diurnal circle will move in a specific time. Hence it is possible to

calculate correctly the position of a planet on the diurnal circle, i.e., as to

how much it has risen from the horizon on the diurnal circle at a specific

time after rising, or how much it has to go before it sets.
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11.4 Unnata-jyā

Now, the Pravaha-vāyu revolves once in 21,600 prān. a-units of time. The

diurnal circle will also complete one revolution during this period. So, de-

marcate each diurnal circle into 21,600 kalā divisions. Hence, one division

will rotate (by one minute of arc) in one prān. a. Therefore, in ordinary par-

lance, that portion of the diurnal circle that moves in one prān. a, is also

called a prān. a by secondary extension of meaning (laks.an. ā). Thus, the

prān. a-s elapsed after sunrise and the prān. a-s yet to elapse before sunset are

spoken of (in ordinary speech) as gata (past) prān. a-s and gantavya (to-go)

prān. a-s.

These gata-prān. a-s or gantavya-prān. a-s would be equal to the difference

between the horizon and the position of the Sun on the diurnal circle of

measure 21,600. Since this is an arc, its Rsine has to be calculated to get

the actual (distance). Now, (it is known that) when Rsines are conceived

north-south, the limit is the east-west line at (i.e., passing through) the

centre of the circle. So also, when the Rsines are conceived east-west, the

limit is the north-south line at the centre of the circle. In the same manner,

in the conception of up and down Rsines in the diurnal circle, the limits

would be the lines at right angles to it passing through the centre of the

diurnal circle. (This is so for the following reason): There will be a total

chord (samasta-jyā) passing through the points of contact of the unman. d. ala

and the diurnal circle and the axis (aks.a-dan. d. a). A Rsine has to be con-

structed with the above as the limit from the point of sunrise on the horizon.

Since it is on the horizon that the Sun rises, the gantavya-prān. a-s are reck-

oned from the horizon. Now, the portion of the diurnal circle lying between

the horizon and the unman. d. ala forms the ascensional difference (cara) in

prān. a-s. This has to be subtracted from the gata-prān. a-s and gantavya-

prān. a-s in the case of the northern hemisphere, since the horizon is to the

north of the east-west svastika-s and is below the unman. d. ala (six-o’clock

circle). In the southern hemisphere, however, the ascensional difference in

prān. a-s has to be added to the gata and gantavya-prān. a-s, since there, the

horizon is above. The result will be the unnata-prān. a, i.e., the time in
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prān. a-s elapsed from the unman. d. ala to the position of the Sun as indicated in

the diurnal circle. Calculate the Rsine for this (arc). Then, apply to this the

Rsine of the ascensional difference inversely, i.e., by adding it in the northern

hemisphere and subtracting in the southern hemisphere. The result will be

the unnata-jyā (i.e., Rsine of the unnata-prān. a) from the horizon. This is

the full Rsine pertaining to the two quadrants, of this svāhorātra-vr. tta, and

so it will not be just a half-sine. Therefore for addition and subtraction,

multiplication of the kot.i is not required. Since it itself is the remainder of a

Rsine, mere addition and subtraction could be done. Thus shall be derived

the Rsine of the portion of the diurnal circle for the portion between the

Sun and the horizon. Since the (measure in) seconds (ili) is small, it should

be multiplied by the dyujyā and divided by trijyā. The result would be the

unnata-jyā which would be in terms of seconds of trijyā-vr. tta.

11.5 Mahā-śaṅku and Mahācchāyā: Great gnomon

and great shadow

[Here, it might be noted that] the diurnal circle is inclined to the south

exactly as the celestial equator (ghat.ikā-vr. tta). Hence, when the unnata-jyā

which forms as it were the hypotenuse, is multiplied by the lam. baka and

divided by the trijyā, the result will be the interstice between the Sun and

the horizon. This is called the mahā-śaṅku (great gnomon, celestial gnomon).

The kot.i of this is the distance between the zenith and the planet. This is

termed mahācchāyā (great shadow, celestial shadow).

11.6 Dr. ṅman. d. ala

Now, construct a circle passing through the zenith and the planet. This

(circle) is termed dr. ṅman. d. ala. The Rsine and Rcosine in this circle are the

mahā-śaṅku and mahācchāyā which have their tips at the location of the

planet. Since the horizon is on the sides (centered around) the centre of the

Earth (ghana-bhū-madhya) and the foot of the mahā-śaṅku is on the plane

of the horizon, the dr. ṅman. d. ala has its centre at the centre of the Earth.
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11.7 Dr. ggolacchāyā

People (residing) on the surface of the Earth see a planet only by how much

it has risen from, or is lower than, their horizon at the level of their heads.

Therefore, the great gnomon and great shadow which people on the surface of

the Earth (actually) see are the ones on that dr. ṅman. d. ala which has its centre

at the location (dr. ṅmadhya) of the observer on the surface of the Earth and

its circumference passing through the planet and the zenith. So, construct a

(observer-centric) horizon, tangential to the surface of the Earth, having all

its parts equally raised by a measure equal to the radius of the Earth from

the horizon through the centre of the Earth. The altitude from this (horizon)

is the gnomon for those on the surface of the Earth. This is called dr. ggola-

śaṅku. What has been stated earlier is the bhagola-śaṅku. Subtracting

the radius of the Earth from the bhagola-śaṅku, the dr. ggola-śaṅku results.

Therefore, the difference between the bases of the two gnomons is equal to

the radius of the Earth on account of the difference between the two horizons.

Now, for the shadow, the base is the vertical line. Since this (vertical) drawn

from the centre of the solid-Earth-sphere and that drawn from (the observer

on) the surface of the Earth are the same, the base of the shadow will be at

the same point. Hence, there is no difference in the (length of the) shadow.

In all cases, the tips of the shadows and the gnomons are at the centre of

the planet.

Now, by squaring and adding the two, viz., the gnomon with its base on

the observer-centric horizon tangential to the surface of the Earth, and the

(related) shadow, and finding the square root, a hypotenuse will be obtained

with respect to (the observer on) the surface as the centre. That is called

dr. kkarn. a. This hypotenuse is in fact derived by the pratiman. d. ala-nyāya

(rule of calculating the karn. a in eccentric circle). Here the pratiman. d. ala has

its centre at the centre of the Earth, whereas the karn. a-vr. tta has its centre

on the surface of the Earth. The distance between the centres of these two

circles, viz., the radius of the Earth, corresponds to the ucca-n̄ıca-vyāsārdha.

Since, the n̄ıca-point is the zenith, the minutes of the karn. a-vr. tta would

naturally be small. Therefore the (length of) the shadow that is measured
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in the units of the karn. a-vr. tta, when converted into those of the trijyā-vr. tta,

will undergo an increase in its magnitude. To that extent the drop from the

zenith will appear to be large. When the shadow in the celestial circle is

multiplied by trijyā and divided by dr. kkarn. a, the result will be the shadow

in the dr. ggola (dr. ggolacchāyā). Thus (is explained) the method of deriving

the shadow using the principle of the pratiman. d. ala-sphut.a.

11.8 Chāyā-lambana

Now, multiply the celestial shadow (bhagolacchāyā) by the yojana-s of the

Earth’s radius and divide by the yojana-s of the hypotenuse (sphut.a-yojana-

karn. a), because we want it in terms of the yojana-s of dr. kkarn. a. The result

will take the place of bhujā-phala. This will be the chāyā-lambana in terms

of minutes. Add this to the celestial shadow. And the result will be the

shadow in the dr. ggola. Thus has been stated the method to derive the

chāyā-lambana in minutes by the principle of the ucca-n̄ıca-sphut.a.

11.9 Earth’s radius

Now, the radius of the ucca-n̄ıca-vr. tta measured in terms of the minutes of

the pratiman. d. ala is called antya-phala. Here, since the sphut.a-yojana-karn. a

is the radius of the pratiman. d. ala measured in its units, the radius of the

ucca-n̄ıca-vr. tta is equal to the yojana-s of the Earth’s radius.

Now is stated the method to derive the minutes of the radius of the Earth in

terms of the sphut.a-kaks.yā of the respective planets, when the said sphut.a-

yojana-karn. a is taken as trijyā. Now, when trijyā is taken as the shadow, the

minutes of the yojana-s of the Earth radius will be the lambana (vertical).

In the calculation of what would be the minutes of lambana for a particular

shadow, since the trijyā is the shadow and is both a multiplier and a divisor,

it can be dropped. So, multiply the desired shadow by the yojana-s of the
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radius of the Earth and divide by the sphut.a-yojana-karn. a. The result will be

the minutes of the lambana of the shadow. Here, between the sphut.a-yojana-

karn. a and the madhya-yojana-karn. a there is not much difference. Hence one

can divide the yojana of the Earth’s radius by the madhya-yojana-karn. a.

The result in the case of the Sun would be 863. With this divide the desired

shadow. The result will be the chāyā-lambana (lambana of the shadow) in

terms of minutes. Now, when the chāyā-lambana of the dr. ṅman. d. ala is taken

as the hypotenuse, its bhujā and kot.i will be the nati and lambana which will

be stated below. How it is to be done is also being stated later. There has

to be such a correction for the shadow.

11.10 Corrected shadow of the 12-inch gnomon

These shadows and gnomons have their tip at the centre of the sphere of

Sun. Now, the rays of the Sun emanate from all over its surface. The

shadow of a gnomon should be taken to extend to the point upto which the

rays from the uppermost part of Sun’s circumference is obstructed by the

gnomon. The shadows of all 12-inch gnomons are not merely formed by

the rays emanating from the centre of the solar sphere. Hence the gnomon

should (be made to) extend up to the upper part of the circumference of the

solar orb. The distance of separation between that point and the zenith will

be the shadow. Now, the measure of half the orb is the distance from the

centre of the solar sphere to its upper circumference. This will be a full jyā

in the dr. ṅman. d. ala. Hence, if the radius of the orb is multiplied, respectively,

by the gnomon and the shadow and divided by trijyā, the results will be the

Rsine-differences (khan. d. a-jyā). Now, add to the gnomon the result got from

the shadow, and subtract from the shadow the result got from the gnomon.

Thus can be derived the gnomon and the shadow relating to the top of the

Sun’s orb. These form the useful tools for the dr. gvis.aya (values related to

the observer). Though the Rsine-differences have actually to be derived from

the bhujā-jyā and kot.i-jyā, which have their tips at the ‘centre’ of the full

jyā, there would be little difference even if they are derived from the tip of

the full jyā. Hence it was directed above to make use of them.
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In the same manner, if the lambana and the Rsine-differences relating to the

radius of the orbit are corrected, the corrected gnomon and shadow which

have their tips at the top circumference of the solar orbit in the dr. ggola will

be obtained. This shadow is multiplied by 12 and divided by the gnomon

calculated as above. The result will be the (correct) shadow of the l2-inch

gnomon.

11.11 Vipar̄ıtacchāyā : Reverse shadow

Now, the reverse shadow. The method (of the reverse shadow) is applied for

the problem: When the shadow of the l2- inch gnomon is known, how to find

the time in prān. a-s, elapsed or yet to elapse. Now, if the 12-inch gnomon

and the shadow are (separately) squared, added together and the root found,

the result will be the chāyā-karn. a (hypotenuse of the shadow) in inches

(aṅgula-s). Then, multiply the above-said shadow and the gnomon by trijyā

and divide by the above-said chāyā-karn. a in inches. The results got will

be the mahā-śaṅku (great gnomon) and mahācchāyā (great shadow). Since

they have been derived through the shadow corresponding to the observer

(dr. gvis.aya), they will have their tips at the top circumference of the orb.

Hence, when these gnomon and the shadow are multiplied separately by

the radius of the orb and divided by trijyā and the results obtained are,

respectively, added to the shadow and subtracted from the gnomon, they

would have been reduced to what they would have been if their tips were

at the centre of the object (bimba, i.e., Sun). Then divide the shadow by

gatija (863) and subtract the result from the shadow. Add to the gnomon

the radius of the Earth in minutes (liptā). The calculations up to this should

be carried out on the latitude and the co-latitude as well.

Then multiply this gnomon by the square of trijyā and divide by the product

of the dyujyā (radius of the diurnal circle) and lambaka (co-latitude). The

result will be the distance from the centre of the solar sphere to the horizon.

The Rsine on the diurnal circle is 21,600 in its own measure. Then apply to



550 11. Gnomonic Shadow

this the cara-jyā (Rsine of the ascensional difference), positively or negatively

in accordance as it is Mes.ādi or Tulādi, then convert it to arc and apply the

cara-prān. a-s positively or negatively, as the case may be. The result would

be the prān. a-s elapsed or yet to elapse. Thus (has been stated) the method

to derive the prān. a-s elapsed or yet to elapse through the reverse process

from the kramacchāyā, which in turn is obtained from karn. a and the shadow

of the 12 inch gnomon observed at a desired time.

11.12 Noon-time shadow

Now (is stated) the derivation of noon-day shadow. Now, the noon-day

shadow is the distance between a planet and the zenith (measured) in the

north-south circle, when the planet comes into contact with the north-south

circle. The angular separation between the zenith and the celestial equator

is the latitude. The separation between the Sun and the celestial equator

is the declination (apakrama). The ghat.ikā-man. d. ala (celestial equator) is

always inclined to the south of the zenith. The Sun shifts south or north of

the ghat.ikā-man. d. ala in accordance with (northern or southern) hemisphere.

Hence, the sum or difference between the celestial latitude and the decli-

nation, depending on the hemisphere (in which the Sun lies), is the noon

shadow. Hence, the declination is the sum or difference between the noon-

time shadow and the latitude. Hence, the latitude is the sum or difference

(as the case may be) of the noon-time shadow and the declination. Thus, if

two among these three are known, the third can be found.

11.13 Chāyā-bhujā, Arkāgrā and Śaṅkvagrā

Now, the chāyā-bhujā. Chāyā-bhujā is the distance from the tip of the

shadow in the dr. ṅman. d. ala (vertical at the given time) up to the sama-

man. d. ala (prime vertical). Chāyā-kot.ichāyā-bhujā is the distance between

the tip of the shadow to the north-south circle.
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Arkāgrā is the distance from the point of contact of the horizon and the

relevant diurnal circle to the east or the west point along the horizon. The

Sun rises at that point (the point of contact of the diurnal circle and the

horizon). Then, on account of the (effect of the) Pravaha-vāyu, while inter-

secting the north-south circle, it would have shifted towards the south from

the rising point. This shift is called śaṅkvagrā. Now, draw a line connecting

the points of the rising and the setting (of the Sun). The distance of the

base of the gnomon from this line is the śaṅkvagrā. (It is to be noted that)

the tip of the gnomon would also have shifted that much. Hence it has got

the name śaṅkvagrā.

11.14 Some allied correlations

Now, the Rsine of the arkāgrā is along the horizon and the Rsine of the

apakrama (declination) is along the unman. d. ala (six-o’ clock circle). These

two (Rsines) will be respectively equal to the distance from the east-west

cardinal points to the diurnal circle (along the respective circles). Now,

ks.iti-jyā (Earth-sine) is the Rsine of that part of the diurnal circle inter-

cepted between the horizon and the unman. d. ala. This could be taken as the

bhujā. Declination would be the kot.i. The hypotenuse is the arkāgrā. Thus

is formed a triangle. This has been formed due to the latitude (of the place).

This triangle has been formed because the horizon and the unman. d. ala are

different circles, (which again is) due to the latitude. Hence if the desired

apakrama (Rsine of declination) is multiplied by trijyā and divided by lam-

baka, the result will be arkāgrā.

Now, there is another triangle made up of the unnata-jyā (Rsine of the hour

angle) on the diurnal circle, the gnomon and the śaṅkvagrā. This is also

latitudinal. This triangle has also been formed since the unnata-jyā has an

inclination, because of the latitude. Here, the hypotenuse is made up by the

unnata-jyā on the diurnal circle, the gnomon is the kot.i and the distance

between the base of the unnata-jyā and the base of the gnomon is the bhujā.

This bhujā is the śaṅkvagrā. This is directly north-south. Since, at the

equator, the diurnal circle is vertical, there the unnata-jyā is also vertical.
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However, the inclination (of the unnata-jyā) due to latitude is towards the

south. For this reason, the line (distance) between the base of the gnomon

and the base of the unnata-jyā is also exactly north-south. The arkāgrā

is also exactly north-south. Since, at that time, the direction of both are

the same, it is enough to add them both or subtract one from the other,

according to the northern or southern hemisphere. Mutual multiplication

by the kot.i is not needed here. This addition or subtraction will give the

chāyā-bhujā, which is the distance between the east-west line and the base

of the gnomon on the horizon. This is also the distance between the planet

on the dr. ṅman. d. ala and the sama-man. d. ala (prime vertical). When this is

considered as the bhujā and the shadow as the hypotenuse, the kot.i will be

the chāyā-kot.i, which is the distance between the planet and the north-south

circle.

The above-said (chāyā-kot.i) is the Rsine on the diurnal circle also. When

this is measured by its own 21,600 minute measure, the nata-prān. a-s will

be obtained. Since this pertains also to the 12-inch gnomon, the directions

can be determined therefrom as well. For obtaining this, the arkāgrā is

multiplied by the hypotenuse of the shadow and divided by trijyā. The result

is called agrāṅgula. Here, śaṅkvagrā will always be the vis.uvacchāyā (the

equinoctial shadow) of the 12-inch gnomon. Hence, when the vis.uvacchāyā

and agrāṅgula are added together or subtracted from one another, the result

will be the bhujā of the shadow (chāyā-bhujā) of the 12-inch gnomon. Its

direction will be opposite to the bhujā of the mahācchāyā (great shadow),

since the tip of the direction of the shadow has to be opposite to the direction

in which the Sun is.

11.15 Determination of the directions

Now, when the shadow, and the corresponding bhujā and kot.i at a desired

(place and time) for a 12-inch gnomon have been derived, construct a circle

with the shadow as radius and fix the gnomon at its centre. Mark with a dot,

the point on the circumference, where the tip of the shadow of the gnomon

falls. Touching the said point, place two rods, one being twice the length of
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the chāyā-bhujā laying it north-south, and the other being double the length

of the chāyā-kot.i, laying it east-west, in such a manner that the other ends

(of these two rods) also touch the circumference (of the circle drawn). The

directions having been known roughly, the kot.i-rod will be along the east-

west and the bhujā-rod along the north-south. This is another method to

ascertain the direction.

11.16 Sama-śaṅku : Great gnomon at the prime

vertical

Now sama-śaṅku is explained. Now, the sama-man. d. ala (prime vertical) is

a great circle which passes through the east and the west cardinal points,

and the zenith (and nadir). The ghat.ikā-vr. tta (celestial equator) is a great

circle which passes through the east and the west cardinal points touching

the north-south circle at a place removed from the zenith towards the south

by (the extent of) the latitude (of the desired place). The descent of the

ghat.ikā-man. d. ala from the zenith would be equal to the ascent of the north

pole from the horizon. The day on which the diurnal circle (of the Sun)

becomes identical with the ghat.ikā-man. d. ala, on that day the rising and the

setting take place at the east and west cardinal points. Midday occurs at a

place removed south from the zenith by (the extent of) the latitude. All the

diurnal circles will be inclined southwards. Hence the midday will occur to

the south, from where the rising had taken place. However, on the day when

the northern declination is smaller than the latitude, the rising and setting

will be to the north of the east and west cardinal points, and midday will be

to the south of the zenith. Since there is the meeting point (of the diurnal

circle) with the north-south circle, the planet will cross the sama-man. d. ala

(prime vertical) once between its rising and noon. In the same manner, in the

afternoon, it will cross the sama-man. d. ala once before setting. The gnomon

at that time would be sama-śaṅku. (Again), at that time the shadow will

be exactly east-west.

Now, on the day when the northern declination is equal to the latitude, the

planet will meet the sama-man. d. ala at the zenith. When the northern decli-
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nation becomes greater than the latitude the diurnal circle does not intersect

with the sama-man. d. ala. Hence, on that day, the sama-śaṅku does not oc-

cur. Also, during southern declination, the sama-man. d. ala and the diurnal

circle do not intersect and hence on that day (or during that period) also

sama-śaṅku does not occur. Here, when the northern declination becomes

equal to the latitude, the planet meets the sama-man. d. ala at the zenith and

the sama-śaṅk is equal to trijyā. Then, applying the same argument for a

given northern declination less than the latitude as to what the sama-śaṅku

would be, the sama-śaṅku can be calculated. By a calculation reverse to

this, the northern declination can be obtained from the sama-śaṅku. And,

from that the bhujā-jyā of the planet can also be derived. This is one way

of obtaining the sama-śaṅku.

11.17 Samacchāyā

Now is (stated) the method to derive the hypotenuse of the 12-inch gnomon

corresponding to the sama-śaṅku. Here, it has been stated above that the

sama-śaṅku is got by multiplying the trijyā by the (Rsine of the) northern

declination, which is less than the latitude, and dividing the product by Rsine

of the latitude (of the place). By the proportion: If for this sama-śaṅku the

hypotenuse is the trijyā, what will be the hypotenuse for the 12-inch gnomon,

the hypotenuse for the sama-śaṅku will be got. Then, the hypotenuse of the

samacchāyā in (terms of) aṅgula-s is got by multiplying trijyā by 12 and

dividing by sama-śaṅku. Here, since the mahā-śaṅku is the divisor and that

is got from the product of the trijyā and the apakrama (Rsine of declination),

the divisor would be the product of trijyā and apakrama, and the dividend

is the product of trijyā and 12. Then, since trijyā occurs both in the divisor

and in the dividend, trijyā can be left out (in the calculation). Since the aks.a

(Rsine of latitude) is the divisor-of-the-divisor it will form a multiplier to the

dividend. Hence, (ultimately) when aks.a is multiplied by 12 and divided by

the northern declination which is less than the latitude, the result will be

the hypotenuse of the samacchāyā.
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Here (it might be noted that) the product of the aks.a and 12 would be equal

to the product of the equinoctial shadow and the lambaka, for the reason

that the product of icchā and pramān. a-phala is equal to the product of the

pramān. a and icchā-phala. Hence, this (product of equinoctial shadow and

the lambaka) might be divided by the apakrama to derive the hypotenuse of

the samacchāyā.

Now, the 12-inch gnomon shadow of a planet at noon on the equinoctial

day is its equinoctial shadow (vis.uvacchāyā). When the krānti (declination)

of the Sun is to the north, samacchāyā will occur only when the noon-time

shadow is less than equinoctial shadow. The difference between this noon-

time shadow and the equinoctial shadow is the noon-time agrā in aṅgula-s

(madhyāhnāgrāṅgula). This is equal to the equinoctial shadow on the day

when midday occurs at the zenith. On that day, the hypotenuse of the

midday shadow will be equal to the hypotenuse of the samacchāyā. On a

day when the agrāṅgula is very small, the hypotenuse of the samacchāyā is

very much longer than the hypotenuse of the midday shadow. In propor-

tion to the increase of the agrāṅgula, the difference between the hypotenuse

of the midday shadow and the hypotenuse of the samacchāyā will become

lesser and lesser. Hence, inverse proportion is to be applied here. Therefore,

when the equinoctial shadow is multiplied by the midday hypotenuse and

the product divided by the agrāṅgula at midday (madhyāhnāgrāṅgula), the

result will be the hypotenuse of the samacchāyā.

11.18 The Sama-śaṅku-related triangles

Now are explained the characteristics of certain planar figures (ks.etra-víses.a)

which arise in places with latitude, on account of the latitude. Now, on

the day when the diurnal circle meets the horizon to the north of the east

and west cardinal points and similarly meets the north-south circle towards

the south of the sama-man. d. ala, a triangle can be conceived wherein the

hypotenuse is that portion of the diurnal circle between the horizon and
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the sama-man. d. ala, the kot.i is the sama-śaṅku and the bhujā is the arkāgrā.

At places where there is no latitude, since there will be no inclination of

the diurnal circle (from the vertical), the above-said triangle will not occur.

Now, consider the three, viz., (1) the distance between the east and west

cardinal points and the point of contact with the diurnal circle, occurring

on the horizon, which is the arkāgrā; (2) the declination on the unman. d. ala

(equinoctial colure or six-o’ clock circle); and (3) the portion of the diurnal

circle between the horizon and the unman. d. ala, which is the ks.iti-jyā. These

three make a triangle arising due to the latitude, with the above three taking

the place of bhujā, kot.i and karn. a. Then, the portion of the diurnal circle

above the unman. d. ala (may be taken as) the kot.i, the portion of apakrama

along the unman. d. ala would be the bhujā and sama-śaṅku would be the

hypotenuse. Thus will be formed another triangle. All the above three

triangles are as if made up of the latitude, co-latitude and trijyā. Thus, if

one of them is known, the others can be derived using trairāśika.

11.19 The ten problems

Now, let there be two equal circles, their centres being at the same place

cutting each other. It might be necessary to know as to what would be the

distance of separation between the circumferences when we proceed by a

given distance from the point of contact of their circumferences, and also

what would be the distance from the meeting point of the circumferences at

a place where their circumferences are at a given distance. Herein below is

given in detail as to which trairāśika-s have to be used to know the above,

and as an illustration of their application, the ten problems are discussed.

Now, there are five entities, viz., the śaṅku (gnomon), the nata-jyā (Rsine

hour angle), apakrama (Rsine of declination), desired āśāgrā (Rsine of ampli-

tude) and aks.a-jyā (Rsine of latitude). When three of the above are known,

here are stated the methods to derive the other two. This can happen in ten

ways and so it is called ‘The Ten Problems’.
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11.20 Problem one: To derive Śaṅku and Nata

11.20.1 Shadow and gnomon at a desired place

First is stated the method to derive the śaṅku and the nata-jyā when the

declination, amplitude (āśāgrā or digagrā) and latitude are known. Now

conceive of a circle passing through the zenith and the planet. Such a circle

is called is. t.a-digvr. tta, or drṅman. d. ala (also diṅman. d. ala). Now, the Rsine of

the distance from the meeting point of the dr. nman. d. ala and the horizon to

the east-west cardinal points along the horizon is the is. t.āśāgrā (the desired

sine amplitude). Now, construct a circle passing through the zenith and that

part of the horizon whose separation from the south-north svastika (cardinal

point) is equal in measure to the is. t.a-āśāgrā. This circle is called vipar̄ıta-

digvr. tta. Construct another circle passing through the point of intersection

of the vipar̄ıta-digvr. tta and the horizon, and also passing through the two

poles. This is called a tiryag-vr. tta, for the reason that it is at right angles

to the is. t.a-digvr. tta and the ghat.ikā-vr. tta. In this circle occurs the maximum

divergence between the is. t.a-digvr. tta and the ghat.ikā-vr. tta. The distance on

the horizon, between the north-south circle and the vipar̄ıta-digvr. tta would

be their maximum divergence. This maximum divergence occurs on the

horizon since their point of contact is at the zenith. This would be equal

to the is. t.a-āśāgrā. Taking this as the pramān. a-phala, the Rsine of the arc-

bit on the north-south circle between the zenith and the Dhruva will be the

lambaka (co-latitude). This is the icchā. The icchā-phala would be the Rsine

of the distance between the Dhruva and the vipar̄ıta-digvr. tta. Take this as

the kot.i, the Rsine latitude as bhujā; derive the karn. a (hypotenuse) by finding

the square root of the sum of the squares (of the two). The result will be the

Rsine of the distance between the horizon and the tiryag-vr. tta, with its tip

at the Dhruva. This will also be the maximum divergence between the is. t.a-

drṅman. d. ala and the ghat.ikā-man. d. ala. The poles (pārśva) of the digvr. tta are

at the points of contact of the vipar̄ıta-digvr. tta and the horizon. The poles

of the ghat.ikā-vr. tta are the Dhruva-s. (These) will be touching the four sides

of the is. t.a-digvr. tta and the ghat.ikā-vr. tta. Since the distance between the
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poles on the tirvag-vr. tta is equal to the maximum divergence amongst these,

the hypotenuse derived as above would be the maximum divergence between

the is. t.a-digvr. tta and the ghat.ikā-vr. tta. Here, since it is difficult to grasp the

geometrical situation when we deal with all the directions (and possibilites),

a specific direction (and situation) should be considered.

Specified below is the case, when the śaṅku is in the south-west direction

in the southern hemisphere. In this case, the digvr. tta would be passing

through the horizon at the south-west and the north-east directions. And,

the vipar̄ıta-digvr. tta would be passing through the south-east and north-

west directions. The Rsine in the tiryag-vr. tta, which is the distance between

the north-west corner and the northern Dhruva, would serve as the divisor.

Take this divisor as the pramān. a and the latitude which is the height of the

Dhruva as the pramān. a-phala. Then the icchā-phala will be obtained, as it

is the maximum divergence between the tiryag-vr. tta and the horizon on the

digvr. tta in the north-east.

Here, whatever be the extent of the altitude of the point of intersection

of the tiryag-vr. tta from the horizon on the digvr. tta on the north-east, that

much will be depression of the point of intersection of the ghat.ikā-vr. tta and

digvr. tta from the zenith in the south-west on the digvr. tta. Now, it is known

that when there are two circles (with a common centre and inclined to one

another) having a common circle (tiryag-vr. tta) at right angles to them, the

two circles meet at points a quarter of the circumference (vr. tta-pāda) away

from where they touch the tiryag-vr. tta. Hence, in the instance discussed

earlier, the divergence on the tiryag-vr. tta from the point where it meets

the digvr. tta in the north-west, to the ghat.ikā-vr. tta, is equal to the divisor

mentioned above. Take this as the bhujā and as the pramān. a. Now, at

the north-east consider the arc from the point of contact of the digvr. tta to

the ghat.ikā-vr. tta in the south-west, which is a quarter of the circumference

(vr. tta-pāda) along the digvr. tta, the Rsine of this (arc) is the radius. Take

this as the hypotenuse and pramān. a. The divergence from the zenith to

the ghat.ikā-vr. tta on the north-south circle is the latitude and this would

be the icchā. The divergence from the zenith to the ghat.ikā-vr. tta on the
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dr. ṅman. d. ala is the icchā-phala. Here is one set up where icchā is the bhujā

and icchā-phala is the hypotenuse.

Now, from the point on the dr. ṅman. d. ala where it meets the tiryag-vr. tta, at a

distance of a quarter of the circumference (vr. tta-pāda), would be the meeting

point of the ghat.ikā-vr. tta on the diṅman. d. ala. Hence, the ascent of the tiryag-

vr. tta from the horizon and the descent of the ghat.ikā-vr. tta from the zenith

on the digvr. tta are equal. Thus, this can be considered in two ways. There

will be no difference in the derivation of the icchā-phala. In the derivation

of the gnomon at a desired place, the above would represent the latitude.

The kot.i of this is the distance from the ghat.ikā-man. d. ala to the horizon.

On the diṅman. d. ala, this would represent the lambana. Then the divergence

between the desired diurnal circle and the ghat.ikā-vr. tta on the north-south

circle, is the desired declination. Take this as the bhujā and icchā and take

the divergence of the ghat.ikā-vr. tta and the diurnal circle on the diṅman. d. ala

as the hypotenuse, and calculate the icchā-phala. This would represent the

declination. Here, since the mere (i.e., actual) latitudes and the declination

on the north-south circle are representatives (sthān̄ıya) of the latitudes and

the declination on the diṅman. d. ala, the differences/divergences are equal.

For the above reason, the same pramān. a-phala which is representative of

the latitude (aks.a-sthān̄ıya) can be used to derive the representatives of the

declination. Here, the distance from the zenith to the ghat.ikā-vr. tta on the

diṅman. d. ala is the representative of the latitude. Again, the divergence of

the ghat.ikā-vr. tta from the diurnal circle on the diṅman. d. ala is the represen-

tative of the declination. If these are added together or subtracted from

each other, the result will be the distance from the zenith to the diurnal

circle on the diṅman. d. ala. And, that would be the shadow at the desired

place (is. t.adik-chāyā). Then, the divergence between the horizon and the

ghat.ikā-vr. tta on the diṅman. d. ala represents the lambana. The divergence of

the ghat.ikā-man. d. ala and the diurnal circle on the diṅman. d. ala represents the

declination. When these have been added to or subtracted from in accor-

dance with their hemisphere, the result would be the gnomon at the desired

place (is. t.a-dikchaṅku). Now, in any place, it is possible to derive the midday
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shadow and gnomon by the addition or subtraction of the latitude and dec-

lination or of the lambaka and declination on the north-south circle. In the

same manner, the shadow and gnomon at a desired place can be derived ap-

plying them on the digvr. tta at the desired place. Here, after the addition or

subtraction of the desired arcs, their Rsines can be derived. Or, the Rsines

themselves can be added or subtracted amongst themselves.

Now, square the representatives of the latitude and the declination, subtract

from the square of trijyā and find the square roots; thus, the respective kot.i-s

would be obtained. Then, multiply the representatives of the latitude and

the declination by the kot.i-s of each other, add them together or subtract

one from the other and divide by the trijyā. The result will be the shadow

at the desired place. Again, when the representatives of the lambaka (co-

latitude) and the declination are also cross-multiplied by the kot.i-s, and the

result divided by trijyā, then also the result will be the shadow of the desired

place.

Then, take the actual latitude and declination, add together or subtract one

from the other, and derive the midday shadow. Multiply it by trijyā and

divide by the divisor obtained earlier, which is the maximum divergence

of the digvr. tta at the desired place and the ghat.ikā-vr. tta, and thus obtain

the shadow at the desired place. Here, the multiplication by trijyā and

division by the divisor can be done either before or after the addition or

subtraction of the latitude and declination, since there will be no difference

in the final result. Since in such cases, multiplication has to be done by the

latitude, co-latitude and declination, and division by the divisor, we might

consider the divisor as the pramān. a, the actual latitude and declination, as

the pramān. a-phala, trijyā as icchā, and the representatives of the latitude

and declination as icchā-phala. In this, the place occupied by the actual

latitude and declination in a circle having the divisor as radius, will be the

same as that occupied by the representatives of the latitude and declination

in the circle which has trijyā as radius. Therefore, if the actual latitude

and declination are squared and subtracted from the square of the divisor

and the roots calculated, the results will be the kot.i-s of the latitude and
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declination in the circle with the divisor as radius. The same kot.i-s will be

obtained also when the dyujyā (radius of the diurnal circle) and co-latitude

are multiplied by the divisor and divided by trijyā. Multiply the kot.i of the

latitude by the kot.i of the declination, simiiarly multiply the declination by

the latitude and divide both by the divisor. The two results obtained shall

be added together or subtracted from one another. The result would be

the gnomon at the desired direction on the circle of which the divisor is the

radius. When this is multiplied by the trijyā and divided by the divisor, the

gnomon in the required direction is obtained. (It is to be noted that) the

gnomon in the southern direction is obtained in the southern hemisphere

by the difference of the co-latitude and the declination, and in the northern

hemisphere, by the sum of the co-latitude and the declination.

When the declination is larger than the kot.i of the latitude, the point of

intersection of the diurnal circle with the desired digvr. tta would be below

the horizon. Therefore, when subtraction is done, there will be no gnomon

in the desired direction. When the northern declination is greater than the

latitude, the midday would be to the north of the zenith. On that day too,

there will be no gnomon in the southern direction. When, however, the

āśāgrā is north, the gnomon will occur. When the sum of the arcs of the

representatives of the co-latitude and declination is greater than trijyā, the

kot.i-jyā thereof would be the gnomon in the northern direction. If the sum

of the jyā-s exceeds a quarter of a circle, the result will be kot.i-jyā.

Now, in the northern hemisphere, when the declination is greater than the

latitude, the gnomon with northern āśāgrā will result. When the northern

declination is less than the latitude, in certain cases depending on the āśāgrā,

the gnomon with northern āśāgrā and the gnomon with the southern āśāgrā

might occur on the same day. Here, by the sum of the co-latitude and

declination and by their difference, gnomons will occur with equal amounts

of southern āśāgrā and the northern āśāgrā, respectively.

Then again, when the desired declination is greater than the divisor, the

representative of declination will become greater than trijyā. Since there
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can be no such jyā, no gnomon will be there for that āśāgrā. Thus has been

explained the methods of deriving the desired gnomon.

11.20.2 Corner shadow

Now, herein below is stated the equivalence of the above procedure (nyāya-

sāmya) for the case of kon. a-śaṅku (corner shadow) with that stated in the

Sūrya-siddhānta. Since here, the desired diṅman. d. ala is facing the corner,

the āśāgrā is the Rsine of one-and-a-half rāśi-s. And, this will be half of the

total chord (samasta-jyā) of three rāśi-s, for the reason that the diṅman. d. ala

touches the horizon at the middle of the interstice between the east-west

cardinal points and the north-south cardinal points. When the Rsine (ardha-

jyā) and Rversine are squared, added and the root of the sum found, the

result would be the total chord. In a quadrant both the Rsine and the

Rversine are equal to trijyā. Therefore the sum of their squares is twice the

square of trijyā. And one-fourth of that is the square of (Rsine) of one and

a half rāśi-s. Now, when half the square of trijyā, which is the same as the

square of above mentioned āśāgrā, is taken in the circle of the co-latitude

(lamba), it will be half the square of the co-latitude. When the square of

Rsine of latitude is added to half the square of Rsine of co-latitude and the

root found, it will be the divisor here also. When the product of declination

and latitude and the product of their kot.i-s in the hāraka-circle are added

together or subtracted from one another, as the case may be, and the result

divided by the hāraka (divisor), then the corner-shadow on this hāraka-circle

will be obtained. Then again, when the product of the squares of these arcs

are added together or subtracted from one another, and the result divided

by the square of the divisor, the square of the gnomon is obtained. When the

root of this is found and is multiplied by trijyā and divided by the divisor,

the result will be the gnomon on the trijyā-circle.

Here, the product of the squares of the kot.i-s of the declination and latitude is

a divisor. Now, the squares of the (two) kot.i-s are the remainders obtained

by subtracting from the square of the divisor, the squares of the latitude
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and the declination, respectively. Now, consider the square of the kot.i of the

latitude as the multiplicand and the square of the kot.i of declination as the

multiplier. Then, the square of the declination will be the difference between

the multiplier and the divisor. Now, consider the calculation: Multiply the

square of the co-latitude by the square of the declination. Divide by the

square of the divisor. Subtract the result from half the square of the co-

latitude. The result obtained will be equal to the product of the squares

of the Rcosine of the latitude and declination, divided by the square of the

divisor. This is the method of calculation when one takes the multiplier as

simply half of the square of the co-latitude. There is the rule:

is. t.onayuktena gun. ena nighno ′bh̄ıs.t.aghnagun. yānvitavarjito vā.

(Bhāskara’s L̄ılāvat̄ı, 16)

(Multiplication can be done also by) deducting or adding a de-

sired number to the multiplier and multiplying the multiplicand,

and adding or deducting from that, the product of the said num-

ber and the multiplicand.

As stated above, the multiplicand, which is half the square of the co-latitude,

is added to the required number represented by the square of the latitude.

Take the multiplicand as equal to the square of the divisor. Then, the

square of the declination which is the difference between the multiplier and

the divisor should be subtracted from half the square of the co-latitude which

is the multiplicand. There is a distinction here, viz., that a correction is to

be made to the square of the declination which is to be subtracted. The said

correction is as follows: Here the simple multiplicand is half the square of

the co-latitude. To this has been added, (as stated earlier), the square of the

latitude as the desired additive number. Hence that square of the latitude

should be multiplied by the square of the declination which is the difference

between the multiplier and the divisor. This, divided by the square of the

divisor, is the correction. This correction has to be subtracted from the

square of the declination, for the reason that the desired number had been

added to the multiplicand. On the other hand, in case the square of the
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declination had been deducted from half the square of the co-latitude, that

correction should have been added. The square root of the remainder (after

the abovesaid deduction) is one part of the gnomon. The other part is got

by multiplying the latitude and the declination and dividing the result by

the root of the divisor, which is the square mentioned above. When this

result is squared, it will be the above-mentioned correction to the square of

the declination. Then, these (two) parts of the gnomon should respectively

be multiplied by the trijyā and divided by the divisor.

Now, substract the square of arkāgrā from the square of trijyā. Multiply the

remainder by the square of the co-latitude and divide by the square of trijyā.

The result obtained would be equal to half the square of the co-latitude minus

the square of the declination. Multiply this by the square of the trijyā and

divide by the square of the divisor. Since this result has to be converted

to the trijyā-vr. tta (circle with trijyā as the radius), the multiplication and

division by the square of the trijyā can be dropped. Now, from half the

square of trijyā, subtract the square of the arkāgrā; multiply the remainder

by the square of co-latitude and divide by the square of the divisor; the result

will be on the trijyā-circle. In the same manner, when the declination has

to be multiplied by the latitude, if instead the arkāgrā is multiplied and the

product is multiplied by the co-latitude and divided by the divisor, the result

will be a part of the gnomon on the trijyā-circle, the reason being that the

relation between trijyā and co-latitude is the same as that between arkāgrā

and declination. Then, the (two) parts of the gnomon have to be added

or subtracted, depending on whether the hemisphere is south or north; the

results would be the southern and northern corner-gnomons.

Here, in place of latitude and co-latitude, the equinoctial shadow and 12-

inch gnomon can be used. There, the only distinction is that the square of

the equinoctial shadow is added to half the square of 12, being 72, to get

the square of the divisor. Thus has been explained the method of deriving

the desired gnomon under problem one. It has also been indicated that

there are the above-mentioned easier methods for the case of the kon. a-śaṅku

(corner-shadow).
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11.20.3 Derivation of Nata-jyā (Rsine hour ang1e)

Now, nata-jyā (Rsine of hour angle) has to be obtained. Conceive of the

maximum divergence between the desired diṅman. d. ala and the north-south

circle as the Rcosine of the desired āśāgrā (is. t.āśāgrā-kot.i). A consideration

of what it would be on the tip of the shadow, would lead to the chāyā-kot.i.

This chāyā-kot.i is the nata-jyā. The distinction is that, in order to convert

it in terms of its own minutes of arc in the diurnal circle, the above should

be multiplied by trijyā and divided by dyujyā. Now, the products of Rcosine

āśāgrā and shadow, of chāyā-kot.i and trijyā, and of nata-jyā and dyujyā

would all be numerically the same. Hence, when a factor of one of these is

used to divide the product of the other two, the second factor would be got.

This fact might be kept in mind in the present problem, as also in all the

other problems. Thus ends problem one.

11.21 Problem two: Śaṅku and Apakrama

11.21.1 Derivation of the gnomon

Now, the second problem. Here, using the nata-jyā, āśāgrā and aks.a, the

other two, viz., śaṅku and krānti (or apakrama) are to be derived. The

geometrical construction (ks.etra-kalpana) here is as follows: Construct a

circle touching the two poles and the planet. This is called nata-vr. tta. The

maximum divergence between the nata-vr. tta and the north-south circle is

on the ghat.ikā-man. d. ala. Construct another great circle passing through the

zenith and the point where the nata-vr. tta meets the horizon. This circle

is called nata-sama-man. d. ala. Mark the point on the horizon a quarter of

the circumference away along the horizon from the point where the nata-

sama-man. d. ala and the horizon meet each other. Construct another circle

passing through this point and the zenith. This circle is called nata-dr. kks.epa-

vr. tta. It is on this circle that the maximum divergence between the nata-

vr. tta and the nata-sama-man. d. ala occurs. It is again on this circle that the

maximum divergence between the nata-vr. tta and the horizon occurs. The

above-said two maximum divergences are called, respectively, svadeśa-nata
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and svadeśa-nata-kot. i. Now, construct the is. t.a-digvr. tta and vyasta-digvr. tta

as instructed earlier (in connection with problem one). Now, the extent by

which the nata-vr. tta is below the zenith on the nata-dr. kks.epa-man. d. ala, to

that extent the pole of the nata-man. d. ala would be higher than the horizon

on the same vr. tta (nata-dr. kks.epa-man. d. ala). The point of intersection of the

nata-dr. kks.epa-man. d. ala and the ghat.ikā-vr. tta is also the pole of the nata-

vr. tta.

Now, construct another circle passing through the point of intersection of the

horizon and the vyasta-digvr. tta and the pole of the nata-vr. tta on the nata-

dr. kks.epa-man. d. ala. This will be a tiryag-vr. tta which is perpendicular (?)

both to the nata-vr. tta and is. t.a-digvr. tta. Note how much this tiryag-vr. tta

is above the horizon on the is. t.a-digvr. tta; to that extent will the point of

intersection of the digvr. tta and the nata-vr. tta be lower from the zenith. The

distance between the zenith and the nata-vr. tta on the digvr. tta will be the

shadow. Its kot.i will be the gnomon.

Now, moving from the northern Dhruva to the ghat.ikā-vr. tta on the north-

south circle, the divergence between the nata-vr. tta and the north-south circle

is the nata-jyā. The co-latitude thereof is the distance between the Dhruva

and the zenith. The distance from this to the nata-vr. tta will be the svadeśa-

nata. Put one end of this at the point of intersection of the nata-vr. tta and the

svadeśa-nata-vr. tta. The kot.i of this svadeśa-nata-jyā would be the distance

from this point to the horizon. Now, presume that the is. t.āśāgrā meets the

horizon a little to the south of the east cardinal point. In that, the gnomon

shall also be in the same way. In this situation, the nata-vr. tta will meet the

horizon a little to the west of the north svastika and a little to the east of

the south svastika. The svadesa-nata-vr. tta will then touch the horizon that

much to the north from the east svastika and that much south from the west

svastika.

The vidiṅ-man. d. ala (vidig-vr. tta) will meet the horizon at a point west of

the south svastika by a length equal to the is. t.āśāgrā. From that point, the

tiryag-vr. tta will begin to rise. When it reaches the svadeśa-nata-vr. tta, it
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would touch the pole (of the nata-vr. tta) which is above the horizon by the

extent of Rsine of svadeśa-nata. The distance between the pole of the nata-

vr. tta and the horizon is the divisor here. When this tiryag-vr. tta reaches

the digvr. tta, it would have traversed one quadrant from its point of contact

with the horizon. Hence, in this digvr. tta, the tiryag-vr. tta and the horizon

would have their maximum divergence. And that (divergence) is equal to the

shadow. Its kot.i, which is equal to the gnomon, would be the distance from

the zenith on the digvr. tta to the point of intersection of the digvr. tta and the

tiryag-vr. tta. This will be the maximum divergence between the tiryag-vr. tta

and the vidig-vr. tta. When the difference between the nata-vr. tta and the

horizon becomes equal to svadeśa-nata-kot. i, its hypotenuse is trijyā. This

being so, by applying the rule of three to find what it will be for dhruvonnati,

we will obtain the distance between the north pole and the horizon on the

nata-vr. tta. Now, the maximum difference between the nata-vr. tta and the

north-south circle is the nata-jyā. Then, consider the proportion: When so

much is the divergence in the north-south circle for the dhruva-ks. itijāntarāla-

jyā on the nata-vr. tta, what will be the divergence in the north-south circle

for the dhruva-ks. itijāntarāla-jyā; thus the divergence between the nata-vr. tta

and the north-south circle on the horizon would be obtained. The same will

be the divergence of the point of intersection of the nata-dr. kks.epa and the

horizon, to the south of the western svastika. Subtract this from the kot.i of

āśāgrā. The remainder will be the divergence of the svadeśa-nata-vr. tta and

the vidig-vr. tta on the horizon.

Here, when Rsines are added or subtracted, they should mutually be mul-

tiplied by their kot.i-s and the results added or subtracted and then divided

by trijyā. [According to the above rule, the following is to be done]: The

nata-jyā is multiplied by the latitude and divided by the svadeśa-nata-kot. i.

The square of this is subtracted from the square of trijyā and the square root

found. This root is multiplied, respectively, by āśāgrā and āśāgrā-kot. i. Find

the difference between the products found, if the gnomon is in the south,

and add them if the gnomon is in the north. If this is divided by trijyā, the

result would be the divergence between the svadeśa-nata-vr. tta and the vidig-

vr. tta, on the horizon. Now if the āśāgrā is to the north in the forenoon, the
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point of contact of the vidig-vr. tta and the horizon would be away from the

north svastika towards the west at a distance equal to the āśāgrā. From this

point the trijyā-vr. tta begins to rise. And, from this point, the distance up

to the west svastika is the kot.i of the āśāgrā. Now, the meeting point of the

svadeśa-nāta-vr. tta and the horizon is to the south of the west svastika; there-

fore, add this distance to the kot.i of āśāgrā. The result will be the distance

from the vidig-vr. tta to the svadeśa-nata-vr. tta. This would be the maximum

divergence between the digvr. tta and the svadeśa-nata-vr. tta on the horizon.

Now, when one proceeds on the svadeśa-nata-vr. tta from the zenith up to

the pole of the nata-vr. tta (nata-vr. tta-pārśva), the divergence would be equal

to the svadeśa-nata-kot. i. Derive the vidig-vr. ttāntara for this, it being the

vidig-vr. ttāntara from the pole (nata-pārśva) of the nata-vr. tta . Square this.

Square also the svadeśa-nata-jyā, it being the altitude (nata-pārśvonnati)

of the pole of the nata-vr. tta. Add the two, and find the root. The result

will be the divergence between the pole of the nata-vr. tta and the horizon

on the tiryag-vr. tta. Take this as the pramān. a. The pramān. a-phala-s are the

altitude of the pole of the nata-vr. tta from the horizon and the divergence

between the pole of the nata-vr. tta and the vidig-vr. tta. For this pramān. a

the above two are the shadow and gnomon. Trijyā is the icchā here. The

icchā-phala-s are is. t.a-dikchāyā and gnomon.

11.21.2 Derivation of the declination

Now, when the shadow and the kot.i of āśāgrā are multiplied together and

divided by nata-jyā, the result would be is. t.a-dyujyā. Square this, subtract

from the square of trijyā and find the root. The result will be the desired

declination. Thus has been stated the second problem.

11.22 Problem three: Śaṅku and Āśāgrā

11.22.1 Derivation of Śaṅku

In the third problem, given nata, apakrama and aks.a, śaṅku and āśāgrā are

to be found. Here, when the nata and trijyā are squared, subtracted from



11.23 Problem four: Śaṅku and Aks.a 569

each other, and the root found, it will be the distance of the planet on the

diurnal circle (svāhorātra-vr. tta). This is what it would be if the radius of

the dyu-vr. tta (diurnal circle) is taken as trijyā. Then multiply this kot.i of

the nata by dyujyā and divide by trijyā. The result will be the Rsine of the

dyu-vr. tta in terms of the measure of trijyā. Subtract ks.iti-jyā from this in

the southern hemisphere and add in the northern hemisphere. Multiply the

result by the co-latitude and divide by trijyā. Śaṅku (gnomon) will result.

11.22.2 Derivation of Āśāgrā

The kot.i of the śaṅku derived above is the shadow. Multiply the nata-jyā

and dyujyā and divide by the gnomon. The result would be āśāgrā-kot. i.

11.23 Problem four: Śaṅku and Aks.a

Next, given nata, krānti and āśāgrā, to derive the śaṅku (gnomon) and aks.a

(latitude).

11.23.1 Derivation of Śaṅku (gnomon)

Now, when nata-jyā and dyujyā are multiplied together, place the product

at two places. Divide one by the kot.i of āśāgrā and the other by trijyā. The

results will be the shadow and the chāyā-kot.i. By squaring the shadow and

the trijyā, subtracting them from one another and finding the root thereof,

the gnomon is got.

11.23.2 Derivation of Aks.a (latitude)

The following is the geometrical construction (ks.etra-kalpana) for the deriva-

tion of aks.a. Construct a (smaller) north-south circle parallel to the north-

south circle at a distance equal to the chāyā-kot.i. This will be like the

diurnal circle with respect to the ghat.ikā-man. d. ala. In relation to the (nor-
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mal) north-south circle, this (new circle) would be the one on which the

true planet is situated. Construct another circle touching the planet and

the east-west svastika-s. In this situation, the distance from the planet to

the north-south circle is the chāyā-kot.i. The distance from the planet to the

east-west-svastika is the kot.i of the chāyā-kot.i. This latter kot.i would be the

radius of the kot.i-circle conceived here. The chāyā-bhujā is the Rsine in this

kot.i-radius (circle). And, that would be the distance from the planet to the

sama-man. d. ala. The kot.i of this (chāyā-bhujā) is the gnomon.

Now, the distance between the planet to the ghat.ikā-vr. tta is the declination.

The kot.i of this (declination) will be square root of the difference between

the squares of the chāyā-kot.i and dyujyā. This will be the interstice between

the planet and the unman. d. ala on this kot.i-circle. Now, multiply the chāyā-

bhujā by the kot.i of apakrama; add them or find the difference between them

as the case may be. Divide the result by the radius of the kot.i-circle, which

is nothing but the square root of the difference of the squares of trijyā and

chāyā-kot.i. The result will be the aks.a on this kot.i-circle. Now, multiply

this aks.a by trijyā and divide by the radius of the kot.i-circle. The result will

be the latitude of the place (svadeśa-aks. a). Here, if the krānti (declination)

and āśāgrā are in opposite directions, the two should be added, and if in the

same direction, they are to be subtracted from each other. Again, there will

be addition if the planet is between the unman. d. ala and the horizon. (It is

also to be noted that) the root of the difference of the squares of the chāyā

and chāyā-kot.i is the chāyā-bāhu.

Thus the four problems involving śaṅku (gnomon) have been discussed.

11.24 Problem five: Nata and Krānti

Now is discussed the derivation of the nata (hour angle) and krānti (decli-

nation) (when the other three are known).

Construct a circle with its radius as the Rsine of the arc extending from the

east or west svastika to the planet. The Rsine on this circle is the chāyā-
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bhujā. It was stated earlier that chayā-bhujā is the sum or difference of

the aks.a on the kot.i-circle and the declination on the trijyā-vr. tta. Hence,

when the aks.a on the kot.i-circle and the chāyā-bhuja are added together

or mutually subtracted, the result will be declination on the trijyā-circle.

Now, since the co-latitude and latitude have to be converted to the kot.i-

circle, multiplication by the radius of the kot.i-circle and division by trijyā are

needed. By the co-latitude and latitude so obtained, multiply, respectively,

the chāyā-bhujā and śaṅku. Add or subtract the results as the case may

be and divide by the radius of the kot.i-circle. The result will be the desired

declination. Here, multiplication or division by the kot.i-circle is not required.

Now, when simply the co-latitude and latitude are multiplied, respectively,

by the chāyā-bhujā and śaṅku, and the results added or subtracted as the

case may be and divided by trijyā, the result will be the desired apakrama

(declination). The kot.i of this would be is. t.a-dyujyā. Divide with this the

product of chāyā-kot.i and trijyā. The result will be nata-jyā (Rsine of hour

angle).

11.25 Problem six: Nata and Āśāgrā

Now are derived nata and āśāgrā (from the other three). For this, first, the

chāyā-bāhu is obtained. And that is got by the addition or subtraction of

arkāgrā and śaṅkvagrā. Now, arkāgrā is the divergence between the east and

west svastika-s and the rising and setting points of the Sun on the horizon.

And, śaṅkvagrā is the distance by which the planet has moved south at the

desired time, in accordance with the slant of the diurnal circle from the

place of its rising. Since it moves only to the south it (i.e., śaṅkvagrā) is

said to be ever to the south (nitya-daks. in. a). Then (the planet) will rise in

the northern hemisphere towards the north of the east-west svastika. Hence,

on that day the arkāgrā is ‘northern’, and in the southern hemisphere the

arkāgrā is ‘southern’. Hence, the sum of the arkāgrā and the śaṅkvagrā in

case both are in the same direction, or their difference if they are in opposite

directions, will give the distance of the planet from the sama-man. d. ala. And,

that is the chāyā-bhujā.
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Now, here the arkāgrā and declination bear the relationship obtaining be-

tween trijyā and lambaka, and the saṅku and saṅkvagrā bear the relationship

between lambaka and aks.a. Hence, if the declination is multiplied by trijyā

and the śaṅku is multiplied by aks.a and added to or subtracted from, in

accordance with the hemisphere in which they are, and divided by the lam-

baka, the result will be chāyā-bhujā. When this chāyā-bhujā is multiplied

by trijyā and divided by the chāyā, the result will be āśāgrā. And, when

the product of chāyā and āśāgrā-kot. i is divided by dyujyā the result will be

nata-jyā.

11.26 Problem seven: Nata and Aks.a

Next is derived nata and aks.a (when the other three are known). Here, the

nata-jyā is to be derived in the manner explained above. Now, the root of

the difference between the squares of chāyā-kot.i and dyujyā is the Rsine of

the distance of separation between the planet and the unman. d. ala on the

diurnal circle. This Rsine which rises from the horizon is termed unnata-jyā.

The Rsine on that part of the diurnal circle situated between the horizon

and the unman. d. ala is called ks.itija-jyā (ks.iti-jyā). Since, however, in the

southern hemisphere the unman. d. ala is below the horizon, the unnata-jyā-

plus-ks.itija-jyā is the root of the difference between the squares of chāyā-kot.i

and dyujyā. In the northern hemisphere however, it would be equal to the

unnata-jyā-minus-ks. itija-jyā.

Now, the unnata-jyā is the hypotenuse in the triangle whose sides are śaṅku

and śaṅkvagrā. The ks.itija-jyā is the bhujā of a triangle which is similar to

this triangle. In the southern hemisphere, this is the sum of the bhujā and

the hypotenuse of two triangles. (Again), in the southern hemisphere, the

chāyā-bhujā is the sum of arkāgrā and saṅkvagrā. Add this chāyā-bhujā to

the unnata-jyā to which ks.iti-jyā has been added. This will then be the sum

of the bhujā and karn. a of two triangles. In the northern hemisphere, however,

it would be the difference between the bhujā and karn. a. This would, again
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be the sum of the chāyā-bhujā and the root of the sum of the squares of the

chāyā-kot.i and dyujyā.

Here, there is a triangle with śaṅku, śaṅkvagrā and unnata-jyā as its three

sides. There is another triangle with apakrama, ks.iti-jyā and arkāgrā as its

sides. In the southern hemisphere there will be, the addition of the bhujā-s

and of the karn. a-s in these two triangles. In the northern hemisphere, how-

ever, there will be the subtraction of the sum of the two bhujā-s from the sum

of the two karn. a-s. Since these two triangles are similar (tulya-svabhāva),

even when addition or subtraction is made, it will be as if the sum and dif-

ference of the bhujā and karn. a has been done in the same triangle. By its

nature, the sum of the śaṅku and apakrama will be the kot.i of the triangle.

Therefore, in the southern hemisphere, divide the square of the sum of this

śaṅku and apakrama by the sum of the bhujā and karn. a. The result will be

their difference. In the northern hemisphere, however, divide by the differ-

ence between the bhujā and karn. a. The result will be their sum. When the

sum and difference of the bhujā and karn. a are found thus, half their sum

will be the karn. a, and half their difference will be bhujā. Now, the bhujā is

multiplied by trijyā and divided by the karn. a. The result will be the aks.a,

since the above said two triangles are similar to the triangle formed by the

lamba, aks.a and trijyā.

11.27 Problem eight: Apakrama and Āśāgrā

Next is stated the derivation of the apakrama and āśāgrā. Now, the maxi-

mum divergence between the nata-vr. tta and the horizon is the svadeśa-nata-

kot.i. Take this as the pramān. a. The divergence between the svadeśa-nata-

vr. tta and the horizon on the nata-vr. tta, is a quarter of the circumference

(90 degrees). The jyā thereof is the radius, and is the pramān. a-phala. The

śaṅku is the icchā. The distance between the planet and the horizon on

the nata-vr. tta will be the icchā-phala. For these pramān. a-phala-s, when the

altitude of Dhruva is the icchā, there will be the interstice between Dhruva

and the horizon on the nata-vr. tta.
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Now, when the planet is north of the point of intersection of the svadeśa-

nata-vr. tta and the nata-vr. tta, then subtract from one another the arcs of

the (Rsines of the) icchā and phala. The result will be the arc between the

north pole and the planet, on the nata-vr. tta. When, however, the planet is

to the south of the abovesaid point of intersection, add together the arcs of

the Rsines of the icchā and phalā. The result will be the arc between the

south pole and the planet on the nata-vr. tta. The Rsine of this is the dyujyā.

The kot.i thereof is the apakrama. The āśāgrā can be derived as discussed

before.

11.28 Problem nine: Krānti and Aks.a

Next, are krānti (declination) and aks.a (latitude). First, derive the dyujyā

and (using that) derive the krānti. The aks.a shall be derived by one of the

(two) methods described earlier (in the fourth and the seventh problems).

11.29 Problem ten: Āśāgrā and Aks.a

Next are, derived digagrā and aks.a. Multiply dyujyā and nata-jyā or, chāyā-

kot.i and trijyā. Either of the two shall be divided by the chāyā. The result of

the division would be āśāgrā-kot. i. The aks.a can be derived as stated earlier.

Thus have been stated the answers for all the ten problems.

11.30 Is. t.a-dik-chāyā : Another method

Now is stated, a method for the derivation of the is. t.adik-chāyā (shadow in

any desired direction). Now, consider the shadow of a l2-inch gnomon when

the planet is at the point of intersection of the ghat.ikā-man. d. ala and the

is. t.a-diṅman. d. ala (i.e., the vertical passing through the planet at the desired

location). When the planet is at the equinox, the chāyā-bhujā of gnomonic

shadow will be equal to the equinoctial shadow. The āśāgrā on the trijyā

circle will be the chāyā-bhujā in the circle whose diameter is the shadow
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of the l2-inch gnomon. In order to find the chāyā-kot.i when it (i.e., the

āśāgrā) becomes equal to the equinoctial shadow, multiply āśāgrā-kot. i and

equinoctial shadow and divide by the āśāgrā. The result will be the chāyā-

kot.i. Square this and the equinoctial shadow, add and find the root. The

result will be the shadow of the 12 inch gnomon when the planet is on the

ghat.ikā-man. d. ala. If this shadow is converted to (the shadow in) the trijyā-

vr. tta, the result will be the distance between (the zenith and) the ghat.ikā-

man. d. ala in the is. t.a-diṅman. d. ala. This can be conceived to be representive

of the latitude (aks.a-sthān̄ıya). Here, the distance between the zenith and

the ghat.ikā-man. d. ala on the north-south circle is the latitude. The distance

on the same between the ghat.ikā-man. d. ala and the diurnal circle is the dec-

lination. Hence the latitude and the representative of latitude will be the

pramān. a and pramān. a-phala and the icchā will be the declination. For that

icchā, the icchā-phala would be the distance from the ghat.ikā-man. d. ala to

the diurnal circle on the is. t.a-digvr. tta. This will be the representative of

the declination (apakrama-sthān̄ıya). Then, following the method by which

the noon-day shadow is computed, when the arcs of the representatives of

the latitude and the declination are added together or subtracted from each

other and the Rsine thereof is found, the result will be the shadow in the

desired direction.

11.31 Kāla-lagna, Udaya-lagna and Madhya-lagna

Now is stated the method for deriving the kāla-lagna (time elapsed since the

rise of the first point of Aries) and udaya-lagna (the orient ecliptic point).

Here, the ecliptic, i.e., the great circle which is the central circle of the

zodiac (rāśi-cakra), which revolves westwards on account of the Pravaha-

vāyu, touches the horizon at the desired time, (at two points) either towards

the north or south of the east and west svastika-s. Lagna is a point of

contact of the ecliptic and the horizon. Conceive of a circle touching the two

lagna-s and the zenith. This is called lagna-sama-man. d. ala. Now, conceive of

another circle touching the zenith and the points on the horizon, which are as

much removed from the north-south svastika-s as the lagna-sama-man. d. ala is

removed from the east-west svastika-s. This circle is termed dr. kks.epa-vr. tta .
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This circle and the lagna-sama-man. d. ala will be at right angles (vipar̄ıta-dik).

These two circles and the horizon divide the celestial sphere into octants.

Here, in the centre would be situated the apakrama-vr. tta. Here, the rāśi-kūt.a

(the converging points of the sign segments of the ecliptic), which is the pole

of the ecliptic, will be raised with respect to the horizon on the dr. kks.epa-

vr. tta by the same amount by which the point of contact of the ecliptic

and the dr. kks.epa-vr. tta is depressed from the zenith, which also represents

the maximum divergence between the lagna-sama-man. d. ala and the ecliptic.

This is because the zenith is removed by a quarter of the circle (from the

horizon).

Now, that point on the ecliptic which is removed farthest from the ghat.ikā-

man. d. ala is called ayanānta. Here, that circle which passes through the

farthest points of the ecliptic and the ghat.ikā-man. d. ala will pass through the

four poles of the ghat.ikā-man. d. ala and the ecliptic. Hence, the two inter-

stices between the poles will be contained in this circle passing through the

ayanānta-s.

Let it be conceived that the observer is on the equator, and the vernal

equinox is at the zenith. Then the north solstice would be removed to the

north from the eastern svastika by the measure of the maximum declination

on the equatorial horizon, and the south solstice would be that much removed

from the western svastika towards the south. The two rāśi-kūt.a-s would be

on the horizon, one to the east of the south-svastika, and the other to the

west of the north-svastika. When the north solstice would rise from the

horizon, on account of the Pravaha-vāyu, the south rāśi-kūt.a will also rise.

In the same manner, they reach the north-south circle and the horizon in the

west at the same instant. Thus the rising and setting of the the southern

ayanānta (winter solstice) and the northern rāśi-kūt.a occur at the same

moment. Thus, the altitude of the rāśi-kūt.a-s is in exact accordance with

the altitude of the solstices. Hence the Rsine altitude of the solstice is equal

to the Rsine altitude of the rāśi-kūt.a-s.

Now, the gnomon for the rāśi-kūt.a has to be derived. That will be the alti-

tude of the rāśi-kūt.a from the horizon. Now, since the rāśi-kūt.a is removed
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from the pole as much as the maximum declination, the maximum decli-

nation would be equal to the (radius of the) diurnal circle of the rāśi-kūt.a.

Therefore multiply the Rsine altitude of the solstice (ayanāntonnata-jyā)

with the maximum declination and divide by trijyā. The result would be

the gnomon of the rāśi-kūt.a at the equator. At places with latitude, since

it (i.e., the equator) would be inclined, this should be multiplied by the co-

latitude and divided by trijyā and the result should be added to the portion

of the gnomon (derived) above corresponding to the interstice between the

horizon and the hour circle (unman. d. ala), in the case of the gnomon pertain-

ing to the northern rāśi-kūt.a, and subtracted from the gnomon pertaining

to the southern rāśi-kūt.a. The result will be the gnomon of the rāśi-kūt.a.

Now, conceive of a circle touching the rāśi-kūt.a-s and the zenith. That is

clearly the dr. kks.epa-vr. tta. On this circle, the meeting point with the ecliptic

would be located below the zenith by the same amount by which the gnomon

is lower than the rāśi-kūt.a. That will be the dr. kks.epa. Hence, it follows

that the gnomon of the rāśi-kūt.a will itself be the dr. kks.epa. Now, arises

the proportion: If the latitude is the gnomon for the distance between the

horizon and the hour circle (unman. d. ala) when (a point) moves from east-

west svastika to the pole on the hour circle (unman. d. ala), then what will be

the gnomon for the antya-dyujyā when it moves by the distance between

the diurnal circle and the rāśi-kūt.a. The result will be the portion of the

gnomon for the interstice between the equator and the hour circle at the

desired place.

Then the Rsine of 90 degrees-minus-kāla-lagna will be equal to the Rsine of

the altitude (unnata-jyā) of the rāśi-kūt.a from the hour circle. If this Rsine

is converted to the required diurnal circle and from it is subtracted the

correction to the extent of the lamba due to the inclination of the latitude,

the result will be the gnomon of the rāśi-kūt.a. Kāla-lagna with respect to the

equinox (golādi) when subtracted from 90 degrees will be the kāla-lagna with

respect to the solstice (ayanādi). Hence it is enough to take the Rsine of the

kāla-lagna-kot.i. The kot.i of dr. kks.epa-jyā thus derived, will be the greatest

distance between the horizon and the ecliptic. Take this as the pramān. a, and
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trijyā as the pramān. a-phala. Now, the gnomon of the planet at the required

time is the distance between the horizon and the point on the ecliptic where

the planet is. That will be the icchā-rāśi. The icchā-phala would be the

interstice between the horizon and the planet along the ecliptic. Convert

it into arc and add or subtract the arc (i.e., the longitude) of the planet;

the result would be the portion of the ecliptic between the equinox and the

point of contact with the horizon. That will be the lagna at the time of the

setting of the planet (asta-lagna) in the west, and in the east, it will be the

time of the rising of the planet (udaya-lagna).

Next, the method to derive the gnomon at this place. Now the nata (hour

angle) is the interstice, on the diurnal circle, between the planet and the

north-south circle. Now, all diurnal circles would have revolved once during

a day and night. In a day-night, the number of prān. a-s would be equal to

21,600 (cakra-kalā-tulya) in number. Hence, when all the diurnal circles are

conceived as divided into prān. a-s, they would be 21,600 in number. Hence,

the nata-prān. a-s are only part of the minutes in the diurnal circle. Therefore,

the Rsine of 90 degrees less the Rversine of the hour angle, would be equal

to the Rsine of the portion of the diurnal circle in the interstice between the

planet and the hour-circle. If to this, the correction due to the cara-jyā is

applied, the result will be the Rsine of the altitude from the horizon (unnata-

jyā). In order to convert it to the circle with trijyā as radius, it should be

multiplied by dyujyā, and to correct for the inclination on account of the

latitude, it should be multiplied by the co-latitude (lambaka) and divided by

the square of trijyā. The result got would be the distance on the required

diṅman. d. ala (vertical circle), from the horizon to the place in the diurnal

circle where the planet is situated. This will be the (required) gnomon.

Since the point where the Sun is on the diurnal circle would touch the ecliptic,

the distance between the horizon and that point on the ecliptic would be

this very same gnomon. Hence, this gnomon will be the icchā. Hence,

that portion of the ecliptic which is between the planet and the horizon of

which the gnomon is the icchā, even during night time, the gnomon derived

as above would be the distance between the specified point on the ecliptic
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and the horizon. Hence, the gnomon would be the icchā-rāśi during night

time also. Here, the difference between half the measure of the night and

the portion of the night which has either gone (gata) or is yet to go (es.ya),

would be the nata-prān. a-s (prān. a-s of the hour angle). This is for the reason

that this is the portion of the diurnal circle corresponding to the difference

between the planet and the north-south circle below. When the Rversine of

this is subtracted from trijyā, the result will be the Rsine of that portion of

the diurnal circle between the planet and the hour circle. To convert this to

the difference between the horizon and the planet, subtract from it the cara

in the northern hemisphere, and add the cara in the southern hemisphere.

Then derive the gnomon as before. Then multiply that by trijyā and divide

by the dr. kks.epa-kot.i. The result will be the Rsine of the interstice between

the planet and the horizon on the ecliptic. Find the arc of this Rsine and

add to the (longitude of the) planet in the eastern hemisphere and subtract

from the planet if the gnomon is directed below. The result will be the lagna

at the time of rising. In the western hemisphere if this is applied to the

planet in the reverse order, the lagna at setting would be obtained. The

lagna exactly at the middle of the rising and setting is the dr. kks.epa-lagna.

And, that will fall at the point of intersection of the dr. kks.epa circle with the

ecliptic.

Now, madhya-lagna is the point of intersection of the north-south circle and

the ecliptic. This can be obtained using the method of fifteen questions

(pañcadaśa-praśna-nyāya) dealt with earlier. The madhya-kāla is the point

of intersection of the north-south circle and the celestial equator (ghat.ikā-

man. d. ala). This can be obtained from the method of madhya-lagna.

11.32 Kāla-lagna corresponding to sunrise

Kāla-lagna is madhya-kāla plus three rāśi-s (90 degrees), which will fall at the

point where the celestial equator meets the eastern svastika. The method

to derive this is stated now. If the sāyana Sun is in the first quadrant,

then derive its bhujā-prān. a-s as stated earlier. Construct a transverse circle

(tiryag-vr. tta) passing through the Sun on the ecliptic and the two poles (of
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the equator). Note the point where it touches the celestial equator. The

distance from that point to the point of equinox on the celestial equator

would be the measure of the bhujā-prān. a-s. If the Sun is supposed to be at

the horizon, then the meeting point of the celestial equator and the tiryag-

vr. tta will be a little below the eastern svastika, with the distance being

equal to the cara. Hence when the required cara is subtracted from the

bhujā-prān. a, the result will be the distance from the eastern svastika to the

equinox on the celestial equator. This will be the kāla-lagna when the sāyana

Sun is in the first quadrant.

Similarly, in the second quadrant, when the Sun rises calculate the bhujā-

prān. a-s of the Sun. Construct also the transverse circle (tiryag-vr. tta) as

before. Here too, as stated earlier, the distance between this transverse

circle and the equinox to the north would be the bhujā-prān. a-s. Here, the

bhujā-prān. a-s would occur below the horizon and the intersection with the

transverse circle would occur below the eastern svastika. Therefore, add

the cara to the bhujā-prān. as-s and subtract (the sum) from 6 rāśi-s (180

degrees). The remainder would be the difference from the eastern svastika

to the equinox in the east, on the celestial equator. That will be the kāla-

lagna at the time of sunrise.

In the third quadrant, the sunrise is to the south of the eastern svastika.

There, the horizon would be above the hour circle and hence the transverse

circle constructed would be above the eastern svastika. Therefore, to reach

upto the svastika, the prān. a-s of cara have to be added to the bhujā-prān. a-s.

And, that has its beginning in the equinox to the north. Hence six rāśi-s

(180 degrees) are to be added. The result will be the kāla-lagna.

In the fourth quadrant also, as in the second quadrant, there is a portion

of arc yet to be traversed (es.ya), the bhujā-prān. a-s are below the horizon.

Since the transverse circle is above the eastern svastika, to reach up to the

horizon, the prān. a-s of cara are to be subtracted from the bhujā-prān. a-s.

Thus the subtraction has to be done from all the twelve rāśi-s, since it is yet

to be traversed. This is the kāla-lagna for sunrise. In this manner, the kāla-
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lagna for all the twelve rāśi-s have to be calculated and the earlier ones have

to be subtracted from the subsequent ones, successively. The differences

would be, in order, the rāśi-pramān. a-s (appropriate time measures for the

rāśi-s). Now, the twelve rāśi-s are formed by dividing the ecliptic equally,

commencing from equinox in the east. When, as a result of the motion of

the Pravaha-vāyu, when the forefront of a rāśi meets the horizon, that rāśi

is said to commence. When its hind end leaves the horizon, that rāśi is said

to end. The time interval between these two events are said to be the time

measure of the rāśi-prān. a-s. Thus, incidentally, the rāśi-s and time measure

of rāśi-s have also been stated.

11.33 Madhya-lagnānayana: Calculating the merid-

ian ecliptic point

In this manner, calculate the kāla-lagna for (the required) sunrise and add

to it the time elapsed (since sunrise) in terms of prān. a-s. That will be the

kāla-lagna of the desired time. When three rāśi-s are subtracted from it the

result will be the point of contact of the celestial equator and the north-south

circle. This would be the madhya-kāla.

The kot.i of this would be that portion of the celestial equator lying between

the equinox and the east-west cardinal points. Calculate the Rsine declina-

tion (apakrama-jyā) corresponding to this kot.i. That will be the distance

between the celestial equator and the ecliptic on the rāśi-kūt.a-vr. tta which

touches the east and west cardinal points. Then derive the kot.i-jyā and

dyujyā for this and obtain the bhujā-prān. a-s. That will be the kot.i of the

interstice on the ecliptic between the equinox and the point of intersection

of the rāśi-kūt.a-vr. tta and ecliptic mentioned above. Then, consider the por-

tion of the ecliptic contained in the interstice between the equinox and the

north-south circle. This will be madhya-bhujā. The rest (of the work) is as

per the different quadrants, as has already been stated for kāla-lagna. The

only distinction here is that the ecliptic is considered as the celestial equator
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and the celestial equator is considered as the ecliptic. Thus has been stated

the method of deriving the madhya-lagna.

11.34 Dr. kks.epa-jyā and Kot.i

Now is stated the method for deriving dr. kks.epa-jyā using the udaya-lagna

and madhya-lagna. First conceive the ecliptic and dr. kks.epa-man. d. ala as di-

rected above. Then, that point of the ecliptic which meets the horizon to

the east of the north-south circle is called udaya-lagna (rising or orient eclip-

tic point), and that point which touches (the horizon) at the west is called

asta-lagna (setting or occident ecliptic point). That point (of the ecliptic)

which touches the north-south circle is called madhya-lagna. The method to

ascertain these has been stated earlier.

Now, udaya-jyā would be the distance from the east and west svastika-s of

the point of contact of the ecliptic with the horizon. The udaya-jyā should

be derived in the same manner as the arkāgrā, (with the difference) that

the udaya-lagna is (here) taken as the Sun. Now, madhya-jyā would be

the distance from the zenith to the point of intersection of the ecliptic and

the north-south circle. This has to be derived in the same manner as the

madhyāhnacchāyā, with the difference that madhya-lagna is taken as the

Sun.

Now, the prime vertical and dr. kks.epa-sama-man. d. ala meet at the zenith,

and have their maximum divergence on the horizon. This maximum diver-

gence is the udaya-jyā. Now, the dr. kks.epa-vr. tta is perpendicular (vipar̄ıta)

to the dr. kks.epa-sama-man. d. ala. Hence the maximum divergence between

the dr. kks.epa-vr. tta and the north-south circle on the horizon will be equal

to the udaya-jyā. Such being the case, if the madhyama-jyā is towards the

south, take as pramān. a the karn. a (i.e., the radius) of the north-south circle

which has its end in the southern svastika. If however, the madhyama-jyā

is towards the north, take as pramān. a the radius which has its end in the

northern svastika. Then, the pramān. a-phala would be the distance between
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the (south or north) svastika to the dr. kks.epa-vr. tta on the horizon, which is

the same as the udaya-jyā. Icchā will be the madhya-jyā. And, icchā-phala

would be the interstice between the end of the madhya-jyā to the dr. kks.epa-

vr. tta on the ecliptic. This is taken as the bhujā. This would be the Rsine

of that portion of the ecliptic lying between madhya-lagna and dr. kks.epa-

lagna. The square of this is subtracted from the square of trijyā and the

root of this would be its kot.i. This will be the Rsine of the portion of the

ecliptic which is between the north-south circle and the horizon. When the

square of the bhujā is subtracted from the square of the madhya-jyā and

the root extracted, the result would be the distance between madhya-lagna

and dr. kks.epa-sama-man. d. ala. Take this as the pramān. a-phala and the kot.i

mentioned above as the pramān. a. Then take the radius of the ecliptic which

has its end at the dr. kks.epa-lagna as icchā and derive the icchā-phala by the

rule of three. The result would be dr. kks.epa-jyā. It is the icchā-phala since it

is the maximum divergence between the ecliptic and the dr. kks.epa-man. d. ala.

Now take as pramān. a what has been stated as pramān. a above, the distance

between the madhya-lagna and the horizon, which is an Rsine on the north-

south circle. Consider the madhyama-jyā-kot. i as the pramān. a-phala, and

the trijyā as icchā. The resultant icchā-phala would be the maximum di-

vergence between the ecliptic and the horizon, since the divergence between

the dr. kks.epa-lagna and the horizon is a Rsine on the dr. kks.epa-vr. tta. This is

called dr. kks.epa-śaṅku or para-śaṅku and dr. kks.epa-kot.i. Thus has been stated

the methods for deriving dr. kks.epa-jyā and dr. kks.epa-kot.i.

11.35 Parallax in latitude and longitude (Nati and

Lambana)

Next are stated the methods for deriving nati (parallax in latitude) and lam-

bana (parallax in longitude) which are used in computations relating to the

Moon’s shadow, eclipses and the like. Here, lambana is the amount by which

the shadow on the dr. ṅman. d. ala which has its centre at dr. ṅmadhya (the lo-

cation of the observer), is more than the shadow on the dr. ṅman. d. ala whose
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centre is bhagola-madhya (the centre of the celestial sphere). This has been

stated in chāyā-prakaran. a. Conceiving this lambana as the karn. a, a method

to derive the actual nati and lambana is going to be stated presently. Con-

ceive, as before, the dr. kks.epa circle (vertical circle through the central eclip-

tic point), ecliptic and dr. ṅman. d. ala (vertical circle). Conceive also another

rāśi-kūt.a-vr. tta passing through the two rāśi-kūt.a-s (poles of the ecliptic) and

the planet. Such being the case, the planet will be at the meeting place of

rāśi-kūt.a-vr. tta passing through the planet and dr. ṅman. d. ala and the ecliptic.

Now, consider these three circles as having not been shifted by parallax and

the planet to have a parallactic shift. When the planet is shifted by parallax,

it is shifted downwards along the dr. ṅman. d. ala. Here, the interstice along the

dr. ṅman. d. ala between the planet shifted by parallax and the (location of the

unshifted planet at the) meeting point of the circles is the chāyā-lambana

(parallax of the shadow). Then, the distance from this parallactically shifted

planet to the ecliptic is its nati (parallax in latitude). And, the interstice

between this shifted planet to the rāśi-kūt.a circle passing through the (un-

shifted) planet will be its lambana (parallax in longitude). These parallaxes

in latitude and in longitude form the bhujā and kot.i, and the chāyā-lambana

will be the hypotenuse.

11.36 Second correction for the Moon

Now the method to compute the chāyā-lambana. This can be done as stated

earlier by computing the dr. kkarn. a which is in terms of minutes; it can also

be obtained (in terms of yojana-s) by converting the dr. kkarn. a into yojana-s.

The method for this is stated herein below.

Now, the manda-karn. a of the Sun and the Moon is the distance between

the planet – (here Sun and Moon) – and the centre of the bhagola (sphere

of the asterisms). For them, the second-true-hypotenuse (dvit̄ıya-sphut.a-

karn. a) is the interstice between the planet and the centre of the Earth.

Here, the interstice between the centre of the bhagola and the centre of the

Earth, will vary in accordance with that between the candrocca and the Sun.
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Conceive that (later) interstice as the radius of the ucca-n̄ıca circle. Now, the

centre of the Earth and the centre of the bhagola are displaced along the line

connecting the centre of the orb of the Sun and the centre of the shadow of

the Earth. Hence, that line is the ucca-n̄ıca line. Since the Sun is always on

this ucca-n̄ıca line, in both the circles, the circle with its centre at the centre

of the bhagola, and the circle with centre of the Earth as its centre, its sphut.a-

kalā (true longitude in minutes) is (the same); there would be difference only

in the hypotenuse (karn. a). For the Moon, however, there is motion from the

ucca-n̄ıca line. And that will be the motion away from the Sun. Hence,

the tithi-s (lunar days) of specific lengths, commencing from pratipad would

be the kendra, being the planet-minus-ucca. Therefore, calculate the bhujā-

phala and kot.i-phala using the radius of the ucca-n̄ıca circle, which is the

distance from the centre of the bhagola and the centre of the Earth, and

the Rsines and Rcosines of the required tithi. Then, using these (bhujā and

kot.i-phala-s) and the manda-karn. a compute the dvit̄ıya-sphut.a-karn. a, either

in terms of minutes or in terms of yojana-s. Then, using this karn. a, correct

the bhujā-phala and apply that bhujā-phala to the Moon. The result will be

the candra-sphut.a on the circle with the centre of the Earth as the centre.

Thus is computed the dvit̄ıya-sphut.a by the principle of ś̄ıghra-sphut.a.

Now, the radius of the ucca-n̄ıca circle is variable. Here is the rule relating

to it. Now, conceive of a line passing through the centre of the bhagola and

at right angles to the ucca-n̄ıca line passing through (the orbs of) the Sun

and the shadow of the Earth. If the candrocca lies on that side of the line

where the Sun is, then the centre of the bhagola will move to that side from

the centre of the Earth. The Sun will be at its ucca (apogee) at that time.

If, however, the candrocca is on that side of the transverse line where the

Earth’s shadow is, then the centre of the bhagola will move from the centre

of the Earth towards the Earth’s shadow. Since, at that time, the apogee

is at the Earth’s shadow, here also the lengthening and shortening of the

radius of the ucca-n̄ıca-vr. tta will be according to the Rcosine of Sun-minus-

candrocca. Here also, if the quadrants (beginning with) Mr. ga and Karki are

the same for both Rcosine Sun-minus-candrocca and Moon-minus-Sun, then
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the Rcosine of Moon-minus-Sun has to be applied positively in the manda-

karn. a, otherwise negatively. When there is viks.epa (latitude) the above-said

kot.i-phala shall have to be applied to the viks.epa-kot.i.

Just as the viks.epa derived from the manda-sphut.a is squared and it is sub-

tracted from the square of the manda-karn. a, if it is measured in terms of

the minutes of the pratiman. d. ala, and from the square of trijyā being the

radius of the manda-karn. a circle, if it is measured in terms of the minutes

of manda-karn. a circle, and the root found and the resulting viks.epa-kot.i is

corrected by kot.i-phala measured in similar units (angular or in yojana-s):

In the same manner, here also, square the latitude derived from the Moon’s

first sphut.a, and subtract it from the square of the first hypotenuse or the

square of the trijyā and extract the root. The result would be viks.epa-kot.i.

To this should be applied the second kot.i-phala (dvit̄ıya-sphut.a-kot.i-phala).

Here, the antya-phala in the case of dvit̄ıya-sphut.a is half the Rcosine of

Sun-minus-Moon. Since this would be in terms of yojana-s, the bhujā-phala

and kot.i-phala of dvit̄ıya-sphut.a which are derived by multiplying the Rsine

and Rcosine of Sun-minus-Moon by the above-said (antya-phala) and divid-

ing by trijyā, would also be in terms of yojana-s. Therefore, the viks.epa-kot.i

should also be converted into yojana-s and the kot.i-phala should be applied

to it. To the square of this add the square of the bhujā-phala, and extract

the root. The result will be the yojana-s between the centre of the Earth and

the centre of the Moon. Then, multiply the bhujā-phala by trijyā and divide

by this karn. a and apply the result to the sphut.a of the Moon. The method

of this correction will be stated later. If the Rcosine of Sun-minus-candrocca

is in the Makarādi quadrant, subtract the bhujā-phala from the Moon in the

bright fortnight, add in the dark fortnight. If it is the Karkyādi quadrant,

add in the bright fortnight and subtract in the dark fortnight.

Then, multiply the mean motion (of the Moon) by ten and by trijyā and

divide by the second sphut.a-karn. a. The result will be the (mean) dvit̄ıya-

sphut.a-gati. Thus is the method of dvit̄ıya-sphut.a. With this, the true Moon

on the circle with its centre at the centre of the Earth, and having at its

circumference the centre of the Moon’s orb can be derived. From this, the
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sphut.a on the circle with its centre at the observer standing on the Earth’s

surface (bhū-pr. s. t.ha) can be derived.

11.37 Chāyā-lambana: Parallax of the gnomon

The method for this (derivation) using the correction for parallaxes in lati-

tude and longitude (nata-lambana-sam. skāra) is stated here. This method is

only slightly different from the method stated for the chāyā-lambana. The

chāyā-lambana in this case is conceived of in two parts. By how much has the

planet, which is shifted along the path of the shadow, been deflected along

the ecliptic, and secondly, by how much it has been deflected along the rāśi-

kūt.a circle passing through the planet. The first is called lambana (parallax

of longitude) which will be the difference between the sphut.a-s. The latter is

called nati (parallax in latitude). This will be in the form of latitude. Now,

consider a situation when a planet without latitude and hence located on

the ecliptic itself, happens to be passing through the zenith in the course of

its motion caused by the Pravaha-vāyu. At that time, the ecliptic itself will

be the dr. ṅman. d. ala (vertical circle). Hence, the chāyā-lambana will be the

apparent depression towards the horizon along the ecliptic. Then, when the

planet is on the dr. kks.epa-man. d. ala, since at that time both the dr. ṅman. d. ala

and the rāśi-kūt.a circle passing through the planet are identical, the chāyā-

lambana which will be along the dr. ṅman. d. ala will be at right angles to the

ecliptic. Hence, the chāyā-lambana will be wholly in latitude and there will

be no difference between the sphut.a-s. On the other hand, when the rāśi-

kūt.a circle passing through the planet, the ecliptic and the dr. ṅman. d. ala, are

all different, then the planet which is deflected from the meeting point of the

three circles due to parallax along the dr. ṅman. d. ala, will deviate from both

the rāśi-kūt.a circle and the ecliptic. There, the deflection from the rāśi-kūt.a

circle will be the difference between the sphut.a-s and the deflection from the

ecliptic is the latitude. If there is already a latitudinal deflection, then this

will be the difference between the latitudes.

Here the division into quarters is through the rāśi-kūt.a circle and the ecliptic.

Conceive the dr. ṅman. d. ala as the valita (inclined) circle to these. Conceive
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also the chāyā, which is the distance of separation between the planet and

the zenith along the dr. ṅman. d. ala, to have its foot at the meeting point of the

three circles and its tip at the zenith. Then, ascertain at what distance are

the ecliptic and the rāśi-kūt.a circle, passing through the planet, from the tip

of the chāyā.

Now, the distance from the zenith to the ecliptic is the dr. kks.epa-jyā. The

dr. kks.epa circle and the rāśi-kūt.a circle passing through the planet, have

their meeting point at the rāśi-kūt.a-s. Their maximum divergence is on the

ecliptic and is the distance between dr. kks.epa-lagna and the planet. It is to

be pramān. a-phala here. The interstice between the rāśi-kūt.a-vr. tta and the

dr. kks.epa-lagna, being the trijyā on the relevant section of the dr. kks.epa, is

the pramān. a. In this dr. kks.epa circle itself, the interstice between the zenith

and the rāśi-kūt.a is dr. kks.epa-kot.i. This is the icchā. The icchā-phala is the

interstice between the zenith and the rāśi-kūt.a circle passing through the

planet. This is called dr. ggati-jyā. These two, the dr. ggati and the dr. kks.epa,

would be the bhujā and kot.i for the chāyā, and the chāyā itself would be the

hypotenuse. In the same way, on the other side of the meeting point of the

three circles, the differences between the latitudes and of the sphut.a-s will

be the bhujā and kot.i for the hypotenuse formed by the portion forming the

chāyā-lambana in the dr. ṅman. d. ala. Here, chāyā is the pramān. a, dr. kks.epa

and dr. ggati are the pramān. a-phala-s, the chāyā-lambana is the icchā and

nati and lambana are the icchā-phala-s.

Therefore, the nati and the lambana might be derived using the dr. kks.epa

and dr. ggati. There, using the proportion: when the chāyā becomes equal to

trijyā, the chāyā-lambana would be equal to the radius of the Earth, then

how much it will be for the desired chāyā. Similarly, when the dr. kks.epa and

dr. g-gati become (separately) equal to trijyā, the nati and the lambana will

each be equal to the number of minutes in the radius of the Earth, then

what will the nati and lambana be for the desired dr. kks.epa and dr. ggati.

Now, multiply the dr. kks.epa and dr. ggati by the yojana-s of the radius of the

Earth and divide by the yojana-s of dr. kkarn. a. Here, we can avoid multiplying
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and dividing by trijyā since there will be no difference in the result. Here, it

is to be noted that if the planet is on the east of the dr. kks.epa-lagna, it will

be (seen) depressed towards the east, and the sphut.a related to the observer

on the surface of the Earth would be greater than the sphut.a related to the

centre of the Earth. If, however, the planet is on the west of the dr. kks.epa-

lagna, it will be less. Similarly, If the viks.epa is to the south, there will

be a depression to the south and hence the nati will be towards the south,

and, if it is the other way, (the nati) will be towards the north. All these

follow logically (yukti-siddha). Thus has been stated the method for nati

and lambana.

11.38 Dr. kkarn. a when the Moon has no latitude

Now is stated the specialities in the matter of deriving the shadow and the

gnomon from which the dr. kkarn. a can be calculated when the Moon has

latitude. It is always the case that, when there is no latitude for the shadow,

the root of the sum of the squares of dr. kksepa-jyā and dr. ggati-jyā will be

the kot.i-śaṅku of the shadow. When the shadow and gnomon are calculated

in this manner and multiplied, individually, by the yojana-s of the radius of

the Earth and divided by trijyā, the bhujā and kot.i-phala-s in the calculation

of dr. kkarn. a are in terms of yojana-s. Now, the kot.i-phala is subtracted from

the hypotenuse of the second sphut.a in terms of yojana-s (dvit̄ıya-sphut.a-

yojana-karn. a). The remainder is squared and added to the square of the

bhujā-phala and the root found. The result will be the dr. kkarn. a in terms of

yojana-s.

11.39 Shadow and gnomon when the Moon has

latitude

Now is stated the method of deriving the shadow and gnomon for the Moon

when it has latitude. Conceive a circle as much removed (in all its parts)
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from the ecliptic as the latitude of the planet. The centre of this circle will

also be removed from the centre of the ecliptic by the measure of the latitude.

These two circles will be like the ghat.ikā-man. d. ala (celestial equator) and the

ahorātra-vr. tta (diurnal circle). This circle is called viks.epa-kot.i-vr. tta. The

planet will be situated in this circle at the point where the rāśi-kūt.a-vr. tta

passing through the planet meets it. Here, the rising and setting lagna (of

the planet) are the two points where the ecliptic and the horizon meet.

The lagna-sama-man. d. ala passes through these two points and the zenith.

Conceive the division of the sphere (into equal parts) made by the said lagna-

sama-man. d. ala, dr. kks.epa-man. d. ala and the horizon. Conceive the ecliptic as

the valita-vr. tta for these. Then the maximum divergence of the ecliptic to

the lagna-sama-man. d. ala would be dr. kks.epa-jyā. dr. kks.epa-kot.i would be the

maximum divergence between the horizon and the ecliptic. This would be

the pramān. a-phala. The pramān. a is trijyā. Icchā is the interstice between

the planet and the point of intersection of the horizon and the ecliptic on

the ecliptic. Icchā-phala is the interstice between the planet and the horizon.

This will be the gnomon of the planet which has latitude and the chāyā is

the root of the sum of the squares of the dr. kks.epa-jyā and dr. ggati-jyā.

Now to the speciality of the gnomon and shadow of the planet on the viks.epa-

kot.i-vr. tta. Here dr. kks.epa is that part of the dr. kks.epa-vr. tta forming the in-

terstice between the zenith and the dr. kks.epa-lagna, which in turn is equal to

the maximum divergence between the lagna-sama-man. d. ala and the ecliptic.

The viks.epa (latitude) is the interstice between the dr. kks.epa-lagna and the

viks.epa-kot.i-vr. tta along the dr. kks.epa-vr. tta. Now, add together or subtract

one from the other, the viks.epa and the dr. kks.epa. This will be the inter-

stice between the zenith and the viks.epa-kot.i-vr. tta along the dr. kks.epa-vr. tta.

This is called nati (parallax in latitude). The kot.i of this is the maximum

distance between the horizon and the viks.epa-kot.i-vr. tta being a portion of

the dr. kks.epa-vr. tta. This is called parama-śaṅku (maximum gnomon). Now,

the noon shadow and the noon gnomon on the north-south circle are de-

rived by the sum or difference of the latitude and declination and the sum

or difference of the co-latitude (lambaka) and the declination, and by tak-

ing the interstices. In the same manner the nati and parama-śaṅku on the
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dr. kks.epa-vr. tta can be derived from the sum or difference of the dr. kks.epa and

viks.epa and the dr. kks.epa-kot.i and viks.epa. Here, the Rsine of the interstice

between the lagna and planet, which has been taken as the icchā, should

be subtracted from trijyā which is taken as the pramān. a. The remainder

shall then be considered as the icchā. Then the icchā-phala would be the

difference between the pramān. a-phala and the icchā-phala.

The śara (celestial latitude) of the portion of the ecliptic that lies between

the rāśi-kūt.a-vr. tta touching the planet and the dr. kks.epa-vr. tta has to be de-

rived first. Then, this śara should be multiplied by viks.epa-kot.i and divided

by trijyā. The result will be the śara in the viks.epa-kot.i circle that lies be-

tween the rāśi-kūt.a-vr. tta touching the planet and the dr. kks.epa-vr. tta. Now,

multiply the śara of the viks.epa-kot.i circle by dr. kks.epa-kot.i and divide by

trijyā. Subtract the result from the parama-śaṅku. The remainder will be

the required śaṅku of the planet on the viks.epa-kot.i circle.

It is to be noted that if the multiplication is done by parama-śaṅku, it would

not be correct to divide by trijyā. The division should be made by the

viks.epa-kot.i which has been corrected by the difference between the horizon

and the unman. d. ala. The reason for this is as follows: When the unnata-jyā

of the diurnal circle or the śara of the nata-jyā is multiplied by lambaka

(Rcosine of the latitude) and the result is divided by trijyā, the result will

be the desired śaṅku or the difference between the noon-day śaṅku and the

desired śaṅku. Here, if the multiplication has to be done by the noon-day

śaṅku, then the division is not to be done by trijyā. On the other hand, the

division should be made by that part of the diurnal circle which is above

the horizon and which is the radius of the diurnal circle as corrected by the

ks.iti-jyā. In the same way, here, it is the dr. kks.epa-kot.i which is in place of

the lambaka, and the parama-śaṅku which is in place of the noon-day śaṅku.

Now, the slant of the diurnal circles is in the same way as (i.e., parallel to)

the slant of the celestial equator. And, the slant of the viks.epa-kot.i circle is

in the same way as the slant of the ecliptic. Since the two are alike in nature,

there would be similarity in methodology (nyāya-sāmya) also. Hence, the

śaṅku is derived thus.
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Now, the shadow. Here, the sum or difference of the viks.epa and the dr. kks.epa

is the distance between the viks.epa-kot.i circle and the lagna-sama-man. d. ala,

on the dr. kks.epa circle. This is called nati.

Now, take the interstice between the planet and the dr. kks.epa circle on the

viks.epa-kot.i circle, and derive the Rsine and Rversine. These will result

when the Rsine and Rversine of the interstice between the dr. kks.epa-lagna and

Moon are, respectively, multiplied by viks.epa-kot.i and divided by trijyā. Here

too, calculate first Rversine, and then multiply this Rversine by dr. kks.epa-jyā

and divide by trijyā. The result will give the slant of the tip of the Rversine

from its foot. Add to or subtract this from the above stated nati, derived

earlier, in accordance with its direction. The result obtained will be the

distance between the foot of the Rversine to zenith. This will also be the

same as that obtained from the foot of the Rsine stated here. From this

argument it will be clear that this is the distance between the planet at the

tip of the Rsine and the lagna-sama-man. d. ala. This is called bāhu. When

this and the bhujā mentioned earlier are squared, added together and the

root calculated, the result will be the shadow. Thus have been stated the

methods to derive the gnomon and the shadow. Now, it is also possible to

calculate one of these two by the methods enunciated above, and calculate

the other by squaring it and subtracting it from the square of trijyā and

finding the root of the difference.



Chapter 12

Eclipse

12.1 Eclipsed portion at required time

Calculate the gnomon and shadow of the Moon in the above manner. From

these calculate the dr. kkarn. a in terms of yojana-s. Using the dr. kkarn. a-yojana

calculate the minutes of the corresponding lambana. The minutes of lambana

of the Sun and Moon are to be applied, respectively, to the (true longitudes

of) Sun and Moon. When the resulting true longitudes of the two are the

same, that will indicate the time of the middle of the eclipse.

Or the time of the lambana can be calculated from dr. ggati. Here, when the

dr. ggati is equal to trijyā, the lambana will be four nād. ikā-s. Then using the

rule of three, find out what will be the lambana for the desired dr. ggati. It

is known that when the dr. kks.epa and dr. ggati are equal to trijyā then the

yojana-s of nati and of lambana are equal to the radius of the Earth. It

is also known that the minutes of madhya-yojana-karn. a are equal to trijyā.

Multiply the minutes of lambana thus obtained by the true motion and

divide by mean motion. Then the lambana will be obtained in terms of

the minutes of bhagola. Therefore, multiply the madhya-yojana-karn. a and

the mean motion and divide by the yojana-s of the Earth’s radius. The

result will be 51,770 (asau sakāmah. ). Now multiply dr. kks.epa and dr. ggati by

true motion and divide by 51,770. The results, dr. kks.epa and dr. ggati, can

be derived for everyday. Derive the time of lambana in this manner and

apply it to the syzygy (parvānta). Then calculate the dr. kks.epa-lagna and

the planet for the required time and (from them) find the lambana in time

units and apply it to the parvānta. In this manner do the avíses.a-karma



594 12. Eclipse

(iteration or repetition of the calculation till the results do not vary). Here,

only by knowing the correct lambana, the sama-liptā-kāla (the parvānta,

which represents the time of equality in minutes of true Sun and Moon) can

be ascertained. And, only by knowing the sama-liptā-kāla can the lambana-

minutes be ascertained. Hence, the necessity of avíses.a-karma.

Since, at this moment, there is no difference in the true longitudes for the

Sun and the Moon, there will be no east-west divergence. Their divergence

will only be north-south, on account of nati and viks.epa . These two have to

be ascertained and shall have to be subtracted from the sum of the halves

of the orbs (bimbārdha-s of the Sun and Moon). The remainder will give the

extent of the eclipsed portion (of the orbs).

Now, when the distance between the spheres (bimba-ghana-madhyāntara of

the Sun and Moon) is equal to half the sum of the orbs (bimba-yogārdha),

the circumferences of the two orbs will be touching each other. The com-

mencement or end of the eclipse will occur at that time. When, however,

the distance between the spheres (bimbāntara) is greater, there will be no

eclipse, since the circumferences will not touch.

Now, at the desired time apply the lambana to the true longitudes of the Sun

and the Moon. Find the square of their difference. To it add the square of

the true viks.epa and find the root. The result will be the distance between

the spheres at that time. Subtract this from the sum of the minutes of half

the sum of the two orbs. The remainder will be the extent of the eclipsed

portion at that time. This is the method to ascertain the eclipsed portion

at any required time.

12.2 Time for a given extent of eclipse

Here is the method to calculate the moment of time when a specified portion

(of the orbs) have been eclipsed. Now, the eclipsed portion subtracted from

half the sum of the orbs will give the distance between the centres of the two

spheres (bimba-ghana-madhyāntarāla). This is called bimbāntara (difference
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between the spheres). Using this, the desired time is to be calculated. When

the square of true viks.epa is subtracted from the square of the difference of

the bimbāntara, the root of the remainder will be the difference between the

true longitudes (sphut.āntara). Then, calculate the time using the proportion:

If 60 nād. ikā-s pertain to the difference between daily motions, how many

nād. ikā-s would it be for the given sphut.āntara. The time got thus is to be

applied to the time of the parvānta. Calculate the true viks.epa for that time,

square it and subtract from the square of half the sum of the orbs. The root

thereof would again be the sphut.āntara. In this manner, the result obtained

by avíses.a-karma will be the true time of the required (extent of the) eclipse.

Then calculate in this manner, the times, before and after mid-eclipse, which

are required for the bimbāntara to be equal to half the sum of the orbs, after

finding the nati and viks.epa by avíses.a-karma. The results will be the times

of the commencement and end of the eclipse.

In computing eclipses, it is necessary to know, first, the actual (moment in)

time when the longitudes of the planets are identical. Now, when the Moon

is exactly six rāśi-s (180 degrees) away from the Sun, it is the end of the

full-Moon. When that Moon is hidden by the Earth’s shadow it is lunar

eclipse.

When at the end of new-Moon, the Moon hides the Sun, then it is solar

eclipse. Now, when either of the (two) eclipses (their times, as stated above)

occurs near sunset, then calculate the longitudes of the Sun and the Moon

for that time. If such times occur at near sunrise, then also calculate the

Sun and Moon for that time. There, if the (longitude of) Moon is more,

the distance will keep increasing. If the candra-sphut.a is lesser, there will be

further and further decrease. Then use the difference in daily motion to find

the time of conjunction.

12.3 Computation of Bimbāntara

Here is the method for computing the bimbāntara. Now, the orbs of the

Sun, Moon and the Earth’s shadow will appear to be large when they are
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close to the Earth, and appear to be small when they are far from the Earth.

The dimension of their (the Sun and the Moon) orbs is dependent on the

magnitude of sva-bhūmyantara-karn. a (the distance from the Earth). When

they move away from the Earth, they (the orbs) look small. Therefore,

when the bimba is derived using the karn. a, the reverse rule of three is to be

employed. Now, the minutes of the orb would be changing every moment.

But the yojana measure of the orb always remains the same. Now, the rule

of three here is: If the minutes of the sphut.a-yojana-karn. a is that of trijyā,

how much it would be for the yojana measure of the orbs. So, the yojana

measure of the diameters of the orbs of the Sun and the Moon are multiplied

by trijyā and divided by the yojana measure of the sva-bhūmyantara-karn. a

(the distance between the planet and the Earth). The result will be the

diameter of the orb (of the planet) in minutes. Here the division should be

made by dr. kkarn. a since it is a case of the use of the reverse rule of three.

As is well known, the rule is:

vyastatrairāśikaphalam icchābhaktapramān. aphalaghātah. .

[Brāhmasphut.a-siddhānta, Gan. ita, 11]

The result of the reverse rule of three is the product of praman. a

and (pramān. a)-phala divided by the icchā.

12.4 Orb measure of the planets

Now, the orb of the Sun is a large sphere of effulgence. Somewhat much

smaller is the sphere of the orb of the Earth. That half of the (Earth’s orb)

which is facing the Sun will be illuminated. The other half will be dark.

And that is the shadow of the Earth. Of this, the base will be large and the

tip pointed. Here, since the orb of the Sun is large, the rays that go beyond

the Earth’s (circumference) will be those emanating from the circumference

of the Sun. These rays will converge. At that point will be the tip of the

Earth’s shadow; its radius at its base will be that of the Earth. From then

on, being in the form of a circle (based cone), it tapers to a point. The Sun’s

rays emanating from its circumference pass over the circumference of the
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Earth and would converge to a point on the other side of the Earth. Now,

the distance of the Earth from the Sun is equal to the sva-bhūmyantara-

karn. a in yojana-s. For this distance, the rays of the Sun emanating from

the circumference of the Sun come up to the Earth according to the Earth’s

diameter. Thus, for the rays to taper by an amount of measure equal to

the difference between the diameters of the Sun and the Earth, the distance

required is the above karn. a in yojana measures. Then, what that distance

would be for the tapering by an amount equal to the diameter of the Earth,

that would give the length of the shadow. Now, for the shadow of the Earth,

for the distance from the tip of the shadow to the base of the shadow (cone),

the diameter is equal to the diameter of the Earth in yojana-s: then, for the

distance from the tip of the shadow to the point where the Moon’s path cuts

it, what is the diameter of the Earth’s shadow at that place. To know this,

subtract the candra-karn. a from the length of the Earth’s shadow, multiply

it by the diameter of the Earth and divide by the length of the Earth’s

shadow. The result will be the yojana measure of the diameter of Earth’s

shadow along the path of the Moon. For this (yojana measure) derive the

diameter in terms of minutes.

Thus has been stated the method for obtaining the orb-measures of the

eclipsed and eclipsing planets. From these (measures of the) orbs of the

planets, the times of begining, middle, and that of any desired extent of

eclipse can be calculated as explained earlier.

12.5 Direction of the eclipses and their commence-

ment

Here is stated how to know the direction where the eclipse commences and

what its configuration (samsthāna) would be at any desired time. Now,

when the solar eclipse commences, the Moon which is in the west, moves a

little towards the east, and a little of the Sun’s orb at its circumference in

the west will begin to be hidden. It is now intended to identify that portion

thereof. Now, the ecliptic is a circle which touches the centre of the Sun’s
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sphere and the centre of the Moon’s sphere when there is no viks.epa for the

Moon. At that time, it is that portion in the west of the Sun’s sphere from

where the ecliptic passes through, that will be the portion that gets hidden

first by the Moon when it has no viks.epa. The diurnal circle of the Sun at

that moment will be touching the centre of the solar sphere. Since that is

exactly east-west in places of zero latitude, there the diurnal circle emerges

exactly to the west.

12.6 Āyana-valana

Since, however, the ecliptic deviates from the diurnal circle, the emergence

of the ecliptic will be a little to the north or south of the western direction.

Hence the beginning of the eclipse which occurs on the solar orb will be

deflected from the west by a certain amount at that time. This deflection is

called Āyana-valana.

Now, it is necessary to know how much this would be. Conceive of the

following set up: Let the winter solstice on the ecliptic touch the north-south

circle at the meridian ecliptic point. Let the equinox be at the eastern rising

point of the ecliptic and the Sun be one rāśi (30 degrees) from the winter

solstice in the eastern hemisphere. There, the intersection of the ecliptic and

the diurnal circle would be at the centre of the Sun’s sphere. The emergence

of the diurnal circle would be exactly west thereof and the emergence of the

ecliptic would be deflected a little to the south. It is to be known what

this divergence is. Now, Rcosines on the ecliptic are the Rversines on the

radius which has its tip at the point of intersection of the ecliptic and the

north-south circle drawn from the centre of the Earth. Hence the bases of

the Rcosines are on that line.

Now, conceive of a Rsine corresponding to the Rcosine (kot.i-cāpa) which has

its tip at the centre of the Sun and its foot at the point of intersection of

the north-south circle and the ecliptic. Then, conceive of a Rcosine having

its tip at the point where the ecliptic emerges through from the western
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side of the Sun’s orb. Then the feet of both of them, will touch the diameter

which has its tip at the meridian ecliptic point. There, that which has its tip

at the centre of the planetary sphere (bimba-ghana-madhya) will touch the

bottom circumference, and the interstice between the feet of the Rcosines on

the diameter, having its tip on the circumference, will touch the top (of the

circumference). It is well known that the kot.i-khan. d. a is equal to the distance

between the feet of the kot.i-jyā-s. Therefore, conceive of a vertical line from

the centre of the Earth’s sphere and with its tip at the zenith. Now, when

the ayanānta touches the north-south circle, the maximum distance between

the ayanānta and the vertical line will be the maximum declination.

Then consider the point where the base of the Rcosine which has its tip at

the centre of the planet’s sphere touches the ayanānta-sūtra. The distance

from that point to the vertical line would be equal to the required declina-

tion (ist.āpakrama). Now, the distance from the base of the Rcosine with

its tip at the circumference of the orb to the vertical line will be greater

than the required declination. This excess will be the declination pertaining

to the bhujā-khan. d. a. The āyana-valana will be equal to the said (excess)

declination associated with the bhujā-khan. d. a.

This declination of the said bhujā-khan. d. a will be the distance between the

points of emergence of the points of intersection of the diurnal circle and

of the ecliptic on the circumference at the west end of the orb. Here, the

bhujā-khan. d. a is to be derived using the Rcosine with its tip at the middle of

the arc. The Rcosine with its tip at the centre of the sphere is sphut.a-kot.i.

Since the distance between the centre of the sphere and the circumference is

the cāpa-khan. d. a, the bhujā-jyā-khan. d. a is derived by multiplying the sphut.a-

kot.i-cāpa-jyā–minus–one-fourth-the-orb with the icchā-rāśi formed by half

the orb which is the full chord, and dividing by the radius. When this is

multiplied by maximum declination and divided by the radius, the result is

the āyana-valana. There, it should be possible to derive the declination of

the kot.i-jyā by first multiplying the kot.i-jyā by the maximum declination

and dividing by the radius. In the result, there will be no difference. Thus

the derivation of āyana-valana.
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12.7 Āks.a-valana

In a place having aks.a (terrestial latitude), (besides the above) the diurnal

circle is also inclined and it is necessary to find this inclination. For this

conceive of an east-west circle. The centre of this circle, its circumference and

all its parts should be removed from the prime vertical by an amount equal

to chāyā-bhujā at the desired time. This will be related to the prime vertical

even as the ghat.ikā-man. d. ala is to the svāhorātra-vr. tta. This circle is called

chāyā-kot.i-vr. tta. It is to be noted that the chāyā-kot.i-vr. tta, apakrama-vr. tta

and svāhorātra-vr. tta cut one another at the centre of the planetary sphere

(bimba-ghana-madhya). And the circumferences of the three will emerge in

three different ways. The chāyā-kot.i-vr. tta will go straight westwards from the

centre of the solar sphere. The svāhorātra-vr. tta will be inclined southwards

from this. Therefore, when the Sun is in the eastern side of the north-south

circle, the svāhorātra-vr. tta will emerge deflected to the south from the west.

When, however, the planet is on the western side of the north-south circle,

the svāhorātra-vr. tta (diurnal circle) is deflected to the north. This removal

is called āks.a-valana.

12.8 Combined valana

When the two valana-s arrived at as above are added together when their

directions are similar, and subtracted from each other when their directions

are dissimilar, the distance between the icchā-kot.i-vr. tta and the ecliptic is

obtained. At the periphery of the orb, this will be the valana in a place

with latitude, when there is no viks.epa . When, however, there is viks.epa

there is a shift of it by the measure of the viks.epa and along the direction

of the viks.epa. There the viks.epa which had been derived earlier applying

the rule of three will be that relating to the bimbāntara (difference of the

orb). Therefore, multiply that viks.epa by half the diameter of the Sun’s

orb and divide by bimbāntara. The result will be the viks.epa-valana at the

circumference of the solar orb. In this way, the point of contact and release

will also deflect according to this, on the circumference of the orb. Again, on
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the eastern side of the circumference of the orb, the directions of the valana

will be correspondingly reversed. This alone is the speciality here.

Here, since the Sun is being eclipsed, the Sun is called grāhya-graha (the

planet that is eclipsed). Thus has been stated the derivation of the āyana-

valana-s by the use of the rule of three. The same principle is applicable to

the derivation (also of the) āks.a-valana.

Thus it is seen that the chāyā-kot.i-vr. tta and svāhorātra-vr. tta meet at the

centre of the planetary sphere (bimba-ghana-madhya) and have the maximum

divergence on the north-south circle. The last will be a section of the latitude

pertaining to the natotkrama-jyā at that time. Nata is the difference between

the planet and the north-south circle along the svāhorātra-vr. tta. Here, the

nata-jyā is the Rcosine.

Since the aks.a represents the maximum declination, we now have the pro-

portion; If nata-jyā multiplied by aks.a-jyā and divided by trijyā is the āks.a-

valana for the trijyā-vr. tta, then what would it be for the radius of the orb

eclipsed (grāhya-bimbārdha); this would give the valana for the circumference

of the eclipsed orb.

12.9 Graphical chart of the eclipse

Calculate the valana for the desired time and the times of commencement

and release of the eclipse and draw the eclipsed orb. Further, mark on it

the east-west line and the north-south line. Then identify a point removed

from the east-west line by a measure equal to the valana. Now, construct

a valana-line passing through the above-said point and the centre of the

eclipsed orb. Then draw the orb of the eclipsing planet with its centre

on the said valana-line at a point which is removed from the centre of the

eclipsed body by a distance equal to the difference between the orbs at that

time. Then, that portion of the eclipsed orb which falls outside the eclipsing

orb would be bright. And, that portion of the eclipsed body which falls
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inside the eclipsing body would be hidden. The setup of the eclipse has to

be understood in this manner. Here, it is not essential to make the valana

for the eclipsed body. It can as well be made for a circle of desired radius.

In that case, care should be taken to move by the needed valana from the

dr. k-sūtra of that circle. This is the speciality. Thus has been stated the

computation of the solar eclipse.

12.10 Lunar eclipse

What is of note in the lunar eclipse is that the Moon’s orb is the orb that

is eclipsed, the Earth’s shadow is the eclipser. Here, the (circular) extent of

the Earth’s shadow along the path of the Moon is called tamo-bimba (orb

of darkness). Since here, both the eclipsed and the eclipser are at the same

distance from the observer, the nati and lambana are the same for both,

and hence both (nati and lambana) might be ignored in this case (of lunar

eclipse). All the other rules are the same here too (as in the solar eclipse).

Thus have been stated the procedures for the computation of eclipses.

It is to be noted however, that for the kendra-bhujā-phala of both the Sun

and the Moon there is a correction called ahardala-paridhi-sphut. a (half day-

true-circumference). There will occur difference of true longitude on account

of this. And, for that reason, there will occur some difference in the time

of equality of the longitudes (of the Sun and the Moon). There is a view

(paks.a) that, on account of this, there will be a difference also in the time of

the eclipse.



Chapter 13

Vyat̄ıpāta

13.1 Vyat̄ıpāta

Next is stated vyat̄ıpātā. Now, if the declinations of the two, Sun and Moon,

become equal at some time, when one of them is in an odd quadrant with the

declination increasing and the other in an even quadrant with declination

decreasing, then at that moment vyat̄ıpāta is said to occur.

13.2 Derivation of declination

A method of computing the declination of the Sun and the Moon has been

stated earlier. Now, another method of computing the declination of the

Moon is stated here. Now, when a set up is conceived where there are

several circles of equal measure and have a common centre but with their

circumferences diverging, it will be that the circumferences of all circles (con-

sidering them in pairs) will intersect with all other circles (again considering

them in pairs) at two places, and will have maximum divergence at two

places. Now, we know where the ecliptic and the celestial equator meet and

where they have maximum divergence. Now, if it is known that the ecliptic

and the viks.epa-vr. tta meet at this place and that this much is the maximum

divergence and that from their point of intersection the Moon has moved

this much on the viks.epa-vr. tta, then how far the celestial equator is from the

Moon can be computed as in the case of the declination of the Sun.
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13.3 Viks.epa

Here is stated a method to know at which place the ghat.ikā-vr. tta and the

viks.epa-vr. tta meet and what is their maximum divergence. Now, on a par-

ticular day towards the middle of the Mı̄na, the meeting of the ghat.ikā and

apakrama-vr. tta-s will occur. From that meeting point, the apakrama-vr. tta

will diverge northwards. From the same day it will diverge southwards from

the middle of Kanyā. When it has fully diverged, it would have diverged

by 24 degrees. The viks.epa-vr. tta will touch the apakrama-vr. tta at the point

where Rāhu (the ascending node of the Moon) is situated. It will then di-

verge northwards from the point (Rāhu) and from Ketu (the descending node

of the Moon), it will diverge southwards. Conceive that Rāhu is situated at

the point of contact of the apakrama-man. d. ala and the ghat.ikā-man. d. ala, and

that this point is rising at the equator. Then, the maximum declination and

maximum viks.epa are on the north-south circle. There, from the ghat.ikā-

vr. tta, the apakrama-vr. tta, and from that, the viks.epa-vr. tta, will both diverge

in the same direction. For this reason, the ayanānta-pradeśa (the solsticial

points on Moon’s orbit) of the viks.epa-vr. tta is removed from the ghat.ikā-vr. tta

by the sum of the maximum declination and maximum viks.epa. Hence, that

will be the maximum declination of the Moon on that day. Therefore, taking

it as the pramān. a-phala, it should be possible to derive the declination of

the Moon at that time from the equinox.

This being the case, the northern rāśi-kūt.a (pole of the ecliptic) is on the

north-south circle, raised from the nothern Dhruva (north pole) by a measure

equal to the maximum declination. Since the northern viks.epa-pārśva (pole

of the viks.epa-vr. tta) is raised above this by the measure of the maximum

viks.epa, the distance of the viks.epa-pārśva to the (north) pole is equal to

the sum of the maximum viks.epa and the maximum apakrama. The relation

of the viks.epa-vr. tta to the viks.epa-pārśva is the same as that between the

Dhruva (north pole) and the ghat.ikā-vr. tta and that between the rāśi-kūt.a

and the apakrama-vr. tta. Therefore, the distance between the Dhruva and

the viks.epa-pārśva will be equal to the maximum divergence between the

ghat.ikā and viks.epa-vr. tta-s. Now, conceive of a circle touching the Dhruva
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and the viks.epa-parśva. In this circle will occur the maximum divergence

between the ghat.ikā and viks.epa-vr. tta-s.

Now, the distance between the Dhruva and the viks.epa-pārśva has to be

computed. Conceive the set-up as above and consider Rāhu to be at the

ayanānta in the middle of the arc. Then the viks.epa-vr. tta would be deflected

towards the north by the measure of the maximum viks.epa from the vernal

equinox along the rāśi-kūt.a-vr. tta which touches the equinox. Therefore,

the viks.epa-pārśva would be shifted to the west by the above-said measure

from the uttara-rāśi-kūt.a (north pole of the ecliptic). Since in this set-up,

the maximum viks.epa and maximum declination form the bhujā and kot.i,

the distance between the pole and the viks.epa-pārśva will be the karn. a.

Consider the circle which passes through the viks.epa-pārśva and the poles.

The maximum divergence of ghat.ika and apakrama-vr. tta-s on this is the

viks.epāyanānta. Hence this circle is called viks.epāyanānta-vr. tta. The points

of intersection of this with the north-south circle are the poles. Starting from

here, as we traverse a measure of the maximum declination, the viks.epāyana-

vr. tta would have moved towards the west by the measure of the maximum

viks.epa. When we traverse a quadrant it would have inclined towards the

west from the north-south circle and will have its maximum divergence in

the ghat.ikā-vr. tta. Therefore, the viks.epāyanānta would shift to the west

from the north-south circle by the above said measure to touch the ghat.ikā-

vr. tta. Therefore, the viks.epa-vis.uvat would be on the ghat.ikā-man. d. ala raised

by the above measure from the vernal equinox on the horizon. The reason

for what is said above is that the meeting point and maximum divergence

between two circles would occur at a distance equal to the quadrant of the

circle. This shift is called viks.epa-calana. Now, when this correction (of

viks.epa-calana) is applied to the commencing point of apakrama-vis.uvat the

result will be the commencement of the viks.epa-vis.uvat.

For this reason, when Rāhu arrives at the vis.uvat in the middle of sign

Kanyā (Virgo), the viks.epa-vr. tta would have shifted towards the north of

the ayanānta at the centre of the arc by a measure equal to the maximum

declination. The viks.epa-pārśva would have been depressed to that extent
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from the northern rāśi-kūt.a. The distance of separation between the poles at

that time would be the maximum declination of the Moon. That will be half

a degree less than twenty (i.e., 19.5 degrees). Since the difference between

viks.epa-pārśva and Dhruva is on the north-south circle, the viks.epāyanānta

will lie on the apakramāyanānta only. The viks.epa-vis.uvat and the apakrama-

vis.uvat will be at the same point. At that time there will be no viks.epa-

calana.

When, however, Rāhu reaches the ayanānta at the middle of the Mithuna-

rāśi (Gemini), the viks.epa-vr. tta will touch the rāśi-kūt.a-vr. tta which passes

through the middle of Kanyā-rāśi northwards at a distance equal to the

maximum declination. Hence, the viks.epa-pārśva will be shifted to the east

from the northern rāśi-kūt.a by a measure equal to the maximum viks.epa.

There again, the distance between the viks.epa-pārśva and the Dhruva will

represent the hypotenuse. The viks.epa-pārśva will be above the northern

rāśi-kūt.a just as in the case when the Rāhu is on the vernal equinox. In

this way, the location of southern viks.epa-pārśva will be on the southern

rāśi-kūt.a-vr. tta. Thus the viks.epa-pārśva is going around, according to the

motion of Rāhu, at a place which is removed from the rāśi-kūt.a by a distance

of the maximum viks.epa.

13.4 Viks.epa-calana

Now, conceive of a circle with radius equal to the maximum viks.epa. The

centre of this circle should be at a place on the line from the rāśi-kūt.a

to the centre of the celestial sphere at a distance of the Rversine of the

maximum viks.epa. Conceive of another circle with its circumference passing

through the centre of the above-mentioned circle and having its centre on

the polar axis (aks.a-dan. d. a). These two circles will then be mutually like

the kaks.yā-vr. tta and ucca-n̄ıca-vr. tta. Here the ascent of the ks.epa-pārśva

(viks.epa-pārśva) from the polar axis would represent trijyā. Now, note the

point where the ks.epa-pārśva falls on the viks.epa-pārśva (vr. tta); from that

point draw a vertical line to its own centre; that line will represent the

kot.i-phala. The east-west distance on the north-south circle represents the
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bhujā-phala. When the viks.epa-pārśva, which is revolving, happens to be

above the rāśi-kūt.a, add the kot.i-phala to the ascent of the ks.epa-pārśva

(ks.epa-pārśvonnati); if it is below, subtract it. When Rāhu happens to be at

the middle of Mı̄na-rāśi, the height from the pole will be maximum. And,

when Rāhu happens to be in the middle of Kanyā-rāśi, it will be lowest.

Hence it turns out that the updown distance is kot.i-phala, and that it is

positive in the (six) rāśi-s commencing from Makara-rāśi and negative in

the (six) rāśi-s commencing from Karki.

At the ayanānta, the bhujā is full (i.e., 90 degrees). When Rāhu is situated

there, there will be a east-west shift from the ks.epa-pārśva, and the bhujā-

phala is also east-west. The day when Rāhu is situated at the beginning of

Tulā (Libra) the ks.epa-pārśva is to the west of the north-south circle and so

the viks.epa-calana is to be added to the beginning of Libra. At the beginning

of Aries (Mes.ādi), the viks.epa-pārśva is to the east of the north- south circle,

and hence (the viks.epa-calana) is to be subtracted. Now, multiply the Rsine

and Rcosine of Rāhu at the beginning of vis.uvat by maximum viks.epa and

divide by trijyā. The results will be the bhujā-phala and kot.i-phala.

13.5 Karn. ānayana

Now is given the method to derive the karn. a (hypotenuse) from the above.

The karn. a is the Rsine of the distance between the pole and viks.epa-pārśva,

at the time when the above ks.epāyanānta-vr. tta passes through the rāśi-kūt.a.

If the maximum declination and maximum viks.epa have to be added to or

subtracted from each other, then mutual multiplication by the Rcosines and

division by trijyā are necessary.

When the maximum declination and the kot.i-phala are to be added to or

subtracted from each other, the multipliers would be antya-ks.epa-kot.i and

antyāpakrama-kot. i. Now, the maximum viks.epa, which is the Rsine of a

portion of the north-south circle, is the line from the centre of the ks.epa-

pārśva-vr. tta to the circumference of this (north-south circle). A portion of

this (line) is kot.i-phala. This is all the difference, and there is no difference
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in placement. Therefore, in the addition or subtraction there will be no

difference in the multipliers; the difference is only in the multiplicands. Now

when the maximum declination is multiplied by the Rcosine of the maximum

viks.epa and divided by trijyā, the result will be the distance from the centre

of the ks.epā-parśva to the polar axis (aks.a-dan. d. a). The kot.i-phala will be

the remnant of this. When multiplication is made by paramāpakrama-kot. i

and division by trijyā, the result obtained, being the distance from the kot.i-

phalāgrā to the viks.epa-pārs.va, is the bhujā-phala. Then, find the square of

the sum or the difference of these two, add it to the square of the bhujā-phala

and find the square root. The result will be the Rsine of the arc forming

the distance between the pole and the viks.epa-pārśva. This is also the same

as the maximum declination, which is the maximum divergence between the

ghat.ikā-vr. tta and the viks.epa-vr. tta.

13.6 Determination of Viks.epa-calana

Now, the maximum divergence between the ks.epāyanānta-vr. tta and the

north-south circle on the ghat.ikā-vr. tta is got by applying the rule of three:

If the divergence in the north-south is equal to the bhujā-phala when one

moves along the ks.epayananta-vr. tta from the pole to the ks.epa-pārśva, then

what will it be if one moves through quarter of a circle. This will be the

distance between the two ayanānta-s, since this is the distance between the

vis.uvat-s. This is called viks.epa-calana. When viks.epa-calana is applied to

sāyana-candra (i.e., Moon to which āyana-calana has been applied) the re-

sult will be the distance between the point of contact of the ghat.ikā-vr. tta

and viks.epa-vr. tta to the Moon, on the viks.epa-vr. tta.

13.7 Time of Vyat̄ıpāta

Now, the auspicious time of vyat̄ıpāta occurs when the declination of the

Moon to which viks.epa-calana and ayana-calana have been applied, and that
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of the Sun to which ayana-calana has been applied, become identical, when

one of them is in an odd quadrant and the other in an even quadrant.

13.8 Derivation of Vyat̄ıpāta

Now is explained the procedure for finding the time at which the declinations

of the two become equal. First estimate an approximate time when there

is equality of the longitudes (bhujā-sāmya) for the Sun and the Moon when

one is in an odd quadrant and the other in an even quadrant. Using the

bhujā-jyā of the Sun find out its declination at that time. Then, using the

rule of three, ascertain what the bhujā-jyā of the Moon should be, for it to

have the same declination as the Sun. Now, the maximum declination of the

sun is 1398 (‘dugdhaloka’). Here, the rule of three would be as follows: If

this (i.e., 1398) is the bhujā-jyā for the Sun, then what would be the bhujā-

jyā for the Moon which has a given maximum declination at the moment,

to become equal in declination to the Sun. This is the rule of three to be

applied. Here, the Sun’s maximum declination is the pramān. a, its bhujā-jyā

is pramān. a-phala, the Moon’s antyāpakrama is the icchā and the Moon’s

bhujā-jyā is icchā-phala.

Now, if the antyāpakrama is large, the bhujā-jyā will be small; for small

antyāpakrama, the other will be big. Then, at that time the declinations

would become equal. Hence the inverse rule of three should be applied.

For this, multiply the bhujā-jyā and antyāpakrama of the Sun and divide by

the antyāpakrama of the Moon. The result will be the Moon’s bhujā-jyā.

Compute its arc and apply it to the ayana-sandhi or gola-sandhi according

to the quadrant and compute the Moon.

Then subtract the Moon computed (as above) from the Sun, and the Moon

which has been computed (independently) for the given time. Place the

result in two places and multiply by the daily motions of the Sun and the

Moon, respectively, and divide by the sum of the daily motions. This cor-

rection is to be applied to the two separately. It has to be subtracted if the
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vyat̄ıpāta is past and to be added if the vyat̄ıpāta is yet to occur. In the case

of the node, the application should be made the other way. In this way do

avíses.a-karma (repeating the process till results do not vary) till the Moon’s

longitude-arc (bhujā-dhanus) derived from the Sun and that of the Moon

computed for the desired time become equal. There, in the odd quadrants,

if the longitude-arc of the Moon calculated for the desired time is larger, the

vyat̄ıpāta has already occured; if it is smaller, then the vyat̄ıpāta is yet to

occur. In the even quadrants it is the other way round. Here, when, for the

Sun and the Moon, and for the Earth’s shadow and the Moon, the diurnal

circle is the same, vyat̄ıpāta occurs. When however, even if parts of the orbs

do not have identical diurnal circles, there will be no vyat̄ıpāta. Hence a

vyat̄ıpāta will last for about four nādika-s.



Chapter 14

Maud. hya and Visibility Corrections
of Planets

14.1 Computation of visibility correction

Next is stated darśana-sam. skāra. This is indicated by that part of the

ecliptic which touches the horizon when a planet having viks.epa rises above

the horizon. Consider a set up in which the northern rāśi-kūt.a is raised

and the planet is in one of the first three rāśi-s beginning from Mes.a; let

the point of contact of the ecliptic and the rāśi-kūt.a-vr. tta passing through

the planet be rising on the horizon. Further, suppose that the planet has

viks.epa towards the northern rāśi-kūt.a. Then, the planet will be raised

above the horizon. Therefore, the gnomon of the planet at that time is

computed first. When this gnomon is taken as Rcosine, its hypotenuse will

be the distance between the planet and the horizon on the viks.epa-kot.i-

vr. tta. Now, the dr. kks.epa-vr. tta meets the apakrama-vr. tta towards the south

at a distance equal to the distance between the zenith and the dr. kks.epa. In

the dr. kks.pepa-vr. tta itself, at a place north of the horizon, at a height equal to

the distance between the horizon and the dr. kks.epa, is the northern rāśi-kūt.a.

The northern viks.epa is that which moves towards the northern rāśi-kūt.a.

Applying the rule of three: If the maximum distance between the horizon

and the rāśi-kūt.a (vr. tta) touching the planet is the dr. kks.epa, how much will

be the distance from the horizon to the planet with viks.epa; the result would

give the gnomon of the planet with viks.epa. Then, the proportion: If for the
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dr. kks.epa-kot.i the hypotenuse is trijyā, then what will be the hypotenuse for

this gnomon, will give as result the portion of the arc of the ecliptic between

the planet and the horizon. In the same manner, the portion of the viks.epa-

kot.i-vr. tta for the distance between the horizon and the planet with latitude

is also obtained.

14.2 Rising and setting of planets

Now, conceive of a rāśi-kūt.a-vr. tta touching the meeting point of viks.epa-kot.i-

vr. tta and the horizon. This circle will intersect the rāśi-kūt.a circle passing

through the planet and the rāśi-kūt.a. The planet is situated at a distance of

the viks.epa-kot.i from the said point of contact. At that place, the divergence

between the two rāśi-kūt.a-vr. tta-s is equal to the hypotenuse of the śaṅku of

a planet with viks.epa which has been obtained. In this set up, the maximum

divergence between the two rāśi-kūt.a-vr. tta-s would be on the ecliptic. Here,

when the true planet is the lagna, for the reason that the planet would be

raised by that number of minutes at the time, the distance between the true

planet and the lagna when the planet rises will be the maximum distance

between rāśi-kūt.a-vr. tta-s. Since the rising has taken place earlier here, this

difference is subtracted from the true planet to get the lagna at the time of

the rising of the planet. This is the case when the viks.epa is north.

In the case of the south viks.epa when the same set up is conceived, the planet

will be below the horizon, since due to latitude it is deflected from the point

of contact of the horizon and the ecliptic, above and southwards on the rāśi-

kūt.a-vr. tta. When this is the case, just as the rising and setting lagna were

directed earlier to be computed using the downward gnomon (adho-mukha-

śaṅku), (working in the same manner), the minutes of the distance between

the true planet and the lagna at the time of the rising of the planet which

is at the tip of its viks.epa would be obtained. Since the planet will rise only

after that much time, these minutes of the difference should be added to the

true planet to derive the lagna at the rising of the planet.
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In the same manner, derive the setting lagna at the time of the setting of

the planet. Now, if it is the downward gnomon, the planet will set earlier, if

it is the upward gnomon, the planet will set later than the setting lagna of

the true planet. Hence, there is an inversion in the addition and subtraction.

This is all the difference (for this case).

When the southern rāśi-kūt.a is raised from the horizon, the planet will be

raised when the viks.epa is to the south, and will be lowered when the viks.epa

is to the north. Hence, in this case, the nature of addition and subtraction

will be opposite to that stated when the northern rāśi-kūt.a is raised. This

is the only difference (for this case).

Now, when the dr. kks.epa is south, the northern rāśi-kūt.a would be raised,

and, when it is north, the southern (rāśi-kūt.a will be raised). Hence, if

the direction of the viks.epa and the dr. kks.epa happen to be the same, the

darśana-sam. skāra-phala should be added to the planet when it rises. If the

directions are different, it is to be subtracted. At setting, (all this) is in the

reverse.

14.3 Planetary visibility

Now, we find difference in the kāla-lagna-s corresponding to the rising of the

planet and of the Sun in minutes. It is (empirically) found that there is a

critical value exceeding which the planet would be visible and below which

the planet is not visible. The position and the rising of the planet based on

this will be stated later. The method for obtaining the madhya-lagna of the

planet with viks.epa at the noon is also similar. Here, the difference is that

computations have to be done with that dr. kks.epa which is derived without

taking the latitude into account. The reason for this is that the north-south

circle is the same for both places with latitude and without latitude. Thus

has been stated the visibility correction.



Chapter 15

Elevation of the Moon’s Cusps

15.1 The second true hypotenuse of the Sun and

the Moon

Now is stated the (computation of) the elevation of the cusps of the Moon.

For this, first compute the second true hypotenuse (dvit̄ıya-sphut.a-karn. a) of

the Sun and the Moon. Apply also the second true correction (dvit̄ıya-

sphut.a-sam. skāra) for the Moon. Here, the view of (Śr̄ipati, author of)

Siddhāntaśekhara is that when the radius of the ucca and n̄ıca circles have

been ascertained, a correction has to be applied to them. The view of

Muñjāla, author of Laghumānasa is that the antya-phala of the Moon is

to be multiplied by Moon’s manda-karn. a and five and divided by trijyā.

These two views are worth consideration. Then, (for the Moon), compute

the dr. kkarn. a and apply the corrections of bhū-pr. s. t.ha and nati. Then com-

pute the nati for the Sun. Compute and apply the correction of lambana for

both the Sun and the Moon. Ascertain also the distance, at the required

time, between the centres of the solar and lunar spheres.

15.2 Distance between the orbs of the Sun and

Moon

Now, at a time when there is no nati or viks.epa, compute the Rsine and

Rversine of the difference in the sphut.a-s; square them, add them together
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and derive the root of the sum. The result will be the samasta-jyā (complete

chord of the arc) on the circle which has the observer as the centre and whose

circumference passes through (the centres of) the two orbs.

Here, in the matter of ascertaining the distance between the two orbs: For

the sake of convenience, conceive the ecliptic as the prime vertical of the

observer, touching the zenith and lying east-west. Conceive of the Sun at

the zenith. Conceive the rāśi-kūt.a-vr. tta passing through the Sun as the

north-south circle. A little away, place the Moon and passing through the

Moon conceive of a rāśi-kūt.a-vr. tta. Conceive also of two lines from the centre

of the circle, one passing through the Sun, and the other passing through the

Moon. It will be seen that the line drawn through the Sun is vertical and

that passing through the Moon will be a little inclined to it. Here, consider

that (segment) which has its tip at the meeting place of the candra-rāśi-kūt.a-

vr. tta and apakrama-vr. tta and the foot on the vertical line. This would be the

bhujā-jyā, the half chord of the part of the arc on the apakrama-vr. tta cut-

off by the two rāśi-kūt.a-vr. tta-s. The Rversine (śara) would be the distance

from the foot of the above to the location on the vertical circle where the

Sun is situated. The root of the sum of the squares of these two is the full

chord of the distance between the two orbs. When this is halved and the arc

thereof is doubled, the result will be the arc of the difference between the

two orbs, when there is no nati or viks.epa.

When, however, the Moon has a viks.epa on the rāśi-kūt.a-vr. tta, then the base

of the viks.epa-jyā will meet the candra-sūtra at a point lower to the Moon by

the measure of the viks.epa-śara. Then apply the rule of three: If the, bhujā-

jyā is the difference between the tip of the candra-sūtra and the vertical line,

then what would be the distance between the base of the viks.epa-jyā and

the vertical line. This rule of three would be: If the bhujā-jyā is the distance

between the tip of the candra-sūtra to the vertical line, then what will it

be for a distance less by the Rversine of the viks.epa. Or, one might do the

rule of three using the Rversine of the viks.epa and subtract the result from

the bhujā-jyā. Now, the bhujā-jyā-s derived by subtracting the square of the

viks.epa-śara-phala from the square of the ks.epa-śara and finding the root
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would be equal to the vertical distance between the bhujā-jyā which touches

the tip of the candra-sūtra and the bhujā-jyā which touches the foot of the

viks.epa. Add this distance to the Rversine of the difference between the true

positions. The result will be the distance between the Sun and the foot of

the bhujā-jyā which touches the foot of the viks.epa.

However, now, the śara would be a little longer, and the bhujā-jyā would

be a bit shorter. The root of the sums of the squares of these two will be

the line from the Sun to the foot of the viks.epa-jyā. If to the square of this,

the square of the viks.epa is added and the root of the sum found, it will

be the full chord of the difference between the orbs. When there is nati for

the Sun, then assume that it has deflected from the zenith along the north-

south circle. There, from the śara of the difference of the true longitudes,

the nati-śara of the Sun has to be subtracted. The remainder would be the

portion of the vertical line between the foot of the nati-jyā of the Sun and

the foot of the bhujā-jyā–less–viks.epa-śara. This would also be the śara of

the difference between the true positions less the nati-śara of the Sun plus

the kot.i-phala of the Moon’s ks.epa-śara. This would be one rāśi (the first

quantity). The bhujā-jyā of the difference between the true positions will

also be one rāśi.

If the Sun and the Moon move on the same side of the ecliptic the difference

in their nati-s is to be taken and if (they move) on the two sides, the sum

of the nati-s should be taken. This will be one rāśi. The only distinction is

that, here, the bhujā-jyā and śara of the difference in the sphut.a-s should be

conceived straight from that planet which has the smaller nati. By adding

up the squares of all these three (quantities) and finding the root of the sum,

the full chord of the difference in the orbs would be obtaind. This is the case

when the difference of the true planets is less than three rāśi-s.

When it is more (than three rāśi-s) also, the ecliptic is to be conceived as

follows: The Sun and the Moon are to be conceived on the two sides of

the zenith, equally removed from it, since at that time there is no nati for

both. The distance between the orbs would be double the half-jyā of half

the difference between the true longitudes when there is no nati for both.
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Now, the Rsines of half the difference in the true longitudes are the distances

from the points of contact of the rāśi-kūt.a-vr. tta and the ecliptic to the ver-

tical line. Here, subtract the bhujā-jyā-phala derived from the respective

nati-śara-s from the respective halves. The results would be the respective

distances from the foot of the nati-jyā to the vertical line. Here, too, they

would have touched the vertical line along its verticality according to the

magnitude of the nati.

Now, calculate the distance between the feet of the bhujā-jyā in the vertical

line. That will be the kot.i-phala of the śara of the nati, which is, the vertical

length of this śara. But the difference between the kot.i-phala-s of the two

śara-s is the vertical distance between the feet of the two bhujā-jyā-s. This

is a rāśi. When the bhujā-phala of the respective nati-śara-s are subtracted

from the jyā-s of half the difference of the true longitudes: the remainders

would be the bhujā-jyā-s of the difference of the true longitudes. The sum

of these two is the second rāśi. The difference between the nati-s or their

sums forms the third rāśi. The root of the sum of squares of these is the full

chord of the difference between the orbs. The sum or difference of the nati-s

is the north-south distance between the Sun and the Moon. The nati-phala

subtracted from the sum of the antarārdha-jyā-s will be the distance in the

east-west. The sum of half of the Rcosines of the nati and śara is the up-

down difference. The root of the sum of the squares of these three is the full

chord of the difference between the orbs. Thus has been stated the difference

between the orbs when the difference between the true longitudes is more

than three rāśi-s. The same procedure will apply also for the derivation of

the difference of the orbs in computation of eclipses.
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Explanatory Notes

Chapters 8–15



To be treated as – Blank page (introduced deliberately)



Chapter 8

Computation of Planets

8.1 Planetary motion

In Indian astronomical texts, as a first approximation, the planets are taken
to move uniformly along different circular orbits; the linear velocity of all
the planets is taken to be a constant. In other words, if Rp be the radius of
the planetary orbit (usually given in yojanā-s), and Tp be the sidereal time
period, then

Rp

Tp
= C, (8.1)

where C is a constant. Given C, the radius of the planetary orbit is de-
termined, if the time period of a planet is known. The term yuga-bhagan. a
refers to the number of complete revolutions made by the planet in a catur-
yuga consisting of 43,20,000 years. This period is also called a Mahā-yuga
and consists of four parts namely Kr. ta-yuga, Tretā-yuga, Dvāpara-yuga and
Kali-yuga.

The centre of the planetary orbit is not the centre of the Earth. As seen by
an observer on the surface of the Earth, there are two types of motion for the
planets: (i) the proper motion, which is eastward due to the motion of the
planet in its own orbit with respect to the stars, and (ii) the diurnal motion,
the uniform westward motion of all celestial objects, as seen from the Earth.
The proper motion is discussed in this chapter, whereas the diurnal motion
is considered in a later chapter1. The ‘true planet’ should be computed with
respect to the observer with the first point of Aries (Mes.ādi) as the reference
point.

1Chapter 11 primarily deals with the diurnal problems.
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8.2 Zodiacal celestial sphere

The terms bha and gola mean stars and sphere respectively. Hence, bhagola
refers to the sphere dotted with stars. In modern terminology, it is called
the celestial sphere. At this stage, the centre of the zodiacal celestial sphere
is stated to be the centre of the Earth. Any finer distinction will be dealt
with later.

Following this, two different conceptions are proposed for perceiving the mo-
tion of the planets. In modern terminology they are known as the eccentric
and the epicycle models.

8.3 Motion of planets: Eccentric model

To start with, the computation of true positions of the Sun and Moon,
which involve just the manda-sam. skāra (equation of centre) is discussed. In
Figure 8.1a, the planet at P is conceived to be moving on an eccentric circle
(pratiman. d. ala). The centre of the pratiman. d. ala is O′, and the centre of the
zodiacal sphere (bhagola-madhya) is O. The point O′ is located from O along
the direction of the mandocca, which is the apogee (for Sun and Moon) or
aphelion (for other planets) in modern terminology. O′ is moving on a circle
called manda-vr. tta which is a small circle centred around O.2

It is further conceived that as O′ moves on the circle around, it carries the
pratiman. d. ala along with it also. In other words, even if the planet does
not move on its own on the pratiman. d. ala it has motion with respect to the
bhagola-madhya due to the motion of the mandocca. As the Text notes, this
is like the motion of persons travelling in a vehicle.

In Figure 8.1a, Γ represents the direction of the fixed star which is taken
as the reference point for the measurement of the nirayan. a longitude of
the planet. O and O′ are the centres of the manda-vr. tta and pratiman. d. ala
respectively. The two lines NO′S and EO′W passing through O′, and per-

2The word vr. tta means circle. With the adjective manda added to it, the word manda-

vr. tta suggests that this circle plays a key role in the manda-sam. skāra. The same circle is
also called manda-n̄ıcocca-vr. tta for reasons explained in the next section.
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Figure 8.1a: The eccentric model of planetary motion.

pendicular to each other, represent the daks. in. ottara-rekhā (north-south line)
and pūrvāpara-rekhā (east-west line). It is further mentioned that even as
O′ moves at the rate of mandocca, the directions of the east-west line and
north-south line remain unchanged. In the figure,

ΓÔO′ = longitude of mandocca,

ΓÔ′P = ΓÔP0 = longitude of madhyama-graha,

and ΓÔP = longitude of sphut.a-graha (the true planet). (8.2)

8.4 Motion of planets: Epicyclic model

As suggested by the title, this model explains the irregularities in the plane-
tary motion by considering an epicycle instead of an eccentric circle discussed
in the previous section. Apart from explaining the epicyclic model, the Text
also establishes the equivalence of the two models.
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Figure 8.1b: The epicyclic model of planetary motion.

In Figure 8.1b, the deferent circle called kaks.yā-vr. tta is the circle centred
around O, with a radius equal to the radius of the pratiman. d. ala described
earlier. The mean planet P0 moves on this circle with mean uniform velocity.
Around P0 we draw a circle whose radius is the same as the radius of the
manda-vr. tta described earlier. Here it is called the manda-n̄ıcocca-vr. tta.3

At any given instant of time, the actual planet P is located on the manda-
n̄ıcocca-vr. tta by drawing a line from P0 along the direction of mandocca.
The point of intersection of this line with the manda-n̄ıcocca-vr. tta is the
true position of the planet. In fact, it can be easily seen that this point
happens to be the point of intersection of the pratiman. d. ala and the manda-
n̄ıcocca-vr. tta centered around the mean planet on the kaks.yā-vr. tta. Thus we
see the equivalence of the two models.

3The adjective n̄ıcocca is given to this vr. tta because, in this conception, it moves from
ucca to n̄ıca on the deferent circle along with the mean planet P0. The other adjective
manda is to suggest that this circle plays a crucial role in the explanation of the manda-

sam. skāra.
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8.5 The position of Ucca

The term ucca or tuṅga means ‘peak’. With reference to planetary motion,
this refers to the direction of apogee/aphelion of the planet. This is because
it is along this direction that the distance of the true planet from the centre
of the kaks.yā-man. d. ala becomes maximum.

The direction of ucca varies from planet to planet. It may be noted that
the true planet P is always at the intersection of manda-n̄ıcocca-vr. tta and
pratiman. d. ala, in fact at that intersection which is close to the ucca or in the
ucca region. The portion above the north-south line of the pratiman. d. ala (see
Figure 8.2) is the ucca region.

8.6 Ucca, Madhyama and Sphut.a

When the ucca and madhya coincide, that is, the longitude of madhya is the
same as that of the ucca, the centres of kaks.yā-man. d. ala, pratiman. d. ala, and
the two ucca-n̄ıca-vr. tta-s are on the same straight line, namely pūrvāpara-
rekhā (east-west line). This is depicted in Figure 8.2.

Then the sphut.a-graha (true planet) is the same as the madhyama-graha
(mean planet). ΓÔP = ΓÔP0. When the madhya moves away from the
ucca, the true planet begins to differ from the mean planet.

8.7 Computation of true Sun

In the case of the Sun, it is noted that the mandocca moves so slowly (actually
a few seconds of arc per century) that its motion can be neglected. The Text
then gives a detailed description of how to find the difference between the
true planet (sphut.a) and the mean planet (madhyama).

In Figure 8.3, when the madhyama is at the east point E or the west pointW ,
the true planet is at E′ or W ′ and there is no difference between madhyama
and sphut.a (mean and the true longitudes). When the mean planet is at
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Figure 8.2: The four circles when the madhya coincides with the ucca.

N , the north point of the kaks.yā-vr. tta, the true planet is at N ′, the north
point of pratiman. d. ala. Draw a circle with bhūmadhya O as the centre, with
ON ′ = KN as the radius. This is the karn. a-vr. tta at this point. The arc
N ′N ′′ = ∆θN on the karn. a-vr. tta is the difference between the sphut.a N ′

and the madhyama N . Clearly, at this point,

KN sin ∆θN = r, (8.3)

where r is the radius of the ucca-n̄ıca-vr. tta (epicycle). The sphut.a is less
than the madhyama in this position. Similarly, when the planet is at S′,
the difference between sphut.a and madhyama is given by the same relation.
However, the sphut.a will now be more than madhyama. When the planet is
at E′ and W ′, the sphut.a and madhyama coincide. The procedure to find
the radius of the karn. a-vr. tta is given in the next section.
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Figure 8.3: The karn. a-vr. tta of the planet.

For an arbitrary position P0 of the mean planet on the kaks.yā-vr. tta,, the
true planet is at P as shown in Figure 8.3. The line joining the centre
of the kaks.yā-man. d. ala and the mean planet, OP0 when extended cuts the
ucca-n̄ıca-vr. tta at X. Then,

EÔP0 = E′Ô′P = madhyama − ucca

= PP̂0X

= A, (8.4)

where A is what is called the anomaly in modern astronomy. Now, from the
figure it may be seen that

∆θ = madhyama − sphut.a

= ΓÔP0 − ΓÔP

= PÔP0. (8.5)
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Draw the perpendicular PQ from P to OX. Then, it is seen that

PQ = K sin∆θ = r sinA, (8.6)

where K = OP is the radius of the karn. a-vr. tta when madhya is at P0.
Similarly draw the perpendiculars P0M0 and PM from P0 and P on OE.
Then, it is seen that

PM = K sin(PÔE) = P0M0 = R sin(P0ÔE). (8.7)

In other words,

K sin (sphut.a – ucca) = R sin (madhyama – ucca). (8.8)

Both these prescriptions (8.6) and (8.8) are given in the text.

8.8 Computation of the Karn. a

Karn. a refers to the hypotenuse drawn from the centre of the kaks.yā-man. d. ala
to the planet on the pratiman. d. ala (OP , in Figure 8.3). Let the radius of the
kaks.yā-vr. tta (which is also the radius of the pratiman. d. ala) be R, and the
radius of the ucca-n̄ıca-vr. tta be r. The radius of the karn. a-vr. tta denoted by
K is to be determined. In Figure 8.4, OPi (i = 1 . . . 4) are the radii of the
karn. a-vr. tta-s corresponding to the positions of the planet at Pi. From the
planet at Pi (i = 1 . . . 4) on the pratiman. d. ala, we drop the perpendicular
PiBi on the ucca-n̄ıca-sūtra. Measuring with respect to O′, ΓÔ′Pi represent
the longitude of the madhya (M) and ΓÔ′B1 that of the ucca (U). Then,

PiÔ
′Bi = madhya ∼ ucca

= M ∼ U, (8.9)

when the planet is to the east (upper portion) of the north-south line of the
pratiman. d. ala.

When the planet is to the west (lower portion) of the north-south line of the
pratiman. d. ala, then

PiÔ
′Bi = 180◦ − (M ∼ U). (8.10)
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Figure 8.4: The planet P at different positions on the pratiman. d. ala.

Here M ∼ U represents the magnitude of difference between M and U . The
sine and cosine of these angles called bhujājyā and kot.ijyā are to be found
for deriving the radius of the karn. a-vr. tta. The sines are given by

PiBi = R sin(M ∼ U), (8.11)

(i = 1 . . . 4), as O′Pi = R. The cosine of the hypotenuse, BiO, called the
karn. a-vr. tta-kot.i (written as Kk henceforth) is determined thus:

1. When the planet is at P1, above (to the east of) the mandocca-n̄ıca-
vr. tta (called simply as ucca-n̄ıca-vr. tta for convenience hereafter),

Kk = B1O

= B1O
′ +O′O

= R cos(M − U) + r. (8.12)
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2. When the planet is at P2, below the ucca-n̄ıca-vr. tta,

Kk = B2O

= B2O
′ −O′O

= R cos(P2Ô
′B2) − r

= |R cos(M − U)| − r. (8.13)

3. When the planet is at P3, such that B3, the base of the Rsine, is within
the ucca-n̄ıca-vr. tta and above its north-south line,

Kk = B3O

= OO′ −B3O
′

= r −R cos(P3Ô
′B3)

= r − |R cos(M − U)|. (8.14)

4. When the planet is at P4, such that B4 is within the ucca-n̄ıca-vr. tta
and below its north-south line,

Kk = B4O

= B4O
′ −O′O

= R cos(P4Ô
′B4) − r

= |R cos(M − U)| − r. (8.15)

Now, the radius of the hypotenuse circle (karn. a-vr. tta) K is given by

K =
√

(bhujājyā)2 + (karn. a-vr. tta-kot.i)
2.

Note: All the four cases above can be expressed in terms of a single formula
by taking the signs of sine and cosine into account, and denoting the radius
of the pratiman. d. ala by R, as follows:

K =

√
R2 sin2(M − U) + [R cos(M − U) + r]2

=
√
R2 + r2 + 2rR cos(M − U). (8.16)

The above expression is valid even when the planet P is to the south, that
is to the right of ucca-n̄ıca-sūtra in Figure 8.4.
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At this point, the Text draws attention to the important feature of the
manda-correction that the dimension of the manda-n̄ıcocca-vr. tta r is assumed
to increase and decrease in the same manner as manda-karn. a K. The mean
radius of the manda-n̄ıcocca-vr. tta ro tabulated in texts corresponds to the
radius R of the pratiman. d. ala (or the kaks.yā-man. d. ala), usually taken to be
3438′. However, the mean and the actual radii are related by

r

K
=
r0
R

= C, (8.17)

where C is a constant.4 This will ensure that while calculating the manda-
correction by using (8.6), we need to know only the mean values of the radius
of the epicycle r0 and the radius of the pratiman. d. ala R = 3438′, because

sin ∆θ =
r

K
sin(M − U) =

r0
R

sin(M − U). (8.18)

Note: To obtain the actual values of r or K in terms of the minutes of
arc of the pratiman. d. ala, usually a process of iteration avíses.a-karma is em-
ployed which is outlined in all standard texts of Indian Astronomy starting
from Mahābhāskar̄ıya (629 AD) to Tantrasaṅgraha (1500 AD).5 Here, we
shall briefly summarise this process of iteration and refer the reader to the
detailed discussion in K. S. Shukla’s translation of Mahābhāskar̄ıya6 for fur-
ther details.

In Figure 8.5, P0 is the mean planet moving in the kaks.yā-man. d. ala with O
as the centre, and E′ is the direction of mandocca. Draw a circle of radius r0
with P0 as centre. Let P1 be the point on this circle such that P0P1 is in the
direction of mandocca (parallel to OE′). Let O′′ be a point on the line OE′,
such that OO′′ = r0. Join P1O

′′ and let that line meet kaks.yā-man. d. ala at Q.
Extend OQ and P0P1 so as to meet at P . The true planet is located at P .
Then, it can be shown that, OP = K and P0P = r are the actual manda-
karn. a and the corresponding (true) radius of the epicycle as will result by
the process of successive iteration which is described below. Since P1O

′′ is
parallel to P0O, the triangles OP0P and QO′′O are similar and we have

r

K
=
P0P

OP
=
O′′O

QO
=
r0
R
. (8.19)

4The value of C varies from planet to planet.
5Mahābhāskar̄ıya, IV.9-12; Tantrasaṅgraha II.41-42.
6Mahābhāskar̄ıya, Ed. and Tr. by K. S. Shukla, Lucknow 1960, p.111-119.
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The process of successive iteration to obtain K is essentially the following.
In triangle OP1P0, with the angle P1P̂0O = 180◦ − (M − U), the first ap-
proximation to the karn. a (sakr. t-karn. a) K1 = OP1 and the mean epicycle
radius r0 = P1P0, are related by

K1 =
√
R2 + r20 + 2r0R cos(M − U). (8.20)

In the RHS of (8.20), we replace r0 by the next approximation to the radius
of the epicycle

r1 =
r0
R
K1, (8.21)

and obtain the next approximation to the karn. a

K2 =
√
R2 + r21 + 2r1R cos(M − U), (8.22)
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and so on. This process is iterated tillKi andKi+1 become indistinguishable,
and that will be the avísis. t.a-karn. a K,7 which is related to the corresponding
epicycle radius r as in (8.21) by

r =
r0
R
K. (8.23)

It can actually be shown8 that the sequence K1,K2,K3, . . . indeed con-
verges and the limit is OP = K. Also, from the triangle OP0P it follows
that K and r are also related by

K =
√
R2 + r2 + 2rR cos(M − U). (8.24)

8.9 Alternative method for the Karn. a

Here, another approach for the determination of karn. a (hypotenuse) is pre-
sented, primarily using the ucca-n̄ıca-vr. tta (epicycle). This can be under-
stood with the help of Figure 8.6.

In fact, two cases are considered here: (i) the foot of the bhujā-phala of
the planet on the pratiman. d. ala lies outside the circumference of the kaks.yā-
vr. tta, and (ii) the foot of the bhujā-phala is inside the circumference of the
kaks.yā-vr. tta.9

1. Case 1: Planet at P1

Considering the triangle P1B1M1, the sine and the cosine are given by

bhujā-phala = P1B1 = r sin(M − U),

kot.i-phala = B1M1 = r cos(M − U). (8.25)

7The term viśes.a means ‘distinction’. Hence, aviśes.a is ‘without distinction’. Therefore
the term aviśis. t.a-karn. a refers to that karn. a obtained after doing a series of iterations such
that the successive values of the karn. a do not differ from each other.

8vide K. S. Shukla cited above in footnote 6.
9These also correspond to the situations when the planet is located in the pratiman. d. ala

to the east or west of the north-south line passing through the centre of the pratiman. d. ala.
The Text seems to wrongly suggest that these cases also correspond to the situations when
the planet, located in the pratiman. d. ala, lies outside or inside the kaks.yā-man. d. ala. This
error, however, is not made in the next section, 8.10, where only the location of the foot
of the bhujā-phala is considered.
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Figure 8.6: The determination of karn. a using epicyclic approach.

The distance between the centre O and the base of the bhujā-phala

OB1 = B1M1 +R

= R+ r cos(M − U). (8.26)

Hence,

karn. a = OP1

=

√
P1B1

2 +OB1
2

=

√
r2 sin2(M − U) + {R + r cos(M − U)}2. (8.27)

2. Case 2: Planet at P2

Considering the triangle P2B2M2, the sine and the cosine are given by

bhujā-phala = P2B2 = r sin(M − U)

kot.i-phala = B2M2 = |r cos(M − U)|
= −r cos(M − U), (8.28)
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as 90o < M − U < 180o. Now the distance between the centre O and
the base of the bhujā-phala

OB2 = OM2 −B2M2

= R− |r cos(M − U)|. (8.29)

Hence,

karn. a = OP2

=

√
P2B2

2 +OB2
2

=

√
r2 sin2(M − U) + {R− |r cos(M − U)|}2. (8.30)

In either case, (8.27) or (8.30) lead to the same expression for the karn. a,
viz.,

K =

√
r2 sin2(M − U) + {R+ r cos(M − U)}2

=
√
R2 + r2 + 2rR cos(M − U), (8.31)

which is the same as the formula (8.24) in the last section. From K, we can
find how much the planet has moved on the hypotenuse circle by (8.18).

8.10 Vipar̄ıta-karn. a : Inverse hypotenuse

It appears that it was the celebrated Mādhava (c.1320-1400) who gave an
exact formula for evaluating the true manda-karn. a, without employing the
iterative process. As noted in Tantrasaṅgraha II.44, Mādhava expressed the
true manda-karn. a in terms of the so called vipar̄ıta-karn. a or inverse hy-
potenuse. The expression for vipar̄ıta-karn. a is based on the inverse relation
between the karn. a and radius, which is being dealt with first. Mādhava’s
expression for the avísis. t.a-manda-karn. a will be discussed later towards the
end of the section 8.12.

Here, the aim is to obtain R from K. That is the radius of the kaks.yā-vr. tta
when the radius of the karn. a-vr. tta is taken to be trijyā (= 3438′). As in the
previous section, we consider two cases (refer to Figure 8.6).
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1. Case 1: Planet is at P1 and B1, the base of bhujā-phala, is outside
the kaks.yā-vr. tta. Now, the radius of the kaks.yā-vr. tta is

OM1 = OB1 −B1M1

= OB1 − kot.i-phala, (8.32)

where OB1 is the distance between the kaks.yā-kendra and the base of
the bhujā-phala and is given by

OB1 =

√
K2 − bhujā-phala2. (8.33)

2. Case 2: Planet is at P2 and B2, the base of bhujā-phala, is inside the
kaks.yā-vr. tta. Now, the radius of the kaks.yā-vr. tta is

OM2 = OB2 +B2M2

= OB2 + kot.i-phala, (8.34)

where OB2 is the distance between the kaks.yā-kendra and the base of
the bhujā-phala and is given by

OB2 =

√
K2 − bhujā-phala2. (8.35)

In both the cases we get

R =

√
K2 − r2 sin2(M − U) − r cos(M − U). (8.36)

8.11 Another method for Vipar̄ıta-karn. a

Here, another method for determining the trijyā from the karn. a is described.
We explain this with the help of Figure 8.7. In this, and the subsequent
section, we use P and U to represent the longitude of the planet and the
ucca respectively. Consider the case when B1, the base of the bhujājyā, is
outside the ucca-n̄ıca-vr. tta and to the east of it (as is the case when the
planet is at P1). The angle

UÔP1 = sphut.a − ucca

= P − U, (8.37)
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is the difference between the longitudes of the mandocca and the planet.
Also,

P1B1 = K sin(P − U)

OB1 = K cos(P − U)

O′B1 = OB1 −OO′

= K cos(P − U) − r. (8.38)

Then the radius of the pratiman. d. ala/kaks.yā-vr. tta is

O′P1 = R =

√
K2 sin(P − U)2 + (K cos(P − U) − r)2. (8.39)
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Figure 8.7: The determination trijyā from karn. a – alternate approach.

When the base of the bhujājyā B3, is inside the ucca-n̄ıca-vr. tta and east of
O,

O′B3 = r −K cos(P − U), (8.40)
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and the expression for R is same as above. In both cases, P − U < 90◦.

Similarly when B2, the base of the bhujājyā, is outside the ucca-n̄ıca-vr. tta
and to the west of it (as is the case when the planet is at P2),

R = O′P2 =
√
P2B2

2 +O′B2
2

=
√
P2B

2
2 + (O′O +OB2)2

= [K2 sin2(P − U) + (r + |K cos(P − U)|)2] 1

2 . (8.41)

It is easy to see that this is also the case when the base B4 is inside the
ucca-n̄ıca-vr. tta and west of O. In both these cases cos(P − U) is negative,
as 90o ≤ P − U < 180o. Hence, taking the sign of cos(P − U) into account,
we get in all cases,

R = [K2 sin2(P − U) + (K cos(P − U) − r)2]
1

2

= [K2 + r2 − 2rK cos(P − U)]
1

2 . (8.42)

8.12 Still another method for Vipar̄ıta-karn. a

There is yet another method for finding the radius of the pratiman. d. ala in
terms of the karn. a. We explain this with reference to Figure 8.7. Here, C1

and C2 are the feet of the perpendiculars from the centre of the pratiman. d. ala
O′ to the line joining the planet and the centre of kaks.yā-man. d. ala (OP1 and
OP2). In the Text, the planets at P1 and P2 are referred to as lying in the
ucca and n̄ıca regions of the pratiman. d. ala. The phrase ucca and n̄ıca regions
used in this context, have to be understood as referring to the portions above
and below the north-south line of the pratiman. d. ala.

1. The planet is at P1 (ucca region).

The radius of the pratiman. d. ala is

R = O′P1 =
√

(O′C1)2 + (P1C1)2. (8.43)

We need to calculate O′C1 and P1C1, which are given by

O′C1 = doh. phala = r sin(P − U),
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and
OC1 = kot.i-phala = r cos(P − U).

In the figure,

P1C1 = OP1 −OC1

= K − r cos(P − U). (8.44)

Hence, (8.43) reduces to

R =

√
r2 sin2(P − U) + {K − r cos(P − U)}2. (8.45)

2. The planet is at P2 (n̄ıca region).

The radius of the pratiman. d. ala is

R = O′P2 =
√

(O′C2)2 + (P2C2)2. (8.46)

We need to calculate O′C2 and P2C2, which are given by

O′C2 = doh. phala = r sin(O′ÔC2)

= r sin(P2ÔB2)

= r sin(P − U),

and OC2 = kot.i-phala = r cos(O′ÔC2)

= r cos(P2ÔB2)

= |r cos(P − U)|. (8.47)

In the figure,

P2C2 = OP2 +OC2

= K + |r cos(P − U)|. (8.48)

Hence, (8.46) reduces to

R = [r2 sin2(P − U) + {K + |r cos(P − U)|}2]
1

2 . (8.49)

In (8.49), cos(P − U) is negative, as 90o ≤ P − U ≤ 180o. Taking the
sign of cos(P − U) into account, in all cases, the expression for trijyā
is

R = [r2 sin2(P − U) + {K − r cos(P − U)}2]
1

2

= [K2 + r2 − 2rK cos(P − U)]
1

2 , (8.50)

which is the same as (8.42).
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Now, the avísis. ta-manda-karn. a is to be determined in terms of the minutes
of arc of the pratiman. d. ala. The radius of the karn. a-vr. tta is equal to the
trijyā R, when measured in the minutes of arc of karn. a-vr. tta (i.e., its own
measure). Then the radius of the pratiman. d. ala will be given (in the measure
of the karn. a-vr. tta) by the vipar̄ıta-karn. a Rv, which is obtained by setting
K = R and r = r0 in (8.36) and (8.42), where r0 is the mean radius of the
manda-n̄ıcocca-vr. tta :

Rv =
√
R2 − r20 sin2(M − U) − r0 cos(M − U), (8.51)

and

Rv = [R2 + r20 − 2r0R cos(P − U)]
1

2 . (8.52)

By the rule of three: Rv is the radius of the pratiman. d. ala when the radius
of the karn. a-vr. tta is trijyā or R. Now when the radius of the pratiman. d. ala
is R, then the radius of the karn. a-vr. tta K will be given by

K

R
=

R

Rv

or K =
R2

Rv

. (8.53)

This is the Mādhava’s formula for the true or avísis. t.a-manda-karn. a.

Note: We may briefly indicate the geometrical representation of the avísis. t.a-
manda-karn. a and the vipar̄ıta-karn. a with reference to Figure 8.5 on page 632.
Here, T is a point on the line OP0, such that the line QT is parallel to P0P1.
Then, it can be easily seen that OT will be the vipar̄ıta-karn. a Rv. Now, in
the triangle OQT , OQ = R, QT = r0, OQ̂T = PÔE′ = P −U , and we have

OT = [R2 + r20 − 2Rr0 cos(P − U)]
1

2 , (8.54)

which is the same as the vipar̄ıta-karn. a Rv as given by (8.52). Again, the
triangles OPP0 and OQT are similar. Hence

OP

OQ
=

OP0

OT
,

or OP =
OP0 ×OQ

OP
. (8.55)

Since OP0 = OQ = R and OT = Rv is the vipar̄ıta-karn. a, we get

OP =
R2

Rv

, (8.56)

which is the same as the avísis. ta-karn. a K given by (8.53).
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8.13 Manda-sphut.a from the Madhyama

In Figure 8.8, O is the bhū-madhya, O′ is the centre of the pratiman. d. ala, P
is the planet on the pratiman. d. ala and U is the ucca. R and K are the radii
of the pratiman. d. ala and the karn. a-vr. tta. In the figure,

Â = PÔ′U = madhya − ucca

= M − U,

and B̂ = PÔU = sphut.a − ucca

= P − U. (8.57)

It may be noted that while Â corresponds to the arc measured along the
pratiman. d. ala, B̂ corresponds to the arc measured along the karn. a-vr. tta.
Draw a perpendicular from P to OU , meeting it at C. Obviously,

PC = R sin(M − U) = K sin(P − U). (8.58)

B
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O

D

U (ucca)

P Pratimandala

r
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K

CKarna−vrtta

Kakshya−vrtta

Figure 8.8: The determination manda-sphut.a from madhya.

This means that the measures of the pratiman. d. ala and karn. a-vr. tta are dif-
ferent. Jyā of B̂ in the measure of the karn. a-vr. tta is equal to the jyā of Â
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in the measure of the pratiman. d. ala. B̂ can be determined from the knowl-
edge of trijyā R, Â and the karn. a K which can be found using any of the
methods described earlier. Adding ucca to B̂, sphut.a is determined. This is
the manda-sphut.a, that is the mean planet to which the equation of centre
is added to get the sphut.a-graha.

On the other hand, if the sphut.a is known, the above relation (8.58) can be
used to obtain the manda-karn. a; and from that the radius of the epicycle
can also be determined using (8.23).

Here, it is again reiterated that the radius of the epicycle (ucca-n̄ıca-vr. tta),
r, increases or decreases as the manda-karn. a K, that is, r

K
is constant. It

is noted that this simplifies the calculation of P −M , as it can be simply
determined from the relation

K sin(M − P ) = r sin(madhya − ucca)

= r sin(M − U). (8.59)

If r0 is the mean radius of the epicycle, or the radius of the epicycle in terms
of the minutes of arc of the pratiman. d. ala, then

sin(M − P ) =
r

K
sin(M − U) =

r0
R

sin(M − U). (8.60)

Thus, in calculating the manda-correction, there is no need to compute the
manda-karn. a K, or the true epicycle radius r.

It is further noted that there is a difference between the manda and ś̄ıghra
procedures. As will be discussed in the next section, in ś̄ıghra correction, the
radius of the ś̄ıghra-n̄ıcocca-vr. tta is taken to be a constant, and not varying
with the ś̄ıghra-karn. a.

8.14 The Ś̄ıghra-sphut.a of the planets

Note: It may be mentioned that the revised planetary model proposed by
Nīlakan. t.ha in Tantrasaṅgraha forms the basis of the discussion in this and
the subsequent sections. An overview of the conventional planetary model
employed in Indian Astronomy (at least from the time of Āryabhat.a) and
the important revision of this model by Nı̄lakan. t.ha Somayāj̄ı is presented in
the Epilogue to this Volume.
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For the Sun and the Moon, the sphut.a obtained above is itself the true
planet. For the planets (Mars, Jupiter, Saturn, Mercury and Venus), an-
other correction has to be applied to find the true planet which involves
the use of a ś̄ıghrocca. This would be equivalent to the determination of
the true geocentric planet called the ś̄ıghra-sphut.a from the true heliocen-
tric planet called the manda-sphut.a. We first, delineate the procedure given
in the Text. In Figure 8.9, the ś̄ıghra-n̄ıcocca-vr. tta is a circle with the
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Figure 8.9: The determination of ś̄ıghra-sphut.a for exterior planets.

bhagola-madhya as the centre, and whose radius is the ś̄ıghrāntyaphala, rs.
The ś̄ıghrocca, S is located on this circle. It is also stated that ś̄ıghrocca is
the āditya-madhyama (the mean Sun). The manda-n̄ıcocca-vr. tta is a circle
with the ś̄ıghrocca as the centre. The mandocca is located on this circle. The
planet P is located on the pratiman. d. ala which is centered at the mandocca.
SP is the manda-karn. a and PŜΓ is the manda-sphut.a. PÔΓ is the true
geocentric planet known as the ś̄ıghra-sphut.a. The ś̄ıghra-sphut.a is found
in the same manner from the manda-sphut.a, as the manda-sphut.a is found
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from the mean planet, madhyama-graha. Thus it may be noted that, in the
computation of the ś̄ıghra-sphut.a, the ś̄ıghrocca and the manda-karn. a-vr. tta
play the same roles as the mandocca and the pratiman. d. ala did in the compu-
tation of the manda-sphut.a. The ś̄ıghra-karn. a Ks = OP can be determined
in terms of the manda-karn. a, SP = K, or the trijyā R. Apart from the
similarities, there is one difference, as was pointed out in the previous sec-
tion. In manda-correction, the radius of the manda-n̄ıcocca-vr. tta r varies. It
increases or decreases in the same way as the manda-karn. a K. In the ś̄ıghra
correction, the radius of the ś̄ıghra-n̄ıcocca-vr. tta rs, does not vary with the
ś̄ıghra-karn. a. To start with, both the mean radius r0 of the manda-n̄ıcocca-
vr. tta and the radius rs of the ś̄ıghra-n̄ıcocca-vr. tta are specified in the measure
of the pratiman. d. ala radius, being trijyā or R = 3438′.

We first define the basic quantities/angles which are used in the later dis-
cussion, with reference to Figure 8.9:

madhyama-graha = ΓÛP,

manda-karn. a = SP = K,

manda-sphut.a = ΓŜP = Ms. (8.61)

It is this manda-sphut.a, (the last of the above), which is determined by the
manda-sam. skāra discussed in the sections 8.7 and 8.13. The ś̄ıghra-sphut.a,
to be determined, is defined by

ś̄ıghra-sphut.a = P = ΓÔP. (8.62)

In connection with this, two more quantities are defined, namely

ś̄ıghrāntyaphala = OS = rs,

and ś̄ıghrocca = ΓÔS = S. (8.63)

The former is the radius of the circle in which ś̄ıghrocca moves, and the latter
is the longitude of ś̄ıghrocca. Now, the ś̄ıghra-kendra is given by,

ś̄ıghra-kendra = manda-sphut.a − ś̄ıghrocca

= ΓŜP − ΓÔS

= ΓŜP − ΓŜB

= PŜB. (8.64)
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The Rsine of the above is called ś̄ıghra-kendra-jyā. It is given by

ś̄ıghra-kendra-jyā = PB = PS sinPŜB

= K sin(Ms − S). (8.65)

Similarly, the kot.ijyā is given by

ś̄ıghra-kendra-kot. ijyā = SB = PS cosPŜB

= K cos(Ms − S). (8.66)

The jyā and the kot.i above are defined in the measure of the manda-karn. a
K. Now, the bhujā-phala and kot.i-phala will be defined in the measure of
the pratiman. d. ala (i.e., taking R = 3438′) as follows:

ś̄ıghra-bhujā-phala = OC = OS sinOŜC

= OS sinPŜB

= rs sin(Ms − S), (8.67)

and ś̄ıghra-kot.i-phala = SC = OS cosOŜC

= OS cosPŜB

= rs cos(Ms − S). (8.68)

Now the ś̄ıghra-karn. a is given by

Ks = OP =
[
PC2 +OC2

] 1

2

=
[
(SC + PS)2 +OC2

] 1

2

=
[
(ś̄ıghra-kot.i-phala + manda-karn. a)2 + (́s̄ıghra-bhujā-phala)2

]

=
[
(rs cos(Ms − S) +K)2 + r2s sin2(Ms − S)

] 1

2 . (8.69)

This ś̄ıghra-karn. a is in the measure of the pratiman. d. ala. That is, the ex-
pression for Ks has been obtained under the assumption that R is taken to
be trijyā (= 3438′) and K is the calculated value of manda-karn. a (could be
less than or greater than trijyā). However, when the manda-karn. a is itself
taken to be trijyā, then the ś̄ıghra-karn. a will be

K̃s =
R

K
Ks

=

[(
rs
R

K
cos(Ms − S) +R

)2

+

(
rs
R

K

)2

sin2(Ms − S)

] 1

2

, (8.70)
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where rs
R
K

cos(Ms −S) and rs
R
K

sin(Ms −S) would be ś̄ıghra-kot.i-phala and
ś̄ıghra-bhujā-phala in the measure of the manda-karn. a respectively.

The expression (8.69) for ś̄ıghra-karn. a was derived using the triangle OCP.
Now considering the triangle OPB, we have

Ks = OP =
(
OB2 + PB2

) 1

2

=
[
(SB +OS)2 + PB2

] 1

2

=
[
(́s̄ıghra-kot. ijyā + ś̄ıghrāntya-phala)2 + (́s̄ıghra-bhujājyā)2

] 1

2

=
[
(K cos(Ms − S) + rs)

2 +K2 sin2(Ms − S)
] 1

2 . (8.71)

This is another expression for the ś̄ıghra-karn. a Ks in the measure of the
pratiman. d. ala, and is equivalent to (8.69). However, in the measure of the
manda-karn. a, when it is taken to be trijyā (that is, when K = trijyā), it will
be

K̃s =
R

K
Ks

=

[(
R cos(Ms − S) + rs

R

K

)2

+R2 sin2(Ms − S)

] 1

2

, (8.72)

where rs
R
K

is the ś̄ıghrāntya-phala in the measure of the manda-karn. a.

Now, considering the two triangles PSB and POB, we have

OP sin(PÔB) = PB = SP sin(PŜB). (8.73)

Therefore,

Ks sin(ΓÔP − ΓÔB) = K sin(Ms − S). (8.74)

That is,

Ks sin(P − S) = K sin(Ms − S). (8.75)

In other words,

R sin(P − S) =
R

Ks
K sin(Ms − S), (8.76)

where R is the trijyā. From this, the arc P−S is found. When this is added
to the ś̄ıghrocca S, the result will be the ś̄ıghra-sphut.a P.
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Also, it can be easily seen that

OP̂C = manda-sphut.a − ś̄ıghra-sphut.a

= Ms − P,
OP sin(OP̂C) = OC. (8.77)

Using (8.67) in the RHS, the above equation reduces to

Ks sin(Ms − P) = rs sin(Ms − S). (8.78)

Multiplying by trijyā and dividing by karn. a, we get

R sin(Ms − P) =
R rs sin(Ms − S)

Ks
. (8.79)

From this, the arc Ms − P is found. When this is subtracted from the
manda-sphut.a Ms, the result will be the ś̄ıghra-sphut.a, P.

It is again emphasized that one has to be careful about the measure em-
ployed. In the two alternative ways of finding the ś̄ıghra-sphut.a P, if the
ś̄ıghra-bhujā-jyā K sin(Ms − S) and the ś̄ıghra-bhujā-phala rs sin(Ms − S)
are in the measure of manda-karn. a or pratiman. d. ala, the divisor Ks (́s̄ıghra-
karn. a) should also be in the same measure.

A geometrical summary of finding the manda-sphut.a/ś̄ıghra-sphut.a is then
provided. The motion of the planet on the pratiman. d. ala, whose centre is
the ucca, is known. From this, one should determine the motion of the
planet on the karn. a-vr. tta whose centre is the bhagola-madhya. Here the
pratiman. d. ala and karn. a-vr. tta are called the jñāta-bhoga-graha and jñeya-
bhoga-graha-vr. tta-s respectively. The terms jñāta and jñeya mean ‘known’
and ‘to be known’. Bhoga in this context means the ‘arc covered’. Hence,
jñāta-bhoga-graha-vr. tta refers to the circle in which the arc covered by the
planet is known, which is the pratiman. d. ala. Similarly, jñeya-bhoga-graha-
vr. tta refers to the circle in which the arc covered by the planet is to be
known. Obviously this is the karn. a-vr. tta. It could be ś̄ıghra-karn. a-vr. tta or
manda-karn. a-vr. tta as the case may be. These two, along with the other
three vr. tta-s are shown in Figure 8.10.
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(Pratimandala)
Jnata−bhoga−graha−vrtta

Kakshya−vrtta

Ucca−nica−vrtta

Γ

U (Ucca)
P

P

O
(Bhagola−madhya)

Jneya−bhoga−graha−vrtta
(Karna−vrtta)

Kakshya−vrtta

Γ

Uccakendra−vrtta

Figure 8.10: The jñāta-bhoga-graha-vr. tta and jñeya-bhoga-graha-vr. tta.

8.15 The Ś̄ıghra-sphut.a of Mercury and Venus

For Mercury and Venus, ś̄ıghra-n̄ıcocca-vr. tta (́s̄ıghra-vr. tta) is large and the
manda-karn. a-vr. tta is small. Hence, the ś̄ıghra-vr. tta with its centre at the
centre of bhagola, is taken to be the kaks.yā-vr. tta. On this, the ś̄ıghrocca
(S) moves (see Figure 8.11). The jñāta-bhoga-graha-vr. tta is a circle with the
ś̄ıghrocca as the centre, and on the circumference of this the planet moves
with the same speed as the manda-sphut.a. Here it is to be considered as the
ucca-n̄ıca-vr. tta. As we shall see later, this is essentially the manda-karn. a-
vr. tta with its radius reduced from K to r̃s = K rs

R
. Also construct another

ucca-n̄ıca-vr. tta /jñāta-bhoga-vr. tta whose centre is same as the centre of the
kaks.yā-vr. tta (which is same as bhagola-madhya). On this the manda-sphut.a-
graha is located such that ΓÔO′ = ΓŜP . With this (O′) as the centre,
the pratiman. d. ala is constructed whose radius is the same as the ś̄ıghra-
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vr. tta or the kaks.yā-vr. tta. The planet is located at the intersection of this
pratiman. d. ala and the jñāta-bhoga-graha-vr. tta. The jñeya-bhoga-graha-vr. tta
is the circle whose centre is the same as that of the kaks.yā-vr. tta and touches
the planet. That is, it is the circle with OP as radius in Figure 8.11. We
now define the following:

ś̄ıghrocca = ΓÔS = ΓÔ′P = S,

manda-sphut.a = ΓÔO′ = ΓŜP = Ms. (8.80)

The ś̄ıghra-kendra is given by

ś̄ıghra-kendra = manda-sphut.a − ś̄ıghrocca

= ΓŜP − ΓÔS

= ΓŜP − ΓŜB

= PŜB

= Ms − S. (8.81)

The sine of it, called the ś̄ıghra-kendra-bhujājyā is

R sin(Ms − S) = R sinPŜB

= R sinPÔ′C

= PC

= Ks sinPÔC

= Ks sin(Ms − P). (8.82)

Considering the triangle POB,

ś̄ıghra-bhujā-phala = PB = Ks sinPÔB

ś̄ıghra-bhujā-phala-cāpa = PÔB = P − S. (8.83)

We compare this with Figure 8.9 and determine the ś̄ıghra-sphut.a in a similar
manner. Here, we take the motion of O′, on the ucca-n̄ıca-vr. tta as the graha-
gati, and the motion of P on the pratiman. d. ala (whose centre is O′ and whose
radius is same as the radius of the kaks.yā-man. d. ala) as the ś̄ıghrocca-gati.
In this sense, the roles of kaks.yā/pratiman. d. ala and the ucca-n̄ıca-vr. tta are
reversed in this case.

The procedure for finding the ś̄ıghra-sphut.a ΓÔP is the same as that for
finding the manda-sphut.a of a planet, with O′ which moves with graha-gati
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Jneya−bhoga−graha−vrtta
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Figure 8.11: The five circles employed in elucidating the ś̄ıghra-sphut.a of
Mercury and Venus.

playing the role of ucca and P , which moves on pratiman. d. ala with ś̄ıghrocca-
gati, playing the role of madhyama-graha. Now, the ś̄ıghra-sphut.a is given
by

P = ΓÔP (8.84)

= ΓÔS + PÔB

= ś̄ıghrocca + ś̄ıghra-phala-cāpa, (8.85)

where the ś̄ıghra-bhujā-phala-cāpa PÔB is determined from

Ks sin(PÔB) = r̃s sinPŜB

= r̃s sin(Ms − S), (8.86)

where Ks = OP , is the radius of the ś̄ıghra-karn. a-vr. tta, and r̃s = SP = OO′

is the radius of the ucca-n̄ıca-vr. tta, which is the the manda-karn. a reduced
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to the scale of the ś̄ıghra-vr. tta and is given by

r̃s =
K

R
rs, (8.87)

where K is the manda-karn. a and rs is the radius of the ś̄ıghra-n̄ıcocca-vr. tta
or equivalently the ś̄ıghra-antya-phala. Now, for obtaining the ś̄ıghra-sphut.a
(ΓOP ), the ś̄ıghra-phala-cāpa (PÔB) has to be applied to ś̄ıghrocca. Using
(8.86) and (8.87), PÔB = P − S is given by

R sin(P − S) = R
r̃s
Ks

sin(Ms − S) = K
r̃s
Ks

sin(Ms − S), (8.88)

where the ś̄ıghra-karn. a Ks is given by

Ks =
√

(PB2 +OB2)

= [{r̃s sin(Ms − S)}2 + {R + r̃s cos(Ms − S)}2]
1

2 . (8.89)

Using (8.87) in the above, we get

Ks = [{rsK
R

sin(Ms − S)}2 + {R +
rsK

R
cos(Ms − S)}2]

1

2 . (8.90)

The ś̄ıghra-karn. a is also given by

Ks = [{R cos(Ms − S) +
rsK

R
}2 + {R sin(Ms − S)}2]

1

2 . (8.91)

Alternatively, ś̄ıghra-sphut.a

ΓÔP = ΓÔO′ − PÔC

= manda-sphut.a − ś̄ıghra-kendra-bhujājyā-cāpa, (8.92)

where the ś̄ıghra-kendra-bhujājyā-cāpa PÔC = Ms − P is determined from
(8.82). Since Ms and S are known, the cāpa PÔC is known. This has to be
applied to the manda-sphut.a to obtain the true planet.

The Text clearly notes the difference between the exterior planets, Mars,
Jupiter and Saturn and the interior planets Mercury and Venus. For the
former, the stated values of manda-vr. tta and ś̄ıghra-vr. tta are in terms of
their pratiman. d. ala-s. For Mercury and Venus, since the ś̄ıghra-vr. tta-s are
larger, the pratiman. d. ala is measured in terms of the (larger) ś̄ıghra-vr. tta
and set out as the ś̄ıghra-vr. tta.
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Note:

The Text also notes that the procedure for finding the true planet for Mer-
cury and Venus in Tantrasaṅgraha is different from that in other works.
For these planets, since the ś̄ıghra-vr. tta-s are large, it is the pratiman. d. ala
which has been measured in terms of the minutes of this (́s̄ıghra-vr. tta)
and set out as ś̄ıghra-vr. tta in Tantrasaṅgraha. In the earlier texts, the
manda-vr. tta-s of Mercury and Venus are in the measure of the ś̄ıghra-vr. tta.
In Tantrasaṅgraha, the manda-n̄ıcocca-vr. tta-s are in the measure of the
pratiman. d. ala. Though it is not stated here, it is implied that the manda-
sphut.a-nyāya is wrong in the earlier texts, as the equation of centre is applied
to the āditya-madhyama (mean Sun), whereas it should be applied to the
mean planet (which is termed the ś̄ıghrocca in earlier texts).

On the other hand, according to Tantrasaṅgraha, the equation of centre is ap-
plied to the mean planet (termed as such – it is the mean heliocentric planet
in the modern technology) to find the manda-sphut.a (the true heliocentric
planet). Then the manda-karn. a (radius of the orbit of the manda-sphut.a)
is reduced by a factor of rs

R
, where rs is the ś̄ıghra-antya-phala and R is the

trijyā. This reduced manda-karn. a-vr. tta on which the manda-sphut.a moves
is centered around that mean Sun (́s̄ıghrocca), which itself moves around
the bhagola-madhya in an orbit of radius R. With this, the true geocentric
planet is found. This is essentially the same as the standard planetary model
employed in modern astronomy since Kepler, (except that here the ś̄ıghrocca
is the mean Sun, whereas it should be the true Sun), as the stated valued of
rs/R is equal to the ratio of the planet-Sun and Earth-Sun distances in the
modern picture.

It is noteworthy that the procedure for finding the true planet is essentially
the same for both the exterior and the interior planets. In both the cases,
the true heliocentric planet is found first from the mean heliocentric planet
with the manda-sphut.a-nyāya, that is, by the application of what is called
the equation of centre in the modern terminology. Then the true geocentric
planet (́s̄ıghra-sphut.a) is found taking the Sun as the ś̄ıghrocca. The differ-
ence is that the orbit of the planet around the ś̄ıghrocca is larger than the
orbit of the Sun around the Earth (́s̄ıghra-vr. tta) for exterior planets, and
smaller for the interior planets. This is all as it should be.10

10For further details regarding the planetary model outlined in Tantrasaṅgraha, see the
discussion in the Epilogue to this Volume.
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8.16 Ś̄ıghra correction when there is latitude

In the earlier sections, while discussing the procedure for finding the true
longitudes, the deflection of the planet from the ecliptic as it moves along
its orbit was not considered. A detailed discussion of it is taken up in this
section. Since the diurnal motion is not of any significance in this discussion,
the apakrama-man. d. ala (ecliptic) is taken as an exact vertical circle situated
east-west in the middle of the bhagola. This is the circle with the centre
of the Earth as the centre. This is divided into 12 rāśi-s. Considering the
two rāśi-kūt.a-s (poles of the ecliptic, which are the points of intersection of
all the rāśi-s), which are diametrically opposite to each other, six circles are
constructed. These are shown in Figure 8.12. It may be noted that these
circles meet at the poles (rāśi-kūt.a-s) on the north-south line drawn through
the centre of the apakrama-man. d. ala.

N

E W

S

O

         (Points N & S)
Apakrama−mandala

Rasikuta−vrttas

Rasi−kutas

Figure 8.12: The apakrama-man. d. ala and the six rāśi-kūt.a-vr. tta-s.
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By construction, the ś̄ıghra-vr. tta is in the plane of the apakrama-man. d. ala,
with its centre at the centre of the Earth. The size of the ś̄ıghra-vr. tta will be
different for different planets. The manda-n̄ıcocca-vr. tta is a circle inclined
to the ś̄ıghra-vr. tta, with its centre on the ś̄ıghra-vr. tta, and intersecting the
apakrama-man. d. ala at the pāta-s (nodes, which have a retrograde motion).
These are shown in Figure 8.13. The pratiman. d. ala and the manda-karn. a-
vr. tta will be in the plane of manda-n̄ıcocca-vr. tta, which is inclined to the
plane of ecliptic. The planet P is on the manda-karn. a-vr. tta whose centre is
S and will have viks.epa (latitudinal deflection from the apakrama-man. d. ala).

Pratimandala

(in the plane of ecliptic )

(inclined to the plane of ecliptic )

(in the plane of MNV)

(in the plane of MNV)

O

S

S’

P

Sighra−vrtta

Manda−karna−vrtta

Mandocca−nica−vrtta (MNV)

Figure 8.13: Manda-karn. a-vr. tta when there is latitude.

In Figure 8.14,

P̂N = manda-sphut.a − pāta. (8.93)

When the planet is 90◦ from the pāta, we have the maximum viks.epa given
by

vmax = K sin i, (8.94a)
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where K is the radius of the manda-karn. a-vr. tta and i the inclination of the
manda-karn. a-vr. tta to the pratiman. d. ala. At an arbitrary position P , the
viks.epa is given by

v = PB = K sin β, (8.94b)

where β is the latitude as observed from the ś̄ıghrocca S.11 In arriving at
the above result, we have used the planar triangle PSB. Considering the
spherical triangle PNQ and applying the sine formula, we get

sinPQ

sin i
=

sin(P −N)

sin 90
, (8.95)

where P and N are the longitudes of the planet and the node respectively.
Hence the viks.epa (K sinPQ = v = K sin β) is given by

v = K sinPQ

= K sin i sin(P −N)

= K sin i sin(manda-sphut.a − pāta)

=
K sin i

R
×R sin(manda-sphut.a − pāta)

=
vmax

trijyā
×R sin(manda-sphut.a − pāta). (8.96)

It is precisely the above equation (8.96) that is given in the Text.

In Figure 8.14, let SS′ = PB, be perpendicular to the apakrama-mand. ala.
Viks.epa-kot.i-vr. tta is the circle parallel to the ś̄ıghra-vr. tta with S′P = SB
as the radius. Considering the triangle SPB, since SP = K, the radius of
viks.epa-kot.i-vr. tta S

′P is equal to

SB = K cos β

=

√
K2 −K2 sin2 β

=

√
manda-karn. a

2 − viks.epa
2. (8.97)

This is in the measure of pratiman. d. ala, when the manda-karn. a and viks.epa
are in that measure.

The viks.epa-kot.i-vr. tta is essentially manda-karn. a-vr. tta projected on to the
plane parallel to the ś̄ıghra-vr. tta in which the planet is located. The ś̄ıghra-
sphut.a should be calculated taking the viks.epa-kot.i as the manda-karn. a. The

11This is essentially the heliocentric latitude of the planet.



656 8. Computation of Planets

P

Q
B

i

β

K

β

O Sighra−karna

K cos 

N
(Pata)Mandakarna−vrtta

Apakrama−vrtta

 Vertical to the ecliptic
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Figure 8.14: The latitudinal deflection (viks.epa) of a planet.

result is the graha-sphut.a (true planet) on the ś̄ıghra-karn. a-vr. tta, which is a
circle with O′ as the centre. O′ is the point in the plane of viks.epa-kot.i-vr. tta,
at distance OO′ = PB from the apakrama-man. d. ala. The distance between
the centre of the apakrama-man. d. ala and the planet P , represented by OP
in Figure 8.15, is the bhū-tārāgraha-vivara. Vivara is distance of separation;
tārāgraha is planet; and bhū is Earth. Hence, the term bhū-tārāgraha-vivara
means the distance of separation between the Earth and the planet.

β
~O

O’

P

Bβ

in the plane of 
Viksepa−koti−vrtta

Sighra−karna

S

Bhu−taragraha−vivara

Figure 8.15: The bhū-tārāgraha-vivara and the bhagola-viks.epa.

The angle of deflection of the planet, β̃ as seen from bhagola-madhya, is
different from the angle of deflection β, as seen from S, which represents the
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āditya-madhyama. Bhū-tārāgraha-vivara is given by,

OP =
√
O′P 2 +OO′2 =

√
(́s̄ıghra-karn. a

2 + viks.epa
2). (8.98)

Now the viks.epa is also given by

v = OP sin β̃. (8.99)

Therefore,

R sin β̃ = viks.epa × R

OP
. (8.100)

In the above equation, LHS is nothing but the bhagola-viks.epa. That is, the
latitude of the planet as seen from the Earth. The term bhagola is used as
an adjective to viks.epa to indicate the fact that the Earth is taken to be at
the centre of the bhagola and hence the viks.epa as seen from the Earth is the
same as the bhagola-viks.epa. Thus, we see that

Bhagola-viks.epa = viks.epa × trijyā

bhū-tārāgraha-vivara
. (8.101)

Thus the angle β̃ is found from (8.96) and (8.100). This is the geocentric
latitude. Though the viks.epa-kot.i-vr. tta is smaller than the apakrama-vr. tta,
the angles are the same for the both, just as the hour-angle in the diurnal
circle is the same as in the equatorial circle.

The case when the ś̄ıghra-vr. tta itself is inclined to the apakrama-
man. d. ala

Next, the more general case when the ś̄ıghra-vr. tta itself is inclined to the
apakrama-man. d. ala is considered. This is a hypothetical case, as the ś̄ıghra-
vr. tta, the orbit of the Sun around the Earth, is stated to be in the plane of the
apakrama-man. d. ala. In Figure 8.16, let i and i′ be the inclinations of ś̄ıghra-
vr. tta with respect to the apakrama-mand. ala, and that of the manda-karn. a-
vr. tta (with respect to the ś̄ıghra-vr. tta) respectively. Let S be the ś̄ıghrocca,
N the pāta of the ś̄ıghra-vr. tta (intersection point of ś̄ıghra and apakrama-
man. d. ala-s). P is the manda-sphut.a-graha in the manda-karn. a-vr. tta with S
as the centre, and N ′, the pāta of the manda-karn. a (intersection point of
manda-karn. a and the ś̄ıghra-vr. tta plane). Here SC = OO′ and PB = SS′.
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Figure 8.16: The latitude of a planet when ś̄ıghra-vr. tta itself is inclined to
apakrama-man. d. ala.

Now, the viks.epa of the centre of the manda-karn. a-vr. tta (S), which lies on
the circumference of ś̄ıghra-vr. tta, is given by

SC = OS sin β

= OS sin i sin(S −N)

= rs sin i sin(S −N). (8.102)

This viks.epa is in the measure of the pratiman. d. ala, where rs is the radius
of the ś̄ıghra-vr. tta which is also the ś̄ıghrāntyaphala. Then, we need to
find

√
OS2 − SC2. This gives OC = O′S which is equal to viks.epa-kot.i in

terms of the minutes of the arc of the pratiman. d. ala. The latitude of the
planet with reference to the ś̄ıghrocca (point S in the ś̄ıghra-vr. tta), called
the manda-karn. a-viks.epa, is

PB = SP sin β′

= SP sin i′ sin(P −N ′)

= K sin i′ sin(P −N ′). (8.103)

This is in the measure of the pratiman. d. ala, where K is the manda-karn. a. If
both CS and BP are north (of apakrama and ś̄ıghra-vr. tta respectively), or
south, then the net viks.epa of the planet will be

vtot = SC + PB. (8.104)
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This case is represented in Figure 8.16. If one of them is north and other is
south, then the net viks.epa of the planet will be

vtot = SC ∼ PB. (8.105)

When the ś̄ıghra-vr. tta is also inclined to the apakrama-man. d. ala, we have
to find the radius of the viks.epa-kot.i-vr. tta of the ś̄ıghrocca first, for find-
ing the longitude of P . The radius of this is rs cos β. We have to find the
mandakarn. a-viks.epa-kot.i-vr. tta too. The ś̄ıghra-bhujā-phala is determined us-
ing the first circle as the ś̄ıghra-n̄ıcocca-vr. tta, and the second as the
pratiman. d. ala. This is applied to the manda-sphut.a to obtain the ś̄ıghra-
sphut.a P .12

The Text mentions that it is only giving the procedure for the hypothetical
situation when the ś̄ıghra-vr. tta happens to be inclined to the ecliptic – not
that such a situation actually arises in practice. Then it gives a remarkable
example where the above general discussion may find application: namely,
when we seek to make computations with respect to an observer at the centre
of the Moon. The Text also makes a very perceptive remark that, then,
the Moon’s orbit is to be considered as the ucca-n̄ıca-vr. tta. The motion
with respect to the bhagola-madhya is determined from the position with
respect to the Moon’s centre. The Text also notes that we can use this
procedure to convert computations from a Moon-centric frame of reference
to the geocentric frame.

8.17 Calculation of the mean from the true Sun
and Moon

In this and the next few sections, the reverse problem of finding the mean
position from the true position of the planet is considered. First, the Sun
and the Moon are considered, for which only manda-sam. skāra is applicable.
The corresponding problem for the planets is more involved as it involves
two sam. skāras, and is considered later.

12Here the Text does not specify how the manda-karn. a-viks.epa-kot.i-vr. tta may be found;
For this, we have to find the angle between SP and the apakrama-man. d. ala.
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In (8.58), it was shown that

R sin(madhya − ucca) = K sin(sphut.a − ucca)

R sin(M − U) = K sin(P − U), (8.106)

where R is trijyā and K is the karn. a. Here, if the manda-karn. a K is known,
then we know (M − U) in terms of (P − U). If we add ucca to this we will
get the madhya. That is,

(M − U) + U = M. (8.107)

Or, with reference to Figure 8.7 on page 637

O′P̂1C1 = B1Ô′P1 −B1ÔP1

= madhya− sphut.a. (8.108)

Considering the triangle O′OC1, the bāhu-phala is given by

O′C1 = r sin (sphut.a− ucca),

where r is the radius of the manda-n̄ıcocca-vr. tta. Considering the triangles
P1O

′C1 and O′OC1, we have

R sin(M − P ) = O′C1 = r sin(P − U). (8.109)

Here r should be in the measure of pratiman. d. ala. That is,

r = r0
K

R
, (8.110)

where, r0 is the mean epicycle radius given in the Text. As before, if K is
known (madhya − sphut.a) is determined. Adding sphut.a to this, we find the
madhyama-graha (mean planet).

Note: In both the above relations (8.106) and (8.110), the avísis. t.a-manda-
karn. a K is used which itself has to be determined. The method for deter-
mining this (when the manda-sphut.a is known) is given in Tantrasaṅgraha
II. 46-47. It is based on first computing the vipar̄ıta-karn. a, which can be
expressed in terms of the manda-sphut.a P, the ucca U , the mean epicycle
radius r0 and trijyā R, by the relation given earlier (8.52):

Rv = [R2 + r20 − 2r0R cos(P − U)]
1

2 . (8.111)

The manda-karn. a is then found from the relation K = R2

Rv
.
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8.18 Another method for the mean from true Sun
and Moon

Again, from (8.59), we get

K sin(madhya− sphut.a) = r sin(madhya− ucca).

Therefore,

R sin(M − P ) =
rR

K
sin(M − U)

= r0 sin(M − U), (8.112)

where r0, the mean radius of the manda-n̄ıcocca-vr. tta, is of course a known
parameter. The madhya is obtained from this equation using an iterative
procedure. First, the sphut.a itself is taken to be the madhya in the RHS of
(8.112), and the madhya− sphut.a is calculated. Adding sphut.a to this, we
get the new madhya. This is approximate. This is used in the RHS now,
and madhya− sphut.a is again calculated. Adding sphut.a to this, the next
iterated value of madhya is found. The process is repeated. It is noteworthy
that here the avísis. t.a-karn. a K does not come into the picture at all.

U

O’

O

P

R

Γ

Γ

r

K

Figure 8.17: Finding the mean planet from the true planet.
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Another interesting iterative procedure for determining the madhya from
the sphut.a is described next. In Figure 8.17, O′P = R, OP = K, OO′ = r,
UÔP = P − U and UÔ′P = M − U . Hence,

OP̂O′ = (M − U) − (P − U) = M − P. (8.113)

Considering the triangle OPO′ we have

OP

sinOÔ′P
=

OO′

sinOP̂O′

=
O′P

sinO′ÔP
. (8.114)

Therefore we have

R sin(M − P ) = r sin(P − U), (8.115)

and K sin(M − P ) = r sin(M − U). (8.116)

From the above relations, we get

r sin(M − U) =
K

R
r sin(P − U). (8.117)

Therefore,

r sin(M − U) − r sin(P − U) =
(K −R)

R
r sin(P − U). (8.118)

Again, in the triangle OPO′, the karn. a can be expressed in terms of the
sphut.a via the relation

K = {R2 − r2 sin2(P − U)} 1

2 + r cos(P − U). (8.119)

Neglecting the term containing square of phala-varga (r2 sin2(P − U)), we
get

K ≈ R+ r cos(P − U). (8.120)

Using the above in (8.118), we have

r sin(M − U) − r sin(P − U) ≈ r cos(P − U)
r sin(P − U)

R
. (8.121)

If the true epicycle radius r is known (it can be found by computing the
karn. a K), then the above equation can be used to determine the manda-
kendra (M − U) and hence the madhyama. From (8.115) and (8.121), we
also obtain

r sin(M − U) − r sin(P − U) ≈ r cos(P − U)
R sin(M − P )

R
. (8.122)
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As (M − P ) is small, R sin(M − P ) ≈ (M − P ) in minutes. Therefore the
above equation reduces to

r sin(M −U)− r sin(P − U) ≈ r cos(P −U)
(M − P )

R
in minutes. (8.123)

In the above equation, LHS is the bhujāphala-khan. d. a and (M − P ) is the
difference in the arc (cāpa) between the true and the mean planet. Therefore,

bhujā-phala-khan. d. a = kot.i-phala × cāpa corr. to difference

trijyā
. (8.124)

This is nothing but the relation

R sin(θ + δθ) −R sin θ = R cos θ × δθ

= R cos θ × R δθ

R
. (8.125)

It is further mentioned that bhujā-khan. d. a is according to kot.ijyā. The mean
planet M is to be found iteratively from (8.123) as mentioned earlier. Equa-
tion (8.123) is an approximate relation. If the approximate value of M is
found by any method, that can be used in the RHS andM can be determined
iteratively from (8.123).

8.19 Calculation of the mean from true planet

The mean of all the planets can be obtained from their manda-sphut.a in
the same way as outlined above. The process of determining the manda-
sphut.a from ś̄ıghra-sphut.a is indeed simpler. Considering the triangle OPS
in Figure 8.9 on page 643, we have the following relation

rs sin(P − S) = K sin(Ms − P). (8.126)

Given that the longitude of ś̄ıghrocca is known, it follows from the above
relation that if the ś̄ıghra-sphut.a P, radius of the ś̄ıghra-n̄ıcocca-vr. tta rs and
the manda-karn. a K are known, (Ms −P) and hence Ms can be determined.

The term in the LHS of (8.126) is ś̄ıghra-khan. d. a-bhujā-jyā on ś̄ıghra-n̄ıcocca-
vr. tta. This equation could be written as

R sin(Ms − P) = R sin(P − S)
rs
K
. (8.127)
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Here it is noted that R is taken to be 80 in Tantrasaṅgraha and 360 in other
texts.13 From this relation, Ms or manda-sphut.a on manda-karn. a-vr. tta is
obtained.

It is noted that while calculating manda-sphut.a from manda-kendra, the
karn. a K has to be found by avíses.a-karma or iteration, but the karn. a does
not appear while calculating the bhujā-phala. When we want to calculate
madhyama from manda-sphut.a we do not have the simple relation as above,
and we have to either evaluate the avísis. ta-manda-karn. a K (in terms of the
sphut.a) or do iteration on the equation

r0 sin(M − U) = R sin(M − P ), (8.128)

where the unknown madhyama appears on both sides of the equation.

On the other hand, when ś̄ıghra-bhujā-phala is calculated, we need to com-
pute the karn. a Ks. But when we calculate manda-sphut.a from ś̄ıghra-sphut.a
no iteration is required.

For deriving Ms from M , the karn. a is not required. We have

K sin(Ms −M) = r sin(M − U)

or R sin(Ms −M) = r0 sin(M − U), (8.129)

as r
K

= r0

R
. It may be noted that though karn. a does not appear in the above

equation, when M is to be calculated from Ms, we need a avíses.a-karma or
successive iteration process.

On the other hand, when P (́s̄ıghra-sphut.a) is calculated from Ms, karn. a is
required. From the triangle OPS in Figure 8.9 on page 643, we have

Ks sin(P − S) = K sin(Ms − S). (8.130)

But, for deriving Ms from P using

rs sin(P − S) = K sin(Ms − P), (8.131)

no iteration is required. However, it is noted that using the above equation,
P can also be found by an avíses.a process. That is, we need to take P = Ms

in LHS, and find Ms ∼ P and then P. Then, put the new value of P in
LHS, find Ms − P, thus a new P and so on. Thus the ś̄ıghra-sphut.a P can
be found by an avíses.a process.

13There is a complication that the manda-karn. a varies with the manda-kendra – but the
text seems to imply that K in the RHS is replaced by R itself.
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8.20 Computation of true planets without using
Manda-karn. a

The Text has so far clearly prescribed a two step process to compute the true
planet from the mean planet – manda-sam. skāra (which is essentially convert-
ing the mean heliocentric planet to the true heliocentric planet) followed by
ś̄ıghra-sam. skāra (converting heliocentric planet to geocentric planet). Here
the manda correction can be read-off from a table as, given the mean epicy-
cle radius, the manda-phala is not a function of the manda-karn. a. But this
is not the case for ś̄ıghra correction, for the ś̄ıghra-phala depends not only
on the ś̄ıghra-kendra, but also on the ś̄ıghra-karn. a which (as we see from
(8.69)) depends on manda-karn. a, which in turn depends on manda-kendra.
Hence, given the radius of ś̄ıghra-n̄ıcocca-vr. tta, ś̄ıghra-phala cannot be read
off from a table as a function of ś̄ıghra-kendra alone, as it also depends on
manda-karn. a and hence on the manda-kendra.

The Text presents an elaborate derivation showing that it is possible to
simulate, to some extent, the effect of manda-karn. a in ś̄ıghra-phala by doing
a four-step process instead of the two-step precess discussed so far. For
the exterior planets, texts of the Āryabhat.a school from Mahābhāskar̄ıya
to Tantrasaṅgraha prescribe the following steps: (i) If M is the madhyama,
apply half-manda-phala to it to obtain M ′. (ii) Using M ′ evaluate the ś̄ıghra-
phala, where the ś̄ıghra-karn. a is calculated as in (8.69), but with the manda-
karn. a K replaced by the trijyā R, and apply half of this ś̄ıghra-phala to M ′

to obtain M ′′. (iii) Using M ′′ evaluate the manda-phala and applying that to
M to obtain the manda-sphut.a Ms. (iv) Use the manda-sphut.a to calculate
the ś̄ıghra-phala, where the ś̄ıghra-karn. a is calculated with manda-karn. a
replaced by the trijyā R, to obtain the ś̄ıghra-sphut.a, the true planet P.

The Text outlines a derivation, which purports to show that under certain
approximations, there is no appreciable difference between the above ś̄ıghra-
sphut.a, and the one obtained by calculating the ś̄ıghra-phala with the manda-
karn. a-dependent ś̄ıghra-karn. a, as described earlier in section 8.14.

For the interior planets, Mercury and Venus, earlier texts such as Mahābhās-
kar̄ıya prescribe a three-stage process: Application of half manda-phala fol-
lowed by manda-sam. skāra and the ś̄ıghra-sam. skāra, where, in the latter cor-
rection, the ś̄ıghra-karn. a is calculated in terms of the radius R only, and not
in terms of the avísis. t.a-manda-karn. a. However, Tantrasaṅgraha does not
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prescribe any three-stage process for the interior planets. Instead, it pre-
scribes just the manda-sam. skāra followed by the ś̄ıghra-sam. skāra,14 where
the latter involves the use of avísis. t.a-manda-karn. a. Further, as was noted
earlier, Tantrasaṅgraha also stipulates that the manda-phala should be ap-
plied to the mean planet and not the mean Sun as stipulated in the earlier
texts.

The Text presents an elaborate justification to show how the effect of the
avísis. t.a-manda-karn. a in the simple two step process of manda-sam. skāra fol-
lowed by ś̄ıghra-sam. skāra can be simulated by employing a multi-stage pro-
cess. It also presents a discussion of alternative models proposed by the
Parahita School, by Muñjāla and others, who employ different rules for the
variation of manda-karn. a. The Text also discusses the pre-Tantrasaṅgraha
formulations for interior planets.

However, details of the argument presented in the Text are not entirely clear
to us. Perhaps, a study of the discussion of the same topic as found in
Śaṅkara Vāriyar’s commentary Yukti-d̄ıpikā on Tantrasaṅgraha may help in
explicating all the details of the argument as presented in the Text.

14Tantrasaṅgraha, II.68–79.



Chapter 9

Earth and Celestial Spheres

The chapter commences with a discussion on the three spheres, (i) Bhūgola
– the terrestrial sphere, (ii) Vāyugola – the equatorial celestial sphere (de-
scribed with reference to the celestial equator which is revolving uniformly
due to Pravaha-vāyu) and (iii) Bhagola – the zodiacal celestial sphere (de-
scribed with reference to the ecliptic). This is followed by a discussion on the
motion of equinoxes. Then, we find the description of some of the important
great circles and their secondaries, which are used as the reference circles for
describing the location of a celestial object using different co-ordinates. Fi-
nally, there is an elaborate discussion on the determination of the declination
of a celestial object with latitude.

9.1 Bhūgola

Bhūgola1 means the spherical Earth. Some of the physical properties of the
Earth that are mentioned here are listed below:

• It is a sphere situated at the centre of the Bhagola or Naks.atra-gola
2.

• It is suspended in space without any support.

• It supports all living and nonliving beings on its surface.

• It is the nature of all heavy things to fall towards the Earth from all
the directions around.

• It is situated below when viewed from any part of the sky.

1Bhū is Earth and gola is sphere.
2The terms bham. and naks.atram. are synonyms and refer to a star.
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• The sky is above from all locations on its surface.

• Its southern half is predominantly filled with water, whereas the north-
ern half is predominantly land.

• India (Bhārata-khan. d. a) is located in the northern half.

predominantly
land

(Terrestrial North pole)
Mahameru

E

Siddhapura

Lanka

Samarekha

Badavamukha
(Terrestiral south pole)

Romakapuri
water

predominantly

Niraksa−desa

( Equator dividing the earth into
        northern  and   southern regions)

Ujjayani

Yavakoti

Figure 9.1: Bhūgola - The spherical Earth.

Continuing with the description, a few important locations on the surface
of the Earth are mentioned. They are specified with reference to niraks.a-
deśa and samarekhā. Niraks.a-deśa refers to the locus of points with zero
latitude (the terrestrial equator). Samarekhā is a longitude circle (secondary
to the equator). The names of the cities located at the four corners on the
terrestrial equator which are ninety degrees apart are mentioned. The names
of the north and the south poles are also given. Ujjayan̄i is situated on the
samarekhā passing through Laṅkā, and has a northern latitude. The names
of these places and their locations on the Earth are indicated in Figure 9.1.

Then we find the description of Dhruva-s (celestial poles) and the diurnal
circles of celestial objects. For an observer having a northern latitude, the
northern Dhruva P1 is visible, whereas the southern Dhruva P2 is not vis-
ible, as it lies below the horizon (see Figure 9.2).
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Figure 9.2: The celestial sphere for an observer having northern latitude.

On the other hand, for an observer on the equator, both the Dhruva-s (ce-
lestial poles) P1 and P2 lie on the horizon and hence both are visible. The
relationship between the location of the Dhruva and the latitude of the place
is given by:

NÔP1 = Altitude of the Dhruva = Latitude of the place = φ,

as in Figure 9.2. Stars near the northern Dhruva P1 would be circumpolar
(they never rise or set). Similarly, stars near the southern Dhruva P2 would
never be observed as they are always below the horizon. However at the
equator, all the stars would be visible, as can be seen in Figure 9.3.

9.2 Vāyugola

In Figure 9.3, S1, S2 are the diurnal paths of the stars which are close to
the Dhruva P1. The horizons for an equatorial observer and an observer
with a northern latitude φ, are also indicated. P1, P2 are the north and
south poles. S3 and S4 are the diurnal circles (svāhorātra-vr. tta-s) of two
stars which are far removed from the Dhruva-s. The svāhorātra-vr. tta-s are
shown by dotted lines. As viewed from the equator, these are vertical circles
parallel to the celestial equator which is called the ghat.ikā-man. d. ala. The
radius of the svāhorātra-vr. tta-s keep gradually decreasing as they approach
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Figure 9.3: The celestial sphere for an observer on the equator.

the Dhruva from the equator. The axis of the celestial sphere passes through
the two Dhruva-s, P1 and P2.

The daks. in. ottara-vr. tta (prime meridian) is the great circle passing through
the poles and the zenith. Laṅkā-ks.itija is the equatorial horizon. Further,
it may be noted that the three great circles ghat.ikā-man. d. ala, daks. in. ottara-
vr. tta and Laṅkā-ks.itija are perpendicular to each other. They intersect at
six points: P1, W, P2, E, Z1 and Z2. While the first four points lie on
the horizon, the latter two are the poles of the horizon right above and
below. These six points are called the svastika-s, cardinal points. The three
great circles divide the celestial sphere into eight equal parts, four above the
horizon, and four below.

9.3 Bhagola

The celestial sphere described with reference to the ecliptic as the central
circle is the Bhagola. This may be contrasted with the Vāyugola described
earlier, which has celestial equator as the central circle and the diurnal circles
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Figure 9.4: The celestial equator and the ecliptic.

on its sides. The apakrama-man. d. ala or the ecliptic is the path traced by the
Sun in its eastward (annual) motion. In Figure 9.4, the four important points
on the ecliptic and its orientation with respect to the celestial equator are
indicated.

In Figure 9.5, the different orientations of the ecliptic with respect to the
celestial equator at different times during the day are depicted for an equa-
torial observer. In Figure 9.5(a) Mes.ādi is shown at the east point of the
horizon; it is just rising. In (b) it is at the zenith. In (c) it is setting and is
at the west point and in (d) it is at the nadir. In 9.5(d), the other halves of
the equator and the ecliptic (which is usually shown by dashed lines) have
not been shown.

Just as the celestial equator is the central great circle of the Vāyugola, the
ecliptic is the central great circle of the Bhagola. The two poles of the
ecliptic K1 and K2 are the rāśikūta-s.3 They bear the same relation to the
ecliptic, as the Dhruva-s P1 and P2 to the celestial equator. A rāśi-kūt.a-vr. tta
(secondary to the ecliptic) is a great circle passing through K1 and K2.

Consider the situation when the Mes.ādi is at the zenith. Then the ecliptic
is a vertical circle. In this situation, the poles of the ecliptic, K1, K2 lie

3The word rāśi-kūt.a refers to a point of intersection of all the rāśi-s. That the poles of
the ecliptic are the points where all the rāśi-s meet can be seen from Figure 9.6 on page
673.
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Figure 9.5: (a) Mes.ādi is rising; (b) Mes.ādi is at the zenith; (c) Mes.ādi
is setting; (d) Mes.ādi is at the nadir.
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on the ks.itija (horizon) and are 24◦ west of the north Dhruva (P1) and 24◦

east of south Dhruva (P2), respectively. The rāśi-kūt.a-vr. tta passing through
Mes.ādi and Tulādi is the north-south circle. Similarly we can conceive of the
rāśi-kūt.a-vr. tta passing through Vr. s.abhādi and Vr. ścikādi which is separated
from the earlier one by 30◦ along the ecliptic; similarly the one through the
Mithunādi and Dhanurādi, and so on, as shown in Figure 9.6. The Bhagola
with the ecliptic at the centre and the rāśi-kūt. ā-s as the poles is completely
spanned by these six rāśi-kūt.a-vr. tta-s passing through the beginning points
of the twelve rāśi-s. Inside each rāśi, we can concieve of various circles to
represent the division of the rāśi into degrees, minutes and seconds.

In Figure 9.7, the diurnal circles of the solstices, denoted by dotted lines and
marked M1 and M2 are 24◦ away for the celestial equator. Similarly, the
diurnal circles of the poles of the ecliptic K1, K2, denoted by the solid lines
and marked C1 and C2, are 24◦ away from the poles P1 and P2. The other
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halves of the diurnal circles are not shown in the figure. It is clear that the
northern solstice and K2 rise and set together at the equator. Similarly, the
southern solstice and K1 rise and set together.
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P P
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M 1
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Ghatika−mandala

Lanka−ksitija

M 2

Figure 9.7: The diurnal circles of the poles of the ecliptic and the solstices.

9.4 Ayana-calana

The points of intersection of the celestial equator and the ecliptic, denoted
by Γ and Ω, are called the equinoxes. The ends of Virgo (Kanyā) and Pisces
(Mı̄na), or equivalently Tulādi and Mes.ādi, would be the equinoxes at some
epoch as shown in Figure 9.8. This would be the case when there is no
ayana-calana and the equinoctial points are taken as the reference points for
the measurement of sāyana or tropical longitude. But actually these points
are in motion with respect to the fixed stars. The manner in which they
move is described in the following section.

9.5 The nature of the motion of equinoxes

It is stated that the motion of equinoxes can be eastward or westward.
These are schematically shown in Figures 9.9a and 9.9b. Actually, the mo-
tion described in the Text represents the phenomenon called Trepidation
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Figure 9.8: Equinoxes when there is no ayana-calana.

of equinoxes, where the equinox executes an oscillatory motion, going both
eastwards and westwards from Mes.ādi to a maximum extent of 24◦. This is
different from the continuous retrograde motion, which is usually referred to
as the Precession of the equinoxes.

Earth

Γ

Ω

A(Mesadi)∆

(Vernal equinox)

Celestial Equator

Ecliptic

B (Tuladi)

Figure 9.9a: The westward motion of the vernal equinox.

In Figure 9.9a, the motion of the equinox is shown westward (retrograde).
Hence, the amount of precession/trepidation should be added to the nirayan. a
longitude, longitude measured from the Mes.ādi eastwards, to obtain the
tropical longitude, longitude measured from the vernal equinox eastwards.

In Figure 9.9b, where the motion of the equinox is shown eastward (direct),
the amount of precession/trepidation should be subtracted from the nirayan. a
longitude to obtain the tropical longitude. The obliquity of the ecliptic
remains the same at 24◦ even as the motion of the equinoxes takes place.

With respect to an observer on the Earth, it is the ecliptic which is moving
and not the celestial equator. Because of this, the rāśi-kūt. ā-s also have a
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Figure 9.9b: The eastward motion of the vernal equinox.

motion. But their diurnal circles remain the same as the deviation of the
rāśi-kūt. ā-s from the Dhruva-s is always 24◦. This can be explained through
the ayanānta-rāśi-kūt.a-vr. tta which is the rāśi-kūt.a-vr. tta (see Figure 9.10)
passing through the ayanānta-s (the solsticial points) and of course through
the poles of the ecliptic K1 and K2. It is further mentioned that all these
circles can be drawn with the aid of a pair of compasses (karkat.aka-śalākā).

The celestial equator and the ecliptic are both great circles which intersect
at two points. Consider the common diameter of these two circles, passing
through the common centre and the equinoxes. The diameter joining the
two solstices would be perpendicular to the common diameter. These are
indicated by dotted lines in Figure 9.10.

The ayanānta-rāśi-kūt.a-vr. tta is perpendicular to both the celestial equator
and the ecliptic. The solstices (ayanānta-s) will move on account of preces-
sion/trepidation. Due to this, the ayanānta-rāśi-kūt.a-vr. tta will also move in
the same direction and so will the rāśi-kūt.a-s, K1 and K2. The latter move
around the Dhruva-s, maintaining a distance of 24◦. This implies that their
diurnal circles remain the same, though they swing to the west or east on
these, due to the motion of the equinoxes. The picture described here is the
same as the modern geocentric picture of precession, except that the motion
considered here is oscillatory (can be in either direction).

The longitude of the true planet obtained from calculations, called the
sphut.a-graha corresponds to the distance of the planet from Mes.ādi. To
this, the amount of motion of the equinoxes has to be added to obtain the
corrected true planet which is referred to here as golādi.
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9.6 Vāyugola for a non-equatorial observer

For an observer having zero latitude the central circle of the vāyugola (celes-
tial equator), and the diurnal circles are all vertical circles and the bhagola
is inclined to the vāyugola. For an observer having a northern or southern
latitude, the vāyugola is not vertical but is inclined. The bhagola whose ori-
entation is fixed with respect to the vāyugola, is also correspondingly inclined
and has a slow motion (corresponding to the motion of equinoxes).

9.7 Zenith and horizon at different locations on
the surface of the Earth

The Earth is a sphere. Hence, at any place on Earth, a person would feel
that he is standing on top of the Earth. But the surface of the Earth (over
which he stands) looks spread and so the observer feels that he is standing
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perpendicular to the flat Earth surface. In fact, a ks.itija (horizon) is con-
ceived at every point on the surface of the Earth. This is the svadeśa-ks. itija
or the local horizon. All the celestial bodies are rising and setting on that
horizon. Only that portion of the sky which is above the horizon is visible.
The centre of this visible part is the zenith called khamadhya. The celestial
spheres for observers at different locations on the Earth are described below.
These are illustrated in Figures. 9.11.

The aks.a-dan. d. a is the north-south axis passing through the centre of the
Earth and extending to the poles. The celestial sphere is attached to it
and rotates around it. The celestial equator and the equatorial horizon
would have different inclinations with the local horizon at different places.
For an equatorial observer, the celestial equator passes through the east(E),
west(W) points and the zenith(Z); and the horizon (niraks.a-ks.itija) passes
through the poles (refer to Figure 9.11(a)). For an observer at the north
pole, the Dhruva is the zenith and the celestial equator is the horizon. As
one moves gradually from the equator northwards, the altitude of the north
pole also increases correspondingly. The zenith, the horizon and the altitude
of the pole star, are different for observers at different parts of the Earth.
These are illustrated in Figure 9.11 (b) and (c).

For a place with a northern latitude, the meridian circle passing through
E, W and Z is called the sama-man. d. ala. The local horizon which passes
through the four cardinal points N, E, S, W is perpendicular to this.
The unman. d. ala is the equatorial horizon passing through E, W and the
north pole P1. This is called 6 o′ clock circle in modern astronomy. The
inclination of the unman. d. ala to the local horizon is the same as that of the
celestial equator (ghat.ikā-man. d. ala) to the sama-man. d. ala, which is equal to
the latitude of the place φ. Just as the three great circles, namely the celestial
equator, equatorial horizon, and the north-south circle (daks. in. ottara-vr. tta)
are perpendicular to each other, the sama-man. d. ala (prime vertical), local
horizon and the north-south circle are three great circles perpendicular to
each other. The globe can be divided into eight equal parts even with these
circles, the six svastika-s being N,S,E,W,Z and Z ′ (the nadir, opposite of
zenith).

Consider a fourth circle called valita-vr. tta
4 passing through any pair of

svastika-s formed by two of the three circles, and inclined to them. The

4The term valita means ‘bent’ or ‘inclined’.
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distance of separation between points on this valita-vr. tta and the other two
circles is found through the rule of three, as will be explained below.

The vāyugola, bhagola and the bhūgola and their interrelations are important
for calculations pertaining to the planets. Hence they have been explained
here in detail.

9.9 Distance from a Valita-vr. tta to two perpendic-
ular circles

Consider three great circles in the sphere with radius R; two of them are
perpendicular to each other and the third in between them. The aim is to
find the distance of any point on the circumference of the third circle from
the the other two (which are perpendicular to each other). This problem is
illustrated by considering the celestial equator, the meridian (daks. in. ottara-
vr. tta) and the ecliptic. It may be noted from Figure 9.12, that the ecliptic
is situated between the two great circles namely, the celestial equator and
the daks. in. ottara-vr. tta which are perpendicular to each other.
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Figure 9.12: The perpendicular distance of a point on the circumference of
a valita-vr. tta from two mutually perpendicular great circles.
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In Figure 9.12, EΓW is the equator, ΓXK the ecliptic, and P1ΓP2 is the
daks. in. ottara-vr. tta. P1EP2 is the ayanānta-vipar̄ıta-vr. tta which is perpendic-
ular to all the above circles. For convenience, the vernal equinox Γ is taken
to be at the zenith. X is a point on the ecliptic whose sāyana longitude is λ.
XY1 and XY2 are perpendiculars to the planes of the celestial equator and
the daks. in. ottara-vr. tta respectively. KE = ǫ, is the obliquity of the ecliptic.5

Let XO′ be perpendicular to OZ (= OΓ). O′Y1 and O′Y2 are in the plane
of the celestial equator and daks.in. ottara-vr. tta respectively. ΓX = λ is the
celestial longitude of X. Now, XO′ is the is. t.a-dorjyā given by

XO′ = OX sinλ = R sinλ. (9.1)

KW1 and KW2 are perpendicular to EW and NS respectively. Then,

KW1 = OK sin ǫ = R sin ǫ, (9.2)

and KW2 = OK cos ǫ = R cos ǫ, (9.3)

are the paramāpakrama (maximum declination) and the parama-svāhorātra
(radius of the diurnal circle at the maximum declination). The triangles
O′XY1 and OKW1 are similar right angled triangles. Hence,

XY1

KW1
=
O′X

OK
=
R sinλ

R
= sinλ.

Using (9.2) in the above, the is. t.āpakrama R sin δ is given by

R sin δ = XY1 = KW1 sinλ = R sin ǫ sinλ. (9.4)

This is the distance between X on the ecliptic and the celestial equator.
Similarly, triangles O′XY2 and OKW2 are similar right angled triangles.
Therefore,

XY2

KW2
=
O′X

OK
=
R sinλ

R
= sinλ.

Using (9.3), the is. t.āpakrama-kot. i XY2 is given by

XY2 = KW2 sinλ = R cos ǫ sinλ. (9.5)

This is the distance between X on the ecliptic and the daks. in. ottara-vr. tta.
Thus, the use of the rule of three prescribed in the Text to find the distances,
amounts to using the appropriate similar triangles.

5Here, and in what follows, we represent the angle corresponding to an arc by the arc
itself. For instance, KE means KÔE.
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9.10 Some Vipar̄ıta and Nata-vr. tta-s

Here, the problem of finding the distance of a point on a great circle from
a set of three mutually perpendicular great circles is further elaborated ge-
ometrically.
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Figure 9.13a: The vipar̄ıta-vr. tta-s, nata-vr. tta-s and the apakrama-man. d. ala.

In Figure 9.13a, the vernal equinox Γ coincides with the zenith. P is a planet
with latitude Y P = β (as will be specified in later sections) where Y is on the
ecliptic. The ghat.ikā-vr. tta, the daks. in. ottara-vr. tta and the ayanānta-vipar̄ıta-
vr. tta are three mutually perpendicular great circles. As a fourth circle, the
apakrama-vr. tta which is inclined to the celestial equator is considered. X is
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a point on it 90◦ away from Y . At this stage, X is referred to as the desired
point on the ecliptic. Now three more circles are considered.

1. The first is the ghat.ikā-nata-vr. tta which passes through X and the
poles P1 and P2. This is perpendicular to the ghat.ikā-vr. tta and in-
tersects it at X ′. That is, P1X̂

′W = P2X̂
′W = 90◦. The maximum

separation between ghat.ikā-nata and daks. in. ottara-vr. tta which is also
called the vis.uvad-vipar̄ıta-vr. tta is ZX ′, along the ghat.ikā-vr. tta The
maximum separation between ghat.ikā-nata and the ayanānta-vipar̄ıta-
vr. tta is X ′W , which is also along the ghat.ikā-vr. tta.

2. The second is the vis.ūvad-vipar̄ıta-nata-vr. tta or the daks. in. ottara-nata-
vr. tta, WXV passing throughX and the intersection pointW of ghat.ikā-
vr. tta and ayanānta-vipar̄ıta-vr. tta. As W is the pole of the vis.uvad-
vipar̄ıta-vr. tta, this vis.uvad-vipar̄ıta-nata is perpendicular to it. The
maximum separation between vis.uvad-vipar̄ıta-nata-vr. tta and the gha-
t.ikā-vr. tta is ZV , along the vis.uvad-vipar̄ıta-vr. tta.

3. The pole of the ecliptic K1 is on the ayanānta-vipar̄ıta-vr. tta, at a
separation of ǫ = 24◦ away from the pole P1. The rāśi-kūt.a-vr. tta
passing through Y , P and K1 intersects the celestial equator at Y ′

and the ghat.ikā-nata at U .

Now we show that ghat.ikā-nata-vr. tta is perpendicular to rāśi-kūt.a-vr. tta.
Since K1 is the pole of the ecliptic, XK1 = 90◦. By choice, the point Y
on the ecliptic is such that XY = 90◦. Therefore, any point on the great
circle passing through K1 and Y is at 90◦ from X. In other words, X is
the pole of the rāśi-kūt.a-vr. tta UK1Y

′Y . This implies that XY ′ = 90◦. But
P1Y

′ = 90◦ as Y ′ is on the celestial equator. Therefore any point on the
great circle passing through P1 and X is at 90◦ from Y ′. In other words,
Y ′ is the pole of the ghat.ikā-nata P1UXP2. Hence, Y ′U = 90◦. This also
implies that the ghat.ikā-nata is perpendicular to the rāśi-kūt.a-vr. tta.

The maximum divergence between the rāśi-kūt.a-vr. tta UK1Y
′Y and the gha-

t.ikā-vr. tta is UX ′, along the ghat.ikā-nata, which is perpendicular to both
the circles. X which lies on the vis.uvad-vipar̄ıta-nata is the pole of the
rāśi-kūt.a-vr. tta. Hence, the vis.uvad-vipar̄ıta-nata is perpendicular to rāśi-
kūt.a-vr. tta. It is also perpendicular to the daks. in. ottara-vr. tta. Hence, the
maximum divergence between the rāśi-kūt.a-vr. tta and vis.uvad-vipar̄ıta-vr. tta
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is DV ′, along the vis.uvad-vipar̄ıta-nata. The three circles (i) ghat.ikā-nata,
(ii) vis.uvad-vipar̄ıta-nata, and (iii) the rāśi-kūt.a-vr. tta are shown by bold solid
lines in Figure 9.13a.

Now, let the longitude of X be ΓX = ZX = λ. The distance between X
and OZ is

XM = R sinλ. (9.6a)

Similarly, the distance between X and ayanānta-vipar̄ıta-vr. tta is

XN = R cos λ. (9.6b)
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Figure 9.13b: A section of Figure 9.13a.

In Figure 9.13b, X ′X = δ, the declination measured along the ghat.ikā-nata-
vr. tta. Therefore, the distance between X and the ghat.ikā-vr. tta is

XJ = R sin δ, (9.7a)

and the distance between X and the polar axis P1P2 is

XL = R sinXP2

= R sin(90◦ − δ)

= R cos δ. (9.7b)
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Actually XL gives the radius of the diurnal circle of X, called dyujyā. This
is also determined by considering an arc on the ghat.ikā-nata-vr. tta. For, in
Figure 9.13a,

UX ′ = UX −XX ′ = 90◦ − δ. (9.8)

Also,
P2X = P2X

′ −XX ′ = 90◦ − δ. (9.9)

Therefore,
R sinUX ′ = R sinP2X = R cos δ = dyujyā. (9.10)

Thus, dyujyā is the maximum separation between the rāśi-kūt.a-vr. tta and
ghat.ikā-vr. tta on the ghat.ikā-nata-vr. tta. It is also the Rsine on the nata-vr. tta
from the pole P2 to the desired point on the apakrama-vr. tta.

9.11 Declination of a planet with latitude

Consider a planet P on the rāśi-kūt.a-vr. tta as in Figure 9.13a. In the follow-
ing, a ‘declination type’ formula is employed at different stages to determine
the declination of the planet with latitude. By this, we mean a formula of
the form

sin δ = sin ǫ sinλ, (9.11)

where δ is the declination of the Sun whose longitude is λ. ǫ is the inclination
of the ecliptic with respect to the equator (Figure 9.14(a)).

Consider any two great circles which are inclined to each other by an angle,
say ρ, as in Figure 9.14(b). Then, the distance (d) of a point P on one of
the circles, corresponding to an arc λ′ from the point of intersection O, from
the other circle is

d = R sin ξ = R sin ρ sinλ′. (9.12)

This can be proved along the same lines as was followed in section 9.9 for
deriving (9.4). This also follows from the application of ‘sine formula’, to
the spherical triangle OPN in Figure 9.14(b).

It may be noted that (9.12) reduces to (9.11) when the two great circles
considered happen to be the celestial equator and the ecliptic.

In Figure 9.13a, it may be noted that the apakrama-man. d. ala and daks. in. ottara-
vr. tta intersect at Z and the angle of inclination is 90 − ǫ. Hence, the
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Figure 9.14: (a) Declination of the Sun; (b) Declination of a planet.

is. t.āpakrama-kot. i is equal to the distance of X from daks. in. ottara-vr. tta, which
is

R sinV X = R sin(ZX) sin(90 − ǫ)

= R sin(ZX) cos ǫ. (9.13)

The Rsine of the arc from X to W on the daks. in. ottara-nata-vr. tta is the kot.i
of the above and is given by

R sinXW = R sin(90 − V X)

= R cos V X. (9.14)

Consider the arc ZX ′. As it lies along the equator, it is related to time
(kāla), and hence the Rsine of it is called kālajyā and is given by

kālajyā = R sin(ZX ′). (9.15)

It is also called laṅkodaya-jyā. In the above equation, ZX ′ = 360◦ − α
and ZX = 360◦ − λ, where λ and α are the longitude and Right Ascension
(RA) of X. Here we have subtracted λ and α from 360◦, because both the
longitude and RA are measured eastwards. The kot.i of (9.15) is

Laṅkodayajyā-kot. i = R sinX ′W = R cosZX ′. (9.16)

Further,
ZY ′ = ZX ′ +X ′Y ′ = ZX ′ + 90◦, (9.17)

as Y ′ is the pole of the ghat.ikā-nata and X ′Y ′ = 90◦. It may be noted
that the kāla-kot.i-jyā, which is defined to be R sinZY ′ is the same as the
Laṅkodayajyā-kot. i given by (9.16).

Now, Y ′Y is a segment of rāśi-kūt.a-vr. tta which is perpendicular to the
apakrama-man. d. ala. Now, kāla-kot.yapakrama also called kālakot.i-krānti given
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by R sinY ′Y , is the distance of Y ′ (on celestial equator) to the ecliptic. The
inclination between the two being ǫ, we have

R sinY ′Y = R sin ǫ sin(ZY ′)

= R sin ǫ cos(ZX ′). (9.18)

Let the planet P be situated on the rāśi-kūt.a-vr. tta as shown in Figure 9.13a.
Y P is viks.epa or the latitude of P . Y ′P is the arc from Y ′ (intersection of
rāśi-kūt.a-vr. tta and celestial equator) to P on the rāśi-kūt.a-vr. tta.

The maximum separation between rāśi-kūt.a-vr. tta and ghat.ikā-man. d. ala (both
of which are perpendicular to ghat.ikā-nata) is UX’ = 90 - XX’.

This is also equal to the inclination of the rāśi-kūt.a-vr. tta with the ghat.ikā-
man. d. ala (= UŶ ′X ′), since Y ′ is the pole of ghat.ikā-nata along which UX ′

is measured. The Rsine of the declination of P (= R sin δ) is equal to the
distance of P from the celestial equator, and is given by

|R sin δ| = R sin(Y ′P ) sin(UX ′)

= R sin(Y ′P ) sin(90◦ −XX ′)

= R sin(Y ′Y + Y P ) cos(XX ′)

= R(sinY ′Y cos Y P + cos Y ′Y sinY P ) cosXX ′

= R sinY ′Y cosXX ′ cos Y P

+ R cosXX ′ cos Y ′Y sinY P. (9.19)

Now, R sinY ′Y cosXX ′ is the declination of Y ; as Y ′Y is on rāśi-kūt.a-
vr. tta, it corresponds to declination of a planet at Y whose latitude is zero
(aviks.ipta-graha). Denoting it by δY , (9.19) reduces to

|R sin δ| = |R sin δY | cos Y P +R cosXX ′ cos Y ′Y sinY P. (9.20)

Also, the declination of X is

|R sin δX | = R sinXX ′ = R sin ǫ sinZX, (9.21a)

and the declination of Y is

R sin δY = R sin ǫ sinZY = R sin ǫ cosZX. (9.21b)

From (9.21a) and (9.21b), we get

R2 sin2 δX +R2 sin2 δY = R2 sin2 ǫ. (9.22)
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Subtracting both sides from the square of trijyā, we get

R2 −R2(sin2 δX +R2 sin2 δY ) = R2 −R2 sin2 ǫ. (9.23a)

or R2 cos2 δX −R2 sin2 δY = R2 cos2 ǫ. (9.23b)

But,

R2 sin2 δY = R2 sin2 Y ′Y cos2XX ′

= R2 sin2 Y ′Y cos2 δX . (9.23c)

Using (9.23c) in (9.23b), we get

R2 cos2 ǫ = R2 cos2 δX −R2 sin2 Y ′Y cos2 δX

= R2 cos2(Y ′Y ) cos2 δX

= R2 cos2(Y ′Y ) cos2(XX ′). (9.24a)

Hence,
R cos Y Y ′ cosXX ′ = R cos ǫ. (9.24b)

Substituting (9.24b) in (9.19), we have

|R sin δ| = |R sin δY | cos Y P +R cos ǫ sinY P

= krāntijyā of Y × viks.epa-kot.i +

paramakrānti-kot. i × viks.epa, (9.25a)

where sinY P is viks.epa (jyā), and cos Y P is the viks.epa-kot.i of a planet P
with latitude.

In Figure 9.13a, all the arcs are measured westwards. Also, X,Y and P are
south of the celestial equator. Let λ, β and δ be the longitude, latitude and
the declination of P respectively. In terms of these, we have (since λ is also
the longitude of Y )

R sin δ = R(sin(δY ) cos β + cos ǫ sin β)

= R(sin ǫ sinλ cos β + cos ǫ sin β). (9.25b)

This result is exact and is same as the expression for the declination of
a planet with latitude in modern spherical astronomy, as we shall explain
below.
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9.12 Apakrama-kot.i

Apakrama-kot.i refers to the distance between the planet and the daks. in. ottara-
vr. tta (north-south circle). In Figure 9.13a, the daks. in. ottara-nata-vr. tta is
perpendicular to the rāśi-kūt.a-vr. tta and the daks. in. ottara-vr. tta. The maxi-
mum divergence between the latter two circles occurs on the former and is
equal to DV ′. Further

V V ′ = V ′D +DX +XV = 180◦,

as the daks. in. ottara-nata-vr. tta is bisected by the daks. in. ottara-vr. tta. Also
DX = 90◦, as X is the pole of the rāśi-kūt.a-vr. tta. Hence, the distance
between D and daks.in. ottara-vr. tta is R sinDV ′, where

R sinDV ′ = R cos V X

= kot.i of is. t.āpakrama-kot. i, (9.26)

as is. t.āpakrama-kot. i or is. t.akrānti-kot.i = R sinV X, as was noted earlier.

Now the problem is to determine the distance of the planet P from the
daks. in. ottara-vr. tta. Let the rāśi-kūt.a-vr. tta passing through P intersect the
daks. in. ottara-vr. tta at B and C as shown in Figure 9.13a. D, which is 90◦

away from the intersection point of daks. in. ottara-vr. tta and rāśi-kūt.a-vr. tta, is
at a distance of R cos V X from the daks. in. ottara-vr. tta. Hence the distance
of P from the daks. in. ottara-vr. tta is R sin(PC) cos V X. But PC = Y C−Y P ,
where Y P is the latitude of the planet P . Hence,

Apakrama-kot. i = R sin(Y C − Y P ) cos V X

= R sinY C cos V X cos Y P

− R cos Y C cos V X sinY P. (9.27)

Now the distance of Y from the daks. in. ottara-vr. tta is R sinY C cos V X. This
can also be calculated in a different way. The maximum divergence be-
tween the ecliptic and the daks. in. ottara-vr. tta occurs on the Laṅkā-ks. itija or
ayanānta-vipar̄ıta-vr. tta as shown in Figure 9.13a, and is equal to R sin(90−
ǫ) = R cos ǫ, as the two circles are inclined to each other at an angle 90−ǫ, as
is clear from Figure 9.13a. Hence, the distance of Y from the daks. in. ottara-
vr. tta is R cos ǫ sinY Z ′. (If λ is the longitude of the planet P , Y Z ′ = λ−180◦).
Therefore,

R sinY C cos V X = R cos ǫ sinY Z ′. (9.28)
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Now, we have to simplify R cos Y C cos V X in the second term of the RHS
of (9.27). For this, consider

R2 cos2 Y C cos2 V X = R2 cos2 V X (1 − sin2 Y C)

= R2 cos2 V X −R2 sin2 Y C cos2 V X

= R2 −R2 sin2 V X

− R2 cos2 ǫ sin2 Y Z ′ [using (9.28)]

= R2 −R2 cos2 ǫ sin2 ZX

− R2 cos2 ǫ sin2 Y Z ′, (9.29)

as R sinV X = R cos ǫ sinZX (the is. t.a-dorjyā-kot.i). But, ZX + Y Z ′ = 90◦,
as ZZ ′ = 180◦ and XY = 90◦. Hence, ZX and Y Z ′ are bhujā and kot.i of
each other, and

R2 sin2 ZX +R2 sin2 Y Z ′ = R2.

Using the above, (9.29) reduces to

R2 cos2 Y C cos2 V X = R2 −R2 cos2 ǫ

= R2 sin2 ǫ. (9.30a)

Therefore,
R cosY C cos V X = R sin ǫ. (9.30b)

Using (9.27), (9.28) and (9.30), we obtain the distance of the planet P with
latitude Y P from the daks. in. ottara-vr. tta to be

Apakrama-kot.i = R cos ǫ sinY Z ′ cos Y P −R sin ǫ sinY P

=
1

R
(Apakrama-kot. i of Y × viks.epa-kot.i

− Paramāpakrama × viks.epa). (9.31)

We now find the expression for the kālajyā. For this, consider the great circle
in Figure 9.15 passing through the planet P and the north and south poles
P1 and P2. Let it intersect the celestial equator at A. Then R sinAZ ′ is the
kāla-jyā or kāla-dorgun. a. This is termed so, as AZ ′ is an arc on the celestial
equator and hence related to the time. In fact, AZ ′ = α− 180◦, where α is
the Right Ascension of the planet P . PB is a section of the diurnal path of
the planet, which is a small circle parallel to the equator. PA = −δ, where
δ is the declination of P , and PP2 = 90◦ − PA. Hence,

R sinPP2 = R cos δ = dyujyā.
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Figure 9.15: Determination of the kālajyā.

Now the maximum separation between the daks. in. ottara-vr. tta and the great
circle P1PP2 is AZ ′, as the celestial equator is perpendicular to P1PP2 and
AP2 = 90◦. Hence, the distance of P from the daks. in. ottara-vr. tta is given by

Apakrama-kot. i = R sinPP2 sinAZ ′

=
1

R
(dyujyā × kālajyā). (9.32)

This is already given by (9.31). Equating the two, we get

R sinPP2 sinAZ ′ = R(cos ǫ sinY Z ′ cosY P − sin ǫ sinY P ). (9.33)

Or,

R sinAZ ′ = kālajyā

=
R(cos ǫ sinY Z ′ cos Y P − sin ǫ sinY P )

sinPP2
. (9.34)

It may be noted that the RHS of the above equation is

Apakrama-kot. i of Y × viks.epa-kot.i − Paramāpakrama × viks.epa

R× dyujyā
.
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If we use the modern notation,

AZ ′ = α− 180◦, Y Z ′ = λ− 180◦, Y P = −β, PP2 = 90◦ − δ,

equation (9.32) reduces to

Apakrama-kot. i = R cos δ sinα

= −R sin β sin ǫ+R cos β cos ǫ sinλ. (9.35)

Supplementary Note

Since these results for the declination and right ascension of a planet with
latitude are not commonly known, we sketch a simple spherical trigonomet-
rical derivation of these results in the following. In Figure 9.16, X is the
planet with longitude λ and latitude β.

Ecliptic

Equator

K

X

ε

β

α
λ

Γ

’

δ

Y

ρ λ

P

P’

o

o

Daksinottara−vrtta

’λ

(Prime Meridian) 

90−ρ−ε

90 − β

(pole of the ecliptic)

δ

(celestial north pole)P

Figure 9.16: Declination and the Right Ascension of a planet X with longi-
tude λ and latitude β.

Expression for Declination

Consider the spherical triangle KPX. Here,

KX = 90 − β, KP = ǫ, PX = 90 − δ and PK̂X = 90 − λ.
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Applying the cosine formula, we get

cos(90 − δ) = cos ǫ cos(90 − β) + sin ǫ sin(90 − β) cos(90 − λ). (9.36a)

Hence,
sin δ = sin ǫ sinλ cos β + cos ǫ sin β. (9.36b)

This is the distance of X from the celestial equator which is same as (9.25b).

Expression for Right Ascension

In Figure 9.16, XP ′

o = δ′ is perpendicular to the daks. in. ottara-vr. tta. Then the
distance of X from the plane of daks. in. ottara-vr. tta is R sin δ′. Let ΓX = λ′,
and XΓ̂Po = ρ. Note that KΓ̂Po = 90◦ and KΓ̂P = ǫ. Hence,

P Γ̂X = 90◦ − ρ− ǫ; XΓ̂K = 90◦ − ρ.

Applying the sine formula to the spherical triangle KΓX, we get

sinΓX

sinPK̂Γ
=

sinKX

sinXΓ̂K
.

Therefore,
sinλ′

sinλ
=

sin(90 − β)

sin(90 − ρ)
=

cos β

cos ρ
,

or,
sinλ′ cos ρ = sinλ cos β. (9.37a)

In the spherical triangle XΓP0, XP0 is perpendicular ΓP0. Therefore,

sin β = sin ρ sinλ′. (9.37b)

Consider the spherical triangle XP ′

0Γ, where XΓ̂P ′

0 = P Γ̂X = 90 − ρ − ǫ.
Using the sine formula, we get

sinXP ′

0 = sinλ′ sin(90 − ρ− ǫ). (9.38a)

That is,

sin δ′ = sinλ′ cos(ρ+ ǫ)

= sinλ′(cos ρ cos ǫ− sin ρ sin ǫ)

= cos ǫ sinλ′ cos ρ− sin ǫ sinλ′ sin ρ. (9.38b)
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Using (9.37a) and (9.37b) in the above, we get

sin δ′ = cos ǫ sinλ cos β − sin ǫ sin β. (9.39)

This is the distance of X from the daks. in. ottara-vr. tta. Now, consider the
spherical triangle PXP ′

o. Here XP̂P ′

0 = Arc(ΓY ) = α, which is the Right
Ascension of X. Hence,

sin(XP ′

o)

sin(XP̂P ′

o)
=

sin(PX)

sin(PP̂o
′

X)
, (9.40a)

or,
sin δ′

sinα
=

sin(90 − δ)

sin 90◦
. (9.40b)

Therefore,
sin δ′ = sinα cos δ. (9.40c)

Using (9.40c) in (9.39), we have

cos δ sinα = cos ǫ sinλ cos β − sin ǫ sinβ, (9.41)

which is the same as (9.35).



Chapter 10

The Fifteen Problems

10.1 The fifteen problems

The seven great circles which are frequently employed in deriving various
results in this chapter are listed in Table 10.1. These circles are indicated by
solid lines in Figure 10.1. Three more circles which are referred to later in
the chapter are indicated by dashed lines. In Table 10.1, the second column
gives the names of the circles in Sanskrit. The third column gives their
modern equivalents. In the last column we have listed the poles (visible ones
with ref. to Figure 10.1) of these great circles.

No. Circle Description in modern terms Pole/s

1 Apakrama-vr. tta Ecliptic K1

2 Daks.in. ottara-vr. tta Prime meridian W
3 Daks.in. ottara- Secondary to the prime meridian

nata-vr. tta passing through the celestial body X B, C
4 Laṅkā-ks. itija Horizon for equatorial observer Z, Z ′

5 Ghat.ikā-vr. tta Celestial equator P1, P2

6 Ghat.ikā-nata-vr. tta Secondary to the celestial equator
passing through the celestial body X Y ′

7 Rāśi-kūt.a-vr. tta Secondary to the ecliptic inter-
secting it at points which are at X
90◦ away from the celestial body X

Table 10.1

In Figure 10.1, for the sake of convenience, the celestial sphere has been
drawn for an equatorial observer. The position of the ecliptic is chosen
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such that the equinoxes coincide with the zenith and the nadir. This does
not result in any loss of generality, as only (terrestrial) latitude-independent
quantities are discussed in this chapter. X is a celestial body whose longitude
(ZX = ΓX) is λ, declination (south) is δ and right ascension is α.

With reference to the seven great circles listed in Table 10.1, six quantities,
which are primarily related to the motion of a celestial object, are defined
below (Table 10.2). When any two of them are known, the other four can be
determined. We know that, given six independent quantities, two of them
can be chosen in 15 different ways. Hence the title of the chapter.

No. Quantity Description Notation

1 parama-krānti Maximum declination R sin ǫ
2 is. t.a-krānti Desired declination R sin δ
3 is. t.āpakrama-kot. i Distance of the celestial

body from prime meridian R cos ǫ sinλ
4 dorjyā Rsine longitude R sinλ
5 kālajyā Rsine of the

Right Ascension R sinα
6 natajyā Max. separation between the

celestial equator and the R sin zv =

Secondary to the meridian R sin δ√
R2

−R2 cos2 ǫ sin2 λ

passing through the body

Table 10.2

The following table, would be useful in identifying the six quantities, with
reference to the seven great circles shown in Figure 10.1:

Number Quantity Representation in Figure 10.1

1 parama-krānti R sin ǫ = R sinX ′ẐX
2 is. t.a-krānti R sin δ = R sinXX ′

3 is. t.āpakrama-kot. i R cos ǫ sinλ = R sinV X
4 dorjyā R sinλ = R sinZX
5 kālajyā R sinα = R sinZX ′

6 natajyā R sin zv = R sinZV

Table 10.3
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Figure 10.1: The seven great circles and their intersections.

The seven circles depicted in Figure 10.1, have already been explained in
chapter 9 in connection with Figure 9.13a on page 683. Now we give some
relations which would be used in later discussions. In Figure 10.1, it may be
noted that X ′Y ′ = XY = XD = 90◦. Hence,

Y ′Z ′ = 90◦ − ZX ′, Y Z ′ = 90◦ − ZX, V ′D = 90◦ − V X.

Since X is the pole of the rāśi-kūt.a-vr. tta, XU = XD = 90◦; Hence, UX ′ =
90◦ − XX ′ = 90◦ − δ; Also, XP2 = 90◦ − δ. The Rsine of the maximum
divergence between celestial equator and the rāśi-kūt.a-vr. tta is

R sinUX ′ = R sin(90◦ − δ) = R cos δ = dyujyā. (10.1)
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Similarly, the Rsine of the maximum divergence between the north-south
circle and rāśi-kūt.a-vr. tta is

R sinV ′D = R sin(90◦ − V X)

= R cos V X

= kot.i of is. t.āpakrama-kot. i. (10.2)

Also BV = 90◦. Hence, ZV = 90◦ −BZ, so that

natajyā = R sinZV = R cosBZ. (10.3)

10.2 Problem 1

The maximum declination R sin ǫ (parama-krānti), and the actual declina-
tion R sin δ (is. t.a-krānti), are given.

It may be noted that the first two items listed in Table 10.2 are given and
we have to find the other four. Now, from the given quantities,

R cos ǫ =
√
R2 − (R sin ǫ)2

= parama-krānti-kot. i, (10.4)

and

R cos δ =
√
R2 − (R sin δ)2

= is. t.a-krānti-kot.i or dyujyā, (10.5)

are trivially found. The other four are determined as follows.

1. Dorjyā : The relation between δ, λ and ǫ is determined as before
(Eq. (9.4)), by rule of three

R sinλ =
R. R sin δ

R sin ǫ
. (10.6)

Since the RHS is known, is. t.a-dorjyā is found.
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2. Is.t.āpakrama-kot. i : It is defined by

is. t.āpakrama-kot. i = R sinV X

= R cos ǫ sinλ. (10.7)

Since both the factors in the RHS have been found, is. t.āpakrama-kot. i is
known. The rationale for the above expression is as follows. For the arc
ZS = 90◦, the divergence between the ecliptic and daks. in. ottara-vr. tta
is

R sinSP2 = R sin(90 − ǫ) = R cos ǫ.

Hence, for the arc ZX = λ, the divergence is given by

R sinXV = R cos ǫ sinλ.

3. Nata-Jyā : This refers to R sinZV which is the maximum diver-
gence between the celestial equator and daks. in. ottara-nata-vr. tta, mea-
sured along the daks. in. ottara-vr. tta corresponding to the arc WV = 90◦.
Hence, the divergence corresponding to the arc WX = 90◦ − V X on
the nata-vr. tta is given by

R sinZV sin(90◦ − V X) = R sinZV cos V X.

But this is R sinXX ′ = R sin δ. Hence,

R. R sin δ = R sinZV R cos V X

= R sinZV
√
R2 −R2 sin2 V X. (10.8)

Using (10.7) in (10.8), we have

R sinZV =
R. R sin δ√

R2 − (R cos ǫ sinλ)2

=
trijyā × is. t.akrānti√

trijyā2 − is. t.āpakrama-kot. i
2
. (10.9)

Since all the terms in the RHS are known, nata-jyā is known.

4. Laṅkodaya-jyā : Consider the divergence between the ghat.ikā-nata-
vr. tta and the daks. in. ottara-vr. tta. Laṅkodaya-jyā or kālajyā, R sinZX ′,
is the maximum divergence corresponding to the arc P2X

′ = 90◦. The
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is. t.āpakrama-kot. i, as given by (10.7), is the divergence corresponding
to the arc P2X = 90◦ − δ. Hence, by the rule of three, we get

R sinα = R sinZX ′ =
R sin(V X)R

R sin(P2X)

=
R cos ǫ sinλ R

R cos δ
. (10.10)

Laṅkodaya-jyā =
is. t.āpakrama-kot. i × trijyā

dyujyā
.

Considering the divergence between ghat.ikā-nata and ks.itija, Laṅkodaya-
jyā-kot.i is given by

R cosα = R sinX ′W =
R sin(XS)R

R sin(P2X)
=
R cos λ R

R cos δ
. (10.11)

That is,

Laṅkodaya-jyā-kot.i =
dorjyā-kot.i × trijyā

dyujyā
.

Similarly, considering the divergence between the daks. in. ottara-nata
and ks.itija, nata-jyā-kot.i is obtained. It is given by

R sinV P2 =
R sin(XS)R

R sin(XW )
=

R cos λ R√
R2 −R2 cos2 ǫ sin2 λ

. (10.12)

10.3 Problem 2

The maximum declination, R sin ǫ (parama-krānti), and is. t.āpakrama-kot. i =
R cos ǫ sinλ, are given.

Using the rule of three

R sinSP2 : R sinZS = R sinXV : R sinZX,

or
R cos ǫ

R
=
R cos ǫ sinλ

dorjyā
.

Hence,

dorjyā = R sinλ =
R . R cos ǫ sinλ

R cos ǫ
. (10.13)

The other quantities are obtained as in problem 1.
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10.4 Problem 3

The maximum declination = R sin ǫ (parama-krānti), and dorjyā = R sinλ,
are given.

By considering the divergence between the apakarama and ghat.ikā-vr. tta-s,
we find

is. tāpakrama = R sin δ

= R sin(XX ′)

=
R sin(WS) R sin(ZX)

R sinZS

=
R sin ǫ R sinλ

R
. (10.14)

Similarly, by considering the divergence between the apakarama and daks. in. o-
ttara-vr. tta-s, we find

is. tāpakrama-kot. i = R sin(V X)

=
R sin(SP2) R sin(ZX)

R sinZS

=
R cos ǫ R sinλ

R
. (10.15)

The rest (kālajyā and natajyā) are obtained as before.

10.5 Problem 4

The maximum declination = R sin ǫ (parama-krānti), and kālajyā = R sinα,
are given.

Now,
kālajyā = R sinZX ′ = R sinα.

By construction, X ′Y ′ = 90◦. Therefore, ZX ′ = WY ′. Hence,

R cosα = kāla-kot.i = R cosZX ′

= R sin(90 + ZX ′)

= R sinZY ′

= R sinY ′Z ′. (10.16)
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The distance between ghat.ikā and apakrama-vr. tta on rāśi-kūt.a-vr. tta is

R sinY ′Y = R sin ǫ sinY ′Z ′

= R sin ǫ cosα (10.17)

= Kālakot.i-apakrama.

Consider a second rāśi-kūt.a-vr. tta ZK1Z
′, passing through the zenith and

the pole of the ecliptic K1. By construction, the angle between this second
rāśi-kūt.a-vr. tta and the equator is 90 − ǫ. Therefore, the distance between
Y ′ and the second rāśi-kūt.a-vr. tta will be

= R sin(90 − ǫ) sin(ZY ′)

= R cos ǫ cosα

=
√
R2 cos2 α−R2 sin2 ǫ cos2 α

=

√
(kālakot.i-jyā)

2 − (kālakot.i-apakrama)2. (10.18)

Now, K1 being the pole of ecliptic, K1Y = 90◦. Therefore, K1Y
′ + Y ′Y =

90◦. And

R2 sin2K1Y
′ = R2 cos2 Y ′Y

= R2 −R2 sin2 Y ′Y. (10.19)

Using (10.17) in the above equation we have

R2 sin2K1Y
′ = R2 −R2 sin2 ǫ cos2 α. (10.20)

Consider the two rāśi-kūt.a-vr. tta-s passing through K1. It can be seen that

Distance between Y ′ and second rāśi-kūt.a-vr. tta

R sinK1Y ′
=

Max. divergence between the two rāśi-kūt.a-vr. tta-s

R sinK1Y
=
R sinY Z ′

R
.

Hence,

R sinY Z ′ =
R. R cos ǫ cosα√
R2 −R2 sin2 ǫ cos2 α

. (10.21)

Using the relation, Y Z ′ = 90◦ − ZX = 90◦ − λ, in the above equation, we
have

R cos λ =
R. R cos ǫ cosα√
R2 −R2 sin2 ǫ cos2 α

. (10.22)
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The kot.i of this is R sinZX = R sinλ. Other quantities can be determined
as before.

Note: The above relation can also be derived using cosα = cos λ
cos δ

(10.11).
Using this in RHS of (10.22), we have

cos ǫ cosα√
1 − sin2 ǫ cos2 α

=
cos ǫ cos λ

cos δ
√

1 − sin2 ǫ cos2 λ
cos2 δ

=
cos ǫ cos λ√

cos2 δ − sin2 ǫ cos2 λ

=
cos ǫ cos λ√

1 − sin2 δ − sin2 ǫ cos2 λ

=
cos ǫ cos λ√

1 − sin2 ǫ sin2 λ− sin2 ǫ cos2 λ

=
cos ǫ cos λ√
1 − sin2 ǫ

= cos λ. (10.23)

10.6 Problem 5

The maximum declination = R sin ǫ (parama-krānti), and the natajyā =
R sinZV , are given.

It is stated1 that

nata-kot.i = R cosZV = R sinZ ′C. (10.24)

Now, the maximum separation between the apakrama and daks. in. ottara-vr. tta

1This can be derived once we note the following:

• X is the pole of the rāśi-kūt.a-vr. tta and hence X is at 90◦ from C.

• W is the pole of the daks. inottara-vr. tta and hence that is also at 90◦ from C.

Therefore, C is pole of the great circle through X and W . This implies that V C = 90◦.
But, ZV + V C + Z′C = 180◦. Hence, ZV + Z′C = 90◦. Therefore,

R cos ZV = R sin Z
′

C.
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is R sinSP2 = R cos ǫ. Therefore, the distance of C from the apakrama-vr. tta,

R sinY C = R sin(ZC) cos ǫ

= R cos(ZV ) cos ǫ. (10.25)

The angle between the second rāśi-kūt.a-vr. tta (ZK1Z
′) and the daks. in. ottara-

vr. tta is ǫ. Hence, the distance of C from the second rāśi-kūt.a-vr. tta will be

= R sin ǫ sin(Z ′C)

= R sin ǫ cosZV

=
√
R2 cos2 ZV −R2 cos2 ZV cos2 ǫ. (10.26)

Considering the divergence between the two rāśi-kūt.a-vr. tta-s, the above is
the pramān. a-phala or distance, which corresponds to the arc

K1C = K1Y + Y C = 90◦ + Y C,

the Rsine of which is the pramān. a given by

R sinK1C = R cos Y C =
√
R2 −R2 cos2 ZV cos2 ǫ.

The icchā-phala is the maximum divergence between the two rāśi-kūta-vr. ttas,
which is R sinY Z ′. This corresponds to the arc K1Y = 90◦, the Rsine of
which is the icchā = R. Applying the rule of three in the form

icchā-phala

icchā
=

pramān. a-phala

pramān. a
,

we have
R sinY Z ′

R
=

√
R2 cos2 ZV −R2 cos2 ZV cos2 ǫ√

R2 −R2 cos2 ZV cos2 ǫ
. (10.27)

From this, R sinY Z ′ is found. The kot.i of this is R sinZX (as ZX + Y Z ′ =
90◦), which is sinλ (is. t.a-dorjyā). This is how the is. t.a-dorjyā is determined
in terms of parama-krānti and the nata-jyā. The rest is as in the earlier
problems.

10.7 Problems six to nine

In problems 1 – 5, one of the two quantities given was parama-krānti,
(item 1 in Table 10.2). We now move on to the next set of four problems
(6 – 9) in which one of the quantities given is is. t.a-krānti, the second of the
six quantities listed in Table 10.2.
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10.7.1 Problem 6

The actual declination = R sin δ (is. t.a-krānti), and the is. t.āpakrama-kot. i =
R cos ǫ sinλ, are given.

Here, the dorjyā = R sinλ is simply obtained from the square-root of the
sum of the squares of the given quantities. That is,

R sinλ =
√
R2 sin2 δ +R2 cos2 ǫ sin2 λ, (10.28)

since δ and λ are related by the relation (10.6). All the other quantities are
determined as earlier.

10.7.2 Problem 7

The actual declination = R sin δ (is. t.a-krānti), and the dorjyā = R sinλ, are
given.

It is straightforward to find all the four quantities.

10.7.3 Problem 8

The actual declination = R sin δ (is. t.a-krānti), and the kālajyā = R sinα, are
given.

First the cosines R cos δ (dyujyā) and R cosα (kālakot.i-jyā) of the given
quantities are determined. For this, consider the divergence between the
ghat.ikā-nata and ks.itija. Here, R sinX ′W = R cosα, the pramān. a-phala,
and R sinXS = R cos λ, the icchā-phala, are the distances of X ′ and X cor-
responding to the arcs X ′P2, the Rsine of which is R (pramān. a) and XP2,
the Rsine of which is R cos δ (icchā). Now, the dorjyā-kot.i = R cos λ is found
using the principle of rule of three. Thus, we have

R cosα

R
=
R cos λ

R cos δ
. (10.29)

From the above cosλ can be found. With this, the dorjyā and the other
quantities can be determined.
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10.7.4 Problem 9

The actual declination = R sin δ (is. t.a-krānti), and natajyā = R sinZV , are
given.

When R sinZV is the separation between the yāmyottara-nata and the equa-
tor, R sinV P2 = R cosZV is the separation between yāmyottara-nata and
the horizon. When

R sin δ = R sinXX ′, (10.30)

is the separation between the first two, the distance between the other two,
R sinXS, is given by the rule of three:

R sinXS

R sin δ
=
R cosZV

R sinZV
. (10.31)

Since ZX +XS = 90◦ and ZX = λ,

R cos λ =
R cosZV

R sinZV
R sin δ. (10.32)

In the language of the Text, the above equation may be written as,

dorjyā-kot. i =
natajyā-kot.i

natajyā
× is. t.āpakrama.

The kot.i of (10.32) is the dorjyā = R sinλ. The rest are found as earlier. The
result (10.32) can also be obtained using standard spherical trigonometry.
Considering the triangle ZVX and applying the four-parts formula,

cosZV cos(90◦ − ǫ) = sinZV cotλ− sin(90◦ − ǫ) cot 90◦.

Simplifying the above, and using the result sin δ = sin ǫ sinλ, we have

R cos λ =
R cosZV

R sinZV
R sin δ,

which is the same as (10.32).

10.8 Problems ten to twelve

In problems 6 – 9, one of the two given quantities was is. t.a-krānti. We now
move on to the next set of three problems in which one of the quantities
given is is. t.āpakrama-kot. i, the third of the six quantities listed in Table 10.2.
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10.8.1 Problem 10

The is. t.āpakrama-kot. i = R cos ǫ sinλ, and dorjyā = R sinλ, are given.

By finding the difference of the squares of the given quantities and taking
the square root, we get the is. t.a-krānti

R sin δ =
√
R2 sin2 λ−R2 cos2 ǫ sin2 λ = R sinλ sin ǫ. (10.33)

From R sinλ and R sin δ, the rest can be obtained.

10.8.2 Problem 11

The is. t.āpakrama-kot. i = R cos ǫ sinλ, and kālajyā = R sinα, are given.

From kālajyā, the kālakot.i, R cosα (R sinX ′W ) is obtained. Consider the
separation of X ′ and X on the ghat.ikā-nata-vr. tta from the daks. in. ottara-
vr. tta. Using the rule of three, we have

R sin(ZX ′)

R sinX ′P2
=

R sin(V X)

R sin(XP2)
,

or
R sinα

R
=

R sin(V X)

R cos δ
. (10.34)

Therefore,

R cos δ = R
R sinV X

R sinα
(10.35)

= trijyā × is. t.āpakrama-kot. i

kālajyā
. (10.36)

From this, the is. t.a-krānti = R sin δ is obtained.

Again, consider the separation of X and X ′ on the ghat.ikā-nata-vr. tta from
the horizon. Then,

R sinXS =
R sin(XP2) R sin(X ′W )

R sinX ′P2
,

or R cos λ =
R cos δ R cosα

R
. (10.37)

This is the dorjyā-kot. i, from which the dorjyā (R sinλ) is obtained. From
R sinλ and R sin δ, the rest are obtained.
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10.8.3 Problem 12

The is. t.āpakrama-kot. i, R sinV X = R cos ǫ sinλ, and natajyā = R sinZV , are
given.

The maximum separation between yāmyottara-nata-vr. tta and the horizon is

R sinV P2 = R cosZV =
√
R2 −R2 sin2 ZV . (10.38)

Also,

R sinXW = R cos V X =
√
R2 −R2 sin2 V X. (10.39)

Then, R sinXS = R cos λ (dorjyā-kot. i), which is the separation between X
and the horizon, is given by

R cos λ =
R sin(XW ) R sin(V P2)

R
. (10.40)

From this, the dorjyā is obtained. Again, from the is. t.āpakrama-kot. i and
dorjyā, R cos ǫ, and hence parama-krānti (R sin ǫ), can be obtained. With
them, the rest can be determined.

10.9 Problems thirteen and fourteen

In problems 10 – 12, one of the two given quantities was is. t.āpakrama-kot. i. We
now move on to the next set of two problems in which one of the quantities
given is dorjyā, the fourth of the six quantities listed in Table 10.2.

10.9.1 Problem 13

The dorjyā = R sinλ, and kālajyā = R sinα, are given.

From this,

R sinXS = R cos λ =
√
R2 −R2 sin2 λ, (10.41)

and
R sinX ′W = R cosα =

√
R2 −R2 sin2 α, (10.42)
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are found. Also we have

R sin(XS)

R sin(X ′W )
=
R sin(XP2)

R sin(X ′P2)
=
R cos δ

R
. (10.43)

Using (10.40) and (10.41) in the above equation, R cos δ is determined. From
this, R sin δ is found and with the knowledge of R sinλ and R sin δ, the rest
are obtained.

10.9.2 Problem 14

The dorjyā = R sinλ, and natajyā = R sinZV , are given.

From them,

R sinXS = R cos λ =
√
R2 −R2 sin2 λ, (10.44)

and

R sinV P2 = R cosZV =
√
R2 −R2 sin2 ZV , (10.45)

are found. Now, consider the separation of X and V on the daks. in. ottara-
nata-vr. tta from ks.itija. We have

R sinXW

R sinXS
=
R sinVW

R sinV P2
=

R

R sinV P2
. (10.46)

Using the previous two equations in the above equation, R sinXW is ob-
tained. The kot.i of this is R sinV X (krānti-kot.i). From R sinλ andR sinV X,
others are obtained.

10.10 Problem 15

This is the last problem in which the last two quantities in Table 10.2, namely
the kālajyā = R sinZX ′, and nata-jyā = R sinZV , are given.

Now,

R sinWY ′ = kālajyā,

and R sinWD = R sinV X = krānti-kot.i. (10.47)
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Further, R sinX ′W = kāla-kot.i and XD = VW = 90◦. Now,

R sinP1B = nata-jyā,

and R sinP1U = krānti, (10.48)

which is the divergence between the rāśi-kūt.a-vr. tta and the horizon along
the ghat.ikā-nata-vr. tta. Also, UY ′ = CD = 90◦, and P1Z = 90◦.

Now, the maximum divergence between the ghat.ikā and yāmyottara-nata-
vr. tta is the nata-jyā = R sinZV = R sinZ ′V ′. Hence, the divergence be-
tween these two vr. tta-s on the rāśi-kūt.a-vr. tta, which is R sinY ′D corre-
sponding to the arc WY ′ = ZX ′, is given by

R sinY ′D = R sinZV sinZX ′. (10.49)

Similarly, the maximum divergence between the ghat.ikā-nata-vr. tta and the
north-south circle is the kālajyā = R sinZX ′. Hence, R sinBU which is
the distance between B on the north-south circle and the ghat.ikā-nata-vr. tta
corresponding to the arc P1B is given by

R sinBU = R sinP1B sinZX ′

= R sinZV sinZX ′

= R sinY ′D. (10.50)

That is, the two icchā-phala-s are equal. Now Y ′C = CD−Y ′D = 90◦−Y ′D.
Hence, the divergence between the ghat.ikā-vr. tta and the north-south circle
along the rāśi-kūt.a-vr. tta, is R sinY ′C given by the expression

R sinY ′C =

√
(R2 −R2 sin2 Y ′D)

=

√
(R2 −R2 sin2 ZV sin2 ZX ′). (10.51)

Then, the is. t.āpakrama-kot. iR sinV X and is. t.āpakrama = R sin δ = R sinP1U ,
which are considered as icchā-phala-s, are obtained from the relations (based
on the rule of three) :

R sinV X

R
=

√
(R2 sin2 ZX ′ −R2 sin2 Y ′D)

R sinY ′C
,

R sinP1U

R
=

√
(R2 sin2 ZV −R2 sin2 Y ′D)

R sinY ′C
. (10.52)

In the above expressions, the LHS is nothing but the ratio of icchā-phala to
icchā. These can be derived in the following manner.
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Consider the ‘first tiryag-vr. tta’, which is the great circle through B, W and
C. As B is the pole of the yāmyottara-nata-vr. tta the maximum divergence
between this vr. tta and rāśi-kūt.a-vr. tta is

R sinWD = R sinV X = is. t.āpakrama-kot. i.

Consider the divergence between these two vr. tta-s at Y ′ which is R sinY ′T1

(Y ′T1 being perpendicular to this tiryag-vr. tta). Therefore,

R sinY ′T1 = R sin(WD) sin(BY ′). (10.53)

Since, BY ′ = 90◦ +BU = 90◦ + Y ′D, we have

R sinY ′T1 = R sin(WD) cos(Y ′D)

=

(
1

R

)
R sin(WD)

√
R2 −R2 sin2(Y ′D). (10.54)

Now, the angle between the ghat.ikā-vr. tta and the first tiryag-vr. tta is

Y ′ŴT1 = 90◦ − Y ′ŴD

= 90◦ − V ′Z ′

= 90◦ − ZV. (10.55)

Therefore,

R sinY ′T1 = R sinWY ′ sin(90◦ − ZV )

= R sinWY ′ cosZV

=
√
R2 sin2WY ′ −R2 sin2WY ′ sin2 ZV

=
√
R2 sin2WY ′ −R2 sin2 Y ′D. (10.56)

From (10.54) and (10.56), we have

R sinWD
√
R2 −R2 sin2 Y ′D = R

√
R2 sin2WY ′ −R2 sin2 Y ′D,

Or,

R sinV X

√
R2 −R2 sin2(ZX ′) sin2 ZV =

√
R2 sin2(ZX ′) −R2 sin2(ZX ′) sin2 ZV . (10.57)

From this, the is. t.āpakrama-kot. i (R sinV X) is obtained in terms of the kālajyā
(R sinZX ′) and natajyā (R sinZV ).



712 10. The Fifteen Problems

Consider the ‘second tiryag-vr. tta’, which is the great circle through P1, Y
′

and P2. As Y ′P1 = UY ′ = 90◦, the maximum divergence between this vr. tta
and the rāśi-kūt.a-vr. tta is

R sinP1U = R sin δ = is. t.āpakrama. (10.58)

Consider the divergence between the two vr. tta-s at B which is R sinBT2

(BT2 being perpendicular to this tiryag-vr. tta). Therefore,

R sinBT2 = R sin(P1U) sin(BY ′). (10.59)

Since, BY ′ = 90◦ +BU = 90◦ + Y ′D, we have

R sinBT2 = R sin(P1U) cos(Y ′D)

=

(
1

R

)
R sin(P1U)

√
R2 −R2 sin2 Y ′D

=

(
1

R

)
R sin δ

√
R2 −R2 sin2 Y ′D. (10.60)

Now, the angle between the yāmyottara-vr. tta and the second tiryag-vr. tta is

BP̂1T2 = Y ′Z ′ = 90◦ −WY ′

= 90◦ − ZX ′. (10.61)

Therefore,

R sinBT2 = R sinP1B sin(90◦ − ZX ′)

= R sinZV cosZX ′

=
√
R2 sin2 ZV −R2 sin2 ZX ′ sin2 ZV

=
√
R2 sin2 ZV −R2 sin2 Y ′D. (10.62)

Equating the two expressions for R sinBT2, we get

R sin δ
√
R2 −R2 sin2 Y ′D = R

√
R2 sin2 ZV −R2 sin2 Y ′D,

or R sin δ

√
R2 −R2 sin2(ZX ′) sin2 ZV =

R

√
R2 sin2(ZV ) −R2 sin2(ZX ′) sin2 ZV ). (10.63)

From this, the is. t.āpakrama (R sin δ) is obtained in terms of the kālajyā
(R sinZX ′) and natajyā (R sinZV ).
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In summary, the formulas for is. t.āpakrama-kot. i (R sinV X = R cos ǫ sinλ),
and is. t.āpakrama (R sin δ), in terms of the kālajyā (R sinα), and natajyā
(R sinZV ), are:

R sinV X
√
R2 −R2 sin2 α sin2 ZV = R

√
R2 sin2 α−R2 sin2 α sin2 ZV ,

R sin δ
√
R2 −R2 sin2 α sin2 ZV = R

√
R2 sin2 ZV −R2 sin2 α sin2 ZV .

Then, from kālajyā, natajyā and the above relations, the other quantities
can be obtained.



Chapter 11

Gnomonic Shadow

Apart from providing the rationale behind different procedures, this chap-
ter also summarizes and synthesizes all the problems related to the diurnal
motion of the Sun and shadow measurements carried out with a simple in-
strument called śaṅku (gnomon).1 Since a major portion of the chapter deals
with the measurement of shadow (chāyā) cast by gnomon, the choice of the
title of the chapter, ‘Chāyā-prakaran. am’ (chapter on gnomic shadow) seems
quite natural and appropriate.

The chapter commences with a discussion of the method of identifying the
four directions using the forenoon and afternoon shadows of a gnomon. A
few corrections, such as the one due to the finite size of the Sun, the effect
of parallax etc., that need to be incorporated for making the measured val-
ues more accurate, are discussed in the next few sections. The theoretical
background for the procedures involved in finding the latitude of a place and
estimating the time from shadow are also presented.

The Text then goes on to an important topic called Daśa-praśnāh. (Ten
Problems), wherein among the five quantities related to the diurnal motion,
the method to derive two of them given the other three is discussed. This is
followed by a detailed discussion of topics related to the calculation of the
orient ecliptic point, called udaya-lagna or simply lagna. Then, the effect of
parallax on longitudes and latitudes is discussed. The chapter ends with an
interesting discussion on the calculation of gnomic shadow of Moon when it
has a latitudinal deflection.

1Gnomon is essentially a stick of suitable thickness and height, usually taken to be 12
units, with one of its edges sharpened to facilitate taking fine measurements of the tip of
the shadow cast by a celestial body.
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11.1 Fixing directions

Draw a circle with a suitable radius, on a flat surface and place the gnomon
at its centre. The centre of the circle is represented by O in Figure 11.1(a).
This is the base of the gnomon (́saṅku OA).

Circle around 
sanku in the plane
of the horizon

O

Z

W’

E’

K

E’

N’ S’
W’

E’

E"

O

B

A

E"

∆

Horizon

(a)

(b)

(c)

W’

Box blown
up in (b)

Figure 11.1: Fixing the directions through shadow measurements.

Let the tip of the shadow be at W ′ and E′′ in the forenoon and afternoon
respectively, on the circle. If the declination of the Sun were to be constant
during the course of the day, then W ′E′′ would be the west-east line. How-
ever, due to the northward or southward motion of the Sun, the declination
(δ) changes. Consequently, the tip of the eastern shadow point would have
got shifted towards south (to the point E′′, as shown Figure 11.1(a)), if the
Sun has northward motion (δ increases) or north if the Sun has southward
motion (δ decreases). So a correction ∆, which is equal to E′B (see Figure
11.1(b)), has to be applied to E′′ to get the true east-point E′. If the change
in the declination be from δ1 to δ2, then the magnitude of the correction, ∆
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is stated to be

∆ =
K(R sin δ2 −R sin δ1)

R cosφ
, (11.1)

where K is the hypotenuse of the shadow in aṅgula-s (the gnomon being
taken to be 12 aṅgula-s) and φ is the latitude of the place. The expression
for ∆ given here is the same as the one found in Siddhāntaśiroman. i and
Tantrasaṅgraha and may be understood as follows.
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Figure 11.2: Relation between the zenith distance of the Sun and length of
the shadow cast by a śaṅku.

Consider the situation when the Sun has declination δ, zenith distance z
and azimuth A (refer Figure 11.2). OX is the gnomon, the length of whose
shadow is L given by

L = OY = XY sin z = K sin z, (11.2)

where K = XY is the chāyā-karn. a (shadow-hypotenuse). For future pur-
poses, we also note that

12 = K cos z or K =
12

cos z
, (11.3)

as the gnomon OX = 12, and the shadow will be

L = 12
sin z

cos z
. (11.4)
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Arkāgrāṅgula Y Q is the distance of Y , the tip of the shadow of the Sun,
from the east-west line. It is given by

Y Q = L sin(A− 90) = L cosA. (11.5)

The declination of the Sun, δ, is given by the expression below, a formula
similar to which will be derived later:

sin δ = cos z sinφ+ sin z cosφ cosA. (11.6)

Now the shadow-lengths corresponding to W ′ and E′′ being the same, their
zenith distances are the same. When the declination of the Sun changes
from δ1 to δ2, we have

sin δ1 = cos z sinφ+ sin z cosφ cosA1

sin δ2 = cos z sinφ+ sin z cosφ cosA2. (11.7)

Therefore,

sin δ2 − sin δ1 = sin z cosφ (cosA2 − cosA1) . (11.8)

Rewriting the above, we get

K (sin δ2 − sin δ1)

cosφ
= K sin z (cosA2 − cosA1)

= L (cosA2 − cosA1) , (11.9)

which is the difference in “arkāgrāṅgula” or ‘amplitude’ corresponding to δ1
and δ2. Hence,

∆ =
K (sin δ2 − sin δ1)

cosφ
. (11.10)

Then the true east point E′ is the point on the circle which is at a distance
∆ from the line E′′W ′. The true east-west line is E′W ′. The north-south
line is the perpendicular bisector of this, and is determined by the standard
fish-figures.

The fish-figure is constructed as follows. With E′ and W ′ as centres draw
two circles of equal radii. These circles instersect at two points N ′ and S′.
The region of intersection forms a fish figure as illustrated in Figure 11.1(c).
The line passing through N ′ and S′ is the north-south line. By construction,
it is perpendicular to the east-west line through E′ and W ′.
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11.2 Latitude and co-latitude

On the equinoctial day, the declination at sunrise and sunset are equal and
opposite, and the Sun would be on the equator at noon. Let the shadow
of the gnomon (OX = 12) be OY on that day (see Figure 11.3). Then the
shadow hypotenuse is

K = XY =
√
OX2 +OY 2 =

√
122 +OY 2. (11.11)
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Figure 11.3: Determination of latitude through shadow measurements.

It is obvious that

OX = K cosφ

OY = K sinφ. (11.12)

Therefore,

R sinφ =
OY ×R

K
, (11.13)

is the latitude (aks.a), and

R cosφ =
OX ×R

K
, (11.14)
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is the co-latitude (lambana). The equinoctial shadow is

OY =
OX sinφ

cosφ
=

12 sin φ

cosφ
. (11.15)

If the radius of the celestial sphere is R, the distance between the zenith and
the celestial equator is ZM = R sinφ. This is the same as the distance PM ′

between the pole star Dhruva and horizon, and is referred to as the aks.a.
Similarly the lambana is the perpendicular distance SL between the ghat.ikā-
man. d. ala (celestial equator) and the horizon, or the distance ZL′ between the
zenith and the Dhruva, both of which are R cosφ.

11.3 Time after sunrise or before sunset
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Figure 11.4: The role of unman. d. ala in the determination of time.

On any day, the Sun moves on the diurnal circle (svāhorātra-vr. tta), all of
whose parts are at a constant distance R sin δ from the celestial equator
(ignoring the change in the declination during the course of the day). This
circle is parallel to the celestial equator (see Figure 11.4). Its centre C is on
the polar axis of the celestial sphere and the radius is R cos δ (is. t.a-dyujyā,
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day radius). This circle is divided into four quadrants using the north-south
circle and the six-o′ clock circle (unman. d. ala) and into 21,600 divisions, being
the number of prān. a-s in a day (1 prān. a = 4 seconds). The rate of motion
of the Pravaha wind is constant. Hence it is possible to calculate correctly
the position of a planet on the diurnal circle, given the time elapsed after it
has risen or the time yet to elapse before setting.

11.4 Unnata-jyā
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Figure 11.5: The unnata-prān. a and cara-prān. a.

In Figure 11.5, the diurnal circle of the Sun with C as the centre is indicated.
It is divided into 21,600 equal divisions, each of which is a prān. a. S is the
position of the Sun at some instant. The Sun sets at St. Then the arc SSt =
θ, on the diurnal circle corresponds to the ‘time to elapse’ before sunset.
The unman. d. ala or the six-o′ clock circle and the diurnal circle intersect at
Su. The arc SuSt = θc corresponds to the cara-prān. a. SSu = θu is termed
the unnata-prān. a. Both are measured in the prān. a measure of the diurnal
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circle. Clearly,

SSt = SSu (unnata-prān. a) + SuSt (cara-prān. a),

or,
θ = θu + θc. (11.16)

Now drop perpendiculars StS
′

u and SS′′

u from St and S on CSu. CSu is
clearly parallel to OW , the east-west line. Also, let SS′′

u be extended to
meet the horizon at Sh. SSh is the Unnata-jyā. It may be noted that

SSh = SS′′

u + ShS
′′

u

= SS′′

u + StS
′

u, (11.17)

or,
Unnata-jyā (north) = R cos δ (sin θu + sin θc) , (11.18)

where R cos δ or the dyujyā, is the radius of the diurnal circle. This is true
when the declination of the Sun is north. When it is south, one can see that
θ = θu − θc and

Unnata-jyā (south) = R cos δ (sin θu − sin θc) . (11.19)

Note: Considering the spherical triangle StPW , it can be shown that

R sin θc =
R sinφ

cosφ

sin δ

cos δ
= R tanφ tan δ, (11.20)

which is the well known relation for the cara-jyā. Also, θu = 90o −H, where
H is the hour angle in modern parlance. Hence,

Unnata-jyā = R cos δ(cosH + tanφ tan δ). (11.21)

Though this relation is not stated here, we mention it as it will be useful
later.

11.5 Mahā-śaṅku and Mahācchāyā: Great gnomon

and great shadow

In Figure 11.5, let F be the foot of the perpendicular from S to the horizon.
Then SF , ‘the perpendicular from the Sun to the horizon’ is the mahā-śaṅku.
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Now, SSh is a straight line in the plane of the diurnal circle perpendicular
to the east-west line. Also the diurnal circle is inclined to the horizon at an
angle 90 − φ, equal to the co-latitude of the place.

Clearly SF = SSh cosφ. Therefore,

Mahā-śaṅku = Unnata-jyā × cosφ. (11.22)

Note: If z is the zenith distance of the planet S, the mahā-śaṅku SF =
R cos z. This can also be seen as follows. From (11.21) and (11.22),

Mahā-śaṅku = R(cos δ cosφ cosH + sinφ sin δ). (11.23)

Applying the cosine formula to the side ZS (which is the zenith distance
z) in the spherical triangle PZS, where PZ = 90◦ − φ, PS = 90 − δ and
ZP̂S = H, we get

R cos z = R(cos δ cosφ cosH + sinφ sin δ). (11.24)

Thus we see that mahā-śaṅku is same as the Rcosine of the zenith distance
of the Sun, R cos z. The kot.i of this, or R sin z, is called mahācchāyā. The
reason for this nomenclature could be as follows. The ‘chāyā’ and ‘́saṅku’
are equal to K sin z and K cos z respectively, where K is the chāyā-karn. a
(shadow-hypotenuse). When K is replaced by the trijyā R, we obtain the
mahā-śaṅku, R cos z, and mahācchāyā, R sin z.

11.6 Dr. ṅman. d. ala or Dr. gvr. tta

The dr. ṅman. d. ala is the vertical circle ZSA (refer Figure 11.5) passing through
the zenith and the planet. Clearly, mahā-śaṅku and mahācchāyā are the sine
and cosine of the arc AS on this circle. The centre of dr. ṅman. d. ala is O, which
is the centre of the Earth-sphere.

11.7 Dr. ggolacchāyā

Bhagola is the celestial sphere with the centre of the Earth C as the centre
and dr. ggola is the celestial sphere with the observer O as the centre (as
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Figure 11.6: The bhagola and dr. ggola.

in Figure 11.6). The śaṅku and chāyā are different for these two, when we
consider an object at a finite distance. The distance between the two centres,
OC = Re is the radius of the Earth. Let X be an object at a distance R
from Earth’s centre. Further, let d be the distance of X from the observer
at O. Then,

Bhagola-śaṅku = CX ′ = R cos z, (11.25)

Dr. ggola-śaṅku = OX ′ = d cos z′, (11.26)

where z and z′ are the zenith distances of X for bhagola and dr. ggola. The
relation between the two is given by

Dr. ggola-śaṅku = OX ′

= CX ′ −OC

= Bhagola-śaṅku − Earth-radius. (11.27)

It may be noted that the linear measure of the chāyā-śaṅku , which is CB
with reference to bhagola and OA with reference to dr. ggola, is the same. In
other words,

d sin z′ = R sin z, (11.28)
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where d, the dr. kkarn. a, is the distance of the object from the observer on the
surface of the Earth and is given by

d =
√
OA2 +OX ′2

=

√
R2 sin2 z + (R cos z −Re)2. (11.29)

Moreover, the procedure for obtaining dr. kkarn. a is the same as that for the
computation of manda-karn. a using pratiman. d. ala, with the radius of the
Earth playing the role of ucca-n̄ıca-vr. tta-vyāsārdha (radius of the epicycle).
When R and Re are in yojanā-s, d is called the sphut.a-yojana-karn. a. As is
clear from the figure, the drkkarn. a d is smaller than R. Hence, the zenith
distance z′ for O, is larger than that for C which is z, since d sin z′ = R sin z.
For future purposes, we note that

d ≈ R−Re cos z, (11.30)

up to first order in Re

R
. When the observer takes the distance between him

and the object X as the trijyā R, the shadow in the dr. ggola is

R sin z′ = R sin z
R

d
. (11.31)

This is the dr. ggolacchāyā.

11.8 Chāyā-lambana

In Figure 11.6 above, drop a perpendicular OD from O on CX. Now

OD = d sin(z′ − z) = Re sin z. (11.32)

Hence,

R sin(z′ − z) = R sin z
Re

d
. (11.33)

Therefore,

z′ − z = (R sin)−1

[
R sin z

Re

d

]
, (11.34)

or

Chāyā-lambana = cāpa

[
bhagolacchāyā × bhū-vyāsārdha

sphut.a-yojana-karn. a

]
. (11.35)
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Chāyā-lambana is the difference between the zenith distances in minutes as
measured from the surface of the Earth and its centre. These are the arcs
corresponding to dr. ggolacchāyā and bhagolacchāyā. Therefore,

Dr. ggolacchāyā = Bhagolacchāyā + Chāyā-lambana, (11.36)

where it is understood that the entities refer to the corresponding arcs. The
procedure is the same as the determination of cāpa corresponding to manda-
phala in the manda-sam. skāra.

11.9 Earth’s radius and Chāyā-lambana

It may be noted that the radius of the Earth plays the role of antya-phala,
when karn. a is taken to be trijyā. When d is taken to be trijyā and the
shadow R sin z is also trijyā, then,

Re = R sin(z′ − z)

≃ R(z′ − z)

= z′ − z (in min.), (11.37)

when z′ − z is small. Hence, the radius of the Earth in yojanā-s is the
chāyā-lambana in minutes. Also, there is not much difference between the
sphut.a-yojana-karn. a d (distance between the observer and the planet), and
the madhya-yojana-karn. a R (distance between the planet and the centre of
the Earth). For the Sun, it is stated that

Re

R
=

1

863
. (11.38)

Essentially this is the horizontal parallax. Then chāyā-lambana is the prod-
uct of the above and the shadow, R sin z, when d is approximated by R in
the denominator. If chāyā-lambana of the dr. ṅman. d. ala is taken as the hy-
potenuse, then as we shall see later (section 11.37), its sine and cosine will
be ‘nati’ and ‘lambana’.

11.10 Corrected shadow of the 12-inch gnomon

Here the correction to the shadow and the gnomon (mahā-śaṅku) due to the
finite size of the Sun is described. In Figure 11.7, PSQ represents the solar
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Figure 11.7: The correction to the shadow where, the source of light is an
extended object.

disc, where S is the centre and P and Q are upper and lower points of the
disc. ∆ = PS is the angular semi-diameter of the Sun. OS′ is the shadow
corresponding to the centre and OP ′ is the shadow corresponding to the
point P , which is what is observed. Then the corrected shadow (chāyā) and
the gnomon (mahā-śaṅku) are given by

R sin(z′ − ∆) = R sin z′ − ∆(R cos z′), (11.39)

and

R cos(z′ − ∆) = R cos z′ + ∆(R sin z′), (11.40)

where the second terms are the differentials of the sine and cosine func-
tions, the ‘khanda-jyā-s’. The corrected mahā-śaṅku and chāyā are stated
to be pertaining to the dr. g-vis.aya (actually observed) i.e., related to what is
‘actually’ observed.

The increase in size of the mahā-śaṅku can also be viewed in the following
manner (illustrated in Figure 11.8). If the Sun were a point object at S,
then the length of the śaṅku is OB corresponding to the observed length of
the shadow OC. Since it is actually the upper limb P which corresponds to
the tip of the shadow at C, the mahā-śaṅku is effectively increased to OA.
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Figure 11.8: Another rationale for the increase in mahā-śaṅku.

In the above, the khan. d. a-jyā-s are evaluated at z′, the tip of the arc PS,
whereas they should be evaluated at a point midway between P and S for
better accuracy. However, the difference between the two would be small.
So, from the lambana and the khand. a-jyā-s corresponding to the radius of
the Sun, the corrected gnomon and shadow corresponding to the upper point
of the solar disc in the dr. ggola are obtained. The corrected shadow of the
12-inch gnomon will be the corrected shadow (chāyā) as obtained above,
multiplied by 12 and divided by the gnomon (mahā-śaṅku).

11.11 Vipar̄ıtacchāyā : Reverse shadow

The procedure to obtain the time to elapse before sunset or the time elapsed
after sunrise from the observed shadow of the 12-inch gnomon is termed
vipar̄ıtacchāyā or the reverse shadow. Obviously, the process is the reverse
of obtaining the actual shadow from the time, which was indicated in the
previous sections (11.3–10).

If L is the length of the shadow corresponding to the 12-inch gnomon, the
chāyā-karn. a is

K =
√

122 + L2, (11.41)
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12K

L

z’ − ∆

Figure 11.9: Relation between śaṅku and its shadow.

and

L = K sin(z′ − ∆)

12 = K cos(z′ − ∆). (11.42)

Then the mahācchāyā and mahā-śaṅku are obtained as:

R sin(z′ − ∆) =
R

K
.K sin(z′ − ∆) =

R

K
L, (11.43)

and

R cos(z′ − ∆) =
R

K
.K cos(z′ − ∆) =

R

K
12, (11.44)

respectively. These are dr. g-vis.aya and correspond to the upper limb of the
Sun. The same quantities corresponding to the centre of the Sun are

R sin z′ = R sin(z′ − ∆) + ∆ R cos(z′ − ∆)

R cos z′ = R sin(z′ − ∆) − ∆ R sin(z′ − ∆). (11.45)

These correspond to the dr. ggola. We have to obtain R sin z and R cos z
corresponding to bhagola. These are stated to be

R sin z = R sin z′ −R sin z′
(

1

863

)
, (11.46)

and
R cos z = R cos z′ +Re. (in min.) (11.47)

Actually,

R sin z = d sin z′

≈ (R −Re cos z) sin z′

≈ R sin z′ −R sin z′
Re

R
cos z, (11.48)
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where terms up to first order in Re

R
are considered. As was noted earlier,

the Text takes Re

R
= 1

863 . Hence a factor of cos z (or cos z′ to this order) is
missing in the given correction term for R sin z in (11.46)

Again,

R cos z = d cos z′ +Re

≈ (R−Re cos z′) cos z′ +Re

≈ (R cos z′) +Re sin2 z′. (11.49)

Hence a factor of sin2 z′ is missing in the correction term for R cos z given
in (11.47).

The same procedure is to be adopted for computing the latitude and the
colatitude of the place also.

Now R cos z is given by the expression

R cos z = R cos δ cosφ cosH +R sinφ sin δ. (11.50)

Thus,

R sin θu = R cosH =
R cos z.R2

R cos δR cosφ
− R.R sinφR sin δ

R cosφR cos δ
. (11.51)

Here θu is the time to elapse before the Sun reaches the unman. d. ala or six-
o′ clock circle. Since all the quantities in the RHS are known, θu can be
determined. The second term in the RHS of the above equation is the cara-
jyā (R sin θc). This is calculated separately and from that the arc θc, the
cara, corresponding to time interval between six-o′ clock circle and sunset,
is determined. The sum of θu and θc, or the difference between them2 gives
the time to elapse before sunset from the given instant, in angular measure.

11.12 Noon-time shadow

The distance between the celestial equator and the zenith on the north-south
circle is the latitude φ. The declination δ is the distance between the planet
and the celestial equator. The meridian zenith distance is z.

2When the Sun’s declination is north the cara has to be added and when it is south it
has to be subtracted.
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Figure 11.10: Relation between φ, δ and z Sun at noon.

In Figure 11.10, when the Sun is at A or B or C at noon,

z = δ − φ, φ− δ or φ+ δ, (11.52)

and correspondingly,

δ = z + φ, φ− z or z − φ,

φ = δ − z, z + δ or z − δ. (11.53)

When any two of the three quantities z at noon, δ and φ are known, the
other can be found.

11.13 Chāyā-bhujā, Arkāgrā and Śaṅkvagrā

Chāyā-bhujā (sine-shadow) is the distance between the planet and the prime
vertical (sama-man. d. ala). This is represented by FR in Figure 11.11. If a is
the angle between ZS and the prime vertical (i.e., azimuth (PẐS) − 90◦),
then

Chāyā-bhujā = FR

= OF sin a

= R sin z sin a, (11.54)
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where z is the zenith distance of S. Chāyā-kot.i is the distance between S
and the prime meridian (north-south circle) and is given by

Chāyā-kot.i = R sin z cos a. (11.55)
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Figure 11.11: Relation between chāyā-bhujā, arkāgrā and śaṅkvagrā.

The distance of the rising or setting point of the Sun from the east-west
line is the arkāgrā. In Figure 11.11, the Sun sets at St and StG is the
perpendicular from St to EW line and

Arkāgrā = StG. (11.56)

SF is the gnomon which is perpendicular to the horizon. SrSt is the line
connecting the rising and setting points of the Sun on the diurnal circle.
This is clearly parallel to the EW line.

The distance of the foot of the gnomon, F , from the line SrSt, is śaṅkvagrā.
That is,

Śaṅkvagrā = ShF. (11.57)

The foot of the gnomon has shifted from Sr to F during the diurnal motion.
Hence the name śaṅkvagrā.



732 11. Gnomonic Shadow

11.14 Some allied correlations

Consider Figure 11.11. Draw a perpendicular GD from G to the plane of the
diurnal circle. It can be easily seen that StD is the sine on the diurnal circle
intercepted between the horizon and the unman. d. ala. This is the ks.iti-jyā
(R tan φ sin δ) which is the product of cara-jyā and cos δ. Also,

GD = OC = R sin δ. (11.58)

Consider the planar triangle StGD. This is a right angled triangle where
the angle GŜtD is the inclination between the diurnal circle and the horizon
which is 90◦ − φ, and the hypotenuse is the arkāgrā = StG. Therefore,

GD

StG
=

GD

Arkāgrā
= sin(90 − φ) = cosφ. (11.59)

Using (11.58) in the above equation, we have

Arkāgrā =
R sin δ

cosφ
. (11.60)

Further, the triangle SShF is also a latitudinal triangle with the śaṅkvagrā
ShF as the bhujā, the gnomon SF as the kot.i and the unnata-jyā SSh as the
hypotenuse. The angle SŜhF is of course the co-latitude (90◦ − φ). Hence,

Śaṅkvagrā

Śaṅku
=

ShF

SF = R cos z
=

cos(90 − φ)

sin(90 − φ)
. (11.61)

Therefore,

Śaṅkvagrā = R cos z
sinφ

cosφ
. (11.62)

Now, both the śaṅkvagrā ShF and the arkāgrā StG are north-south lines.
Also, the distance of F from the east-west line is the chāyā-bhujā given by

Chāyā-bhujā = FR

= OF sin a

= R sin z sin a. (11.63)

Now,

ShF = ShR+RF

= StG+RF,
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or

Śaṅkvagrā = Arkāgrā + Chāyā-bhujā. (11.64)

This translates into

R cos z
sinφ

cosφ
= R sin z sin a+R

sin δ

cosφ
,

or

sin δ = cos z sinφ− sin z cosφ sin a. (11.65)

Note: The above relation is what would result when we apply the cosine
formula to the side PS (= 90◦ − δ) in the spherical triangle PZS, where
PZ = 90 − φ, ZS = z and the spherical angle PẐS = A = 90◦ + a.

When the declination is south, it is easily seen that

Chāyā-bhujā = Śaṅkvagrā + Arkāgrā. (11.66)

However, chāyā-bhujā (= R sin z sin a) is also the distance between the planet
on the dr. ṅman. d. ala and the sama-man. d. ala (prime vertical) as was noted
earlier in (11.54). When this is considered as bhujā, and chāyā (R sin z) as
the hypotenuse, the corresponding kot.i is chāyā-kot.i = R sin z cos a, which is
same as in (11.55).

Now, the chāyā-kot.i is the sine of the hour angle (nata-prān. a) on the diurnal
circle (whose radius is R cos δ), or

R sinH =
R sin z cos a

cos δ
, (11.67)

where H = ZP̂S is the ‘nata-prān. a’ in degrees. This can be seen as follows.
Let the diurnal circle intersect the north-south circle at M . The north-south
circle is inclined to PS and ZS by H and 90◦ − a, respectively. Then,

R sinSM = R sinH sin(PS) = R sin(ZS) sin(90 − a), (11.68)

which leads to (11.67), as PS = 90 − δ and ZS = z.
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Agrāṅgula is defined to be

Agrāṅgula = Chāyā-karn. a × Arkāgrā

Trijyā

= K
sin δ

cosφ

=
12 sin δ

cos z cosφ
, (11.69)

as dvādaśāṅgula-śaṅku = 12 = K cos z. Also, since

Śaṅkvargrā = R cos z
sinφ

cosφ
,

Dvādaśāṅgula-śaṅkvagrā = 12
sin φ

cos φ
,

which is the vis.uvacchāyā (equinoctial shadow) in aṅgula-s. We had

Śaṅkvagrā − Arkāgrā = Chāyā-bhujā, (11.70)

or,
R cos z sinφ

cosφ
− R sin δ

cosφ
= R sin z sin a. (11.71)

Multiplying by 12 and dividing by R cos z, we have

12 sin φ

cosφ
− 12 sin δ

cos z cosφ
=

12 sin z

cos z
sin a. (11.72)

Now chāyā in aṅgula-s is

L = K sin z =
12 sin z

cos z
, (11.73)

and chāyā-bhujā in aṅgula-s is (see Figure 11.2(b) on page 716)

Y Q = L sin a =
12 sin z

cos z
sin a, (11.74)

is the difference between śaṅkvagrā and arkāgrā in aṅgula-s. If the declina-
tion is south, we have to add these two. In both the cases, the direction of
the chāyā-bhujā will be clearly opposite to that of bhujā of mahācchāyā (see
Figure 11.11).
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11.15 Determination of the directions

Here is described a method to find the east-west and the north-south di-
rections from the chāyā (OY), chāyā-bhujā and chāyā-kot.i. In Figure 11.12,
OX is the śaṅku whose length is taken to be 12 units (dvādaśāṅgula). Now,

Dvādaśāṅgulacchāyā = OY =
12 sin z

cos z

=
12 ×Mahācchāyā

Mahā-śanku
. (11.75)
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Figure 11.12: Determination of the directions from the chāyā, chāyā-bhujā
and chāyā-kot.i.

The bhujā of the above, or the chāyā-bhujā in an. gula-s is given by

Chāyā-bhujā =
12 sin z

cos z
sin a,

which is obtained from śaṅkvagrā, and arkāgrā (in an. gula-s) is found from
(11.72). The chāyā-kot.i in an. gula-s is found from the above two.

Now, draw a circle with the radius equal to chāyā in aṅgula-s with the
gnomon at the centre. Let the tip of the shadow be at Y at some instant.
Place two rods equal to twice the chāyā-bhujā (Y Q′ = 2 Y Q) and twice the
chāyā-kot.i (Y R′ = 2 Y R) at Y such that their other ends touch the circle.
Then Y Q′ is the north-south direction and Y R′ is the east-west direction.
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11.16 Sama-śaṅku: Great gnomon at the prime
vertical

In Figure 11.13, sama-man. d. ala is the prime vertical passing through E,Z
and W . Celestial equator is the great circle passing through E, W and a
point U on the north-south circle, such that ZU is the latitude of the place
(φ). When the declination of the Sun is zero, the celestial equator is the
diurnal circle. When the declination is northerly and less than the latitude,
corresponding to D1 in the figure, the rising and setting will be to the north
of E and W respectively and the midday will be to the south of the zenith.
Then, the diurnal circle cuts the sama-man. d. ala at two points, once before
the noon and once after. The mahā-śaṅku at the time corresponding to the
Sun at S (and S′ not shown in the figure) on D1 in Figure 11.13 is termed
the ‘sama-śaṅku’.

D1

S

P

Z

D3

D2

D4

U

(prime vertical)

φ

SE δ

Sama−mandala

Celestial Equator

Horizon
N

W

F

Figure 11.13: The sama-śaṅku.

When the declination δ = φ, the diurnal circle (D2) touches the sama-
man. d. ala at Z and there is no midday shadow, and the sama-śaṅku is equal to
trijyā R (as zenith distance z = 0). The sama-śaṅku does not occur during
the days when the declination is northerly and greater than the latitude
(diurnal circle D3 in the figure), and also when the declination is southerly
(as in D4 in the figure).
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The angle between the sama-man. d. ala and the ghat.ikā-mand. ala is equal to
the latitude of the place (ZŴU = φ). The sama-śaṅku (R cosZS), when
the northerly declination δ is less than the latitude, is given by the relation

R sin δ =
R sinφ R cos zs

R
, (11.76)

or,

R cos zs =
R R sin δ

R sinφ
. (11.77)

(Here zs = ZS on the sama-man. d. ala, when the Sun is at S in Figure
11.13). This is obvious from the spherical triangle WSF , where WS =
90◦ − zs, SWF = φ, SF = δ and SFW = 90◦. Alternately, the northerly
declination δ and the longitude λ can be obtained from the sama-śaṅku.

11.17 Samacchāyā

Samacchāyā is the shadow (chāyā) when the Sun is on the sama-man. d. ala.
The hypotenuse of the samacchāyā of the 12-inch śaṅku is

12R

R cos zs
=

12.R.R sinφ

R.R sin δ
= 12

R sinφ

R sin δ
, (11.78)

where we have used (11.77). Now,

Equinoctial Shadow =
12R sinφ

R cosφ
, (11.79)

or,

12.R sinφ = Equinoctial Shadow ×R cosφ. (11.80)

So, the samacchāyā-karn. a is also given by

Equinoctial Shadow ×R cosφ

R sin δ
. (11.81)

The samacchāyā occurs when δ is north and noon-shadow is less than the
equinoctial shadow (δ < φ). Therefore, the difference between the equinoc-
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Figure 11.14: The noon shadow.

tial shadow and the noon shadow is given by

OYE −OY =
12 sin φ

cosφ
− 12 sin(φ− δ)

cos(φ− δ)

=
12[sin φ cos(φ− δ) − cosφ sin(φ− δ)]

cosφ cos(φ− δ)

=
12 sin δ

cosφ cos(φ− δ)
. (11.82)

From the previous expression for agrāṅgula (11.69), we get

Madhyāhna-agrāṅgula =
12 sin δ

cos z cosφ
=

12 sin δ

cosφ cos(φ− δ)
, (11.83)

as z = φ− δ at noon. Hence,

Madhyāhna-agrāṅgula = Equinoctial shadow − Noon shadow.

On the day when the Sun passes through the zenith at noon (δ = φ),

Madhyāhna-agrāṅgula =
12 sin φ

cosφ
= Equinoctial shadow. (11.84)

On this day,

Madhyacchāyā-karn. a = Samacchāyā-karn. a = 12. (11.85)
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This is because karn. a = OX = 12, as the rays are travelling from the zenith,
vertically down and there is no shadow.

When δ is very small, madhyāhna-agrāṅgula is very small, madhyacchāyā-
karn. a is 12

cos(φ−δ) and samacchāyā -karn. a which is 12 sinφ
sin δ

is very large. Now,

12 sin φ

cosφ
× 12

cos(φ− δ)

12 sin φ

cosφ
− 12 sin(φ− δ)

cos(φ− δ)

=
12 sin φ

sin δ
,

or,

Samacchāyā-karn. a =
Vis.uvacchāyā × Madhyacchāyā-karn. a

Madhyāhna-agrāṅgula
. (11.86)

11.18 The Sama-śaṅku-related triangles
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Figure 11.15: The latitudinal triangle formed by sama-śaṅku.

Let the Sun be on the sama-man. d. ala at Ss on a day when the declination
is δ (see Figure 11.15). SsF is drawn perpendicular to the horizon. F is on
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the east-west line, as the Sun is on the prime vertical. The sama-śaṅku will
be

SsF =
R sin δ

sinφ
.

From Ss draw SsSh perpendicular to the line StSr passing through the ris-
ing and setting points and is parallel to the east-west line. ShF is also
perpendicular to the east-west line and is equal to

Arkāgrā =
R sin δ

cosφ
.

SsF (sama-śaṅku), ShF (arkāgrā) and SsSh (portion of the diurnal circle
between the horizon and the sama-man. d. ala) form a right angled triangle
with one angle being ShŜsF = φ, the latitude. Hence, it is a latitudinal
triangle.

If the Sun is at Su on the unman. d. ala (six-o′clock circle), CSu is parallel to
the east-west line, where C is the centre of the diurnal circle. Let SsSh,
which is also in the plane of the diurnal circle, cut this line at Sd. SdF is
perpendicular to CSu and is equal to R sin δ. SdF is parallel to CO and
perpendicular to the plane of the diurnal circle and hence perpendicular to
SsSd and SsSh. In the triangle ShSdF , ShŜdF = 90◦. Further,

SdF = R sin δ

and ShF = arkāgrā =
R sin δ

cosφ
, (11.87)

is the hypotenuse. Here the angle at F is the latitude, and ShSdF is a
latitudinal triangle. SdSsF is also a latitudinal triangle with SsŜdF = 90◦.
As before,

SdF = R sin δ

and SsF = Sama-śaṅku =
R sin δ

sinφ
, (11.88)

is the hypotenuse. In this case, the angle at Ss is the latitude.

These three triangles are shown in Figure 11.16. The fourth triangle shown
is the standard latitudinal triangle with the sides R, R sinφ and R cosφ.
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Figure 11.16: The different latitudinal triangles.

11.19 The ten problems

In Figure 11.17a, two circles with a common radius R and a common centre,
O intersect at points X and X ′. Let i be the angle of inclination between
the two circles. It may be noted that the maximum separation between the
two circles “given by CD = R i” occurs when CX = DX = 90◦.

 C

D

R

X
i

i

χR

A

B

Rρ

X’

O

Figure 11.17a: Measure of the arc connecting two intersecting circles.

Consider a point A on one of the circles such that arc XA = Rρ. Draw a
great circle arc AB = Rχ such that it is perpendicular to the second circle
XDX ′ at B. Then R sinχ is the perpendicular distance between A and the
second circle and is given by

R sinχ = R sin i sin ρ. (11.89)

This can be found if the arc Rρ is given; conversely, the arc Rρ can be found
when the perpendicular distance R sinχ is known. This is the ‘trairāśika’
that is being referred to and was discussed in detail in chapter 9. The
applications of this follow.
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Figure 11.17b: Representation of the five quantities discussed in the “ten
problems”.

Now, there are five quantities: (i) śaṅku (gnomon) R cos z, (ii) nata-jyā
(Rsine hour angle) R sinH, (iii) apakrama (declination) R sin δ, (iv)āśāgrā
(amplitude) R sin a, where a = 90◦ ∼ A, A being the azimuth, and (v)
aks.ajyā (Rsine latitude) R sinφ. When three of them are known, the other
two are to be determined. This can happen in ten different ways, and so the
section is titled ‘The ten problems’. The angles/arcs corresponding to these
five quantities are depicted in Figure 11.17b.

11.20 Problem One : To derive Śaṅku and Nata

11.20.1 Shadow and gnomon at a desired place

We now discuss the method to derive the śaṅku and the nata-jyā, when the
declination, āśāgrā and latitude are known.

In Figure 11.18 X is the planet. The great circle through Z and X is the
is. t.a-digvr. tta, cutting the horizon at A. If WA = a is the arc between the
west point and A, the aśāgrā is R sin a. Let B be between N and W , at
90◦ from A. Then the great circle through Z and B is the vipar̄ıta-digvr. tta.
Consider the great circle through B and the north celestial pole P . This
is the tiryag-vr. tta which is perpendicular to both the is. t.a-digvr. tta and the
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Figure 11.18: The important circles and their secondaries considered in the
“ten problems”.

celestial equator. This is so because this circle passes through the poles of
both the digvr. tta and the celestial equator (B and P respectively). Let the
tiryag-vr. tta intersect the is. t.a-digvr. tta and the celestial equator at C and D
respectively. Let the arc BP = x. Then, as B is the pole of the is. t.a-digvr. tta,
BC = 90◦ or PC = 90◦−x. As PD = 90◦, CD = x. This is indeed the angle
between the digvr. tta and the celestial equator at Y (XŶ U). The distance
between P on the meridian and the vipar̄ıta-digvr. tta ZB is given by

R sinPF = R sin a cosφ, (11.90)

as PZ = 90◦ −φ, and PẐB, the inclination of the vipar̄ıta-digvr. tta with the
meridian is a.
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Let the angle between the tiryag-vr. tta and the horizon be i. Then the angle
between the tiryag-vr. tta and the vipar̄ıta-digvr. tta is 90◦ − i. It follows that
R sinPF is also given by

R sinPF = R sinx cos i. (11.91)

Equating the above two expressions,

R sinx cos i = R sin a cosφ. (11.92)

Now PN = φ is the perpendicular arc from P on the tiryag-vr. tta, on the
horizon, which is inclined to it at angle i. Therefore,

R sinx sin i = R sinφ. (11.93)

From (11.92) and (11.93), we get

R sinx =

√
R2 sin2 a cos2 φ+R2 sin2 φ, (11.94)

which is what has been stated. This is the maximum separation between
the is. t.a-digvr. tta and the celestial equator, as the angle betweeen them is
x. Now the arc BC on the tiryag-vr. tta and the arc BC ′ on the horizon
are both 90◦. Hence arc CC ′ = i, the angle between the two vr. tta-s. Then
CZ = 90◦ − i, and as C is at 90◦ from Y , the intersection between the
celestial equator and the is. t.a-digvr. tta, ZY = i. Hence, the ascent of the
tiryag-vr. tta from the horizon on the digvr. tta = i, is the same as the descent
of the ghat.ika-vr. tta from the zenith on the digvr. tta. Let the arc XY = ρ.
XG is the perpendicular arc from X on the digvr. tta on the celestial equator.

R sin(XG) = R sin δ = R sin(XY ) sinx

= R sin ρ sinx. (11.95)

Now the perpendicular arc from Z on the digvr. tta on the celestial equator
= ZU = φ. Therefore,

R sinZU = R sinφ = R sin(ZY ) sinx

= R sin i sin x. (11.96)

R sin ρ and R sin i are called the sthān̄ıya-s or the ‘representatives’ of the
apakrama and aks.ajyā on the digvr. tta. Now the zenith distance3

z = ZX = ZY −XY

= i− ρ. (11.97)

3If the declination is southern, z = i + ρ.
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Therefore,

R sin z = R sin(i− ρ) = R sin i cos ρ−R cos i sin ρ

=
(R sinφ cos ρ−R sin δ cos i).R

R sinx
(11.98)

Consider the kot.i-s of the R sinφ and R sin δ on a circle of radius R sinx
(which are denoted as kot.i

′):

kot.i
′(φ) =

√
R2 sin2 x−R2 sin2 φ

=
√
R2 sin2 x−R2 sin2 i sin2 x

= R cos i sin x. (11.99)

Similarly,

kot.i
′(δ) =

√
R2 sin2 x−R2 sin2 δ

=

√
R2 sin2 x−R2 sin2 ρ sin2 x

= R cos ρ sinx. (11.100)

Hence, we have

R sin z =
(R sinφ kot.i

′(δ) −R sin δ kot.i
′(φ))R

R2 sin2 x
. (11.101)

This is the shadow R sin z at the desired place which is expressed in terms
of the declination δ, latitude φ and the āśāgrā, as x is given in terms of φ
and a by

R sinx =

√
R2 sin2 a cos2 φ+R2 sin2 φ. (11.102)

The gnomon R cos z is given by

R cos z = R cos(i− ρ)

= R(cos i cosα+ sin i sin ρ)

=
(kot.i

′(φ)kot.i
′(δ) +R sinφ R sin δ)R

R2sin2x
. (11.103)

When the declination δ is south and δ > 90◦ − φ, the diurnal circle is below
the horizon and there is no gnomon. When the northern declination is
greater than the latitude, the midday would be to the north of the zenith
and there will be gnomon in the southern direction. However, in this case,
gnomon will occur only when āśāgrā is north i.e., A is north of W.

The different possible cases (for northerly declinations) are depicted in Fig-
ures 11.19(a)–(c).
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Figure 11.19: The different possible cases of northerly declinations.

(a) In this case, the sum of the representatives of the co-latitude, Y A,
and the declination XY , is greater than trijyā. Even then, there is
a gnomon R cos(ZX).

(b) On a given day, consider the verticals through X and X ′ correspond-
ing to southern and northern āśāgrā-s. Then XA = XY + Y A =
sum of representatives of co-latitude and declination that figure in the
expression for the gnomon at X, and X ′A′ = X ′Y ′ − Y ′A′ = differ-
ence of representatives of co-latitude and declination that figure in the
expression for the gnomon at X ′.

(c) Corresponding to some āśāgrā the declination δ will be greater than
x. In such a case, there is no gnomon. This corresponds to a point
X ′′ with x < δ, which cannot lie on the declination circle. For points
on the declination circle with δ > φ, āśāgrā a should be such that
R sinx ≥ R sin δ.
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11.20.2 Kon. a-śaṅku (Corner Shadow)

The term kon. a means corner. In this context, it refers to the corner between
any two cardinal directions, such as north-east, south-west etc. Technically,
kon. a-śaṅku or the corner shadow occurs when the āśāgrā = 45◦. In this case,
from (11.101) and (11.102) we have

R sinx =

√
1

2
R2 cos2 φ+R2 sin2 φ (11.104)

R sin z sinx =
R sinφR cos′ δ −R sin δ R cos′ φ

R sinx
. (11.105)

In the RHS of the above equation, R sinx is given by (11.104), and

R cos′ δ ≡ kot.i
′δ =

√
R2 sin2 x−R2 sin2 δ,

R cos′ φ ≡ kot.i
′φ =

√
R2 sin2 x−R2 sin2 φ. (11.106)

Similarly,

R cos z sinx =
(R cos′ φ R cos′ δ +R sinφ R sin δ)

R sinx
. (11.107)

Now in the case of kon. a-śaṅku, we have

sin2 x =
1

2
cos2 φ+ sin2 φ.

Comparing the above result with (11.106), we have

(cos′ φ)2 =
1

2
cos2 φ.

Using this and (11.106), we get

1

2
cos2 φ−

1
2 cos2 φ sin2 δ

sin2 x
=

1
2 cos2 φ (sin2 x− sin2 δ)

sin2 x

=
1
2 cos2 φ (cos′ δ)2

sin2 x

=
(cos′ φ)2(cos′ δ)2

sin2 x
. (11.108)

Therefore,

R2(cos′ φ)2 R2(cos′ δ)2

(R sinx)2
=

1

2
R2 cos2 φ−

1
2R

2 cos2 φ R2 sin2 δ

R2 sin2 x
. (11.109)
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‘One part’ of the kon. a-śaṅku, viz.,

R cos′ φ R cos′ δ

R sin2 x
, (11.110a)

is got this way and the other part is

R sinφ R sin δ

R sin2 x
. (11.110b)

Now R sin δ can be written as

R sin δ

cosφ
cosφ =

Arkāgrā × Lambaka

R
, (11.111)

and the second part can be expressed in terms of arkāgrā.

It may be noted that in the denominator of (11.109) and (11.110) we have
R sinx. From (11.104), we get

sinx =

√
1

2
cos2 φ+ sin2 φ. (11.112)

Also,

L

12
=

sinφ

cosφ

or sinφ =
L

K
, cosφ =

12

K
, (11.113)

where L is the equinoctial shadow and K =
√
L2 + 122 = karn. a. Using

(11.113) in (11.112), we have

sinx =

(√
1
2122 + L2

)

K
. (11.114)

Thus, instead of sinφ and cosφ, the equinoctial shadow L and the 12 inch
gnomon can be used in the various expressions.

11.20.3 Derivation of Nata-jyā

In Figure 11.20, X is the planet whose declination is δ. Let H be the hour
angle. Since PX = 90 − δ, the distance between X and the north-south



11.21 Problem two: Śaṅku and Apakrama 749

Z

P

H

90+a

a

z

X90 − δ

C
el

. E
qu

at
or

HorizonN S

E

Drn−mandala
Ista−digvrtta or 

Figure 11.20: The is. t.a-digvr. tta passing through a planet.

circle will be

= R sinH sin(90 − δ)

= R sinH cos δ. (11.115)

But the maximum angle between the north-south circle and is. t.a-digvr. tta on
which X is situated at a distance z from the zenith is 90+ a. Therefore the
distance between X and north-south circle is also

= R sin z sin(90 + a)

= R sin z cos a = chāyā-koti. (11.116)

Equating the two expressions, we get

R sinH cos δ = R sin z cos a = chāyā-koti.

Therefore, the nata-jyā is given by

R sinH =
chāyā-kot.i

cos δ
=

chāyā-kot.i × trijyā

dyujyā
. (11.117)

11.21 Problem two: Śaṅku and Apakrama

Here, the śaṅku and krānti (apakrama) are to be derived in terms of the
nata-jyā, āśāgrā and aks.a.
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Figure 11.21: Some important great circles and their secondaries.

11.21.1 Derivation of Śaṅku

In Figure 11.21, nata-vr. tta is the great circle passing through P and X (Sun)
which intersects the horizon at C. Now, draw the nata-samaman. d. ala which
is a vertical through Z and C. D is a point on the horizon at 90◦ from
C. Nata-dr. kks.epa-vr. tta or svadeśa-nata is the vertical through D and is. t.a-
digvr. tta is the vertical through X intersecting the horizon at A. B is a point
90◦ fromA and the vertical throughB is the ‘vyasta’ or vipar̄ıta or vidig-vr. tta.
The point of intersection of ghat.ikā-man. d. ala and the nata-dr. kks.epa-vr. tta is
denoted by G.

Consider the great circle (tiryag-vr. tta) through B and G. We show that BG
is perpendicular to both the nata-vr. tta and digvr. tta. The tiryag-vr. tta and the
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is. t.a-digvr. tta intersect at F . Y is the point of intersection of nata-dr. kks.epa-
vr. tta and nata-vr. tta. Let ZY = α. R sinZY = R sinα is the svadeśa-nata-
jyā. Y D = 90◦ − α, R sin(Y D) = R cosα is the svadeśa-nata-kot. i. Since
B is at 90◦ from Z and A, it is the pole of the is. t.a-digvr. tta. Therefore
BF = BX = 90◦. Similarly, C is the pole of the nata-dr. kks.epa-vr. tta, since
CD = CZ = 90◦. Therefore G is at 90◦ from C. G being on the celestial
equator is at 90◦ from P . Therefore G is the pole of nata-vr. tta. Hence
BG passes through the poles of nata-vr. tta and digvr. tta. Thus, BG is the
perpendicular to both the nata-vr. tta and is. t.a-digvr. tta.

Now X is the pole of tiryag-vr. tta, as it is at 90◦ from B and G.4 Therefore
XF = 90◦. But XA = 90◦ − z. Hence, AF = z, where z is the maximum
separation between the horizon and the tiryag-vr. tta (as BA = BF = 90◦).
Therefore, z = DB̂G. The tiryag-vr. tta meets the is. t.a-digvr. tta also at F ′.
Then,

180◦ = FF ′ = ZF ′ + ZF

= ZF ′ + ZA+AF

= ZF ′ + 90 + z.

Therefore, ZF ′ = 90−z or F ′F ′′ = z. This is the elevation of the tiryag-vr. tta
from the horizon on the is. t.a-digvr. tta. As this maximum separation occurs
at 90◦, BF ′ = 90◦. It is clear from the figure that the angle between the
tiryag-vr. tta and the vidig-vr. tta is 90◦ − z.

Now C is the pole of ZD. Therefore CY = 90◦, and the angle at Y is 90◦.
Since the angle between ZP and Y P is H and ZP = 90◦ − φ, the sine of
the zenith distance of the point Y , denoted by α, is

sinα = sin(90 − φ) sinH

= cosφ sinH. (11.118)

Therefore,

cosα =

√
1 − cos2 φ sin2H. (11.119)

Let CS = β be the distance between north-south circle and nata-vr. tta at
the horizon. It is easy to see that NC ′ = ED = β, where C ′ is the point on
the horizon diametrically opposite to C.

4The point X is at 90◦ from G, since G is the pole of nata-vr. tta.
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Note:

(i) C being the pole of ZDG, DY = 90◦−α is the angle between nata-vr. tta
and the horizon. Therefore

sinφ = sinPN = sin(90 − α) sin(PC).

Hence,

sinPC =
sinφ

cosα
. (11.120)

(ii) Now H is the angle between the north-south circle and the nata-vr. tta.
Therefore,

sinβ = sin(SC) = sinH sinPC.

Using (11.120) in the above equation, we get

sin β =
sinH sinφ

cosα
(11.121)

=
sinφ sinH√

1 − cos2 φ sin2H
, (11.122)

using (11.119). This result would be used later.

Again, in Figure 11.21, AE = a is is. t.āgrā. The angle between the nata-
sama-vr. tta and digvr. tta on the horizon is given by CA = γ. It may be noted
that this is also equal to the angle between nata-dr. kks.epa-vr. tta and vyasta-
dr. kks.epa-vr. tta. Since B is the pole of the the digvr. tta, clearly γ = 90◦−β−a.
Therefore,

sin γ = sin(90◦ − β − a)

= cos(β + a)

= (cos β cos a− sin β sin a). (11.123)

When āśāgrā a is to the north of east, γ = 90◦−β+a and sin γ = cos β cos a+
sin β sin a. Thus sin γ is determined in terms of known quantities, since sin a
is given and sinβ is known from (11.122).

Now, let GB = x and GL be the perpendicular arc from G to vidig-vr. tta.
Then sinDG, which is the same as sinZY , is given by

sinα = sin z sinx. (11.124)
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Also
sinGL = sinx cos z, (11.125)

as z and 90 − z are the angles between tiryag-vr. ttaand horizon, and tiryag-
vr. tta and vidig-vr. tta, respectively. But the angle between ZG and ZL is
γ and ZG = 90◦ + α. (For, GY = 90◦, G being the pole of nata-vr. tta).
Therefore,

sinGL = sin(90 + α) sin γ

= sin γ cosα. (11.126)

Equating the two expressions for sinGL, we get

sinx cos z = sin γ cosα. (11.127)

We had
sinx sin z = sinα. (11.128)

From (11.127) and (11.128), we get

sinx =

√
sin2 α+ sin2 γ cos2 α. (11.129)

Using the above in (11.127) and (11.128), we have

cos z =
sin γ cosα√

sin2 α+ sin2 γ cos2 α
, (11.130)

and sin z =
sinα

sinx
. (11.131)

Now

sin β =
sinφ sinH

cosα
. (11.132)

Therefore,

cos β =

√
1 − sin2 β

=

√
1 − sin2 φ sin2H

cos2 α

=

√
cos2 α− sin2 φ sin2H

cosα

=

√
1 − cos2 φ sin2H − sin2 φ sin2H

cosα

=
cosH

cosα
. (11.133)
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Hence from (11.123), (11.132) and (11.133), we have

sin γ cosα = (cos β cos a− sinβ sin a) cosα

= cosH cos a− sinφ sinH sin a. (11.134)

We have already shown that

sinα = cosφ sinH. (11.135)

Substituting these in (11.130), we obtain the following expression for śaṅku
in terms of natajyā, āśāgrā and aks.a:

R cos z =
(R cosH cos a−R sinφ sinH sin a)R√

R2 cos2 φ sin2H + (R cosH cos a−R sinφ sinH sin a)2
.

(11.136)
Similarly substituting in (11.131), we have

R sin z =
(R cosφ sinH)R√

R2 cos2 φ sin2H + (R cosH cos a−R sinφ sinH sin a)2
.

(11.137)
These are the gnomon and the shadow respectively.

11.21.2 Derivation of Apakrama

Now X is at the intersection of the nata-vr. tta and digvr. tta which make angles
H and 90◦ − a, respectively, with the north-south circle. PX = 90◦ − δ and
ZX = z. Equating the two expressions for the distance between X and the
north-south circle, we get

R cos δ sinH = R sin z cos a. (11.138)

Hence,

R cos δ =
R sin z R cos a

R sinH
, (11.139)

or

Dyujyā =
chāyā × āśāgrā-kot.i

natajyā
,

from which the apakrama can be obtained as

R sin δ =
√
R2 −R2 cos2 δ. (11.140)
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11.22 Problem three: Śaṅku and Āśāgrā

Now the problem is to find R sin z and R sin a given R sinH, R sin δ and
R sinφ.

11.22.1 Derivation of Śaṅku

Consider the product of dyujyā and the kot.i of the hour angle divided by
trijyā, that is, R cos δ cosH. To this, we add or subtract ks.itijyā (Rsine of
the ascensional difference on the diurnal circle) given by

R sinφ sin δ

cosφ
,

depending upon whether the declination is positive or negative. Multiply by
R cos φ

R
. This is the śaṅku. In other words, we have

R cos z = cosφ

(
R cos δ cosH +

R sinφ sin δ

cosφ

)
. (11.141)

This expression for mahā-śaṅku has already been proved in section 11.5,
after deriving the expression for unnata-jyā. In the modern notation, this
will be

cos z = sinφ sin δ + cosφ cos δ cosH.

11.22.2 Derivation of Āśāgrā

The shadow R sin z can be found from the śaṅku, R cos z. In the previous
section, we had derived the relation

R sinH cos δ = R sin z cos a,

or

R cos a =
(R sinH)(R cos δ)

R sin z
. (11.142)

This is the āśāgrā-kot. i. From this, we find the āśāgrā, R sin a.
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11.23 Problem four: Śaṅku and Aks.a

Given nata (R sinH), krānti (R sin δ) and āśāgrā (R sin a), to derive the
śaṅku (R cos z) and aks.a (R sinφ):

N S
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Sama−mandala
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= sin z cos a

Figure 11.22: The ‘kot.i circle’ passing through the planet.

11.23.1 Derivation of Śaṅku

We have already shown that

R sin z =
R sinH. R cos δ

R cos a
.

From this, we have the śaṅku

R cos z =
√
R2 −R2 sin2 z, (11.143)

and the chāyā-kot.i

R sin z cos a =
(R sinH. R cos δ)

R
. (11.144)
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11.23.2 Derivation of the Aks.a

Consider Figure 11.22. The distance of the planet X from the north-south
circle is

R sin η = chāyā-kot.i = R sin z cos a. (11.145)

Now, draw a small circle through X parallel to the north-south circle. This
will bear the same relation to the north-south circle, as the diurnal circle
does to the equator. Here, R sin η = R sin z cos a, is the equivalent of the
krānti = R sin δ. The radius of this circle called ‘kot.i circle’ is equivalent to
dyujyā, R cos δ. The arc WX = χ = kot.i = 90 − η and the radius of the
‘kot.i circle’ is equal to

R sinχ = R sin (90 − η) =
√
R2 −R2 sin2 z cos2 a. (11.146)

This is the chāyā-kot.i-kot.i. If we conceive of a right-angled triangle with the
radius of the kot.i circle as the hypotenuse, and chāyā-bhujā R sin z sin a as
the bhujā, kot.i of this on the kot.i circle is the śaṅku, because,

√
R2 −R2 sin2 z cos2 a−R2 sin2 z sin2 a = R cos z. (11.147)

Similarly, if the apakrama R sin δ is the bhujā, then the kot.i of this (apakrama-
kot.i) on this circle is R cos δ cosH, since,

√
R2 −R2 sin2 z cos2 a−R2 sin2 δ =

√
R2 −R2 sin2H cos2 δ −R2 sin2 δ

= R cos δ cosH, (11.148)

where we have used R sin z cos a = R sinH cos δ.

It may be noted that R cos δ cosH is the distance between the planet X and
the unman. d. ala PW . It can also be visualized as Rsine of 90◦ − H on the
diurnal circle (whose radius is R cos δ).

The aks.a, R sinφ, is then obtained from the relation

R sinφ =
apakrama × śaṅku + chāyā-bhujā × apakrama-kot. i

(chāyā-kot.i-kot.i)
2

× (trijyā)

=
R sin δ. R cos z +R sin z sin a. R cos δ cosH

(R2 −R2 sin2 z cos2 a)
×R. (11.149)

This can be understood as follows. The latitude φ is the angle between the
sama-man. d. ala and the ghat.ikā-man. d. ala and is the sum of two angles α and
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β, where α is the angle between XW and ghat.ikā-man. d. ala, and β is the
angle between XW and sama-man. d. ala, as shown in Figure 11.22.

Now,
R sinχ sinα = R sin δ,

or

R sinα =
R sin δ

sinχ
. (11.150)

Hence,

R cosα =
√
R2 −R2 sin2 α

=

√
R2 sin2 χ−R2 sin2 δ

sinχ

=

√
R2 −R2 sin2 z cos2 a−R2 sin2 δ

sinχ

=
R cos δ cosH

sinχ
, (11.151)

where we have used (11.148). The distance of the planet X from sama-
man. d. ala is

R sin z sin a = R sinχ sin β.

Therefore,

R sin β =
R sin z sin a

sinχ
. (11.152)

Hence,

R cos β =

√
R2 −R2 sin2 β

=

√
R2 sin2 χ−R2 sin2 z sin2 a

sinχ

=

√
R2 −R2 sin2 z cos2 a−R2 sin2 z sin2 a

sinχ

=
R cos z

sinχ
. (11.153)

Now,

R sinφ = R sin(α+ β)

=
R sinα. R cos β +R cosα. R sin β

R
. (11.154)



11.24 Problem five: Nata and Krānti 759

Using (11.150) – (11.153) in the above, we get

R sinφ =
R sin δ R cos z +R sin z sin a. R cos δ cosH

R sin2 χ

=
(R sin δ R cos z +R sin z sin a. R cos δ cosH)R

(R2 −R2 sin2 z cos2 a)
, (11.155)

which is the desired expression for the aks.a as given in (11.149). This is
true when declination δ and āśāgrā a are in opposite directions from X.
But, when they are in the same direction (when X is to the north of sama-
man. d. ala), the second term in the numerator of (11.155) is negative. However,
when the planet is between the unman. d. ala and the horizon (H > 90◦, a is
to the north of sama-man. d. ala), it is positive. Note that the aks.a on the kot.i
circle is

R sin δ. R cos z +R sin z sin a. R cos δ cosH√
R2 −R2 sin2 z cos2 a

.

Note: The modern way of deriving the expression for sinφ would be to start
from

cos z = sinφ sin δ + cosφ cos δ cosH, (11.156)

or, √
1 − sin2 φ cos δ cosH = cos z − sinφ sin δ.

Squaring, we get

(1 − sin2 φ) cos2 δ cos2H = cos2 z + sin2 φ sin2 δ − 2 cos z sinφ sin δ,

or,

sin2 φ (sin2 δ+ cos2 δ cos2H)− 2 cos z sin δ. sinφ+ cos2 z− cos2 δ cos2H = 0.

Solving this quadratic equation, we get the same expression as stated above.5

11.24 Problem five: Nata and Krānti

The first four problems involved the calculation of śaṅku. Now the fifth
problem is to find nata (R sinH) and krānti (R sin δ) from aks.a (R sinφ),
āśāgrā (R sin a), and śaṅku (R cos z).

5In the course of simplification we need to use (11.138).
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Referring to Figure 11.22 again, we may note that the angle between XW
and the ghat.ikā-man. d. ala is α = φ− β. Using this, we have

R sinα = R sin(φ− β)

=
R sinφ R cos β −R cosφ R sinβ

R
. (11.157)

Hence,

R sin δ = R sinα. sinχ

=
(R sinφ sinχ)R cos β

R
− (R cosφ sinχ)R sin β

R
. (11.158)

Using (11.152) and (11.153), we obtain

Apakrama =
(Latitude on the kot.i-circle) × śaṅku

Radius of the kot.i-circle

− (Co-latitude on the kot.i-circle) × chāyā-bhujā

Radius of the kot.i-circle
,

which is same as the relation

Apakrama =
Latitude × Śaṅku− Co-latitude × Chāyā-bhujā

Trijyā
. (11.159)

We see that the above relation is equivalent to

sin δ = sinφ cos z − cosφ sin z sin a, (11.160)

which is the result obtained by applying the cosine formula to the spherical
triangle PZX, where PZ = 90 − φ, ZX = z, PX = 90 − δ and PẐX =
90 + a. When the planet X is to the north of sama-man. d. ala, the second
term is positive and we have to add the two quantities in the numerator of
(11.159). From apakrama, we find dyujyā = R cos δ. Then, we have

R sinH =
(R sin z cos a) ×R

R cos δ
,

or Nata-jyā =
Chāyā-kot.i × Trijyā

Dyujyā
. (11.161)

11.25 Problem six: Nata and Āśāgrā

To find āśāgrā (R sin a) and nata (R sinH) from śaṅku (R cos z), apakrama
(R sin δ) and aks.a (R sinφ):
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It was shown in section 11.13 that

Chāyā-bhujā = Śaṅkvagrā − Arkāgrā.

That is,

R sin z sin a =
R cos z. sinφ

cosφ
− R sin δ

cosφ
. (11.162)

When the declination is south, the second term is positive. In either case,
the RHS is known. Then, āśāgrā is given by

R sin a =
R sin z sin a. R

R sin z

=
Chāyā-bhujā × Trijyā

Chāyā
. (11.163)

From this, āśāgrā-kot. i = R cos a is found. Then, nata-jyā is given by

R sinH =
R sin z cos a

cos δ

=
R sin z R cos a

R cos δ

=
Chāyā × Āśāgrā-kot.i

Dyujyā
. (11.164)

11.26 Problem seven: Nata and Aks.a

To find nata (R sinH) and aks.a (R sinφ) from śaṅku (R cos z), apakrama
(R sin δ) and āśāgrā (R sin a):

Nata is found by the method described earlier (Eq. 11.161) and is given by

R sinH =
(R sin z R cos a)

(R cos δ)
. (11.165)

Now, consider Figure 11.23. For definiteness, we consider the planet to be in
the ‘northern hemisphere’, or the declination to be north, δ > 0. It has been
noted that Rsine of the arc (XXu) between the planet and the unman. d. ala
on the diurnal circle is equal to R cos δ cosH, which is given by

R cos δ cosH =
√
R2 cos2 δ −R2 sin2 z cos2 a. (11.166)
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Figure 11.23: The unman. d. ala and the diurnal circle.

This is nothing but the root of difference between the squares of dyujyā and
chāyā-kot.i. This is equal to the difference between the unnata-jyā, which is
the Rsine of the arc (XXt) between the planet and its setting point on the
diurnal circle and the ks.itijyā, which is the Rsine of the arc (XuXt) between
the unman. d. ala and the setting point on the diurnal circle. (The latter is
equal to ascensional difference multiplied by dyujyā and divided by trijyā or
R sin φ sin δ

cos φ
).

Now unnata-jyā, śaṅku and śaṅkvagrā
(
= R cos z sinφ

cos φ

)
form a latitudinal

triangle (see sections 11.13, 11.14). Similarly, arkāgrā
(
= R sin δ

cos φ

)
, apakrama

and ks.itijyā
(
= R sin φ sin δ

cos φ

)
, with arkāgrā as the karn. a and ks.itijyā as the

bhujā, form another latitudinal triangle. We can consider a third triangle
whose karn. a and bhujā are the sum of the karn. a-s and bhujā-s of the aforesaid
latitudinal triangles. It is clear that this is also a latitudinal triangle.

The latitudinal triangles involved in finding aks.a are depicted in Figure 11.24.
In the third latitudinal triangle,

Karn. a = Unnata-jyā + Arkāgrā

Bhujā = Ks.itijyā + Śaṅkvagrā.
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Figure 11.24: The different latitudinal triangles.

Therefore,

Karn. a − Bhujā = Unnata-jyā − ks.itijyā− (Śaṅkvagrā − Arkāgrā).

Since,

Unnata-jyā −Ks.itijyā = R cos δ cosH,

and Śaṅkvagrā −Arkāgrā = Chāyā-bhuja

= R sin z sin a,

we have,

Karn. a − Bhujā = R cos δ cosH −R sin z sin a. (11.167)

Now, in this triangle,

Karn. a
2 − Bhujā2 = Kot.i

2

= (Śaṅku + Apakrama)2

= (R cos z +R sin δ)2. (11.168)

From (11.167) and (11.168), we get

Karn. a + Bhujā =
(Karn. a

2 − Bhujā2)

Karn. a − Bhujā

=
(R cos z +R sin δ)2

(R cos δ cosH −R sin z sin a)
. (11.169)

Adding and subtracting (11.167) and (11.169), we have

Karn. a =
1

2

(R cos δ cosH −R sin z sin a)2 + (R cos z +R sin δ)2

(R cos δ cosH −R sin z sin a)
,

Bhujā =
1

2

(R cos δ cosH −R sin z sin a)2 − (R cos z +R sin δ)2

(R cos δ cosH −R sin z sin a)
.
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As this is a latitudinal triangle, we have

Bhujā

Karn. a
× Trijyā = R sinφ.

Hence, we obtain

R sinφ =
(R cos δ cosH −R sin z sin a)2 − (R cos z +R sin δ)2

(R cos δ cosH −R sin z sin a)2 + (R cos z + sin δ)2
, (11.170)

where the RHS is a function of z, a and δ, when we recall that

R cos δ cosH =
√
R2 cos2 δ −R2 sin2 z cos2 a.

When the declination is south, we should consider

Karn. a + Bhujā = Unnata-jyā + Ks.itijyā + Śaṅkvagrā + Arkāgrā

= R cos δ cosH +R sin z| sin a|. (11.171)

Also, Chāyā-bhujā = śaṅkvagrā + arkāgrā and Unnata-jyā + ks.itijyā =
R cos δ cosH, in this case. Here,

Karn. a − Bhujā =
(Karn. a

2 − Bhujā2)

(Karn. a + Bhujā)

=
(R cos z + |R sin δ|)2

R cos δ cosH +R sin z| sin a| . (11.172)

Karn. a and bhujā are now found and finally we have the same expression
as (11.170) for R sinφ, with − sin z sin a replaced by sin z| sin a| and sin δ
replaced by | sin δ|.

11.27 Problem eight: Apakrama and Āśāgrā

To find apakrama (R sin δ) and āśāgrā (R sin a) from śaṅku, aks.a and nata:

Refer to Figure 11.21 on page 750. The Rsine of the angle between the nata-
vr. tta and the horizon, which is the kot.i of the svadeśa-nata-vr. tta, is given
by

R sin(90 − α) = R cosα = Pramān. a. (11.173)
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The divergence between the svadeśa-nata-vr. tta and the horizon on the nata-
vr. tta is

R sin(CY ) = R sin 90◦ = R = Pramān. a-phala. (11.174)

The distance between planet at X on the nata-vr. tta and the horizon is

R sinAX = R sin(90 − z) = R cos z = Śaṅku = Icchā (11.175)

Distance between planet at X and C on the horizon, along the nata-vr. tta, is

R sinCX = Icchā-phala. (11.176)

Using the rule of three,

R sinCX = R
R cos z

R cosα
=
R cos z

cosα
. (11.177)

With pramān. a and pramān. a-phala being the same, we now take the icchā
to be the distance between the north pole P and N which is Dhruva-nati =
R sinφ. Then icchā-phala, which is the distance between the P and C along
nata-vr. tta, is given by

R sinPC =
R. R sinφ

R cosα
=
R sinφ

cosα
. (11.178)

The arc corresponding to dyujyā

PX = PC − CX

= (R sin)−1(R sinPC) − (R sin)−1(R sinCX). (11.179)

When the planet X is to the north of the intersection between the svadeśa-
nata-vr. tta and the nata, CX > 900. Then,

(R sin)−1(R sinCX) = 180◦ − CX,

as the cāpa is always less than 90◦ (when derived from the jyā). Similarly
PC > 90◦ when X is above the horizon. Then,

(R sin)−1(R sinPC) = 180◦ − PC.

Using the above in (11.159), we have

PX = 90◦ − δ = (180◦ − CX) − (180◦ − PC)

= Difference of the cāpa-s. (11.180)
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Hence,

R sin(90◦ − δ) = R sin
[
(R sin)−1(R sinCX) − (R sin)−1(R sinPC)

]
.

(11.181)
Using (11.177) and (11.178), the above reduces to

R cos δ = R sin

[
(R sin)−1

(
R cos z

cosα

)
− (R sin)−1

(
R sinφ

cosα

)]
. (11.182)

In the above expression, the RHS is known, since cosα is known (refer to
(11.119) in section 11.21). From R cos δ, the apakrama R sin δ is determined.
Now, āśāgrā-kot. i is determined from the relation

R cos a =
R sinH cos δ

sin z
, (11.183)

as usual. From this, āśāgrā is calculated.

When X is to the south of the intersection between svadeśa-nata-vr. tta and
nata-vr. tta, CX < 90◦ (as in Figure 11.21). Then (R sin)−1(R sinCX) =
CX, whereas (R sin)−1)(R sinPC) continues to be 180◦ − PC. Then the
distance between X and south pole, Q (not shown in the figure), will be

XQ = CX + 180◦ − PC.

It may be noted that along the nata-vr. tta, PQ = 180◦ = PC + CQ. There-
fore, CQ = 180◦ − PC. Hence,

XQ = CX + CQ = CX + 180◦ − PC. (11.184)

Now, the arc corresponding to dyujyā is given by

90◦ + δ = CX + (180◦ − PC)

= sum of the cāpa-s. (11.185)

Therefore,

R sin(90◦ + δ) = R cos δ = R sin(CX + 180◦ − PC),

where

R sinCX =
R cos z

cosα
,

and R sin(180◦ − PC) =
R sinφ

cosα
. (11.186)

From this, the apakrama, R sin δ, is determined and āśāgrā follows from
(11.183).
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11.28 Problem nine: Krānti and Aks.a

To determine R sin δ and R sinφ from R cos z, R sin a and R sinH:

The dyujyā R cos δ is determined using the relation

R cos δ =
R cos a sin z

sinH
, (11.187)

and from that the apakrama, R sin δ, is found. Then aks.a is determined from
the method outlined in problem four (section 11.23) or problem six (section
11.26).

11.29 Problem ten: Āśāgrā and Aks.a

To determine R sin a and R sinφ from R sin z, R cos δ and R sinH:

Given the śaṅku, apakrama and nata-jyā, āśāgrā-kot.i is obtained using the
relation

R cos a =
R cos δ sinH

sin z

=
Dyujyā× Nata-jyā

Chāyā
. (11.188)

From this, āśāgrā, R sin a, is determined. Then aks.a, R sinφ, is derived
as in section 11.26. Thus the solutions to all the ten problems have been
discussed.

11.30 Is. t.adik-chāyā: Another method

The term is. t.ādik-chāyā essentially refers to the Rsine zenith distance of the
planet (having non-zero declination), denoted by R sin z. To determine this,
first the chāyā of a corresponding point on the is. t.a-diṅman. d. ala, with a given
āśāgrā and which is located on the equator, is obtained. As noted in section
11.1, the 12-inch gnomic shadow is

12 sin z

cos z
. (11.189)
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And, the vis.uvacchāyā, equinoctial shadow, is

12 sinφ

cosφ
. (11.190)

When δ = 0, arkāgrā = 0. We denote z by z0 in this case. Hence, from
(11.70), we obtain

Śaṅkvagrā = Chāyā-bhujā

R cos z0 sinφ

cosφ
= R sin z0 sin a, (11.191)

or
sin z0
cos z0

sin a =
sinφ

cosφ
. (11.192)

Therefore

Dvādaśāṅgula-chāyā-bhujā =
12 sin z0
cos z0

sin a

=
12 sin φ

cosφ

= Vis.uvacchāyā. (11.193)

Hence,

Dvādaśāṅgula-chāyā-kot. i =
12 sin z0
cos z0

cos a

=
12 sinφ

cosφ

cos a

sin a
. (11.194)

Therefore Dvādaśāṅgulacchāyā6 (l) is given by

l =
12 sin z0
cos z0

=

√(
12 sin z0
cos z0

cos a

)2

+

(
12 sin z0
cos z0

sin a

)2

=

√(
12 sin φ

cosφ

cos a

sin a

)2

+

(
12 sinφ

cosφ

)2

. (11.195)

6Though the term literally means shadow corresponding to 12 aṅgula-s, in the present
context it refers to the shadow of a śaṅku whose height is 12 inches, taking an aṅgula to
be equivalent to an inch.
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From this, the karn. a, K =
√
l2 + 122, can be obtained. But, the karn. a is

also given by

K =
12

cos z0
. (11.196)

Therefore, the shadow in the trijyā-vr. tta, which is the ratio of the dvādaśāṅgula-
chāyā and karn. a multiplied by trijyā,

R sin z0 =
R

12 sin z0
cos z0
12

cos z0

, (11.197)

can be determined.
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Figure 11.25: Is.t.a-diṅman. d. ala passing through the planet.

In Figure 11.25, let the planet with declination δ be at X on its diurnal circle.
Is.t.a-diṅman. d. ala is a vertical passing through the planet. Let it intersect the
ghat.ikā-man. d. ala at X0. The angle between these two circles is denoted by
x. The zenith distance of this point (z0), has already been obtained. This
is called the representative of the latitude on the dr. ṅman. d. ala. Similarly
χ = XX0 is called the representative of the declination. If x is the angle
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between the dr. ṅman. d. ala and the equator, it is clear that

R sinφ = R sinx sin z0

R sin δ = R sinx sinχ. (11.198)

Therefore,

R sinχ =
R sin z0 R sin δ

R sinφ
, (11.199)

from which the cāpa χ can be calculated. Then the desired zenith distance
z = z0 − χ.7 The shadow (is. t.adik-chāyā) is R sin z.

11.31 Kāla-lagna, Udaya-lagna and Madhya-lagna

The methods for deriving the kāla-lagna (time elapsed after the rising of
the first point of Aries), udaya-lagna (the longitude of the orient ecliptic
point) and madhya-lagna (the longitude of the meridian ecliptic point) are
explained in this section.

In Figure 11.26, the ecliptic cuts the horizon at L1 and L2 which are the
udaya and asta-lagna-s respectively. Lagna-sama-man. d. ala is the vertical
L1ZL2. Let M1 and M2 be at 90◦ from L1 and L2, respectively, on the
horizon. The vertical M1ZM2 is the dr. kks.epa-vr. tta. The ecliptic cuts the
dr. kks.epa-vr. tta at V . Now L1 is at 90◦ from M1 and Z, and hence is the pole
of the dr. kks.epa-vr. tta. Therefore V is also at 90◦ from L1 and ZV̂ L1 = 90◦.
Thus, the dr. kks.epa-vr. tta is perpendicular to the ecliptic. Naturally, the pole
of the ecliptic, K1 (northern rāśi-kūt.a to be precise), is on this vr. tta and at
90◦ from V . Hence,

K1Z + ZV = 90◦. (11.200)

But,
K1Z +K1M2 = 90◦. (11.201)

Therefore, K1M2 = ZV . In other words,

Altitude of the rāśi-kūt.a (K1) = zv, (11.202)

where zv is the zenith distance of V (vitribha-lagna or dr. kks.epa-lagna). Fur-
ther it may be noted that when the vernal equinox is at E, K1 is on the

7When the declination is south, it is clear that z > z0 and z = z0 + |χ|.
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Figure 11.26: The lagna-sama-man. d. ala and dr. kks.epa-vr. tta.

north-south circle. At the given time, Γ and K1 are as indicated in the fig-
ure.8 Hence, at any given instant, ZP̂K1 = H is the time after the rise of
Γ and is the kāla-lagna. Note that the maximum divergence between lagna-
sama-man. d. ala and the ecliptic (or the angle between them) is ZV = zv, the
dr. kks.epa. S2 at 90◦ from the equinox Γ, is the southern solstice which is at
the maximum distance from the equator.

In Figure 11.27, we consider the situation at the equator (φ = 0) when the
vernal equinox Γ is at the zenith. The northern and southern solstices S1

and S2 and the northern and southern rāśi-kūt.a-s K1 and K2 are indicated
in the figure. Here,

ES1 = NK1 = WS2 = SK2 = ǫ, (11.203)

8It may be recalled that their position in the celestial sphere keeps continuously chang-
ing due to diurnal motion.
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Figure 11.27: Celestial sphere when the vernal equinox coincides with the
zenith.

is the obliquity of the ecliptic. It is easy to see that K1 and S2 are on the
same secondary to the ecliptic and the equator (which is same as the horizon
in the figure), and that they rise and set together. Hence, their hour angles
remain the same at all times. This is true of the points S1 and K2 also.
The diurnal circle of S2 has radius R sin ǫ, and that of K1 has radius R cos ǫ.
Consider the situation when the northern rāśi-kūt.a and the southern solstice
are at K̄1 and S̄2 respectively. Now, the kāla-lagna is given by

ZP̂K̄1 = ZP̂ S̄2 = H, (11.204)

where P is the north celestial pole coinciding with the north point of the
horizon. K̄1P̂W = 90◦ −H, is the angle between the secondary to equator
through K̄1 (northern rāśi-kūt.a) and the horizon. The gnomon of the north-
ern rāśi-kūt.a is the perpendicular distance between K̄1 and the horizon and
is equal to R sin ǫ sin(90 −H) = R sin ǫ cosH, as NK̄1 = ǫ.

Now we consider a place with latitude φ. It has been shown that the altitude
(90 − z) of northern rāśi-kūt.a is equal to the zenith distance of dr. kks.epa
(11.202). Hence,

dr. kks.epa = Śaṅku of the rāśi-kūt.a = R sin zv, (11.205)

where zv = ZV = K1M2 in Figure 11.26 on page 771.
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In Figure 11.28, consider the diurnal path of the northern rāśi-kūt.a, K1. Let
it intersect the unman. d. ala at K̄1. Since,

WK̄1 = 90 − ǫ, WP = 90◦, and PN = φ, (11.206)

the śaṅku corresponding to this point is

K̄1N̄1 = R sin (K̄1R̄1)

= R sinφ sin (90 − ǫ)

= R sinφ cos ǫ. (11.207)

This is the portion of the śaṅku of the northern rāśi-kūt.a, between the
unman. d. ala and the ks.itija.
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When the northern rāśi-kūt.a is at K1, its gnomon at the equator, which is
the same as the perpendicular distance to the unman. d. ala K1N

′

1, is given by

K1N
′

1 = R sin ǫ cosH, (11.208)

where N ′

1 is the foot of the perpendicular from K1 on the unman. d. ala, as
shown in Figure 11.28(b). This has to be multiplied by cosφ to obtain the
portion of the gnomon, K1N1, above the unman. d. ala, as the angle between
the unman. d. ala and the horizon at the desired place is equal to the latitude
of the place (φ).

Hence, the gnomon of the northern rāśi-kūt.a at the desired place, which is
the dr. kks.epa R sinZV , is given by

R sinZV = K1N1 + K̄1N̄1

= R(cosφ sin ǫ cosH + sinφ cos ǫ), (11.209)

where H is the kāla-lagna or the hour angle of the northern rāśi-kūt.a K1.

Now, consider Figure 11.26. As V L1 = L1M1 = 90◦, the maximum diver-
gence between the horizon and the ecliptic is

VM1 = 90◦ − ZV. (11.210)

Considering the planet at X on the ecliptic, we have

R sinVM1 = R cosZV = Pramān. a,

R = Trijyā = Pramān. a-phala,

R sinXT = Gnomon of the planet = Icchā.

R sinXL1 is the distance between the horizon and the planet on the ecliptic,
and is also the icchā-phala.

Therefore,
R sinXL1

R sinXT
=

R

R sinVM1
,

or,

R sinXL1 =
R. R sinXT

R sinVM
=
R. R sinXT

R cosZV
. (11.211)

We have to find XL1 from this. Udaya-lagna is the longitude of L1. There-
fore,

Udaya-lagna = ΓL1

= ΓX +XL1

= λp +XL1, (11.212)
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where λp = ΓX is the longitude of the planet. Thus the udaya-lagna has
been determined in terms of the gnomon of the planet and the dr. kks.epa,
which involves the kāla-lagna H.

It has already been shown (recall the discussion in sections 11.4 and 11.5)
that the gnomon corresponding to the planet is given by

R sinXT = cosφ× Unnata-jyā

= R cosφ cos δ

(
cosHp +

sinφ sin δ

cosφ cos δ

)
, (11.213)

where Hp = ZP̂X is the ‘hour angle’ of the planet. The second term in the
bracket corresponds to the ascensional difference.9

When the planet is in the western hemisphere at X ′, as shown in Figure
11.26, ΓX ′ = ΓL2 + X ′L2, where ΓX ′ and ΓL2 are measured eastwards.
Therefore,

Asta-lagna = ΓL2

= ΓX ′ −X ′L2

= λp −X ′L2, (11.214)

where X ′L2 is measured as described earlier. The same considerations apply
when the planet is below the horizon.

Consider the motion of the planet (Sun) as shown in Figure 11.29. Here
it transits the north-south circle below the horizon at Xm, rises at Xr and
reaches the unman. d. ala at Xu. The angle XmP̂Xr (or arc XmXr on the
diurnal circle) corresponds to half the duration of the night, and the angle
XP̂Xr corresponds to the portion of the night yet to pass. The difference
between them, XmP̂X, is the hour angle Hp and XP̂Xu = 90 −Hp. Find
R cosHp (cosine of the hour angle). The cara corresponds to XrP̂Xu and
is given by

R sin(XrP̂Xu) =
R sinφ sin δ

cosφ cos δ
. (11.215)

Then the śaṅku of the planet X is given by

R sin(XT ) = R cosφ cos δ

(
cosHp −

R sinφ sin δ

cosφ cos δ

)
. (11.216)

9Hp is found from the time after sunrise. H = Hp + R.A. of X, where R.A. (Right
Ascension) is obtained readily from the longitude. Hence the udaya-lagna would be related
to known quantities.
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When the declination is south, the cara has to be added. As shown earlier
(11.211), if L1 is the udaya-lagna,

R sinXL1 =
R. R sin(XT )

R cosZV
. (11.217)

In the RHS of the above equation, while the numerator is known from
(11.216), the denominator has to be calculated from R sinZV (dr. kks.epa),
which in turn is given by (11.209). Then the udaya-lagna is given by

ΓL1 = ΓX −XL1

= λp −XL1, (11.218)

where λp is the longitude of the planet. The asta-lagna is also determined
in a similar manner and is given by

ΓL2 = λp +X ′L2. (11.219)

In this case, X ′ is in the western hemisphere below the horizon. The
dr. kks.epa-lagna is exactly midway between the udaya and asta-lagna-s and is
at the intersection of the dr. kks.epa-vr. tta with the ecliptic.
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Madhya-lagna is the longitude of the meridian ecliptic point, at any instant.
Madhya-kāla is defined to be the difference in the time of rising of madhya-
lagna and the vernal equinox, Γ.

Madhya-kāla = Time of rising of madhya-lagna − Time of rising of Γ

= −N1Γ. (11.220)

The presence of the negative sign indicates that madhya-lagna has risen
before the equinox. Now we find the relation between madhya-lagna and
kāla-lagna The latter, which is the time after the rise of Γ, is given by

ΓE = ΓM1 − EM1

= N1M1 − EM1 −N1Γ

= N1E −N1Γ

= 90◦ −N1Γ

= 90◦ + Madhya-kāla. (11.221)

11.32 Kāla-lagna corresponding to sunrise

Here the aim is to determine the kāla-lagna at sunrise, which is the same as
the time interval between sunrise and the rise of the vernal equinox Γ. Bhujā-
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prān. a is essentially the Right Ascension - though it is measured eastwards
or westwards from Γ (vernal equinox) or Γ′ (autumnal equinox). In Figures
11.31(a) – (d), the positions of Γ and Γ′ when the Sun is on the horizon
(that is sunrise) are shown. In all cases, the kāla-lagna is the time elapsed
after the rise of Γ at E and is the segment of the ghat.ikā-man. d. ala between
E and Γ corresponding to the angle ΓP̂E.
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Figure 11.31a: Kāla-lagna when the sāyana longitude of the Sun is < 180◦.

(a) When the Sun is in the first-quadrant, that is, 0 ≤ λs ≤ 90◦ [Figure
11.31(a)],

Kāla-lagna = ΓP̂E

= ΓP̂S − EP̂S

= α− ∆α, (11.222)

where α is the bhujā-prān. a (Right Ascension) and ∆α is the cara-prān. a given
by

R sin ∆α =
R sinφ sin δ

cosφ cos δ
. (11.223)

(b) When the Sun is in the second quadrant, that is, 90◦ ≤ λs ≤ 180◦ [Figure
11.31(b)],

Γ′P̂E = Γ′P̂S + EP̂S

= α+ ∆α. (11.224)

But Γ′P̂E + ΓP̂E = 180◦, as Γ and Γ′ are 180◦ apart and E is between Γ
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and Γ′. Therefore,

Kāla-lagna = ΓP̂E

= 180◦ − Γ′P̂E

= 180◦ − (α+ ∆α). (11.225)
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Figure 11.31b: Kāla-lagna when the sāyana longitude of the Sun is > 180◦.

(c) When the Sun is in the third quadrant, that is, 180◦ ≤ λs ≤ 270◦ [Figure
11.31(c)],

Γ′P̂E = Γ′P̂S + EPS

= α+ ∆α. (11.226)

Now ΓP̂E = Γ′P̂E + 180◦, as Γ′ is between E and Γ. Therefore,

Kāla-lagna = ΓP̂E

= 180◦ + α+ ∆α. (11.227)

(d) When the Sun is in the fourth quadrant, that is, 270◦ ≤ λs ≤ 360◦

[Figure 11.31(d)], Γ is below the horizon at sunrise and

ΓP̂E = ΓP̂S − EP̂S

= α− ∆α. (11.228)

As Γ is below the horizon,

Kāla-lagna = 360◦ − ΓP̂E

= 360◦ − (α− ∆α). (11.229)
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This is the way to determine kāla-lagna corresponding to sunrise, when the
Sun is in various quadrants. In this manner, kāla-lagna corresponding to
the beginning of each rāśi can be calculated. The time taken by a particu-
lar rāśi to rise above the horizon is the difference between the kāla-lagna-s
corresponding to the beginning and end of that rāśi. This can be calculated
for each rāśi.

11.33 Madhya-lagna: Meridian ecliptic point
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Figure 11.32: Determination of the meridian ecliptic point.

Kāla-lagna at any desired instant is the kāla-lagna at sunrise (discussed in
detail in the preceeding section) plus the time elapsed after sunrise. When
90◦ is subtracted from the kāla-lagna in degrees, the resultant point U repre-
sents the point of contact of the celestial equator and the north-south circle.
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In Figure 11.32,

ΓU = Madhya-kāla

= Kāla-lagna − 90◦

= ρ. (11.230)

In other words, madhya-kāla is the time elapsed after the meridian transit
of Γ. Clearly,

ΓW = Γ′E

= 90o − ΓU, (11.231)

where ΓU has been obtained in (11.230). The ecliptic cuts the meridian at
M . The longitude of this point, represented by ΓM , is the madhya-lagna.
Consider the rāśi-kūt.a-vr. tta WKIE in Figure 11.32 passing through east
and west points and intersecting the ecliptic at I. K is the northern rāśi-
kūt.a, the pole of the ecliptic. M is at 90◦ from both E and K. Hence, it is
the pole of this rāśi-kūt.a-vr. tta. In that case, the arc EI is perpendicular to
the ecliptic at I, and EI = ψ is given by

R sinψ = R sin ǫ sin (90 − ρ)

= R sin ǫ cos ρ. (11.232)

Normally, we draw perpendiculars from points on the ecliptic and calculate
the bhujā-prān. ā-s along the equator. Here, we do the reverse. R sinψ and
R cosψ are the equivalents of apakrama-jyā and dyujyā. Corresponding to
Γ′E on the equator (= 90o − ρ), we find the bhujā-prān. ā Γ′I along the
ecliptic (using the formula for the bhujā-prān. ā) as follows:

R cos(Γ′I) = R cos(Γ′E)
R

R cosψ
. (11.233)

From this we find Γ′I. Then madhya-lagna

ΓM = 90◦ − Γ′I. (11.234)

This is the method of deriving the madhya-lagna or the meridian ecliptic
point.
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11.34 Dr. kks.epa and Kot.i

The aim is to determine the dr. kks.epa from the udaya-lagna and madhya-
lagna. Refer to Figure 11.33. L1, L2 and M are the udaya-lagna, asta-lagna
and madhya-lagna respectively. EL1 is related to the azimuth of L1. The
udaya-lagna-jyā, R sin(EL1) is found in the same way as arkāgrā. Just as in
the case of the arkāgrā, udaya-lagna-jyā is given by

R sinEL1 =
R sin(δL1

)

cosφ
, (11.235)

where δL1
is the declination of L1 (determined fromR sin δL1

= R sinλL1
sin ǫ).

The madhya-jyā is the Rsine of the zenith distance of the madhya-lagna.
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Figure 11.33: Determination of dr. kks.epa from the udaya-lagna and madhya-
lagna.

As the madhya-lagna M is on the meridian, the madhya-jyā R sinZM is
found in the same manner as the madhyāhnacchāyā (noon shadow) of the
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Sun, which is the meridian zenith distance of the Sun:

Madhya-jyā = R sinZM

= R sin(φ± |δM |), (11.236)

δM being the declination of the madhya-lagna. This can be found as λM has
been determined.

Now the maximum divergence between the dr. kks.epa-vr. tta and the north-
south circle is

SM1 = EL1 = χ. (11.237)

This is also equal to the angle between prime vertical EZ and lagna-sama-
man. d. ala or dr. kks.epa-sama-man. d. ala, L1Z. Now,

Udaya-jyā = R sinEL1

= R sinSM1

= R sinχ. (11.238)

Using the rule of three, we have

R sinMV

R sinSM1
=

R sinZM

R sinZS = R
. (11.239)

Therefore,

R sinMV = R sin(ZM) sinχ

=
Udaya-jyā × Madhya-jyā

R
. (11.240)

This is the interval between the madhya-lagna and the dr. kks.epa on the eclip-
tic and is termed bhujā. Now V is the dr. kks.epa, L2 is the asta-lagna. There-
fore V L2 = 90◦ and

ML2 = V L2 − VM = 90 − VM.

Therefore, R sinML2 = R cosMV. This is the Rsine of the portion of the
ecliptic between the north-south circle and the horizon.

Consider the spherical triangle ZMQ, where MQ is the perpendicular arc
from the madhya-lagna M to the lagna-sama-man. d. ala. Now,

MẐQ = V ẐQ− V ẐM

= 90 − χ. (11.241)
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Therefore,

R sinMQ = R sinZM sin(90 − χ)

= R sinZM cosχ. (11.242)

But, we had R sinMV = R sinZM sinχ. Therefore,

R sinMQ =

√
R2 sin2 ZM −R2 sin2 ZM sin2 χ

=
√
R2 sin2 ZM −R2 sin2MV . (11.243)

This is the distance between the madhya-lagna and dr. kks.epa-sama-man. d. ala
or lagna-sama-man. d. ala. Consider the quadrants L2V and L2Z. MQ and
V Z are perpendicular arcs from M and V on L2V to L2Z. Therefore, using
the rule of three,10 we have

R sinZV

R sinL2V = R
=

R sinMQ

R sinL2M = R cosMV
. (11.244)

Therefore,

R sinZV =
R sin(MQ) R

R cos(MV )
. (11.245)

This gives the dr. kks.epa R sinZV in terms of madhya-jyā and udaya-jyā which
are in turn determined from udaya-lagna and madhya-lagna. This is the
maximum divergence between the ecliptic and the lagna-sama-man. d. ala.

Consider the quadrants L2V and L2M1 (along the ecliptic and horizon).
Again, applying the rule of three, we get

R sinVM1

R sinL2M1 = R
=

R sinMS = R cosMZ

R sinL2M = R cosMV
. (11.246)

Therefore,

R sinVM1 =
R cosMZ ×R

R cosMV
. (11.247)

This is the dr. kks.epa-kot.i which is also the maximum divergence between the
ecliptic and the horizon. This is also the dr. kks.epa-śaṅku, as it is equal to
R cos(ZV ).

10Here the rule of three is of the form

icchā-phala

icchā
=

pramān. a-phala

pramān. a
,
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Figure 11.34: Deflection of the planet along the vertical due to parallax.

In Figure 11.34, P is the planet and P ′ represents the position of the planet
displaced due to parallax along dr. ṅmand. ala. The displacements due to par-
allax are given by

QP ′ = Nati (parallax in latitude),
PQ = Lambana (parallax in longitude),
PP ′ = Chāyā-lambana.

If ψ is the angle between the dr. ṅmand. ala and the ecliptic, it can be easily
seen that

Nati = P ′Q = PP ′ sinψ, (11.248)

Lambana = PQ = PP ′ cosψ. (11.249)

In obtaining the above relations, the triangle PP ′Q has been considered to
be small and hence planar.11 It is seen that nati is the bhujā of the chāyā-
lambana and the lambana is the kot.i of the chāyā-lambana.

11This is true in reality since the shift due to parallax is of the order of a few minutes
at the most, though this has been exaggerated in Figure 11.34 for the purposes of clarity.
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11.36 Second correction for the Moon

Here a second correction is applied to the Moon to obtain the dvit̄ıya-sphut.a
of the Moon with respect to the centre of the Earth. This is essentially the
‘Evection term’, calculated along the same lines as in Tantrasaṅgraha, except
for a modification which takes into account Moon’s latitude. The chāyā-
lambana is then calculated taking the above correction also into account.

The procedure for the second correction is similar to the calculation of the
manda-sphut.a with the centre of the bhagola serving as the ucca, which is
taken to be in the direction of the Sun. The distance between this and the
centre of the Earth, which is the radius of the epicycle, is a continuously
varying quantity and is given by

R

2
cos(λS − λU ), (11.250)

in yojanā-s, where λS and λU are the longitudes of the Sun and the apogee
of Moon (candrocca). Here, the mean distance between the Moon and the
centre of the bhagola is 10R = 34380 yojanā-s. The actual distance between
the same points is 10K, where K is the manda-karn. a in minutes.

For the present we ignore Moon’s latitude. In Figure 11.35, C is the centre
of the Earth, separated from the centre of the bhagola (CZ) by a distance

r =
R

2
cos(λS − λU ) (in yojanā-s). (11.251)

A is the Mes.ādi, and AĈCZ = λS (Sun’s longitude). The manda-sphut.a of
Moon is at M1. Hence AĈZM1 = λM (Moon’s manda-sphut.a). CZM1 =
10K, where K is the manda-karn. a in minutes. It is clear that CĈZN =
λM − λS .

CM1, the dvit̄ıya-sphut.a-karn. a in yojanā-s, is the distance between the
manda-sphut.a and the centre of the Earth. The bhujā-phala and kot.i-phala
are given by

CN = r sin(λM − λS)

=
R

2
cos(λS − λU ) sin(λM − λS), (11.252)

and CZN = r cos(λM − λS)

=
R

2
cos(λS − λU ) cos(λM − λS). (11.253)
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Figure 11.35: The second correction for the Moon.

Then, dvit̄ıya-sphut.a-karn. a is given by

CM1 =
√

(M1N)2 + CN2

=
√

(M1CZ + CZN)2 + CN2

=

√
(manda-karn. a + kot.i-phala)2 + bhujā-phala2

=

[(
10K +

R

2
cos(λS − λU ) cos(λM − λS)

)2

+

(
R

2
cos(λS − λU ) sin(λM − λS)

)2
] 1

2

. (11.254)

When the Moon has a latitude β, both the manda-karn. a

CZM1 = 10K, (11.255)

and the kot.i-phala

CZN =
R

2
cos(λS − λU ) cos(λM − λS), (11.256)

have to be reduced to the ecliptic. This is achieved by replacing the manda-
karn. a K by

K cos β =

√
K2 −K2 sin2 β =

K

R

√
R2 −R2 sin2 β, (11.257)
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where the viks.epa is K sinβ in the measure of pratiman. d. ala and R sin β in
the measure of the manda-karn. a-vr. tta. The kot.i-phala is also modified in the
same manner (by multiplying it with cosβ). The bhujā-phala is not affected.

The dvit̄ıya-sphut.a-karn. a with viks.epa is given by
√

cos2 β (manda-karn. a + kot.i-phala)2 + bhujā-phala2. (11.258)

Now, the true longitude of the Moon, dvit̄ıya-sphut.a, is λM ′ = AĈM1. By
drawing CM ′

1 parallel to CZM1, it is clear that

λM − λM ′ = AĈZM1 −AĈM1

= AĈM ′

1 −AĈM1

= M1ĈM
′

1

= CM̂1CZ . (11.259)

Therefore,

R sin(λM − λM ′) = R sin(CM̂1CZ)

=
R× CN

CM1

=
R× bhujā-phala

dvit̄ıya-sphut.a-karn. a
. (11.260)

Hence,

λM − λM ′ = manda-sphut.a − dvit̄ıya-sphut.a

= (R sin)−1

[
trijyā × bhujā-phala

dvit̄ıya-sphut.a-karn. a

]
. (11.261)

Thus the dvit̄ıya-sphut.a is obtained. The sign of the RHS is determined by
(λS − λU ) and (λM − λS). When (λS − λU ) is in first or fourth quadrant,
cos(λS −λU ) is positive. Then the RHS is positive if (λM −λS) is in first or
second quadrant (the bright fortnight) and negative if (λM − λS) is in third
or fourth quadrant (the dark fortnight). When (λS − λU ) is in second or
third quadrant, it is the other way round.

The distance of the planet from the centre of the Earth is actually the dvit̄ıya-
sphut.a-karn. a, instead of 10K. Hence, the mean motion of dvit̄ıya-sphut.a is

10K × mean motion of Moon

dvit̄ıya-karn. a
.

Thus, the true Moon on the circle with its centre at the centre of the Earth
has been calculated.
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Next, the chāyā, R sin z of the true Moon, is calculated.
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Figure 11.36: Determination of chāyā-lambana.

In Figure 11.36, V is the dr. kks.epa-lagna, P is the planet and K is the
pole of the ecliptic. P ′′ is the foot of the perpendicular arc from Z to the
rāśi-kūt.a-vr. tta through the planet. The maximum divergence between the
dr. kks.epa-vr. tta and this rāśi-kūt.a-vr. tta is R sin(λP − λV ), where λP and λV

are the longitudes of the planet and the dr. kks.epa-lagna. This corresponds
to the arc KV = 90◦. Hence, the divergence R sin(ZP ′′) called dr. ggati-jyā
or dr. ggati corresponding to the arc KZ = 90◦ − ZV , is given by

Dr. ggati-jyā =
R sin(λP − λV ) ×R sin(90◦ − ZV )

R
= R sin(λP − λV ) cosZV. (11.262)

If z is the zenith distance of the planet P along the dr. ṅman. d. ala passing
through it, and ψ is the angle between the dr. ṅman. d. ala and the ecliptic,
then

Dr. kks.epa = R sin(ZV ) = R sinψ sin z, (11.263)

Dr. ggati-jyā = R sin(ZP ′′) = R cosψ sin z. (11.264)
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Hence

R sin z = Chāyā =
√

(Dr. kks.epa)2 + (Dr. ggati-jyā)2. (11.265)

Thus the chāyā (R sin z) is determined in terms of λP , λV and dr. kks.epa.

Now chāyā-lambana PP ′ is determined in terms of the chāyā (R sin z) and
other quantities. We have

Nati = PP ′ × sinψ

=
PP ′ ×R sin z sinψ

R sin z

=
Chāyā-lambana × Dr. kks.epa

Chāyā
. (11.266)

Similarly,

Lambana = PP ′ × sinψ

=
Chāyā-lambana × Dr. ggati

Chāyā
. (11.267)

In fact, the nati and lambana can be directly calculated by multiplying
dr. kks.epa and dr. ggati, respectively, by the ratio of the radius of the Earth and
dr. kkarn. a (the actual distance between the observer and the planet). This
can be understood as follows. By definition, chāyā-lambana is the difference
in the zenith distances measured by an observer on the surface of Earth and
as measured from the center of the Earth (see Figure 11.37). That is,

Chāyā-lambana = z′ − z = p. (11.268)

From the planar triangle OCP , we have

R sin p

Re
=
R sin z

d
. (11.269)

Therefore, chāyā-lambana in minutes is given by

Chāyā-lambana = R× p

≈ R sin p

=
Re ×R sin z

d

=
Radius of the Earth × Chāyā

Dr. kkarn. a
. (11.270)
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Figure 11.37: Change in the zenith distance due to the effect of parallax.

Using the above relation in (11.266) and (11.267), we have

Nati =
Radius of the Earth × Dr. kks.epa

Dr. kkarn. a
, (11.271)

and

Lambana =
Radius of the Earth × Dr. ggati

Dr. kkarn. a
. (11.272)

The procedure for calculating the dr. kkarn. a in terms of dvit̄ıya-karn. a is de-
scribed in the next section.
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Figure 11.38: The increase and the decrease in the longitude due to parallax.
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When the planet is to the east of the dr. kks.epa V , the parallax in longitude
PQ is also towards the east. That is, the effect of parallax is to increase the
longitude as shown in Figure 11.38(a). If it is to the west of the dr. kks.epa
as in Figure 11.38(b), the parallax PQ is also towards the west and hence
the apparent longitude will decrease. Similarly the nati P ′Q will be towards
south, if the planet is in southern hemisphere, and it will be towards north if
it is in northern hemisphere. (Here it should be noted that the increase or de-
crease in the latitude of the planet will depend upon the relative orientation
of the vertical through the planet and the ecliptic).

11.38 Dr. kkarn. a when the Moon has no latitude

When the Moon has no latitude, we had seen in (11.265) that the chāyā
(R sin z) was given by

R sin z =
√

(Dr. kks.epa)2 + (Dr. ggati-jyā)
2. (11.273)

Chāyā-śaṅku (R cos z) is the kot.i of this. Clearly OM = Re sin z and CM =
Re cos z, in Figure 11.37, are the chāyā and śaṅku in yojanā-s. Then the
dr. kkarn. a, OP = d, is given by

d = OP =
√

(MP )2 + (OM)2

=
√

(CP − CM)2 + (OM)2

=
√

(D −Re cos z)2 + (Re sin z)2, (11.274)

where D is clearly the dvit̄ıya-sphut.a-karn. a.

11.39 Shadow and gnomon when the Moon has
latitude

The procedure for calculating the śaṅku and chāyā of a planet with latitude
is similar to the procedure for calculating the śaṅku and chāyā of an object
with declination at any given time. Figure 11.39 is drawn keeping this in
mind, where P is the planet with latitude β. RPPt is the viks.epa-kot.i-vr. tta,
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Figure 11.39: The viks.epa-kot.i-vr. tta passing through the planet.

which is a small circle passing through P and parallel to the ecliptic. O is
the centre of the celestial sphere and C is the centre of the viks.epa-kot.i-vr. tta,
with OC = R sin β and the radius of the viks.epa-kot.i-vr. tta is RC = R cos β.
If PE is the projection of the planet on the ecliptic, then PEL1 = λL1

− λP ,
which is the difference between the longitudes of the lagna and the planet.
The śaṅku of PE (planet with no latitude) is R sinPEM

′, where M ′ is the
foot of the vertical through PE on the horizon. We have the trairāśika (rule
of three)

R sinVM1 = R cosZV

trijyā = R
=

R sin(PEM
′)

R sin(PEL1)
, (11.275)

or,

R sin(PEM
′) =

R cosZV ×R sin(λL1
− λP )

R
. (11.276)

The interstice between the zenith and the viks.epa-kot.i-vr. tta along dr. kks.epa-
vr. tta is the nati. This is the equivalent of the Rsine of the meridian zenith
distance. Thus,

Nati = R sin(RZ)

= R sin(ZV − β), (11.277)
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since RZ = ZV − β. The kot.i of this is the parama-śaṅku and is given by

R cos(RZ) = R sin(RM1). (11.278)

Parama-śaṅku is the equivalent of noon shadow. Then the śaṅku, R cos(PZ),
is stated to be equal to

R cos(RZ) − R cos β ×R cos(ZV )

R
× R−R cos(V PE)

R
, (11.279)

where R − R cos(V PE) is the śara corresponding to the arc V PE in the
ecliptic.

This can be derived as follows. We draw PEP
′

E perpendicular to OV . Then,

OP ′

E = OPE cos(V PE) = R cos(V PE). (11.280)

Then,

Śara = V P ′

E = OV −OP ′

E = R−R cos(V PE). (11.281)

Similarly, draw PP ′ perpendicular to RC. Then RP ′ is parallel to V P ′

E

(and is in the plane of the dr. kks.epa-man. d. ala), and it is the śara reduced to
the viks.epa-kot.i-vr. tta as given by

RP ′ = (cos β)(R −R cos(V PE)). (11.282)

Draw P ′Zp and RZR perpendicular to OZ. P ′Q is perpendicular to RZR. It
is easy to see that PEP

′

E and PP ′ are parallel to the plane of the horizon (in
fact parallel to OL1), and OZP is the śaṅku corresponding to P . Therefore,

Śaṅku = OZP = OZR − ZPZR. (11.283)

Now OZR = R cos(RZ). As the inclination of the ecliptic with the ‘prime
vertical’ is the angle corresponding to the arc ZV , we have

ZPZR = P ′Q

= RP ′ cos(ZV )

= R cos β × R cos(ZV )

R
× R−R cos(V PE)

R
. (11.284)

Hence,

Śaṅku = R cosRZ −R cos β × R cos(ZV )

R
× R−R cos(V PE)

R
. (11.285)
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As RZ = ZV − β,

cos(RZ) = cos(ZV ) cos β + sin(ZV ) sin β. (11.286)

Hence,

Śaṅku = R cos(PZ)

= R[sin(ZV ) sin β + cos(ZV ) cos β × cos(V PE)]. (11.287)

This is similar to the standard relation

R cos z = R [sinφ sin δ + cosφ cos δ cosH], (11.288)

when it is realized that ZV is the equivalent of aks.a φ, latitude β is the
equivalent of the declination δ, and ZKP̂ = V PE is the equivalent of the
hour angle. The parama-śaṅku R cos(RZ) is the equivalent of the noon-
gnomon.

When R cos(RZ) is used as the multiplicand in the second term (instead of
R cos(ZV )) it is stated that the divisor should not be trijyā, but viks.epa-kot.i
corrected by the difference between the horizon and the unman. d. ala. This
correction is the equivalent of the Rsine of the ascensional difference on the
diurnal circle, and is given by

R sin(ZV ) sin β × cosβ

cos(ZV ) cos β
.

So, the divisor should be

R cos β +
R sin(ZV ) sin β

cos(ZV )
. (11.289)

This can be understood from the relation

R cos(RZ)

R cos β +
R sin(ZV ) sin β

cos(ZV )

=
R cos(ZV ) × cos(RZ)

R(cos(ZV ) cos β + sin(ZV ) sin β)

=
R cos(ZV )

R
, (11.290)

as RZ = ZV − β. Geometrically this can be seen as follows. Let V ′, R′ be
the feet of the perpendiculars from V and R on the plane of the horizon.
Let RC meet the plane of the horizon at Ph. Then, OCPh is a right angled
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triangle in the plane of the dr. kks.epa-vr. tta. CÔPh is the angle between the
great circle12 in the case of the celestial equator. through K and L1 and
the horizon. This angle is the same as ZV which is the equivalent of aks.a.
Then,

CPh =
sin(ZV ) ×OC

cos(ZV )

=
R sinβ sin(ZV )

cos(ZV )
. (11.291)

As RC = R cos β, we get

RPh = R cos β +
R sin(ZV ) sin β

cos(ZV )
. (11.292)

Also, RR′ = R cos(RZ) and V V ′ = R cos(ZV ). Further,

RR′

RPh

=
V V ′

OV
. (11.293)

Therefore,

R cos(RZ)

R cos β +
R sin(ZV ) sin β

cos(ZV )

=
R cos(ZV )

R
. (11.294)

We now consider the chāyā. It may be noted that

PP ′ = cos β PEP
′

E

= cos β R sin(V PE). (11.295)

This is the bhujā. Further,

P ′Zp = QZR = RZR −RQ. (11.296)

But,

RZR = R sin(RZ),

and RQ = RP ′ sin(ZV )

=
R sin(ZV )

R
×R cosβ × (R−R cos(V PE))

R
, (11.297)

12This great circle perpendicular to the ecliptic may be thought of as the equivalent of
unman. d. ala
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from (11.282). Hence,

P ′Zp = R sin(RZ) − R sin(ZV )

R
×R cos β × (R−R cos(V PE))

R
. (11.298)

This is the distance between the planet and the vertical circle ZL, in the
diagram and is termed bāhu. Then the shadow, (chāyā) is PZP and is given
by

Chāyā = R sin(PZ)

= PZP

=
√

(P ′ZP )2 + (PP ′)2

=

√
bāhu2 + bhujā2. (11.299)

As
Śaṅku

2
+ Chāyā2 = Trijyā2, (11.300)

it is sufficient to calculate any one of them.



Chapter 12

Eclipse

12.1 Eclipsed portion at required time

The dr. kkarn. a d in yojanā-s is calculated in terms of the gnomon (R cos z),
and the shadow (R sin z), as

d =
√

(D −Re cos z)2 + (Re sin z)2, (12.1)

where D is the dvit̄ıya-sphut.a-yojana-karn. a and Re is the radius of the Earth
(Refer to Figure 11.37 and equation (11.274)). The lambana-s of the Sun and
Moon should be applied, to obtain their true longitudes (for the observer).
When the true longitudes are the same, it is the mid-eclipse. Now, we had

Lambana =
Re

d
× Dr. ggati

≈ Re

D
× Dr. ggati, (12.2)

where, we approximate d byD, the true distance from the centre of the Earth
in the denominator (essentially ignoring the higher order terms in Re

D
).

Let D̄ be the mean distance from the centre of the Earth. Now the rate
of angular motion is inversely proportional to the distance (as the linear
velocity is assumed to be constant). Hence

D

D̄
=

Mean motion

True motion
. (12.3)

Therefore

Lambana (in min) =
Re

D̄
× True motion

Mean motion
× Dr. ggati. (12.4)
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Now
D̄ × Mean motion (in minutes)

Re

is stated to be 51, 770.1 Tantrasaṅgraha gives the number of revolutions
of the Moon in a Mahāyuga with 1, 57, 79, 17, 500 yuga-sāvana-dina-s as
57, 753, 320. D̄ for the Moon is 10 times trijyā or 34, 380 yojanā-s. The
circumference of the Earth is 3300 yojanā-s from which Re = 1050.42 yo-
janā-s taking π = 355

113 as stated in Śaṅkara Vāriyar’s Laghu-vivr. ti. Then,

D̄ × Mean motion

Re

=
34380 × 57753320 × 360 × 60

1050.42 × 1577917500

= 51751.06591. (12.5)

In the text, this is taken to be 51, 770. Hence,

Lambana (in min.) =
Dr. ggati

51770
× (True daily motion). (12.6)

The assumption made in many Indian texts that the horizontal parallax is
equal to 1

15 of daily motion is not being made here. Therefore, the difference
in lambana of the Moon and the Sun is given by

Dr. ggati

51770
× (Difference in daily motion). (12.7)

Here, the value of the difference in daily motions in minutes of arc, corre-
sponds to 60 nād. ikā-s. Therefore, the difference in lambana of the Moon and
Sun in nād. ikā-s is given by

Dr. ggati

51770
× 60. (12.8)

This has to be applied to the parvānta or the middle of the eclipse to obtain
the true mid-eclipse. The lambana is again calculated at this value of the
parvānta and applied to the original parvānta to obtain the true parvānta
corresponding to the second iteration. This iterative process is carried on till
the successive values of the parvānta are the same (to the desired accuracy).
As the Text notes:

‘Only by knowing the correct lambana can the samalipta-kāla
be ascertained and only by knowing the samalipta-kāla can the
lambana be ascertained.’

1This would be the same for all celestial bodies as the linear velocity is constant.
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At the true middle of the eclipse, the longitudes of the Sun and the Moon
are the same. That is, λM = λS . However, the difference in nati-s of the
Sun and the Moon and the viks.epa (latitudinal deflection) of the Moon have
to be taken into account.

S

M

B

A

Lunar disc

Solar disc

Figure 12.1: Mid-eclipse.

Let S and M be the centres of the solar and lunar discs (see Figure 12.1).
The distance between them at the mid-eclipse is given by

SM = Nati+ Viks.epa = β′, (12.9)

where nati stands actually for the difference in nati-s of Moon and Sun. The
eclipsed portion is given by

AB = SB + SA

= SB +MA− SM

=
1

2
(Sum of orbs of Moon and Sun) − β′. (12.10)

It can be seen from Figure 12.2(a) that when

SM = SC + CM =
1

2
(Sum of orbs of Sun and Moon), (12.11)

the eclipse commences. Similarly, it is obvious that there is no eclipse when
SM > 1

2 (Sum of orbs of Sun and Moon) (see Figure 12.2(b)).

The distance between the centres of the solar and lunar discs (bimbāntara)
is given by

SM =
√

(λM − λS)2 + β′2. (12.12)
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S

M

C

(b)

M

S

(a)

Figure 12.2: (a) Orbs at the commencement of eclipse; (b) Orbs when there
is no eclipse.

The eclipsed portion at that time (see Figure 12.3) is given by

AB = AM −BM

= AM − (SM − SB)

= AM + SB − SM

=
1

2
(Sum of orbs of Moon and Sun)− Bimbāntara. (12.13)

A

S

B

Ecliptic

M

β ’

λ   − λ  SM   

Figure 12.3: The portion of the Moon eclipsed.
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12.2 Time corresponding to a given eclipsed
portion

After the commencement of the eclipse, at any time t, the bimbāntara is
given by

SM =
1

2
(Sum of orbs of Moon and Sun)− Eclipsed portion. (12.14)

Then, the difference in longitudes of the Sun and the Moon is given by

λM − λS =

√
Bimbāntara2 − β′2. (12.15)

The time interval, ∆t corresponding to this sphut.āntara is readily carlculated
from the fact that difference in daily motions corresponds to 60 nād. ikā-s.
Then, the desired time t is given by

t = tm ± ∆t,

where tm corresponds to the parvānta or the ’middle of the eclipse’. Now in
calculating ∆t, β′ is involved. But, this is unknown for it is the value of nati
+ viks.epa at the desired instant tm ±∆t. Hence, an iterative process is used
to find ∆t. First find β′ at tm. From this ∆t is calculated, as explained above.
This is the first approximation to ∆t. From this β′ is calculated at tm ±∆t,
and ∆t is determined from this. That would be the second approximation
to ∆t. The iterative process is carried out till ∆t determined does not vary
significantly2 in successive iterations. Then, as mentioned earlier, tm ± ∆t
is the desired time corresponding to a given eclipsed portion.

Both at the beginning and the end of the eclipse, the bimbāntara is equal to
half the sum of the orbs of Sun and Moon. The times corresponding to the
beginning or the end are calculated in exactly the manner described above.

For a solar eclipse, λM − λS = 0◦, for a lunar eclipse, λM − λS = 180◦.
When either of the eclipses occurs near the sunrise or the sunset, λM and
λS are calculated at that time. Now, consider the solar eclipse. If λM > λS

at sunrise, middle of the eclipse is not visible. If λM < λS, the middle is
visible. At sunset, if λM > λS , middle of the eclipse is visible. For a lunar
eclipse, λS is replaced by λS + 180◦.

2The accuracy is set to desired value, which could be as gross a one-hundredth or as
fine as one-billionth part.
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12.3 Computation of Bimbāntara

Now, the angular radius of the Sun or Moon in minutes is given by

Angular radius =
Linear radius ×R

Distance from Earth
. (12.16)

Here the denominator is actually dr. kkarn. a. So, a ‘reverse rule of three’ is
being used in calculating the angular radius.

Ds

Sun
L c

Moon’s orbit

E
S

DM

Figure 12.4: Lunar eclipse.

Figure 12.4 depicts the lunar eclipse. Let the diameters of the Sun, the
Earth and that of the shadow (chāyā) at the Moon’s orbit be dS , dE and dc

respectively. Further, let DS and DM be the true distances of the Sun and
the Moon from the Earth, and Lc be the length of Earth’s shadow. Then
from Figure 12.4, it is clear that

Lc

dE
=
Lc +DS

dS
, (12.17)

or
Lc
dE

=
DS

dS − dE
. (12.18)

From this, Lc is determined. Further,

Lc −DM

Lc

=
dc

dE

. (12.19)

Therefore,

dc =
Lc −DM

Lc
× dE . (12.20)
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12.4 Orb measure of the planets

The shadow diameter at the Moon’s orbit in minutes is given by

dc

DM

×R. (12.21)

In the above expression dc is in yojanā-s. Having obtained the orb-measures
of the eclipsed and eclipsing planets, the extent of the eclipse at the mid-
point and at any desired time can be calculated.

12.5 Direction of the eclipses and their
commencement

Sc

S

S

C
el

es
tia

l E
qu

at
or

Z

E

ε

Lunar disc

Solar disc

S’

Horizon Γ

Ecliptic

N, P

Figure 12.5: Āyana-valana.

Consider the small circle which is parallel to the prime vertical passing
through the centre of the solar disc. This is the chāyā-kot.i-vr. tta or the
east-west small circle all of whose points are at a distance of

Chāyā-bhujā = R sin z sinA,

from the prime vertical. At the beginning of the solar eclipse, the solar
and lunar discs touch each other at a point. The separation of this point
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from this small circle (chāyā-kot.i-vr. tta) is the valana. It consists of three
components. (i) āyana-valana, which is due to the inclination of the ecliptic
with the diurnal circle (which coincides with the small circle at the equator)
(ii) āks.a-valana, which is due to the inclination of the diurnal circle with the
small circle, and (iii) valana due to the viks.epa of the Moon.

12.6 Āyana-valana

Consider a place on the equator. Without loss of generality, we take the
vernal equinox, Γ at the east point (see Figure 12.5), the winter solstice
on the meridian, and the Sun situated between them on the ecliptic. The
“Moon without latitude” is also situated on the ecliptic and touches the
solar disc at Sc on the ecliptic. S′ is the point where the solar disc intersects
the ecliptic. The eclipse starts at Sc and S′Sc is the āyana-valana and it is
southwards in the figure. The angle between the ecliptic and the celestial
equator (prime vertical) is ǫ. Let SΓ = λ, be the longitude of the Sun. Let
rs be the angular radius of the solar disc.

The distances of the centre of the Sun S and the point Sc from the celestial
equator are given by

R sin δs = R sinλ sin ǫ. (12.22)

R sin δsc = R sin(λ+ rs) sin ǫ. (12.23)

Therefore S′Sc, which is the difference between the two, is given by

R sin δsc −R sin δs = R[sin(λ+ rs) − sinλ] sin ǫ.

= rs R cos λ̄ sin ǫ, (12.24)

where λ̄ corresponds to a point midway between S and Sc, and is given by

λ̄ = λ+
rs
2

= λ+
ds

4
, (12.25)

where ds is the angular diameter of the solar disc. (The Text states that
the bhujā-khan. d. a, R sin(λ+ rs)−R sinλ, is to be obtained from the kot.i-jyā
R cos λ̄ at the cāpa-khan. d. a-madhya).
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12.7 Āks.a-valana

S

Z

E

ψ

φ

ψ

A

P

P’
Q

N

PM

180 −H

H

µ

Diurnal circle 

Cel. Equator

Chaya−koti−vrtta

R

Horizon

prime vertical
Secondary to 

Prime vertical

P1

Figure 12.6: Aks.a-valana.

Now we consider a place with latitude, φ. Here the diurnal circle is inclined
to the chāyā-kot.i-vr. tta (the small circle parallel to the prime vertical) at an
angle ψ as shown in Figure 12.6. Then āks.a-valana, rs sinψ, is the distance
along the north-south direction from the point on the diurnal circle to the
chāyā-kot.i-vr. tta. Here rs represents the radius of the Sun’s disc (PQ, as
shown in the figure). The expression for R sinψ given in the Text is

R sinψ = R sinφ sinH. (12.26)

It is further mentioned that the aks. ām. śa of the natotkrama-jyā is given by

R(1 − cosH) sinφ.

This is the distance between PM on the celestial equator and the vertical
small circle passing through P ′, a point on the celestial equator correspond-
ing to hour angle H. This may be understood as follows. The distance be-
tween PM and the prime vertical is R sinφ. Similarly, the distance between
P ′ and the prime vertical is R sinφ cosH, as P ′E = 90◦ −H. Therefore, the
distance between PM and the small vertical circle is

R sinφ(1 − cosH).
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The correct expression for R sinψ may be obtained as follows. It may be
noted that ψ is also the angle between the secondaries to celestial equator
and prime vertical (whose pole is N) from P. In Figure 12.6, let PR = µ
(that is, PN = 90◦ + µ). In the spherical triangle PP1N ,

sin(PN)

sin(180 −H)
=

sinφ

sinψ
. (12.27)

Therefore,

sinψ =
sinφ sinH

cosµ
. (12.28)

The denominator in the RHS of the above equation could be determined
using the chāyā-bhujā given by3

sinµ = sin z sinA. (12.29)

In any case, R sinψ is the valana in the trijyā circle. Therefore, āks.a-valana,
which is the valana corresponding to radius of the solar disc, is given by

R sinψ

R
rs. (12.30)

In Figure 12.7(b), Ay is the āyana-valana and Ak is the āks.a-valana. If V
be the total valana, when Ay and Ak are in the same direction, it is given
by4

V = Ay +Ak. (12.31)

If they are in opposite direction, then

V = Ay ∼ Ak. (12.32)

So far, we have considered the case when there is no viks.epa. Considering
viks.epa, it may be noted that viks.epa+nati= β′, as shown in the Figure
12.7(a). This corresponds to the bimbāntara. Hence, viks.epa-valana at the
circumference of the disc is

β′ × Radius of solar disc

Bimbāntara
. (12.33)

The direction of the valana-s at the time of moks.a (release) will be opposite
to those at sparśa (contact).

3For details the reader may refer to section 11.14.
4However, Ay should be multiplied by cos φ to obtain valana in the north-south direc-

tion.
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Figure 12.7: Combined Valana.

12.8 Graphical chart of the eclipse

Valana is calculated for the times of commencement and culmination of the
eclipse, as well as for any other desired instant. Then, the eclipsed orb (solar
disc in the solar eclipse) is drawn and the local east-west line (chāyā-kot.i-
vr. tta) is drawn through its centre (as in Figure 12.8). Choose a point at a
distance of valana from the point on the eclipsed orb which is on the local
east-west line. The valana line passes through the chosen point and the
centre of the eclipsed orb. Draw the orb of the eclipsing planet with its
centre on the valana line at a distance of bimbāntara from the centre of the
eclipsed orb. Then, the eclipsed and bright portion of the eclipsed orb can
be easily found as indicated in Figure 12.8. Here it is not mandatory that
the valana corresponding to the actual radius of the eclipsed orb should be
calculated. It can be calculated for any suitable radius, and the valana line
can be drawn suitably.
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the eclipsing orb
corresponding to

Valana 

S

Figure 12.8: Graphical representation of eclipse.

12.9 Lunar eclipse

In the lunar eclipse, the Moon’s orb is being eclipsed and the Earth’s shadow
is the eclipser. The diameter of the Earth’s shadow at the path of the Moon is
called tamo-bim. ba (orb of darkness). As the Earth’s shadow and the Moon’s
orb are at the same distance from the Earth, the nati and lambana are the
same for the eclipser and the eclipsed. Hence, they cancel out and do not
figure in the calculation. All the other rules are the same for the solar and
lunar eclipses.

Thus the procedures for the computation of eclipses have been stated. It is
noted that there is a correction called paridhi-sphut.a for both the Sun and
the Moon. Nothing more is stated about its magnitude or nature, except
that it would affect the longitudes of the Sun and the Moon and thereby the
time of the eclipse.



Chapter 13

Vyat̄ıpāta

13.1 Occurence of Vyat̄ıpāta

Vyat̄ıpāta is said to occur when the (magnitudes of) declinations of the Sun
and Moon are equal, and when one of them is increasing and the other is
decreasing. This can happen when one of these bodies is in an odd quadrant,
and the other is in an even quadrant.

13.2 Derivation of declination of the Moon

A method of computing the declination of the Moon (which has a latitude)
has already been described. Here, a new method to compute the same is
described. The declination of the Sun is determined with the knowledge of
the intersection point (Γ in Figure 13.1) and the maximum divergence R sin ǫ
of the ecliptic and the celestial equator. Similarly, the declination of the
Moon can be determined if we know (i) the point where the celestial equator
and the viks.epa-vr. tta (lunar orbit) intersect, (ii) the maximum divergence
between them, and (iii) the position of the Moon on the viks.epa-vr. tta.

13.3 Viks.epa

The viks.epa-vr. tta will intersect the ecliptic at Rāhu (ascending node of the
Moon) and Ketu (descending node) and diverge northwards and southwards
respectively, from those points. A method to determine the intersection
point of the celestial equator and the viks.epa-vr. tta, and their maximum
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divergence, is described first in qualitative terms. For this, four distinct
cases are discussed.

P

o

i

ε

Ecli
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tta

V K 
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i

ε

Celestial Equator 

Figure 13.1: Moon’s orbit when the node Rāhu coincides with the vernal
equinox Γ.

Case 1: Rāhu at the vernal equinox:

Here, the maximum declination (ǫ) on the ecliptic and maximum viks.epa (i)
on the viks.epa-vr. tta are both on the north-south circle as shown in Figure
13.1. The maximum possible declination of the Moon on that day will be
equal to the sum of these two (ǫ+ i). Then, the declination of the Moon can
be determined with the knowledge of its position on the viks.epa-vr. tta, as the
inclination of viks.epa-vr. tta with the equator is (ǫ+ i). The viks.epa-pārśva

1 is
the northern pole (V0) of the viks.epa-vr. tta. When the Rāhu is at the vernal
equinox, the distance between this and the north celestial pole is equal to
(ǫ+ i).

The viks.epa-pārśva is the (north) pole of the viks.epa-vr. tta, just as the north
celestial pole is the pole of the celestial equator or the rāśi-kūt.a is the pole
of the ecliptic. Whatever be the position of Rāhu, the distance between the
celestial pole and the viks.epa-pārśva is equal to the maximum divergence
between the equator and the viks.epa-vr. tta.

1Though generally the term pārśva refers to a side, in the present context it is used to
refer to the pole.
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Figure 13.2: Moon’s orbit when the node Rāhu coincides with the winter
solstice.

Case 2: Rāhu at the winter (southern) solstice:

In this case, the viks.epa-vr. tta would be deflected towards the north from
the vernal equinox by the measure of maximum viks.epa as shown in Figure
13.2. The viks.epa-pārśva

2 would be deflected towards west from V0 and
would be at VW , with the arc length KVW = i. The distance between
the (celestial) pole P and VW is the viks.epāyanānta (I). The great circle
passing through P and VW is called viks.epāyana-vr. tta. Its intersection point
(DW ) with the celestial equator would be deflected west from the north-
south circle by the angle KP̂VW . The point of intersection of the viks.epa
and viks.epāyana-vr. tta-s corresponds to maximum declination of the Moon
in this set-up. The viks.epa-vis.uvat is the point of intersection of the viks.epa-
vr. tta and the celestial equator and is denoted by CW . CW is at 90◦ from
DW . CW Γ = KP̂VW is called viks.epa-calana. CW is situated west of the
vernal equinox when Rāhu is at winter solstice.

Case 3: Rāhu at the autumnal equinox:3

As depicted in Figure 13.3, the viks.epa-vr. tta would intersect the north-south
circle at a point north of the winter solstice by i, which is taken to be 41

2
◦

.
The viks.epa-pārśva, now at V ′, would also be deflected towards north from
K, and the distance between V ′ and P would be ǫ− i = 191

2

◦

. It is easy to

2It may be noted that this point VW lies on the other side of the celestial sphere.
3Autumnal equinox was approximately at the middle of the Kanyā-rāśi at the time of

composition of Yuktibhās. ā.
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Figure 13.3: Moon’s orbit when the node Rāhu coincides with the autumnal
equinox.

see that viks.epa-vis.uvat would coincide with the equinox now and there will
be no viks.epa-calana.

Case 4: Rāhu at the summer (northern) solstice:

This situation is depicted in Figure 13.4. Here, the viks.epa-pārśva VE is
deflected towards the east from V0, with KVE = i. The viks.epāyana-vr. tta
touches the equator at DE , which is deflected east from the north-south
circle. The viks.epa-vis.uvat is at CE and is east of the vernal equinox Γ.

V
K

P

DE

VE

CE

Ecliptic

Equator

Viksepa−vrtta

ο

Viksepayana−vrtta

Rahu

Figure 13.4: Moon’s orbit when the node Rāhu coincides with the summer
solstice.
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Thus the location of the viks.epa-pārśva, V , depends upon the position of
Rāhu. However, it is always at a distance of maximum viks.epa from the
northern rāśi-kūt.a (KV = i). The location of the southern viks.epa-pārśva
with respect to the southern rāśi-kūt.a can be discussed along similar lines.

13.4 Viks.epa-calana

λ N

O

K

V

PV’

ε

Celestial Equator

V’Vo

Vo V

M T

UT
(b)

(a)

Perpendicular cross section
of this portion is shown in (b)

Figure 13.5: The distance between viks.epa-pārśva and the north celestial
pole.

Here the method to determine the distance between the (north) celestial pole
and the viks.epa-pārśva is described in broad terms first. Consider Figure
13.5. The viks.epa-pārśva is at V0 separated from K by the maximum viks.epa
i. Drop a perpendicular V0T from V0 to OK, where O is the centre of the
sphere. As the arc V0K = i, V0T = R sin i. Draw a circle with radius R sin i
centered at T in the plane perpendicular to OT . This is the viks.epa-pārśva-
vr. tta. It may be noted that this circle (shown separately in Figure 13.5(b)
will be parallel to the plane of the ecliptic.4) Mark a point V on this circle

4In the figure V M is along the east-west line and is perpendicular to the plane of the
figure.
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such that the angle corresponding to the arc V0V is the longitude of Rāhu,
λN . Drop a perpendicular TU from T to the aks.a-dan. d. a OP . Conceive a
circle with U as the centre and TU as the radius in the plane perpendicular
to OP . The relationship between this circle and the viks.epa-pārśva-vr. tta is
the same as that of the kaks.yā-vr. tta and the ucca-n̄ıca-vr. tta. Now,

OT = R cos i,

and TU = OT sin ǫ = R cos i sin ǫ,

is the radius of the kaks.yā-vr. tta. Draw VM perpendicular to V0T . Then,
VM = R sin i sinλN and MT = R sin i cos λN play the role of bhujā-phala
and kot.i-phala respectively in the determination of V U , which is the karn. a.
It must be noted that VM is along the east-west direction and perpendicular
to the plane of the figure. It is the distance between V and the north-south
circle. When the Rāhu is between Makarādi and Karkyādi (or equivalently
λN is between 270◦ and 90◦), the kot.i-phala has to be added to the repre-
sentative of trijyā which is TU . Similarly, when it is between Karkyādi and
Makarādi (λN is between 90◦ and 270◦ ), the kot.i-phala is to be subtracted.
(Actually the kot.i-phala has to be projected along TU before this is done;
this becomes clear in the next section). When Rāhu is at the vernal equinox,
viks.epa-pārśva is at V0 and V P would be maximum. Similarly, when Rāhu
is at the autumnal equinox, viks.epa-pārśva is at V ′ and V P is minimum.

The viks.epa-pārśva is in the eastern part of the sphere (or to the east of
the north-south circle), when Rāhu moves from the vernal equinox to the
autumnal equinox (or λN is between 0◦ and 180◦). Then the viks.epa-vis.uvat
is situated east of the equinox, and viks.epa-calana is to be subtracted (from
the longitude of the Moon) while calculating Moon’s declination. Similarly,
the viks.epa-vis.uvat is situated west of the equinox, when the Rāhu moves
from the autumnal equinox to the vernal equinox (or λN is between 180◦

and 360◦), and viks.epa-calana is to be added (to the longitude of the Moon)
while calculating Moon’s declination.

13.5 Karn. ānayana

In Figure 13.6, the points V0, V , T (centre of the viks.epa-pārśva-vr. tta), M
and U have the same significance as in Figure 13.5. MV is perpendicular to
the plane of the figure. Draw MU ′ fromM , perpendicular to the aks.a-dan. d. a,
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Figure 13.6: The inclination of the Moon’s orbit with the equator.

OP . VM is perpendicular to the plane of the figure and hence to OP , and
MU ′ is also perpendicular to OP . Hence V U ′M is a triangle, right angled
at M , and in a plane perpendicular to OP . Therefore, V U ′ is perpendicular
to OP and is the desired distance, R sin I, between V and aks.a-dan. d. a. Let
MM ′ be perpendicular to UM ′ which is the extension of UT . The angle
between TM ′ and TM is ǫ. It is clear that MU ′ = M ′U . Therefore,

M ′U = M ′T + TU

= MT cos ǫ+R cos i sin ǫ

= R sin i cos λN cos ǫ+R cos i sin ǫ, (13.1)

where MT is the kot.i-phala discussed in the previous section. It may be seen
that MV = R sin i sin λN , is the bhujā-phala. Then,

V U ′ =
√

(MV )2 + (MU ′)2

=
√

(R sin i sinλN )2 + (R sin i cos λN cos ǫ+R cos i sin ǫ)2. (13.2)

Clearly V U ′ = R sin I, where I is the angle corresponding to the arc V P .
Hence,

R sin I =
√

(R sin i sinλN )2 + (R sin i cos λN cos ǫ+R cos i sin ǫ)2. (13.3)

This is the maximum declination, or the maximum divergence between the
equator and the viks.epa-vr. tta (viks.epāyanānta).



13.6 Determination of Viks.epa-calana 817

λ N

λ N

18
0−

K

P

V

I

ε

i
Vo

Figure 13.7: Spherical trigonometric derivation of the inclination.

Note: Equation (13.3) can be derived using spherical trigonometrical results
as follows: In Figure 13.7, consider the spherical triangle V KP , with KV =
i, KP = ǫ, V P = I and the spherical angle at K being 180◦ − λN (as
V0K̂V = λN ). Then, applying the cosine formula to the side V P ,

cos I = cos i cos ǫ+ sin i sin ǫ cos(180 − λN )

= cos i cos ǫ− sin i sin ǫ cos λN . (13.4)

From this, it can be easily shown that

sin I =
√

(sin i sin λN )2 + (sin i cos λN cos ǫ+ cos i sin ǫ)2, (13.5)

which is the same as (13.3).

13.6 Determination of Viks.epa-calana

In Figure 13.8, the viks.epāyana-vr. tta cuts the equator at D. The viks.epa-
vis.uvat is at C which is at 90◦ from D. Hence the viks.epa-calana is ΓC = DN ,
which is the arc corresponding to KP̂V = ψ. Now ψ is the inclination of
viks.epāyana-vr. tta with the north-south circle. The distance between V and
the north-south circle is VM5 and is given by

VM = R sin i sin λN . (13.6)

5The point M is the foot of perpendicular from V to the plane of the north-south circle,
which is the same as the plane of the paper.
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This is the bhujā-phala related to ψ and I through the relation

VM = R sin i sinλN = R sin I sinψ. (13.7)

Ch
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Figure 13.8: The change in the deflection or Viks.epa-calana.

Hence, viks.epa-calana is the arc corresponding to

R sinΓC = R sinψ =
R sin i sinλN

sin I
. (13.8)

Viks.epa-calana is to be applied to the sāyana-candra to obtain the distance
between the viks.epa-vis.uvat (C) and the Moon on the viks.epa-vr. tta (Ch),
that is CCh. Then the declination of the Moon, R sin δM , is given by

R sin δM = R sinC ′

hCh = R sin I sin(CCh), (13.9)

as I is the inclination and CCh is the arc.

Here, it is not specified how the viks.epa-calana is actually applied to the
sāyana-candra to obtain the arc CCh along the lunar orbit (viks.epa-vr. tta).
In Tantrasaṅgraha (VI, 3–6), the declination of the Moon is stated to be
R sin(λM −ΓC) sin I, where λM is the sāyana longitude of the Moon (ΓQ in
Figure 13.8) and ΓC is the viks.epa-calana. Perhaps, this is what is implied
here also. This could be understood as follows, when the inclination of
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Moon’s orbit is taken to be very small.

CCh = ChR+RC, (where R is Rāhu)

= ChR+ ΓR+ CR− ΓR

≈ RQ+ ΓR− (ΓR− CR)

= ΓQ− (ΓR− CR)

≈ ΓQ− ΓC

= λM − ΓC. (13.10)

Here we have taken RCh ≈ RQ and ΓR− CR ≈ ΓC. These are fairly good
approximations, to the first order in the inclination i, as cos i is taken to be
1 in both the cases. Hence,

R sin δM = R sin I sin(λM − ΓC). (13.11)

13.7 Time of Vyat̄ıpāta

13.8 Derivation of Vyat̄ıpāta

As already stated, vyat̄ıpāta occurs when the declinations of the Moon (cal-
culated as above, taking into account viks.epa-calana) and the Sun are equal,
and when one of them is in the odd quadrant, and the other in the even quad-
rant. First, the instant of vyat̄ıpāta is estimated in an approximate manner
from the longitudes of the Sun and Moon on any day. This approximate
instant is the zeroth approximation and is denoted by t0. The declination
of the Sun is given by

R sin δs = R sin ǫ sinλS . (13.12)

The declination of the Moon is calculated using the procedure described in
the previous sections, and that is equated to the declination of the Sun as
follows:

R sin δM = R sin I sin(λM − ΓC) = R sin ǫ sinλs. (13.13)
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From this, the longitude of the Moon, λM is calculated from the arc corre-
sponding to the expression below (and adding the viks.epa-calana):

R sin(λM − ΓC) =
R sin ǫ sinλs

sin I
. (13.14)

λM , calculated in this manner from the Sun’s longitude (and other quan-
tities), would not coincide with λM calculated directly, as the instant of
vyat̄ıpāta is yet to be found. If λM (from Sun) > λM (direct), and the Moon
is in the odd quadrant, the declination of the Moon is less than that of the
Sun and the vyat̄ıpāta is yet to occur. Similarly, the vyat̄ıpāta has already oc-
curred if λM (from Sun) < λM (direct), with the Moon in the odd quadrant.
In the even quadrant, it is the other way round.

In any case, ∆θ1 = λM (Sun) - λM (direct), is found. This is the angle to
be covered. As the Sun and Moon are moving in opposite directions for
vyat̄ıpāta, the above is divided by the sum of the daily motions of the Sun
and the Moon to obtain the instant at which vyat̄ıpāta will occur as a first
approximation. That is, the approximation for the instant of vyat̄ıpāta is
t1 = t0 + ∆t1, where

∆t1 =
∆θ1

λ̇M + λ̇S

=
λM (Sun) − λM (direct)

λ̇M + λ̇S

, (13.15)

where λ̇M and λ̇S are the daily motions of the Moon and Sun respectively
at t0. The above result which is in units of days has to be multiplied by 60
to obtain it in nād. ikā-s.

The longitudes of the Sun or Moon are calculated at t1 by multiplying ∆t1
by λ̇S or λ̇M and adding the results to λS or λM at t0. In the case of
Moon’s node, ∆t1 should be multiplied by λ̇N (daily motion of the node)
and subtracted from λN at t0, as the motion of Moon’s node is retrograde.
Again, the longitude of the Moon is calculated from that of the Sun by
equating its declination with that of the Sun, and ∆θ2 = λM (Sun) − λM

(direct) is found. Then, the next approximation for the instant of vyat̄ıpāta
is

t1 + ∆t2 = t0 + ∆t1 + ∆t2, (13.16)

where,

∆t2 =
∆θ2

λ̇M + λ̇S

. (13.17)
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This iteration procedure is carried on till the longitude of the Moon as calcu-
lated from that of the Sun (by equating the declination) and that obtained
directly, are equal (to the desired accuracy). Thus,

t = t0 + ∆t1 + ∆t2 . . . , (13.18)

is the instant of vyat̄ıpāta where the declinations of the Sun and Moon are
equal. At any stage, ∆t is positive or negative, when λM (Sun) is greater or
less than λM (direct), when the Moon is in an odd quadrant (that is, when
its declination keeps increasing with time). It is the other way round, when
Moon is in an even quadrant. Thus, it is clear that vyat̄ıpāta can occur only
when the declination circle of some part of Moon’s orb is identical with that
of a part of Sun’s orb at the same instant.6

6Towards the end of the chapter, it is stated that the duration of vyat̄ıpāta is 4 nād. ikā-s.
What this means is not clear and perhaps this cannot be true. The procedure for calcu-
lating the half-duration of vyat̄ıpāta is described in Tantrasaṅgraha.



Chapter 14

Maud. hya and Visibility Correction
to Planets

Here, the lagna corresponding to the rising and setting of a planet hav-
ing a latitudinal deflection (viks.epa), is calculated. The visibility correction
(darśana-sam. skāra) is the correction that should be applied to the longitude
of the planet to obtain the lagna corresponding to the rising and setting of
the planets.

14.1 Computation of visibility correction

Consider the situation in Figure 14.1 when the point L on the ecliptic, having
the same longitude as the planet P , is on the horizon, or L is the lagna. The
planet P has a (northern) latitude β and PP ′ is the viks.epa-kot.i-vr. tta parallel
to the ecliptic, with C as the centre. K1PL and K1P

′L′ are the arcs of the
rāśi-kūt.a-vr. tta-s passing through P and P ′ (point in the viks.epa-kot.i-vr. tta
on the horizon) respectively. Here K1 is the northern rāśi-kūt.a. V is the
dr. kks.epa whose zenith distance is ZV = zv , also referred to as dr. kks.epa.
ZK1MM ′ is a vertical circle and it is clear that

ZK1 = 90◦ − zv, K1M = zv and MM ′ = P ′L̂L′ = 90◦ − zv .

As L is at 90◦ from both Z and K1, it is the pole of the vertical Z1KMM ′.
Hence, LM = LK1 = 90◦ and K1L̂P

′ = zv.

Now, drop a perpendicular PF from P to the plane of the horizon. Clearly,
PF is the śaṅku of P , whose zenith distance is ZP = z. Also, the arc LP = β
(latitude of the planet) is inclined at an angle, PL̂M = K1L̂M = zv , with
the arc LP̂ ′M . Therefore,

PF = R cos z = R sin zv sin β. (14.1)
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Figure 14.1: Visibility correction when the planet has latitude and the north-
ern K1 is above the horizon.

Draw P ′P1 perpendicular to CP and P1F1 perpendicular to OL. It is clear
that P1F1 = PF = R cos z. Now, P1F1P

′ is a right angled triangle with
P1P̂ ′F1 = 90◦ − zv, and this is the angle between the viks.epa-kot.i-vr. tta and
the horizon, which is the same as the angle between the ecliptic and the
horizon. Hence,

P ′P1 =
P1F1

sin(90◦ − zv)

=
R cos z

cos zv

=
R sin zv sin β

cos zv
. (14.2)

This is the distance between the planet and the horizon on the viks.epa-kot.i-
vr. tta.
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14.2 Rising and setting of planets

Consider the angle θ between the rāśi-kūt.a-vr. tta-s K1PL and K1P
′L′ in

Figure 14.1. It corresponds to the arc LL′ on the ecliptic and

θ = PĈP ′ = LÔL′. (14.3)

Now, the planes of the viks.epa-kot.i-vr. tta and ecliptic are parallel and, just
as P ′P1 is perpendicular to CP, L′F1 is perpendicular to OL. Hence,

L′F1 = R sin θ. (14.4)

As the radius of the viks.epa-kot.i-vr. tta is R cos β,

P ′P1 = CP ′ sin θ = R cosβ sin θ. (14.5)

Hence,

R sin θ =
P ′P1

cos β
=
R sin zv sin β

cos zv cos β
. (14.6)

From this, the arc LL′ = θ is obtained. This formula is the same as the
one for cara, with zv replacing the latitude of the place, and β replacing the
declination δ.

Now consider the situation when the planet is at P ′ on the horizon, i.e., it
is rising. Then, the lagna ΓL is given by

ΓL = ΓL′ − LL′

= Longitude of the planet − θ, (14.7)

where the arc LL′ = θ is calculated as above. So, the visibility correction
(θ), is subtracted in this case. When the planet has a southern latitude,
which is also shown in Figure 14.1, the visibility correction θ, which is the
angle between the rāśi-kūt.a-vr. tta-s passing through the planet at P ′′ and the
lagna at L, is calculated in the same manner. In this case, the lagna is given
by

ΓL = ΓL′′ + LL′′

= Longitude of the planet + θ, (14.8)

and hence, the correction has to be added.



14.2 Rising and setting of planets 825

At the setting, there is reversal of addition and subtraction. In fact, the
same figure can be used, with the only difference being that ΓL and ΓL′ are
westwards now. As the longitude is always measured eastwards, it is clear
that when the viks.epa is north, the lagna will be greater than the longitude of
the planet (visibility correction is added). Similarly, the visibility correction
is subtracted when the latitude is south.
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Figure 14.2: Visibility correction when the planet has latitude and the south-
ern K2 is above the horizon.

It may be noted that the dr. kks.epa V is south, when the northern rāśi-kūt.a
K1 is above the horizon (Figure 14.1). In Figure 14.2, the situation when the
southern rāśi-kūt.a K2 is above the horizon is displayed. Here, the dr. kks.epa
is north. P ′ and P ′′ correspond to raising points of a planet with northern
and southern latitudes respectively, and L is the lagna. Then the ‘visibility
correction’ is LL′ when the planet has a northern latitude and it has to
be added to the longitude of the planet (ΓL′) to obtain the lagna (ΓL).
Similarly, the visibility correction is LL′′, when the planet has a southern
latitude and it has to be subtracted from the longitude of the planet(ΓL′′)
to obtain the lagna (ΓL). Hence, this is the reverse of the situation when
the northern rāśi-kūt.a is above the horizon.

In both the cases, the darśana-sam. skāra (visibility correction) should be
added to the planet’s longitude when the directions of the viks.epa and the
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dr. kks.epa are the same, and subtracted from it when the directions of these
two are opposite, to obtain the lagna. At the setting we have the reverse
situation.

14.3 Planetary visibility

Having determined the lagna at the rising and setting of a planet, the corre-
sponding kāla-lagna is determined (as described in Chapter 11). The differ-
ence in kāla-lagna-s of the planet and the Sun (in terms of minutes of time)
is found. The planet is visible only when this difference is more than a spec-
ified measure.1 The method for obtaining the madhya-lagna of a planet with
viks.epa is stated to be similar. The madhya-lagna does not depend on the
latitude of the place, as it is the meridian ecliptic point, and the meridian
or the north-south circle is the same for places with or without latitude.

1This measure is not specified in this Text, whereas in chapter 7 of Tantrasaṅgraha,
the minimum angular separation in degrees for visibility are specified to be 12, 17, 13, 11,
9 and 15 for the Moon, Mars, Mercury, Jupiter, Venus and Saturn respectively.



Chapter 15

Elevation of the Moon’s Cusps

Though the title of this short chapter is candra-śr. ṅgonnati or ‘Elevation
of the Moon’s Cusps’, it is exclusively devoted to the computation of the
distance between the centres of the lunar and solar discs (bimbāntara). The
bimbāntara of course figures prominently in the computations of the Moon’s
phase and the elevation of its cusps, but these are not discussed in the Text
as available.

15.1 The Dvit̄ıya-sphut.a-karn. a of the Sun and the

Moon

In chapter 11, prior to the discussion on chāyā-lambana, the calculation
of dvit̄ıya-sphut.a-karn. a (section 11.36) which is the actual distance of the
Sun and the Moon from the centre of the Earth, after taking into account
the ‘second correction’ (essentially, the evection term), was discussed. The
second correction has to be applied to the manda-sphut.a of the Moon, to
obtain the true longitude. (In the case of the Sun, there is no correction
to the manda-sphut.a, as the mandocca of second correction is in the same
direction as manda-sphut.a of the Sun). Here the view of Siddhāntaśekhara
(of Śr̄ıpati) is quoted.1

The dr. kkarn. a, or the distance of the planet from the observer on the surface
of the Earth, is obtained from the dvit̄ıya-sphut.a-karn. a as in chapter 11. The
nati (parallax in latitude) and lambana (parallax in longitude) of the Sun

1It is also stated that according to Laghumānasa (by Muñjāla) “the antya-phala of the
Moon is to be multiplied by Moon’s manda-karn. a and five and divided by trijyā”.
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and Moon are found from the dr. kkarn. a. The longitudes are corrected for
lambana. From the corrected longitudes and the nati, the distance between
the centres of the solar and lunar spheres is to be computed, as outlined
below.

15.2 Distance between the orbs of the Sun and the

Moon

through the Sun
Rasi−kuta−vrtta

(north−south circle)

S

M

M"

Ecliptic

M’

K (pole of the ecliptic)

Q’

Q

S"
P

θ
β

O

Rasi−kuta−vrtta

Horizon

through the Moon

S’

Figure 15.1: Calculation of bimbāntara, the distance between the orbs of the
Sun and the Moon.

In Figure 15.1, the Sun S without nati is conceived to be at the zenith and
the ecliptic is conceived as the prime vertical with its poles on the North and
South points. The rāśi-kūt.a-vr. tta through the Sun will be the north-south
circle. (In the figure, the ecliptic which is the prime vertical is in the plane
of the paper). If O is the center of the sphere, OS is the vertical line.

Case 1: Consider the Sun without nati at S, and the Moon without viks.epa
at M . Draw MQ perpendicular to the vertical line. If θ is the difference in
their longitudes,

MQ = R sin θ = Bhujā-jyā

SQ = R(1 − cos θ) = Śara. (15.1)
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In this case, it is clear that

Bimbāntara = SM =
√
MQ2 + SQ2

=

√
(Bhujā-jyā)2 + (Śara)

2
. (15.2)

Case 2: Now consider the Moon with latitude β at M ′ and the Sun without
nati.2 From M ′ draw M ′M ′′ perpendicular to OM . Clearly,

MÔM ′ = β = latitude (cāpa of viks.epa),

M ′M ′′ = R sinβ = viks.epa,

MM ′′ = R(1 − cos β) = viks.epa-śara,

OM ′′ = R cosβ. (15.3)

Now we have to find the distance between M ′ and S. From M ′′ drop per-
pendiculars M ′′P and M ′′Q′ on MQ and OS respectively. Then,

M ′′Q′ = PQ = R cos β sin θ. (15.4)

Equation (15.4) can also be obtained as follows:

MP = MM ′′ sin θ

= R(1 − cosβ) sin θ

= Bhujā-phala of viks.epa-śara. (15.5)

Hence,

M ′′Q′ = PQ = MQ−MP

= R sin θ −R(1 − cos β) sin θ

= R cos β sin θ. (15.6)

Now,

QQ′ = PM ′′ = MM ′′ cos θ

= R cos θ(1 − cos β)

= kot.i-phala of viks.epa-śara, (15.7)

2The difference in the longitudes of the Sun and Moon is assumed to be less than 90◦.
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which can also be computed from

QQ′ = PM ′′ =
√
MM ′′2 − PM2

=

√
R2(1 − cos β)2 −R2(1 − cos β)2 sin2 θ

= R cos θ(1 − cos β). (15.8)

SQ′ is the distance between the Sun and the foot of the bhujā-jyā (Q′), which
is drawn from the foot of the viks.epa (M ′′). It is given by

SQ′ = SQ+QQ′

= R(1 − cos θ) +R cos θ(1 − cos β)

= R(1 − cos θ cos β). (15.9)

Then, SM ′′ which is the distance between the Sun and the foot of the viks.epa,
is given by

SM ′′ =
√
SQ′2 +M ′′Q′2

=

√
R2(1 − cos θ cos β)2 +R2 sin2 θ cos2 β. (15.10)

Now the viks.epa M
′M ′′ is perpendicular to the plane of the ecliptic and is

perpendicular to SM ′′. Therefore,

SM ′2 = SM ′′2 +M ′M ′′2

= R2(1 − cos θ cosβ)2 +

R2 sin2 θ cos2 β +R2 sin2 β. (15.11)

SM ′ which is the square root of this is the distance between the Sun, S
(without nati) and the Moon M ′ (with viks.epa).

Case 3: Now consider the case when the Sun has nati and it is at S′,
separated from the ecliptic by the arc SS′ = ηs. Drop a perpendicular S′S′′

from S′ to the vertical, OS. S′S′′ is perpendicular to the ecliptic and to OS.
Then,

S′S′′ = R sin ηs = nati, (15.12)

and SS′′ = R(1 − cos ηs)

= Arkonnati-śara. (15.13)

Then,

S′′Q = SQ− SS′′

= Sphut.a-śara − Arkonnati-śara

= R(1 − cos θ) −R(1 − cos ηs), (15.14)
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is the vertical distance between the base of the nati-śara and the base of the
bhujā-jyā. It may be noted that

QQ′ = kot.i-phala of Moon’s ks.epa-śara

= R cos θ(1 − cos β). (15.15)

Then,

S′′Q′ = S′′Q+QQ′

= R(1 − cos θ)−R(1 − cos ηs) +R cos θ(1 − cos β)

= r1, (15.16)

is one quantity (rāśi), which is the vertical distance between the Sun and
the Moon.

The horizontal distance M ′′Q′ between the Sun and the Moon in the plane
of the ecliptic is the second quantity given by,

r2 = M ′′Q′ = R(1 − cos θ cosβ). (15.17)

Clearly,

S′′M ′′ =
√
r21 + r22. (15.18)

The sum or difference of the nati-s of the Sun and Moon is the third quantity,
r3. This is the distance between the Sun and the Moon along the line
perpendicular to the ecliptic (plane of the paper in Figure 15.1). If the
nati-s are in the same direction with respect to the ecliptic, the difference is
to be considered. If they are in the opposite directions, the sum of the nati-s
is to be taken. In Figure 15.1, where both the nati-s are above the plane of
the paper, we have

r3 = M ′M ′′ − S′S′′ = R sin β −R sin ηs. (15.19)

Then the bimbāntara or the distance S′M ′ between the centres of the lunar
and solar discs is given by

Bimbāntara =
√
r21 + r22 + r23. (15.20)

This can be understood as follows:

In Figure 15.2, S′′M ′′ is in the plane of the ecliptic (of the paper). S′′S′ and
M ′′M ′ are perpendicular to the plane of the paper. Let

M ′′T = S′′S′ = Nati of Sun.
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Figure 15.2: The actual distance between the apparent Sun and the Moon.

Then,

TM ′ = M ′′M ′ −M ′′T

= Difference in nati − s

= r3. (15.21)

S′T is a line parallel and equal in length to S′′M ′′ and TM ′ is perpendicular
to it. Hence,

S′M ′ =
√
S′T 2 + TM ′2

=
√
S′′M ′′2 + TM ′2

=
√
r21 + r22 + r23. (15.22)

Hence, r1, r2 and r3 are essentially the differences in the coordinates of the
Sun and the Moon along the vertical, east-west (horizontal direction in the
plane of the paper), and the north-south directions respectively. This is the
rationale for the expression for the bimbāntara.

Case 4: Now consider the case when the difference between the longitudes
of the Sun and Moon is more than 90◦. In this case, the treatment is similar
except that the zenith Z is conceived to be situated exactly midway between
the Sun and the Moon, without viks.epa or nati, at S and M respectively
(see Figure 15.3). The line SM cuts the vertical at Q. As the arcs ZM and
ZS are both equal to half the difference in longitudes, we have

MQ = QS = R sin

(
θ

2

)

= Bhujā-jyā of Moon/Sun. (15.23)
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Figure 15.3: The distance between the Sun and the Moon when their differ-
ence in longitudes is 90◦.

In Figure 15.3, M ′ and S′ are the true Moon and Sun with viks.epa and nati.
M ′′ and S′′ are at the feet of the viks.epa (arc β) and nati (arc ηs) on the
sūtra-s of Moon and Sun respectively. M ′′Q′ and S′′R′ are the perpendiculars
from M ′′ and S′′ respectively on the vertical OZ. M ′′P1 and S′′P2 are
perpendiculars from M ′′ and S′′ on MS. Now,

QQ′ = Kot.i-phala of Moon’s śara

= R cos

(
θ

2

)
(1 − cos β), (15.24)

and QR′ = Kot.i-phala of Sun’s śara

= R cos

(
θ

2

)
(1 − cos ηs). (15.25)

R′Q′, which is the difference between the feet of the perpendiculars from S′′

and M ′′ on the vertical line, is given by the relation:

R′Q′ = QQ′ −QR′

= r1. (15.26)

This is the difference between kot.i-phala-s of the śara-s of Sun and Moon,
and is the first quantity.
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Now,

M ′′Q′ = MQ−MP1

= R sin

(
θ

2

)
−R sin

(
θ

2

)
(1 − cos β)

= R sin

(
θ

2

)
cos β, (15.27)

is the Rsine of half the longitude difference from which the dorjyā-phala of
Moon’s śara has been subtracted.

Similarly,

S′′R′ = SQ− SP2

= R sin

(
θ

2

)
−R sin

(
θ

2

)
(1 − cos ηs)

= R sin

(
θ

2

)
cos ηs, (15.28)

is the Rsine of half the longitude difference from which the dorjyā-phala of
Sun’s śara has been subtracted. The sum of the above two is the second
quantity:

r2 = M ′′Q′ + S′′R′

= R sin

(
θ

2

)
cos β +R sin

(
θ

2

)
cos ηs. (15.29)

The third quantity (r3), is the sum or difference in nati-s of the Sun and
Moon:

r3 = M ′M ′′ ∼ S′S′′ (same direction),

r3 = M ′M ′′ + S′S′′ (opposite directions). (15.30)

Then bimbāntara, S′M ′, is given by the square root of the sum ofv the
squares of the above three quantities r1, r2 and r3:

S′M ′ =
√
r21 + r22 + r23. (15.31)

Here the third quantity r3, which is the sum or difference of the nati-s, is the
‘north-south’ separation between the Sun and the Moon. The second quan-
tity r2, which is the sum of M ′′Q′ and S′′R′ (nati-phala-tyāga-vísis. t.āntara-
ardhajyānām. yogam. ), is the ‘east-west’ separation between them. The first
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quantity r1, which is the distance between the feet of the perpendiculars from
the Sun and the Moon on the vertical (nati-śarān. ām. kot.i-phalāntaram ūrdhvā-
dhobhāḡıya-antarālam), is the ‘vertical’ separation between them. Hence,

Bimbāntara = S′M ′ =
√
r21 + r22 + r23. (15.32)

The same procedure is used in the derivation of the separation of the orbs
in the computation of eclipses.

The Text (as presently available) ends at this point without going further
into the details of the calculation of Śr. ṅgonnati, which may be found in other
texts such as Tantrasaṅgraha.
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Epilogue

Revision of Indian Planetary Model by
Nīlakan. t.ha Somayāj̄i (c. 1500 AD)∗

It is now generally recognised that the Kerala School of Indian astronomy,1

starting with Mādhava of Saṅgamagrāma in the fourteenth century, made
important contributions to mathematical analysis much before this subject
developed in Europe. The Kerala astronomers derived infinite series for π,
sine and cosine functions and also developed fast convergent approximations
to them. Here, we shall discuss how the Kerala School also made equally
significant discoveries in astronomy, in particular, planetary theory.

Mādhava’s disciple Parameśvara of Vat.asseri (c. 1380-1460) is reputed to
have made continuous and careful observations for a period of over fifty-
five years. He is famous as the originator of the Dr. g-gan. ita system, which
replaced the older Parahita system. Nı̄lakan. t.ha Somayāj̄ı of Tr.kkan. t.iyur
(c. 1444-1550), disciple of Parameśvara’s son Dāmodara, carried out an even
more fundamental revision of the traditional planetary theory. In his treatise
Tantrasaṅgraha (c. 1500), Nı̄lakan. t.ha Somayāj̄ı presents a major revision
of the earlier Indian planetary model for the interior planets Mercury and
Venus. This led Nı̄lakan. t.ha Somayāj̄ı to a much better formulation of the
equation of centre and the latitude of these planets than was available either
in the earlier Indian works or in the Islamic or the Greco-European traditions

∗The material in this Epilogue is based on the following sources, which may be consulted
for details: (i) K. Ramasubramanian, M. D. Srinivas and M. S. Sriram, ‘Modification of
the Earlier Indian Planetary Theory by the Kerala Astronomers (c. 1500 AD) and the
Implied Heliocentric Picture of Planetary Motion’, Current Science 66, 784-790, 1994;
(ii) M. S. Sriram, K. Ramasubramanian and M. D. Srinivas (eds.), 500 years of Tantra-

saṅgraha: A Landmark in the History of Astronomy, Shimla 2002, p. 29-102.
1For the Kerala School of Astronomy, see for instance, K. V. Sarma, A Bibliography

of Kerala and Kerala-based Astronomy and Astrology, Hoshiarpur 1972; K. V. Sarma, A

History of the Kerala School of Hindu Astronomy, Hoshiarpur 1972.



838 Revision of Indian Planetary Model

of astronomy till the work of Kepler, which was to come more than a hundred
years later.

Nı̄lakan. t.ha Somayāj̄ı was the first savant in the history of astronomy to
clearly deduce from his computational scheme and the observed motion of
the planets – and not from any speculative or cosmological arguments –
that the interior planets go around the Sun and the period of their motion
around Sun is also the period of their latitudinal motion. He explains in
his Āryabhat. ı̄ya-bhās.ya that the Earth is not circumscribed by the orbit of
the interior planets, Mercury and Venus; and the mean period of motion in
longitude of these planets around the Earth is the same as that of the Sun,
precisely because they are being carried around the Earth by the Sun. In his
works, Golasāra and Siddhāntadarpan. a, Nı̄lakan. t.ha Somayāj̄ı describes the
geometrical picture of planetary motion that follows from his revised model,
where the five planets Mercury, Venus, Mars, Jupiter and Saturn move in
eccentric orbits around the mean Sun, which in turn goes around the Earth.
Most of the Kerala astronomers who succeeded Nı̄lakan. t.ha Somayāj̄ı, such
as Jyes.t.hadeva, Acyuta Pis.ārat.i, Putumana Somayāj̄ı, etc., seem to have
adopted this revised planetary model.

1 The conventional planetary model of Indian as-
tronomy

In the Indian astronomical tradition, at least from the time of Āryabhat.a
(499 AD), the procedure for calculating the geocentric longitudes for the five
planets, Mercury, Venus, Mars, Jupiter and Saturn involves essentially the
following steps.2 First, the mean longitude (called the madhyama-graha) is
calculated for the desired day by computing the number of mean civil days
elapsed since the epoch (this number is called the ahargan. a) and multiplying
it by the mean daily motion of the planet. Then, two corrections namely
the manda-sam. skāra and ś̄ıghra-sam. skāra are applied to the mean planet
to obtain the true longitude.

2For a general review of Indian astronomy, see D. A. Somayāj̄ı, A Critical Study of

Ancient Hindu Astronomy, Dharwar 1972; S. N. Sen and K. S. Shukla (eds), A History

of Indian Astronomy, New Delhi 1985 (Rev. Edn. 2000); B. V. Subbarayappa, and
K. V. Sarma (eds.), Indian Astronomy: A Source Book, Bombay 1985; S. Balachandra
Rao, Indian Astronomy: An Introduction, Hyderabad 2000.
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In the case of the exterior planets, Mars, Jupiter and Saturn, the manda-
sam. skāra is equivalent to taking into account the eccentricity of the planet’s
orbit around the Sun. Different computational schemes for the manda-
sam. skāra are discussed in Indian astronomical literature. However, the
manda correction in all these schemes coincides, to first order in eccentric-
ity, with the equation of centre as currently calculated in astronomy. The
manda-corrected mean longitude is called manda-sphut.a-graha. For the ex-
terior planets, the manda-sphut.a-graha is the same as the true heliocentric
longitude.

The ś̄ıghra-sam. skāra is applied to this manda-sphut.a-graha to obtain the
true geocentric longitude known as sphut.a-graha. The ś̄ıghra correction is
equivalent to converting the heliocentric longitude into geocentric longitude.
The exterior and interior planets are treated differently in applying this
correction. We shall now briefly discuss the details of the manda-sam. skāra
and the ś̄ıghra-sam. skāra for the exterior and the interior planets respectively.

1.1 Exterior planets

For the exterior planets, Mars, Jupiter and Saturn, the mean heliocentric
sidereal period is identical with the mean geocentric sidereal period. Thus,
the mean longitude calculated prior to the manda-sam. skāra is the same as
the mean heliocentric longitude of the planet as we understand today. As
the manda-sam. skāra, or the equation of centre, is applied to this longitude
to obtain the manda-sphut.a-graha, the latter will be the true heliocentric
longitude of the planet.

The manda-sam. skāra for the exterior planets can be explained using a simple
epicycle model3 as shown in Figure 1. Here O is the centre of the concentric
circle called kaks.yā-man. d. ala. P0 is the mean planet on the concentric, and
P is the true planet (manda-sphut.a) on the epicycle. OU is the direction
of mandocca or the aphelion. PP0 = OU = r, is the radius of the epicycle
and OP0 = R is the radius of the concentric. OP = K is the manda-karn. a.
The longitudes are always measured in Indian astronomy with respect to a
fixed point in the zodiac known as the nirayan. a-mes. ādi denoted by A in the
figure.

3Equivalently this can be explained with an eccentric model also.
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AÔP0 = θ0 (mean longitude of the planet)

AÔU = θu (longitude of mandocca)

AÔP = θms (manda-sphut.a).
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Figure 1: The manda-sam. skāra.

The difference between the longitudes of the mean planet and the mandocca,
namely,

µ = θ0 − θu, (1)

is called the manda-kendra (anomaly) in Indian astronomy. From the trian-
gle OP0P we can easily obtain the result

sin(θms − θ0) =
r

K
sinµ. (2)

An important feature of the Indian planetary models, which was specially
emphasised in the texts of the Āryabhat.an School, is that the radius of the
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epicycle r is taken to vary in the same way as the manda-karn. a K, so that
their ratio is constant

r

K
=
r0
R
,

where r0 is the tabulated or the mean radius of the epicycle. Eaquation (2)
therefore reduces to

sin(θms − θ0) =
r0
R

sinµ. (3)

The manda-sphut.a θms can be evaluated without calculating the true radius
of the epicycle r or the manda-karn. a K. The texts however give a process of
iteration by which the manda-karn. a K (and hence the epicycle radius r also)
can be evaluated to any given degree of accuracy.4 The for the exterior
planets can be explained with reference to Figure 2. The nirayan. a-mes. ādi
denoted by A in the figure, E is the Earth and P the planet. The mean Sun
S is referred to as the ś̄ıghrocca for exterior planets. We have

AŜP = θms (manda-sphut.a)

AÊS = θs (longitude of ś̄ıghrocca (mean Sun))

AÊP = θ (geocentric longitude of the planet).

The difference between the longitudes of the ś̄ıghrocca and the manda-sphut.a,
namely,

σ = θs − θms, (4)

is called the ś̄ıghra-kendra (anomaly of conjunction) in Indian astronomy.
From the triangle EPS we can easily obtain the result

sin(θ − θms) =
r sinσ

[(R + r cos σ)2 + r2 sin2 σ]
1

2

, (5)

which is the ś̄ıghra correction formula given by Indian astronomers to calcu-
late the geocentric longitude of an exterior planet.

From the figure it is clear that the ś̄ıghra-sam. skāra transforms the true
heliocentric longitudes into true geocentric longitudes. This will work only
if r

R
is equal to the ratio of the Earth-Sun and planet-Sun distances and is

indeed very nearly so in the Indian texts. But (5) is still an approximation
as it is based upon the mean Sun and not the true Sun.

4Nı̄lakan. t.ha, in his Tantrasaṅgraha, has given an exact formula due to Mādhava by
which the manda-karn. a can be evaluated without resorting to successive iterations.
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Figure 2: Ś̄ıghra correction for exterior planets.

1.2 Interior planets

For the interior planets Mercury and Venus, ancient Indian astronomers, at
least from the time of Āryabhat.a, took the mean Sun as the madhyama-
graha or the mean planet. For these planets, the mean heliocentric sidereal
period is the period of revolution of the planet around the Sun, while the
mean geocentric sidereal period is the same as that of the Sun. The ancient
astronomers prescribed the application of manda correction or the equation
of centre characteristic of the planet, to the mean Sun, instead of the mean
heliocentric planet as is done in the currently accepted model of the solar
system. However, the ancient Indian astronomers also introduced the no-
tion of the ś̄ıghrocca for these planets whose period is the same as the mean
heliocentric sidereal period of these planets. Thus, in the case of the inte-
rior planets, it is the longitude of the ś̄ıghrocca which will be the same as
the mean heliocentric longitude of the planet as understood in the currently
accepted model for the solar system.

The ś̄ıghra-sam. skāra for the interior planets can be explained with reference
to Figure 3. Here E is the Earth and S (manda-corrected mean Sun) is the
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manda-sphut.a-graha and P corresponds to the planet. We have,

AÊS = θms (manda-sphut.a)

AŜP = θs (longitude of ś̄ıghrocca)

AÊP = θ (geocentric longitude of the planet).

Again, the ś̄ıghra-kendra is defined as the difference between the ś̄ıghrocca
and the manda-sphut.a-graha as in (4). Thus, from the triangle EPS we get
the same formula

sin(θs − θms) =
r sinσ

[(R + r cos σ)2 + r2 sin2 σ]
1

2

, (6)
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Figure 3: Ś̄ıghra correction for interior planets.

which is the ś̄ıghra correction given in the earlier Indian texts to calculate
the geocentric longitude of an interior planet. For the interior planets also,
the value specified for r

R
is very nearly equal to the ratio of the planet-Sun

and Earth-Sun distances. In Table 1, we give Āryabhat.a’s values for both
the exterior and interior planets along with the modern values based on the
mean Earth-Sun and Sun-planet distances.
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Table 1: Comparison of r
R

in Āryabhat. ı̄ya with modern values

Planet Āryabhat. ı̄ya Modern value 5

Mercury 0.361 to 0.387 0.387
Venus 0.712 to 0.737 0.723
Mars 0.637 to 0.662 0.656
Jupiter 0.187 to 0.200 0.192
Saturn 0.100 to 0.113 0.105

Since the manda correction or equation of centre for an interior planet was
applied to the longitude of the mean Sun instead of the mean heliocentric
longitude of the planet, the accuracy of the computed longitudes of the
interior planets according to the ancient Indian planetary models would not
have been as good as that achieved for the exterior planets.

2 Computation of planetary latitudes

Planetary latitudes (called viks.epa in Indian astronomy) play an important
role in the prediction of planetary conjunctions, occultation of stars by plan-
ets, etc. In Figure 4, P denotes the planet moving in an orbit inclined at
angle i to the ecliptic, intersecting the ecliptic at the point N , the node
(called pāta in Indian astronomy). If β is the latitude of the planet, θh its
heliocentric longitude, and θ0 the heliocentric longitude of the node, then
for small i we have

sinβ = sin i sin(θh − θ0). (7)

This is also essentially the rule for calculating the latitude, as given in Indian
texts, at least from the time of Āryabhat.a.

6 For the exterior planets, it was

5Ratio of the mean values of Earth-Sun and planet-Sun distances for the exterior planets
and the inverse ratio for the interior planets.

6Equation (7) actually gives the heliocentric latitude and needs to be multiplied by
the ratio of the geocentric and heliocentric distances of the planet to get the geocentric
latitude. This feature was implicit in the traditional planetary models.
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Figure 4: Heliocentric latitude of a planet.

stipulated that
θh = θms, (8)

the manda-sphut.a-graha, which as we saw earlier, coincides with the helio-
centric longitude of the exterior planet. The same rule applied for interior
planets would not have worked, because according to the traditional Indian
planetary model, the manda-corrected mean longitude for the interior planet
has nothing to do with its true heliocentric longitude. However, all the older
Indian texts on astronomy stipulated that, in the case of the interior planets,
the latitude is to be calculated from (7) with

θh = θs + manda correction, (9)

the manda-corrected longitude of the ś̄ıghrocca. Since the longitude of the
ś̄ıghrocca for an interior planet, as we explained above, is equal to the mean
heliocentric longitude of the planet, (9) leads to the correct identification so
that, even for an interior planet, θh in (7) becomes identical with the true
heliocentric longitude.

Thus, we see that the earlier Indian astronomical texts did provide a fairly
accurate theory for the planetary latitudes. But they had to live with two
entirely different rules for calculating latitudes, one for the exterior planets
– given by (8), where the manda-sphut.a-graha appears – and an entirely
different one for the interior planets given by (9), which involves the ś̄ıghrocca
of the planet, with the manda correction included.

This peculiarity of the rule for calculating the latitude of an interior planet
was repeatedly noticed by various Indian astronomers, at least from the time
of Bhāskarācārya I (c. 629), who in his Āryabhat. ı̄ya-bhās.ya drew attention to
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the fact that the procedure given in Āryabhat. ı̄ya, for calculating the latitude
of an interior planet, is indeed very different from that adopted for the
exterior planets.7 The celebrated astronomer Bhāskarācārya II (c. 1150) also
draws attention to this peculiar procedure adopted for the interior planets, in
his Vāsanā-bhās.ya on his own Siddhāntaśiroman. i, and quotes the statement
of Caturveda Pr. thūdakasvāmin (c. 860) that this peculiar procedure for the
interior planets can be justified only on the ground that this is what has
been found to lead to predictions that are in conformity with observations.8

3 Planetary model of Nı̄lakan. t.ha Somayāj̄ı

Nı̄lakan. t.ha Somayāj̄ı (c. 1444-1550), the renowned Kerala astronomer, ap-
pears to have been led to his important reformulation of the conventional
planetary model, mainly by the fact that it seemingly employed two entirely
different rules for the calculation of planetary latitudes. As he explains in
his Āryabhat. ı̄ya-bhās.ya,9 the latitude arises from the deflection of the planet
(from the ecliptic) and not from that of a ś̄ıghrocca, which is different from
the planet. Therefore, he argues that what was thought of as being the
ś̄ıghrocca of an interior planet should be identified with the mean planet
itself and the manda correction is to be applied to this mean planet, and
not to the mean Sun. This, Nı̄lakan. t.ha argues, would render the rule for
calculation of latitudes to be the same for all planets, exterior or interior.

Nı̄lakan. t.ha has presented his improved planetary model for the interior plan-
ets in his treatise Tantrasaṅgraha which, according to Nı̄lakan. t.ha’s pupil
Śaṅkara Vāriyar, was composed in 1500 AD.10 We shall describe here, the
main features of Nı̄lakan. t.ha’s model in so far as they differ from the conven-
tional Indian planetary model for the interior planets.11

7Āryabhat. ı̄ya, with the commentary of Bhāskara I and Someśvara, K. S. Shukla (ed.)
New Delhi 1976, p. 32, 247.

8Siddhāntaśiroman. i of Bhāskarācārya, with Vāsanābhās. ya and Vāsanāvārttika of
Nr. sim. ha Daivajña, Mural̄idhara Caturveda (ed.), Varanasi 1981, p. 402.

9Āryabhat. ı̄ya with the bhās.ya of Nı̄lakan. t.ha Somayāj̄i, Golapāda, S. K. Pillai (ed.),
Trivandrum 1957, p. 8.

10Tantrasaṅgraha of Nı̄lakan. t.ha Somayāj̄i with the commentary Laghuvivr. tti of Śaṅkara
Vāriyar, S. K. Pillai (ed.), Trivandrum 1958, p. 2.

11For more details concerning Nı̄lakan. t.ha’s model see, M. S. Sriram et al, 500 years of
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In the first chapter of Tantrasaṅgraha, while presenting the mean sidereal
periods of planets, Nı̄lakan. t.ha gives the usual values of 87.966 days and
224.702 days (which are traditionally ascribed to the ś̄ıghrocca-s of Mer-
cury and Venus), but asserts that these are ‘svaparyaya-s’, i.e., the mean
revolution periods of the planets themselves.12 As these are the mean helio-
centric periods of these planets, the madhyama-graha or the mean longitude
as calculated in Nı̄lakan. t.ha’s model would be equal to the mean heliocentric
longitude of the planet, for both the interior and exterior planets.

In the second chapter of Tantrasaṅgraha, Nı̄lakan. t.ha discusses the manda
correction or the equation of centre and states13 that this should be applied
to the madhyama-graha as described above to obtain the manda-sphut.a-
graha. Thus, in Nı̄lakan. t.ha’s model, the manda-sphut.a-graha will be equal
to the true heliocentric longitude for both the interior and exterior planets.

Subsequently, the sphut.a-graha or the geocentric longitude is to be obtained
by applying the ś̄ıghra correction. While Nı̄lakan. t.ha’s formulation of the
ś̄ıghra correction is the same as in the earlier planetary theory for the exterior
planets, his formulation of the ś̄ıghra correction for the interior planets is
different. According to Nı̄lakan. t.ha, the mean Sun should be taken as the
ś̄ıghrocca for interior planets also, just as in the case of exterior planets.
In Figure 5, P is the manda-corrected planet. E is the Earth and S the
ś̄ıghrocca or the mean Sun. We have,

AÊS = θs (longitude of ś̄ıghrocca)

AŜP = θms (longitude of manda-sphut.a)

AÊP = θ (geocentric longitude of the planet).

The ś̄ıghra-kendra is defined in the usual way (4) as the difference between
the ś̄ıghrocca and the manda-sphut.a-graha. Then from triangle ESP , we get

Tantrasaṅgraha, cited earlier, p. 59-81.
12Tantrasaṅgraha, cited above, p. 8. It is surprising that, though Tantrasaṅgraha was

published nearly fifty years ago, this crucial departure from the conventional planetary
model introduced by Nı̄lakan. t.ha seems to have been totally overlooked in most of the
studies on Indian Astronomy. For instance, Pingree in his review article on Indian Astron-
omy presents the mean rates of motion of Mercury and Venus given in Tantrasaṅgraha as
the rates of motion of their ś̄ıghrocca-s (D. Pingree, ’History of Mathematical Astronomy
in India’, in Dictionary of Scientific Biography, Vol.XV, New York 1978, p. 622).

13Tantrasaṅgraha, cited above, p. 44-46.
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Figure 5: Ś̄ıghra correction for interior planets according to Nı̄lakan. t.ha

the relation:

sin(θ − θs) =
r sinσ

[(R + r cosσ)2 + r2 sin2 σ]
1

2

, (10)

which is the ś̄ıghra correction given by Nı̄lakan. t.ha for calculating the geo-
centric longitude of the planet. Comparing (10) with (6), and Figure 5 with
Figure 3, we notice that they are the same except for the interchange of the
ś̄ıghrocca and the manda-sphut.a-graha. The manda correction or the equa-
tion of centre is now associated with P whereas it was associated with S
earlier.

In the seventh chapter of Tantrasaṅgraha, Nı̄lakan. t.ha gives formula (7) for
calculating the latitudes of planets,14 and prescribes that for all planets, both
exterior and interior, θh in (7) should be the manda-sphut.a-graha. This is as
it should be for, in Nı̄lakan. t.ha’s model, the manda-sphut.a-graha (the manda-
corrected mean longitude) coincides with the true heliocentric longitude, for
both the exterior and interior planets. Thus Nı̄lakan. t.ha, by his modification
of traditional Indian planetary theory, solved the long-standing problem in
Indian astronomy, of there being two different rules for calculating the plan-
etary latitudes.

In this way, perhaps for the first time in the history of astronomy, Nı̄lakan. t.ha,
by 1500 AD, had arrived at a consistent formulation of the equation of centre

14Tantrasaṅgraha, cited above, p. 139.
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and a reasonable planetary model that is applicable also to the interior plan-
ets. As in the conventional Indian planetary model, the ancient Greek plan-
etary model of Ptolemy and the planetary models developed in the Islamic
tradition during the 8th-15th centuries also postulated that the equation of
centre for an interior planet should be applied to the mean Sun, rather than
to the mean heliocentric longitude of the planet as we understand today. In
fact, Ptolemy seems to have compounded the confusion by clubbing together
Venus along with the exterior planets and singling out Mercury as following
a slightly deviant geometrical model of motion.15 Further, while the ancient
Indian astronomers successfully used the notion of the ś̄ıghrocca to arrive at
a satisfactory theory of the latitudes of the interior planets, the Ptolemaic
model is totally off the mark when it comes to the question of latitudes of
these planets.16

Even the celebrated Copernican Revolution brought about no improvement
in the planetary theory for the interior planets. As is widely known now, the
Copernican model was only a reformulation of the Ptolemaic model (with
some modifications borrowed from the Maragha School of Astronomy of
Nasir ad-Din at-Tusi (c. 1201-74), Ibn ash-Shatir (c. 1304-75) and others) for
a heliocentric frame of reference, without altering its computational scheme
in any substantial way for the interior planets. As a recent study notes:

‘Copernicus, ignorant of his own riches, took it upon himself for
the most part to represent Ptolemy, not nature, to which he had
nevertheless come the closest of all.’ In this famous and just
assessment of Copernicus, Kepler was referring to the latitude
theory of Book V [of De Revolutionibus] , specifically to the ‘li-
brations’ of the inclinations of the planes of the eccentrics, not

15See for example, The The Almagest by Ptolemy, Translated by G. J. Toomer, London
1984. For the exterior planets, the ancient Indian planetary model and the model described
by Ptolemy are very similar except that, while the Indian astronomers use a variable radius
epicycle, Ptolemy introduces the notion of an equant. Ptolemy adopts the same model for
Venus also, and presents a slightly different model for Mercury. In both cases the equation
of centre is applied to the mean Sun.

16As a well known historian of astronomy has remarked: “In no other part of planetary
theory did the fundamental error of the Ptolemaic system cause so much difficulty as in
accounting for the latitudes, and these remained the chief stumbling block up to the time
of Kepler.” (J. L. E. Dreyer, A History of Astronomy from Thales to Kepler, New York
1953, p. 200)
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in accordance with the motion of the planet, but . . . the unre-
lated motion of the earth. This improbable connection between
the inclinations of the orbital planes and the motion of the earth
was the result of Copernicus’s attempt to duplicate the apparent
latitudes of Ptolemy’s models in which the inclinations of the
epicycle planes were variable. In a way this is nothing new since
Copernicus was also forced to make the equation of centre of the
interior planets depend upon the motion of the earth rather than
the planet.17

Indeed, it appears that the correct rule for applying the equation of centre
for an interior planet to the mean heliocentric planet (as opposed to the
mean Sun), and a satisfactory theory of latitudes for the interior planets,
were first formulated in the Greco-European astronomical tradition only in
the early 17th century by Kepler.

4 Geometrical model of planetary motion

It is well known that the Indian astronomers were mainly interested in suc-
cessful computation of the longitudes and latitudes of the Sun, Moon and
the planets, and were not much worried about proposing models of the uni-
verse. The Indian astronomical texts usually present detailed computational
schemes for calculating the geocentric positions of the Sun, Moon and the
planets. Their exposition of planetary models, is by and large analytical and
the corresponding geometrical picture of planetary motion is rarely discussed
especially in the basic texts.

However, the Indian astronomers do discuss the geometrical model implied
by their computations at times in the commentaries. The renowned Ker-
ala astronomer Parameśvara of Vat.asseri (c. 1380-1460) has discussed the
geometrical model implied in the conventional planetary model of Indian
astronomy. In his super-commentary Siddhānta-d̄ıpikā (on Govindasvāmin’s
commentary) on Mahābhāskar̄ıya of Bhāskarācārya-I, Parameśvara gives a
detailed exposition of the geometrical picture of planetary motion as implied

17N. M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus’ De

Revolutionibus, Part I, New York 1984, p. 483.
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by the conventional model of planetary motion in Indian astronomy.18 A
shorter version of this discussion is available in his commentary Bhat.ad̄ıpikā
on Āryabhat. ı̄ya.

19

Following Parameśvara,20 Nı̄lakan. t.ha has also discussed in detail the geomet-
rical model of motion as implied by his revised planetary model. Nı̄lakan. t.ha
is very much aware that the geometrical picture of planetary motion crucially
depends on the computational scheme employed for calculating the planetary
positions. In his Āryabhat. ı̄ya-bhās.ya, Nı̄lakan. t.ha clearly explains that the
orbits of the planets, and the various auxiliary figures such as the concentric
and eccentric circles associated with the manda and ś̄ıghra processes, are to
be inferred from the computational scheme for calculating the sphut.a-graha
(true geocentric longitude) and the viks.epa (latitude of the planets).21

Nı̄lakan. t.ha’s revision of the traditional computational scheme for the longi-
tudes and latitudes of the interior planets, Mercury and Venus, was based
on his clear understanding of the latitudinal motion of these planets. It is
this understanding which also leads him to a correct geometrical picture of
the motion of the interior planets. The best exposition of this revolutionary
discovery by Nı̄lakan. t.ha is to be found in his Āryabhat. ı̄ya-bhās.ya, which is
reproduced below:

Now he [Āryabhat.a] explains the nature of the orbits and their
locations for Mercury and Venus... In this way, for Mercury, the
increase of the latitude occurs only for 22 days and then in the
next 22 days the latitude comes down to zero. Thus Mercury
moves on one side of the apaman. d. ala (the plane of the ecliptic)
for 44 days and it moves on the other side during the next 44 days.
Thus one complete period of the latitudinal motion is completed
in 88 days only, as that is the period of revolution of the ś̄ıghrocca
[of Mercury].

18Siddhāntad̄ıpikā of Parameśvara on Mahābhāskar̄ıya-bhās. ya of Govindasvāmin,
T. S. Kuppanna Sastri (ed.), Madras 1957, p. 233-238.

19Bhat.ad̄ıpikā of Parameśvara on Āryabhat. ı̄ya, H. Kern (ed.), Laiden 1874, p. 60-1. It is
surprising that this important commentary, published over 125 years ago, has not received
any scholarly attention.

20Dāmodara the son and disciple of Parameśvara was the teacher of Nı̄lakan. t.ha.
Nı̄lakan. t.ha often refers to Parameśvara as Paramaguru.

21Āryabhat. ı̄ya-bhās.ya of Nı̄lakan. t.ha, Kālakriyāpāda, K. Sambasiva Sastri (ed.), Trivan-
drum 1931, p. 70.
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The latitudinal motion is said to be due to that of the ś̄ıghrocca.
How is this appropriate? Isn’t the latitudinal motion of a body
dependent on the motion of that body only, and not because
of the motion of something else? The latitudinal motion of one
body cannot be obtained as being due to the motion of another
body. Hence [we should conclude that] Mercury goes around
its own orbit in 88 days... However this also is not appropriate
because we see it going around [the Earth] in one year and not
in 88 days. True, the period in which Mercury completes one full
revolution around the bhagola (the celestial sphere) is one year
only [like the Sun]...

In the same way Venus also goes around its orbit in 225 days
only...

All this can be explained thus: The orbits of Mercury and Venus
do not circumscribe the earth. The Earth is always outside their
orbit. Since their orbit is always confined to one side of the
[geocentric] celestial sphere, in completing one revolution they
do not go around the twelve rāśi-s (the twelve signs).

For them also really the mean Sun is the ś̄ıghrocca. It is only
their own revolutions, which are stated to be the revolutions of
the ś̄ıghrocca [in ancient texts such as the Āryabhat. ı̄ya].

It is only due to the revolution of the Sun [around the Earth]
that they (i.e., the interior planets, Mercury and Venus) complete
their movement around the twelve rāśi-s [and complete their rev-
olution of the Earth]... Just as in the case of the exterior planets
(Jupiter etc.), the ś̄ıghrocca (i.e., the mean Sun) attracts [and
drags around] the manda-kaks.yā-man. d. ala (the manda orbits on
which they move), in the same way it does for these [interior]
planets also.22

The above passage exhibits the clinching argument employed by Nı̄lakan. t.ha.
From the fact that the motion of the interior planets is characterised by two
different periods, one for their latitudinal motion and another for their mo-
tion in longitude, Nı̄lakan. t.ha arrived at what may be termed a revolution-
ary discovery concerning the motion of the interior planets: That they go
around the Sun in orbits that do not circumscribe the Earth in a period that

22Āryabhat. ı̄ya-bhās.ya of Nı̄lakan. t.ha, Golapāda, cited above, p. 8-9.
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corresponds to the period of their latitudinal motion (which is the period
assigned to their ś̄ıghrocca-s in the traditional planetary model), and that
they go around the zodiac in one year as they are dragged around the Earth
by the Sun.

It was indeed well known to the ancients that the exterior planets, Mars,
Jupiter and Saturn, also go around the Sun in the same mean period as they
go around the Earth, as they clearly placed the geocentric orbits of these
planets outside that of the Sun. Nı̄lakan. t.ha was the first savant in the his-
tory of astronomy to rigourously derive from his computational scheme and
the observed motion of the planets, and not from any speculative or cosmo-
logical argument, that the interior planets go around the Sun in a period of
their latitudinal motion. The fact that the mean period of their motion in
longitude around the Earth is the same as that of the Sun is explained as
being due to their being carried around the Earth by the Sun. N̄ılakan. t.ha
also wrote a tract called Grahasphut. ānayane viks.epavāsanā, where he has
set forth his latitude theory in detail. There he has given the qualitative
nature of the orbits of the Sun, Moon and the five planets in a single verse,
which may be cited here:

The Moon and the planets are deflected along their manda-
kaks.yā (manda orbit) from the ecliptic both to the North and
the South by amounts depending on their [longitudinal] separa-
tion from their nodes. For the Moon the centre of manda-kaks.yā
is also the centre of the ecliptic. For Mars and other planets,
centre of their manda-kaks.yā [which is also the centre of their
manda deferent circle], is the mean Sun that lies on the orbit of
the Sun on the ecliptic.23

Nı̄lakan. t.ha presents a clear and succinct statement of the geometrical picture
of the planetary motion as implied by his revised planetary model in two of
his small tracts, Siddhānta-darpan. a and Golasāra. We present the version
given in Siddhāntadarpan. a:

The [eccentric] orbits on which planets move (graha-bhraman. a-
vr. tta) themselves move at the same rate as the apsides (ucca-gati)

23Grahasphut. ānayane viks.epavāsana of Nı̄lakan. t.ha, in Gan. itayuktayah. , K. V. Sarma
(ed.), Hoshiarpur 1979, p. 63.
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on manda-vr. tta [or the manda epicycle drawn with its centre
coinciding with the centre of the manda concentric]. In the case
of the Sun and the Moon, the centre of the Earth is the centre
of this manda-vr. tta.

For the others [namely the planets Mercury, Venus, Mars, Jupiter
and Saturn] the centre of the manda-vr. tta moves at the same rate
as the mean Sun (madhyārka-gati) on the ś̄ıghra-vr. tta [or the
ś̄ıghra epicycle drawn with its centre coinciding with the centre
of the ś̄ıghra concentric]. The ś̄ıghra-vr. tta for these planets is
not inclined with respect to the ecliptic and has the centre of the
celestial sphere as its centre.

In the case of Mercury and Venus, the dimension of the ś̄ıghra-
vr. tta is taken to be that of the concentric and the dimensions
[of the epicycles] mentioned are of their own orbits. The manda-
vr. tta [and hence the manda epicycle of all the planets] undergoes
increase and decrease in size in the same way as the karn. a [or
the hypotenuse or the distance of the planet from the centre of
the manda concentric].24

The geometrical picture described above is presented in Figures 6, 7. It
is important to note that Nı̄lakan. t.ha has a unified model for the both the
exterior and interior planets and the same is reflected in his formulation
of the corresponding geometrical picture of planetary motion. Nı̄lakan. t.ha’s
description of the geometrical picture of the planetary motions involves the
notions of manda-vr. tta and śighra-vr. tta, which are nothing but the manda
and ś̄ıghra epicycles drawn with the centre of their concentric as the centre.

An important point to be noted is that the geometrical picture of planetary
motion as discussed in Siddhānta-darpan. a, deals with the orbit of each of the
planets individually and does not put them together in a single geometrical
model of the planetary system. Each of the exterior planets have different
ś̄ıghra-vr. tta-s, which is in the same plane as the ecliptic, and we have to
take the point where the āditya-sūtra (the line drawn from the centre in
the direction of the mean Sun) touches each of these ś̄ıghra-vr. tta-s as the
centre of the corresponding manda-vr. tta. On this manda-vr. tta the mandocca
is to be located, and with that as the centre the graha-bhraman. a-vr. tta or the
planetary orbit is drawn with the standard radius (trijyā or R sin 90). In the

24Siddhāntadarpan. a of Nı̄lakan. t.ha, K. V. Sarma (ed.), Hoshiarpur 1976, p. 18.
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Figure 6: Nı̄lakan. t.ha’s geometrical model for an exterior planet

case of the interior planets, Nı̄lakan. t.ha says that the ś̄ıghra-vr. tta has to be
drawn with the standard radius (trijyā or R sin 90) and the graha-bhraman. a-
vr. tta is to be drawn with the given value of the ś̄ıghra epicycles as the radii.
In this way, we see that the two interior planets can be represented in the
same diagram, as the ś̄ıghra-vr. tta is the same for both of them.

The integrated model involving all the planets in a single diagram adopting
a single scale, that can be inferred from Nı̄lakan. t.ha’s discussions at sev-
eral places, is essentially following: the five planets, Mercury, Venus, Mars,
Jupiter and Saturn move in eccentric orbits (of variable radii) around the
mean Sun, which goes around the Earth. The planetary orbits are tilted with
respect to the orbit of the Sun or the ecliptic, and hence cause the motion
in latitude. Since it is well known that the basic scale of distances are fairly
accurately represented in the Indian astronomical tradition, as the ratios
of the radius of the ś̄ıghra epicycle to the radius of the concentric trijyā is
very nearly the mean ratio of the Earth-Sun and the Earth-planet distances
(for exterior planets) or the inverse of it (for interior planets), the planetary
picture will also be fairly accurate in terms of the scales of distances.
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Figure 7: Nı̄lakan. t.ha’s geometrical model for an interior planet

Nı̄lakan. t.ha’s modification of the conventional planetary model of Indian as-
tronomy seems to have been adopted by most of the later astronomers of
the Kerala School. This is not only true of Nı̄lakan. t.ha’s pupils and con-
temporaries such as Citrabhānu (c. 1530), Śaṅkara Vāriyar (c. 1500-1560)
and Jyes.t.hadeva (c. 1500-1600), but also of later astronomers such as Acyuta
Pis.ārat.i (c. 1550-1621), Putumana Somayāj̄ı (c. 1660-1740) and others. Inci-
dentally, it may be of interest to note that the well-known Oriya astronomer
of 19th century, Candraśekhara Sāmanta, who was trained solely in tra-
ditional Indian astronomy, wrote a treatise Siddhānta-darpan. a, in 1869,
wherein he has also discussed a model of planetary motion in which the five
planets, Mercury, Venus, Mars, Jupiter and Saturn, go around the Sun.25

25Siddhāntadarpan. a, of Candraśekhara Sāmanta, J. C. Roy (ed.), Calcutta 1897, V.36.
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\mƒ AXns‚ Ingt° \£-{X-tØm-Sp-IqSn ImWmw. CXn-s\-s°m≠p

1. 1. C.Bcw`w: lcnx- {io-K-W-]-Xsb \ax, Ahn-Lv\-a-kvXp.
2. B.A{X
3. D.F√m
4. B.hrØ-Øns∑
5. B.hrØ-Ønt∑¬
6. B.27
7. H.IqSp
8. G.Xs‚
9. H.om.bpK
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KXn-bp-s≠-∂pw Ing-t°m´p10 KXn F∂pw I¬∏n-°mw. Ing-t°m´v cmin-

{I-a-sa∂pw Iev]n-°mw. Cu hrØ-ßƒ°v F√m-‰n∂pw IqSn Hcp {]tZ-

isØ BZnsb∂p I¬∏n-°p-am-dp-≠v. Ahn-S-Øn\p tajcminbpsS BZn

F∂p-t]¿. Cu tKmf-Øn-¶¬11 Iev]n-°p∂ hrØ-ßsf F√m-t‰bpw

Ccp-]-tØm-cm-bn-c-Ø-dp-\qdp Jfi-ambn12 hn`-Pn-°p-am-dp-≠v.  CXn¬

Hmtcm ‘Jfiw’ Cen-bm-Ip-∂-Xv. Ch henb hrØ-Øn-¶¬ hepXv13 sNdnb

hrØ-Øn-¶¬ sNdp-Xv. kwJy F√m-‰n\pw14 H°pw. AXXp {Klw Xs‚

Xs‚ hrØ-Øn-¶¬ C{X Cen Kan°pw Hmtcm Znhkw15 F∂p \nb-Xw.

{Klw Kan-°p∂ hrØ-Øns‚ tI{µ-Øn-¶¬ Ccp-∂p- t\m°pw {ZjvSmhv

F¶n¬, \nXyhpw KXn H°pw Cu {Kl-Øn\v F∂p tXm∂pw. `qa-[y-

Ønt¶∂p16 H´p taeq {Kl-hr-Ø-tI-{µw. `qao-¶ep {ZjvSm-hv. Cu {ZjvSm-

hn-¶¬ tI{µ-am-bn´v Hcp hrØw I¬]n-∏q  {Kl-tØmSv kv]¿in-°p-am-

dv.  B hrØ-Øn¬17 F{X sN∂n-́ n-cn°pw18 {Klw A{X sN∂q tajm-

Zn -bn -¶¬ \n∂p {Klw F∂p tXm∂pw Cu19 {ZjvSm-hn\v. CXv

Adnbpw{]Imcw kv^pS-{In-b-bm-Ip-∂-Xv. CXns\ sNm√p-∂q.20 A\-¥cw

hnti-j-ap-≈-Xns\ ]ns∂ sNm√p-∂p-≠v21.

2.  ̀ tKmfw

AhnsS1 ‘`tKm -f -a[yw ’ F∂p-s≠mcp2 {]tZ -iw. bmsXmcp

{]tZiØnt¶∂p kmam\yw \£-{X-ß-sf√mw AIew H°p-∂q B

{]tZiw AXv. AhnsS `qa-[yhpw Cu `tKmfa-[y-hpw3 an°-hm-dp-samt∂

F∂p tXm∂pw4. hnti-j-ap-≈-Xns\ ]ns∂ sNm√p-∂p-≠v.
1. 10. B.Ing-t°m-t´°p

11. F. Cu tKmf-Øn¬
12. C. Jfi-am°n
13. B. henb Cen-Iƒ; C.G. hepXv Cen-Iƒ
14. B.C.D F√m-bn-¶epw
15. H. om. Hmtcm -Zn-hkw F∂v
16. F. CXp-ap-X¬ “ChnsS D®-\o-N-hrØw” F∂p XpS-ßp∂ `mKw hsc f --̨ ¬ ImWm-\n-√.
17. D.G hrØ-Øn-¶¬
18. B sb∂n-cn°pw
19. D.G. om. Cu
20.B.C.G sNm√p-∂p≠v
21. D. om. A\-¥cw (to) sNm√p-∂p≠v

2. 1. G reads A\-¥cw ChnsS
2. H. Fs∂mcp
3. H. Cu `tKmf-a-≤yhpw
4. D. an°Xpw Ht∂-Xm\pw; G. om. tXm∂pw

VIII. {Kl-K-Xnbpw kv^pShpw
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3. {Kl-ß-fpsS a[y-KXn ̨  H∂mw {]Im-cw

AhnsS BZn-Xy-N-{µ≥am-cpsS kv^pSsØ \tS sNm√p-∂p, Ffp-∏-ap-

≠-Xn\v F∂n-´v.  ChnsS `qtKm-f-a[yw tI{µ-am-bn´v Hcp hrØsØ

I¬]n-°q1.  CXv {Klw Kan-°p∂ hrØ-tØ-°mƒ s]cnsI sNdp-Xv.

Cu hrØ-Øns‚ t\an-bn-¶¬ tI{µ-am-bn-́ p≈ ‘{Kl-{ -̀a-W-hr-Øw’.  Cu

sNdnb hrØ-Øn\v ‘atµm-®-\o-N-hr-Ø’-sa∂p t]¿.  {Kl-{ -̀a-W-hr-Ø-

Øn\v ‘{]Xn-a-fi-e-’sa∂p t]¿.  {]Xn-a-fi-e-tI{µw D®-\o-N-hr-Ø-

Øn-t∑¬ Kan-°pw.  atµm-®-Øns‚ KXn CXn\p KXn-bm-Ip-∂-Xv2. {]Xn-

a-fi-e-Øn-t∑¬ {Kl-Øns‚ KXn ‘a[y-a-KXn’ BIp-∂-Xv3.  hrØ-ßƒ

tI{µ-tØmSpw t\an-tbmSpw CS-bn¬ ]gp-Xp-Iq-SmsX Xq¿∂n-cn-°p-amdpw

I¬]n-°-Ww.

ChnsS kv̂ pS-\ym-b-Øn-¶¬ Hcp ‘hrØ-t\-an-’bn-¶¬ Hcp hrØ-Øns‚

tI{µw {`an-°p-amdv I¬]n-°p-tºmƒ Cu {`an-°p∂ hrØ-Øns‚ ‘]q¿∆m-

]-c-tcJ’ F√m-bvt]mgpw Ing-°p-]-Sn-™m-dm-bn-́ p-Xs∂ Ccn-°-Ww. CXn\p

hn]-coX-am-bn-cn-°p∂ Z£n-tWm-Ø-c-tcJ Xm≥ Du¿≤zm-t[m-tcJ Xm≥

H∂v4. AXv kZm A∆Æw Xs∂ Ccn-°-Ww. ZnKvt`Zw hscm-√m. A∆Æw

thWw {`a--WsØ I¬]n-°m≥5.  A∆-Æ-am-Ip-tºmƒ Cu hrØ-tI{µw

F{X hen-sbm-cp -hr-Ø-Øn-t∑¬ {`an-°p-∂q, Cu {`an-°p∂ hrØ-

Øn‚ F√m Ah-b-hhpw A{X hen-sbmcp hrØ-Øn-t∑¬ {`an-°p∂q

F∂p hcpw.  tI{µ-{ -̀a-W-Øn\v Hcm-hrØn Ign-bp-tºmƒ Ah-b-hm-¥-

c-ßƒ F√m-‰n\pw Hcp {`aWw Ign-™p-Iq-Spw.  ChnsS hrØ-t\-an-bn-

¶¬ Ccn-°p∂ {Kl-Øn\p X\n°p KXn C√m-Xn-cn-°p-∂-Xm-Inepw X\n°v6

B[m-c-am-bn-cn-°p∂ hrØ-Øn‚ tI{µ-Øn\p7 X°-h-Æw, Xm\n-cn-°p∂

t\an-{]t-Ziw bmsXmcp hrØ-{]-tZ-i-Øn-¶¬ {`an-°p-∂q, B {Klhpw

3. 1. G. Iev∏n-°q
2. G. om. {]Xn-a-fi-e....... BIp-∂Xv
3. B. BIp-∂Xpw
4. G. om. H∂v
5. G. Iev∏n-∏m≥
6. B. kzm[mc
7. G. {`a-W-Øn\p

3. {Kl-ß-fpsS a[y-K-Xn-̨ -H∂mw {]Imcw
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B hrØ-{]-tZ-i-Øn--¶¬ B atµm-®Øns‚ KXn-bm-bn´p Kan-°p∂p

F∂v ^ew sIm≠p h∂n-cn-°pw. hml\-Øn-t∑te Kan-°p-∂-h-cpsS

KXn-t]m-se.

F∂m¬ {]Xn-a-fi-e-tI-{µ-K-Xn°v A[o-\-am-bn-cn-°p∂ {Kl-KXn CXv.

Cßs\ A¿°-N-{µ-∑m¿°v `tKm-f-a[yw a≤y-am-bn´v Hcp aµ-\o-tNm®-

hr-Ø-ap-≠v. CXns‚ t\an-bn-¶¬ tI{µ-ambn v́ Hcp {Kl-{ -̀a-W-hr-Øap≠v.

Cu {Kl-{`-a-W-hrØØns‚ tI{µw atµm-®-K-Xn°p X°-hÆw Cu

atµm-®-t\-an-bn-¶¬ Kan-°pw. ]ns∂ Cu {Klhr-Ø-Øn-¶¬ a[y-K-Xn-

°p-X-°-hÆw {Klhpw Kan-°pw. Cßs\ {Kl-Øn-t‚bpw {Kl-{ -̀a-W-

hr-Ø-Øn-t‚bpw KXn-{]-Imcw Iev]n-°Ww. CuhÆw hkvXp-ÿn-Xn.

4.  {Kl-ß-fpsS  a[y-KXn ̨  c≠mw {]Imcw

]ns∂ as‰mcp {]Imcw Iev]n-®mepw ^e-km-ay-ap-≠v. AhnsS

`tKm-f-a[yw tI{µ-am-bn´v {Kl-{`-aWhrØ-tØmfw t]ms∂mcp1

hrØsØ I¬]n-∏q.  CXn\p ‘I£ym-hr-Ø-’sa∂p t]¿.  CXns‚

t\ao-¶¬ tI{µ-am-bn v́ Hcp D®-\o-N-hr-ØsØ I¬]n-∏q. apºp sNm√n-

b-Xnt\mfw D®\o-Nhr-Ø-Øns‚ hen-∏w. C°-£ym-hr-Ø-t\-ao¶¬ C°-

ev]n® D®-\oNhrØ-tI-{µw2 {Kl-a-[y-Øns‚ KXn-tbmfw KXn-bm-bn´v

Kan-°pw. Cu D®-\o-N-hr-Ø-t\-ao¶¬ atµm-®-Øns‚ KXn-tbmfw KXn-

bm-bn´p {Klhpw Kan°pw. ChnsS D®-\o-N-hrØw {Kl-{`-a-W-Øn\v

B[m-c-am-Ip-∂-Xv. F∂n´p apºn¬ {]Xn-a-fi-e-hr-Ø-Øn-¶¬ {Kl-

Øn\p sNm√nb KXn Ct∏mƒ D®-\oNhrØ-tI-{µ-Øn\p I¬]n-∏q.

apºn¬ {]Xn-a-fi-e-tI-{µ-Øn\p sNm√nb KXn I£ym-{ -̀a-W-hr-Ø-t\-

an-bn-¶¬ tI{µ-ambn Iev]n®v D®-\o-N-hr-Ø-Øns‚ t\ao-¶te {Kl-

Øns‚ KXn-bm-bn´p Iev]n-∏q. F∂mepw ^e-kmayw hcpw. ChnsS

{]Xn-a-fi-e-tØm-fw hen-sbmcp I£ym-hr-Ø-Øn-s‚3 t\an-bn-¶¬ D®-

4. 1. C. t]m∂n v́
2. G. hrØ-Øns‚ tI{µw
3. G. adds Cu

VIII. {Kl-K-Xnbpw kv^pShpw
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\o-N-hr-Ø-Øns‚ tI{µw Kan-°p-tºmƒ. Cu \otNm-®-hrØ-Øns‚ F√m

Ah-bhhpw A°£ymhr-Ø-tØmfw t]ms∂mcp hrØ-Øn-t∑¬ Kan-

°pw.  F∂m¬ D®-\o-N-hr-Ø-t\-ao¶te {Klhpw X\n°v B[m-c-am-bn-

cn-°p-∂4 hrØ-{ -̀aWw sIm≠p-Xs∂ A{X t]ms∂mcp  {]Xn-a-fi-e-

hr-Ø-Øn-t∑¬ {`an-°p-∂q F∂p ^en-®n-cn-°pw. ChnsS D®-\o-N-hr-Ø-

Øns‚ tI{µ-{ -̀a-W-Øn\v B[m-c-am-bn-́ n-cn-°p∂ I£ym-a-fi-e-Øn\p

bmsXm-cn-SØp tI{µw, Chn-Sp∂v D®-\o-N-hym-km¿≤-tØmfw AI-t∂-

SØp tI{µ-am-bn-́ p-≈q. D®-\o-N-hr-Ø-Øns‚ t\an{`a-W-Øn\v B[m-c-

am-bn-́ n-cn-°p∂ {]Xn-a-fi-e-Øns‚ tI{µw.

Cu kv^pS-{]-I-c-W-Øn¬ Iev]n-°p∂ hrØ-{`-a-W-Øn-¶¬ F√m-

Shpw {`an-°p∂ hrØ-Øns‚ ZnKvtc-Jbv°v ZnKvt`Zw hcmsX Ccn-°p-

amdv {`aWw Iev]n-°p-∂p. F∂n v́ Cu {`a-W-Øn\p hrØ-Øns‚ tI{µw

F{X hen-sbmcp hrØ-Øn-¶¬ {`an-°p-∂q, a‰v F√m Ah-b-hhpw A{X

hen-sbmcp hrØ-Øn-t∑¬ {`an°pw F∂v \nbXambn-cn-°p∂p. F∂m¬

I£ym-hr-Ø-t\-ao¶te \otNm-®-hr-Ø-tI-{µ-Øn-\p-Xm≥ CXns‚ t\an-

{ -̀a-W-Øn-\m-[m-c-am-bn-́ n-cn-°p∂ {]Xn-a-fi-e-Øn-t∑¬ {Kl-Øn-\p-Xm≥

a[y-KXn Iev]n-°mw, c≠p {]Im-chpw ^e-kmayw D≠m-I-bm¬. ChnsS

`tKm-f-a-≤y-Øn-¶¬ tI{µ-am-bn-´n-cn-°p∂ I£ym-a-fi-ehpw CXns‚

t\ao¶te D®-\o-N-hr-Øhpw, Ch ct≠ aXn kv^pS-bp‡n \ncq-]n-

∏m≥ F∂m-Inepw Cs®m-√nb \mep-hr-Ø-ßfpw IqSn Iev]n-°pamw.

5. N{µ-Xpw-Ks‚ ÿm\w

CuhÆ-am-Ip-tºmƒ N{µ\v CjvS-Im-e-Øn-¶-te°p ss{Xcm-inIw

sIm≠p hcp-Ønb “XpwK≥” F∂p t]cm-Ip∂ D®w tajm-Zn-bn-t¶∂p

XpS-ßo´p F{X -tN¿∂n-cn-°p-∂p `tKm-f-a≤yw tI{µ-am-bn-cn-°p∂ D®-

\o-N-hr-Ø-Øn-¶¬1 tI{µ-am-bn´p {]Xn-a-fi-esØ Iev]n-∏q. {]Xn-a-fi-

e-t\-ao-¶¬ {Kl-tØbpw Iev]n-∏q. ss{Xcm-inIw sIm≠p h∂ a[yaw

4. {Kl-ß-fpsS a[y-K-Xn-̨ -c≠mw {]Imcw

4. 4. C. E. G ambn v́ Ccn-°p∂
5. 1. G. adds B {]tZ-i-Øn-¶¬
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bmsXmcp {]tZ-iØv, AhnsS Iev]n-°p-∂p {KlsØ. ]ns∂ I£ym-

hr-Ø-t\-ao-¶¬ D®-\o-N-hr-Ø-tI-µ-tØbpw Xev°mea[yaw sN∂n-cn-

°p-∂p bmsXm-cn-SØv, AhnsS Iev]n∏q. ]ns∂ D®-\o-N-hr-Ø-t\-ao-

¶¬ Xev°m-e-Xpw-K≥ bmsXm-cn-S-Øv, AhnsS {Kl-tØbpw Iev]n∏q.

CuhÆw Iev]n-°p-tºmƒ I£ym-hr-Ø-t\-ao-¶te D®-\o-N-hr-Ø-t\-

anbpw {]Xn-a-fi-e-t\-anbpw bmsXm-cn-SØp Xß-fn¬ D®m-k∂-am-bn-cn-

°p∂ {]tZ-i-Øn-¶¬ kv]¿in-°p∂q AhnsS {Kl-Øns‚ ÿnXn.

Cu hrØ-t\-an-Iƒ°v c≠p2  {]tZ-i-Øn-¶¬ kw]m-X-ap-≠v. AhnsS

D®{]tZ-i-Øn-¶se t\aokw]m-X-Øn-¶¬ {Kl-Øns‚ ÿnXn kw -̀hn-

®n-cn-°pw3.

6. D®-a-[y-am-¥-chpw kv̂ pS-a-[y-am-¥-chpw

ChnsS bmsXm-cn-°¬ ss{Xcm-in-Im\o-X-am-bn-cn-°p∂ D®hpw a[yhpw

Xpey-am-bn-´ncn-°p-∂q, At∏mƒ Hcp kq{X-Øn-¶te Ccn°pw \mep-

hrØßfptSbpw tI{µ-ßƒ. Ch bmsXm-cn-°¬ ]q¿∆-kq-{X-Øn-¶¬

kw`-hn-°p-∂q, AhnSw BZn-bmbn hrØ-{`-a-W-tØbpw {Kl--{`-a-W-

tØbpw IqsS \ncq]n--®n v́ D®a≤y-am-¥-csØ Iev]n°pw {]Im-csØ

sNm√p-∂p.

AhnsS I£ym-a-fi-e-tI-{µhpw D®-\oNtI{µhpw `tKm-f-a-≤y-Øn-

¶¬ Xs∂ Iev]n-∏q. ]ns∂ Cu D®\oNhrØ-Øns‚ ]q¿∆kq{Xm-{K-

Øn-¶¬ {]Xn-a-fi-e-tI-{µsØ. Cu ]q¿∆kq{X-Øn-¶¬ Xs∂ I£ym-

hr-Ø-t\-ao¶¬ tI{µ-am-bn´p as‰mcp D®-\oNhrØ-tØbpw Iev]n-∏q.

CXns‚ ]q¿∆-kq-{Xm-{Khpw {]Xn-a-fi-e-Øns‚ ]q¿∆kq{Xm-{Khpw Xß-

fn¬ kv]¿in-®n-cn-°pw1. D®-\o-N-hr-Ø-Øn-t‚bpw {]Xn-a-fi-e-Øn-t‚bpw

t\aokv]¿iw ]q¿∆-kq-{Xm-{K-Øn-¶¬ Xs∂ BI-bm¬ {Klhpw ]q¿∆-

kq-{Xm-{K-Øn-¶¬ Xs∂ Ccn-°pw. Ct∂-cØp I£ym-a-fi-e-tI-{µ-Øn-

t¶∂pw {]Xn-a-fi-e-tI-{µØnt¶∂pw XpSßn {KlsØ kv]¿in-°p∂

5. 2. H. Hcp; B. om c≠p
3. B. G. kw`hn°pw

6. 1. G. kv]¿in°pw

VIII.  {Kl-K-Xnbpw kv^pShpw
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kq{Xw Ht∂ BI-bm¬ {Kl-Øns‚ kv^pS-a-≤y-a-ßƒ°p t`Z-an√m.

]ns∂ a≤y-Øns‚ D®-tbm-K-Øn-t¶∂p XpS-ßn-bn´v kv^pS-a-≤y-a-ß-

fpsS t`Z-ap-≠m-Ip-∂p.

7. kqcy-kv̂ p-Shpw kv̂ pS-a-≤ym-¥-cm-fhpw

ChnsS BZn-Xys‚ kv^pSsØ \ncq-]n-t°-≠q. \tS AhnsS {]Xn-

afi-e-tI{µ-Øns‚ KXn AXn-a-µ-am-I-bm¬ C√ F∂-t]mse Iev]n-

®n´p \ncq-]n-°mw. F∂m¬ {Kl-Øn\v H∂n-t\-sbt√m KXn Iev]n-t°≠p

F∂v Hcp Ffp-∏-ap-≠v. Cßs\ \tSsØ ]£w. c≠mw ]£-Øn¬

]ns∂ I£ym-hr-Ø-Øns‚ t\ao-¶se D®-\o-N-hr-Ø-tI-{µ-Ønt\ KXn-

bp≈p F∂p Iev]n-∏q. F∂mepw1 ^e-km-ay-ap-≠v. c≠p {]Im-cap≈

KXn IqSn Hcn-°se \ncq-]n-t°≠q F∂v Ffp-∏-am-Ip-∂-Xv. A\-¥cw

D®-tbm-K-Øn-t¶∂p a[yaw aq∂p cmin sN√p-tºmƒ I£ymt\ao-¶ep2

D®-\o-N-hr-Ø-tI-{µw. Cu D®-\oNhrØ-Øns‚ ]q¿∆-kq-{Xm{Kw {]Xn-

a-fi-e-Øns‚ Z£n-tWm-Øckq{Xm-{KsØ kv]¿in-®n-́ p-an-cn-°pw. Ahn-

SØv At∂-csØ {Klw. ChnsS {]Xn-a-fi-e-t\-ao-¶¬3 {Kl-Øn∂pw

I£ym-t\-ao-¶¬ D®-\o-N-hr-Ø-tI-{µ-Øn∂pw4 Xpey-am-bn´v Ccn-s∏m∂p

KXn. Hcn-°te Hcp Zn°n¬ Xs∂ XpSßn ka-ß-fm-bn-cn-°p∂ c≠p

hrØ-ß-fn¬ ka-ambn Kan-°p-∂h c≠pw Xm≥ Kan-°p∂ hrØ-Øn-

¶¬ Xpey-ß-fm-bn-cn-°p∂5 Awi-ßsfs°m≠v Kan-®n-cn-°pw. F∂n´p

Xs‚ Xs‚ hrØ-Øn-¶¬ \msem∂p Kan-®n-cn-°p-tºmƒ {Klhpw D®-

\o-N-hr-Ø-tI{µhpw AX-Xn-¶¬ DØ-c-kq-{Xm-{K-Øn-¶¬ Ccn-°pw.

ChnsS I£ym-{]-Xn-a-fi-e-ßƒ c≠n∂pw IqSn-bp≈ ]q¿∆-kq-{X-Øn∂v

‘D®-\o-N-kq-{X’ -sa∂p t]¿, `tKm-f-a-[y-Øn-t¶∂p {]Xn-a-fi-e-t\-an-bn-

¶¬ F√m-bn-ep-a-I∂ {]tZ-i-Øn-¶epw AW-™ {]tZ-i-Øn-¶epw

7. 1. C. F∂m-Inepw
2. H. I£ym-t\-ao-¶te DØ-c-kq{X`mKw {]Xn-a-fi-e-Øns‚ DØ-c-kq{Xm{KsØ

kv]¿in-®n-´p-an-cn°pw
3. D. t\ao¶se
4. D. hrØ-Øn\pw
5. B.G. Xpey-ß-fm-Ip∂

6. D®-a-[y-am-¥-chpw kv^pS-a-[y-am-¥-chpw
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kv]¿in-®n-cn-°-bm¬. ChnsS {]Xn-a-fi-e-Øns‚ ]q¿∆-kq-{Xm-{K-Øn-

t¶∂v CXn-t∑¬ aq∂p cmin sN∂Xp “a[ya”amIp-∂-Xv. `tKm-f-a[yw

tI{µ-am-bn´p {KlsØ kv]¿in-°p∂ kq{Xw sIm≠p hrØw hoin6

B hrØ-Øn-¶¬ F{X-sN∂p AXp “kv^pS-”am-Ip-∂Xv7. ChnsS

I£ymhrØ-Øns‚ DØ-c-kq-{Xm-{K-Øn-¬ {Kl-an-cn-°p-tºmƒ kv^pSw

D®-Øn-t¶∂p aq∂p cmin- sN-∂n-cn-°pw. F∂m¬ a[yaw aq∂p cmin-

sN-√p-tºmƒ I£ym-hr-Ø-Øns‚ DØ-c-kq-{Xm-{K-Øn-t¶∂v D®\oN-

hy-km¿≤-tØmfw Ing-°p -{K-lw. F∂n´v D®-\o-N-hym-km¿≤w At∂-

cØp a[y-a-kv̂ p-Sm-¥-c-am-Ip-∂-Xv. F∂n v́ aq∂p cmin XnI-bp-t∂-S-Øo∂v

D®-\o-N-hym-km¿≤-tØmfw Ipdbpw kv^pSw.

ChnsS `tKm-f-a[y-Øn-¶¬ tI{µ-am-bn´v {Kl-tØm-f-ap≈ kq{Xw

hymkm¿≤-am-bn-́ p≈ hrØ-Øn∂p ‘I¿Æ-hr-Ø’ -sa∂p t]¿. CXn\pw

I£ym-a-fi-e-Øn\pw tI{µw Hcn-S-Øm-I-bm¬ Cen-Iƒ c≠n-¶epw Ht∂

F∂n´p I£ym-hr-Ø-Øns‚ DØc-kq-{Xm-{K-Øn-¶te D®-\o-N-hr-Ø-

tI{µw a[y-a-{Klw F∂p Iev]n-®n-cn-°p-∂-Xns\ I¿Æ-hr-Ø-Øns‚

DØ-c-kq-{Xm-{K-Øn-¶¬ Iev]n-®n´v Ahn-Sp∂v {Kl-tØm-f-ap≈ A¥-

cmfw “kv^pS-a[y-am-¥-cm-f-Nm]w” F∂n-cn-°pw. BI-bm¬ D®-\o-N-hym-

km¿≤sØ I¿Æ-hr-Ø-Øn-¶se Pymhv F∂p Iev]n®p Nm]n-®m¬

D≠m-Ipw kv^pS-a-≤y-am-¥-cmfNm]w. CXns\ D®-tc-J-bm-Ip∂ ]q¿∆-

kq-{X-Øn-t¶∂p sN∂p a[y-aw. aq∂p-cmin AXn-t¶∂p If-™m¬ I¿Æ-

hr-Ø-Øn-¶¬ {Kl-Øn-t¶∂p D®-kq-{X-tØm-Sp≈ A¥-cmfw tijn-

°pw. AXn¬ D®-sØ-°q-´n-bm¬ tajm-Zn-{K-l-kv^pSw hcpw. ]ns∂

a≤y-a-Øn-t¶∂p Xs∂ kv^pS-a[y-am-¥-cm-f-am-Ip∂ I¿Æ-hr-Ø-Øn-

¶te Nm]-̀ m-KsØ If-™mepw I¿Æ-hr-Ø-Øn-¶¬ C{X-sN∂q {Kl-

kv^pSw F∂v D≠m-Ipw. Cßns\ ]q¿∆-kq-{X-Øn-¶¬ D®hpw D®-Øn-

¶¬ a[yahpw F∂p Iev]n-°p-tºmƒ {]Xn-a-fi-e-Øns‚ ]q¿∆-kq-

{Xm-{K-Øn-¶¬ {Klhpw D®-\o-N-hr-Ø-tI-{µhpw F∂n-cn-°p-tºmƒ

I£ym-{]-Xn-a-fi-e-ß-fn¬ c≠n-¶-ep-samt∂ ]q¿∆-kq-{Xw. F∂n´v B

Cen Ht∂ Bbn-́ n-cn°pw c≠n-¶epw At∂-cØv. F∂n´v kv^pS-a[y-

7. 6. D. hnbn; C.E.F hobnb
7. G. adds F∂n´v aq∂p cmin-sN-t∂-SØv
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ßƒ H∂p Xs∂ At∂-c-Øv. ]ns∂ Xpey-K-Xn-I-fm-bn-cn-°p∂ {Klhpw

D®-\o-N-hr-Ø-tI-{µhpw aq∂p cmin Kan-°p-tºmƒ {]Xn-a-fi-tem-Ø-c-

kq-{Xm-{K-Øn-¶¬ {Klw. I£ym-hr-Ø-Øns‚ DØ-c-kq-{Xm-{K-Øn-¶¬

D®-\oNhrØ-tI-µhpw. CuhÆw8 D®\oNhrØ-tI{µw Kan-°p-tºmƒ

ZnKvt -̀Zw hcm-sX-bn-cn-°p-amdv Iev]n-°p-tºm-ƒ D®-\o-N-hr-Ø-Øns‚ ]q¿∆-

kq-{Xm-{K-Øn-t¶∂p {Klw Hcn-°epw th¿s]-Sp-I-bn-√. F∂n´p kv^pS-

a-[y-a-m¥-cmfw D®-\o-N-hym-km¿≤-am-bn-́ n-cn-°pw. At∏mƒ ]ns∂ Ahn-

Sp∂v Hcp hrØ-]mZw Kan-°p-tºmƒ ]›n-a-kq-{Xm-{K-Øn-¶¬ {]Xn-a-

fi-e-Øn¶¬ {Klhpw I£y-mhr-Ø-Øn-¶¬ D®-\o-N-hr-Ø-tI-{µ-hp-

am-bn-́ n-cn-°pw. At∏mfpw D®-\o-N-hr-Ø-Øns‚ ]q¿∆-kq-{Xm-{K-Øn-¶ev

{Klw F∂n-cn-°pw. ChnsS I£y-bn-t¶∂pw {]Xn-a-fi-e-Øn-t¶-∂p-

ap≈ ]›n-a-kq{Xw Ht∂-bm-I-bm¬ B {]tZ-i-Øn-¶¬ c≠n-t‚bpw

Cen Ht∂ BI-bm¬ kv̂ pS-a[y-a-ßƒ Ht∂ At∂-cØpw. Cßs\

\oNhpw a[y-ahpw kaw BIp-tºmfpw kv^pS-a[y-am¥-cm-f-an-√. ]ns∂

Chn-S∂v Hcp hrØ]mZw Kan-°p-tºmƒ Z£n-W-kq-{Xm-{K-Øn-¶¬ c≠pw.

Chn-tSbpw D®-\o-N-hr-Ø-Øns‚ ]q¿∆-kq-{Xm-{K-Øn-¶¬ {Klw. F∂n´p

{Kl-Øn-t¶∂p D®-\o-N-hym-km¿≤-tØmfw ]Sn-™mdp D®-\o-N-hr-Ø-

Øns‚ tI{µw. F∂n v́ ChnsS D®-\oNhykm¿≤-Nm]w Iq -́Ww. a[y-

Øn-¶¬ AXp kv^pS-am-Ip-∂-Xv. ]ns∂bpw aq∂p-cmin Kan-®n´v D®-Øn-

¶¬9 sN√p-tºmƒ kv^pS-a-≤yam-¥-c-an-√. F∂n-ßs\ D®-tbm-K-Øn-

t¶∂p XpS-ßo´v a≤ya-Øns‚ ]Z-Øn∂p X°-hÆw kv^pS-a[y-am-¥-c-

ß-fpsS hr≤n-{lm-k-ßƒ XnI-bp-∂p F∂p h∂p. F∂m¬ {]Xn-a-fi-

e-Øn-¶se D®-a[y-am-¥-cmf-`pPmPymhns\ ss{Xcm-inIw sNbvXv D®-

\oNhr-Ø-Øn-¶-em-°n-bXp kv^pS-a-≤y-am-¥-c-Pym-hm-bn-́ n-cn°pw F∂p

hnti-jw.

AXv Fß-s\sb¶n¬ AhnsS I£ymhrØ-tI-{µ-Øn-t¶∂p AXns‚

t\ao-¶se D®-\o-N-hr-Ø-tI-{µ-ØqsS AXns‚ ]pdsØ t\ao-¶-temfw

sN√p∂ kq{Xw bmsXm∂v CXv a[y-a-{K-l-Øn-¶se Cen BIp-∂Xv.

7. 8. H. CuhÆw D®-\o-N-hym-km¿≤-am-bn-cn-°pw. At∏mƒ ]ns∂ Ahn-Sp∂p Hcp hrØ-]mZw Kan
9. H. D®-Øn-¶¬

7. kqcy-kv^p-Shpw kv^pS-a-≤ym-¥-cm-fhpw
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Ft∂ D®-\o-N-hr-Ø-Øns‚ t\ao-¶te ]q¿∆-kq-{Xm{Kw kv]¿in-°p∂10

{]tZ-ihpw {]Xn-a-fi-e-t\-anbpw Xß-fn-ep≈ kw]mXw bmsXm-cn-SØv

Ahn-SØv Fs√m {Klw. B {Kl-tØmSp a[y-a-en-]vX-tbm-Sp≈ A¥-

cm-fw -a-[y-a-kv^p-Sm¥cam-Ip-∂Xv. AhnsS I£ym-hr-Ø-tI{µØn-t¶∂v

D®-\o-N-hr-Ø-Øns‚ F√m-bnepw AI∂ {]tZ-i-Øn-¶epw AW™

{]tZ-i-Øn-¶epw kv]¿in-®n-cn°pw a≤y-a-kq-{Xw. F∂n´v Cu kq{Xm-{K-

Øn-¶ev D®-\o-N-hr-Ø-Øn-¶se D®-{]-tZ-i-am-Ip-∂-Xv. F∂n´v D®-\o-N-

hr-Ø-Øn-¶se D®-{]-tZ-i-tØmSv ]q¿∆-kq-{X-tØm-Sp≈ A¥-cm-fNm-

]-̀ m-K-Øn-¶se D®-\o-N-hr-Ø-K-X-Pymhv a≤y-a-kv̂ p-Sm-¥-c-amIpw. AhnsS

I£ym-hr-Ø-t\-ao-¶ep ]q¿∆-kq{XtØmSp≈ A¥-cm-f-Nm-]`mK-Øn-

¶se D®-\o-N-hr-Ø-K-X-Pymhv a[y-a-kv^p-Sm-¥-c-am-Ip-∂Xv11. AhnsS

I£ym-hr-Ø-t\ao-¶se ]q¿∆-kq-{X-Øn-¶ev D®-\o-N-hr-Ø-tI-{µ-sa-¶n¬

D®-\o-N-hr-Ø-Øn-¶epw ]q¿∆-kq-{Xm{Kw D®-{]-tZ-i-am-Ip-∂Xv. ]ns∂

I£ym-t\-an-bn-¶¬ Cui-tIm-Wn-¶¬ D®-\oNhrØtI{µ-sa-¶n¬ D®-

\o-N-hr-Ø-Øn-¶¬ Cu CuitImWw D®-\oN{]tZ-i-am-Ip-∂Xv. DØ-c-

kq-{X-Øn-¶¬ tI{µ-Øn-¶¬ AhnSw D®-{]-tZ-i-am-Ip-∂-Xv12. F∂m¬

D®kq{X-am-bn´p Iev]n-®n-cn-°p∂ ]q¿∆-kq-{X-Øn-t¶∂p I£y-mt\-an-

bn-¶¬ F{X sNt∂-SpØv D®-\o-N-hr-Ø-tI{µw h¿Øn-°p-∂q, D®-\o-

N-hr-Ø-Øn-¶eq D®-{]-tZitØmSp≈ A¥-chpw Xs‚ Awiw sIm≠p

A{X D≠m-bn-cn-°pw. F∂m¬ I£ym-hr-Ø-t\ao¶te D®-a-[ym-¥-

cmf{]tZ-i-Øns‚ Pymhns\ ss{Xcm-inIw sIm≠v D®-\o-N-hr-Ø-Øn-

¶se Pymhm-°n-s°m-≠m¬ D®-a-[ym-¥-cm-f-Pym-hm-bn-́ n-cn-°pw. AhnsS

{]Xn-a-fi-e-Øn-¶se D®-{]-tZ-i-tØmSp {Kl-tØm-Sp≈ A¥-cm-f-Pym-

hns\ ss{Xcm-inIw sNbvXmepw hcpw Cu a[y-a-kv^p-Sm-¥-cm-f-Pym-hm-

Ip-∂-Xv. AhnsS {]Xn-a-fi-e-Øn¶se D®-kq-{X-{K-lm-¥-cm-fhpw D®-

\o-N-hr-Ø-Øn-¶se D®-kq-{X-{K-l-m¥-cm-fhpw Xpeyw. F∂n´v ChnsS

{]Xn-a-fi-e-Øn¶¬ ]q¿∆-kq-{Xm{Kw F∂p Iev]n®v D®-{]-tZ-i-Øn-

¶∂v XpSßn {Klw Hcm-h¿Øn {`an-°p-tºmƒ D®-\o-N-hr-ØØn¶se

D®-kq-{X-{K-lm-¥-cm-fhpw Xs‚ Awiw sIm≠p Xpeyw. F∂m¬ D®-

7. 10. C. adds kq{X-Øns‚
11. G. om. AhnsS I£ym-hr-Ø-t\-an-¶ep to kv^pSm-¥-cam-Ip-∂-Xv.
12. B.H.om. ]ns∂ to {]tZ-i-am-Ip-∂-Xv.

VIII. {Kl-K-Xnbpw kv^pShpw
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a[ya-m-¥-cm-f-Pym-hns\ D®-\o-N-hym-km¿≤w sIm≠p KpWn®v {XnPy-

sIm≠p lcn-®m¬ a[y-a-kv^p-Sm-¥-cmf-Pym-hm-bn´p hcpw13. ]ns∂

AXns\ At∂-csØ I¿Æ-hr-Ø-Ønse Pymsh∂p Iev]n®p Nm]n®v

a[y-a-Øn¬ kwkvI-cn-®m¬ kv^pSw hcpw14.

8. I¿Æm-\-b\w

A\-¥cw1 I¿Æ-hr-Ø-Øn-¶se PymhmIpw {]Im-csØ sNm√p-∂p.

AhnsS I£ym-hr-Ø-tI-{µ-Øn-t¶∂p {]Xn-a-fi-e-tI-{µ-Øn¬IqSn

{]Xn-a-fi-e-t\-ao-¶¬ kv]¿in-°p∂ kq{Xw bmsXm∂v AXv ‘D®-kq-

{X-’am-Ip-∂Xv. AXns\ ChnsS ]q¿∆-kq-{X-sa∂p Iev]n-®Xv F∂p

apºn¬ sNm√n-sbt√m. B kq{X-ti-j-am-bn-cn-°p∂ {]XyIvkq{Xw ‘\oN-

kq-{X’ -amIp-∂Xv. F∂n´v Cu kq{X-Øn-s∂ms°bpw ‘D®-\oNkq{X’ -
sa∂p t]¿. CXv D®-\oNkq{XtØmSp {Kl-tØm-Sp≈ A¥-cmfw {]Xn-

a-fi-e-`m-K-Øn-¶se Pymhv bmsXm∂v AXv a[y-a-Øn-t¶∂v D®w

hmßnb tij-Øn-¶te `pPm-Pymhv. CXn∂p {Kl-Øn-¶¬ A{Kw, D®-

\o-N-kq-{X-Øn-¶¬ aqew, F∂n-ßs\ Iev]n-°pw {]Im-cw. CXnhnsS

I¿Æ-hr-Ø-hym-km¿≤w hcp-Øp-t∂-S-tØ°v ̀ qPm-Pym-hm-Ip-∂-Xv. ̀ pPm-

aq-e-tØm-Sp I£ymtI{µ-tØm-Sp≈ A¥-cmfw tImSn -B-Ip-∂-Xv. I£ym-

tI-{µ-tØmSv {Kl-tØm-Sp≈ A¥-cmfw I¿Æ-am-Ip-∂Xv. ]ns∂ {]Xn-

a-fi-e-Øns‚ \oN-̀ m-K-Øn-eq {Klw F∂n-cn-°p-∂q-Xm-In¬ a[y-a-Øns‚

tImSn-bn-¶¬ D®-\o-N-hym-km¿≤w Iq´n-bXv tImSn-Pym-hm-Ip-∂-Xv2.

ChnsS {]Xn-a-fi-tem-®-`m-K-Øn-¶ep {Klw F∂n-cn-°p-∂-qXm-In¬

Dt®m-\-a-[y-a-tIm-Snbpw D®-\o-N-hym-km¿≤hpw Xß-fn-e-¥-cn-®Xp `pPm-

aq-e-tØmSp I£ym-tI-{µ-tØm-Sp≈ A¥-cm-f-am-Ip-∂-Xv tImSn-Pym-hm-

Ip-∂-Xv. ChnsS {]Xn-a-fi-e-tI-{µ-tØmSp `pPm-aq-e-tØm-Sp≈ A¥-

cmfw bmsXm∂v AXv D®a[y-am-¥-cmfw tImSn-Pym-hm-Ip-∂-Xv. {]Xn-a-

7. 13. B. Pymhm-bn-hcpw; F. Pymsh∂p hcpw
14. G. add F∂p ÿnX-ambn

8. 1. G. ]ns∂ AXns\ At∂-csØ I¿Æ-hr-Ø-Øn-¶se Pymhm............
2. C. om. ]ns∂ ....to.... tImSn-Pym-hm-Ip-∂Xv.
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fi-e-tI-µ-tØmSp I£ym-tI-{µ-tØm-Sp≈ A¥-cmfw D®-\o-N-hym-

km¿≤-am-Ip-∂-Xv. ChnsS {]Xn-a-fi-e-tI-{µ-Øn-¶se Z£n-tWm-

Øckq{X-Øns‚3 Ing°v {Kl-sa∂n-cn-°n¬ tI{µ-tIm-Sn-bn¬ D®-\o-N-

hym-km¿≤w Iq´n I¿Æ-hrØtImSn D≠m-t°-≠q. ]ns∂ {]Xnafi-

e-Øns‚ Z£n-tWm-Ø-c-kq-{X-Øn\p ]Sn-™m-dp- {Klw F∂n-cn-°p-∂qXm-

In¬ D®-\o-N-hym-km¿≤-Øns‚ A¥-¿`m-K-Øn-¶-em-bn-́ n-cn-°pw `pPm-aq-ew.

ChnsS I£ym-a-≤y-Øn-¶te D®-\o-N-hr-Ø-Øns‚ Z£n-tWm-Ø-c-

kq-{X-Øn-\p Ing-s°-∏p-dØv `pPm-aq-e-sa-∂n-cn-°p-∂qXm-In¬ `pPm-aq-e-

tØmSv D®-\o-N-t\-an-tbmSp≈ A¥-cmfw tI{µ-tImSn BIp-∂-Xv. CXns\

D®-\o-N-hym-km¿≤-Øn-¶se D®-\o-N-hr-Ø-Øn-¶se4 hymkm¿≤-Øn-¶∂v

If-™m¬ tijw tI{µ-tØmSv `pPm-aq-e-tØm-Sp≈ A¥-cmfw I¿Æ-

hr-Ø-tIm-Sn-bm-Ip-∂Xp hcpw. ]ns∂ I£y-ma-≤y-Øn-¶se D®-\o-N-hr-

Ø-Øn-¶se Z£n-tWm-Ø-c-kq-{X-Ø-nt¶∂v ]Sn-™m-dp ̀ pPm-aqew F∂n-

cn-°p-∂q-Xm-In¬ tI{µ-tIm-Sn-bn-t¶∂v D®-\o-N-hym-km¿≤sØ If™

tijw I¿Æhr-Ø-tImSn BIp-∂-Xv. Dt®m-\-a-≤ysØ ChnsS tI{µ-

sa∂p sNm√p-am-dp-≠v. Cßs\ I¿Æ-hr-Ø-Øn-¶se `pPm-tIm-Sn-Isf

D≠m°n h¿§n®p Iq´n aqen-®m¬ I£ym-tI-{µ-tØmSp {Kl-tØm-Sp≈

A¥-cmfw I¿Æ-hr-Ø-hym-km¿≤w {]Xn-a-fi-e-I-eIsf-s°m≠v Af-

∂Xv D≠mIpw. CXns\Øs∂ I¿Æ-hr-Ø-I-e-I-tf-s°m≠v Af-°p-

tºmƒ {XnPym-Xp-ey-am-bn-́ n-cn-°pw. AXXp hrØsØ Ccp-]-tØm-cm-bn-

c-Ø-dp\q-dmbn hn`-Pn-®-Xn-¬ Hcwiw Xs‚-Xs‚5 Iem-am-\-am-Ip-∂-Xv.

AXn-s\-s°m≠v Xs‚-Xs‚ hymkm¿≤w {XnPym-Xp-ey-am-bn-´n-cn°pw

F∂p I¿Æ-hr-Ø-I-e-I-sf-s°m≠p {XnPym-Xpeyw F∑m¬ tlXp.

ChnsS atµm-®-\o-N-hr-Ø-Øn∂p aµ-I¿Æ-h-im¬ hr≤n{lmk-ap-

≠mIbm¬ k¿∆Zm- I¿Æ-hr-Ø-I-em-anXw CXv. F∂n´v Cu I¿ÆsØ

Ah-nti-jnt® {]Xn-a-fi-e-I-em-an-X-amhq. Cßs\ {]Xn-a-fi-e-I-e-

Isfs°m≠v I¿Æ-hr-Ø-am-\sØ Adnbpw {]Im-cw.

8. 3. D.G.kq{X-Øn-¶∂v; F. kq{X-Øn\p
4. F. \oN-`m-K-Øn-¶eqw
5. B. AXn-sem-cwiw kzkzIem-am-\-am-Ip-∂Xv.
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9. I¿Æm-\-b\w ̨  {]Im-cm-¥cw

]ns∂ {]Im-cm-¥-tcW1 Adnbpw {]Imcw. AhnsS I£ymtI-{µ-Øn-

t¶∂p XpSßn I£ym-t\-ao-¶te D®-\oNtI{µ-ØqsS CXns‚ t\ao¶¬

kv]¿in-°p∂ kq{Xw bmsXm∂v AXn∂p ‘a[y-a-kq-{X-’sa∂p t]¿ F∂p

apºn¬ sNm√n. Cu a[y-a-kq-{X-tØmSp {Kl-tØm-Sp≈ A¥-cmfw a≤y-

a-kv^p-Sm-¥-c-am-Ip-∂-Xv. CXn∂p ‘`pPm-̂ -e’-sa∂p t]¿. CXns\ {Kl-

Øn-¶¬ A{K-ambn a[y-a-kq-{X-Øn-¶¬ aqe-am-bn´p I¬]n-t°-≠q.

ChnsS `pPm-aq-e-tØmSp I£ym-hr-Ø-t\-ao-¶se D®-\oNhrØ-tI-{µ-

tØm-Sp≈ A¥-cmfw tImSn^e-am-Ip-∂Xv. ChnsS I£ym-t\-ao-t¶∂p

]pd-Ø-I-s∏-́ n-cn-°p∂ {]Xn-a-fi-e-t\-ao-¶ep {Klw F∂n-cn-°p-∂q-Xm-

In¬ tZmx^e-aqew I£ym-t\-an-bpsS ]pdtØ AI-s∏-́ n-cn-°pw. At∏mƒ

tImSn-̂ -esØ I£ym-hym-km¿≤-Øn¬ Iq´n-bm¬ tZmx^e-aq-e-tØmSp

I£ym-tI-{µ-tØm-Sp≈ A¥-cm-f-ap-≠m-Ipw. ]ns∂ I£ym-t\anbpsS

A¥¿`m-K-Øn-¶te {]Xn-a-fi-e-t\-ao-¶ep {Klw F∂n-cn-°p-∂-qXm-In¬

I£ym-t\-an-bpsS A¥¿`m-K-Øn-¶-em-bn-́ n-cn°pw tZmx^e-aqew. At∏mƒ

tImSn^esØ I£ymhymkm¿≤-Øn-t¶∂p If™p tijw tZmx -̂e-

aq-e-tØm-Sp I£ym-tI-{µtØm-Sp≈ A¥-cmfw tImSn-bmbn tZmx^ew

`pPm-tIm-Sn-bm-bpw Iev]n®p c≠nt‚bpw h¿§-tbm-K-aqew sNbvXm¬

I£ym-tI-{µ-tØmSv {Kl-tØm-Sp-≈ A¥-cmfw {]Xn-a-fi-e-hr-Ø-I-em-

an-X-ambn´p apºn¬ hcp-Ønb I¿Æw Xs∂ hcpw. Cßs\ I¿Æ-hr-

Ø-hym-km¿≤w c≠p {]Imcw hcp-Ømw. ChnsS {]Xn-a-fi-e-Øn¶¬

C{X sN∂p {Klw F∂p a≤yaw sIm≠-dn-™Xp I¿Æ-hr-Ø-Øn-

¶¬ C{X sN∂p {Klw F∂dnI th≠n-bn-cn-°p-∂-Xv. AXn∂p km[\w

Cu I¿Æw.

10. hn]-coXI¿Æw

A\-¥cw I¿Æ-hr-Ø-I-e-Isfs°m≠p I£ym-hym -km¿≤w

F{Xsb∂p Xm≥ {]Xn-a-fiehymkm¿≤w F{X-sb∂p Xm≥ Adnbpw

{]Im-c-sØ- sNm-√p-∂p. I¿Æm-\-b\w hn]-co-X-{In-b-sIm≠p hcn-I-bm¬

9. 1. D.adds I£ym-tI{µw B

9. I¿Æm-\-b\w ˛ {]Im-cm-¥cw
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‘hn]-co-X-I¿Æ’-sa∂p t]cp-≠v CXn∂v. ChnsS aµ-kv^p-S-Øn-¶¬ a≤y-

kv^p-S-m¥cw aµ-I¿Æ-hr-Ø-I-e-Isf sIm≠p Af-∂-Xm-bn-´p-≈p.

F∂m¬ a≤y-kv^p-Sm-¥-c-Pym-hm-Ip∂ tZmx^-esØ h¿§n®p {XnPym-

^-e-Øn-t¶∂p If™v aqen-®m¬ tZmx^-e-aq-e-tØmSp I£ym-tI-{µ-

tØm-Sp≈ A¥-cmfw hcpw. CXn-t¶∂p tImSn^ew If-hq tZmx^-e-

aqew I£ym-t\-aot¶∂p ]pdØp F∂m¬1, AI-sØ-¶n¬ Iq´q2. AXp

I£ym-hym-km¿≤w I¿Æ-hr-Ø-I-em-an-X-am-bn-´n-cn-t∏m∂v3.

11. hn]-co-X-I¿Æw ̨  {]Im-cm-¥cw

C\n -{]-Im-cm-¥-tcW1 {]Xn-a-fiehymkm¿≤sØ I¿Æ-hr-Ø-I-e-

I-tf-s°m≠v C{X2 F∂-dnbpw {]Im-csØ sNm√p-∂p. ChnsS D®-

kv̂ pSm-¥-c-tZm¿-Pymhp I¿Æ-hr-Ø-I-em-an-X-am-bn-́ p-≈p. I¿Æ-hr-Ø-Øn-

¶¬ C{X sN∂q {Klw F∂t√m kv^pS-am-Ip-∂-Xv. \otNm-®-kq-{X-

Øn-¶¬ aqe-ambn {Kl-Øn-¶¬ A{K-ambn´ncn-s∏m∂v Cu `pP-mPym-hv.

`pPm-aq-e-tØmSp I£ym-tI-{µ-tØm-Sp≈ A¥-cmfw kv^ptSm-®m-

¥ctImSn-Pym-hm-Ip-∂-Xv. CXn-t¶∂p3 -I-£ym-{]-Xn-a-fi-em-¥-c-ß-fpsS

tI{µm-¥-cm-f-am-Ip∂ D®-\oNhymkm¿≤sØ If-hq. D®-\o-N-hr-Ø-t\-

ao-¶∂p ]pdØp tZm¿Pym-aq-e-sa-¶n¬, A√m-bvIn¬4 Iq´q. tijn®5 tImSn-

tbbpw tZm¿Pym-hn-t\bpw h¿§n®p Iq´n aqen-®m¬ {]Xn-a-fi-e-tI-{µ-

Øn-t¶∂p {Kl-tØm-Sp≈ A¥-cmfw {]Xn-a-fi-e-hym-km¿≤w I¿Æ-

hr-Ø-I-em-an-X-am-bn-´p-≠m-Ipw.

10. 1. B. BIn¬; E. G F¶n¬
2. F. Om. AI-sØ-¶n¬ Iq´p
3. F. Bbn-cn-s∏m∂v

11. 1. B. AY {]Im-cm-¥-tcW
2. F. F{X
3. C. F CXn¬
4. B. D. As√-¶n¬
5. B. C.om. tijn®; D. B tImSn-tbbpw
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12. hn]-co-X-I¿Æm-\-b\w ̨  {]Im-cm-¥cw

A\-¥cw  kv^ptSm-®m-¥ctZmxtImSn^e-ßsfs°m≠v Cu

hymkm¿≤sØ hcpØpw {]Imcw. ChnsS I¿Æ-hr-Ø-Øn-¶se D®-

kq-{Xhpw {Kl-kq-{Xhpw Xß-fn-ep≈ A¥-cm-f-`m-K-Øn-¶se Pymhp

bmsXm∂v AXp kv^ptSm-®m-¥-c-tZm¿-Pym-hm-Ip-∂-Xv. Cu kq{X-m¥-c-

Pymhp Xs∂ I¿Æ-hr-Ø-tI-{µ-Øn-¶te D®-\o-N-hr-Ø-Øn-¶¬

Iev]n°p-tºmƒ kv^ptSm -®m -¥-ctZmx^e-am -bn -´n -cn -°pw. Cu

tZmx^esØ1 {]Xn-a-fi-e-tI-{µ-Øn-¶¬ A{Khpw {Kl-kq-{X-Øn-¶¬

aqe-hp-am-bn´p Iev]n-t°-≠q. Cu2 tZmx^e-aq-e-tØmSp I¿Æ-hr-Ø-tI-

{µ-tØm-Sp≈ A¥-cmfw3 {Kl-kq-{X-Øn-¶-teXv ChnsS4 At°mSn^e-

am-Ip-∂-Xv. tImSn-̂ ew t]mb kq{Xtijw tImSn-bm-Ip-∂-Xv. tZmx^ew

`pP-ß-fnse h¿§-tbm-K-aqew {]Xn-a-fi-e-tI-{µ-tØmSv {Kl-tØm-Sp≈

A¥-cmfw {]Xn-a-fi-e-hym-km¿≤w I¿Æ-hr-Ø-I-em-an-X-am-bn-́ p-≠m-Ipw.

Cßs\ D®-̀ m-K-Øn-¶¬ {Kl-an-cn-°p-tºmƒ. \oN-̀ m-K-Øn-¶¬5 hnti-

j-ap-≠v. ChnsS \oN-kq-{X-tØmSp {Kl-kq-{X-tØm-Sp≈ A¥-cmfw I¿Æ-

hr-Ø-Øn-¶-teXv kv^ptSm-®m-¥-c-tZm¿-Pym-hm-Ip-∂-Xv. Cu A¥-cmfw

\otNm-®-hr-Ø-Øn-¶-te-Xv tZmx^e-am-Ip-∂-Xv. ChnsS \oN-kq-{X-Øns‚

tijw D®-kq-{X-am-bn-´p-≠t√m, {Kl-kq-{Xhpw A∆Æw I¿Æ-hr-Ø-

tI-{µ-ØqsS at‰-]p-dØp \o´n Iev]n-∏q. AhnsS Cu {Kl-kq-{X-]p-

—tØmSv D®-kq-{X-tØmSp≈ A¥-cmfw Cu tZmx^ew Xs∂-bm-bn-́ n-

cn°pw. Chn-tSbpw {]Xn-a-fi-e-tI-{µ-Øn-¶¬ A{K-ambn {Kl-kq-{X-ti-

j-Øn-¶¬ aqe-am-bn v́ tZmx^esØ Iev]n-∏q. tZmx -̂e-tØmSp I¿Æ-

hr-Ø-tØm-Sp≈ A¥-cmfw {Kl-kq-{X-ti-j-Øn-¶-teXp tImSn^e-am-

Ip-∂-Xv. Cu tImSn-^ew I¿Æ-hrØhymkm¿≤-am-Ip∂ {Kl-kq-{X-

Øn-¶¬ Iq´n-bm¬ {Kl-tØmSv C°-ev]n® tZmx^e-aq-e-tØm-Sp≈ A¥-

cm-f-ap-≠m-Ipw. CXns‚ h¿§-Øn¬ tZmx -̂e-h¿§w Iq´n aqen-®m¬ {]Xn-

12. 1. B. F. tZmx -̂e-tImSn^e-ßsf
2. C. H. om. Cu
3. C. D. G. kq{Xm-¥-cmf
4. F. Chn-SØv, G. Chn-S-tØ°v
5. B. adds ]ns∂

12. hn]-coXI¿Æm-\-b\w ˛ {]Imcm¥cw
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a-fi-e-tI-{µ-tØmSv {Kl-tØm-Sp≈ A¥-cmfw {]Xn-a-fie-hymkm¿≤w

I¿Æ-hr-Ø-I-em-an-X-am-bn-´p-≠m-Ipw. A¥-cm-f-Pym-°sf Xe-]-I¿∂p

Iev]n-®XpsIm≠p am\-t`-Z-ap-≠mI-bn-√. Cßs\ I¿Æ-hr-Ø-I-em-an-

X-am-bn´p {]Xn-a-fi-e-hym-km¿≤-tØbpw I£ym-a-fi-e-hym-km¿≤-

tØbpw D≠m°pw {]Imcw. Cßs\ D≠mb CXn∂p ‘hn]-co-X-I¿Æ’-
sa-∂p-t]¿. {]Xn-a-fi-e-I-e-I-tfs°m≠p I¿Æ-hr-Ø-hym-km¿≤sØ

am\w sNbvX-Xn-s\-sbt√m I¿Æ-sa∂p sNm√p-∂p. AXn-t¶∂p ssh]-

co-Xy-ap-≠m-I-bm¬ hn]-co-X-I¿Æ-anXv. Cu hn]-co-X-I¿Æ-sØ-s°m≠v

hymkm¿≤h¿§sØ lcn-®m¬ ^ew {]Xn-a-fi-e-I-e-Isfs°m≠p

I¿Æ-hr-Ø-hym-km¿≤sØ am\w sNbvXn-cn-°p∂ I¿Æ-am-Ip-∂Xv

D≠m-Ipw. ChnsS {]Xnafi-e-hym-km¿≤w Xs‚ hrØ-Øns‚ ‘A\-

¥-]p-cmw’iw sIm≠v {XnPy-mXpeyw, I¿Æ-hr-Ø-I-e-Isfs°m≠v hn]-

co-X-I¿Æ-Xpeyw I¿Æ-hr-Ø-hym-km¿≤w. ]ns∂ Xs‚ Ie-Isfs°m≠v

{XnPymXpeyw. {]Xn-a-fi-e-I-e-I-sf-s°m≠v F{X F∂v ss{XcminIw.

^ew {]Xn-a-fi-e-I-e-I-tf-s°m≠p am\w sNbvXp I¿Æ-hr-Ø-hym-

km¿≤-am-bn-´n-cn-°pw.

13. aµ-kv̂ pSw

]ns∂ a[y-a-Øn¬ D®w hmßnb tij-Øns‚ ̀ pPm-Pymhp bmsXm∂v

AXv D®-\o-N-kq-{X-Øn-t¶∂p {Kl-tØm-Sp≈ A¥cm-f-Øn¶se {]Xn-

a-fi-e-̀ m-K-Øn-¶se Pymhm-bn-́ n-cn-°pw. Cu Pymhn-s\-Øs∂ I¿Æ-hr-

Ø-I-e-I-tf-s°m≠p C{X-sb-∂-dn-™p -Nm-]n-®m¬ D®-\o-N-kq-{X-tØmSp

{Kl-tØmSp≈ A¥-cm-f-Øn-¶te I¿Æ-hr-Ø-̀ m-K-am-Ipw. C®m-]sØ

D®-Øn¬ Xm≥ \oN-Øn¬ Xm≥ kwkvIcn-®m¬ I¿Æ-hr-Ø-Øn-¶¬

C{X1 -sN∂q {Klw F∂p hcpw. AXp kv^pS-{Klam-Ip-∂Xv.

ChnsS Cßs\ Ccn-s∏m∂p ss{Xcm-inIw. I¿Æ-hr-Ø-hym-km¿≤w

{]Xn-a-fi-e-I-em-an-X-am-bn-́ n-cn-°p-∂-Xv I¿Æ-Xp-eyw. CXp {]am-W-am-Ip-

∂-Xv. CXp I¿Æ-hr-Ø-I-em-an-X-am-Ip-tºmƒ {XnPym-Xp-eyw. CXp {]am-

13. 1. F. F{X
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W-̂ -e-am-Ip-∂-Xv. D®-\oNkq{X-{K-lm-¥-cm-f-Øn¶se {]Xn-a-fie`mK2

Pymhv C—m. CXn-t\-Øs∂ I¿Æ-hr-Ø-I-em-an-X-am°n I¿Æ-hr-Ø-̀ m-

K-Pymhmbn Iev]n-®n-cn-°p∂Xv C—m-^-ew. CXns\ AW-hn∂p X°-

hÆw D®-Øn¬ Xm≥ \oN-Øn¬ Xm≥ kwkvI-cn-®Xv kv^pS-{K-l-am-

Ip-∂-Xv. Cu kv^pS-{]-Im-c-Øn\p “{]Xn-a-fi-e-kv^p-S” -sa∂p t]¿.

ChnsS kv̂ pSØn-t¶∂p D®w hmßnb tij-Øn∂p Pymhp-sIm-≠m¬

CXv ChnsS sNm√nb C—m-^-e-am-bn-´n-cn-°pw. a≤y-a-Øn-t¶∂v D®w

hmßnb3 tij-Øn-t¶∂v D≠m-°nb `pPm-Pymhv ChnsS sNm√n-bXp

C—m-cm-in-bm-Ip-∂-Xv.

F∂m¬ C—m-^-esØ {]am-W-sa∂pw C—m-cm-insb {]am-W-^-e-

sa∂pw Iev]n®v I¿Æ-hr-Ø-hym-km¿≤-am-bn-cn-°p∂ {XnPysb C—m-

cm-in-sb∂p Iev]n-®p-≠m-°p∂ C—m-̂ ew ChnsS sNm√nb I¿Æ-am-

bn-́ n-cn°pw. ChnsS a≤y-a-Øn-t¶∂v D®w hmßnb tij-Øns‚ Pymhv

bmsXm∂v AXp {]Xn-a-fi-sse-I-tZ-i-Øn-¶te Pymhm-I-bm¬ {]Xn-a-

fi-e-I-em-anXw. ]ns∂ kv^pS-Øn-t¶∂v D®w hmßnb tij-Øns‚

Pymhm-Ip-∂Xpw CXp-X-s∂-b-t{X. D®-\o-N-kq-{X-tØmSp hn]-co-X-ambn

{Kl-tØmSv D®-\o-N-kq-{X-tØmSv4 A¥-cm-f-{]-tZ-i-am-bn-´n-cn-°--bm¬

Pym°ƒ c≠p-sam-t∂. am\-t`Zw sIm≠p kwJym-t -̀Z-ta-bp-≈p. kv^pS-

tI-{µ-Pym-hn\v Nm]-am-Ip-∂Xp I¿Æ-hr-Ø-Øns‚ GI-tZ-i-am-I-bm¬

I¿Æ-hr-Ø-I-em-an-Xw. kv^pS-tI-{µ-Pymhv F∂m¬ Cu Pymhv I¿Æ-

hr-Ø-I-e-I-tfs°m≠p kv^pS-tI-{µ-Pym-hv. CXp-X-s∂ {]Xn-a-fi-e-I-

em-an-X-am-Ip-tºmƒ a[y-a-tI-{µ-Pymhv. At∏mƒ I¿Æ-hr-Ø-I-e-I-tf-

s°m≠p hymkm¿≤-Xp-ey-am-Ip-tºmƒ {]Xn-a-fi-e-I-e-I-tf-s°m≠v F{X-

sb∂p apºn¬sNm-√nb I¿Æw hcpw.

Cß-t\bpw hcpØmw I¿Æw. ChnsS a[y-a-tI-{µ-Pymhv {]Xn-a-fi-

e-I-em-an-X-am-Ip-tºmƒ a[y-a-tI-{µ-`p-Pm-^ew Fßs\ I¿Æ-hr-Ø-I-

em-an-X-am-Ip∂p F∂ i¶bv°v5 DØcw˛I¿Æw hep-Xm-Ip-tºmƒ aµ-

13. 2. B. C. F. G. om. `mK
3. F. t]mb
4. F.adds D≈
5. B. F∂p i¶

13. aµ-kv^pSw
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\o-N-hr-Øhpw AXn∂p- X-°-hÆw IqSn hep-XmIpw. {XnPy-tb-°mƒ

sNdp-Xm-Ip-tºmƒ atµm-®-\o-N-hr-Øhpw AXn-∂p -X-°-hÆw sNdp-Xm-

Ipw. F∂n v́ Cu hrØ-Ønse Pymhv F√m-bvt∏mgpw I¿Æ-hr-Ø-I-em-

an-X-am-bn-´n-cn-°p-a-t{X. F∂n´v aµ-I¿Æw Cs®m-√n-b-hÆw hcp-tØ-

≠Xpw, a[y-tI-{µ-̀ p-Pm-̂ -esØ a[y-a-Øn¬ kwkvI-cn-∏m-\mbnsIm≠p

I¿Æ-hr-Ø-I-em-an-X-am-°p-hm≥ ss{Xcm-inIw sNtø≠nhcm-™Xpw.

Cßs\ aµ-I¿Æ-Øn\p X°-hÆw atµm-®-\o-N-hr-Ø-Øn\p hr≤n-{lm-

k-ap-≠m-I-bm¬ aµ-I¿Æ-Øn\pw aµ`pPm-^ew sIm≠p≈ kv^pS-

Øn∂pw hnti-j-ap-≠v. {io{L-Øn-t¶∂p io{L-\o-tNm-®-hr-Ø-Øn¬

Xs‚ I¿Æ-Øn\p X°-hÆw hr≤n-{lm-k-an-√. Cßs\ aµ-kv^p-S-

Øn-¶te {Inb.

14. io{L-kv̂ pSw

A\-¥cw io{L-kv^p-S-{]-Im-csØ sNm√p-∂p. ChnsS N{µm-Zn-Xy-

∑m-cpsS1 aµ-\o-tNm-®-hr-Ø-Øns‚ tI{µw `tKm-f-a-≤y-Øn-¶eq F∂n´v

N{µm-Zn-Xy-∑m¿°p aµ-kv^pSw sNbvXXp Xs∂ `tKm-f-K-Xn-bm-Ip-∂-Xv.

sNm∆m XpS-ßn-bp≈h‰n\pw ̀ tKm-f-a[yw tI{µ-ambn {KlsØ kv]¿in-

®n´p Hcp hrØ-sØ -I-ev]n-®m¬ AXn-¶¬ F{X sN∂q F∂p-≈Xv

`tKm-f-- KXn-bm-Ip-∂-Xv. Ah-‰n∂p hnti-j-am-Ip-∂-Xv ̨  ̀ tKm-f-a[yw tI{µ-

am-bn v́  Hcp io{L\otNm-®-hr-Ø-ap-≠v. AXns‚ t\ao-¶¬ iot{Lm-®-

Øns‚ KXn-bm-bn-́ n-cp-s∂m∂v2 aµ-\o-tNm-®-hr-Øw. F∂n´p Xev°m-e-

Øn-¶¬ iot{Lm-®-\o-N-hr-Ø-t\-ao-¶¬ bmsXm-cn-SØp iot{Lm®w

h¿Øn-°p∂q3, AhnsS tI{µ-am-bn-́ n-cn-s∏m∂p aµ-\o-tNm-®-hr-Øw. Cu

hrØ-Øn-¶¬ atµm-®-Øns‚ KXn. B atµm®w bmsXm-cn-SØv AhnSw

tI{µ-am-bn-´n-cn-s∏m∂v aµ-\o-tNm-®-hr-Ø-Øn-¶¬ {]Xn-a-fi-e-sa∂pw

Iev]n®v B {]Xn-a-fi-e-t\-ao-¶¬ {Kl-_nw_w Kan-°p∂p F∂pw

Iev]n-∏q. ]ns∂ {]Xn-a-fi-e-Øn-¶¬ tajm-Zo-t¶∂p XpS-ßo´v C{X-

14. 1. B. C. F. BZn-Xy-N-{µ-∑m-cpsS
2. G. ChnsS Ah-km-\n-°p∂p
3. D. D®-am-Ip∂ chn-a≤yw h¿≤n-°p∂p
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sN∂p Ct∏mƒ {Kl-sa∂p a[yaw sIm≠-dn-bp-∂-Xv. ]ns∂ aµ-\o-tNm-

®-hr-Ø-Øns‚ tI{µw Xs∂ tIµ-am-bn´p {Kl-_nw-_sØ kv]¿in-

t∏mcp4 hrØsØ Iev]n-∏q. CXn∂p ‘aµI¿Æ-hr-Ø-’sa∂p t]¿. B

aµ-I¿Æ-hr-Ø-Øn-¶¬ {]Xn-a-fi-e-sa∂pw Iev]n®p tajm-Zo-t¶∂p

XpSßn Ft{XSw5 sN∂n-cn-°p-∂q {Klw F∂p aµ-kv^pSw sIm≠-dn-

bp-∂-Xv. ]ns∂ iot{Lm-®-\o-N-hr-Ø-Øns‚ tI{µw Xs∂ tI{µ-am-

bn´p {Kl-_nw-_sØ kv]¿in-t∏mcp hrØsØ Iev]n-∏q. CXn\p

‘io{L-I¿Æ-hrØ”sa∂p t]¿. Cu hrØ-Øn-¶¬ tajm-Zn-bn-t¶∂p

XpSßn cmiymZn F{X sN∂p F∂Xp ‘io{L-kv^pSw” sIm≠-dn-bp-∂-

Xv. Cu io{L-kv^p-S-Øn-¶¬ aµ-I¿Æ-hr-ØsØ {]Xn-a-fi-e-sa∂p

Iev]n®p aµ-kv^p-S-{K-lsØ a≤y-a-sa∂pw Iev]n®p aµ-kv^p-S-Øn-¶-

te-t∏mse {Inb-sN-bv-Xm¬ io{L-I¿Æ-hr-Ø-Øn-¶¬ tajm-Zn-bn-t¶∂p

XpSßn cmiymZn F{X sN∂q F∂-Xp-≠m-Ipw.

ChnsS io{L-kv^p-S-Øn¶¬ hnti-j-am-Ip-∂Xp ]ns∂. io{L-̀ p-Pm-

-̂esØ D≠m-°n-bm¬ ]ns∂ AXns\ io{L-I¿Æ-I-em-{]-an-X-am-°n-

bm¬ io{L-I¿Æ-hr-Ø-Ønse Pymhm-Ipw. AXns\ Nm]n®p kwkvI-

cn-®m¬ {Klw io{L-I¿Æ-hr-Ø-Øn-¶¬ C{X sN∂p F∂p hcpw.

CXn-∂mbns°m≠p io{L-̀ p-Pm-̂ -esØ {XnPy-sIm≠p KpWn®v io{L-

I¿Æw sIm≠p lcn-°-Ww. F∂m¬ io{L`qPm-^ew aµ-I¿Æ-hr-

Ø-{]-an-X-am-bn´p hcp-hm≥ {XnPy-sIm≠v KpWn®v io{L-I¿Æw sIm≠p

lcn-°-Ww. F∂m¬ io{L-I¿Æ-hr-Ø-I-em-{]-an-X-am-bn-́ p -h-cpw io{L-

`p-Pm-̂ ew. ChnsS aµ-̀ p-Pm-̂ ew aµ-I¿Æ-hr-Ø-I-em-{]-an-X-am-bn´p hcp-

hm≥ Cu ss{Xcm-inIw sNtø≠. aµ-tI-{µ-Pym°sf atµm-®-\o-N-hr-

Ø-hym-km¿≤w sIm≠p KpWn®v {XnPy sIm≠p lcn-®m¬ Xs∂

aµI¿Æ-hr-Ø-I-em-an-X-am-bn´p6 hcpw. AXn∂p tlXp ˛ aµ-I¿Æw

hep-Xm-Ip-tºmƒ atµm-®-\o-N-hr-Øhpw IqSn hep-Xm-Ipw. B I¿Æ-

Øn\p X°-hÆw I¿Æw sNdp-Xm-Ip-tºmƒ sNdp-Xm-hqXpw sNøpw.

F∂n´p aµ-`p-Pm-tImSn^e-ßƒ F√mbvt∏mgpw aµ-I¿Æ-hr-Ø-I-em-

{]-an-X-am-bn-́ n-cn-°p-∂p. iot{Lm-®-\o-N-hr-Ø-Øn\p ]ns∂ io{L-I¿Æ-

14. 4. D. kv]¿in-®n-cn-t∏mcp
5. B. Ft{Xmfw
6. D. Iem-{]-anX

14. io{L-kv^pSw
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Øn\p X°-hÆw hr≤n-{lm-k-an-√. F∂n´p io{L-tIm-Sn`p-Pm-̂ -e-ßƒ

{]Xn-a-fie-I-em-{]-an-X-ambnt´ Ccn-°p-a-t{X. F∂n v́ Chs‰ io{L-I¿Æ-

hr-Ø-I-em-{]anXßƒ B°p-hm≥ ss{Xcm-in-Im-¥cw thWw.

\tS ]Tn-°p-tºmƒ Xs‚ Xs‚7 {]Xn-a-fi-e-I-em-am\w sIm≠v C{X

D≠v aµ-\o-tNm-®-hrØw, C{X D≠v io{L-\o-tNm-®-hr-Ø-sa∂p ]Tn-

°p-∂-Xv. F∂n´p {]Xn-a-fi-e-I-em-an-X-am-bn´p \tS D≠m-°p-∂p. F∂n´v8

aµ-\o-tNm-®-hr-Ø-Øn∂p hr≤n-lm-kap≠v. io{L-\o-tNm-®-hr-Ø-Øn∂p

hr≤n-{lm-k-ßƒ C√ F∂p hnti-j-am-Ip-∂-Xv. ChnsS aµ-kv^p-S-{K-

lhpw iot{Lm-®hpw Xß-fn-ep≈ A¥-c-Øo∂p≈ Pym°ƒ io{L-

tI-{µ-Pym-°ƒ F∂p t]cm-Ip-∂h aµ-I¿ÆhrØ-Ønse Pymhm-I-bm¬

aµ-I¿Æ-I-em-{]-an-X-ßƒ. io{L-hrØw ]ns∂ {]Xn-a-fi-e-I-em-{]-an-

X-am-I-bm¬ iot{Lm-®-\o-N-hr-Ø-tØbpw AXns‚  hymkm¿≤-am-Ip∂

io{Lm-¥y -̂e-tØbpw {XnPy-sb-s°m≠p KpWn®p aµ-I¿Æw sIm≠p

lcn-®m¬ ^e-ßƒ aµ-I¿Æ-hr-Ø-I-em-{]-an-X-ß-fm-bn-´n-cn-°p∂

iot{Lm-®-\o-N-hr-Øhpw AXns‚ hymkm¿≤hpw Bbn-́ p- h-cpw. Ch

{]am-W-^-e-ß-fm-bn´p aµ-I¿Æ-hrØw kzI-em-{]-an-X-ß-fm-bn-´n-cn-°p-

∂Xpw AXns‚ hymkm¿≤hpw {]am-W-̂ -e-ß-fm-bn´p Iev]n®p io{L-

tI-{µ`p-Pm-tIm-Sn-Pym-°sf C—m-cmin-bm-bn´pw Iev]n®v D≠m-Ip∂ C—m-

-̂e-ßƒ aµ-I¿Æ-hr-Ø-I-em-{]-an-X-ß-fm-bn-́ n-cn-°p∂ io{L-tImSn`pPm-

^-e-ß-fm-bn-´p-hcpw. ]ns∂ kzI-em-{]-an-X-ambn9 {XnPym-Xp-ey-am-bn-´n-cn-

°p∂ aµ-I¿Æ-hr-Ø--hym-km¿≤-Øn-¶¬ Cu tImSn-̂ ew kwkv°-cn®v

]ns∂ CXns‚ h¿§hpw `pPm-̂ -e-h¿§hpw Iq´n aqen-®m¬ iot{Lm-®-

\o-N-hr-Ø-tI-{µ-am-bn-´n-cn-°p∂ `tKm-f-a-[y-Øn-t¶∂p {Kl-tØm-Sp≈

CS aµ-I¿Æ-hr-Ø-I-em-{]-an-X-am-bn-´p-≠m-Ipw. CXp ‘io{L-I¿Æ’ -am-

Ip-∂-Xv.

14. 7. B.kz kz for Xs‚ Xs‚
8. B. Ft∂-SØv
9. D. Iem-an-X-ambn

VIII. {Kl-K-Xnbpw kv^pShpw
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Cßs\ ]e{]Imcw hcpØmw˛̨˛

(I) ChnsS aµ-I¿Æ-hr-Ø-I-em-{]-an-X-am-bn-´n-cn-°p∂ io{Lm-¥y

^esØ io{L-tIm-Sn-Pym-hn-¶¬ aI-cm-Zn-I-¿°ym-Zn-°p X°-hÆw tbmKw

Xm\-¥cw Xm≥ sNbvXv CXn-t\bpw io{L-tI-{µ-`p-Pm-Pym-hn-t\bpw

h¿§n®p Iq´n aqen-®mepap-≠mIpw apºn¬ sNm√nb io{L-I¿Æw. ChnsS

aµ-kv^p-S-{K-lhpw10 iot{Lm-®-am-Ip∂ BZn-Xy-a-[y-ahpw Xß-fne¥-cn-

®-tijw  io{L-tI-{µ-am-Ip-∂-Xv. CXns‚ `pPm-tIm-Sn-Pym°ƒ aµ-I¿Æ-

hr-Ø-I-em-{]-an-X-ßƒ B hr-Ø-Ønse Pym°-fm-I-bm¬ Ahs‰ ]ns∂

aµ-I¿Æw sIm≠p KpWn®p {XnPy-sIm≠p lcn-®m¬ aµ-I¿Æ-hr-Ø-

Ønse Pym°ƒ {]Xn-a-fi-e-I-em-{]-an-X-ß-fm-bn-́ p -h-cpw.

(ii) ]ns∂ Cht‰ tIhew {]Xn-a-fi-e-I-em-{]-an-X-ambn ]Tn-®n-cn-

°p∂ io{Lm-¥y-̂ -e-sØ-s°m≠p KpWn®v aµ-I¿Æw sIm≠p lcn-

®m¬ io{L-tImSn`pPm-̂ -e-ßƒ {]Xn-a-fi-e-I-em-{]an-X-am-bn-́ p-≠m-Ipw.

]ns∂ Cu tImSn^esØ aµ-I¿Æ-Øn¬ kwkvI-cn®v AXns‚

h¿§hpw Cu `pPm^e-h¿§hpw Iq´n aqen-®m¬ io{L-I¿Æw {]Xn-a-

fi-e-I-em-{]-an-X-am-bn-´p-≠m-Ipw.

(iii) ]ns∂ {]Xn-a-fi-e-I-em-{]-an-X-ßfm-bn-´n-cn-°p∂ io{L-tI-{µ-

tIm-Sn-Pymhpw A¥y-̂ -ehpw Xß-fn¬ tbmKw Xm\-¥cw Xm≥ sNbvXv

]ns∂ AXns‚ h¿§hpw CuhÆ-an-cn-°p∂ `pPm-Pym-h¿§hpw Iq´n

aqen-®m¬ io{L-I¿Æw {]Xn-a-fi-eIem{]an-X-am-bn-´p-≠m-Ipw.

(iv) ]ns∂ io{L-tI-{µ`pPm-Pym-hns\ {XnPysIm≠p KpWn®v I¿Æw

sIm≠p lcn-®m¬ ^ew iot{Lm-®-\o-N-kq-{X-tØmSp {Kl-tØm-Sp≈

A¥-cm-f-Pymhp io{L-I¿Æ-hr-Ø-I-em-{]-an-X-am-bn-´p-≠m-Ipw. CXns\

Nm]n®v iot{Lm-®-Øn¬ kwkvI-cn-®m¬ `tKm-f-a[yw tI{µ-am-bn-´n-cn-

°p∂ io{L-I¿Æ-hr-ØØn¬- {K-lw C{X sN∂p F∂p-≠m-Ipw. ]ns∂

`pPm-̂ -esØ {XnPy-sIm≠p KpWn®p I¿Æw sIm≠p lcn®p Nm]n-®-

Xns\ aµ-kv^p-S-{Kl-Øn¬ kwkvI-cn-®m¬ Cu kv^pS-{Klw Xs∂

hcpw. ChnsS  aµ-I¿ÆIem-{]-an-X-am-bn-́ n-cn-°p∂ `pPm-Pym-hn-t\-Øm≥

`pPm-^-e-sØ-Øm≥ {XnPy-sIm≠p KpWn-°n¬ aµ-I¿ÆIem-{]-an-X-

14. 10. D. aµ-kv^p-Shpw; F. aµ-{K-l-kv^p-Shpw

14. io{L-kv^pSw
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ambn-´n-cn-°p∂ io{L-I¿Æw sIm≠p lcn-t°-≠q. {]Xn-a-fi-e-I-em-

{]-an-XsØ F¶n¬ {]Xn-a-fi-e-I-em-{]-an-Xambn-́ n-cn-°p∂ io{L-I¿Æw

sIm≠p lcn-t°≠q Ft∂ hnti-j-ap≈p11. ChnsS bmsXmcp {]tZ-i-

Øn-¶¬ tI{µ-am-bn-́ n-cn-°p∂ hrØ-Øns‚ t\ao-¶te12 {Kl-KXn Adn-

™-Xv, B hrØ-Øn∂v “⁄mX-t`m-K-{K-l”sa∂p t]¿. CXns\ {]Xn-

a-fi-e-sa∂p13 Iev]n-t°≠q. ]ns∂ bmsXm-cnSw tI{µ-ambn t\an-bn-

¶¬ {Kl-kv]¿i-am-bn-´n-cn-°p∂ hrØ-Øn-¶¬ {Klw sN∂q F∂p

Adn-tb-≠p-hXv B hrØ-Øn∂p “t⁄b-t`m-K-{K-l” - F∂p t]¿.

CXns\ I¿Æ-hr-Ø-sa∂p Iev]n-t°-≠q. ]ns∂ t⁄bt`m-K-{K-l-hr-

Ø-tI-{µ-Øn-¶¬ tI{µ-am-bn´v ⁄mX-t`m-K-{K-l-hr-Ø-tI-{µ-Øn-¶¬

t\an-bm-bn´v Hcp hrØw Iev]n-∏p. CXv “D®-tI-{µ-hr-Ø-”am-Ip-∂Xv.

Cßs\ aq∂v hrØ-ßsf Iev]n®p io{L-\ym-b-Øn\p X°-hÆw

I¿Æw hcpØn Cs®m-√nbhÆw kv^pSn-®m¬ CjvS-{]-tZ-i-Øn-¶¬

tI{µ-ambn {Kl-Øn-¶¬14 t\an-bmbn Iev]n-®n-cn-°p∂ hrØ-Ønse

{Kl-KXn Adn-bmw. Cßs\ kmam\yw kv^pS-\ym-bw.

]ns∂ bmsXm-cn-SØp I£ym-hr-Øhpw I£ym-t\-ao-¶se D®-\o-N-

hr-Øhpw Iev]n-°p-∂q, AhnsS I£ym-hrØw Iev]n°pw {]Imcw.

t⁄b-t`m-K-{K-l-hr-Ø-Øns‚ tI{µw Xs∂ tI{µ-am-bn´p ⁄mX-t`m-

K-{Kl-hr-Ø-tØmSp Xpey-am-bn´v Hcp hrØw Iev]n-∏q. AXp I£ym-

hr-Ø-am-Ip-∂-Xv. AXns‚ t\-ao-¶¬ D®-\o-N-hrØw Iev]n-∏q. ⁄mX-

t⁄-b-tI-{µ-ßfpsS A¥-cm-f-hym-km¿≤w am\-ambn Iev]n-®n v́. ChnsS

⁄mX-t`m-K-{K-l-hr-Ø-Øn-¶¬ bmsXm-cn-SØp {Klw, Cu Iev]n-®

I£ym-hr-Ø-Øn-¶¬ AhnSw tI{µ-am-bn´v D®-\o-N-hr-Ø-tI{µw Iev]n-

t°-≠q. Cßs\ A©p-hrØw Iev]n-®n´p kv^ptSm-]-]Øn -\n-cq-]n-

t°-≠q. Cs®m-√nbhÆw15 IpP-Kpcpaµ-∑m-cpsS kv^pS{]-Imcw.

14. 11. B. lcn-°Ww F∂p hntijw
12. H. add. ]ns∂ bmsXm-cnSw tI{µ-ambn t\an-bn-¶¬ {Kl-kv]¿i-am-bn-cn-°p∂ hrØ-Øn-¶¬
13. F. {]Xn-a-fi-e-Øns‚ t\an-bn-¶-teSw F∂p t]¿ Iev]n-t°≠p
14. F. CjvS-{K-l-Øn-¶¬
15. B. Ghw

VIII. {Kl-K-Xnbpw kv^pShpw
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15. _p[-ip-{I-∑m-cpsS io{L-kv̂ pSw

_p[-ip-{I-∑m-¿°v hnti-j-ap≠v. AhntSbpw aµ-kv^pSw CuhÆw

Xs∂. io{L-kv^p-S-Øn-¶¬ iot{Lm-®-\o-N-hrØw hep-Xv. aµ-I¿Æ-

hrØw sNdp-Xv BI-bm¬. aµ-I¿Æ-hr-Ø-t\-aosS ]pdØv AI-s∏-Spw

iot{Lm-®-\o-N-hr-Ø-Øns‚ tI{µw. Cßs\ bmsXm-cn-SØv ⁄mX-

t`m-K-{K-l-am-bn-cn-°p∂ hrØ-Øns‚ hymkm¿≤-tØ-°m-́ n¬ ⁄mX-

t⁄b{KlhrØ-tI-{µm -¥cw BIp∂ D®-\o -N -hr -Ø-Øns‚

hymkm¿≤w henbq F∂n-cn-°p-∂n-SØv Cu D®-\o-N-hr-Ø-ÿm-\o-b-am-

Ip-∂-Xns\ I£ym-hr-Ø-sa∂pw {]Xn-a-fi-e-ÿm-\o-b-am-bncn-°p∂

⁄mX-t`m-K-{K-l-hr-ØsØ I£y-mhr-Ø-t\-ao¶te D®-\o-N-hr-Ø-

sa∂pw Iev]n-∏q. I£ym-hrØtI{µw Xs∂ tI{µ-am-bn´p t\ao-¶¬

{Kl-kv]¿iw hcp-amdp t⁄b-t`m-K-{K-l-hr-Ø-sa∂p t]cm-Ip∂ I¿Æ-

hr-Ø-tØbpw Iev]n-®n´v kv^pS-{In-bsb \ncq-]n-t°-≠q.

ChnsS ]ns∂bpw c≠p hrØsØ Iev]n-t°-≠p-In¬ Cu Iev]n®

I£ym-t\-ao¶se ⁄mX-t`m-K-{K-l-hr-Ø-tØmSp Xpey-am-bn´p I£ym-

tI-{µ-Øn-¶¬1 tI{µ-ambn Hcp hrØsØ Iev]n-∏q. CXns\ ⁄mX-

t`m-K-{K-l-hr-Ø-tØmSp Xpey-ambn t⁄b-t`m-K-{K-l-hr-Ø-tI-{µ-am-bn-

cn-°-bm¬ I£ym-hrØw F∂p apºnte \ymbw sIm≠p Iev]n-t°-

≠p. F¶nepw PRm-X-t`m-K-{K-l-hr-Ø-tØmSp kv]¿i-an-√m-bvI-bm¬

D®\oNhrØ-sa∂v Iev]n-®p-sIm-≈q. ]ns∂ ⁄mX-t`m-K-{K-l-hrØØn-

¶¬ aµ-kv^pS{Klw F{X sN∂n-cn-°p-∂q. C°-ev]n® D®-\o-N-hr-Ø-

Øn-¶¬2, A°-e-bn-¶¬3 tI{µ-am-bn´p Iev]n®v I£ym-hr-Ø-tØmfw

t]ms∂mcp {]Xn-a-fi-esØ Iev]n-∏q. Cßs\ Iev]n-°p-tºmƒ I£ym-

{]-Xn-a-fi-e-ßsf D®-\o-N-hr-Ø-sa∂pw D®-\o-N-hr-Ø-ßsf I£ym-

{]-Xn-a-fi-e-ß-sf∂pw Iev]n-®-Xmbn. t⁄b-hr-ØsØ4 I¿Æ-hr-Ø-

sa∂p-X-s∂bpw Iev]n-∏q. BI-bm¬ Iev]n-X-{]-Xn-a-fi-e-Øns‚ tI{µw

{Kl-K-Xn-bm-bn´p Kan-°p-∂p F∂n-cn-°p-∂p. F¶nepw AXns\ D®-KXn

15. 1. D.adds Iev]n-X-I-£y-hr-Ø-tI{µ
2. B. hrØ-Øns‚
3. B. B Ie-bn-¶¬
4. D. add t⁄b-t`m-K-{Kl hrØsØ

15. _p[-ip-{I-∑m-cpsS io{L-kv^pSw
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F∂pw CXns‚ tI{µ-an-cn-°p-t∂Sw D®-sa∂pw Iev]n-t°-Ww. ]ns∂

⁄mX-t`m-K-{K-l-hr-ØØns‚ tI{µ-KXn D®-KXn F∂n-cn-°p-∂-Xm-

Inepw {Kl-KXn F∂p Iev]n-∏q. ⁄mX-t`m-K-{K-l-hr-ØsØ D®-\o-

N-hr-Ø-sa∂p Iev]n-°-bm¬. ]ns∂ ⁄mX-t`m-K-{K-l-hr-Ø-Øns‚

tI{µw5 bmsXm-cn-SØp Iev]n®p I£ym-hr-Ø-t\-ao-¶¬ AhnsS a≤y-

a-{Klw Xpey-Iem F∂p Iev]n-∏q, F∂m¬ AXn∂p X°-hÆw

Iev]n®p {]Xn-a-fi-e-Øn-¶¬ {Klw Kan-°pw. CXp ⁄mX-t`m-K-{K-l-

hr-Ø-Ønt‚bpw Iev]n-X-{]-Xn-a-fi-e-Øn-t‚bpw t\an-I-fpsS tbmK-ß-

fn¬ D®-{]-tZiw, ASp-Øp≈ tbmK-Øn-¶ev F√m-bvt]mgpw {Klw Ccn-

°-bm¬. ]ns∂ ⁄mX-t`m-K-{K-l-hr-Ø-Øn-¶se {Kl-KXn I-£ym-hr-

Ø-t\-ao¶¬ Iev]n-°p∂ D®-\o-N-hr-Ø-t\-ao-¶¬ Iev]n-°p∂ {Kl-

KXn F∂p Iev]n∏q. CuhÆ-am-Ip-tºmƒ {KlsØ D®-sa∂pw D®sØ

{Kl-sa∂pw Iev]n-®-Xmbn F∂p- h∂n-cn-°pw. BI-bm¬ aµ-kv^p-S-

Øn-¶¬ kwkvI-cn-°p∂ io{L`qPm-̂ -esØ iot{Lm-®-Ønepw io{L-

I¿Æ-I-em-{]-an-X-am-bn-cn-°p∂ io{L-tI-{µ-̀ p-Pm-Pym-hns\ aµ-kv^p-S-{K-

l-Øn-¶epw6 kwkvI-cn-∏q. F∂m¬ _p[-ip-{I-∑m-cpsS tKmf-KXn7 D≠m-

Ipw.

Chn-tSbv°v At]-£-bp-≠m-I-bm¬ apºn¬ A©p- hr-Ø-ß-fn¬

IqSo´p Iev]n® {Ktlm-®-K-Xn-I-tfbpw kv^ptSm-]-]-Øn-tbbpw Im´n.

F∂n´v AXns\ kmh-[m-\-ambn \ncq-]n-®m¬ C{]-Imcw _p≤y-[n-cq-V-

amIpw8. ChnsS IpPm-Zn-Iƒ°pw {]Xn-a-fi-e-I-e-I-tf-s°m≠p am\w

sNbvXn v́ C{X F∂p ]Tn-®n-cn-°p-∂q, aµ-hr-Ø-tØbpw io{L-hr-Ø-

tØbpw. _p[-ip-{I-∑m¿°v ]ns∂ io{L-hrØw hep-Xm-I-bm¬ CXns‚

Ie sIm≠p {]Xn-a-fi-esØ am\w sNbvX-Xns\9 io{L-hr-Ø-am-bn´p

]Tn-®n-cn-°p-∂q, CØ-{¥-kw-{K-l-Øn-¶¬. CXns\ Hgn®p≈ {KŸ-ß-

fn¬ _p[-ip-{I-∑m-cpsS aµ-hr-Ø-tØbpw io{L-hr-Ø-am\w sIm≠v

Af∂p ]Tn-®n-cn-°p-∂p. CØ-{¥-kw-{K-l-Øn-¶¬ ]ns∂ {]Xn-a-fi-e-

15. 5. B. hrØ-tI{µw
6. B.D. aµ-kv^p-S-Ønepw
7. D. `tKm-f-KXn
8. D. _p≤ym-cq-V-amIpw; _p≤n-cq-V-amIpw
9. D. sNbvXn v́ AXns\

VIII. {Kl-K-Xnbpw kv^pShpw
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I-em-am\w sIm≠p Xs∂ Af∂p aµ-\o-tNm®hrØ-ßsf ]Tn-®n-cn-°p-

∂p. F∂n´v10 kza-≤y-Øn-t¶∂p atµm®w hmßnbm¬11 aµ-kv^p-S-\ym-

tb\ D≠m-°nb aµ-̂ -esØ Xs‚12 a[y-a-Øn¬ Xs∂ kwkvI-cn®v

B aµ-kv^p-SsØ ]ns∂ iot{Lm-®-sa∂p Iev]n®v BZn-Xy-a-[y-asØ

Xs‚ a[y-a-sa∂p Iev]n®v io{L-kv^pSw sNøp-∂p. ]ns∂ atµm-®-\o-

N-hrØw {]Xn-a-fi-e-tØ-°mƒ sNdpXv Ch-‰n∂v F∂n´v aµ-kv^pSw

Ign-thmfw kmam\yw \ymb-at{X _p[-ip-{I-∑m¿°pw. io{L-kv^p-S-

Øn-¶¬ Xs∂ {Ktlm-®-ß-tfbpw Ch-‰ns‚ KXn-I-tfbpw Ch-‰ns‚

hrØ-ß-tfbpw ]I¿∂p Iev]n-t°-≠q. AhnsS aµ-I¿ÆsØ io{Lm-

¥y-̂ ew sIm≠p KpWn®v {XnPy-sIm≠p lcn-®m¬ io{L-hr-Ø-I-em-

an-X-am-bn-cn-°p∂ aµ-I¿ÆhrØhymkm¿≤-ap-≠m-Ipw. {]Xn-a-fi-esØ

apºn¬ io{L-I¿Æ-hrØam-bn´p ]Tn-®n-cn-°p-∂p. aµ-I¿Æ-hr-ØsØ

io{L-I¿Æ-hr-Ø-am-bn´p Iev]n-t°≠q F∂nXp tlXp-hm-Ip-∂-Xv.

Ct{X hnti-j-ap-≈q _p[-ip-{I-∑m¿°v. Cßs\ sNm√n Xmcm-{K-l-ß-

fpsS kv̂ pSsØ hnt£-]an√mØ t\c-tØ-°v.

16. khn-t£-]-{Kl-Øn¬ io{L-kw-kvImcw

A\¥cw hnt£-]-ap≈ t\c-tØ°p hnti-j-ap≠v. AXns\

sNm√p∂p1. ChnsS2 ̀ tKm-f-a-≤y-Øn-¶¬ ‘A]-{Iaw’ F∂p-s≠mcp hrØw

D≈q3. CXns‚ Ime-tZ-i-ßƒ°p X°-h-Æ-ap≈ kwÿm-\-t`-ZsØ

Chn-tSbv°v At]-£-bn-√m-bvI-bm¬ t\tc ta¬Io-gmbn Ing-°p-]-Sn-™m-

dmbn Ccn-s∏m∂p Cu4 A]-{I-a-hrØw F∂v Iev]n-∏q. CXns‚ t\ao-

¶¬ ]{¥≠v Awiw Iev]n®v Ch-‰ns‚5 hrØm¿≤-ß-fn¬ AI-s∏-

Sp∂ Cuc≠v Awi-ß-fn¬ kv]¿in-°p-amdv Bdp-hr-Ø-ßsf Iev]n-∏q.

15. 10. F. om. kz
11. D.F. hmßn
12. B. kz for Xs‚

16. 1. B. AY hnt£-]-ap-≈-t∏m-tg°v
2. B. om. ChnsS
3. B. om. D≈q; F. D≈Xv
4. B. E. om. Cu
5. B. Ch-‰n¬

15. _p[-ip-{I-∑m-cpsS io{L-kv^pSw
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A]-{I-a-hr-Ø-Øns‚ tI{µ-Øn-t¶∂v6 t\sc sX°pw hS°pw Ch Xß-

fnepff tbmKw. Cu c≠p tbmK-Øn∂pw7 ‘cminIqS-ßƒ' F∂p t]¿.

Bdp hrØ-ß-tf-s°m≠p ]{¥≠v A¥-cm-f-ßƒ D≠m-Ipw. Cu c≠p

hrØ-ß-fpsS ]gp-Xp-Iƒ ]{¥≠p cmin-I-fm-Ip-∂-Xv. Cu cmin-Iƒ°v

A]-{I-a-hr-Ø-Øn-¶¬ \Spth cminIqS-ß-fn¬ c≠v A{K-ß-fpw. AhnsS

\Spth s]cnsI CS-ap-≠mbn Ccp-X-ebpw Iq¿Øn-cnt∏m Nne cmin-Iƒ.

]ns∂ Cu cmin-I-tf-s°m≠v CuhÆw Xs∂ Awin®p Xob-Xn-Iƒ

Cen-Iƒ XpSßn8 Iev]n-®p-sIm-≈q.

CuhÆ-an-cn-°p-t∂-SØv Cu A]-{I-a-hr-Ø-Øns‚ tI{µw-Xs∂ tI{µ-

ambn t\anbpw. AXns‚ am¿§-Øn-¶¬ Xs∂ Bbn-cp-s∂m∂v io{L-

hr-Øw. tI{µ-Øn-∂-Sp-Øp-≈n-S-Øn∂v A]-{I-a-a-fi-e-Øn∂p "iot{Lm-

®-\o-N-hrØw' F∂p t]¿ F∂v Hm¿°n-ep-amw. Hmtcm {Kl-Øn∂v Hmtcm

{]Imcw io{L-hr-Ø-Øns‚ hen∏w Ft∂ hnti-j-ap-≈q. kwÿm-\-

t -̀Z-an√; F√m-‰n\pw Hcp {]Imcw Xs∂.

]ns∂ Cu io{L-hr-Ø-t\-ao-¶¬ bmsXmcp {]tZ-iØv BZn-Xy-a-≤y-

aw, AhnsS tI{µ-am-bn´p atµm-®-\o-N-hrØw. CXv F√m-‰n-\pw. CuhÆw.

Cu atµm-®-\o-N-hr-Ø-Øns‚ t\ao-¶¬ {]Xn-tem-a-am-bn´p ]mXs‚ KXn.

Cu ]mX≥ bmsXm-cn-SØv atµm-®-\o-Nhr-Øns‚ B {]tZ-iw A]-{I-a-

a-fi-esØ kv]¿in-°pw. Cu ]mXt-¶∂p9 Xp-S-ßn A]-{I-a-a-fi-e-

am¿§-Øn-t¶∂p hS-t°-]p-d-ta Ccn°pw atµm-®-\o-N-hr-Ø-Øns‚

]mXnbpw. ]mX-t¶∂p hrØm¿≤w sN√p-t∂Sw ]ns∂bpw A]-{I-a-a-

fi-e-am¿§sØ kv]¿in-°pw.  ]n∂sØ A¿≤w A]-{I-a-a-fi-e-am¿§-

Øns‚ sXt°- ]p-d-ta. ChnsS A]-{I-a-a-fi-e-am¿§-Ønt¶∂p F√m-

bn-ep-a-I-ep-t∂Sw atµm®\o-Nhr-Ø-Øn‚10 Ie-sIm≠v AXXp {Kl-

Øns‚ ]c-a-hn-t£-]-tØmfw AI-epw. ]ns∂ Cu \otNm-®-hr-Ø-am¿§w

16. 6. C. B. A]-{I-a-tI-{µ-Øn-¶¬
7. B.C.F.Cu c≠p tbmK-Øn∂pw cminIqS-sa∂; D. Cu c≠p hrØ-k-aq-l-tbm-KØn
8. B. apX-embn For XpSßn F∂p XpSßn
9. F. CXn-t¶∂v
10. D. atµm®\oN-hr-Ø-I-e-I-sf-sIm≠v; B.F.atµm-®-hr-Ø-I-e-sIm≠v

VIII. {Kl-K-Xnbpw kv^pShpw
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Xs∂ {]Xn-a-fi-e-Øn∂p am¿§-am-Ip-∂-Xv. F∂n v́ {]Xn-a-fi-ehpw IqSn

\otNm-®-hr-Ø-Øn\p X°-hÆw A]-{I-a-a-fi-e-am¿§-Øn-t¶∂p

sX°pw hS°pw Ncn-™n-cn°pw. CuhÆw Xs∂ aµ-I¿Æ-hr-Øhpw

Ncn-™n-cn-°pw. F∂n´p aµ-kv^p-S-Øn-t¶∂p hnt£]w sImt≈≠q.

AhnsS aµ-I¿Æ-hr-Ø-Øn-\p atµm®hrØ-Øns‚ tI{µw Xs∂

tI{µ-am-I-bmepw AXn∂p X°-hÆw A]-{I-a-a-fi-e-am¿§-Øn-t¶∂p11

sX°pw hS°pw Ncn-™n-cn-°-bmepw aµ-I¿ÆhrØ-Øns‚ t\an A]-

{I-a-a-fi-e-am¿K-Øn-t¶∂p F√m-bvt]mgpw12 AI-t∂Sw aµ-I¿ÆhrØ-

I-e-I-tf-s°m≠p ]c-a-hn-t£-]-tØmfw AI-∂n-cn-°pw. BI-bm¬

]mtXm-\-a-µ-kv̂ p-S-Øns‚ Pymhns\ ]c-a-hn-t£]w sIm≠p KpWn-®m¬

{XnPy-sIm≠v lcn-t°-≠q, ^ew aµ-I¿Æ-hr-Ø-Øn-¶te {Kl-Øns‚

CjvS-hn-t£-]w. C®-cn-hn∂p "hnt£-]'sa∂p t]cm-Ip-∂p.

CuhÆ-an-cn-°p-∂n-SØp bmsXm-cn-°¬ {Klw A]-{I-a-a-fi-e-am¿§-

Øn-t¶∂p \oßn-bn-cn-°p∂q At∏mƒ iot{Lm-®-\o-N-hr-Ø-Øn∂pw

aµI¿Æ-hr-Ø-Øn∂pw Zn°v Ht∂ A√m-bvI-bm¬ aµ-I¿Æ-hrØw

io{L-kv^p-S-Øn-¶¬ {]Xn-a-fi-e-ambn Iev]n-∏m≥ tbmKy-a-√. ]ns∂

]mX-t\mSp aµ-kv̂ pS{Kl-Øn∂p tbmK-ap-≈-t∏mƒ aµ-I¿Æ-hr-ØsØ

iot{Lm-®-\o-N-hr-Ø-Øn∂pw t\tc Iev]n-®p-sIm-≈mw. {Kl-Øn∂p

hnt£-]-an-√mØt∏mƒ Cu aµ-I¿Æ-hr-Ø-sØXs∂ hnt£-]n®p

Iev]n-t°-≠m. F∂m¬ {Kl-an-cn-°p∂ {]tZiw aµ-I¿Æ-hrØØn\v

A]-{I-a-a-fi-e-am¿§-Øn-t¶∂v F√m-bn-ep-a-I-t∂-S-sa∂v I¬]n®v Ahn-

Sp∂v hrØ-]mZw sN√p-t∂-SØv A]-{I-a-a-fi-e-tØmSv tbmK-sa∂pw

Iev]n-®m¬ Cu hnt£-]-sØ-sIm≠p sNcnhv D≠m°mw. aµ-I¿Æ-hr-

Ø-Øn\v hnt£-]-an-√m-Ø-t∏mƒ ]ns∂ aµ-I¿Æ-hr-Ø-hymkm¿≤-h¿§-

Øn¬ hnt£-]-h¿§-sØ-°-f™v aqen®v hnt£-]-tIm-Snsb D≠m-°mw.

CXp {Kl-Øn-¶¬ A{K-ambn aµ-I¿Æ-hr-Ø-tI-{µ-Øn-t¶∂v hnt£-]-

tØmfw AI-t∂-SØp aqe-am-bn-cn-s∏m∂v Cu hnt£-]-tIm-Sn. Cu

16. 11. F. {Ia-a-fi-e-Øn-¶∂v
12. H. F√m-bvt]mgpw

16. khn-t£-]-{K-l-Øn¬ io{L-kw-kvImcw
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hnt£-]tImSn°p t\sc-bp≈ hymkm¿≤-am-bn v́ Hcp hrØsØ Iev]n-

∏q.  CXv A]-{I-a-a-fi-e-am¿§-Øn-t¶∂v F√m Ah-b-h-hp-sam-∏-a-I∂v

LSn-Im-a-fi-e-Øn∂v bmsXmcp {]Imcw kzmtlm-cm-{X-hrØw F∂-

t]mse Ccp-s∂m-∂v  Cu hnt£-]-tIm-Sn-hr-Øw. CXn∂p t\tc \o°n

Iev]n∏q iot{Lm-®-\oN-hr-Øw.

At∏mƒ iot{Lm-®-\o-N-hr-Ø-am¿§-Øn∂p t\tc Ccn-°-bm¬

hnt£-]-tIm-Sn-hrØw {]Xn-a-fi-e-am-Ipw io{L-kv^p-S-Øn-¶-te-°v13.

ChnsS hnt£-]sØ {]Xn-a-fi-e-I-em-{]-an-X-am°n h¿§n®p aµ-I¿Æ-

h¿§-Øn-t¶∂p If-™p  aqen®v hnt£-]-tIm-Snsb D≠m-°mw.  F∂m¬

{]Xn-a-fi-e-I-em-{]-anXw hnt£-]-tImSn F∂-dn-™n´v io{L-^-e-ß-

sf D≠m-°-Ww. apºn¬ sNm√nb hnt£-]-tIm-Snsb hymkm-¿≤-sa∂pw

CXns\ aµ-I¿Æ-sa-∂pw Iev]n®v apºn-te-t∏mse io{L-kv^pSw

sNbvhq. F∂m¬ A]-{I-a-a-fi-e-tI-{µ-Øn-t¶∂p hn£-]-tØmfw

sX°p-Xm≥ hS-°p-Xm≥ \oßnb {]tZiw tI{µ-ambn {KlsØ

kv]¿in°p∂ t\an-tbmSp IqSn-bn-cn-°p∂ io{L-I¿Æ-hr-Ø-Øn-¶se

{Kl-kv^p-S-ap-≠m-Ipw. CXp Xs∂-bt{X A]-{I-a-a-fi-e-̀ m-K-Øn-¶te

kv^pS-am-Ip-∂-Xpw. A]-{I-a-a-fi-e-Øns‚ Ccp-]p-dhpw D≈ tImSn-hr-

Ø-Øn-¶epw Cen-Iƒ A]-{I-a-a-fi-e-tØmSv Xpey-ßƒ, tImSn-hr-Ø-

Øn-¶¬ Iem-Zn-Iƒ sNdp-Xv F∂n´p kwJymkmay-ap-≠v.  ]ns∂ kzmtlm-

cm-{X-hr-Ø-Øn-¶¬ bmsXmcp {]Imcw {]am-W-ßƒ henb LSn-Im-hr-

Ø-Øn-¶-temfw kwJy D≠m-°n-bn-cn-°p-∂q, A∆Æw hnt£-]-tIm-Sn14

hr-Ø-Øn-¶¬ Cen-Iƒ. CXp taen¬ hy‡-am-Ipw.

]ns∂ io{L-I¿Æ-h¿§-Øn¬ hnt£-]-h¿§w Iq´n aqen-®m¬

A]-{I-a-a-fi-e-tI-{µ-Øn-t¶∂v {Kl-tØm-f-ap≈ A¥-cm-f-ap-≠m-Ipw.

CXn∂p ‘`qXm-cm-{K-l-hn-h-c’-sa∂p t]¿.  ]ns∂ apºn¬ sNm√nb hnt£-

]sØ {XnPy-sIm≠p KpWn®v ̀ qXm-c-m{K-l-hn-hcw sIm≠p lcn®v D≠mb

hnt£]w `tKm-f-Øn-¶te hnt£-]-am-Ip-∂-Xv. A]-{I-a-a-fi-e-tI{µw

16. 13. B. kv]pS-Øn-¶-tebpw
14. D. om. tImSn

VIII. {Kl-K-Xnbpw kv^pShpw
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Xs∂ tI{µ-am-bn-cn-°p∂ `qX-mcm-{K-l-hn-h-c-hr-Ø-Øns‚ t\an A]-

{I-a-a-fieam¿§-Øn-t¶∂v F{X AI-e-ap≠v F∂Xp `tKm-f-hn-t£-]-

am-Ip-∂-Xv. Cu ̀ qXm-cm-{Klhnhcw th≠m kv̂ pSn-®m¬ cmin-Iq-S-tØmSv

AW-hn∂p X°-hÆw sNdp-Xm-bn-cn-°p∂ Cen, F∂n´p tImSn-hr-Ø-

Øn-¶epw A]-{I-a-hr-Ø-Øn-¶epw cmiym-Zn-Iƒ bmsXmcp {]Imcw

kzmtlm-cm-{X-hr-Ø-Øn-¶epw LSn-Im-hr-Ø-Øn-¶epw {]mW-ßƒ kwJy

sIm≠p ka-ß-fm-bn-cn-°p∂q. A∆-Æ-am-I-bm¬ `qX-mcm-{K-l-hn-hcw

th≠m io{L-`p-Pm-^-esØ D≠m-°p-hm≥. Cßs\15 sNm√n-b-Xmbn

kv^pS-{In-b.

A\-¥-cw16 iot{Lm-®-\o-N-hr-Ø-Øn-∂pw -A-]-{I-a-a-fi-e-am¿§-

Ønt¶∂p hnt£-]-ap-≠v. AXp aµ-I¿Æ-hr-Ø-Øns‚ am¿§-Øn\p X°-

h-Æ-a√m Xm\pw hnt£-]w, Cu io{L-hr-Ø-Ø-nt¶∂v17 aµ-I¿Æ-hrØw

as‰m-cp-{]-Imcw hnt£-]n®v Ccn-°p∂p F∂pw Ccn-∏q F¶n¬ Cßs\

kv^pS-tØbpw hnt£-]-tØbpw Adn-tb≠q F∂-Xns\ Im´p-∂q.

ChnsS iot{Lm-®-\o-N-hr-Ø-Øn∂p Xs‚ ]mX-ÿm\w Fhn-S-Øv18

F∂pw CXn∂p ]c-a-hn-t£]w F{X-sb∂pw Adn-™p19a ]ns∂- CXn¶te

aµ-I¿Æ-hr-Ø-tI-{µ-Øn∂pw Xev°m-e-Øn-¶¬ F{X hnt£]w F∂-

dn-bq. CXn-\m-bn-s°m≠p iot{Lm-®-Øn-t¶∂p io{L-hr-Ø-]m-Xs\

hmßn tij-Øns‚ `pPbv°p Pymhp-sIm≠v Xs‚ ]c-a-hn-t£]w

sIm≠pw KpWn®p {XnPy-sIm≠p lcn-®m¬ ^ew iot{Lm-®-\o-N-hr-

Ø-t\-ao-¶te aµ-I¿Æ-hr-Ø-tI-{µ-{]-tZiw A]-{I-a-a-fi-e-am¿§-{]-tZ-

i-Øn-t¶∂v C{X hnt£-]n®p F∂-Xp-≠m-Ipw. CjvSm-]-{Iaw t]mse

Cu hnt£-]sØ h¿§n®v {XnPym-h¿§-Øn¬ \n∂p If-b-Ww19b. tij-

Øns‚ aqew hnt£-]tImSn. A\-¥cw Cu hnt£-]-tIm-Snsb

hymkm¿≤-ambn Iev]n®v A]-{I-a-a-fi-e-am¿§-Øn-eqsS Hcp hrØw

16. 15. B. C\n kv̂ pS-{Inb
16. B. AYx; D. om. A\-¥cw
17. D. iot{Lm®-\oNhrØ-Øn-t¶∂v
18. B. FhnsS
19a F. Adn™p Ccn∏p F¶n¬ Cßs\ kv^pSsØ hnt£-]-tØbpw Adn™p
19b D. h¿§-Øn-t¶∂p If™v aqen-®-Xn¬ hnt£-]-tImSn ]ns∂ hymkm¿≤-ambn

Hcp hrØsØ Iev]n-∏p. hnt£-]tØmfw \oßn-sb∂v ]ns∂.

16. khn-t£-]-{K-l-Øn¬ io{L-kw-kvImcw
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hc-bv°pI.  ]ns∂ AXv A]-{I-a-a-fi-e-am¿§-Øn-¶∂v CjvS-hn-t£-]-

tØmfw \oßn-tb-S-Øp ]ns∂ CXns\ hnt£-]-tIm-Snsb io{Lm-¥y-

^ew sIm≠p KpWn®p {XnPy-sIm≠p lcn-®m¬ {]Xn-a-fi-e-I-em-{]-

an-X-am-bn-´n-cn-°p∂ hnt£-]-tIm-Sn20hymkm¿≤-ap-≠m-Ipw. ]ns∂ Cu

hnt£-]-tImSnhrØsØ21 io{L-\o-tNm®hrØ-sa∂p Iev]n-®v, ]ns∂

apºn¬ sNm√nb aµ-I¿Æ-hrØhnt£-]-tIm-Sn-hr-ØsØ {]Xn-a-fiew

F∂p Iev]n®v io{L-̀ p-Pm-̂ -esØ D≠m°n aµ-kv^p-S-Øn¬ kwkvI-

cn∏q F∂n-ßs\ th≠n hcpw. iot{Lm-®-\o-N-hr-Ø-Øn\p  hnt£]w

thsd Hcp am¿§Øn-¶¬ D≠m-bn-́ n-cn-°p-∂q-Xm-In¬ ]ns∂ hnt£-]n-

®n-cn-°p∂ io{L-\o-tNm-®-hr-Ø-Øn-t¶∂p C{X hnt£-]n-®n-cn-°p-∂p

aµ-I¿Æ-hr-Ø-sa∂v B ]-£-Øn-¶¬ hcpw. At∏mƒ A]{Ia-a-fi-

e-am¿§-Øn-t¶∂p hS-t°m´p hn£-]n-®n-cn-°p∂ {]tZ-i-Øn-¶¬ io{L-

hr-Ø-t\-ao-¶¬ tI{µ-am-bn-cn-°p∂ aµ-I¿ÆhrØ-Øn-¶¬ Cu io{L-

hr-Ø-t\-ao-t¶∂v t\tc sXt°m´v hnt£-]n-®n-cn-°p∂ {]tZ-i-Øn-¶ev

{Klw F∂p-an-cn-∏q. F¶n¬ Cu io{L-\o-tNm-®-hr-Ø-Øn-t‚bpw

aµI¿Æ-hr-Ø-Øn-t‚bpw CjvS-hn-t£-]-ß-fpsS A¥cw A]-{I-a-a-fi-

e-am¿§-Øn-t¶∂p X¬°m-e-Øn-¶¬ {Kl-Øn\p hnt£-]-am-Ip-∂-Xv.

hnt£-]-ßƒ  c≠pw-IqSn DØcwXm≥ Z£nWwXm≥ F∂n-cn-°p-∂-

Xm-In¬ hnt£-]-ß-fpsS tbmKw Xev°m-e-Ø-n¶¬ {Kl-Øn∂p hnt£-

]-am-Ip-∂-Xv. A]-{I-a-a-fi-e-am¿§-Øn-t¶∂v D≈ hnt£]w Xm\pw AXv.

Cßs\22 ⁄mXt`m-K-{K-l-Øn\pw ⁄mX-t⁄-bm-¥-cm-f23-cq-]-

am-bn-´n-cn-°p-∂24 D®-\o-N-hr-Ø-Øn∂pw c≠p am¿§-ØqsS hnt£-]-ap-

≠v  F∂n-cn-°p-∂q-Xm-In¬ kv̂ pS-Øn-t‚bpw  hnt£-]-Øn-t‚bpw {]Im-

csØ sNm√o-Xm-bn. kv^pS-{]-Im-c-an-ß-s\-sb√mw kw`-hn-°p-sa∂o

\ymbsØ Im´p-hm-\m-bn-s°m≠v sNm√p-I-bt{X CXns\ sNbvX-Xv.

Cßs\ D≠m-bn-́ -√. ]ns∂ ChnsS `tKm-f-a-[yaw tI{µ-am-bn-cn-°p∂

16. 20. H. tImSnhrØhymkm¿≤
21. H. tImSn-hr-ØsØ
22. F. Cu
23. F. `pPm-¥-cmf
24. B. ap≠mbn-cn-°p∂

VIII. {Kl-K-Xnbpw kv^pShpw



889

hrØ-Øn-¶¬ C{X-sN∂q (sNm∆?) N{µ-_nw-_-L-\-a[yw tI{µ-am-bn-

´n-cn-°p∂ hrØ-Øn-¶¬ F{X-sN∂p F∂-dn-tb-≠p-In¬ N{µ-I-£ym-

hr-ØsØ D®-\o-N-hr-Ø-am°n Iev]n®v kv^pS{In-bsb \ncq-]n-°p-

tºmƒ C{]-Imcw kw -̀hn-°pw. at‰ {]Im-c-sa-¶nepw IW°p N{µ-_nw-

_-L-\-a-≤y-Øn-¶-te°p Adn™v `tKm-f-a≤yw tI{µ-am-bn-´n-cn-°p∂

hrØ-Øn-¶-te°p Adn-tb≠q F∂n-cn-°p-∂-Xm-In-epw, CuhÆ-tam¿°-

Ww.

17.  kv̂ pS-Øn¬ \n∂v a[y-am-\-b-\w.

A\¥cw1 kv^pS-sØ-s°m≠p a≤y-asØ hcpØpw {]Im-csØ

sNm√p-∂p. AhnsS N{µm-Zn-Xy-∑m¿°v kv^pS-Øn-t¶∂v D®w-hm-ßnb

tij-Øns‚ ̀ pPm-Pym-hm-Ip-∂-Xv,  D®-\o-N-kq-{X-tØmSp {Kl-tØm-Sp≈

A¥-cm-f-Øn-¶te Pymhv.  CXns\ I¿ÆwsIm≠p KpWn®v {XnPy-sIm≠p

lcn®v {]Xn-a-fi-e-I-eman-X-am-°n-bm¬ {]Xn-a-fi-e-̀ m-K-Øns‚ Pymhm-

bn-´p- h-cpw. CXns\ Nm]n-®m¬ {]Xn-a-fi-sseI-tZ-i-Øns‚ Pymhv.

CXns\ D®-Øn¬Xm≥ \oN-Øn¬Xm≥ kwkvI-cn-®m¬ {]Xn-a-fi-e-

Øn-¶¬ C{X-sN∂q {Klw F∂p- h-cpw. ]ns∂ tZmx -̂e-sØ-sb-¶nepw

CuhÆw {]Xn-a-fi-e-I-em-{]-an-X-am°n Nm]n-®v -ta-j-Xp-emZn hn]-co-X-

ambn kv̂ pS-Øn¬ kwkvI-cn-∏q. F∂mepw a[yaw hcpw. ChnsS bmsXm-

cp-{]-Imcw {XnPym-I¿Æ-ß-fpsS A¥-c-an-cn-°p-∂q, D®-kv^p-Sm-¥-c-

tZm¿Pymhpw D®-a[ym-¥-ctZm¿Pymhpw Xß-fn-ep≈ A¥-c-hp-w A-∆-Æ-

an-cn-°pw, {]am-W-X¬ -̂e-ßfpw C—m-X¬ -̂e-ßfpw Xß-fn¬.

17. 1. B. AY

17. kv^p-S-Øn¬ \n∂v a[y-am-\-b\w
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18. kv̂ pS-Øn¬\n∂v a[y-am-\-b-\w-̨

-{]-Im-cm-¥cw

]ns∂ tZmx^-esØ Ahn-ti-jn-®mepw kv^pSw sIm≠p

a[yasØ hcp-Ømw. AXns‚ {]Im-c-am-Ip-∂Xv ˛̨  ̨ kv^pS-Øn-t¶∂v

D®w hmßnb tZmx -̂esØ D≠m°n taj-Xp-em-Zn- hn-]-co-X-ambn1 kv̂ pS-

Øn¬Xs∂ kwkvI-cn-®m¬ a[yaw hcpw ÿqe-am-bn´v. ]ns∂ Cu

a[y-a-Øn-t¶∂v D®w hmßn tZmx -̂esØ D≠m°n apºn-e-sØ2 kv^pS-

Øn¬ Xs∂ kwkvI-cn®p ]ns∂bpw Cu a[ya-Øn-t¶∂v D®w hmßn

tZmx^-e-sØ-s°m≠p \tS-tØ3 kv^pS-Øn¬Xs∂ kwkvIcn-∏q.

Cßs\ Ahn-tijw hcp-thmfw4 F∂m¬ a[yaw kq£va-am-Ipw. I¿Æ-

ap -≠m -t°≠m Xm\pw Hcn -°epw aµ-kv^pSØn-¶¬. ChnsS

kv̂ ptSm®m¥ctZmx -̂esØ I¿Æw sIm≠p KpWn®p {XnPy-sIm≠p

lcn-°p-t∂-SØv {XnPym-I¿Æm-¥cw sIm≠p kv^pS-tZmx-^-esØ

KpWn®v {XnPy-sIm≠p lcn-®m¬ ^em-¥-c-ap-≠m-Ipw5. CXns\ kv^pS-

tZmx-^-e-Øn¬ Iq´q aI-cm-Zn-bn¬, Ifbq I¿°ym-Zn-bn-¶¬. F∂m¬

at≤ym-®m-¥-c-tZmx-̂ -e-am-bn-́ p- h-cpw. ChnsS {XnPym-I¿Æm-¥-c-am-Ip-∂Xp

tImSn-̂ ew6 an°-hmdpw tZmx -̂e-h¿§-tbmKw sIm≠p≈ hntijw Ipd-

bp-sat√m. F∂n´v Chn-sS7 tZmx -̂esØ tImSn-̂ ew sIm≠p KpWn®p

{XnPy-sIm≠p lcn® ^ew kv^pS-a-≤y-a-tI-{µ-tZmx-̂ -e-ß-fpsS A¥c-

am-Ip-∂-Xv.  CXp an°-hmdpw kv^pS-tZmx-̂ -e-Øns‚ h¿Ø-am-\-J-fi-

Pym-°-fm-bn-́ n-cn-°pw8.  tImSn-Pym-hns\  A\p-k-cn-s®s√m `pPmJ-fi-an-

cn-∏q.  F∂n´p tImSn-̂ -e-Øn∂p X°-hÆw ̀ pPm-̂ -e-J-fi-an-cn-∏q.  ̀ qPm-

-̂e-Nm-]sØ aµ-Pym-sh∂p9 Iev]n®p tImSn-̂ ew sIm≠p KpWn®p

18. 1. H. adds apºn-esØ
2. D. ap∂nse
3. C.F.om. s°m≠p \tSsØ
4. C. F. hcp-tºmƒ
5. D. ^ew kv̂ pSw a[y-a-tZmx-̂ -e-ß-fpsS A¥-cm-f-am-Ip-∂Xv
6. D. tImSn-^-e-kaw
7. C.F. AhnsS
8. B. Bbn-cn°pw; C. bn´n-cn-°pw, F. Bbn-cn-°p∂
9. H. aµPym

VIII. {Kl-K-Xnbpw kv^pShpw
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{XnPy-sIm≠p lcn-®m¬ `pPm-̂ -e-J-fiw- h-cpw. ChnsS  `pPm-̂ -esØ

Jfi-Pym-hn-t\-s°m≠p KpWn®v Nm]-tØ-s°m≠p lcn-®mepw `pPm-

^-e-Øn-s‚10 `pPm-^-e-Jfiw hcpw.  CXp ]ns∂ Xt¶∂p sIm≠

`pPm-̂ -esØ kwkvI-cn-®n-cn-°p∂ tI{µ-Øn-t¶-∂psIm≠11 `pPm-̂ -e-

Ønepw Cu `pPm-^-e-Øns‚ `pPm-^-e-Jfiw Gdn-Øm≥ Ipd-™p-

Xm≥ Ccn-°pw. F∂m¬ kv^pS-tI-{µ-`p-Pm-^-esØ hn]-co-X-ambn

kwkvI-cn®v Ahn-ti-jn-®m¬ a[y-a-tI-{µ-`p-Pm-^ew hcpw. AXns\

kv^pS-Øn¬ kwkvI-cn-®m¬ a[yaw hcpw. Cßs\ A¿t°-µp-°-fpsS

kv^pS-tØ-s°m≠p a[y-asØ hcp-Ømw.

19. a‰p {Kl-ß-fpsS io{L-a-[y-am-\-b-\w.

CuhÆw a‰p-≈-h-cpsS1 aµ-kv̂ pSw sIm≠p a[y-asØ hcp-Ømw.

]ns∂ io{L-kv^p-S-tI-{µ-̀ p-Pm-̂ -esØs°m≠p2 aµ-kv^p-SsØ hcp-

Øpw-{]-Imchpw3 CuhÆw Xs∂. AhnsS hnti-j-ap-≠v.  Ah-nti-jn-

t°-≠4. I¿Æ-Kp-W-\hpw  {XnPym-l-c-Whpw th≠m.  io{L-kv^p-

SsØ tI{µ-̀ p-Pm-Pym-hns\ hrØw sIm≠p KpWn®v AioXn sIm≠p

lcn®v iot{Lm-®-\o-N-hr-Ø-Ønte Pymhm°n Nm]n®v taj-Xp-emZn hn]-

co-X-ambn io{L-kv^p-S-Øn¬ kwkvI-cn-®m¬ aµ-kv^p-S-am-bn-́ p-h-cpw.

ChnsS bmsXm-cn-SØp a[yaw sIm≠p kv^pSw hcp-Øp-hm-

\mbns°m≠p ̀ pPm-̂ -esØ D≠m-°p-t∂SØp I¿Æw sIm≠p ss{Xcm-

inIw sNtø≠mØp,  Aß-s\5 Ccn-°p∂ aµ-kv^pSw sIm≠p

a[yasØ hcp-Øp-tºmƒ ̀ pPm-̂ -esØ Ahn-ti-jn-t°-Ww F∂-Xns‚

D]]-Ønsb sNm√n-sb-s√m. CXp sIm≠p-Xs∂ hcpw aµ-kv^p-S-Øn-

18. 10. D. `qPm-^-emw-i-Øns‚
11. A. om. sIm≠p

19. 1. B. At\yjmw
2. B. io{Lw sIm≠v
3. C.F. {]Imcw
4. C. Ah-ti-jn-°p-Ibpw th≠
5. B. Cßs\

18. kv^p-S-Øn¬ \n∂v a[y-am-\-b\w˛{]-Imcm¥cw
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t¶∂p io{L-kv̂ p-SsØ D≠m-°p-t∂-S-Øp6 I¿Æm-t]£ D≠m-I-bm¬

io{L-kv^p-S-Øn-t¶∂p aµ-kv^p-SsØ hcp-Øp-hm≥ I¿Æw th≠m.

BI-bm¬ `pPm-̂ -esØ Ahn-ti-jn-°bpw th≠m, \ymbw Xpey-am-I-

bm¬7. CuhÆ-am-Ip-tºmƒ aµ-kv^pSw sIm≠p io{L-kv^p-SsØ hcp-

Øp-t∂-SØp I¿Æw-IqSmsX io{L-`p-Pm-^-esØ Ahn-ti-jn®p

kwkvI-cn-®m¬ io{L-kv^pSw hcpw. Cßs\ I¿ÆwIq´n ss{Xcm-inIw

sNbvXp `pPm-̂ -esØ D≠m-°p-t∂-SØp I¿Æw IqSmsX Ahn-ti-jn-

°nepw `pPm-̂ ew Xpey-am-bn-́ n-cn-°pw.  ChnsS tImSn-̂ -ehpw {XnPybpw

IqSo-́ p≈ ss{Xcm-in-I-Øn-¶te C—m-̂ -esØ ̀ pPm-̂ -e-J-fi-hpw8 Nm]-

J-fihpw Iq´o v́ D≠m-°mw.  CXns\ Pym{]-I-c-W-Øn-¶¬ hnkvX-cn-®p-

sNm-√n-bn-cn-°p-∂p.  Ahn-S∂p I≠p-sIm-≈q.

]ns∂ Cu \ymbw sIm≠p-Xs∂ aµ-I¿Æ-h-im¬ bmsXm-∂p

io{L-]-cn-[n°p hntijw hcp-∂-Xv, AXp-sIm≠p bmsXm∂p ]ns∂

io{L-̀ p-Pm-̂ -e-Øn-¶¬ t`Zw hcp-∂-Xv, AXns\ aµ-̂ -e-J-fi-am-bn-́ p-

≠m-°mw. CXn-∂m-bn-s°m≠p \tS a≤y-a-Øn-t¶∂p iot{Lm®w

hmßnb io{L-̀ p-Pm-̂ -esØ D≠m°n a≤y-a-Øn¬ kwkvI-cn®v AXn-

t¶∂v atµm®w hmßn aµ-̂ -e-sØ9 hcp-Øp-tºmƒ B aµ-̂ -e-Øn¬10

io{L`p-Pm-^-e-`m-K-Øns‚ aµ-^-e-J-fi-Pym-°ƒ Gdo-´n-cn-°pw, Ipd-

™n´pXm≥. ]ns∂ Cu ^esØ11 Cßs\ hcp-Øp-tºmƒ aµ-I¿Æ-h-

im¬ bmsXm∂p io{L-̂ -e-Øn-¶¬ hnti-j-ap-≠m-Ip-∂Xv AXv ChnsS

IqSn h-∂n-cn-°pw. F∂m¬ aµ-̂ -esØ a≤y-a-Øn¬ kwkvI-cn-°p-tºmƒ

aµ-I¿Æ-h-im¬ io{L-̀ p-Pm-̂ -e-Øn-¶¬ D≠m-Ip∂ ^e-t -̀Z-sØ-°q´n

kwkvI-cn-®-Xm-bn-´p-h-cpw.

ChnsS aµ-I¿Æ-h-im¬ bmsXm∂p io{L-̀ pPm -̂e-Øn-¶¬ hnti-

j-ap-≠m-Ip-∂Xv. AXns\ io{L-̀ p-Pm-̂ -e-Øn-t¶∂v thtd D≠m-Ip-amdp

19. 6. D. hcp-t∂-SØp
7. C. F. Xpey-am-I -sIm≠v
8. C. F. `pPm-^-ehpw
9. D. aµ`pPm-^-esØ
10. B. F. Gdn-bn-cn°pw Ipd-™n-cn°pw Xm≥
11. C. F. aµ-̂ e

VIII. {Kl-K-Xnbpw kv^pShpw
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\ncq-]n-°p-tºmƒ A-Xn∂p c≠p ss{Xcm-inIw D≠v. AXns‚ \tS-tØ-

Xn¬ io{L-̀ p-Pm-̂ -esØ {XnPy sIm≠p KpWn®v aµ-I¿Æw sIm≠p

lcn∏q F∂v. ]ns∂ AXn-t\bpw {XnPy sIm≠p KpWn®v io{L-I¿Æw

sIm≠p lcn∏q F∂Xp c≠m-a-Xv. ]ns∂ CXns\ io{L-tI-{µ-Øn\p

X°-hÆw kwkvI-cn∏q F∂n-Xpw.

Cßs\ Cu c≠p ss{Xcm-in-I-^-ehpw [\¿Æ-hy-h-ÿbpw

aq∂pw IqSn Fßs\ hcp∂q, \tS io{L-tZmx-̂ -esØ kwkvI-cn-t®-S-

Øn∂p aµ-^-esØ sIm≠m¬ F∂-Xns\ sNm√p-∂p. AhnsS

bmsXm∂p io{L-tZmx-^-esØ {XnPy-sIm≠p KpWn®v aµ-I¿Æw

sIm≠p lcn-®mte ^ew, CXpw tIh-e-io-{L-tZmx-̂ -ehpw Xß-fn¬

D≈ A¥cw bmsXm∂v CXv \tStØ ss{Xcm-in-I-Øns‚ C—m-X¬ -̂

em--¥cw. CXp \StØ KpWysØ Xs∂ KpW-lm-cm-¥-c-sØ-s°m≠p

KpWn®v lmcIw sIm≠p lcn-®m-ep-≠m-Ipw. ]ns∂ aµ-tIm-Sn-^ew

sIm≠p KpWn®v {XnPy-sIm≠p lcn-®m-ep-≠m-Ip-w- Cu ^ew an°-hm-

dpw. ChnsS \tS io{L-tZmx-^-esØ kwkvI-cn-®n´v ]ns∂ aµtZmx-

^ew I≠m¬ AXn¬IqSn io{LtZmx-^-e-Øns‚ aµJfi-Pym-°-fp-

≠m-Ipw. CXpw io{L-tZmx-̂ -e-Øn-t¶∂p aµ-I¿Æ-h-im¬ D≈ hnti-

j-am-bn-́ n-cn-°pw. Cßs\ io{L-tZmx-̂ -e-Øn-¶te \tStØ ss{Xcm-in-

I-Øns‚ ̂ ew aµ-tZmx-̂ -e-Øn¬ Iq´n D≠m-°n-s°m-≈mw. ]ns∂ tIh-

e-a-[y-Øn-¶¬ \n∂v D≈ aµ-tZmx-̂ -ehpw io{L-tZmx-̂ -ehpw kwkvI-

cn-t®-SØp tIh-e-a-[y-aØn-t¶-∂p-≠m-°nb io{L-tZmx^ehpw aµ-tZmx-

^-ehpw Xß-fn¬ A¥cw bmsXm∂v AXp aµ-I¿Æ-h-im¬ io{L-

tZmx-̂ -e-Øn-¶-ep≈ hnti-j-am-Ip-∂Xv. Cßs\ \tSsØ ss{Xcm-in-I-

^-ew.

]ns∂ tIh-e-a-[y-a-Øn-¶∂p-sIm≠ aµ-^ew kwkvI-cn®p a[y-a-

Øn-t¶∂p≠m°nb io{L-tZmx-̂ ew bmsXm∂v, ]ns∂ io{L-tZmx-̂ ew

kwkvI-cn-t®-S-Øn-∂p-sIm≠v aµ-tZmx-^ew kwkvI-cn®p tIh-e-a-[y-a-

Øn-t¶-∂p-≠m-°nb12 io{L-tZmx-̂ -ehpw Xß-fn-ep≈ A¥cw bmsXm∂v

19. 12. B.C.D.F.om. tIh-e-a≤y.....to......io{L-tZmx-^-ehpw

19. a‰p-{K-l-ß-fpsS io{L-a-[y-am-\-b\w
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AXp c≠mw ss{Xcm-inIw sIm≠p≠m-Ip∂ ^e-amIp∂Xv. io{L-

I¿Æhim-ep-≠m-Ip∂ hntijw io{L-I¿Æ`pPm-Jfißfm-bn-́ p-≠m-

Ipw. aµ-I¿Æ-h-im-ep≠mIp∂ ^ew aµ-̀ p-Pm-J-fi-ß-fm-bn-́ p-≠m-Ipw.

ChnsS I¿ÆsØ {XnPy F∂pw {XnPym-I¿Æm-¥-csØ tImSn-̂ -e-

sa∂pw tZmx -̂e-Nm-]sØ ka-kvX-Pym-sh∂pw Nm]-J-fim-{K-Øn-¶te

tImSn -̂esØ a[yaØn¶-teXv F∂pw Iev]n-®n´v Cs®m-√n-b-{]-Imcw

CXp sIm≠p-≠m-Ip∂ sÿueysØ Dt]-£n-∏qXpw sNbvhq. ]ns∂

aµ-I¿Æ-h-im¬ io{L-tZmx-̂ -e-Ønep≠m-Ip∂ hnti-jsØ aµ-tZmx-

-̂e-Øn¬ Iq´n D≠m-°p-tºmƒ  aµ-tI-{µ-Øn\v X°-hÆw kwkvImcw

kw -̀hn-t°-≠13, io{L-tI-{µ-Øn∂p X°-hÆw kwkvI-cn-°-Ww14.

CXns\ aµ-tI-{µ-h-im¬ kwkvI-cn-®mepw ^e-kmayw hcpw F∂-

Xns\ Im´p-∂p. ChnsS aµ-I¿Æ-h-im¬ io{L-tZmx-̂ -e-Øn-¶te hr≤n-

£bmwiw bmsXm∂v AXv aµ-I¿Æ-tØ-°mƒ {XnPy  hep-Xm-Ip-tºmƒ

Gdpw, sNdp-Xm-Ip-tºmƒ Ipd-bpw. aµ-tI-{µ-Øns‚ I¿°n-ar-Km-Zn°p

X°-hÆw Ccn-°p-an-Xv. Cu ^ew apºnte io{L-̂ -e-Øns‚ aµ-̂ ew

kwkvI-cn-°p-tºmƒ Ign-™ncn°pw. ChnsS apºnse io{L-̂ ew [\am-

bn-´n-cn-°p-tºmƒ -bmsXm-cn-°¬ aµ-tI{µw tajm-Zn-cm-in-{Xn-I-Øn-¶¬

Ccn-°p-∂q, At∏mƒ aµ-I¿Æw hep-Xm-I-bm¬ CXn∂p X°-h-Æ-

ap≠mIp∂ io{L-̂ ew sNdp-Xm-bn-́ n-cn-°pw. F∂m¬ aµ-tIm-Sn°p X°-

h-Æ-ap-≠m-Ip∂ io{L-̂ ew If-I-th-≠p-h-Xv. aµ-̂ -ehpw If-I-th-≠p-

h-Xv. F∂m¬ c≠pw IqSn-°-f-bmw. AhnsS ]ns∂ io{L-̂ ew [\w

aµ-I-¿°ym-Zn-{Xn-I-Øn-¶eq F∂n-cn-°p-tºmƒ aµ-I¿Æ-h-im-ep≠mIp∂

io{L-̂ -emwiw [\-am-bn-́ n-cn-°pw. ]ns∂ tIh-e-a-µ-tI-{µ-tØ-°m-́ n¬

io{L-̀ p-Pm-̂ ew Iq´nb aµ-tI{µw hep-Xm-bn-́ n-cn-°pw. AXp bp‹-]-Z-

am-Ip-tºmƒ tat∑¬sNt∂mfw `pPm-̂ ew Ipd-™n-cn-°pw. Cu `pPm-

^ew EW-am-Ip-tºmƒ sNdp-Xm-I-bm¬ io{Lmw-iw15 [\-am-bn-́ p- h-∂p-

IqSpw ^e-Øn-¶¬. ]ns∂ io{L-̂ ew [\w, aµ-tI{µw Xpem-Zn-{Xn-I-

19. 13. B.F. kw`-hn°pw
14. B.C.F. kwkv°-cn-t°≠ CXv
15. B. io{L-^-emwiw

VIII. {Kl-K-Xnbpw kv^pShpw
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Øn-¶eq F∂n-cn-°p-tºmƒ16  aµ-I¿Æw {XnPr-tb-°mƒ sNdp-Xm-I-bm¬

CXn-t\-s°m-≠p-≠m-Ip∂ io{L-̂ -e-a-[nIw. aµ-̂ ew Xpem-Zn-bm-I-bm¬

[\w Xm\pw. aµ-tI{µw HmP-]-Z-am-I-bm¬ io{L-^ew kwkvI-cn®p

a[y-a-Øn-t¶∂p D≠m-°nb aµ-̂ ew hep-Xmbn´ncn-°pw. Cu ̂ ew Xpem-

Zn-bm-I-bm¬ [\w. F∂m¬ Chn-tSbpw aµ-tI-{µ-Øn\p X°-hÆw

io{Lmw-i-I-Øns‚ kwkvIm-c-ap-Nn-Xw.

]ns∂ aµ-tI{µw aI-cm-Zn-{Xn-I-Øn-¶eq, io{L-̂ ew [\w F∂p-an-cn-

∏q At∏mƒ tIh-e-a-µ-tI-{µ-tØ-°mƒ io{L-̂ ew kwkvI-cn-®n-cn-°p∂

aµ-̂ ew hepXv. CXv bp‹-]-Z-am-bn´v KX-̀ mKw Gdp-I-bm¬ Gjy-̀ m-K-

am-Ip∂ `pPm-Nm]w sNdpXv. F∂n´v CXns‚ aµ^ew tIh-e-tI-{µ-a-µ-

-̂e-tØ-°mƒ Ipd-bpw. CXp a≤y-a-Øn¬ Iq´p-tºmƒ Ipd-s™m∂p

IqSn F∂n-cn -°p-tºmƒ EW-am-bn -´n -cn -°p∂ io{Lmw-i-Øns‚

kwkvImcw Iq´n ChnsS ^en-®n-cn-°pw,  EW-am-Ip∂ aµ-I¿Æw {XnPy-

tb-°mƒ hep-Xm-I-bm¬.

Cßs\ io{L-^ew [\-am-Ip-tºmƒ aµ-tI-{µ-Øns‚ \mep

]mZØn¶epw aµ-tI-{µ-Øn\p X°-hÆw io{Lmw-i-Øns‚ kwkvIm-c-

ap-NnXw F∂p- h-∂p. ]ns∂ io{L-̂ ew EW-am-Ip-tºmfpw Cu \ymb-

Øn\p X°-hÆw aµ-tI-{µ-h-im¬ io{Lmw-i-Øns‚ [\-¿Æ-{]-Imcw

Duln-®p-sIm-≈q. F∂m¬ aµ-I¿Æ-h-im-ep-≠m-Ip∂ io{L-̂ -emwiw

io{L-tI-{µ-Øn\p X°-hÆw kwkvI-cn-t°≠q F∂n-cn-°p-∂-Xm-In-epw17

aµ-̂ -e-Øn¬ Iq´n D≠m°n aµ-tI-{µ-Øn\p X°-hÆw kwkvI-cn-®m¬

A¥cw hcnI C√18 ^e-Øn-¶¬ F∂p- h-∂p. CuhÆ-am-Ip-tºmƒ

io{L-^-e-Øn-¶¬ aµ-I¿Æm-t]£ C√. BI-bm¬ io{L-^-esØ

D≠m°n ]Tn-t®-°mw, aµ-̂ -e-tØbpw, kv^pS-{In-b-bpsS emL-h-Øn-

\m-bn-s°m-≠v. ChnsS aq∂p ̀ pPm-̂ -esØ D≠m°n c≠p ̀ pPm-̂ -esØ

kwkvI-cn®v a[yaw kv^pS-amIp-∂-Xv19 F∂n-ßs\ Hcp ]£w.

19. 16. B. adds {XnI-Øn-¶-ep-b¿∂n-cn-°p∂p BIn¬
17. B. om. F∂-Xm-Inepw
18. B. hcnI
19. F. a≤y-kv^p-S-am-I-∂Xv

19. a‰p-{K-l-ß-fpsS io{L-a-[y-am-\-b\w
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bmsXm-cn-SØp ]ns∂ aµ-I¿Æ-{Xn-Pym-¥-cm¿≤-Øn∂p X°-hÆw

iot{Lm-®-\o-N-hr-Ø-Øn-∂p20 hr≤n-{lm-k-ap≠v F∂ ]£-am-Ip-∂q,

AhnsS io{L-tZmx-̂ -esØ {XnPy sIm≠p KpWn®v aµ-I¿Æ-{Xn-Pym-

tbm-Km¿≤w sIm≠p lcn-°-Ww. Cu AwisØ aµ-̂ -e-Øn¬ Iq´n

D≠m-°p-hm≥ io{L-^-em¿≤w kwkvI-cn-®n-cn-°p∂ a[y-a-Øn-t¶∂p

aµ-^-e-ap-≠m-°-Ww. At{X hnti-j-ap-≈q. tijw apºn¬ sNm√n-b-

hÆw. ]c-ln-X-Øn-¶¬ _p[-ip-{I≥am-cpsS21 kv^pSsØ sNm√n-b-sX-

∂-`n-{]m-bw.

am\-k-Im-c¿°p ]ns∂ aµ-I¿Æ{Xn-Pym-¥-cm¿≤-Øn\p X°-hÆw

aµ-\o-tNm®hrØ-Øn\pw hr≤n-£-b-ß-fp-s≠∂p ]£-am-Ip-∂p.  B

]£-Øn-¶¬ aµ-̂ -e-tØbpw io{L-̂ -e-tØbpw {XnPysIm≠p KpWn®v

aµ-I¿Æ-{Xn-Pym-tbm-Km¿≤w sIm≠p lcn-t°-Ww. Cßs\ D≠m°n

kwkvI-cn∏q aµ-^-e-sØ. io{L-^-esØ Cu KpW-lm-cm-¥-c-ß-

tfs°m≠p KpWn®v lcn®v22 ]ns∂bpw {XnPy-sIm≠p KpWn®v io{L-

I¿Æw sIm≠p lcn®p kwkvI-cn-∏q.  Cßs\ B ]£-Øn-¶¬ kv̂ pS-

{In-b. CuhÆ-am-I-s°m≠p am\-k-Øn¬ tImSy¿≤w kwkvI-cn-®n-cn-

°p∂ aµ-t—Zw sIm≠p aµ-̂ -e-tØbpw io{L-̂ -e-tØbpw kwkvI-

cn-∏m≥ sNm√n.  Cu ]£-Øn-¶¬ aµ-I¿Æw IqSmsX AXns‚ ̂ esØ

D≠m-t°-≠p-In¬ aµ-̂ -e-tØbpw  io{L-̂ -e-tØbpw  A¿≤n®p a≤y-

a-Øn¬ kwkvI-cn®v ]ns∂ CXn-t¶∂v D≠m-°nb aµ^esØ tIh-e-

a[y-a-Øn¬ kwkvI-cn®v CXn-t¶-∂p-≠m-°nb io{L-̂ ew Cu aµ-kv̂ p-

S-Øn¬ Xs∂ kwkvI-cn-∏q. F∂m¬ kv^pSw hcpw. Cu ]£-Øn\p

X°-hÆw \mep kv^pS-am-bn´p sNm√p-∂p. ]e-h-‰nepw aµ-I¿Æw IqSm-

bvInte io{L-I¿Æ-`p-Pm-^-esØ ]Tn-®n-tb-°m-hq.  F∂n´v ChnsS

aµ-tIm-Sn-̂ -em¿≤w sIm≠p ̀ pPm-̂ -e-ßsf c≠n-t\bpw KpWn-t°-≠pI-

bm¬ aµ-io-{L-^-em¿≤-ßƒ c≠n\pw IqSn aµ-^-e-ap-≠m-t°-≠p-I-

bm¬ `pPm^e-ßƒ c≠n-t‚bpw A¿≤w kwkvI-cn-t®-S-Øp∂v aµ-

19. 20. F. \ntNm-®-Øn\v
21. C. ip{I-∑m¿°v
22. D. adds kwkvI-cn®v ]ns∂ CXn-¶∂v D≠m-°nb aµ-̂ -esØ tIh-e-

a-≤y-a-Øn-¬ kwkvI-cn®v CXn-¶∂v D≠m-°nb io{L-̂ ew

VIII. {Kl-K-Xnbpw kv^pShpw
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-̂e-ap-≠m-°p∂p F∂v Chn-tS°v tlXp-hm-Ip-∂-Xv. Cßs\ sNm√n-b-

Xmbn kv^pS-{In-b.

20. _p[-ip-{I-∑m-cpsS a[y-a-kv̂ pSw

A\-¥cw _p[-ip-{I-∑m¿°v aµ-\o-tNm-®-hr-Ø-tØbpw {]Xn-a-fi-

e-tØbpw iot{Lm-®-hr-Ø-I-e-I-sf-s°m≠p ]Tn-®n-cn-°p-t∂-SØv B

kv^pS-{In-bsb sNm√p-∂p. ChnsS \tS iot{Lm-®-\o-N-hr-Ø-tØbpw

{]Xn-a-fi-e-tØbpw ]I¿∂p Iev]n®p IpPm-Zn-I-tf-t∏mse aµ-kv^p-S-

tØbpw io{L-kv^p-S-tØbpw sNømw. Iev]nXkza[yaam-Ip∂ BZn-

Xy-a[y-aØn¬ aµ-^ew kwkvI-cn-®Xp aµ-kv^p-S-am-Ip-∂Xv F∂p

Iev]n-∏q. `tKm-f-a-[y-Øn-t¶∂p XpSßn iot{Lm-®-\o-N-hr-Ø-sa∂p

Iev]n®v {]Xn-a-fi-e-tI-{µ-Øn-¶¬ t\an-kv]¿iw h∂n-cn-°p∂ hrØw

aµ-I¿Æ-hr-Ø-am-Ip-∂-Xv. aµ-\o-tNm®hrØ-t\-ao-¶¬ aµ-{]-Xn-a-fi-e-

tI-{µ-an-cn-°p-∂p. I£ym-hr-Ø-t\-ao-¶te atµm-®-\o-N-hr-Ø-Øn-¶te

{Klw F∂-t]mse BI-bm¬ aµ-kv̂ p-S-Øn-t¶∂p D≠m-°nb io{L -̂

esØ {XnPy-sIm≠p KpWn®v aµ-I¿Æw sIm≠p lcn-t°≠p aµ-

I¿Æ-hr-Ø-I-em-{]-an-X-am-hm≥. CXns\ I¿Æw IqSmsX hcp-tØ-≠p-

In¬ ChnsS BZn-Xy-a[y-Øn¬ aµ-̂ ew kwkvI-cn-®-sXt√m aµ-kv^p-

Sw. B aµ-kv^p-S-Øn-t¶∂v D≠m-°nb io{L-^-esØ tIh-e-a-[ya

aØn¬ kwkvI-cn-∏q. ]ns∂ AXns\ aµ-kv^p-S-Øn-¶¬ kwkvI-cn-

t°-≠p-I-bm¬ B io{L-kv^p-S-Øn-t¶∂p sIm≠ aµ-̂ -esØ AXn-

¶¬ Xs∂ kwkvI-cn-∏q. F∂m¬ kv^pSw hcpw. io{L-I¿Æw

sIm≠p≈ hnti-jsØ \tS ]Tn-°p-tºmsf Iq´n D≠m°nsbt√m

]Tn-°p-∂p. BI-bm¬ CuhÆw th≠n-h-cpw. Cßs\ kv^pS-{In-b.

[KWn-X-bp‡ǹ mj-bn¬

{Kl-K-Xnbpw kv̂ pS-hp-sa∂

F´ma-[ymbw kam]vXw]

20. _p[-ip-{I-∑m-cpsS a[y-a-kv^pSw
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A≤ymbw H≥]Xv
 ̀ q˛hm-bp -̨̀ -tKm-f-ßƒ

1. ̀ qtKmfw

A\-¥-cw1 `q˛hm-bp-̨ -̀tKm-f-ß-fpsS kwÿm-\-ß-tfbpw KXn-I-tfbpw

Im´p-∂q. AhnsS \£-{X-tKm-f-Øns‚ \Sp-hn¬ BIm-iØn¶¬ t\sc2

Dcp-≠p Xs‚ i‡n-sIm-≠p-Xs∂, as‰mcp B[mcw3 IqSmsX, F√m

]pdhpw ÿmh-c-Pw-K-am-fl-I-ß-fm-Ip∂ F√m P¥p-°-tfbpw F√m

hkvXp-°-tfbpw `cn®p \nevs]m∂v Cu ‘`qan’. ]ns∂4 `qaosS5 F√m

]pd-Øp-ap≈ BIm-i-Øn-¶∂pw6 I\Ø hkvXp-°ƒ `qan-bn-¶¬ hogp-

amdp kz`m-h-ap-≠v. F∂n´v BIm-i-Øn-t¶∂v F√m-Shpw Iogp `qan.

`qaosS F√m ]pdØp \n∂pw taep “BImiw”. ]ns∂ `qaosS sXt°

]mXn-bn-¶¬ sh≈amIp∂ {]tZiw Gdq. hSs° ]mXn-bn-¶¬ ÿe-

am-Ip∂ {]tZiw Gdq, sh≈amIp∂ {]tZiw Ipd-hq7. ]ns∂ ‘`mc-X-J-

fisØ’°pdn®p aosØ-∏pdw F∂p tXm∂p-t∂-SØp Pe-ÿ-e-k-‘n-

bn-¶¬ ‘e¶’ F∂p≠v Hcp ]pco8. Ahn-S∂p Ing-°p-]-Sn-™mdp `qansb

Np‰p-amdv hrØm-Im-tcW Hcp tcJ Iev]n-∏q. CXn-¶¬ ]Sn-™mdp ‘tcma-

I-hn-jbw’, Iotg-]p-dØp ‘kn≤-]p-cw’, Ing-°p‘-b-h-tIm-Sn’. Cßs\ \mep-

]p-c-ß-fp-≈h9.

1. 1. B. AY
2. B. om. t\sc
3. B. B[m-chpw
4. E. F.om. ]ns∂
5. E. adds Cu
6. B.F BIm-i-Øo∂v F√m-S-Øo∂pw
7. B. A[nIw sh≈amIp∂ hSs° ]mXn-bn-¶¬
8. B. e¶-sb-s∂mcp ]pcn-bp≠v
9. B. \mep ]pcßƒ
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]ns∂ CuhÆw e¶-bn-¶∂p sX°pw hS°pw Iosg-∏p-dØpw IqSn

`qansb Np‰p-amdv hrØ-mIm-tcW Hcp tcJ Iev]n-∏q. CXn-¶¬ hS°p

“alm-tacp10”, sX°p ‘_U-hm-ap-Jw11, Iosg ‘kn≤-]pcw’ Cu tcJ ‘ka-

tcJ’ BIp-∂-Xv. C -a-tc-J-bn-¶eq ‘D÷-bn-\o’ F∂ \Kcw. ChnsS

apºn¬ sNm√nb ]q¿∆m-]-c-tc-J-bn-¶-te°p ‘\nc-£-tZiw’ F∂p t]cp-≠v.

B hrØ-am¿§-Øn-¶¬ F√m-S-Øn∂pw ‘{[ph≥’ F∂ Hcp \£-

{XsØ `q]m¿iz-Øn-¶¬ sX°pw hS°pw A\pZbmkvXw ImWmw.

Cu {]tZ-i-Øn-¶∂p hS-t°m´p \oßn-bm¬ hSs° {[pht\ ImWm-hq.

hS°p \oßn-tbmfw Db¿∂n-cn°pw Cu {[ph≥. Cu {[pthm-∂-Xnsb

“A£w” F∂p sNm√p-∂q. sXt°- {[p-hs\ ImW-cp-Xv, `q]m¿iz-Øn-

¶¬ XmWp-t]m-IsIm≠v. {[phs\ Db¿∂p ImWm-Ip-t∂-SØp {[ph-\-

SpØp Nne \£-{X-ßsf DZ-bm-kvX-a\w IqSmsX {[phs‚ Iotg-∏p-

dsa Ing-t°m´pw tate-∏p-dta ]Sn-™m-tdm´pw \oßq-∂Xp ImWmw.

A∆-Æta at‰- {[p-h-\-Sp-Ø-hs‰ Hcn-°epw ImWp-Ibpw Acp-Xv, ̀ q]m¿iz-

Øn-t¶∂p Iotg ]cn-{ -̀an-°-bm¬. \nc-£-tZ-i-Øn-¶∂p ]ns∂ \£-{X-

ß-sf-√m-‰n-t‚bpw DZ-bm-kvX-a-\-ßsf {ItaW ImWmw. ]ns∂, t\tc

Ing-°p∂p F{X sXt°m-́ p-Xm≥ hS-t°m´pXm≥12 \oßn DZn-°p∂q Hcp

\£{Xw, {ZjvSm-hns‚ t\tc taeo∂v A{X Xs∂ \oßn D®bmw. DZn-

®-Xns‚ t\tc ]Sn-™mdv AkvX-an-∏qXpw sNøpw13. Cßs\ \nc-£-tZ-

i-Øn-¶¬ DZ-bm-kvX-a\w. km£-tZ-i-Øn-¶epw CuhÆw D®-bm-Ip-∂Xv.

]ns∂ DZn-t®-S-Øp∂v H ṕ sX°p \oßo v́ Bbn-cn°pw kztZiw hS-s°-¶n¬.

2. hmbp-tKmfw

ChnsS \nc-£-tZ-i-Øn-¶¬ bmsXm-cn-SØp bmsXmcp \£-{Xw,

AXn∂v Ahn-sS Ahn-Sp∂v t\tc Ing°p ]Sn-™mdp taep-Io-gmbn Ccn-

1. 10. D.E.F.om alm
11. _‘-hm·n; C.E. _µ-am-ap-Jm·n
12. B.C. hS-t°m´pXm≥ sXt°m´pXm≥
13. B.C.F. AkvX-an°bpw sNøpw

1. `q-tKmfw
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t∏m∂v ‘DZ-bm-kvX-a-b-am¿§w’ F∂p tXm∂pw. Chn-tSbpw ]ns∂ t\tc1

Ing°v DZn-°p∂ \£-{X-Øns‚ {`a-W-am¿§w F√m-bnepw2 hen-sbmcp

hrØw Bbn-cn°pw. ]ns∂ CXn\SpØv Ccp-]p-dhpw3 D≈ \£-{X-ß-

fpsS am¿§w AXn¬ sNdnb hrØw Bbn-́ m-bn-cn-°pw. ]ns∂ {ItaW

sNdp-Xmbn c≠p {[ph-t‚bpw ASpØ \£-{X-ß-fpsS hrØw F√m-

bnepw sNdp-Xm-bn-́ n-cn°pw4. CuhÆ-an-cn-°p-tºmƒ c≠p Xe-°-tebpw

Ip‰n-Iƒ Du∂n-Øn-cn-bp∂ A®p-X-≠p-t]m-se c≠p {[ph-t\bpw Du∂p-

Ip-‰n-bmbn Xncn-bp-s∂m∂v Cu ‘tPymXn¿-t§mfw’ F∂p tXm∂pw. ChnsS

\nc-£-tZ-i-Øn-¶¬ t\tc Ing°pw ]Sn-™mdpw Xe°p t\tc taepw

IqSn kv]¿in-°p-∂- hrØw bmsXm∂v, CXn∂p ‘LSn-Im-hrØw’ F∂p

t]¿. CXn∂v Ccp-]p-dhpw c≠p {[ph-t\m-f-ap≈ \m\m-hr-Ø-ßƒ°p

‘kzmtlm-cm-{X-hr-Ø-ßƒ’ F∂p t]¿.

]ns∂5 e¶-bn¬\n∂p t\tc taepw c≠p {[ph-¶epw kv]¿in-°p-

amdv Hcp hrØw D≠v. CXn∂p “Z£n-tWm-Øcw” F∂p t]¿6. ]ns∂

`q]m¿iz-Øn-¶¬ Ing°pw ]Sn-™mdpw c≠p {[ph-¶epw kv]¿in-°p-

amdv Hcp hrØw D≠v. AXv “e¶m-£n-XnPw”. ]ns∂ Cu e¶m-£n-Xn-P-

Øn-¶se Z£n-tWm-Ø-c-hr-Ø-Øn-t¶∂p Ings° A¿≤sØ kv]¿in-

°p-tºmƒ \£-{X-ßƒ°p “DZbw” ]Sn-™mtd A¿≤sØ kv]¿in-

°p-tºmƒ “AkvX-a\w”; Z£n-tWm-Ø-c-hr-ØsØ kv]¿in-°p-tºmƒ

“D®” BIp-∂p.

CuhÆw LSn-Im---˛Z-£n-tWm-Ø-c˛-£nXnPßƒ aq∂pw At\ym\yw

hn]-co-X-Zn-°p-I-fm-bn-cn-°p-∂p. Ah Xß-fn¬ kv]¿in-°p-t∂-S-Øn∂v

“kzkvXnIw” F∂p t]cp-≠v. Ch ChnsS Bdq≈p, £nXn-P-Øn-¶¬

\mep-Zn-°nepw taepw Iogpw. Cu kzkvXn-I-ß-fpsS ]gp-Xn¬ hrØ-ß-

fpsS \msem-∂o-Xp-̀ mKw F√m-‰n-¶epw AI-s∏-Spw. BI-bm¬ Cu aq∂p-

2. 1. A. t\cv
2. B.C.D.E F√m-bnepw hep-Xm-bn-cn°pw
3. D.E. ]pdsØ
4. B.C.E. Bbn-cn-°p-tºmƒ
5. H.adds `q]m¿iz-Øn-¶¬
6. B. CXv Z£n-tWm-ØchrØ-am-Ip-∂p, C. Zn£n-tWm-Ø-c-sa∂p t]¿

IX. `q˛hmbp˛`-tKm-f-ßƒ
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hr-Ø-ßsfs°m≠p Xpey-ß-fm-bn v́ F´p tKmf-J-fi-ß-fm-bn´ncn-t∏mcp7

]IpXn-I-fp≠mw8. CXn¬ \mep Jfi-ßfpw £nXn-P-Øn∂v9 Iogv, \mep

taeq.

3. ̀ tKmfw

]ns∂ BZn-Xys‚ Ing-t°m-´p≈ KXn-bpsS am¿§-Øn∂v ‘A]-{I-a-

afiew’ F∂p t]¿. CXp ct≠-SØp LSn-Im-a-fi-e-tØmSp1

kv]¿in°pw. hrØ-Øns‚ \msem∂p sNt∂-SØv A]-{I-a-a-fiew

LSn-Im-a-fi-e-Øn-t¶∂p2 sX°pw hS°pw3 Ccp-]-Øn-\mep XnøXn AI-

∂n-cn°pw. LSn-Im-a-fi-e-tØm-Sp-IqSn ]Sn-™m-tdm´p {`an-∏qXpw4 sNøpw.

CXn∂v A]-{I-a-a-fie-tØm-Sp≈ \tSsØ tbmKw tajmZn°SpØv.

]ns∂ Ahn-S∂v hS-t°m´v AI-epw. hrØ-Øns‚ ]mXn sN√p-t∂-

SØp5 Xpem-Zn-bn-¶¬ ASpØ c≠mw tbmKw. Ahn-Sp∂v LSn-Im-a-fi-

e-Øns‚ sXt°-∏p-dsa AIepw ]nt∂bpw hrØ-Øns‚6 ]mXn -sN-√p-

t∂-SØp IqSpw. Cu tbmK-ßƒ°p {ItaW ‘]p¿t∆m-Ø-c-hn-jp-h-Øp-

Iƒ’ F∂p t]¿. ]ns∂ Cu tbmK-ßƒ c≠n-t‚bpw \Spth F√m-

bnepw AI-ep-t∂-S-Øn∂v ‘Ab-\-k‘n’ F∂p t]¿.

ChnsS {]hl-{`-a-W-Øn\p X°-hÆw bmsXm-cn-°¬ tajmZn DZn-

°p∂q At∏mƒ XpemZn AkvX-an-°p-∂p, aI-cmZn Ja-[y-Øn-¶∂p

sXt° Z£n-tWm-Ø-c-hr-ØsØ kv]¿in-°pw, I¿°ymZn t\tc Iogp

LSn-Im-a-fi-e-Øn-t¶∂p hSt° Z£n-tWm-Ø-c-hr-ØsØ kv]¿in-

°pw. At∂-cØp Z£n-tWm-Ø-c-hr-Ø-Øn-¶¬ LSn-Im-]-{I-am-¥cw Ccp-

]-Øn-\mep XnøXn. F√m-bnepw AI∂ {]tZiw BI-bp-ap-≠-Xv7. CXp

]ns∂ LSn-Im-a-fi-e-Øn∂p X°-hÆw Xncnbpw. At∏mƒ bmsXm-cn-

2. 7. B. `tKm-f-J-fi-ß-fp-≠mImw
8. C.E. ]IpXn D≠mIpw
9. C. £nXn-P-Øn-t¶∂v

3. 1. C.D.E LSn-Im-a-fi-e-Øn-¶∂p
2. B. LSn-Im-hr-Ø-Øn-t¶∂v
3. D. sXt°m´pw hS-t°m´pw
4. B. {`an-°p-Ibpw
5. D. sNt∂-SØv
6. F. hrØ-Øn¬
7. B. {]tZiw BIp∂p

3. -̀tKmfw
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°¬ tajmZn D®-bm-Ip-∂p, At∏mƒ XpemZn Iogq8, aI-cmZn ]Sn-™mtd

kzkvXn-I-Øn-¶∂p Ccp-]-Øn-\mep XnøXn sX°p \oßn £nXn-PsØ

kv]¿in-°pw; I¿°ym-Zn- ]q¿∆kzkvXn-I-Øn-t¶∂v A{X hS°p \oßn

£nXn-PsØ kv]¿in-°pw. Cßs\ ta¬Io-gmbn Ccn-s∏m∂p At∂-

csØ9 A]-{I-a-a-fi-e-Øns‚ kwÿm\w. ]ns∂ tajmZn ]Sn-™mtd

kzkvXn-I-Øn-¶-em-Ip-tºmƒ XpemZn Ingt° kzkvXn-I-Øn-¶¬ Ccn-

°pw, I¿°ymZn Ja-≤y-Øn-¶∂p Ccp-]-Øn-\m-ep -Xn-øXn hS°v D®-bm-

Ipw, aI-cmZn Iogp sX°p-\oßn Z£n-tWm-Ø-c-hr-ØsØ kv]¿in-

°pw. XpemZn D®-bm-Ip-tºmƒ, tajmZn t\sc Iogv, aI-cmZn ]q¿∆-kz-

kvXn-I-Øn-¶∂p sX°p £nXn-PsØ kv]¿in-°pw. I¿°ymZn ]Sn-

™msd kzkvXn-I-Øn-t¶∂v hS°p £nXn-PsØ kv]¿in°pw. Cu

t\cØpw ta¬Io-gmbn Ccn°pw A]-{I-a-a-fiew. Cßs\ Cu LSn-

Im-a-fi-e-Øns‚ Xncn-®n-en\p X°-hÆw kwÿm-\-t -̀Z-ap≠v A]-{I-a-

a-fi-e-Øn∂v. Cu LSn-Im-]-{I-a-ßƒ Xß-fn¬ Hcp {]Imcw sI´p-

s]´p Xs∂ Ccn°pw As{X F∂p tlXp-hm-Ip-∂-Xv.

]ns∂ LSn-Im-a-fiew bmsXm-cp-{]-Imcw {]h-l-hmbp-tKm-f-Øns‚

a[y-hr-Ø-am-Ip∂q-, A∆Æw A]-{I-a-a-fiew `tKm-f-Øns‚ a[y-hr-

Ø-am-bn-́ n-cn°pw. bmsXmcp {]Imcw LSn-Im-]m¿iz-Øn-¶¬ {[ph-∑m¿

A∆Æw A]-{I-a-]m¿iz-Øn-¶¬ c≠p cmin-Iq-S-ßƒ D≈q. AhnsS

cmin-I-fpsS sXs° Xe H° Hcn-SØp IqSn Ccn-°pw, hSs° Xe H°

Hcn-S-Øp- Iq-Spw. Cu tbmK-ßƒ ‘cmin-IqS’-ß-fm-Ip-∂-Xv.

ChnsS ]q¿∆-hn-jp-h-Øv -J-a[y-Øn-¶¬ BIp-tºmtf cmin-IqS-

kwÿm\w F∂v sNm√p-∂-Xv. At∂-cØp t\tc ta¬Io-gm-bn-cn°pw

A]-{I-a-a-fiew. Ingt° kzkvXn-I-Øn-t¶∂p hS°pw ]Sn-™mtd

kzkvXn-I-Ønt¶∂p sX°pw £nXn-P-Øn-¶¬ kv]¿in°pw A]-{I-a-a-

fi-e-Øns‚ “Ab-\m-¥” -ßƒ. Ab-\m-¥hpw ]q¿∆m-]-c-kz-kvXn-I-

ßfpw Xß-fn¬ Ccp-]-Øn-\mep XnøXn AI-e-ap≠v10

IX. `q˛hmbp˛`-tKm-f-ßƒ

2. 8. B.D.E.F. XpemZn t\sc Iogpw
9. B.C.D.E. At∂-cØv
10. F. XnbXn A¥-c-ap≠v
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]ns∂ hSt° {[ph-¶∂p Ccp-]-Øn-\m-ep- Xn-øXn ]Sn-™mdpw sXt°

{[ph-t¶∂v11 A{X- In-g-t°bpw £nXn-P-Øn-¶¬ At∂-cØp cmin-Ip-S-

ßƒ. c≠p cmin-Iq-S-ß-fnepw Ja-≤y-Øn-¶epw12 kv]¿in-®n´v Hcp

hrØsØ Iev]n-∏q. CXv Hcp ‘cminIqS-hr-Ø’-am-Ip-∂Xv. ]ns∂ tajm-

Zn-bn-¶∂p A]-{Iaafi-e-Øn-¶¬ Ing°p13 Xs‚ ]{¥-≠m-sem∂p

sNt∂-S-Øpw c≠p cmin-IqS-ßfnepw kv]¿in-®n´v Hcp cmin-IqS-hr-Ø-

sØ- Iev]n-∏q. Iogp -Xp-em-Zn-bn-¶∂pw A{X ]Sn-™msd kv]¿in-°pw.

CS ap∏Xp XnøXn AI-e-ap-≠v. CXp c≠mw cmin-Iq-S-hr-Ø-am-Ip-∂-Xv.

ChnsS Ja-≤y-Øn-¶∂p Ing°v Cu cmin-Iq-S-hr-Ø-ßƒ c≠n-t‚bpw

]gpXp \ofw taj-am-Ip∂ cmin. Iotg-∏p-dØv Cu hrØ-ß-fpsS14 ]gpXp

\ofw Xpem-am-Ip∂ cmin.

]ns∂ c≠mw cminIqShrØ-Øn-¶∂v C{X Awiw Ing-t°bpw c≠p

cmin-Iq-S-ß-fnepw Iogp∂v A{X ]Sn-™m-tdbpw IqSn Hcp cmin-IqS-

hrØw Iev]n-∏q. Cu c≠mw cmin-Iq-S-hr-Ø-Øn-t‚bpw ap∂m-a-Xn-t‚bpw15

CS-\ofw CShw cmin. Iotg-∏p-d-tØXp hr›nIw16. ]ns∂ aq∂m-a-Xn-

t‚bpw £nXn-P-Øn-t‚bpw ]gp-Xp-\o-fw- anYp-\-am-Ip∂ cmin. Iotg-∏p-

dØp Ch-‰ns‚ ]gp-Xp-\ofw [\p. Cßs\ Bdp- cm-inIƒ.

]ns∂ Ja-≤y-Øn-¶∂p ]Sn-™mtd A]-{I-a-a-fi-e-Øn-¶¬ CuhÆw

A¥cw Xpey-am-Ip-amdv c≠p hrØw Iev]n-∏q. F∂m¬ at‰ cmin-Iƒ

Bdpw ImWmw, {]Y-a-cm-in-IqS-hr-Øhpw17 £nXn-Phpw IqSn \ncq-]n-°p-

tºmƒ. ]ns∂ cmin-I-fpsS \Sp-hn¬ CuhÆw hrØ-ßsf Iev]n®v

cmiy-h-b-h-ßfmIp∂ Xnø-Xnbpw Cenbpw Hm¿t°-Ww. ChnsS £nXn-

P-Øn∂pw Z£n-tWm-Ø-c-hr-Ø-Øn∂pw {]h-l-h-im-ep≈ Xncn-®n¬ C√.

F∂n´v Cu £nXn-P-Xp-ey-am-bn´v as‰mcp cmin-Iq-S-hrØw Iev]n-®p-

3. `tKmfw

3. 11. B.E.F Ccp-]-Øn-\mep XnbXn Ing-t°bpw
12. E.F. ¶epw IqSn
13. E. reads Ing-t°bpw £nXn-P-Øn-¶¬ At∂-cØv cmin-°p-S-ßƒ c≠nepw Ja-≤y-

Øn-¶epw IqSn kv]¿in-®n v́ Hcp hrØsØ Iev]n∏q CXv (X-s‚)
14. B. Cu cmin-Iq-S-hr-Ø-ß-fpsS
15. B. aq∂mw cminIqShrØ-Øn-t‚bpw
16. B. Iogv hr›nIw
17. B.C.DE.om. {]Y-a-cm-in-°pS to \ncq-]n-°p-tºmƒ
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sImt≈Ww Xncnbp-tºm-tf°v. Cßs\ ]{¥≠p cmin-I-sfs°m≠p

\nd-™n-cn°pw Cu tPymXn¿t§m-f-sams°. Cu18 tPymXn¿t§m-f-Øn∂v

A]-{I-a-a-fiew a≤y-am-bn, cmin-IqS-ßƒ ]m¿iz-ß-fmbn \ncq-]n-°p-

tºmƒ ‘`tKm-fw’F∂p t]¿. LSn-Im-a-fiew a[y-ambn {[ph-∑m¿ ]m¿iz-

ß-fmbn19 \ncq-]n-°p-tºmƒ ‘hmbp-tKm-fw’-F-∂p-t]¿

Cßs\ tajm-Zn-bn-¶se LSn-Im-]-{I-a-tbmKw Ja-≤y-Øn-em-Ip-tºmƒ

anYp-\m-¥-am-Ip∂ Ab-\-k-‘nbpw Z£n-W-cmin-Iq-Shpw DZn°pw. Nm]m-

¥-hpw DØ-c-cm-in-IqShpw AkvX-an-°pw. ]ns∂ {]h-l-{`-a-W-h-im¬

DZn-®h D®-bm-Ip-tºmƒ Z£n-tWm-Ø-csØ20 kv]¿in-°p-tºmƒ AkvX-

an-®h Iosg-∏p-dØp Z£n-tWm-Ø-csØ kv]¿in-°pw. ]ns∂ anYp-\m-

¥hpw Z£n-W-cm-in-IqShpw AkvX-an-°p-tºmƒ Nm]m-¥hpw DØ-c-cm-

in-IqShpw DZn°pw. Cßs\ anYp-\m-¥-tØmSp Xpey-am-bn´p Z£n-W-cm-

in-Iq-Shpw Nm]m-¥--tØmSp Xpey-am-bn´v DØ-c-cm-in-Iq-Shpw {`an-°pw.

ChnsS LSn-Im-a-fi-e-Øn-¶∂p Ccp-]-Øn-\mep XnøXn Ccp-]p-dhpw

AI-t∂-SØv c≠v Ab-\m-¥-kzm-tlm-cm-{X-ß-fp-≈q. ]ns∂ c≠p {[ph-

¶∂pw Ccp-]-Øn-\mep XnøXn AI-t∂-SØv c≠p cmin-IqS-kzmtlm-cm-

{X-ß-fp-≈q. Cu kzmtlm-cm-{X-am¿§-ØqsS \nXy-am-bn v́ {`a-W-an-h-‰n-∂v.

4. Ab-\-N-e\w

ChnsS1 Ab-\-N-e-\-an-√mØ \mƒ C∆Æw I\ym-ao-\m-¥-ßƒ tKmf-

k-‘p-°ƒ, anYp-\-Nm-]m-¥-ßƒ Ab-\-k-‘p-°ƒ Bbn-́ n-cn°pw2. ]ns∂

Ab-\-N-e\w Iqt -́≠p-∂mƒ Cu k‘p-°-fn¬ \n∂p \tSsØ cmin-

bn¶¬ Ab-\-N-e-\-tØmfw XnøXn AI-t∂-S-Øv C -‘p-°ƒ \mepw

h¿Øn-°pw. Ab-\-N-e\w If-tb-≠p-∂mƒ Cs®m-√nb k‘n-bn-¶∂p

]n∂sØ cminbn¶¬ Ab-\-N-e-\-Xn-ø-Xn-tbmfw AI-t∂-S-Øv C -

3. 18. H. adds. Cu
19. B.C.D. om. {[ph-∑m¿ to \ncq-]n-°p-tºmƒ
20. B.C.D.F.om. Z£n-tWm-Ø-csØ kv]¿in-°p-tºmƒ

4. 1. D. AhnsS
2. B.C.D.E.F.om. Bbn-´n-cn°pw

IX. `q˛hmbp˛`-tKm-f-ßƒ
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‘p-°ƒ \mepw h¿Øn-°pw. k‘p-°-fm-Ip-∂Xp ]ns∂ LSn-Im-]-{I-a-

ßƒ Hcp-an-t®-Shpw F√m-bnepw AI-t∂-Shpw. AIew Ccp-]-Øn-\m-ep

Xn-ø-Xn- X-s∂3. Nen-°p-tºmfpw LSn-Im-]-{I-a-tbm-K-{]-tZ-ita \oßq.

5. Ab-\-N-e-\-{]-Imcw

CXns‚ Ne-\-{]-Imcw ]ns∂. A]-{I-a-a-fi-e-Øns‚ bmsXmcp Ah-

bhw LSn-Im-a-fi-e-Øns‚ bmsXmcp1 Ah-b-h-tØmSp kv]¿in-°p∂q

Ab-\-N-e-\-an-√mØ \mƒ, Ahn-Sp∂p ]ns∂ Ab-\-N-e\w Iqt´-≠p-

∂mƒ Cu c≠p hrØ-ß-fp-tSbpw B2 Ah-b-h-ß-fn¬ \n∂p LSn-Im-

]-{I-a-ßƒ c≠p hrØ-ß-fnepw At∂3 Ab-\-N-e-\-Xn-ø-Xn-tbmfw

]nºn¬ \oßnb Ah-b-h-ßƒ Xßfn¬ kv]¿in°pw, Ab\Ne\w

Iftb≠p∂mƒ c≠p hrØm¥Øn\pw apºnse Ahbhw Xßfn¬

kv]¿in°pw. LSnImafiew Xm≥ \oßpIbn√. X¶se tbmK4

{]tZita \oßq. A]{IahrØw X\n°pw Ne\ap≠v5. AXp

tlXphmbn´v cminIqSßƒ°pw Ne\ap≠v. Ah Xs≥d kzmtlm

cm{Xßfn¬ \n∂v AIepIbn√. cminIqSkzmtlmcm{Xßfn¬ Xs∂

apt∂m°nbpw ]nt∂m°nbpw \oßpat{X. {[phZzbØn¶∂v

cminIqSßfpw LSnImafieØn¶∂v A]{Iamb\m¥ßfpw

Ccp]Øn\mev XobXn AIepw F∂p \nbXw. Cu \mev A¥cmfßfpw

Hcp Ab\m¥cminIqShrØØnt∑¬ Xs∂ ImWmw. ]ns∂ Hcp

I¿°SIietIsS HcnSw Du∂n as¡ XesIm≠p Xncn®p

hrØap≠m°ptºmƒ6 Du∂nb Xe°¬ hrØØns≥d \Sphv, B7

\Sphn∂p ‘\m`n’ F∂pw ‘tI{µ’ F∂pw t]¿, h°n∂v ‘t\an’ F∂pw

4. 3. B.C.D.E.F.om. AIew Ccp-]-Øn-\mep XobXn Xs∂
5. 1. B.C.D.E.om. Ah-bhw (.....to.....) bmsXmcp

2. B.C.D.E.om. B
3. B.E.om.At∂ Ab\ (.....to.....) c≠p hrØ-Øn\v
4. C.F. X¬°metbmK
5. B. Xs∂ Iptd Ne\ap≠v
6. D.E.F. asdd Xncn°ptºmƒ
7. F  AhnsS

5. Ab-\-N-e-\-{]-Imcw
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t]¿8 ChnsS9 tKmfhnjbØns‚ hrØØn¶se hrØIev]\Øn¶¬

hrØßsf√m¡n\pw `tKmfa≤yØn¶¬ Xm≥ `qtKmfa≤yØnØm≥

HcnSØp Xs∂ ‘\m`n’ F∂pw hrØØns≥d hep∏w F√mw H°pw

F∂pw Iev]n°pamdv kmam\y∂ymbw, kzmtlmcm{Xßtfbpw

kv^pS\ymbØn¶¬ Iev]n°p∂ hrØßtfbpw Hgn®v. F∂m¬

ChnsS A∆Æw Xpey\m`nIfmbncn°p∂ LSnIm]{Iaßƒ°p

ct≠SØp Xßfn¬ tbmKap≠v. ]ns∂ \m`na[yØqsS Cu tbmKßƒ

c≠n¶epw kv]¿in°p∂ hymkkq{Xw c≠n∂pw Ht∂.

]cam¥cmfßfn¬ kv]¿in°p∂ hymkkq{Xßƒ c≠p

hrØØn∂pw c≠v. ]cam¥cmfsa∂v AIetadntbSw. Cu

tbmKhymkØns≥d Zn°psIm≠v hn]coXZn°mbn´ncnt∏m Nneh

]cam¥cmfhymkkq{Xßƒ. AXp tlXphmbnt´ ]cam¥cmfßfn¬

c≠nt\mSpw kv]¿in°p∂ Ab\m¥cminIqShrØw Cu

LSnIm]{Iaßƒ c≠nt\mSpw hn]coXambn´ncn°pw. Cu hn]coX

hrØw c≠nt‚bpw ]m¿izØn¶¬ kv]¿in°pw F∂p \nbXw.

]m¿izkv]rjvSsa¶n¬ hn]coXw F∂p \nbXw. F∂m¬

Ab\m¥cminIqShrØw LSnIm]{Iaßƒ c≠n∂pw hn]coXw.

F∂n´p c≠nt‚bpw ]m¿izßfmbncn°p∂ {[phcminIqSZzbßfn¬

kv]¿in°pw. F∂m¬ Xpeym¥cßfmbn Hcp hrØØn¶Øs∂

h¿Ønt∏m Nneh c≠p hrØßfptSbpw ]m¿izm¥cmfßfpw

]cam¥cmfßfpw F∂p ÿnXw.

F∂m¬ Ab\Ne\him¬ Ab\m¥w \oßptºmƒ

Ab\m¥sØ kv]¿in°p∂ hrØw  cminIqStØbpw kv]¿in°pw

F∂p≈ \nbaw sIm≠v A]{Iamb\m¥w \oßnb Zn°n¬

Ab\m¥cminIqShpw IqSn \oßnbXmbn´ncn°pw.

A]{IaafieØns≥d Ab\m¥{]tZiw LSnImafieØn¶∂p

Ccp]Øn\mep XnøXn AI∂ncn°pw F√m\mfpw F∂p

\nbXamIbm¬ LSnIm]m¿izßfnse {[ph-Zz-b-Øn-t¶∂v A]-{I-a-

5. 8. B.C. om.  h°n∂p .....to.... hrØIev]\Øn¶¬
9. F.om.  ChnsS .....to..... a≤yØn¶Øm≥

IX. `q˛hmbp˛`-tKm-f-ßƒ
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afie]m¿iz-ß-fnse cminIqSßfpw A{XXs∂ AI∂ncn°pw F√m

\mfpw F∂p \nbXw. F∂n v́ cminIqSkzmtlmcm{Xßƒ F√m \mfpw

H∂pXs∂. F∂n´p kzmtlmcm{XØn¶¬ Xs∂ Ingt°m´pw

]Sn™mtdm´pw \oßpas{X Ab\Ne\him¬ cminIqSZzbßƒ F∂p

{Klnt°≠phXv. ]ns∂ tajmZnbn¶∂p F{X sN∂q {Klw F∂p

{Klkv^pSw sIm≠p hcp∂Xv.

AXns\ ]ns∂ LSnIm]{IatbmKØn¶∂v XpSßo v́ F{X sN∂q

F∂dnhm≥ Ab\N\ew kwkvIcnt°Ww. ]ns∂ AXn\p ‘tKmfmZn’
F∂p t]¿. Cßs\ Ab\Ne\{]Imcw.

6. A£him¬ kwÿm\t`Zßƒ

Cßs\ \nc£tZiØn¶∂p tPymXn¿t§mfsØ ImWptºmƒ

hmbptKmfhim¬ t\tc ]Sn™mdp t\m°n Xncnbps∂m∂v CXv F∂p

tXm∂pw. AXn∂p X°hÆw Cu hmbptKmfa[yhrØw XpSßnbp≈

LSnImhrØZyphrØßƒ F∂nhbpw t\tc ta¬°ogmbn tXm∂pw

F∂Xns\ sNm√oXmbn. ]ns∂ B hmbptKmfØo¶∂p `tKmfØn∂p

sNcnhps≠∂pw, Ipds™mcp KXnbps≠∂pw sNm√oXmbn. A\¥cw

km£tZiØn¶∂p t\m°ptºmƒ B hmbptKmfØn∂pw IqSn sNcnhp

tXm∂pw. AXn∂p X°hÆw `tKmfØn∂pw F∂nXns\ sNm√p∂p.

7. ̀ qtKmfw

AhnsS t\tc Dcp≠Xn∂p ‘tKmfw’ F∂p t]¿. `qan tKmfmImtcW

D≈q. Cßs\ Ccn°p∂ `qaosS F√m {]tZiØn¶epw temIcpsS

ÿnXnbpap≠v. AhnsS Xm¥m\ncn°p∂ {]tZiw `qaosS aosØ∏pdw.

AhnsS `q{]tZiw. t\sc hneßØn¬ Xs‚Xs‚ \nehp t\tc

ta¬Iogmbn´v 1 Cßs\ F√m¿°pw tXm∂pw {]Imcw. ChnsS

7. 1. B.E.  \nem ta¬Iogmbn v́

6. A£-h-im¬ kwÿm-\-t`-Z-ßƒ
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BImia≤yØn¶¬ Dcp≠ncn°p∂ `qan°v c≠p ]IpXn Iev]n∏q,

aosØ∏mXnbpw Iosg∏mXnbpsa∂v. AhnsS aosØ∏mXn°p

\SphmIp∂Xp Xm\ncn°p∂2 {]tZiw F∂ncn°pw. A∆ÆamIptºmƒ

bmsXm∂p ]m¿izamIp∂Xv AhnSp∂p Iosg∏mXn `qansbs°m≠p

ad™ncn°pw BImiw. F∂m¬ A∆Æancn°p∂ `q]m¿izØn¶¬

AIs∏Sptºmƒ tPymXn pIfpsS DZbmkvXabßƒ. Cu

{]tZiØn∂p aotØSw BImiw ImWmw. AXns≥d \Sphp

Ja≤yamIp∂Xv. CXv {ZjvSmhns≥d t\sc Xe°paotØSw. ChnsS3

bmsXm∂v LSnImafiesa∂v sNm√s∏Sp∂Xv \nc£tZiØn¶¬

Ing°p ]Sn™mdmbn ta¬°ogmbn Ccns∏m∂v AXv. AXns≥d tI{µw

`qaosS HØ \Sphnembn´ncn°pw. c≠p ]m¿izØn¶epw {[ph\pw.

Cßs\ Ccn-°p-t∂-SØv Cu `paosS \Sp-th-IqSn {[ph¶¬ c≠p

{Klßfpw kv]¿in°pamdv sX°phS°v Hcp Zfip Iev]n∏q. AXn∂v

‘A£Zfiw ’ F∂p t]¿, A®pX≠pt]mse Ccns∏m∂v AXv.

AXnt∑¬ sI´ps]´v AXp Xncnbptºmƒ AXn∂p X°hÆw IqSn

Xncnbps∂m∂v Cu ‘tPymXn¿t§mfw’ F∂p Iev]n∏q. F∂mep≠p

‘`q{]tZiw’. `q{]tZit`ZØn∂p X°hÆw hmbptKmfØns≥d

sNcnhn∂pw t`Zw F∂dnbpt∂StØ°v Hcp Ffp∏w.

ChnsS4 \nc£tZiØn¶¬ t\sc Ing°p]Sn™mdmbn Ja≤ysØ

kv]¿in®ncps∂m∂p ‘LSnImafiew ’. AhnsS `qaosS

ka]m¿izØn¶¬ Ccn°p∂ {[ph¶¬ kv]¿in®ncps∂m∂p

‘\nc££nXnPw’ Ft∂m apºn¬ sNm√s∏´pht√m. ChnsS5 `qaosS

hSs° ]m¿izØn¶te tacphn¶∂p t\m°ptºmƒ {[phs\

Ja≤yØn¶embn´p ImWmw. At∏mƒ \nc££nXnPw

ta¬°ogmbncn°pw. LSnImafiew £nXnPw t]mtebpancn°pw.

AhntSbv°v F√m¿°pw Xs∂ Xm\ncn°p∂ {]tZiw

IX. `q˛hmbp˛`-tKm-f-ßƒ

7. 2. B. Xm\ncn°p∂nSw
3. B.C.D.E.F.om. ChnsS bmsXm∂p.....to.....{[ph\pw
4. B.C.D.E.F.om. ChnsS to sNm√s∏´pshs√m
5. D. AhnsS
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kaXncy§Xambncns∏m∂v F∂p tXm∂pw. AXn¶¬ Xs≥d ÿnXn

ta¬°ogmbncns∏m∂v F∂t√m tXm∂p∂q F∂nXp Ja≤yØn∂pw

`q]m¿izØn∂pw {]XntZiw t`Zap≠mhm≥ tlXphmIp∂Xv.

C∆Æancn°ptºmƒ \nc£tZiØn¶∂p hS°phS°p \oßp∂Xn∂p

X°hÆw `q]m¿izØn¶∂p {[phs\ Db¿∂p Db¿∂p ImWmw. tacp

hn¶∂p sX°psX°p \oßp∂Xn∂p X°hÆw Ja≤yØn¶∂p

XmWpImWmw. \nc -£--tZ -i -tØmfw Cßs\ \m\m

{]tZiØn¶encn°p∂h¿°v Ja≤yhpw `q]m¿izhpw sht∆sd. ChnsS

e¶bn¶∂p t\tc hS°v katcJbn¶¬ HtcSw kztZiw F∂p

Iev]n∏q. F∂m¬ LSnImZ£ntWmØcafietbmKØn∂v hS°p

Z£ntWmØchrØØn¶¬ bmsXmcnSw Ja≤yamIp∂Xv AhntSbpw

apºn¬ sNm√nb ]q¿∆m]ckzkvXnIßfnepw kv]¿in®n´v Hcp

hrØsØ Iev]n∏q. CXn\p ‘kaafiew’ F∂p t]¿. ]ns∂

Z£ntWmØchrØØn¶¬ F{X AIeap≠v LSnImka

afiem¥cmfw DØ-c-{[p-h-Øn-¶∂p Z£ntWmØchrØØn¶¬

A{X Iotgbpw Z£nW{[ph¶∂v A{X aotXbpw ]q¿∆m]c

kzkvXnIßfnepw IqSn Hcp hrØsØ Iev]n∏q. AXn∂p

‘kztZi£nXnPw ’ F∂p t]¿, ChnsS6 apºn¬ sNm√nb

\nc££nXnPw bmsXm∂v AXp ]q¿∆m]ckzkvXnIØn¶∂p

hSt°Sw Cu kztZi£nXnPØn¶∂v aosØ Ccn°pw, sXt°Sw

Iotgbpw. Cßs\ kztZ -i -£n -XnPw thtd Iev]n°ptºmƒ

\nc££nXnPØn∂v ‘D∑fiew’ F∂pt]¿. ]ns∂ ChnsS bmsXmcp

{]Imcw Z£ntWmØcLSnIm\nc££nXnPßsfs°m≠p

Xpeym¥cmfßfmbn´v Bdp kzkvXnIßfpw kaßfmbn´v F´p

tKmfJfißfpw D≠mIp∂q, A∆Æw Z£ntWmØc˛kaafie

kztZi£nXnPßsfs°m≠pw tKmfhn`mKw Iev]n°mw.

Cßs\ F√mShpw At\ym\ykaXncy§XßfmIp∂ aq∂p

hrØßtfs°m≠p kam¥cßfmbncn°p∂ Bdp kzkvXnIßfpw,

7. 6. B.C.D.E.F.om. ChnsS ....to.... Cßs\

7. `qtKmfw
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kaßfmbn´p F´p tKmfJfißfpw D≠mIpamdv tKmfhn`mKsØ

Iev]n∏q \tS.

]ns∂ \memaXv Hcp hrØsØ Iev]n∏q. AXv CΩq∂n¬ c≠p

hrØßsfs°m≠v D≠mIp∂ c≠p kzkvXnIIß-fnepw

kv]¿in°pamdp≈q. ]ns∂ Cu hrØsØs°m≠v F´p

tKmfJfißfn¬ \mep tKmfJfißfpw s]fnbpamdv Ccn°pw.,

CXn\p ‘henXhrØw’ F∂p t]¿. Cu henXhrØØn¶∂p at¡

c≠p hrØßtfmSp≈ AIeadnbp∂Xv Hcp hrØm¥cmf

ss{XcminIamIp∂Xv F∂p taen¬ hnhcn®p7 sNm√p∂p≠v. Cßs\

ChnsS sNm√oXmbXp8 hmbptKmfkzcq]w.

]ns∂ hmbptKmfØn¶∂p `tKmfØn∂p kwÿm\t`Zap≠v

F∂pw, ]ns∂ `qan Dcp≠ncn°bm¬ `qanbn¶¬ Hmtcm

{]tZiØn¶encn°p∂h¿°v A£Zfim{KØn¶se {[phs≥d D∂Xn

Hmtcm {]Imcw tXm∂pw. F∂n v́ B A£ZfiØns≥d Xncn®¬°p

X°hÆw9 Xncnbp∂ hmbptKmfhpw \m\m{]Imcw sNcn™pXncnbp∂p

F∂p tXm∂pw F∂pw sNm√oXmbn. ]ns∂ ChnsS hmbptKmfØns≥d

kzcq]hpw hmbptKmfkwÿm\Øn¶∂p `tKmfkwÿm\Øns≥d10

t`Zhpw ̀ qan Dcp≠ncn°bpw Ch aq∂pas{X {Klkv̂ pSw Ign™tijw

{Klhnjbambncn°p∂ KWnXßƒ°p an°hmdpw tlXphmIp∂Xv.

F∂n v́ Ah¡ns≥d kzcq]w ChnsS \tS sNm√n.

8. tKmf_‘w

]ns∂ ChnsS Iev]n® afießfpw {`aW{]Imchpw _p≤ymcqVw

BImbvIn¬ Nne hfbßsfs°m≠p sI´n, A£Zfins≥d \Spth

Dcps≠mcp hkvXp `qan F∂pw Iev]n®v tKmfw Xncnbpamdv

7. 7. E.  hnkvXcn®v
8. B. ta¬ hnhcn°pw CXn hmbptKmfkzcq]w
9. B. Xncn®nen\p X°hÆw
10. B. E.F. kwÿm\ t`Zhpw

IX. `q˛hmbp˛`-tKm-f-ßƒ
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I≠psIm≈q. ChnsS kaafiehpw Z£ntWmØchpw

£nXntPm∑fießfpw Xncntb≠m, F∂n´n-hs‰ hentbm Nne

hrØßsfs°m≠v ]pdta sI´q. at¡h Xncnbpamdv Ccn∏q. F∂n v́

B hrØßsf sNdpXmb-h-s‰s°m≠v 1 AIta sI´q. kq{X

ßsfs°m≠v Pym°tfbpw _‘n∏q. Cßs\ tKmfkwÿm\

{`aWßsf Ah[cn®psIm≈q.

9. almhrØßƒ

A\¥cw hen∏samØv Hcp {]tZiØpXs∂ tI{µhpambncn°p∂

hrØßfn¬ h®v henXhrØØnt¶∂p at¡ hrØßƒ c≠nt‚bpw

AIew ChnsS F{X F∂dnbpw {]ImcsØ sNm√p∂p. AhnsS

A]{IaPymhpw AXns‚ tImSnbpw hcpØpw {]ImcsØs°m≠Xns\

\tS Im´p∂q. CXn\mbns°m≠v \nc£tZiØn¶¬ ]q¿∆hnjphØp

Ja≤yØn¶emΩmdp Iev]n®p \ncq]n°pw{]Imcw. hnjphXv

{]tZiØnt¶∂p LSnImafieØn∂p hn]coXambncn°p∂

hnjphZzn]coXhrØw Z£ntWmØctØmSv Hcpan®ncn°pw.

Ab\m¥hn]coXhrØw \nc££nXnPtØmsSmcpan®ncn°pw.

Cßs\ tKmfhn`mKw h∂ncn°pt∂SØp taepw Iogpap≈

kzkvXnIßfnepw Ingt° kzkvXnIØn∂p Ccp]Øn\mep XoøXn

hSt° £nXnPØn¶epw ]Sn™mtd kzkvXnIØnt¶∂p

Ccp]Øn\mep XobXn sXt°bpw £nXnPØn¶epw kv]¿in°pamdv

BZnXys‚ Ingt°m´p≈ KXn°p am¿§amIp∂ A]{IaafiesØ

Iev]n∏q. ]ns∂ hnjphXv{]tZiw ]ZmZnbmbn AhnsS icamIpamdv

Ja[yØnt¶∂p Ing°v A]{IaafieØns‚ CjvS{]tZiØn¶e

{KamIpamdv Hcp CjvSPymhns\ Iev]n∏q. AXv A]{IaafieØnse

CjvSNm]`mKØns≥d Pymhns\ hcpØnbmep≠mIpw. ]ns∂

CjvSPym{KØnt¶∂v LSnImaWvUew t\tc sX°phS°v F{X

8. 1. B. adds  Xncnbpamdv

9. alm-hr-Ø-ßƒ
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AIeap≠v F∂v H∂v, Cu CjvSPym{KØnt¶∂p Xs∂

Z£ntWmØcafiew t\tc Ing°p]Sn™mdv F{X AIeap≠v F∂p

c≠maXv Ch Adnbpw {]Imcw.

ChnsS A]{Iaafiehpw LSnImafiehpw Xßfnep≈

]cam¥cmfw Ab\m¥hn]coXhrØamIp∂ £nXnPØn¶¬ 1

ImWmw. CXv Ccp]Øn\mep XobXnbpsS Pymhmbncn°p∂

]cam]{Iaw. ]ns∂ A]{Iaafiehpw Z£ntWmØchpw Xßfnep≈

]c-am-¥-cm-fhpw Ab-\m-¥-hn-]-coXhrØ-Øn-¶¬ Xs∂ ImWmw2.

CXn¬ ]cam]{IaØn∂p tImSnbmbn´v A]{Ia afieØn∂p

{[pht\mSp≈ A¥cmfambn´ncn°pw. CXn∂v ‘]cakzmtlmcm{X’sa∂p

t]¿.

]ns∂ tI{µØnt¶∂v Ab\m¥hn]coXhrØt\antbmfap≈

A]{Iaafiehymkm¿≤w I¿Æambn {]amWambn Iev]n®v, Cu

]cam¥cmfßƒ c≠nt\bpw Cu I¿ÆØns≥d `pPmtImSnIfmbn

{]amW^eßfmbn Iev]n®v , ]ns∂ A]{IaafieØns≥d

CjvS{]tZiØn¶e{Kambncn°p∂ CjvStZm¿Pymhns\ C— F∂pw

Iev]n®v, ss{XcminIw sNbvXm¬ Cu CjvStZm¿Pym{KØnt¶∂p

LSnImafietØmfhpw Z£ntWmØcafietØmfhpw D≈

A¥cmfßƒ A]{IaafieØn¶se CjvStZm¿Pymhns≥d

`pPmtImSnIfmbn C—m^eßfmbn´v DfhmIpw. ‘CjvSm]{Iahpw’
‘CjvSm]{IatImSn’bpw F∂nh¡n∂p t]¿. CXs{X F√mShpw

tI{µsam∂n®p hen∏samØncn°p∂ hrØßfpsS A¥cmf

ss{XcminIØn¶te \ymbamIp∂Xv.

9. 1. E. adds CXn¬ ]cam]{IaØo∂v
2. B. adds  hn]coXhrØamIp∂ £nXnPØn¶¬ Xs∂ ImWmw

IX. `q˛hmbp˛`-tKm-f-ßƒ
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10. hnjp-hZvhn]coXhrØhpw \XhrØhpw

]ns∂ CXns\ Xs∂ Npcp°n Adnbpw {]ImcsØ sNm√p∂q.

AhnsS LSnImafiehpw hnjphZzn]coXhpw Ab\m¥hn]coXhpw,

Ch apΩq∂pw At\ym\yXncy§Xßfmbn´p≠t√m. ]ns∂

LSnImafieØnt¶∂v H´psNcn™n´v Hcp A]{IahrØhpw CSq.

]ns∂ Cu \mepw IqSmsX ]ns∂bpw aq∂p hrØßsf Iev]n∏q.

AhnsS \tS c≠p {[ph¶epw A]{IaaWvUeØns≥d

CjvS{]tZiØn¶epw kv]¿in®n´v Hcp hrØsØ Iev]n∏q. CXn∂vv

‘LSnIm\X’sa∂pt]¿. CXn¶¬ \n∂p hnjphZzn]coXØn∂pw

Ab\m¥hn]coXØn∂pw D≈ ]cam¥cmfw LSnImafieØn¶¬

ImWmw.

]ns∂ LSnImhrØhpw Ab\m¥hn]coXhpw Xßfn¬

Iq´pt∂SØpw A]{IaafieØns≥d CjvS{]tZiØn¶epw kv]¿in®n v́

Hcp hrØsØ Iev]n∏q. CXn∂p ‘hnjphZzn]coX\X’sa∂p Xm≥

AXn∂p Z£ntWmØctØmssSIyap≠mIbm¬ ‘Z£ntWmØc

\X’sa∂p Xm≥ t]¿. CXnt¶∂v Ab\m¥hn]coXØn∂pw

LSnImhrØØn∂pap≈ ]cam¥cmfw hnjphZzn]coXØn¶¬1 ImWmw.

]ns∂ Cu Iev]n® A]{Iaafiekwÿm\Øn¶¬ sXt°

{[pht¶∂p Ccp]Øn\mep XobXn Ingt°bpw, hSt° {[pht¶∂v

A{X2 ]Sn™mtdbpw Ab\m¥hn]coXamIp∂ £nXnPØn¶¬

kv]¿in®n´ncn°pw 3.  At∂cØp cminIqSßƒ c≠n¶epw

Ja[yØnt¶∂p ]Sn™mdv A]{IaafitejvS{]tZiØnt¶∂p

hrØØns≥d \msem∂p sNt∂SØv A]{IaafieØnepw

kv]¿in®n v́ Hcp hrØsØ Iev]n∏q. AXn∂p ‘cminIqShrØ’sa∂p

t]¿. Cu cminIqShrØhpw LSnImhrØhpw Xßfnep≈

10. hnjp-h-Zvhn-]-co-X-hr-Øhpw \X-hr-Øhpw

10. 1. C.  hn]coXhrØØn¶¬
2. C. 24 XobXn for A{X
3. C.F. kv]¿in°pw
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tbmKØnt¶∂p c≠nt¶∂pw hrØØns≥d4 \msem∂p sNt∂SØv

Cu c≠nt‚bpw ]cam¥cmfamIp∂p. AXp LSnIm\XhrØØn¶¬

kw`hn°pw.

]ns∂ LSnIm\XhrØw {[phZzbØn¶¬ kv]¿in°bm¬

LSnImhn]coXambn´ncns∏m∂v. ]ns∂ {Im¥ojvSPym{Kw bmsXmcnSØv

AhnSw cminIqShrØ]m¿izamIp∂Xv. AhnsSbpw kv]¿in°bm¬5

cminIqShrØhn]coXamIbpap≠v LSnIm\XhrØw. Cßs\

LSnImcminIqSßƒ c≠n∂pw hn]coXamIbm¬ Ch Xßfnse

]cam¥cmfw Cu LSnIm\XhrØØn¶¬ kw`hnt°≠p. AXv

CjvSZypPymXpeyw. C∆Æw cminIqShrØhpw hnjphZzn]coXamIp∂

Z£ntWmØchrØhpw Xßfnep≈ ]cam¥cmfw Ch c≠n∂pw IqSn

hn]coXhrØamIp∂ bmtaymØc\XØn¶¬ kw`hnt°≠q.

]q¿∆m]ckzkvXnIØn¶epw CjvSPym{KØn¶epw IqSn

kv]¿in°bm¬ c≠n∂pw IqSn hn]coXamIp∂p bmtaymØc\Xw. c≠p

hrØßƒ Xßfn¬ kv]¿in°p∂ c≠p kw]mXØnt¶∂pw

hrØØn¬ \msem∂p sNt∂SØp kv]¿in°p∂ aq∂mw hrØw

hn]coXhrØamIp∂Xv. CXn¶¬ apºnetØh c≠nt‚bpw

]cam¥cmfw Xßfnep≈Xp kw`hn®p [F∂p] \ymbw.

ChnsS hnjphZzn]coXamIp∂ Z£ntWmØchpw

Ab\m¥hn]coXamIp∂ £nXnPhpw LSnImafiehpw At\ym\yw

hn]coXßfmIp∂h. Cßs\ Cu aq∂p hrØßtfs°m≠v

]Zhyhÿbpw tKmfhn`mKhpw h∂ncn°pt∂SØv Cu ]ZØns≥d

\Sphnep≈ \XhrØßƒ c≠pw A]{IahrØhpw cminIqShrØhpw.

Cht¡s°m≠v hrØm¥cmfsØ ]cnt—Zn°p∂p. AhnsS

LSnIm]{Iam¥cmfw £nXnPØn¶¬ ]cam]{IaXpeyw. ]ns∂

hnjphØnt¶∂p XpSßn A]{IaafitejvS{]tZiØn¶¬

A{KamIp∂Xv tZm¿Pymhv. Ab\m¥hn]coXØnt¶∂p XpSßn

10. 4. B. hrØØn¶¬
5. B. cmin°qShrØßƒ

IX. `q˛hmbp˛`-tKm-f-ßƒ
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CjvSm]{IaØn¶e{KamIp∂Xv tZm¿PymtImSn . \Xm]{Ia

kw]mXØnt¶∂p LSnImafietØmfap≈ \XafieØn¶te

Pymhv CjvSm]{Iaw. ]ns∂ {[pht¶∂p XpSßn A]{ItajvS

{]tZitØmfap≈ \XafieØnt∑te Pymhv CjvSZypPymhmIp∂Xv.

11. hn£n]vX{KlØns‚ A]{Iaw

CjvSm]{Iahpw Cu hrØØn¶¬ Xs∂  D≈q. ]ns∂ Z£n-tWm-

ØchrØ-Øn-t¶∂p tZm¿Pym-{K-Øn-¶-e-{K-am-bn-´n-cn-°p∂ Z£n-tWm-

Øc\X-hr-Ø-Øn-¶te Pymhv CjvSm-]-{I-a-tIm-Sn. Cu hrØ-Øn-¶¬

Xs∂ ]q¿∆m]ckzkvXnIØnt¶∂p tZm¿Pym{KØn¶-e{KamIp∂Xv

A]{IatImSosS tImSn . ]ns∂ hnjphØn¶¬ \n∂pw

LSnIm\Xkw]mXØn¶¬ A{KamIp∂Xv et¶mZbPymhv ImePymhp

Xs∂. Cu Pym{KØn¶e{Kambn ]q¿∆m]ckzkvXnIØnt¶∂p

XpSßnbXp et¶mZbPymhv . tImSnJa≤yØnt¶∂p XpSßn

LSnImafieØn¶¬ cminIqSLSnImkw]mXØn¬

A{Kambncn°p∂Xp ImetImSnPymhv. Cu Pym{KØn¶e{Kambn

cminIqShrØØn¶e]{Iaafiekw]mXØnt¶∂p XpSßn

ImetImSy]{Iaw LSnImafieØn¶¬ I¿Æw Iev]n®n´p≈

]cam]{Iaw sIm≠v CXp hcptØ≠q.

Cu cminIqShrØ{Im¥nkw]mXØnt¶∂p Hcp {Klw hnt£]n®p

F¶n¬1 Cu cminIqShrØØnt∑¬ hnt£]n°bm¬

ImetImSy]{IaNm]tijambn´ncn°pw B hnt£]Nm]w.

C®m]tbmKw Xm\¥cw Xm≥ LSnIm˛cminIqShrØ

kw]mXØnt¶∂p hnt£]n® {KltØmSp≈ A¥cmfamIp∂Xv.

]ns∂ LSnIm˛cminIqShrØßfpsS ]cam¥cmfw LSnIm˛\X

Øn¶emIp∂p. AXv CjvSZypPymXpeyw Xm\pw.

11. 1. F. tNmIn¬

11. hn£n-]vX-{K-l-Øns‚ A]-{Iaw
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Cu cminIqShrØØn\p \Xm]{Iakw]mXØn¶¬ ]m¿izamIp∂p.

ka]m¿izØnt¶∂p Xs≥d k¿∆mhbØn\pw hrØ]mZw

AIeap≠mbncn∏qXpw. F∂n´ v LSnIm\XØn¶epw

Z£ntWmØcØn¶epw cminIqSm]{Iam¥cmfw hrØ]mZsa∂p h∂p.

Cu hrØ]mZßsf LSnImaWvUew sIm≠pw bmtaymØcwsIm≠pw

c≠p ]IpØncn°pw. AXn¬ LSnImafieØns≥d hSt°°qdv

CjvSm]{Iaambncn°pw, F∂m¬ sXt°°qdv CjvSZypPymsh∂p hcpw.

CXpXs∂ LSnImcminIqSßfpsS ]c-am-¥-cm-f-am-Ip-∂Xpw.

LSnImcminIqSßfpsS ]m¿izkv]rjvSw LSnIm\Xw. LSnIm\X

]m¿izkv]rjvSßƒ LSnImcminIqSßfmIbm¬ LSnImcminIqS

hrØkw]mXØnt¶∂p XpSßn \XhrØkw]mXØn¶

e{Kambncn°p∂ cminIqShrØØn¶te {XnPymI¿ÆØn\v Cs®m√nb

]cam¥cmfamIp∂2 CjvSZypPymhp tImSnbmIp∂Xv. At∏mƒ

LSnImkw]mXØnt¶∂p XpSßn cminIqShrØØnt∑te

hn£n]vX{KlØn¶e{Kambn I¿Æcq]ambncn°p∂ Pymhn∂v F¥p

tImSnbmIp∂sX∂p hn£n]vX{KlØnt¶∂p LSnImhrØtØmSp≈

A¥cmfap≠mIpw. AXv hn£n]vX{Kl{Im¥nbmIp∂Xv.

Cßs\ ImetImSn{Im¥nNm]hpw hnt£]Nm]hpw Xßfn¬ tbmKw

Xm\¥cw Xm≥ sNbvXv Pymhp sIm≠v ss{XcminIw sNbvXv

hn£n]vX{Kl{Im¥n hcpØpw{]Imcw. Cu  C—m^etØbpw

{]amW^etØbpw IqSn {Xn`pPIsf∂p sNm√pInepamw. Cßs\

Nm]tbmKw sNøpt∂SØp PymtbmKw sNbvInepamw. At\ym\ytImSn

KpW\hpw {XnPymlcWhpw sNbvXm¬ ^etbmKw Xm≥ A¥cw Xm≥

sNbvXv CjvSZypPymKpW\hpw {XnPymlcWhpw sNbvXm¬

hn£n]vX{Kl{Im¥n hcpw. ChnsS ImetImSn{Im¥n°p hnt£]

tImSnbpw. CjvS-Zyp -Pybpw KpW-Im-c -ß-fm-Ip -∂-Xv. AhnsS

ImetImSn{Im¥nsb \tS CjvSZypPysIm≠p KpWn®v {XnPysIm≠p

lcn∏q. ̂ ew cminIqS{Im¥nhrØkw]mXØnt¶∂p- LSnImhrØm¥c

11. 2. B.C.F. ]cam]{Iam¥cmfamIp∂

IX. `q˛hmbp˛`-tKm-f-ßƒ
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ap≠mIpw. AhnsS A]{IaafieØns≥d bmsXmcp {]tZiØnt¶∂p

{Klw hnt£]n®p B {KlsØ hnt£]nbmsX Iev]n°ptºmtf

A]{IaafiePymhmbncn°paXv. ]ns∂ ZypPysIm≠p hnt£]sØ

KpWnt°≠nbncpt∂SØv B hnt£]Øns≥d KpWImcamIp∂

ImetImSn{Im¥ntImSnsb CjvSZypPysIm≠p KpWn®p {XnPysIm≠p

lcn°mw, ^ew c≠p {]Imcambmepw Xpeyw F∂n´v. At∏mƒ

ImetImSn{Im¥ntbbpw AXns≥d tImSntbbpw CjvSZypPysIm≠p

KpWn®v XnPysIm≠v lcn®Xmbn´ncn°pw. At∏mƒ ^eßƒ

CjvSZypPymhymkm¿≤amIp∂ hrØØn¶te `pPmtImSnIfmbn´ncn°pw.

F∂m¬ Cu CjvSZypPymhymkm¿≤Øn¶te ImetImSn{Im¥ntbbpw

AXns≥d tImSntbbpw hnt£]tImSnsIm≠pw hnt£]w sIm≠pw

bYm{Iaw KpWn∏q. F∂mInepamw, At∏mƒ ChnsS Ime-tIm-Sn-{Im-¥nsb

CjvS-Zyp-Pym-hr-Ø-Øn-¶-em-°n-bm¬ AXp hn£n]vX{Kl{Im¥nbmIp∂Xv

F∂p sNm√nbt√m.

F∂m¬ B hn£n]vX{KlIm¥nh¿§sØ CjvSZypPymh¿§

Ønt¶∂p If™Xv A¥ZypPymh¿§Xpeyw, AXns\ aqen®Xp

ZypPymhrØØn¶te ImetImSn{Im¥ntImSnbmIp∂Xv. AXp

]cam]{IatImSnbmbn´ncn°pw. ChnsS CjvStZm¿Pym{Im¥osS h¿§sØ

{XnPymh¿§Ønt¶∂p If™Xv CjvSZypPybpsS h¿§amIp∂Xv. ]ns∂

tZm¿Pym{KØnt¶∂v Ahn£n]vX{KlsØ Iev]n∏q. At∏mƒ AXns≥d

{Im¥n tImSn {Im¥nbmbn´ncn°pw. Cu {Im¥nbpsS h¿§hpw IqSn

If™m¬ tImSn{Im¥nh¿§hpw `pPm{Im¥nh¿§hpw IqSn

If™Xmbn´ncn°pw. tImSn{Im¥nh¿§hpw ̀ pPm{Im¥nh¿§hpw Iq´nbm¬

]ca{Im¥nh¿§ambn´ncn°pw. AXp If™ {XnPymh¿§w

]ca{Im¥ntImSnh¿§ambn´ncn°pw. AXns‚ aqew ]ca{Im¥ntImSn.

F∂m¬ ]ca{Im¥ntImSnsIm≠p hnt£]sØ KpWn∏q.

hnt£]tImSnsIm≠v Ahn£n]vX{Kl{Im¥nPymhnt\bpw KpWn∏q.

Xßfn¬ tbmKwXm\¥cw Xm≥ sNbvXp {XnPysIm≠p lcn®m¬ ^ew

hn£n]vX{Kl{Im¥n F∂p h∂p. Cßs\ hn£n]vX{Kl{Im¥n

hcpØpw {]Imcw3.

11. 3. B. CXn hn£n]vX{Kl{Im¥ym\b\w

11. hn£n]vX {Kl-Øns‚ A]-{Iaw
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12. A]{IatImSn

A\¥cw hn£n]vX{KlØns≥d  A]{IatImSnbmbn´v Ing°p

]Sn™mdv hnjphZzn]coXamIp∂ Z£ntWmØchrØtØmfap≈

A¥cmfap≠m°pw{]ImcsØ sNm√p∂p. AhnsS ]q¿∆m]c

kzkvXnIßfn¬ Z£ntWmØchrØ]m¿izßfmIp∂Xp

{Im¥ojvSPym{Kw cminIqShrØØns≥d ]m¿izamIp∂Xv. Cu c≠p

hrØßfptSbpw ]m¿izßsf kv]¿in°p∂ Z£ntWmØc

\XhrØØns≥d1 bmsXmcp {]tZiw {Im¥ojvSPym{KØn¶¬

kv]¿in®Xv AhnSp∂v hrØØns≥d \msem∂p sNt∂Sw

cminIqShrØsØ kv]¿in°pw, Xs≥d ]m¿izØnt¶∂v Xs≥d F√m

Ahbhhpw hrØ]mZm¥cnXw F∂n´ v 2. Cu hrØ]mZsØ

Z£ntWmØchrØw sIm≠v c≠p ]Ip°mw. AXn¬

CjvS{Im¥ntZm¿Pym{KØnt¶∂p Z£ntWmØchrØm¥-cmfw

CjvS{Im -¥n -tIm -Sn -bm -Ip -∂Xv . Ct°m-Sn -- tijw3 Z£n -tWm-

ØchrØØnt¶∂p XpSßn ]Ztijw cminIqShrØtØmfap≈Xv

CjvSm]{IatImSotS tImSn. F√m hrØØn¶epw ]ZsØs°m≠p

hn`Pn®m¬ Xßfn¬ `pPmtImSnIfmbncn°pw. F∂n´ v ,

CjvSm]{IatImSn cminIqSZ£ntWmØcßfpsS ]cam¥cmfsa∂p

h∂p. Z£ntWmØccminIqSkw]mXØnt¶∂p XpSßn

cminIqShrØØnt∑te Z£ntWmØc\XhrØtØmfap≈

{XnPymI¿Æw {]amWw, Cu ]cam¥cmfPym {]amW^ew,

Z£ntWmØckºmXØnt¶∂p cminIqSØnt∑te hn£n]vX

{KltØmfap≈ `mKw CNvObmbn Iev]n®m¬ {KlØnt¶∂p

Z£ntWmØchrØtØmSp≈ A¥cmfw CNvOm^eambn´p≠mIpw.

ChnsS C—mcminsb D≠m°pw {]Imcw ]ns∂. ChnsS

IX. `q˛hmbp˛`-tKm-f-ßƒ

12. 1. D. adds.cminIqSbmtaymØcßfpsS ]cam¥cmfw F∂ncn°pw.
Z£ntWmØccmin°qSßfpsS kw]mXØn¶¬ Z£ntWmØc\X]m¿izhpw
Cßs\ BIp∂q. ]ns∂ Z£ntWmØc\XhrØØns≥d bmsXmcp {]tZiw.

2. D. ]mZm¥cnXw F∂p \nbXw F∂n v́
3. B. ]mZtijw
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Z£nWkzkvXnIØne{Kambncn°p∂ bmtaymØchr -Ø-hym -

km¿≤amIp∂4 hrØØn\v A]{IahrØm¥cmfw £nXnPØn¶¬

A¥yZypPymXpeyw {]amW^ew. Ja≤yØnt¶∂p XpSßn

cminIqShrØkw]mXØn¶e{Kambncn°p∂ btaymØc

hrØPymhn∂v F{X A]{IahrØtØmSp≈ A¥cmfsa∂v

bmtaymØcm]{IahrØßfpsS A¥cmfw cminIpShrØØn¶¬

CNvOm^eambn´p≠mIpw. ]ns∂ Cu Pymhnt\mSp hnt£]Pymhns≥d

tbmKwXm\¥cw Xm≥ sNbvhp. F∂m¬ bmtaymØc

hrØkw]mXØnt¶∂p hn£n]vX{KlØn¶e{Kambncn°p∂

cminIqShrØPymhp≠mIpw. ]ns∂ CXns\ cminIqSbmtaym

ØcßfpsS ]cam¥cmfw sIm≠p KpWn®v {XnPysIm≠p lcn∏q. ̂ ew

hn£n]vX{KlØnt¶∂p bmtaymØchrØm¥cmfambn´p≠mIpw.

ChnsS CNvOmcminsb D≠m°phm\mbns°m≠p hnt£]Pym

tbmKm¥cßƒ sNøpt∂SØv ]ckv]ctImSnKpW\hpw

{XnPymlcWhpw thWw. ]ns∂ ]cam¥cmfKpW\hpw thWw. AhnsS

\tS ]cam¥cmfKpW\w sNbvhq. ]ns∂ hnt£]tImSn sIm≠p

KpWn∏q F∂ {Iaw sIm≈pInepamw, ^et`Zan√mbvIbm¬. AhnsS

bmtaymØcm]{IahrØm¥cmfØn¶se cminIqShrØ`mKPymhns\

cminIqSbmtaymØchrØßfpsS ]cam¥cmfPymhnt\s°m≠p

KpWn®v {XnPysIm≠p lcn® ^ew cminIqSm]{IahrØ

kw]mXØnt¶∂p bmtaymØchrØm¥cmfap≠mIpw. AXp

Ahn£n]vX{KlPymI¿Æambncn°p∂ {Im¥osS tImSnIfmbn´p

hcpw5. ]ns∂ bmtaymØcm]{IahrØm¥cmfPymhns≥d tImSntbbpw

bmtaymØccminIqSßfpsS ]cam¥cmfw sIm≠p KpWn®v

{XnPysIm≠p lcn®m¬, ^ew hn£n]vX{Klm]{IatImSnh¿§sØ

Cu ]cam¥cmfh¿§Ønt¶∂p If™p aqen®Xmbn´ncn°pw.

{XnPymhrØØnse ̀ pPmtImSnIƒ c≠nt\bpw Hcp KpWImcw sIm≠p

12. 4. B.reads. bmtaymØchrØßfpsS F{X A]{IatØmSp≈ A¥cmfw
bmtaymØcm]{IaßfpsS A¥cmfw....

5. B. tImSnIfmbnhcpw,   D. tImSnbmbn´phcpw

12. A]-{I-a-tImSn
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Xs∂ KpWn®v6 {XnPysIm≠p lcn°ptºmƒ KpWImchymkm¿≤

hrØØnse `pPmtImSnIfmbn´p hcpw F∂n v́.

ChnsS ]ns∂ ]cam¥cmfhrØØnse tImSn ]cam]{Ia

ambn´pancn°pw7. ChnsS CjvSm]{Iah¿§sØ CjvStZm¿Pymh¿§Øn

t¶∂p If™ tijw CjvSm-]-{I-a-tIm-Sn-h¿§w. CXns\ {XnPym-h¿§-

Øn -t¶∂p If-™v - tijw bmtaymØccminIqShrØ

]cam¥cmfh¿§w. CXnt¶∂p ]ns∂ Ahn£n]vX{Kl{Im¥ntImSn

h¿§tØbpw Ifhq. tijw ChnsS htc-≠Xp tImSn-h¿§w. AXv

]cam]{Iah¿§ambn´ncn°pw.

ChnsS `pPm]{IatImSnh¿§hpw tImSy]{IatImSnh¿§hpw

Iq´nbm¬ A¥ym]{IatImSnh¿§ambn´ncn°pw. AXp

{XnPymh¿§Ønt¶∂p If™ tijw A¥ym]{Iah¿§w. AXns≥d

aqew A¥ym]{Iaw. F∂m¬ A¥ym-]-{Iaw sIm≠p hnt£]tØbpw

hn£n]vX{Kl{Im¥ntImSnsIm≠p hnt£]tImSntbbpw KpWn®v

Xßfn¬ tbmKw Xm\¥cw Xm≥ sNbvXpsIm≠v {XnPysIm≠p lcn®

^ew hn£n]vX{KlØnt¶∂p bmtaymØchrØm¥cmfambn´ncn°pw.

CXns\Øs∂ {XnPysIm≠p lcnbmsX hn£n]vX{Kl{Im¥n

h¿§sØ {XnPymh¿§Ønt¶∂p If™p aqen®p≠mIp∂ hn£n]vX

{KlZypPymhp bmsXm∂v CXns\s°m≠p lcn°n¬ hn£n]vX

{KlØns≥d ImetZm¿§pWambn´ncn°pw. Cu ImetZm¿§pWamIp∂Xp

]ns∂ apºn¬ sNm√nbXv.

IqSmsX hn£n]vX{KlØn¶epw c≠p {[ph¶epw kv]¿in®n v́ Hcp

hrØsØ Iev]n∏q. AXp bmsXmcnSØp LSnImhrØØnt∑¬

kv]¿in°p∂q, AhnSp∂ XpSßn hnjphtØmfap≈

LSnImafieØnt∑te Pymhv Cu ImetZm¿§pWamIp∂Xv. CXns≥d

Nm]w {]mWßfmbn´p≈q.

C{X {]mWImew sIm≠v hnjphtØmSp≈ hn£n]vX

12. 6. C.F. lcn®m¬
7. C. {Iaambn´phcpw,   F. ]caambn´phcpw

IX. `q˛hmbp˛`-tKm-f-ßƒ
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{KltØmSp≈ A¥cmf{]tZiw {`an°pw F∂n´v. ImeamIp∂

CXns≥d Pymhv ImePymhv. Cu LSnImhrØØnse {]mWkwJyIƒ.

]{¥≠p cminIfpsS CensIm≠p XpeykwJyIƒ. AXv ‘A\¥]pcw’
F∂Xnt\mfw ImewsIm≠v tKmfw H∂v Xncn™p IqSpw. F∂n´v

Ime{]mWßfpsS kwJymkmayw. CuhÆamIptºmƒ

LSnImhrØØn¶tet∏mse F√m kzmtlmcm{XhrØØn¶epw8

Xs≥d Xs≥d A\¥]pcmwiw Hcp {]mWImewsIm≠p {`an°pw.

F∂m¬, F√m kzmtlmcm{Xßtfbpw N{IIemXpeykwJyßfmbn´p

hn`Pnt°≠q Imeadnbptºmƒ. F∂m¬ hn£n]vX{KlØnt¶∂p

Z£ntWmØchrØm¥cmfw Cu hcpØnbXp Xs∂ Bbn´ncn°pw.

hn£n]vX{Klkzmtlmcm{XhrØØns≥d “A\¥]pcmwiw”
sIm≠v Af°ptºmƒ F{X kwJy AXv F∂n´v B kzmtlmcm{X

hrØPymhmbn´v Ccn°p∂XmInepamw ImetZm¿§pWw. AXns≥d

Nm]w hn£n]vXkzmtlmcm{XhrØØn¶tebpw bmtaymØccminIqS

hrØm¥cmfw {]amWßfmbncn°p∂ ImetZm v BIp∂sX∂m

Inepamw. F∂m¬ hn£n]vX{KlØnt¶∂p LSnImhrØm¥

cmftØbpw hnjphZzn]coXhrØm¥cmftØbpw Adnbpw {]Imcw

CuhÆw sNm√nbXmbn 9. C{]Imcw D≠v sNm√o´v kn≤m¥

Z¿∏WØn¬ BNmcy≥x/

A¥y-Zyp-tPy-jvS-̀ -{Imt¥ymx t£]-tIm-Sn-Lv\-tbm¿ bpXnx/

hnbp-Xn¿ hm {Kl-{Im¥nkv {XnPym]vXm Ime-tZm¿KpWx/

A¥y-{Im-¥ojvSXXvtImSym kzZyp-Pym-]vXm]n ]q¿∆-hXv/

(kn≤m-¥-Z¿∏-Ww, 28- ˛29)

Cßs\ hn£n]vX{Kl{Im¥nbpw ImePymhpw hcpØp∂Xns\
sNm√nbXpsIm≠p hrØm¥cmfss{XcminIßsf apgphs\
hnkvXcn®p Im´oXmbn.

[KWn-X-bp‡n`mj-bn¬ ̀ q -̨hm-bp-̨ -̀ -tKmfsa∂

HºXma-[ymbw kam]vXw]

12. 8. B. hrØßfnepw
9. B. {]Imcw sNm√n  E. adds C{]Imcw

12. A]-{I-a-tImSn
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A≤ymbw ]Øv
 ]©Zi{]iv\w

]ns∂bpw Cu \ymbmXntZisØØs∂ hnkvXcn®p

Im´phm\mbns°m≠v Cu Iev]n® Ggp1 hrØßfptSbpw

A¥cmfßƒ Xs∂ hnjbambn´v ]©Zi{]ivt\mØcßsf

Im´p∂p≠v.

AhnsS A¥y{Im¥n, CjvS{Im¥n, CjvS{Im¥ntImSn, tZm¿Pym,

ImePym, \XPym Cßs\ Bdp km[\ßƒ. Ah¡n¬ c≠dn™m¬

at¡h \ment\bpw Adnbpw {]ImcsØ sNm√p∂p. AXp ]Xn\©p

{]Imcw kw`hn°pw. H∂dn™m¬ AXns≥d tImSn an°hmdpw

{XnPymh¿§Øn¬ Xs≥d h¿§w If™p aqen-®n v́ Adn-tb-≠q.

ChnsS LSnIm]{IahnjphZzn]coX\XhrØßƒ LSnIm\X

hrØtØmSp cminIqShrØtØ°p hrØ]mZm¥cnXßƒ.  Cu

hrØ]mZßƒ hnjphZzn]coXhrØw sIm≠v c≠p

Jfin°s∏´ncn°pw hnjp -h -Zzn -] -co -X -L-Sn -Im -\ -X-hr -Ø-ßƒ2

hnjphZzn]coX\XcminIqShrØßfpsS CSbn¬ hrØ

]mZm¥cnXßƒ3. Cu Jfißƒ Hs° Xß-fn¬ `pPm-tIm-Sn-I-fm-bn-

´ncn°pw4 ]ns∂ hrØ-]mZw sIm≠p c≠p Jfin-®m¬ B Jfi-ßƒ

Xß-fn¬ `pPmtImSnIƒ Ft∂m \nbXsat√m F∂n v́.

1. 1. B. Ggp hrØßsfØs∂ hnjboIcn®v ]©Zi{]iv\w
2. D. hnjphZzn]coXm]{IaLSnIm
3. B.D.E.F. add hrØ]mZßƒ LSnImhrØw sIm≠v c≠v JWvUn°s∏´ncn°pw
4. B.F. tImSnIfmbncn°pw
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2. H∂mw {]iv\w: A¥y{Im-¥nbpw

CjvS{Im¥nbpw

]ns∂ ChnsS A¥y{Im¥nbpw CjvS{Im¥nbpadn™n´v at¡h
\mepw Adnbpw1 {]Imcw2 ChnsS sNm√p∂Xv. A¥y{Im¥n°p
{XnPymhp I¿Æ-sa∂v CjvS{Im¥n°v GXv I¿Æw F∂v
tZm¿Pymhp≠mw. ]ns∂ LSnIm]{Iam¥cmfw
A¥ym]{IaamIptºmƒ bmtaymØcm] {Iam¥cmfw, A¥yZypPym
CjvSm]{IaamIptºmƒ F¥v F∂v tZm¿Pym{KØnt¶∂p
bmtaymØcm¥cmfap≠mIpw. ]ns∂ Ch aq∂n\pw
{XnPymh¿§m¥caqeßƒ sIm≠p tImSnIƒ D≠mIpw. ]ns∂
]q¿∆m]ckzkvXnIØnt¶∂p XpSßn bmtaymØc\XhrØØnt∑te
tZm¿Pym{KtØmfw sN√ptºmƒ LSnImbmtaymØc\XhrØm¥cmf
amIp∂Xv CjvSm]{Iaw. At∏mƒ Z£ntWmØchrØØn¶¬
Ch¡ns≥d ]cam¥cmf-sa-{X-sb∂v bmtaymØc\XPymhv D≠mIpw.
]ns∂ DØc{[pht¶∂p tZm¿Pym{KØn¶¬ \XbmtaymØc
hrØm¥cmfamIp∂Xv CjvSm]{IatImSn. At∏mƒ LSnIm
hrØØn¶¬ ]cam¥cmfw F{Xsb∂p et¶mZbPymhp≠mIpw.
C∆ÆamsIs°m≠v CjvSm]{IatImSnIfmIp∂ {]amW^eßƒ°v
CXtcXctImSnIƒ {]amWßfmbn´p h∂p. Cu {]amWßƒ°pXs∂
tZm¿PymtImSn {]amW^ew BIptºmƒ {XnPymhv C—bpamIptºmƒ
\X£nXnPm¥cmfßƒ \XtImSnbpw et¶mZbPymtImSnbpambn

´p≠mIpw. Cßs\ \tSsØ3 {]ivt\mØcw.

3. c≠mw {]iv\w: A¥y{Im¥nbpw

CjvS{Im¥ntImSnbpw

c≠maXv A¥y{Im¥nbpw CjvS{Im¥ntImSnbpw IqSo´ v

]cam]{IatImSn°v {XnPym I¿Æw, CjvSm]{IatImSn°v F¥v I¿Æw

F∂v tZm¿Pymhp≠m°q. ]ns∂ \tStØt∏mse Duln®psIm≈q.

2. 1. B.C.F. \mepw Adntb≠pw
2. D. adds CjvS{Im¥n°v F¥p I¿Æw
3. B. H∂masØ

2. Hm∂mw {]iv\w : A¥y-{Im-¥nbpw CjvS-{Im-¥nbpw
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4. aq∂mw {]iv\w: A¥y{Im¥nbpw

tZm¿Pymhpw

aq∂maXv , A¥y{Im¥nbpw tZm¿Pymhpw IqSo´ v . ChnsS

Ab\m¥hn]coXØn¶¬ {Im¥nhrØkw]mXØnt¶∂p

LSnImhrØtØmfhpw hnjphZzn]coXtØmfhpw D≈ ]gpXpIƒ

A¥y{Im¥nbpw A¥yZypPybpw. Ch {]amW^eßfmbn tZm¿Pymhv.

CNvObmbn v́ CjvSm]{IatImSnIfp≠mIpw. tijw apºntet∏mse.

5. \memw {]iv\w: A¥ym]{Iahpw

ImePymhpw

]ns∂ A¥ym]{Iahpw ImePymhpw IqSo´q \memaXv. AhnsS

hnjphØnt¶∂p \XaWvUem¥ap≈ LSnImaWvUe`mKw

Ime`pPbmIp∂Xv. hnjphØnt¶∂p cminIqShrØtØmfap≈

LSnImaWvUe`mKw ‘ImetImSn’. CXn∂v F¥]{IahrØm¥cmfw

F∂p cminIqShrØØn-¶¬ LSnIm]{Iam¥cmfap≠mIpw. CXp

‘ImetImSy]{Iaw’. ]ns∂ hnjp-h-Øm-Ip∂ Ja≤ykv]rjvSambn v́1 Hcp

cminIqShrØw Iev]n∏q. CXpw \tStØ cminIqShrØhpw Xßfn¬

D≈ tbmKw £nXnPØn¶se cminIqShrØØn¶¬. AXv

DØc{[pht¶∂v A¥ym]{IatØmfw ]Sn™mdv, Z£nW{[pht¶∂v

A{X Ing°pw. ]ns∂ ImetImSy]{Iah¿§sØ ImetImSn

h¿§Ønt¶∂p If™p aqen®m¬, LSnImcminIqSkw]mXØnt¶∂p

c≠mw cminIqS hrØtØmfap≈ A¥cmfap≠mIpw. ]ns∂

ImetImSy] {Iah¿§sØ {XnPymh¿§Ønt¶∂p If™p aqen®m¬,

£nXnP kw]mXØnt¶∂p LSnImkw]mXtØmSp≈2 cminIqShrØ

`mKPymhp≠mIpw. Cu Pymhv I¿Æambn v́ {]amWamIptºmƒ apºn¬

5. 1. F. kv^pS-am-bn´v
2. E. kw]mXtØmfap≈

X. ]©-Z-i-{]iv\w
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sNm√nb aqew cminIqShrØßƒ Xßfnep≈ A¥cmfw `pPbmbn

{]amW^eambncn°pw. At∏mƒ {XnPymhv C—. cminIqSßfpsS

]cam¥cmfw cminIqShrØm¥cmfw A]{IahrØØn¶¬

Ja≤yØnt¶∂p cminIqShrØm¥cmfPymhv C—m^eambn´p≠mIpw.

CXns≥d tImSn Ja≤yØnt¶∂p \XhrØtØmfap≈

A]{IaaWvUeØn¶te tZm¿Pymhv. tijw apºntet∏mse.3

6. A©mw {]iv\w: \XPymhpw

A¥y{Im¥nbpw

]ns∂1 \XPybpw2 A¥y{Im¥nbpadn™n´v A©maXv. ]ns∂

Ja≤yØn¶∂p 3 \XhrØtØmfap≈ bmtaymØchrØ`mKw

\XamIp∂Xv. Ja≤yØnt¶∂p cminIqShrØtØmfap≈

bmtaymØc`mKw \XtImSnbmIp∂Xv. ]ns∂ Z£ntWmØc

hrØØnt¶∂p A]{IahrØm¥cmfw £nXnPØn¶teXv

A¥yZypPymhv , At∏mƒ \XtImSy{KØnt¶∂v F{X -F∂v

cminIqShrØØn¶¬ bmtaymØcm]{IahrØm¥cmfap≠mIpw.

CXns≥d h¿§sØ \XtImSnh¿§Ønt¶∂pw {XnPymh¿§Ønt¶∂pw

If™p aqen®m¬ bmtaymØc{]YacminIqSkw]mXØnt¶∂p

ZznXobcminIqShrØm¥cmfw {]amW^eambn´pw bmtaymØc

kw]mXØnt¶∂p £nXnPtØmfap≈ cminIqShrØØn¶te Pymhp

I¿Æambn´pw {]amWambn´pw4 D≠mIpw5. {XnPym hn—bmIptºmƒ

c≠p cminIqSßfptSbpw ]cam¥cmfw C—m^ew, \tStØ

]cam¥cmfw Xs∂. CXns≥d tImSn tZm¿Pymhv . tijw

\tStØt∏mse 6.  Cßs\ A¥y{Im¥ntbmSpIqSnbp≈

{]iv\ßf©pw.

6. A©mw {]iv\w : \X-Pymhpw A¥y-{Im-¥nbpw

5. 3. B. tijw ]q¿∆h¬
6. 1. F.om.  ]ns∂

2. F. adds \XhrØtØmfap≈ Pymbpw.....
3. D. adds hnjphØnt¶∂v
4. E. I¿Æambn {]amWambn v́
5. C.D.F.  hcpw
6. B. tijw ]q¿∆h¬
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7. Bdv, Ggv, F´v, H≥]Xv {]iv\ßƒ

]ns∂ A¥y{Im¥n IqSmsX CjvS{Im¥nbpw, CjvS{Im¥ntImSnbpw

IqSo -´mdmaXv . Ch¡ns≥d h¿§tbmKaqew tZm¿Pymhv

I¿Æambn´p≠mIpw.

]ns∂ CjvSm]{IatZm¿Pym°sf1, Adn™n´p \tStØt∏mse

GgmaXv.

CjvSm]{IaImePym°sfs°m≠v F´maXv. Cu c≠nt≥dbpw

h¿§sØ {XnPymh¿§Øn¬ If™p aqen∏q. F∂m¬ CjvSZypPymhpw

\X£nXnPßfpsS ]cam¥cmfamIp∂ ImetImSnPymhpw D≠mIpw.

{XnPymhp {]amWhpw, ImetImSn {]amW^ehpw, CjvSZypPymhv

C—bpw, ChnsS D≠mIp∂ CNvOm^ew tZm¿PymtImSn. tijw

\tStØ t]mse2.

]ns∂ CjvSm]{Iahpw \XPymhpadn™n´v H≥]XmaXv .

bmtaymØc\XhrØhpw LSnImhrØhpw Xßfne¥cmfw

\XPymhmIptºmƒ \X£nXnPm¥cmfw \XtImSnPymhv ,

CjvSm]{Iaw {]Yam¥cmfamIptºmƒ ZznXobm¥cmfsas¥∂v

tZm¿PymtImSn. tZmPym{KØnt¶∂p £nXnPm¥cmfw \tStØXp Xs∂.

Cßs\ CjvSm]{IatØmSpIqSo´p \mep3 {]iv\w.

8. ]Øpw ]Xns\m∂pw {]iv\ßƒ

C\n CXp IqSmsX ]ns∂ CjvS{Im¥ntImSnbpw tZm¿Pymhpw IqSo´p

]ØmaXv . Ch¡ns≥d h¿§m¥caqew CjvS{Im¥n. tijw

\tStØt∏mse1.

]ns∂ ImePymhpw CjvSm]{IatImSnbpw Adn™n´p

7. 1. H.  CjvS]{IaImePym°sf
2. B. tijw, ]q¿∆h¬
3. B. IqSn \mev

8. 1. B. tijw ]q¿hh¬

X. ]©-Z-i-{]iv\w
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]Xns\m∂maXv. ImePymbv°v {XnPymhp I¿Æw, CjvS{Im¥ntImSn°v

F¥v F∂v ZypPymhp≠mIpw. ]ns∂ ZypPysb ImetImSnsIm≠p

KpWn®v {XnPysIm≠p lcn®m¬ tZm¿PymtImSn D≠mIpw.

\XbmtaymØcm¥cmfw sIm≠p \tSsØ ss{XcminIw.

\X£nXnPm¥cmfw sIm≠p c≠mw ss{XcminIw.

9. ]{¥≠mw {]iv\w:

CjvS{Im¥ntImSnbpw \XPymbpw

]ns∂ CjvS{Im¥ntImSntbbpw \XPymtbbpadn™n´v 1

]{¥≠maXv. Ch¡ns≥d h¿§sØ {XnPymh¿§Ønt¶∂p If™p

aqen®m¬ ]q¿∆kzkvXnIØnt¶∂p tZm¿Pym{KtØmfap≈

bmtaymØc\X`mKPymhpw bmtaymØc\X£nXnPßfpsS

]cam¥cmfhpap≠mIpw. Xßfn¬ KpWn®v {XnPysIm≠p lcn®m¬

tZm¿PymtImSn D≠mIpw.

10. ]Xnaq∂mw {]iv\w:

tZm¿Pymhpw ImetImSnPymhpw

]ns∂ tZm¿Pymhpw, ImePymhpw IqSo´p ]Xnaq∂maXv. Ch

c≠nt\bpw h¿§n®v {XnPymh¿§Ønt¶∂p If™p aqen®m¬

tImSnIfp≠mIpw. ]ns∂ ImetImSn°p {XnPymhp I¿Æw

tZm¿PymtImSnt°Xp I¿Æsa∂p ZypPymhp≠mIpw.

11. ]Xn\memw {]iv\w:

tZm¿Pybpw \XPybpw

tZm¿Pybpw \XPybpadn™n v́ ]Xn\memaXv. \XtImSn°p {XnPymhp

I¿Æw, tZm¿PymtImSnt°Xp1 I¿Æsa∂p tZm¿Pym{KØnt¶∂p

9. 1. B. \XPymbp-a-dn-™n´v
11. 1. B. F¥v

9. ]{¥≠mw {]iv\w : CjvS-{Im-¥n-tIm-Snbpw \X-Pymbpw
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]q¿∆kzkvXnItØmfap≈ \XhrØPymhp≠mIpw. CXns≥d tImSn

CjvS{Im¥ntImSn.

12. ]Xn\©mw {]iv\w:

ImePymhpw \XPymhpw

]ns∂ ImePymhpw \XPymhpadn™n´v at¡h Adnbpw{]Imcw

]Xn\©maXv. ChnsS ]q¿∆m]ckzkvXnIØnt¶∂p cminIqS

hrØkw]mXtØmSnS LSnImhrØØn¶teXp ImePymhv. ]ns∂

]q¿∆m]ckzkvXnItØmSv cminIqShrØtØmSnS bmtaymØc\X

hrØØn¶se `mKw {Im¥ntImSnbmbn´pancn°pw. AhnsS

Ja≤yØnt¶∂p ImetImSnbpsS tijw Ime`pPm£nXnPmc¥anXv.

]ns∂ LSnIm\XhrØtØmSp cminIqShrØtØmSnS ]ZamIbpap≠v

bmtaymØc\XhrØØn¶¬. ]ns∂ CXnt¶∂p Xs∂

bmtaymØckw]mXØnt¶∂p £nXnPm¥hpw ]Zw. F∂n´ v

CuhÆansX√mamIp∂p.

]ns∂ CuhÆw Xs∂ bmtaymØckzkvXnItØmSp

cminIqShrØtØmSv A¥cmfw bmtaymØc\XhrØØn¶teXp

\XPymhmbn´ncn°pw. ]ns∂ LSnIm\XØn¶se cminIqS

hrØ£nXnPm¥cmfw A]{Iaw. ChnsSbpw CXc\Xkw]mX

Ønt¶∂p cminIqShrØm¥cw ]Zw, Z£n-WkzkvXnImLSn -Im -

¥-cm -fhpw ]Zw. F∂m¬ CuhÆan--cn°pw ChnsS.

CuhÆw ss{Xcmin-Iw. ]›n-a-k-z-kvXn-I-Øn-t¶∂p Ja-≤y-tØm-f-

ap≈ LSn-Im-h-ym-km¿-≤am-Ip∂ I¿Æ-Øn\p bmtaymØc-\XhrØ-

Øns‚ ]c-am-¥-c-am-Ip-∂Xp \X-P-ym-hv. ]›nakzkvXn-I-Øn-t¶∂p cmin-

Iq-S-hr-Øm-¥-ap≈ `mK-Øns‚ Pym-hv -Im-e-P-ymhv. AXp I¿ÆamIp-

tºmƒ bmtaymØ-c-\-X-hr-Øm-¥-c-sa¥v F∂p cmin-IqS-hr-Ø-Øn-¶te

LSn-Im-\Xm¥-cm-f -a p -≠m -Ipw .  A∆-Æta bmtaym-ØchrØ-Øn¬

bmaykz-kvXn-I-Øn-¶∂p cminIqS-hr-Øm-¥-ap≈ \X-P-ymhv C—. Ja-

≤-y-Øn-t¶∂p \X-hrØ]c-am-¥-cm-f-am-Ip∂ Ime-Pymhv {]am-W-̂ ew.

X. ]©-Z-i-{]iv\w
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bmta-ym-Ø-c-hr-Ø-Øn-t¶∂p cmin-Iq-S-hr-Ø-Øn-t∑te \Xm-¥cw

C—m^ew. CXp \mtStØ C—m-̂ -e-tØmSp Xpe-y-am-bn-́ n-cn-°pw. Cu

A¥-c-h¿§w {XnPymh¿§-Øn-t¶∂p If-™p aqen-®m¬ LSn-Im-bm-taym-

Ø-c-hr-Øm-¥-cmfw cmin-IqS-hr-Ø-Øn-¶te `mKw D≠m-Ipw. Cu `mK-

P-ymhp I¿Æ-ambn {]am-W-am-bn-cn-°p-tºmƒ {]am-W-̂ -e-ß-fm-bn´p c≠p

hrØm-¥-cm-{K-ß-fp-≠m-Ipw. ]ns∂  Ch-‰ns‚ C—m^e-am-bn-cn-°p∂

]c-am¥-cm-f-ßƒ \X-cm-in-IqShrØkw]m-X-Øn-t¶∂p kz-kvXn-Im-h[n

D≈ \X-P-ym-°ƒ ChnsS bmtaym-Øc\XØn-¶-teXv. CjvSm-]-{I-a-tImSn.

LSn-Im-\-X-Øn-¶-teXv CjvSm-]-{Iaw.

Ch-‰ns‚ {]am-W-^-e-ap-≠m-°pw {]Imcw ]ns∂. \X-L-Sn-Im-¥cw

cminIqS-hr-Ø-`m-K-Øn-¶-te -P-ym-h¿§sØ ImePym-h¿§-Øn-t¶∂p

If™p aqen®p Iev]n-°m-\n-cn-°p-∂-Xn¬ \tStØ XncyKvhrØm-h[n

D≈Xv H∂v. ]ns∂ \X-P-ym-h¿§-Øn-t¶∂p If™p aqen-®Xp c≠m-

aXv. c≠mw XncyKvhrØm-h[n D≠m-Ip-a-Xv. XncyKvhr-Ø-ßsf Iev]n°pw

{]Imcw ]ns∂.  bmta-ym-Ø-c\-X-]m¿iz-am-bn-cn-°p∂ cminIqSbm-taym-

Ø-c -hr -Ø-kw -]m -X -Øn -¶epw ]q¿∆m -] -c -k- z -kvXn -Iß-fnepw

kv]¿in°pamdv \tSsØ XncyKvhrØw c≠m-aXv. ]ns∂ LSn-Im-\-X-

]m¿i-z-am-bn-cn-°p∂ LSn-Im-cm-in-Iq-S-kw-]m-X-Øn-¶-epw Z£ntWmØ-c-

k-z-kvXnIßfnepw  kv]¿in-®n-́ n-cn-°pw.- C-h-t‰mSp cminIq-S-h-rØtØmSp-

≈ ]cam¥-cm-f-ßƒ \X-hr-Ø-ßƒ c≠n-¶-ep-am-bn-́ ncn°pw. Ch CjvSm-

]-{I-a-XXvtImSn-I-fm-Ip-∂-h.

Cßs\ ]Xn-\©p {]ivt\m-Ø-c-ßƒ sNm√-o-Xmbn. Cßs\

hrØm¥cmfss{Xcm-in-Im-Xn-tZi{]Imcw.

[KWn-X-bp‡n`mj-bn¬

]©-Z-i-{]iv\sa∂

]Øma-≤ymbw kam]vXw]

12. ]Xn-\©mw {]iv\w: Ime-Pymhpw \X-Pymhpw
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A≤-ymbw ]Xn-s\m∂v

 Ombm{]I-cWw
1. ZnIv⁄m\w

A\-¥cw Zn°-dnbpw {]Imcw.  AhnsS \tS1 Hcp \new  \nc-Øn®a∏q.

AXp \Sp-hn¬ sh≈w hoWm¬ h -́Øn¬ ]c∂v F√m-∏p-dhpw Hs°ms°

Hgp-Ip-amdv Ccn-°-Ww. AXp ka\ne-Øn\p e£-W-am-Ip-∂-Xv. ]ns∂

Cu \neØv Hcp hrØw hc∏q. c≠-{K-Øn-¶epw Ipd-t™mcp hf-hp-

t≈mcp iem-tIsS Hc{KsØ a≤-y-Øn-¶-eq∂n at‰ A{KsØ Np‰pw

{`an-∏n-∏q. AXns‚ A{Kw Du∂nb  {]tZ-i-Øn∂p ‘tI{µw’ F∂pw

‘\m`n’-F∂pw t]cp-≠v.  at‰ A{K-{`-aWw sIm≠p-≠mb  tcJbv°v

‘t\an’ F∂p t]¿. CXns‚ tI{µ-Øn-¶¬ ka-ambn Dcp-≠ncn-t∏mcp

‘i¶p’-hns\  \n¿Øq. ]ns∂ HcnjvSZnh-k-Øn-¶¬  {]mX:Ime-Øn-

¶¬ Cu i¶p-hns‚ Ombm-{Kw2 hrØ-t\-an-bn-¶¬ bmsXm-cn-SØp

kv]¿in®p hrØ-Øn-¶¬ AIØp ]qhpw3 A]cm”-Øn-¶¬ bmsXm-

cn-SsØ kv]¿in-®n´v ]pdØp ]pds∏Sp∂-Xpw, Cu c≠p {]tZ-i-Øn-

¶epw hrØ-Øn-¶¬ Hmtcm  _nµp-°sf D≠m°q. Ch Xß-fn¬

an°hmdpw  Ing°p ]Sn-™m-dm-bn-cn°pw. F∂n-́ n-h-‰n∂p ‘]q¿∆m-]-c-_n-

µp-°ƒ’ F∂p t]¿. Ch Xs∂ t\sc ]q¿∆m-]c_nµp-°-fm-bn´ncn-°pw,

sX°p-h-S°p KXn-bn-√mØ \£-{X-ß-fpsS Ombm-_n-µp-°-sf-¶n-¬. BZn-

X-y-\v4 ]ns∂ Ab\m-¥-h-im¬ sX°phS°p KXn-bp-≠m-I-bm¬ ]Sn-

™mtd Ombm-{K-_n-µp-Im-e-Øn-t¶∂p Ing°p _nµp D≠m-Ip∂ Ime-

1. 1. F. om. \tS
2. B. i¶p-Om-bm-{Kw
3. B. ]qIp∂p; C.D.]php∂p
4. B. BZnXy\v Z£n-tWm-ØcKXn D≈-Xp-sIm≠v ]Sn-™mtd Ombm-{K-l-_n-µp-Im-

   eØn-¶∂v Ingt° Ombm-{K--_nµp D≠m-Ip-∂p.
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ß-fpsS A¥-c-Øn-¶te A]-{I-am-¥c-Øn\p X°-hÆw AZn-X-y≥

hS°p \oßn F¶n¬ Ombm{Kw sX°p \oßn-bn-cn-°pw5. Ing-t°Xv

F∂m¬ AXp hS-t°m´p \ot°-≠q t\sc ]q¿∆m-]cßfm-hm≥6. BZn-

X-y≥ sX°p-\oßpIn¬ AXn∂p X°-hÆw AXo∂v ]q¿∆_nµp-hns\

sXt°m´p \o°q7. A∂o-°-am-Ip-∂Xp c≠p Ime-Øn-¶-tebpw A]-{I-

am-¥-c-Øn∂p8 X°-h-Æ-ap≈ ‘A¿°m-{Kmw-Kpew’ . A]-{I-am-¥csØ

At∂csØ Ombm-I¿ÆmwKpew sIm≠p KpWn-∏q, kz-tZ-i-ew-_Iw

sIm≠p lcn∏q. ^ew B OmbmhrØ-Øn¶te A¿°m-{Kmw-Kpew.

]ns∂ Ab-\Øn\p  X°-hÆw ]q¿∆_nµphns‚ Cu AwKp-e-ßsf

Af∂v \n°q.  Cu \o°nb CSØpw ]Sn-™mtd _nµp-hn-¶epw IqSn

Hcp kq{X-ap-≠m-°n-bm¬ AXp ka-]q¿∆m-]cw, t\sc Ing-°p-]-Sn-™mdv

{]X-yIv_nµphns\ F¶n¬ Ab-\-hn-]-co-X-am-bn-´p \ot°≠p. ]ns∂

Cu kq{X-Øn-t¶∂p a’-ytØ D≠m°n sX°p hS°p kq{X-tØ-bp-

ap-≠m-°q. \£-{X-ßfpsS DZ-bm-kvX-a-b-ßfpw t\tc Ing-°p-]-Sn-™m-

dm-bn-́ n-cn-°pw. AXn-t\-s°m-≠-dn-bmw Zn°v.

2. A£-hpw ew_hpw

bmsXmcp Znhkw DZ-bm-kvXab-ß-fn¬ `n∂Zn-°p-I-fm-bn-cn-°p∂

{Im¥n-Iƒ ka-ß-fm-bn-cn-°p-∂q, A∂v a≤ym-”-Øn-¶¬ hnjp-h-Øn-

¶eq BZn-X-y≥ F∂n v́. At∂-csØ Zzm-ZimwKpe-i-¶p-hns‚ Omb hnjp-

h-—mb-bm-Ip-∂-Xv. Cu Omb `pPbmbn, Zzm-Z-imw-Kp-e-i¶p tImSn-bm-bn1

c≠nt‚bpw h¿§tbmKaqew sNbvXv. I¿ÆsØ hcp-Øq. A°¿Æw

{]amWw. Cu i¶p-OmbIƒ {]am-W-̂ -e-ßƒ, {XnP-ym-hv C—. ChnsS2

C—m^-e-ßƒ A£m-h-ew-_-ß-fm-Ip-∂-Xv. Ch-‰n∂p hn]coX-—mbbn-

¶¬ sNm√p∂ kwkvIm-c-ßƒ sNø-Ww. F∂m¬  kq£va-ß-fm-Ipw.

1. 5. B. \oßWw
6. B. ]q¿∆m-]-c-am-hm≥
7. B. \o°p∂p
8. C. A¥-cm-f-Øn∂p

2. 1. F. tImSn-bm-bncn-°p∂p
2. B.F. Chn-SpsØ

1. ZnIv⁄m\w
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ChnsS Ja-≤-y-Øn-t¶∂p LSn-Im-a-WvU-em-¥cw A£-am-Ip-∂-Xv.  Z£n-

tWm-Øc-hr-Ø-Øn-¶-te-Xv, {[ph-£nXnPß-fpsS  A¥-cm-f-am-Inepamw.

LSn-Im-hr-Ø-Øn-t¶∂v £nXn-Pm-¥-cmfw Z£n-tWm-Ø-c-hr-Ø-Øn-¶-

teXp ‘ew_Iw’, Ja≤-y-{[p-hm-¥-cm-f-am-In-ep-amw.

3. DZ-bm-kvX-a-\-Im-e-ßƒ

A\-¥cw Omb. AhnsS A]-{I-a-WvU-e-Øn-¶te Ing°p t\m°n

Kan-°p∂ BZn-X-y∂v A]-{I-a-a-WvU-e-Øns‚ Ncn-hn\p X°-hÆw

sX°pw hS-°pw \o°-ap≠mbn-cn-°pw. Cßs\ Ccn-°p∂ BZn-X-y≥

CjvS-Im-e-Øn-¶¬ A]-{I-a-a-WvU-e-Øns‚ bmsXm-cn-SØv AhnsS

kv]¿in-®n´p LSn-Im-a-WvU-eØn-t¶∂p F√m Ah-bhhpw CjvSm-]-

{I-a-tØmfw \oßn c≠p {[ph-¶-epw `tKm-f-a≤y-Øn-¶epw kv]¿in-®n-

cn-°p∂ A£-Z-fin-¶¬ tI{µ-am-bn-cn-t∏mcp hrØsØ Iev]n∏q. CXv

‘CjvS-Im-e-k-zm-tlm-cm{Xw’. CXn\v CjvSZyp-P-y-mhv hym-km¿-≤-am-Ip-∂-

Xv. AhnsS D∑-WvUew sIm≠pw Z£n-tWm-Ø-chrØw sIm≠pw

CXn\p ]Zh-n-̀ mKw Iev]n-t°≠q. {]hlh-im¬ Cu CjvS-k-zmt-lm-cm-

{X-Ønt∑te D≈ KXn-sIm≠v DZ-bm-kvX-a-\-ß-fp-≠m-Ip-∂p. ChnsS

hmbp-hns‚ thKw \nb-X-am-I-bm¬, kzm-tlmcm{Xw C{X-Imew sIm≠v

C{X \oßp-sa-∂p≈Xpw \nbXamI-bm¬, DZn-®n´v C{X- sN-√p-tºmƒ

F∂p-Xm≥, AkvX-an-°p-∂-Xn\v C{X- aptº F∂p-Xm≥ Cu CjvS-Im-

e-ap-≠m-Ip-tºmƒ At∂-cØp kzm-tlm-cm-{X-Øn-¶¬ £nXnPØnt¶∂v

C{X Db¿t∂-SØp {Kl-sa∂p \nb-Xw.

4. kzm-tlm-cm-{X-hrØw

Cßs\ Ccp-]tØmcmbncØdp\qdp {]mW-Imew sIm≠p {]h-l-

hm-bp-hn∂v Hcp {`-a-Ww h´w IqSpw. BI-bm¬ kzm-tlm-cm-{X-hr-Ø-

Øn∂pw C°mew sIm≠v {`aWw XnI-bpw F∂n´v. AXmXv kzm-tlm-

XI. Ombm-{]-I-cWw
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cm-{X-hr-Ø-tØbpw N{I-I-em-k-a-kw-J-y-am-bn v́ hn -̀Pn-∏q. F∂m¬ Hmtcm

{]mW-Imew sIm≠v Hmtcm Ah-bhw {`an°pw. F∂n´v Hcp {]mW-

Imew sIm≠p Kan-°p∂ kzm-tlm-cm-{Xm-h-b-h-tØbpw e£-W-bm

‘{]m-W-s\’∂p sNm√p-∂p. F∂m¬ BZn-X-y-\-pZn-®n´v F{X {]mW-ßƒ

KX-ß-fmbn AkvX-an-∏m≥, C\n F{X{]mW-ßfp≠v Ch-‰n-∂p “KX-K-

¥-hy”- {]m-W-ß-sf∂p t]¿.

F∂n v́1 Cu KX-K-¥hy-{]m-W-ß-tfmSp Xpeyw £nXnPhpw BZnXy-

\p-ap≈ A¥-c-Øn-¶te kzm-tlm-cm-{X-̀ m-K-Øn-¶te “A\-¥-]p-cmwiw”
CXp Nm]-am-I-bm¬ CXn∂p Pym-hp-≠m°q t\c-dn-hm≥. AhnsS

bmsXmcp {]Imcw sX°p-h-S°v A¿≤-Pym-°sf Iev]n-°p-tºmƒ hrØ-

tI{µØn∂p -\-Sp-th-bp≈ ]q¿∆m]-c-kq{Xw Ah-[n-bm-Ip-∂p, Ing-°p-

]-Sn-™mdp Iev]n°ptºmƒ, hrØtI{µ-a-t[-y-bp≈ Z£n-tWm-Ø-ckq-

{Xhpw Ah-[n-bm-Ip-∂p Pymhp-sIm-≈p-tºmƒ. A∆-Æw kzm-tlm-cm-{X-

Øn-¶¬2 ta¬Io-gm-bn-´p≈ Pym-hp-≠m-Ip-tºmƒ kzm-tlm-cm-{X-hrØ-

Øns‚ tI{µ-Øn-¶¬ IqSn-bp≈ Xn¿øIvkq{Xw Ah-[n-bm-IWw. AXm-

Ip-∂-Xv D∑-WvU-ehpw kzm-tlm-cm-{X-hr-Øhpw Xß-fn-ep≈ kw]mXw

c≠n-¶epw A£-Z-WvUn-¶-epw kv]¿in-®n´v  Hcp- k-a-k-vX-P-ym-hp-≠mhq

D∑-WvU-e-Øn∂v. AXv Ah-[n-bm-bn´v P-ym-hp-≠m-t°≠q, BZn-X-y-\p-Zn-

°p∂ £nXnPØn-¶¬. F∂n v́ £nXn-P-Øn-t¶∂p XpS-ßo´p KX-K-¥-

h-y-{]m-W-ß-fp≠mbn. F∂n´p  £nXntPm∑-WvU-em-¥-cm-f-Øn-¶te kzm-

tlm-cm-{X-hr-Ø-̀ mKw Nc-{]m-Wß-fm-Ip-∂-Xv. CXns\ If-tbWw. KX-

K--¥h-y-{]m-W-ß-fn¬ \n∂v DZKvtKm-f-Øn-¶¬. AhnsS ]q¿∆m-]-c-k-z-

kvXn-I-Øn-t¶∂p hS-t°-∏pdw £nXnPw, D∑-WvU-e-Øn-t¶∂v Iogv,

F∂n´v Z£n-W-tKm-f-Øn-¶¬ KX-K-¥-h-y-{]m-Wßfn¬ Nc-{]m-W-ßtf

Iq´p, AhnsS £nXnPw aotØ BI-bm¬. F∂m¬ D∑-WvU-e-Øn-

t¶∂v BZn-X-y-t\m-f-ap≈ kzm-tlm-cm-{X-`m-K-Øn-¶te D∂-X-{]m-W-ß-

fp-≠m-Ipw. ]ns∂ CXn∂v  Pym-hp-≠m°q. ]ns∂ Cu Pym-hn-¶¬ Nc-

Pym-hns\ hn]-co-X-am-bn´v kwkvI-cn-∏q, DØ-c-tKm-f-Øn¬ Iq´p-Ibpw

4. kzmtlm-cm-{X-hrØw

4. 1. B. om. F∂n v́
2. B. hrØ-tI-{µ-Øn-¶se ta¬
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Z£nW-tKmf-Øn¬ If-bp-Ibpw. F∂m¬ £nXn-P-Øn-t¶∂p XpS-ßn-

bp≈ D∂-X-Pym-hp-≠m-Ipw. CXv Cu kzm-tlm-cm-{X-Øns‚ c≠p ]Z-

Øn-¶epw Iq´nbps≈m∂v BI-bm¬ tIh-ew- A¿≤-P-ym-h√. BI-bm¬

Ch-‰ns‚ tbmK-hn-tbm-K-ßƒ°v CX-tc-X-c-tIm-Sn-Kp-W\w th≠m, Xmt\

Pym-hns‚ tijam-bn-cn-°-bm¬. tIhew tbmKhntbmKw am{Xta th≠q.

F∂m¬ £nXn-P-tØmSv BZn-X-y-t\m-Sp≈ A¥-c-Øn-¶te kzm-tlm-

cm{X`mK-Pym-hp-≠m-Ipw. ]ns∂ sNdnb Cen-I-fmIbm¬ Zyp-P-ym-hn-s\-

s°m≠p KpWn®p {XnP-y--sIm≠p lcn-t°-Ww. F∂m¬ {XnP-ym-hr-Ø-I-

e-I-tf-s°m≠v Cs®m-√nb D∂XPym-hn-{X-sb∂p hcpw.

5. alm-i-¶phpw alm-—m-bbpw

 ]ns∂  kzm-tlm-cm-{X-hrØw LSn-Im-hr-Ø-sØ-t∏mse A£-h-

im¬  sXt°m´p Ncn-™n-́ n-cn-°-bm¬1 I¿Æw t]mse Ccn-°p∂ Cu

D∂XPym-hns\ ew_Iw sIm≠p KpWn®p {XnPy-sIm≠p lcn∏q. ̂ ew

BZn-X-y-t¶∂p £nXnPtØm-Sp≈  A¥-cm-fap≠mIpw. AXv ‘alm-i-

¶p’-hm-Ip-∂-Xv. CXns‚ tImSn Ja-≤-y-{K-lm-¥-cm-fw. AXp ‘alm—m-b’-
bm-Ip-∂-Xv.

6. ZrMva-WvUew

]ns∂ Ja-≤-y-Øn-¶epw {Kl-Øn¶epw kv]¿in-®n´v Hcp hrØsØ

Iev]n∏q. AXn∂p ‘ZrMva-WvUew’ F∂p t]¿. Cu  hrØØn-¶te

`pPm-tIm-Sn-Pym°ƒ {Kl-Øn-¶-e-{Kßf-mbncn°p∂ alm-i-¶p—m-b-I-fm-

Ip-∂-Xh1. ChnsS L\-`q-a-[-y-]m-¿izØn-¶¬ £nXnPw, £nXn-P-Øn-

¶¬ i¶p-aqew. BI-bm¬ L\-̀ q-a-[yw tI-{µ-am-bn-cn-s∏m∂v Cu ZrMva-

WvU-ew.

5. 1. B. Ncn-™n-cn-°-bm¬ sXt°m´v
6. 1. B.BIp-∂Xv; F. Omb-I-fm-Ip-∂h

XI. Ombm-{]-I-cWw
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7.  ZrKvtKmf—mb

`q]r-jvT-Øn-¶¬ h¿Øn-®n-cn-°p-∂ -tem-I¿ ]ns∂ XßsS ka-]m¿iz-

Øn-t¶∂v C{X Db¿∂n-cn-°p-∂p {Klw Xebv°v aotØen∂v C{X-

XmWp-an -cn -°p∂q F∂-Xns\ ImWp-∂Xv. F∂m¬ `q]r -jvT -

Øn¶encn°p∂ {Z-jvSm-hns‚ ZrMva-[yw tI{µ-ambn Ja-[-y-Øn-¶epw  {Kl-

Øn-¶epw t\an-kv]¿i-tØm-Sp-IqSn Ccp-s∂mcp ZrMva-WvU-e-Øn-¶ep≈

Ombm-i-¶p-°sf -{Z-jvS-m°ƒ ImWp-∂-Xv. ChnsS L\-̀ q-a-[-y-]m¿i-z-Øn-

¶te £nXn-P-Øn-t¶∂v F√mShpw `qh-y-m-km¿-≤-tØm-f-ap-b¿∂n´v `q]r-

jvTØns‚ ka-]m¿iz-Øn¶¬ Hcp £nXn-PsØ Iev]n-∏q. AXn-t¶∂p

Db¿∂Xp `q]r-jvT-h¿Øn-Iƒ°p i¶p-hm-Ip-∂-Xv. CXn∂p ‘Zrt§m-f˛-

i¶p’-sh∂p t]¿. apºn¬ sNm√n-bXp ‘`tKm-f-i¶p’. AXn-t¶∂p `qh-ym-

km¿-≤-en]vX t]mbXp Zrt§mfi¶p-hm-Ip-∂-Xv. BI-bm¬ i¶p-aq-e-

Øo∂p h-ym -km-¿≤-tØm-f-a -¥-c-ap -≠v. £nXn-Pm-¥-cw sIm≠p

Ombbv°pw ]ns∂ aqe-am-Ip∂Xv Cu Du¿≤z-kq{Xw. AXp `qa-[-y-Øn-

t¶-∂p-≈Xpw `q]r-jvT-Øn-t¶-∂p-≈Xpw Ht∂. F∂n´v Ombbv°v aqe

s-am-cn-StØ Bbn-´n-cn-°pw. F∂n´p Ombbv°v t`Z-an√. F√mSØpw

Ombm-i-¶p-°-fpsS A{K-ßƒ _nw_-L-\-a[y-Øn-¶-em-Ip-∂p.

]ns∂ Cu `q]r-jvT-£nXnPw aqe-am-bn-´n-cn-°p∂ i¶phpw

Ombbpw h¿§n®p Iq´n aqen-®m¬ `q]rjvTw tI-{µ-am-bn´v Hcp I¿Æ-ap-

≠mIpw. AXn∂p ‘Zr°-¿Æ-’sa∂p t]¿. {]Xn-a-WvU-e\-ym-tb\ D≠m-

sbmcp I¿Æ-anXv. ChnsS ̀ qa-WvUew tI{µ-am-bn-́ p-≈-Xv {]Xn-a-WvUew.

`q]r-jvTw -tI-{µ-am-bn-́ p-≈-Xv I¿Æ-hrØw. Cu hr-Ø-ßfpsS tI{µm-

¥-c-am-Ip∂ `qhym-km¿≤w ChnsS D®-\o-N-hym-km¿≤-am-Ip-∂-Xv. \oN-

ÿm\w Ja≤yamI-bm¬ I¿Æ-hr-Ø-I-e-Iƒ kztX sNdpXv. BI-

bm¬ Cu `qtKmfaqe-I-e-I-tf-s°m-≠p-≠mb I¿Æ-hr-Ø-Ønte Omb

{XnP-ym-hr-Ø-Øn-¶-em-Ip-tºmƒ kwJ-y-tbdpw. AXn∂p X°-hÆw Ja[y-

Øn-t¶-∂p≈ XmgvN Gsd-tØm∂pw. F∂m¬ `tKm-f—m-bsb

{XnPysIm≠p KpWn®p Zr°¿Æw sIm≠p lcn∏q. ^ew Zrt§m-f-—mb-

bm-bn-́ n-cn-°pw. Cß-s\ {]XnaWvU-e-kv̂ p-S-\-ym-tb\ hrØm-¥-c-Ønse

Ombsb D≠m°pw {]Imcw.

7. Zrt§m-f-—mb
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8. Ombm-ew-_\w

]ns∂ ̀ tKm-f-—m-bsb ̀ qh-ym--km¿-≤-tbm-P-\-sIm≠p KpWn∏q. kv^pS-

tbm-P-\-I¿Æw sIm≠p lcn-°mw. Zr°¿Æ-tbm-P-\-sIm≠p th≠p-

Xm\pw. B ^ew `qPm-̂ -e-ÿm-\o-b-am-bn-cn-s∏m∂v. AXp ‘Ombm-ew -̨

_-\-’am-Ip-∂-Xv. C-en-IƒXm\pw Cu ^ew, CXnt\ Iq´q. `tKm-f-

—mbbn¶¬1 Zrt§m-f-—m-b-bm-Ipw. Cßs\ D®-\o-N-kv̂ p-S-\-ym-tb\ Ombm-

ew-_\en]vX-sb hcpØpw{]Imcw.

9. ̀ qh-ym-km¿≤w

]ns∂ Ahn-SsØ {]Xnafie-en-]vXm-am\w sIm≠v D®-\o-N-h-ym-km¿-

≤sØ am\w sNbvXv A¥y-̂ -e-am-Ip-∂Xv. ChnsS kv̂ pS-tbm-P-\-I¿Æw

{]Xn-a-fiehym-km¿≤-am-I-bm¬ AΩm\w sIm≠v Cu D®-\oNhym-

km¿≤w `qh-ym-km-¿≤tbmP\Xpeyw. A°¿Æw {XnP-ymhm-Iq-tºmƒ

Fs¥∂v AXv.

B {K-l-Øns‚  `qh-ym-km¿-≤-en]vX D≠m°pw {]Imcw ]ns∂.

{XnPym C—-bm-Ip-tºmƒ `qh-ym-km-¿≤-tbm-P\en]vX ew_-\-am-Ip-∂-

Xv, CjvS-—m-b°v F{X ew_\en]vX F∂nßns\2 {XnP-ymhp Omb-bm-

Ip-tºmƒ KpWImchpw lmc-IhpamI-bm¬ AXns\ Dt]-£n°mw.

F∂m¬1 CjvS-—m-bsb `qh-ym¿-km-≤-tbm-P\ sIm≠p KpWn®p kv^pS-

tbm-P-\-I¿Æw sIm≠p lcn∏q. ^ew -Om-bm-ew-_-\-en]vX. ChnsS

kv̂ pStbmP\I¿Æhpw a≤-y-tbm-P-\-I¿Æhpw Xß-fn¬ s]cnsI A¥-

c-an√. F∂m-Io´p ̀ qh-ym-km¿-≤-tbm-P\w sIm≠p a[-y-a-tbm-P-\-I¿ÆsØ

lcn∏q, ^ew BZn-X-y∂vv FÆq-‰dp]-Øn-aq∂v. CXn-s\-s°m-≠v CjvS-

Ombsb lcn-∏q. ^ew Ombm-ew-_-\-en]vX. ChnsS ZrMva-WvU-e-Øn-

XI. Ombm-{]-I-cWw

8. 1. `tKm-f-—m-b-bn-¶¬
9. 1. D. adds F∂m¬

2. H. F∂n-Xns\
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¶se Ombm-ew-_\w I¿Æ-am-bn-́ n-cn-°p-thmfw ̀ p-PmtIm-Sn-I-fmbn´n-cn-°pw

CXn-\p-ta-en-¬ sNm√p-hm-\n-cn°p∂ \Xn-ew-_-\-ßƒ. CXns‚ {]Imcw

taen¬ sNm-√p-∂p-≠v. Cßs\ Hcp kwkvIm-cw -Omb-bv°v.

10. ZzmZ-imw-Kp-e-i-¶p-hns‚ kwkvI-cn® Omb

Cu Ombmi¶p-°ƒ BZn-X-ys‚ _nw_-L\a[-y-Øn-¶-e-{K-ß-fm-bn-

´n-cn-t∏m Nneh. ]ns∂ BZn-X-y-a-WvU-e-Øns‚ F√m-Shpw civan-I-fp-

≠m-I-bm¬ aotØ t\an-bn-¶-te civan-Iƒ i¶p-hnt\s°m≠p ad-™n´p

FhnsS Ft{XSw \neØp X´p-∂p. At{XSw1 B i¶p-hns‚ Omb

D≠v. _nw_-L-\-a-[-y-Ønse civan-Itfs°m≠v A√m, Zzm-Z-imw-Kp-e-i-

¶p-hns‚ Omb HSp-ßp∂p F∂n v́ _nw_-Øns‚ aotØ t\an-bn-¶-temfw

\ntfWw i¶p. Ahn-Sp-∂p Ja[-ym-¥-cmfw Omb-bm-Ip-∂-Xv. ChnsS

_nw_-L-\-a-≤-y-tØmSv Du¿≤-t\-an-tbm-Sp≈ A¥-cmfw _nw_hym-

km¿≤w. CXp ZrMva-WvU-e-Øn-¶¬ ka-kvX-P-ym-hm-bn-́ n-cn-°pw. F∂n´v

Cu _nw_-h-ym-km¿-≤sØs°m≠p i¶p-hn-t\-bpw, Omb-tbbpw KpWn®p

{XnP-y-sIm≠p lcn® ^e-ßƒ _nw_-h-ym-km-¿≤-Øn-¶te JWvU-Pym-

°ƒ. AhnsS Omb-bn-t¶-∂p-≠m-°nb ^esØ i¶p-hn¬ Iq´q. i¶p-

hn-t¶∂p-≠m-°n-b-Xns\ Omb-bn-t¶∂p If-hq. F∂m¬ BZn-X-ys‚

Du¿≤zt\an-bn-¶-e-{K-ß-fm-bn´p i¶-—mbIfp-≠m-Ipw. Ah  ZrKzn-j-b-

Øn-¶-te°p km[-\-ß-fm-Ip-∂-h. ChnsS kakvXPym-a-[-y-Øn-e-{K-ß-

fm-bn-´n-cn-°p∂ `pPm-tIm-Sn-P-ym-°-tf-sIm≠p JWvU-P-ym-°sf hcp-

tØ≠q, F¶nepw ka-kvX-Pym-{K-Øn-¶-te-h-t‰mSp s]cntI A¥-c-an-√.

F∂n´v Ah-t‰-s°m-≠p-≠m-°m≥ sNm√n.

Cßs\ ew_-\-tØbpw _nw_-h-ym-km-¿≤--J-WvU-P-ym-°-tfbpw

kwkvIcn-®m¬ Zrt§m-f-Øn-¶¬ _nw_-Øns‚ Du¿≤-z-t\-an-bn-¶-e-{K-

ß-fm-bn-´n-cn-s∏m∂v Nne i¶p-—m-b-I-fp-≠m-Ipw. ]ns∂ Cu Ombsb

]{¥-≠n¬ KpWn®v Cu i¶p-sIm≠p lcn-∏q. B ^ew Zzm-Z-imw-Kp-e-i-

¶p-hns‚ Omb.

10. 1. B. A{X-tØmfw

10. ZzmZ-imw-Kp-e-i-¶p-hns‚ kwkvI-cn® Omb



11. hn]-co-X—m-b

A\-¥cw hn]-c-oX—mb. AXm-Ip-∂Xp Zzm-Z-imw-Kp-e-i-¶p-hn∂v C{X

Omb-sb∂v Adn-™m¬ At∏mƒ KX-K-¥-h-y-{]m-W-ßƒ F{X F∂-

dnbpw {]Imcw. AhnsS Zzm-Z-imw-Kp-e-i-¶p-hns‚ Ombbpw  Zzm-Z-imw-Kp-e-

i-¶p-hn-t\bpw h¿§n®p Iq´n aqen-®m¬ Ombm-I¿Æw AwKp-eam-bn-́ p-

≠m-Ipw. ]ns∂ Cu Omb-tbbpw i¶p-hn-t\bpw {XnP-y-sIm≠p KpWn®v

Cu I¿Æmw-Kpew  sIm≠v lcn∏q. Cu ^e-ßƒ alm-i-¶p-—m-b-I-ƒ.

Ah ZrKznjb—m-bsbs°m≠p≠mIbm¬ _nw_-Øns‚ aotØ

t\ao¶e{Kßfm-bn-́ p-≈q. F∂n´p _nw_-hym-km¿-≤-sØ-s°m≠p i¶p-

—m-bsb1 sht∆sd KpWn-®p {XnP-y-sIm≠p lcn® ^e-ßsf  {ItaW

Omb-bn¬ Iq´pIbpw i¶p-hn-t¶∂p If-bp-Ibpw sNbvhq. F∂m¬

_nw_-L-\-a-≤-y-Øn-e-{K-ß-fm-bn´p hcpw. ]ns∂ Omb-bn-t¶∂p ‘KXnP’
(863) s\s°m≠v lcn-®-̂ -e-sØ Omb-bn-t¶∂p If-hq. i¶p-hn¬ ̀ qhym-

km¿≤-en]vX Iq´q2. Ct{Xm-S-ap≈ {Inbsb A£m-h-ew-_-I-ß-fn-epw

sNtø-Ww.

]ns∂ Cu i¶p-hns\ {XnPym-h¿§w sIm≠p KpWn-®v Zyp-P-ymew_-I-

LmXw sIm≠p lcn∏q. ^ew _nw_-L-\-a-≤-y-£n-Xn-Pm-¥-cmfw. kzm-

tlm-cm-{X-hr-Ø-Øn-¶te Pymhv, Xs‚  A\-¥-]pcmwiw sIm≠p-≈-Xv.

]ns∂ Nc-Pym-hns\ CXn-¶¬  taj-Xp-em-Zn°p X°-hÆw EWw -[\w

sNbvXp- Nm-]n®v Nc-{]m-W-ßsf {ItaW [\¿Æ-am-bn´p  kmwkvI-

cn∏q. ^ew KX-K¥hy-{]mW-ßƒ. Cßs\ CjvS-Im-e-Øn-¶¬ Zzm-Z-

imw-Kp-e-i-¶p-hn∂p I¿Æ—mb-bn-t¶∂p {Ia—mb, Ombm-ssh-]-co-X-y-

{In-b-sb-s°m≠p KX-K-¥-h-y-{]m-W-ß-fp-≠m°pw {]Im-cw.

12. a[-ym”—mb

A\-¥cw a[-ym-”-—mb D≠m°pw {]Im-cw. AhnsS {Kl-Øn∂v

XI. Ombm-{]-I-cWw

11. 1. B. C. D. i¶p-—m-b-Isf
2. B reads ^e-ßsf {ItaW —mb-bn¬ Iq´p-Ibpw i¶p-hn¬ If-bp-Ibpw sNbvXm¬

_nw_-L\a≤y-Øn-¶-e-{K-ß-fm-bn-´p -hcpw.
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Z£n--tWm-Ø-c-hr-Ø-kw]mXw hcp-tºmƒ Ja-[-y-tØmSp {Kl-tØm-Sp≈

A¥cmfw Z£n-tWm-Ø-c-hr-Ø-Øn-¶-te°v a[-ym-”-—m-b-bm-Ip-∂Xv.

AhnsS Ja[ytØmSv LSn-Im-a-WvUetØm-Sp≈ A¥-cmfw A£w.

LSnIm-a-fietØmSv BZn-X-y-t\m-Sp≈ A¥-cmfw. A]{Iaw. Ja-[-y-

Øn-t¶∂v F√mbvt∏mgpw sX°p LSn-Im-a -WvUew. LSn-Im-a -

WvUeØnt¶∂p tKmf -Øn∂p X°-hÆw sX°pw, hS°pw

\oßpamZnXy≥. F∂m¬ tKmf-h-im¬ A£m-]-{I-aßfpsS tbmKw

Xm\¥cw Xm≥ sNbvXXv a[-ym-”-—m-b-bm-Ip-∂-Xv. F∂m¬ a≤ym

”—mbm£ß-fpsS tbmKw Xm\¥cw Xm≥ sNbvX-Xv A]-{Iaw. a[ym-

”-—m-bm-]-{I-a-ß-fpsS tbmKw Xm\¥cw Xm≥ A-£-am-Ip-∂-Xv. Cßs\

aq∂n¬  c≠dn-™m¬1 at‰Xp kn≤n-°pw.

13. Ombm-̀ pP, A¿°m{Km, iwIz{Kw F-∂nh

A\-¥cw Ombm-`pP. AhnsS ZrMva-WvU-e-Øn-¶te Ombm-{K-Øn-

t¶∂p ka-a-WvU-em-¥cmfw Ombm-`p-P-bm-Ip-∂-Xv. ]ns∂ Ombm-{K-

Øn-t¶∂p Z£n-tWm-ØcaWvU-em-¥-cm-f-am-Ip-∂Xp ‘Ombm-tImSn’ 1

ChnsS £nXntPjvSkzm-tlm-cm{Xkw]m-X-Øn-t¶∂p ]q¿∆m-]-c-

kzkvXn-Im-¥cw C£nXnPØn-¶-teXv ‘A¿°m-{K’-bm-Ip-∂2-Xv. AhnsS

BZn-X-y-\pZn°p∂p. ]ns∂ {]h-l-h-im¬ Z£n-tWm-Ø-csØ  kv]¿in-

°p-tºm-fp-Zn-t®-S-Øn∂p sX°p \nßnbncn-°pw. A∂o-°-Øn∂p

‘iwIz{K’ sa∂p t]¿. AhnsS DZbmkvXa-bß-fn¬ IqSo´v Hcp kq{Xw

Iev]n∏q. Cu kq{X-Øn-t¶∂p i¶p-aqew F{X \oßn AXp iwIz-

{Kam-Ip-∂-Xv. B i¶p-hns‚ A{Khpw A{X-Xs∂ \oßn Ccn°pw. F∂n v́

iwIz-{K-sa∂p t]cp-≠m-bn.

13. Ombm-̀ p-P, A¿°m{Km iwIz{Kw F∂nh

12. 1. H. c≠p-a-dn-™m¬
13. 1. B. adds BIp-∂Xv

2. H. A¿°m-{K-am-Ip-∂Xv
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14. a‰p- _-‘-s∏´ hnj-b-ßƒ

AhnsS A¿°m{K -£n-Xn-P-Øn-¶te Pymhv, CjvSm-]-{Iaw D∑fi-

eØn-¶-te- P-ymhv, ]q¿∆m-]-c-k-z-kvXn-I-tØmSv kzmtlm-cm-{X-tØmSp≈

A¥-cm-f-am-bn-´n-cn-°panh. ]ns∂ £nXntPm∑-WvU-em-¥-cm-f-Øn-¶te

kzmtlm-cm-{X-̀ m-K-P-ym-hn∂v ‘£nXnPym-’sh-∂p-t]¿1. CXp ̀ pP, A]-{Iaw

tImSn, B¿°m-{K- I¿Æw, Cßs\ Ccn-t∏mcp {Xy{iw. A£-h-im¬

D≠m-sbm-∂nXv. £nXnPhpw D∑-WvUehpw A£-h-im¬ c≠m-I-bm¬

D≠m-sbm-cp t£{X-anXv. BI-bm¬ CjvSm-]-{I-asØ {XnP-y-sIm≠p

KpWn®p ew_Iw sIm≠p  lcn® ^ew A¿-°m-{K-bmw.

]ns∂ kzm-tlm-cm-t{Xm-∂-X-P-ym-hpw i¶phpw iwIz{K-hpw, Cßs\

Hcp {Xy{iw. CXv A£-h-im¬ D∂-X-P-ym-hn∂p Ncn-hp-≠m-I-bm¬ D≠m-

sbmcp  {X-y{iw. ChnsS kzm-tlm-cmt{Xm∂X-P-ymhp I¿Æw, i¶p -tIm-

Sn, D∂-X-Pym-aq-e-tØmSp i¶p-aq-e-tØm-Sp≈ A¥-cmfw `pP. Cu `pP

iwIz{K-am-Ip-∂Xv. CXp t\tc sX°p-h-S-°mbn Ccp-s∂m∂v. \nc-£-tZ-

i-Øn-¶¬ kzm-tlm-cm-{X-hrØw t\tc ta¬Io-gm-I-bm¬ AhnsS D∂X-

Pymhpw t\sc -ta¬Iogm-bn-cp-s∂m∂v. Ahn-Sp∂p ]ns∂ A£-h-im-

ep≈ Ncnhp t\tc sX°p t\m°n-bmIbm¬, i¶paqehpw D∂-X-P-ym-

aq-ehpw Xß-fn-e-¥-cmfw, t\tc sX°phS°v, A¿°m-{Kbpw t\tc

sX°p hS°v. At∏mƒ c≠n\pw Zns°m-∂m-Ibm¬ Xß-fn-¬ tbmKm-

¥-c-sØ-s®bvtI th≠q, tKmf-Øn∂p X°-hÆw. CX-tc-XctImSn

KpW\w th≠m. Cßs\ tbmKm-¥cw sNbvXn-cn-°p-∂Xv Ombm-`p-P-

bm-Ip-∂-Xv. AXp ]q¿∆m-]-c-kp-{Xhpw i¶p-aq-ehpw Xß-fn-ep≈

A¥cmfw £nXn-P-Øn-¶-teXv. ZrMva-WvU-e-Øn-¶te {Kl-Øn-t¶∂p

ka-a-WvU-em-¥-cm-f-am-In-epamw. CXv `pP-bmbn Ombm I¿Æ-am-bn-́ n-cn-

°p-tºmtf tImSn OmbmtImSn-bm-Ip-∂-Xv. {Kl-Øn-t¶∂p Z£n-tWm-

Ø-c-hr-Øm-¥-cm-f-anXv. CXp ]ns∂ kzm-tlm-cm-{X-hr-Ø-Øn-¶te Pym-

hm-I-bp-ap≠v. CXns\ X∂nse  A\-¥-]p-cmwiw sIm≠p am\w sNbvXp

Nm]n-®m¬ \X-{]m-W-ß-fp-≠m-Ipw. Ch Xs∂ Zzm-Z-imw-Kp-e-i-¶p-hn-te°v

14. 1. B. t]cp≠v

XI. Omb-{]-I-cWw
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BI-bm¬ Ah-t‰-s°m≠p Zn°-dnbmw. AXn∂v A¿°m-{Ksb

OmbmI¿Æw sIm≠p Kp-Wn®v {XnP-y-sIm≠p lcn∏q. ^e-Øn∂p2

‘A{Kmw-Kp-e’-sa∂p t]¿. iwI-z-{K-am-Ip-∂-Xv F√m-bvt∏mgpw hnjp-h-—mb

Xs∂-b-t{X Zzm-Zimw-Kp-e-i-¶p-hn-\v. F∂m¬ hnjph—m-b-bpw A{Kmw-

Kp-ehpw Xß-fn¬ tbmKw Xm\-¥cw Xm≥ sNbvXm¬ Zzm-Z-imw-Kp-e-i-

¶p-hns‚ Ombm-`p-P-bp-≠m-Ipw. alm-—mb `pP-mZn-°n∂p hn]-coXw3

CXn∂p Zn°m-Ip-∂-Xv, BZn-Xy-\p≈ Zn°n\p hn]-cn-X-Zn-°n-ep-sat√m

Ombm{Kw F∂n-́ v.

15. ZnIv⁄m\w ]co-£-W-Øn-eqsS

ChnsS CjvSIme-Øn-¶-te°v1 Zzm-Z-imw-Kp-e-i-¶p-hns‚ Omb --̨ `p-Pm˛tIm-

Sn-Iƒ aq∂n-t\bpw hcp-Øn-b Ombm-Xp-e-y-h-ym-km-¿≤am-bn v́ Hcp hrØw

hobn B hr-Ø-a-≤-y-Øn-¶¬ i¶p -h-®m¬ B i-¶p-hn-s‚ Ombm{Kw

hrØ-t\-an-bn-¶¬ bmsXm-cn-SØp kv]¿in-°p-∂q, AhnsS Hcp _nµp-hp-

≠m°n2 B _n-µp-hn-¶-e-{K-ß-fm-bn v́3 c≠p iem-I-Isf shbv-]q. AhnsS

Ombm-̀ p-P-bn¬ Cc-́ n- \o-f-am-bp-s≈m-∂ns\ sX°p-h-S°pw, OmbmtImSn-

bn¬ Cc-́ n- \o-f-ap-s≈mcp4 iem-Isb Ing-°p-]-Sn-™mdm-bn´pw hbv]q.

at‰ A{K-ßfpw ]cn-[n-bn¶¬ kv]¿in-°p-amdv.

Cßs\ {]mbn-I-am-bn v́ Zn°ns\ Adn-™n-cn-°p-tºmƒ Cu iem-I-

Ifn¬ tImSn-i-em-I -t\-tc- ]q¿∆m]cw, `pPm-i-emI Z£n-tWm-Øcw

Cßs\bpap-s≠mcp {]Imcw ZnK-zn-̀ m-KsØ Adn-bphm≥.

  14. 2. B; C.adds B
3. B. hn]-co-X-am-bn v́

15. 1. H. Ønte°p
2. B. _nµp-an´v
3. B. A{K-am-bn´v
4. B. Cc´n \of-ap-s≈mcp

15. ZnIv⁄m\w ]co-£-W-Øn-eqsS
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16. kai¶p

A\-¥cw ka-i-¶p-hn-s\- sNm√p∂p. ChnsS ]q¿∆-m]ckz-kvXn-I-Øn-

¶epw  Ja-≤-yØn¶epw1 kv]¿in-®n-cp-t∂mcp2 ka-hrØw. ]ns∂ ]q¿∆m-

]-c-kz-kvXn-I-Øn-¶epw Ja-≤y-Øn-t¶∂p A£-tØmfw sX°p \oßn-

tb-SØp Z£n-tWm-Ø-c-hr-Ø-Øn-¶epw kv]¿i-n®ncpt∂mcp3 LSn-Im--

hr-Øw. £nXn-P-Øn-t¶∂v DØ-c-{[p-hs‚ D∂-Xn°p X°-hÆw Ja≤y-

Øn-t¶∂p  LSn-Im-a-WvU-e-Øns‚ XmgvN4. ChnsS bmsXm-cn-∂mƒ

LSn-Im-a-WvUew kzm-tlm-cm-{X-am-Ip-∂p {Kl-Øn∂v5,  A∂p ]q¿∆m-]-

c-kzkvXn-I-ß-fn¬ DZbm-kvXabßƒ. Ja-≤-y-Øn-t¶∂v A£-tØmfw

sX°p \oßn-tb-SØv D®-bm-Ip-∂p. ]ns∂ kzm-tlm-cm-{X-ß-sfms°

sX°p-t\m°n Ncn-™n-cn°pw. BI-bm¬ DZn-t®-S-Øp-∂p sX°p-\oßn

D®-bm-Ipw. F∂m¬ DØ-cm-]-{Iaw A£-tØ°mƒ Ipd-bp-∂mƒ ]q¿∆m-

]-c-k-z-kvXn-Iß-fn¬ \n∂v hSt°6 DZ-bm-kvX-a-b-ßƒ. Ja-≤-y-Øn∂p7

sXt°-∏p-dØp D®. Z£n-tWm-Ø-c8-kw-]m-X-am-I-bm¬ DZ-b-Ønt‚bpw

a≤-ym-”-Ønt‚bpw \Sp-hn-sem-cn-°¬ ka-a-WvU-esØ kv]¿in-°pw

{Klw. A∆Æw D®-Xn-cn-™m¬ AkvX-a-b-Øn-\n-S-bn-ep-sam-cn-°¬ ka-

a-WvU-esØ kv]¿in°pw. At∂-csØ i¶p ‘kai¶p’hmIp-∂-Xv.

At∂-cØp t\tc Ing°p]Sn-™m-dm-bn-cn°pw Omb.

]ns∂ DØ-cm-]-{Iaw A£-tØmSp ka-am-bn-cn-°p∂mƒ Ja-≤-y-Øn-

¶¬ ka-a-WvU-e-kw-]m-Xw. kzm-tlm-cm--{X-Øn∂v A£-tØ-°mƒ

DZ¿°{Im¥n Gdp-∂mƒ kzm-tlm-cm-{X-hr-Ø-Øn¬ ka-a-WvU-e-kv]¿i-

an-√. BI-bm¬ A∂v ka-i-¶p-hn-√. Z£n-W-{Im-¥n-bnepw kzm-tlm-cm-

{X-Øn∂v ka-aWvUe-kv]¿i-an-√-mbvI-bm¬ A∂pw kai-¶-phn-√9.

16. 1. B. Ja-≤y-Øn-t¶∂v
2. E. kv]¿in-®n-cp-s∂m∂v
3. D. F kv]¿in-®n-cp-s∂m∂v
4. B. Xe
5. H. om. {Kl-Øn∂v
6. E. hS-t°Xv
7. B. Ja-≤y-Øn-t¶∂v
8. B. add. hrØ
9. D. A∂v ka-i-¶php-an√

XI. Ombm-{]-I-cWw
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ChnsS DØ-cm]--{Iaw A£-tØmSp Xpe-y-am-Ip-tºmƒ Ja-≤-y-Øn-¶¬

ka-a-WvU-e-kv]¿i-am-I-bm¬ ka-i¶p {XnP-ym-Xp-e-yw. At∏mƒ A£-

tØ-°mƒ Ipd™ CjvtSm-Ø-c-{Im-¥n°v F{X ka-i¶psh∂v ka-i-

¶p-hp-≠m-Ipw. CXns‚ hn]-co-X-{In-b-sIm≠v ka-i-¶p-hn-t¶∂p DØ-cm-

]-{I-a-ap-≠m-Ipw. AXn-t¶∂p {Kl-̀ p-Pm-P-ymhpw D≠m-Ipw. Cßs\ Hcp

{]Imcw ka-i-¶-zm-\-b\w.

17. ka-—mbm

A\-¥cw ka-i-¶p-hnse  Zzm-Z-imw-Kp-e-i-¶p-hns‚ I¿ÆsØ hcpØpw

{]Imcw. ChnsS A£-Øn¬ Ipd™ DØ-c-m]-{Iahpw {XnP-ybpw Xß-

fn¬ KpWn-®-Xn-t¶∂v A£-P-ym-hn-t\-s°m≠p lcn-®Xp ka-i-¶p-sht∂m

sNm√n-sbt√m. ]ns∂ Cu ka-i-¶p-hn∂p {XnPym I¿Æw, Z-zm-Z-imw-Kp-e-

i¶phn∂v F¥p I¿Æ-sa∂v ka-—m-bm-I¿Æ-ap-≠m-Ipw. At∏mƒ

{XnPysb ]{¥-≠n¬ KpWn®p ka-i-¶p-hn-t\-s°m≠p lcn-®-Xt√m AwKp-

em-fl-I-am-Ip∂ ka-—m-bm-I¿Æw. ChnsS alm-i¶p lmc-I-am-I-bm¬,

AXp {XnP-ym-]-{I-a-LmXw sIm≠p-≠m-I-bm¬ {XnP-ym-]-I-{I-aLmXw

lmcIw, {XnP-ybpw ]{¥≠pw Xß-fn¬ KpWn-®Xp1 lmcyw. At∏mƒ

lmc-I-Øn-¶epw lm¿ø-Øn¶epw IqSn {XnPy-bp-≠m-I-bm¬ {XnP-y-bp-

t]-£n-°mw. A£w ]ns∂ lmc-I-Øn∂pw lmc-I-am-I-bm¬ lm¿ø-

Øn∂p KpW-Imcambn-́ ncn-°pw. F∂m¬ A£sØ ]{¥-≠n¬ KpWn®v

A£--Øn¬ Ipd™ DØ-cm-]-{Iaw sIm≠p lcn-®m¬ ka-—m-bm-I¿Æ-

ap-≠m-Ipw2. ChnsS A£sØ ]{¥-≠n¬ KpWn-®-Xn-t\mSp Xpeyw ew_-

IsØ hnjp-h-—m-b-sIm≠p KpWn-®m¬, C—m-{]-am-W-̂ -e-ßfpw {]am-

tW—m^e-ßfpw Xß-fn-ep≈ LmXw Xpe-y-am-I-bm¬. F∂m¬ CXns\

A]-{I-aw-sIm≠p lcn-°nepamw, ka-—mbmI¿Æ-ap-≠m-I-bm¬.

17. 1. B
2.B.I¿Æ-amIpw

17. ka-—mbm

310
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]ns∂ hnjp-h-Øn-¶se {Kl-Øns‚ a[-ym-”Øn¶te Zzm-Z-imw-Kp-e-

i-¶p-hns‚ Omb hnjp-h-—m-b-bm-Ip-∂-Xv. DZ¿°{Im¥n-bn-¶¬ a[-ym-

”-—mb hnjp-h-—m-b-tb-°mƒ Ipd-bp-tºmtf ka-—m-bbp-≠m-hqXpw. Cu

a[-ym-”-—m-b-bpw, hnjp-h—m-bbpw Xß-fn-ep≈ A¥cw a[-ym-”m{Kmw

Kpe-am-Ip-∂-Xv. a≤-ym-”m-{Kmw-Kpew hnjph—m-bm-Xp-e-y-am-Ipw. Ja[-y-Øn-

¶¬ D®-bm-Ip∂ \mƒ. A∂p a≤-ym-”-Om-bm-I¿Æw Xs∂ ka-—m-

bmI¿Æ-am-Ip-∂-Xv. A{Kmw-Kp-ew -s]-cnsI Ipd-bp-∂ -\mƒ a[-y-m”—mbm

I¿Æ-tØ-°mƒ ka-—m-bm-I¿Æw s]cnsI hep-Xv. A{KmwKp

etadp∂Xn∂p X°-hÆw a≤-ym-”-Om-bmI¿Æ-tØmSp ka-—mbm-

I¿ÆØn\v A¥cw Ipd™p Ipd -™n-cn -°pw. F∂n -´n -hnsS

hykvXss{XcminIw th≠p-I-bm¬ hnjp-h—mbbpw a≤-ym-”-I¿Æhpw

Xß-fn¬ KpWn®v a≤-ym-”m- {Kmw-Kpew sIm≠p lcn® ^ew ka-—m-

bm-I¿Æw.

18. ka-i-¶p-K-X-t£-{X-ßƒ

A\-¥cw1 km£-tZ-iØv A£-h-im¬ D≠mb Nne t£{X-hn-ti-

jßsf Im´p-∂p. kzm-tlm-cm-{X-Øo∂p ]q¿∆m-]-c-k-z-kvXn-I-Øn-t¶∂p

hS°p £nXn-P-kw-]mXw. ka-a-WvU-e-Øn-t¶∂p sX-°p \oßn Z£n-

tWm-Ø-c-kw-]mXw F∂n-cn°pw \mƒ2 £nXnPtØmSv ka-a-WvU-e-tØm-

Sp≈ A¥-cm-f-Øn-¶te kzm-tlm-cm-{X-hrØ`mKw I¿Æw, ka-i¶p

tImSn, A¿°m-{K -̀ pPm. \nc-£-tZ-i-Øn¬ kzm-tlm-cm-{X-Øn\p \a-\-

an-√mbvIbm¬ Cu t£{Xan√3. ChnsS ]q¿∆m-]-c-k-z-kvXnI kzmtlm-

cm-{X-ß-fpsS kw]m-X-ß-fn-ep≈4 A¥-cmfw5 £nXnP`hw. A¿°m{K

D∑-WvUe`hw. A]-{Iaw £nXntPm∑fi-em-¥-cmf`hw. kzm-tlm-cm-

18. 1. B. C. om. A\-¥cw
2. C. F. F∂n-cn-°p-tºmƒ
3. B. C.D. E. F om. \nc-£-tZ-i-Øn¬.....(to)..... t£{X-an√
4. E. kzkvXn-I-tØmSp kzmtlm-cm{X kw]mX-tØm-Sp≈
5. B. C.E.F.read A¥-cmfw £nXn-P-Øn-¶sS D∑-fi-e-Øo∂v aotØ kzmtlm-cm-{X-

`mKw sIm≠v D∑-fi-Øn-t∑te A]-{I-a-̀ mKw `pPm, ka-i-¶p- I¿Æw (D reads:
A¥-cmfw £nXn-P-Øn-¶-teXv A¿°m-{K. D∑-fi-e-Øn-t¶-teXv A]-{Iaw, £nXn-
tPm-∑-fi-em-¥-cm-f-Øn-¶se kzmtlm-cm-{X-̀ mKw £nXn-Py. (Cu {Xy{iw)

XI. Ombm-{]-I-cWw
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{X-`mKw £nXn-Pym. Cu {Xy{iw A£-himep≠m-Ip-∂p, `pPm-tIm-Sn-

I¿Æ-ambn6 hnZ-y-am-\-am-bn´v. A\-¥cw D∑fie-Øn-∂p antØ-

kzmtlmcm{X`mKw tImSn, D∑-WvU-eØnt∑se A]{Ia`mKw `pP,

ka-i-¶p- I¿Æw. Cßs\ Hcp {Xy{iw. Cu aq∂p {Xy{i-ßfpw A£mh-

ew_-I-{Xn-P-yI-sf-t∏mse Ccnt∏m Nneh. F∂m¬ C∂m-en-sem∂p

km[-\-am-bn´p ss{Xcm-inIw sIm≠p at‰h D≠m-°mw.

19. Zi-{]-iv\-ßƒ

Zi-hn-[{]iv\-ßƒ. ]ns∂bpw Xpe-y-]-cn-am-W-ßfm-bn Hcp {]tZ-i-

Øn-¶¬1 Xs∂ tI{µ-am-bn-cn-°p∂2 c≠p hrØ-ßpsS t\an-tbm-K-Øn-

¶¬ \n-∂n{X sNt∂-SØp Xß-fn-ep≈ AI-e-sa-{X-sb-∂pw C{X AI-

e-ap-t≈S-Øp-∂v C{X AIeØp XΩn¬ D≈ t\-an-tbm-K-sa∂p

Adnhm\mbns°m-≠p≈ ss{Xcm-inIw bmsXm∂v AXns‚ AXn-tZ-i-

{]-Im-c-sØ-Øs∂ hnkvXn-cn®p Im´p-hm-\mbns°m≠p Zi-{]-iv\-ßsf

sNm√p-∂p.

AhnsS i¶p, -\-X-P-ymhv, A]-{I-aw,- C-jvSmw-im{Kw, A£-Pymhv

F∂nh A©p- h-kvXp-°-fn¬ aq∂n-s\ -sNm-√n-bm¬ Ah- km-[-\-ß-

fmbn at‰h c≠nt\bpw Adnhm\p-]mbw ChnsS sNm√p-∂-Xv. Ah

]Øp{]Imcw kw -̀hn-°pw. F∂n´p Zi-{]iv\w.

20. H∂mw {]iv\w ̨  i¶phpw \Xhpw

20.i. kmam -\-y -\ -ym -b-ßƒ

AhnsS \tS -{Im-¥n-ZnK-{Km-£-ß-sf-s°m≠p i¶p-\-X-ßsf Adnbpw

{]Im-csØ sNm√p-∂p. AhnsS \tS Ja[-y-Øn-¶epw {Kl-Øn-¶epw

19. Zi-{]-iv\-ßƒ

18. 6. D. I¿Æ-ßƒ Xm\pw D.om. hnZy-am-\-am-bn´v, A\-¥cw
19. 1. F. Øn¶∂v

2. D. F. tI{µhp-am-bn-cn-°p∂
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kv]¿in-®n´v Hcp hrØsØ Iev]n-]q. AXn∂v ‘CjvSZnKvhrØ’sa∂p

t]¿. ‘ZrMvafi-e’, -sa∂pw Xs∂. Cu CjvS-ZnKvhrØhpw £nXn-Phpw

D≈ kw]mXØnt¶∂v ]q¿∆-m]-c-k-zkvXn-I-tØmSp≈ A¥-cmfw £nXn-

P-Øn-¶-te -Pymhv, CjvSmim{K-bXv1. ]ns∂2  Ja-≤-y-tØbpw Z£n-

tWmØckz-kvXn-I-Øn-t¶∂v CjvSm-im-{K-tbm-fw A¥cn-t®-SØp

£nXnPØn-¶epw kv]¿in-®n´p  Hcp hrØsØ Iev]n∏q. CXn∂p

‘hn]-co-X-ZnKvhrØ’sa∂p t]¿3. ]ns∂ £nXn-Phpw hn]-co-X-ZnKvhr-Øhpw

Xß-fn-ep≈ kw]m-X-Øn-¶epw c≠p {[ph-Øn-¶epw4 kv]¿in-®n´p Hcp

hrØsØ  Iev]n]q. CXn∂v ‘Xn¿øKv -hr -Ø ’ - sa -∂p -t]¿.

CjvSZnKvhrØhpw LSn-I-mhr-Øhpw Ch c≠n∂pw IqSn Xn¿ø-§Xw

CXv F∂n v́. Cu hrØ-Øn-¶¬ CjvS-L-Sn-Im-hr-Ø-ßƒ Xß-fn-ep≈

]cm-a-m¥-cmfw ]ns∂ Z£n-tWm-Ø-c-hr-Ø-Øn-t¶∂p £nXn-P-Øn-¶te

hn]-co-X-ZnKvhrØ-Øns‚ A¥cw bmsXm∂v AXv Ah-‰ns‚ ]c-am-¥-

cm-f-am-Ip-∂-Xv. Ja-≤-y-Øn-¶¬ tbmK-am-I-bm¬ £nXn-P-Øn-¶¬ ]c-am-

¥-cm -fw. CXv CjvS -mim - {Km -Xp -eyw. CXp {]amW^e-am -bn´p

Z£ntWmØc-hr-Ø-Øn-¶¬ Ja-[-y-{[p-hm-¥-cm-f-Nm]`mK-Øns‚ Pymhv

ew_Iw. CXv C—-bmbn {[ph-t¶∂p hn]-co-X-Zn-KvhrØm-¥-cm-f-

Pymhn—m -̂e-am-bn v́ D≠mIpw. CXp tImSn-bmbn, A£-Pym-hp- `p-P-bm-

bn, h¿§-tbm -K -aqew sIm≠p I¿ÆsØ D≠m-°q. CXp

Xn¿øKvhrØØn¶te £nXnPm¥cm-f-P-ymh,v {[ph-¶-e-{K-am-bn-́ n-cn°pw.

CjvS-Zn-Mvafi-e-hpw LSn-I-m-a-fiehpw Xß-fn-ep≈ ]c-am-¥-cm-f-am-

bn-́ n-cn-°p-w CXv Xs∂. hn]-coX-ZnKvhr-Øhpw £nXn-P-hp-ap≈ kw]m-X-

Øn-¶ep ZnKvhrØ]m¿iz-ßƒ5, {[ph-¶-ep- L-SnIm-]m¿i-z-ßƒ. CjvS-Zn-

KvL-Sn-I-I-fpsS \mep ]m¿iz-Øn-¶epw kv]¿in-®n-cn-s∏m∂v. Cu6

Xn¿øKvhrØØn-¶te ]m¿izm¥-cm-f-tØmSp Xpeyw Ch-‰ns‚ ]c-am-

¥-cm-f-am-I-bm¬ Cu D≠m-b I¿Æw Xs∂ CjvS-Zn-KvL-Sn-Im-hr-Ø-ß-

20.1. B. CjvS-mim-{K-tbmKw; D.CjvS-mim-{K-bm-Ip-∂Xv
2. F. reads ]ns∂ Ja-[y-Øn-¶epw c≠p {[ph-¶epw
3. B. AXp hn]-co-X-hrØw
4. H. hrØ-Øn-¶epw
5. F. adds. Ch-‰ns‚ ]m¿izm-¥-c-tØmfw Xpeyw {[ph-¶ep
6. B.C.D.om. Cu

XI. Ombm-{]-I-cWw
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fpsS ]c-am-¥-cm-f-am-Ip-∂-Xv. AhnsS k¿∆ZnIvkm[m-c-W-am-bn´p \ncq-

]n-°p-tºmƒ t£{Xkwÿm\w Zp¿{Klw. F∂n´v Hcp ZnKvhnti-jsØ

B{i-bn®p \ncq-]n-t°-Ww.

 AhnsS Z£n-W-tKm-f-Øn-¶¬ \ncyXn-tIm-Wnse i¶p CjvS-am-Ip-

tºmtf°p sNm-√p-∂p. AhnsS \ncyXn-tIm-Wnepw Cui-tIm-Wnepw

kv]¿in-®n-cn°pw ZnKvhrØw, hmbp-tIm-Wnepw A·ntImWnepw £nXn-

PsØ kv]¿in°pw ZnKvhrØw. hmbp-tIm-Wn-t¶∂v DØ-c-{[p-h-tØm-

Sp≈ A¥-cmfw Xn¿øKvhr-Ø-Øn-¶-se -P-ymhv Cu D≠m-°nb lmc-I-

am-Ip-∂-Xv. Cu lmcIw {]am-W-am-bn-, {[p-hs‚ Db¿®-bm-Ip∂7 A£w

{]am-W-̂ -e-ambn, CuitIm-Wnse ZnKvhr-Ø-Øn-¶se Xn¿øKvhrØhpw

£nXn-P-hp-ap≈ ]c-am-¥-cmfw C—m -̂e-am-bn-́ p-≠mIpw.

ChnsS CuitIm-Wn¬ ZnKvhr-Ø-Øn-¶¬ £nXnPØnt¶∂v F{X

D∂Xw Xn¿øKvhrØkw]mXw Ja-≤-y-Øn-t¶∂p \ncrXn-tIm-Wn¬

ZnKvhrØØn-¶¬ A{X- Xm-tW-SØp LSn-ImZnKvhrØßfpsS tbmKw.

]ns∂ c≠p hrØ-Øn\pw km[mcWambn-cn-°p∂ Xn¿øKvhrØw c≠n-

¶epw bmsXmcp {]tZ-i-Øn-¶¬ kv]¿in°p∂q, Ahn-Sp∂p c≠n-t∑-

tebpw hrØ-]mZw sNt∂-SØv8 Xßfn-ep≈ tbmKw F∂p \nb-X-

sat√m. F∂n´v ChnsS9 CuitIm-Wnse ZnKvhrØ-kv]¿i-Øn-t¶∂p

Xn¿ø-KvhrØØnt∑te LSn-Im-hr-Ø-tØm-Sp≈ A¥cmfw ChnsS

D≠m-°nb lmc-I-tØmSp Xpe-yw. CXns\ `pP-bmbn {]am-W-ambn

Iev]n∏q. ]ns∂ CuitIm-Wn¶¬ ZnKvhrØ10kw]m-X-Øn-t¶∂p \ncrXn-

tIm-Wnse LSn-Im-tbm-K-11tØm-Sp≈ A¥-cmfNm]w ZnKvhrØ-Øn-¶-

teXv hrØ-]mZw bmsXm∂v AXns‚ Pymhv hym-km¿≤w-. CXp  I¿Æ-

ambn {]am-W-ambn Iev]n-∏q. ]ns∂ Ja[yØn-t¶∂p Z£n-tWm-Ø-c-

hr-Ø-Øn-¶se LSn-Im-¥-cmfw A£w. CXv C—bmIp-∂Xv. ]ns∂

Ja-[-y-Øn-t¶∂p LSn-Im-¥-cmfw ZrMva-fi-e-Øn-¶-teXv C—m-̂ ew. C—m

20. 7. B. Db¿®-bm-bn-cn-°p∂
8. B. sN√p-t∂-SØp
9. C. D AhnsS
10. B. Xn¿ø-Kv-hrØ
11. H. LSn-hrØ

20. H∂mw {]iv\w˛i-¶phpw \Xhpw
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`p-P-bmbn, C—m-^ew I¿Æ-am-bn´pw Ccn-s∏m∂v ChnsS ZrMvafie-

Øn-¶¬ bmsXm-cn-SØp Xn¿øKvhrØ-kw-]mXw12, Chn-S∂p hrØ-]mZw

sNt∂-SØp ZnMva-fi-e-Øn-¶¬ LSnImhrØ-kw]m-Xw. F∂n´v

£nXnPØn-t¶∂p Xn¿øKvhrØ-Øns‚ Db¿®-bpw Ja-≤-y-Øn-t¶∂p

LSn-Im-afi-e-Øns‚ XmgvNbpw ZnKvhrØ-Øn-¶¬ Xpe-y-am-bn-́ n-cn-°p-

∂p. Cßs\ c≠p {]Imcw \ncq-]n°mw. C—m^em-\-b-\{Inbmt`Z-an-

√. CXv CjvS-ZnIvi¶p hcp-Øp-t∂-S-tØ°v A£-ÿm-\o-b-am-Ip-∂-Xv.

CXns‚ tImSn LSn-Im-kw]m-X-Øn-t¶∂p £nXn-Pm-¥--cmfw13. ZnMva-fi-

e-Øn-¶te CXv ew_-ÿm-\o-b-am-Ip-∂-Xv. ]ns∂ CjvS-k-zm-tlm-cm-{Xhpw

LSn-Im-hrØhpw Xß-fn-ep≈ A¥-cmfw Z£n-tWm-Ø-c-hr-Ø-Øn-¶se

CjvSm-]-{I-aam-Ip-∂-Xv. CXns\ `pP-sb∂pw C—sb∂pw Iev]n®v Cu

LSn-Im-k-zm-tlm-cm-{Xm-¥cw Xs∂ -Zn-Mvafi-e-tØ-Xn\p I¿Æ-am°n

C—m-̂ -e-am°n hcp-Øq. CXp A]-{I-aÿm-\o-b-amIp-∂-Xv. ChnsS Z£n-

tWm-Ø-c-hr-Ø-Øn-¶¬ A£m-]-{I-a-ßƒ tIh-e-ßƒ ZnMvafie-Øn-

¶eq A£m-]-{I-a-ÿm-\o-b-ß-fmI-bm¬ Xpeym¥-c-X-z-ap-≠v14.

20.ii. CjvS-tZ-iØv i¶p-—mb

F∂n v́ A£-ÿm-\o-b-ap-≠m-°p∂ {]am-W-̂ -e-ßƒ Xs∂ A]-{I-

a-ÿm-\o-bsØ D≠m°p-hm\pw km[-\-am-Ip-∂-Xv. ChnsS Ja-[-y-Øn-

t¶∂p ZnMva-fi-e-Øn-t∑te LSn-Im-hr-Ø-tØm-f-ap≈ CS A£-ÿm-

\o-b-am-Ip-∂-Xv. ZnMvafi-e-Øn-¶¬ Xs∂ LSn-Im-hr-Ø-Øn-t¶∂p kzm-

tlm-cm-{X-Øns‚ CS A]-{Ia-ÿm-\o-b-am-Ip-∂-Xv. Ch Xß-fn¬ Iq´pI-

Xm≥ A¥-cn-°-Xm≥ sNbvXm¬ Ja[-y-Øn-t¶∂v ZnMvaWvUe-Øn-¶se

kzm-tlm-cm-{X-Øns‚ CS D≠m-Ipw. AXv CjvS-Zn-IvOm-b-bm-Ip-∂-Xv.

]ns∂ £nXnPtØmSp LSn-Im-hr-Ø-tØm-Sp≈ A¥-cmfw ZnMva-WvU-

e-Øn-¶-teXp ew_--ÿm-\obw. ]ns∂ LSn-Im-a-WvU-e-tØmSv kzm-tlmcm-

{XtØmSnS ZnMva-fi-e-Øn-¶-te-Xv A]-{I-a-ÿm-\o-b-am-Ip-∂Xv. Ch-‰ns‚

tij-Øn\v X°-h-Æ-ap≈ tbmKw Xm\-¥cw15 Xm\n-jvS-Zn-Iv—-¶p-hm-Ip-

20.12. B. adds F∂n v́
13. kw]m-X-£n-Xn-Pm-¥-cmfw
14. Xpey-m¥-cm-f-ap≠v
15. C. sNbvXm¬ CjvSw; F. sNbvXv

XI. Ombm-{]-I-cWw



949

∂Xv. bmsXmcp {]Imcw Z£n-tWm-Ø-c-hr-Øßfnse16 A£m-]-{I-a-

ß-fpsS Xm≥ ew_-Im-]-{I-a-ß-fpsS Xm≥ tbmKm-¥-c-ß-sf-s°m≠p

a≤ym-”-—m-bm-i-¶p-°-fp-≠m-Ip-∂p. A∆-Æ-an-jvS-Zn-Kvhr-Ø-Øn-¶-e-h-t‰-

s°m≠v CjvS-Zn-Iv—m-bm-i-¶p-°ƒ hcpw17. ChnsS CjvS-Nm-]-ß-fpsS

tbmKm-¥-c-ßƒ sNbvXp Pymhp-≠m-°mw. Pym°ƒ Xß-fn¬ tbmKm-

¥-c-ßƒ sNbvIn-ep-amw.

F¶n¬ A£m-]-{I-a-ÿm-\o-b-ßsf h¿§n®p {XnPym-h¿§-Øn-t¶∂p

If™p aqen®p tImSn -Isf D≠m°n ]ns∂

A£m]{Iaÿm\obßsf CXtcXctImSnIsfs°m≠v KpWn®p

tbmKw Xm\¥cw Xm≥ sNbvXp {XnPysIm≠p lcn®^ew

CjvSZnIvOmbbmIp∂Xv. ]ns∂ ew_Im]{Iaÿm\obßsf

CXtcXctImSnItfs°m≠p KpWn®p tbmKw Xm\¥cw Xm≥ sNbvXv

{XnPysIm≠p lcn®^ew CjvSZnIvOmbbmIp∂Xv18.

]ns∂ tIheßfmbncn°p∂ A£m]{IaßfpsS tbmKw Xm\¥cw

Xm≥ sNbvXp a[ym”—mbsb D≠m°n AXns\ {XnPysIm≠p KpWn®v

CjvSZnKvhrØLSnImhrØßfpsS ]cam¥cmfßfm bncn°p∂

apºnep≠m°nb lmcIw sIm≠v lcn®v CjvSZnIvOmbsb

D≠m°pInepamw. ChnsS A£m]{IaßfpsS tbmKm¥cßƒ

sNøp∂Xn\p apsºbpw ]nsºbpw B19 {XnPymKpW\hpw

lmcIlcWhpw sNbvI20, ^et`Zan√mbvIbm¬. Cßs\

A£mhew_Im]{Iaßtfs°m≠p CjvSi¶p—mbIsf D≠m°mw.

]ns∂bpw Hcp {]Imcw ew_m-]-{I-a-ß-fpsS tbmKm¥cßsfs°m≠v

CjvSi¶p hcpØmw. AhnsS A£m]{Iaßƒ c≠nt\bpw

{XnPysIm≠p KpWn®v lmcIsØs°m≠p lcnt°≠pIbm¬

lmcIsØ {]amWsa∂pw, tIhem£m]{Iaßsf

{]amW^esa∂pw, {XnPysb C—sb∂pw, A£m]{Iaÿm\obßsf

20.16. B.D.F. hrØ-Øn-¶se
17. B. hcpØmw
18 B.D CjvSZnIvi¶phmIp∂Xv.
19. B. om. B
20. B {XnPym^eKpW\hpw sNbvI

20. H∂mw {]iv\w˛i-¶phpw \Xhpw
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C—m^esa∂pw Iev]n°mw. ChnsS {XnPymhymkm¿≤hrØØn¶¬

bmsXmcp {]Imcancn°pw A£m]{Iaÿm\obßƒ A{]Imcancn°pw

lmcIw, hymkm¿≤ambncn°p∂ hrØØn¶¬ tIhem£m]{Iaßƒ

F∂m¬ tIhem£m]{Iaßsf h¿§n®p lmcIh¿§Ønt¶∂p

If™p aqen®m¬ lmcIhymkm¿≤amIp∂ hrØØn¶se

A£m]{IatImSnIfp≠mIpw. ]ns∂ ZypPymew_Ißsf21 h¿§n®p

lmcIh¿§Ønt¶∂p If™p aqen®m¬ lmcIhymkm¿≤amIp∂

hrØØn¶se A£m]{IatImSnIfp≠mIpw. ]ns∂

ZypPymhew_Ißsf lmc-I-sØ-s°m≠p KpWn®v {XnPy-sIm≠pv

lcn®mepw Ct°mSnIƒ Xs∂ hcpw. ]ns∂ Cu A£-

tImSnsbs°m≠v A]{IatImSntbbpw A]{IasØ A£w sIm≠pw

KpWn®v lmcIsØs°m≠p lcn® ^eßfpsS tbmKwXm\¥cwXm≥

sNbvXm¬ lmcIhymkm¿≤amIp∂ hrØØn¶te

CjvSZnIv—¶php≠mIpw. CXns\ {XnPysIm≠p KpWn®v lmcIw

sIm≠p lcn®m¬ CjvSZnIv—¶php≠mIpw. ChnsS bmaytKmfØn¶¬

ew_I{Im¥nIfpsS tbmKw sIm≠p Z£nWZnIv—¶p°ƒ D≠mIpw.

ChnsS A¥cn°pt∂SØv A£tImSntb°mƒ A]{Iaw

hepXmIn¬ kzmtlmcm{XhrØØn\v CjvSZnKvhrØtØmSp≈ tbmKw

£nXnPØns‚ Iotg∏pdØv BIbm¬ A∂v CjvSZnIv—¶phn√.

DØcm]{Iaw A£tØ°mƒ GdpIn¬ Ja[yØnt¶∂p

hSt°∏pdØv D®bmIbm¬ A∂p Z£nWZnIv—¶phn√. ChnsS

DØcmim{K BIptºmƒ B i¶p D≠mIpw. ChnsS ew_Im]{Iaßƒ

ÿm\obßfpsS22 Nm]tbmKw  {Xncmintb°mƒ GdpIbm¬ CXns‚

tImSnPymhv DØcZnIv—¶phmbn´p≠mIpw. Pym°fpsS tbmKw sIm≠v

hrØ]mZØntedpt∂SØp tImSnPymhp hcpw.

20.21. B.D B. F. om. h¿§n®p ......to...... `ypPymhew_ßsf
22. B.C.D. ew_Im]{Iaobÿm\ßsf

XI. Ombm-{]-I-cWw
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Cßs\ DØctKmfØn¶¬ A£tØ°mƒ A]{Iatadptºmƒ

DØcmim{Kmi¶p hcpw. ]ns∂ DØcm]{Iaw A£tØ°mƒ

Ipdbptºmƒ Nne Bim{Km\nbaØn¶¬ DØcmim{Kmi¶phpw

Z£nWmim{Kmi¶phpw IqSn Hcp ZnhkØnte D≠mw. AhnsS

ew_Im]{IatbmKw sIm≠pw, A¥cw sIm≠pw Xpeyambncn°p∂

Z£nWmim{Kbn¶epw, DØcmim{Kbn¶epw, i¶p°ƒ D≠mIp∂p.

]ns∂ CjvSm]{Iaw lmctØ°mƒ Gdptºmƒ A]{Iaÿm\obw

{XnPytb°mƒ hepXmIpw. Cß\tØmcp Pymhn√mbvIbm¬ B

CjvSmim{Kbv°p i¶p kw`hn°bn√23. Cßs\ CjvSZnIvO¶p

hcpØpw {]Imcw.

20. iii tImW—mb

A\¥cw CXnt\mSp kqcykn≤m¥Øn¶¬ sNm√nb

tImWi¶phns‚ \ymbkmaysØ sNm√p∂p. ChnsS tImWm`napJw

CjvSZnMvafieamIbm¬ H∂c cmiosS Pymhv Bim{ibmIp∂Xv.

]q¿∆m]ckzkvXnIIfptSbpw Z£ntWmØckzkvXnIIfptSbpw

A¥cmfØns‚ \Sphn¬ ZnMvaWvUeØn∂p24 £nXnPkw]mXw.

F∂n´v aq∂v cmiosS kakvXPymhns‚ A¿≤ambn´ncn°panXv.

A¿≤PymicßfpsS h¿§tbmKaqew kakvXPymhmIp∂Xv.

N{I]mZØn¶¬ Pym_mWßƒ {XnPymXpeyßƒ. F∂m¬ Ah‰ns‚

h¿§tbmKw {XnPymh¿§Øn¶¬25 Cc´n. F∂m¬ AXn¬ \msem∂t√m

H∂ccmiosS h¿§26sa∂n´v27. F∂m¬ B CjvSmim{Kmh¿§amIp∂

{XnPymh¿§m¿≤w ew_IhrØØn¬ BIptºmƒ ew_

h¿§m¿≤ambn´ncn°pw. F∂m¬ ew_h¿§m¿≤Øn¶¬ A£

20.23. B.F CjvSmim{Kmi¶p kw`hn°n√
24. F. Øns‚
25. D. h¿§Øo∂v
26. H. ]mXosS h¿§w
27. B,C,D,E. Adds AXv {XnPymh¿§m¿≤w Cc´nbpsS h¿§Øn¬ \msem∂v,

F. \msem∂t√m ]mXnbpsS h¿§w F∂v.

20. H∂mw {]iv\w˛i-¶phpw \Xhpw
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Pymh¿§w Iq´n aqen®m¬ AXv ChnsSbpw lmcIamIp∂Xv. ]ns∂

{Im¥y£LmXhpw Ch‰ns‚ lmcIhrØØnse tImSnLmXhpw

Xßfn¬ tbmKw Xm\¥cwXm≥ sNbvXp lmcIw sIm≠p lcn®m¬

Cu lmcIhrØØnse tImWi¶php≠mIpw. ChnsS Ch‰ns‚

h¿§LmXßfpsS tbmKm¥cßsf lmcIh¿§w sIm≠p lcn°n¬

i¶ph¿§ap≠mIpw. ]ns∂ CXns\ aqen®p {XnPysIm≠v KpWn®p

lmcIw sIm≠p lcn®m¬ {XnPymhrØØnse i¶phmbn v́ hcpw.

ChnsS {Im¥y£tImSnIfpsS h¿§ßƒ Xßfn¬ KpWn®Xv Hcp

lmcIamIp∂Xv. ChnsS tImSnh¿§ßfmIp∂Xv lmcIh¿§Ønt¶∂p

sht∆sd A£m]{Iah¿§ßsf If™tijßƒ. AhnsS

A£tImSnh¿§sØ KpWysa∂pw {Im¥ntImSnh¿§sØ

KpWImcsa∂pw Iev]n∏q. At∏mƒ {Im¥nh¿§w

KpWlmcm¥camIp∂Xv. F∂m¬ {Im¥nh¿§w sIm≠p

ew_h¿§sØ KpWn®p lmcIh¿§w sIm≠p lcn®^esØ

ew_h¿§m¿≤Ønt¶∂p If™m¬ A£m]{IaßfpsS

tImSnh¿§LmXsØ lmcIh¿§w sIm≠p lcn® ^eap≠mIpw.

Cßs\ tIheew_h¿§m¿≤w KpWyambncn°p∂Xns\ Xs∂

KpWysa∂p Iev]n°ptºmƒ CuhÆw {Inb. ChnsS ]ns∂˛̨

“CjvtSm\bpt‡\ KptW\ \nLvt\m˛

f`ojvSLv\KpWym\znXh¿÷ntXm hm”

(eoemhXn. 16)

F∂Xn\p X°hÆw KpWyamIp∂ ew_h¿§m¿≤Øn¶¬

CjvSamIp∂ A£h¿§sØ Iq´n lmcIh¿§Xpeyw KpWysa∂p

Iev]n®m¬ KpWImcm¥camIp∂ A]{Iah¿§sØØs∂

KpWyamIp∂ ew_28h¿§m¿≤Ønt¶∂v Iftb≠phXv F∂p hcpw.

AhnsS29 Iftb≠p∂ Cu A]{Iah¿§Øn\v Hcp kwkvImcap≠v

20.28. B.E.F. A¿[Pymh¿§sØ CjvSØnt¶∂v Ifbth≠phXv Xs∂ hcpw,
29. B.C.F ChnsS

XI. Ombm-{]-I-cWw
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F∂p hntijamIp∂Xv. ChnsS tIhew KpWyambncn°p∂

ew_h¿§m¿≤Øn¬ A£Pymh¿§sØ CjvSambn Iev]n®p

Iq´pIbm¬ B A£h¿§sØ KpWlmcm¥camIp∂ A]{Iah¿§w

sIm≠p KpWn®v lmcIh¿§w sIm≠p lcn®^ew

kwkvImcamIp∂Xv. CXns\ A]{Iah¿§Ønt¶∂p IfIth≠phXv.

CjvSsØ KpWyØn¬ Iq´pIbt√m sNbvXXv . F∂n´ v

A]{Iah¿§Ønt¶∂p Iftb≠phXv. tIhem]{Iah¿§w

If™ncn°p∂ ew_Ih¿§m¿≤Ønse¶n¬ Iq´pI th≠phXv. ]ns∂

tijsØ aqen®Xp i¶phns‚ Hcp Jfiw. at‰ JfiamIp∂Xv

A£m]{Iaßƒ Xßfn¬ KpWn®v Cu h¿§ambncn°p∂

lmcIØns‚ aqewsIm≠p lcn® ^ew. CXns\ h¿§n®m¬ apºn¬

sNm√nb A]{Iah¿§kwkvImcambn´ncn°pw. ]ns∂ Cu

i¶pJfißsf {XnPysIm≠p KpWn®v lmcIw sIm≠p lcnt°Ww.

20. iv. i¶phns‚ JfiZzbcqt]Wm\b\w

ChnsS {XnPymh¿§Ønt¶∂v A¿°m{Kmh¿§sØ

If™tijsØ ew_h¿§w sIm≠p KpWn®v {XnPymh¿§w sIm≠p

lcn®m¬ ^ew ew_h¿§m¿≤Øo∂v A]{Iah¿§w

If™Xmbn´ncn°pw. CXns\ ]ns∂  {XnPymh¿§w sIm≠p KpWn®v

lmcIh¿§w sIm≠p lcn®^ew {XnPymhrØØnemt°≠pIbm¬

{XnPymh¿§w sIm≠p KpW\hpw lcWhpw th≠m.

{XnPymh¿§m¿≤Ønt¶∂v A¿°m{Kmh¿§sØ If™ tijsØ

ew_h¿§w sIm≠p KpWn®p lmcIh¿§w sIm≠p lcnt° th≠q30.

F∂m¬ {XnPymhrØØnse ^eap≠mIpw. CuhÆw Xs∂ A£w

sIm≠p A]{IasØ KpWnt°≠pt∂SØv A¿°mt{K KpWn°n¬

Cu KpWn®Xns\ ew_Iw sIm≠p KpWn® lmcIw sIm≠p

lcn°ptºmƒ {XnPymhrØØnse i¶pJfiambn´ncn°pw, bmsXmcp

{]Imcw {XnPymew_Ißƒ Xßfnte kw_‘w A{]Imcancn°pw

A¿°m{Km]{Iaßƒ Xßfn¬ F∂n v́. ]ns∂ bmtaymØctKmfØn∂p

20.30. B. th≠pIbm¬, {XnPymh¿§Ønse

20. H∂mw {]iv\w˛i-¶phpw \Xhpw
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X°hÆw Cu i¶pJfißfpsS tbmKm¥cßsfs°m≠p

bmtaymØcZn°pIfnse tImWi¶p°fp≠mIpw.

ChnsS A£mhew_IßfpsS ÿm\Øp hnjph—mbbpw

ZzmZimwKpei¶phpw sIm≈mw. AhnsS hnjph—mbmh¿§sØ

]{¥≠ns‚ h¿§Øns‚ ]mXn Fgp]Ønc≠n¬ Iq´nbXp

lmcIh¿§amIp∂Xv Ft∂ hntijap≈q. Cßs\ \tStØ

{]iv\Øn¬ CjvSi¶phns\ hcpØpw {]Imcw. AXp

tImWi¶psh¶n¬ Cßs\sØmcp {InbmemLhap≠v F∂Xnt\bpw

sNm√oXmbn.

20.v. \XPym\b\w

]ns∂ \XPymhns\ sNmt√≠q. AhnsS CjvSZnMv

afieØnt¶∂p Z£ntWmØchrØØns‚31 ]cam¥cmfamIp∂Xv

CjvSmim{K tImSn, Ombm{KØn¶¬32 F¥v F∂n´p≠mIpw

OmbmtImSn. Cu OmbmtImSn Xs∂ \XPymhmIp∂Xv. {XnPysIm≠p

KpWn®v ZypPysIm≠p lcnt°Ww, kzmtlmcm{XhrØØn¶¬

kzhrØIem{]anXamhm≥, Ft∂ hntijap≈q. F∂m¬

Bim{KmtImSnbpw Ombbpw Xßfn¬ KpWn®Xpw,

OmbmtImSn{XnPyIƒ Xßfnepw \XZypPyIƒ Xßfnepw KpWn®m¬,

kwJysIm≠p Xpeyßfmbncn°pw. F∂m¬ Ch‰n¬ h®v

HcpLmXØnt¶∂p at‰h Zzµzßfn¬ c≠n¬ H∂psIm≠p lcn®m¬

AXns‚ {]XntbmKnbmIp∂Xp hcpw. Cu \ymbw Cu {]iv\ßfn¬

F√mShpw Hm¿ØpsIm≈pI. Cßs\ Hcp {]iv\w.

20.31. H. afieØns‚
32. H. Ombbn¶¬, B.C.om.Ombm{KØn¶¬

XI. Ombm-{]-I-cWw
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21. c≠mw {]iv\w: i¶phpw A]{Iahpw

21. i. kmam\ykzcq]w

A\¥cw c≠mw {]iv\w1. ChnsS \XPymim{Km£ßƒ

km[\ßfmbn´p i¶phpw {Im¥nbpw D≠mIp∂Xv, ChnSpsØ

t£{XIev]\w ]ns∂. c≠p {[ph¶epw {KlØn¶epw

kv]¿in®ncnt∏mcp hrØsØ Iev]n∏q. CXn∂p ‘\XhrØ’sa∂p t]¿.

Cu \XhrØhpw Z£ntWmØchrØhpw Xßfnse ]cam¥cmfw

LSnImafieØn¶epw, ]ns∂ \XhrØhpw2 £nXnPhpap≈

kw]mXØn¶epw Ja≤yØn¶epw kv]¿in®n v́ Hcp hrØsØ Iev]n∏q.

CXn∂p ‘\Xkaafie’sa∂p t]¿. \Xkaafiehpw £nXnPhpap≈

kw]mXØnt¶∂p3 £nXnPØnt∑tebp≈ hrØ]mZw sNt∂SØp

£nXnPØn¶epw Ja[yØn¶epw, kv]¿in®n´v4 Hcp hrØsØ

Iev]n∏q. CXn∂p ‘\XZrIvt£]hrØ5’sa∂p t]¿. Cu hrØØn¶ep

\XhrØhpw  \XkahrØhpw Xßfnte ]cam¥cmfhpw.

\XhrØhpw £nXnPhpap≈ ]cam¥cmfhpw6 Cu hrØØn¶¬

Xs∂. ‘kztZi\X ’sa∂pw ‘kztZi\XtImSn ’sb∂pw Cu

]cam¥cmfßƒ°p t]¿. ]ns∂ CjvSZnK vhrØtØbpw

hykvXZnKvhrØtØbpw apºn¬ sNm√nb7 {]Imcw Iev]n∏q. ]ns∂

\XhrØw Ja[yØnt¶∂p F{X \Xambncn°p∂q

\XZrIvt£]afieØn¶te Cu hrØØn¶¬ Xs∂ A{X D∂Xw

£nXnPØnt¶∂p \Xafie]m¿izsa∂ncn°pw. Cu

\XhrØ]m¿izØn¶¬ \XZrIvt£]LSnImkw]mXw.

21.1. B. AY ZznXob{]iv\w
2. C. Adds \XlmcIhrØhpw
3 B. \Xkaafie£nXnPkw]mXØnt¶∂v
4.. F. kv]¿in®n´p≈
5. B. \XZrIvt£]w F∂pt]¿
6. B. \XhrØ£nXnP]cam¥cmfhpw

21. c≠mw {]iv\w˛i-¶phpw A]-{Iahpw
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]ns∂ £nXnPhpw hykvXZnKvhrØhpw D≈ kw]mXØn¶epw8,

\XZrIvt£]afieØnt∑te \X]m¿izØn¶epw kv]¿in®n´v Hcp

hrØsØ Iev]n∏q. AXp \tXjvSZnMvafießƒ c≠n∂pw IqSn

km[mcWambncnt∏mcp Xn¿øKvhrØw. ChnsS Xn¿øKvhrØw

CjvSZnKvhrØØn¶¬ 9£nXnPØn¶¬ \n∂v F{X D∂Xw A{X

XmWncn°pw Ja[yØnt¶∂p ZnKvhrØhpw \XhrØhpw Xßfnep≈

kw]mXw. Cu ZnK vhrØØn¶te Ja[y\XhrØm¥cw

OmbbmIp∂Xv. CXns‚ tImSn i¶phmIp∂Xv.

ChnsS DØc{[pht¶∂p Z£ntWmØcafieØn¶te

LSnImhrØtØmfw sN√ptºmƒ \XhrØZ£ntWmØcm¥cmfw.

\XPymhv. {[pht¶∂p Ja≤ytØmSp≈ CS ew_Iw. CXo∂p

\XhrØm¥csa{Xsb∂p kztZi\Xap≠mIpw. ]ns∂ CXns\

\XhrØhpw kztZi\XhrØhpw Xßfnep≈ kw]mXØn¶¬

A{Kambn´p Iev]n∏q. Cu kztZi\XPymhns‚ tImSn 10 Cu

kw]mXØnt¶∂p £nXnPm¥cmfw. AhnsS ]q¿∆kzkvXnIØnt¶∂p

sX°p \oßn £nXnPsØ kv]¿in°pamdv CjvSmim{K Iev]n∏q. B

Zn°n¬ i¶phpw A∆ÆamIptºmƒ DØckzkvXnIØnt¶∂v

]Sn™mdp \oßnbpw Z£nWkzkvXnIØnt¶∂p Ing°p \oßnbpw

£nXnPkv]¿iw \XhrØØn\v. ]ns∂ ]q¿∆kzkvXnIØnt¶∂v

C{XXs∂ hS°pw ]›nakzkvXnIØnt¶∂p A{X sX°p

\oßntbSØpw £nXnPsØ kv]¿in®ncns∏m∂v kztZi\X

hrØamIp∂Xv.

]ns∂ Z£nWkzkvXnIØnt¶∂v CjvSmim{Ktbmfw ]Sn™mdp

\oßntbSØp hnZnMvafieØn∂p £nXnPkw]mXw. AhnSp∂p

Xn¿øKvhrØw Db¿∂p XpSßp∂p. kztZi\XhrØtØmfw

sN√ptºmƒ £nXnPkw]mXØnt¶∂p kztZi\XPymthmfw Db¿∂n-

21. 7. B. ap≥sNm√nb, F, hnkvXcn®v sNm√nb
8. B. £nXhykvXZnKvkw]mXØn¶epw
9. F. Adds Cu
10 B. \XPymtImSn

XI. Ombm-{]-I-cWw
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cn-°p∂ \X-]m¿iz-Øn-¶¬ 11kv]¿in°pw.12\XhrØ]m¿iztØmSp

£nXnPtØmSp≈13 CS ChntS°p lmcIamIp∂Xv. ]ns∂ Cu

Xn¿øKvhrØw ZnKvhrØtØmfw sN√ptºmƒ14 £nXnP

kw]mXØnt¶∂p hrØ]mZw sN√pw. BIbm¬ Cu ZnKvhrØØn¶¬

£nXnPhpw Xn¿øKvhrØhpw Xßfnep≈ ]cam¥cmfw. AXp

OmbmXpeyw. ]ns∂ CXns‚ tImSn ZnKvhrØhpw Xn¿øKvhrØhpap≈15

kw]mXØnt¶∂p Ja[ym¥cmfw ZnKvhrØØn¶teXp i¶pXpeyw. CXp

Xn¿øKvhrØhpw hnZnKvhrØhpap≈ ]cam¥cmfamIp∂Xv16. ]ns∂

\X£nXnPm¥cmfw kztZi\XtImSntbmfamIptºmƒ AXn∂p I¿Æw

{XnPymhv, {[pthm∂Xn°v F¥p I¿Æsa∂v17 DØc{[phw18

£nXnPhpap≈ A¥cmfw \XhrØØn¶teXv D≠mIpw. ]ns∂

\XhrØhpw Z£ntWmØchrØhpap≈ ]cam¥cmfw \XPymhv.

At∏mƒ \XhrØØn¶teXv19 {[ph£nXnPm¥cmfPymhn∂v C{X

Z £ n t W m Ø c h r Ø m ¥ c m f w , \ X h r Ø Ø n ¶ t e X v

{[ph£nXnPm¥cmfPymhn∂v F{X F∂p Z£n-tWm-Ø-c-hr-Øm-¥-cmfw

F∂v \XhrØZ£ntWmØchrØm¥cmfw £nXnPØn¶teXv

D≠mIpw. Cu A¥cmftØmSp Xpeyambn v́ ]›n-a-kz-kvXn-I-Øn-t¶∂p

sX°p \oßo-´v \XZrIvt£]Øn\p £nXnPkw]mXw. CXns\

Bim{KmtImSnbnt¶∂p Ifhq. F∂m¬ kztZi\XhrØhpw

hnZnKvhrØhpw Xßfnep≈ A¥cmfw20 £nXnPØn¶teXv D≠mIpw.

21. ii. i¶zm\b\w

ChnsS PymtbmKhntbmKw sNtø≠ptºmƒ ]ckv]ctImSnKpW\w

sNbvXp Xßfn¬ ]ckv]cw Iq´pIXm\¥cn°Xm≥ sNbvXv,

21.11 F. kv]¿in®ncn°pw
12 C.D.F. read :  Xn¿øKvhrØ\XhrØ
13 C. D. A¥cmfw AhntSbv°v
14 D. sNm√ptºmƒ
15 B. XΩnse, C.F. Xßfnep≈
16 B. XoøKvhrØZnKvhrØ]cam¥cmfamIp∂Xv
17 B.C.D.E, I¿Æw F¥v F∂v
18 B.C DØc{[ph\pw
19 B.om. Xv
20 D. ]cam¥cmfw

21. c≠mw {]iv\w i¶phpw A]-{I-ahpw
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{XnPysIm≠p lcnt°Ww. F∂m¬ \XPymhns\ A£w sIm≠p

KpWn®v kztZi\XtImSn sIm≠plcn® ^etØbpw, CXns‚

h¿§sØ {XnPymh¿§Ønt¶∂p If™p aqen®Xnt\bpw, {ItaW

Bimt{KsIm≠pw Bim{KmtImSntbs°m≠pw KpWn®v

Xßfne¥cn∏q Z£nWZn°neq i¶psh¶n¬. DØcZn°neq

i¶psh¶n¬ Xßfn¬ tbmKw sNbvhq. CXns\ {XnPysIm≠p lcn®m¬

hnZnK vhrØtØmSv kztZi\XhrØtØmSp≈ A¥cmfw

£nXnPØn¶teXv D≠mIpw. ChnsS D®bv°p apºn¬

DØcmim{KbmIptºmƒ DØckzkvXnIØn¶∂v ]Sn™mdv

Bim{Ktbmfw sNt∂SØv hnZnKvhrØ£nXnPkw]mXw. ChnSp∂p

Xn¿øKvhrØØns‚ Db¿® XpSßp∂p. AhnSp∂p

]›nakzkvXnIØns‚ A¥cmfw Bim{KmtImSn. ]ns∂

]›nakzkvXnIØnt¶∂p sX°p kztZi\XhrØ£nXnPkw]mXw.

F∂n´v . B A¥cmfw Bim{KmtImSnbn¶¬ Iq´q. F∂m¬

hnZnK vhrØØnt¶∂p kztZi\XhrØm¥cmfap≠mw.

£nXnPØn¶¬ CXp ZnKvhrØhpw kztZi\XhrØhpw Xßfnep≈

]cam¥cmfw. ]ns∂ kztZi\XhrØØn¶¬ Ja≤yØnt¶∂p

\XhrØ]m¿iztØmfw sN√ptºmƒ kztZi\X

tImSntbmfa¥cmfap≠v. AXn∂v GXp hnZnKvhrØm¥csa∂v

\X]m¿izØnt¶∂p hnZnKzrØm¥csØ D≠m°q. ]ns∂ CXns‚

h¿§hpw \X]m¿tizm∂XnbmIp∂ kztZi\XPymhns‚ h¿§hpw

Xßfn¬ Iq´n aqen∏q. F∂m¬ \XhrØ]m¿iztØmSp

£nXnPtØmSp≈ A¥cmfw Xn¿øKvhrØØn¶teXv D≠mIpw. CXp

{]amWamIp∂Xv. £nXnPØnt¶∂p \X]m¿tizm∂Xnbpw

\X]m¿izØnt¶∂p hnZnKvhrØm¥chpw {]amW^eßfmIp∂Xv.

Cu {]amWØn\v Ch Ombmi¶p°fmIp∂Xv. {XnPy C—bmIp∂Xv.

CjvSZnIv—mbmi¶p°ƒ C—m^eßfmIp∂Xv.

21. iii. {Im¥nPym

]ns∂ Ombbpw Bim{KmtImSnbpw Xßfn¬ KpWn®v

\XPymhnt\s°m≠p lcn®m¬ CjvSZypPymhp≠mIpw. CXns‚

XI. Ombm-{]-I-cWw
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h¿§hpw {XnPymh¿§hpw  Xßfne¥cn®p aqen®Xv CjvSm]{Iaw.

Cßs\ c≠mw {]ivt\mØcw.

22. aq∂mw {]iv\w: i¶phpw Bim{Kbpw

A\¥cw  aq∂mw {]iv\Øn¶¬ \Xm]{Iam£ßtfs°m≠v

iwIzmim{KIsf hcpØp∂p. ChnsS \XPym{XnPyIfpsS

h¿§m¥caqew {KltØmSp≈ A¥cmfw kzmtlmcm{X

hrØØn¶teXv D≠mIpw. CXp ZypPymhrØhymkm¿≤sØ

{XnPybmbn´p Iev]n°ptºmfp≈Xmbn´ncn°pw. ]ns∂ C∂X tImSnsb

ZypPysIm≠p KpWn®v {XnPysIm≠p lcn∏q. ^ew

{XnPymhrØIeItfs°m≠p≠m°p∂ ZyphrØPymhv. CXnt¶∂p

£nXnPymhns\ Ifhq Z£nWtKmfØn¶¬, DØctKmfØn¶¬ Iq´q.

]ns∂ CXns\ ew_Iw sIm≠p KpWn®v {XnPysIm≠p lcn∏q. ^ew

i¶p.

CXns‚ tImSn Omb. \XPybpw ZypPybpw Xßfn¬ KpWn®v

Ombsbs°m≠p lcn®^ew Bim{Km tImSn.

23. \memw {]iv\w : i¶phpw A£hpw

A\¥cw \X{Im¥ymim{KItfs°m≠v i¶z£ßsf hcpØpw

{]Imcw.

23.i. i¶zm\b\w

\XPymZypPym°ƒ Xßfn¬ KpWn®v sht∆sd

Bim{KmtImSnsIm≠pw {XnPysIm≠pw lcn®m¬  ^eßƒ Ombbpw

OmbmtImSnbpambn´ v D≠mIpw. ]ns∂ Ombm{XnPyIfpsS

h¿§m¥caqew sIm≠v i¶p D≠mIpw.

22. aq∂mw {]iv\w :  i¶phpw Bim-{Kbpw
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23. ii. A£m\b\w

A£w hcpØpt∂SsØ t£{XIev]\w ]ns∂. ChnsS

Z£ntWmØchrØØnt¶∂p OmbmtImSntbmfw F√m Ahbhhpw

AI∂p t\tc sX°phS°mbn´ v Hcp hrØsØ Iev]n∏q.

LSnImafieØn∂v kzmtlmcm{Xsa∂ t]mse Ccns∏m∂v. CXp

Z£ntWmØchrØØn∂p {Klkv^pSambn´pancnt∏m∂v. ]ns∂

{KlØn¶epw ]q¿∆m]ckzkvXnIØn¶epw kv]¿in®ns´mcp

hrØsØ Iev]n∏q. CXn¶¬ {KlØnt¶∂p Z£ntWmØc

hrØtØmSp≈ A¥cmfw OmbmtImSn. {KlØn¶∂v

]q¿∆m]ckzkvXnIm¥cmfw OmbmtImSosS tImSn. CXv Cu1 Iev]n®

tImSnhrØØn\p hymkm¿≤amIp∂Xv. Cu tImSnhymkm¿≤Øn¬

Hcp Pymhv Ombm`pPw. AXv {KltØmSp kaafietØmSp≈

A¥cmfw. CXns‚ tImSn i¶p. ]ns∂ LSnImafietØmSv

{KltØmSp≈ A¥cmfw A]{Iaw. CXns‚ tImSnbmIp∂Xv

OmbmtImSnbpw ZypPybpw Xßfnep≈ h¿§m¥caqew. CXp

{KltØmSp D∑fietØmSp≈ A¥cmfw Cu tImSn

hrØØn¶teXmbn´ncn°pw. ]ns∂ Ombm`pPsb A]{Ia

tImSnsIm≠p KpWn®v Xßfn¬ tbmKw Xm\¥cwXm≥ bp‡n°p

X°hÆw sNbvXv OmbmtImSn{XnPymh¿§m¥caqe2amIp∂ Cu

tImSnhrØhymkm¿≤w sIm≠p lcn∏q. ^ew Cu3 tImSn

hrØØn¶te A£w. ]ns∂ Cu A£sØ {XnPysIm≠p KpWn®v

tImSnhrØhymkm¿≤w sIm≠p lcn∏q. ^ew kztZim£w. ChnsS

{Im¥ymim{KIƒ `n∂Zn°pIƒ F¶n¬ Cu kwh¿§ßfpsS tbmKw

Xpeyw F¶n¬ A¥cw th≠phXv. D∑fie£nXnPm¥cmfØn¶eq

{Klw F¶nepw tbmKw. ChnsS Ombbpw OmbmtImSnbpw Xßfnep≈

h¿§m¥caqew Ombm_mlp. Cßs\ i¶phnt\mSpIqSnbp≈

{]ivt\mØcßƒ4 \ment\bpw sNm√nbXmbn.

XI. Ombm-{]-I-cWw

23 1. B.om. Cu
2. B.C.D.E.F om.  aqe
3. C. om. Cu
4. C. {]ivt\mØcßsf
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24. A©mw {]iv\w : \Xhpw {Im¥nbpw

A\¥cw \X{Im¥nIfpsS B\b\{]Imcw. ChnsS

]q¿∆m]ckzkvXnIßfn¬ H∂n¶¬ \n∂p {KltØmSp≈

A¥cmfNm]Øns‚ Pymhv hymkm¿≤ambn v́ Hcp hrØsØ Iev]n∏q.

AXn¶te Pymhv Ombm`pPbmIp∂Xv. Cu tImSnhrØØn¶te

A£hpw {XnPymhrØØn¶te A]{Iahpw Xßfn¬ tbmKw

Xm\¥cw Xm≥ sNbXv Cu Ombm`pPbmIp∂Xv F∂nXp \tS sNm√n1.

F∂m¬ tImSnhrØØn¶te A£hpw Ombm`pPbpw Xßfn¬

tbmKw Xm\¥cw Xm≥ sNbvXm¬ {XnPymhrØØn¶te

A]{Iaap≠mIpw. ChnsS ew_m£ßsf tImSnhrØØn¶

emt°≠pIbm¬ tImSnhymkm¿≤KpW\hpw {XnPymlcWhpw thWw

ew_m£ßƒ°v. ]ns∂ Cßs\bncn°p∂ Cu

ew_m£ßsfs°m≠p {ItaW Ombm`pPtbbpw i¶phnt\bpw

KpWn®v tbmKw Xm\¥cw Xm≥ sNbvXv tImSnhrØhymkm¿≤w

sIm≠p lcn∏q. ^ew CjvSm]{Iaw. ChnsS tImSnhrØKpW\hpw

lcWhpw th≠. tIhew ew_m£ßsfs°m≠p {ItaW

Ombm`pPtbbpw i¶phnt\bpw KpWn®v tbmKw Xm\¥cw Xm≥ sNbvXv.

{XnPysIm≠p lcn®^ew CjvSm]{Iaw. CXns‚ tImSn CjvSZypPymhv.

CXnt\s°m≠p lcn∏q. OmbmtImSn{XnPyIƒ Xßfn¬ KpWn®Xns‚

^ew \XPymhv.

25. Bdmw {]iv\w : \Xhpw Bim{Kbpw

A\¥cw \Xmim{KIsf hcpØp∂p. AhnsS \tS

Ombm_mlphns\ hcpØp∂Xv. AXv A¿°m{Kbpw iwIz{Khpw

Xßfnte tbmKw Xm\¥cw Xm\mIp∂Xv. AhnsS

24 1. F. sNm√oXmbn

24. A©mw {]iv\w : \Xhpw {Im¥nbpw
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]q¿∆m]ckzkvXnIhpw BZnXys‚ DZbmkvXab{]tZihpw Xßfnse

A¥cmfw £nXnPØn¶teXv A¿°m{KbmIp∂Xv. DZn®

{]tZiØnt¶∂p kzmtlmcm{XØns‚ Ncnhn∂p X°hÆw F{X

sX°p \oßn {Klw CjvSImeØn¶¬ F∂Xp1 i¶z{KamIp∂Xv. CXp

sXt°m´p \oßq2. F∂n v́ CXv \nXyZ£nWw. ]ns∂ DZKvtKmfØn¶¬

]q¿∆m]ckzkvXnIØnt¶∂p hS°p \oßn DZn°pw. F∂n´v A∂v

A¿°m{K DØcw, Z£nWtKmfØn¶¬ A¿°m{K Z£nWw. F∂n´p

XpeyZns°¶n¬3 A¿°m{KmiwIz{KßfpsS tbmKw, `n∂Zn°ne¥cw.

F∂m¬ kaaWvUetØmSp {KltØmSp≈ A¥cmfap≠mIpw. AXp

Ombm`pPbmIp∂Xv. ChnsS A¿°m-{Km-]-{I-a-ßƒ {XnPym-ew-_-I-ß-

sf-t∏m-sebpw i¶p-i-¶z-{K-ßƒ ew_Im£ßsft∏msebpw Ccnt∏m

Nneh. F∂n v́ A]{IasØ {XnPysIm≠pw i¶phns\ A£w sIm≠pw

KpWn®v tKmfØn\p X°hÆw tbmKw Xm\¥cw Xm≥ sNbvXv

ew_Iw sIm≠p lcn®^ew Ombm`pP. Cu Ombm`pPsb

{XnPysIm≠p KpWn®v OmbsIm≠p lcn®^ew Bim{KbmIp∂Xv.

Ombmim{KmtImSnLmXØnt¶∂p ZypPysIm≠p lcn® ^ew

\XPymhv.

26. Ggmw {]iv\w : A£hpw \Xnbpw

A\¥cw \Xm£ßsf hcpØp∂p. AhnsS \XPymhp

apºntet∏mse1. ]ns∂ OmbmtImSnZypPyIfpsS h¿§m¥caqew

D∑fietØmSp {KltØmSp≈ A¥cmfØn¶te

kzmtlmcm{XØn¶te Pymhv. £nXnPØnt¶∂p XpSßnbp≈ Cu

Pymhn∂v ‘D∂-X-Pym’ -sh∂p t]¿. ]ns∂ £nXntPm∑fiem

¥cmfØn¶se kzmtlmcm{XhrØ`mKPymhn∂p ‘£nXnPPym’sh∂p

25 1. B.  Ncnhn∂pamIp∂Xv
2. B. C. F. \oßp∂p
3. F.  Zn°mIn¬

26 1. B. ap≥t]mse

XI. Ombm-{]-I-cWw
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t]¿. F∂m¬ Z£nWtKmfØn¶¬ £nXnPØnt¶∂v D∑fiew

IotgbmIbm¬ £nXnPPymhnt\mSp IqSnbncn°p∂ D∂XPymhv

OmbmtImSnZypPymh¿§m¥caqew. DØctKmfØn¶¬ ]ns∂

£nXnPPymhp t]mbn Ccn°p∂ D∂XPymhv CXv. D∂XPymhp

i¶piwIz{Kßƒ°p I¿Æambncnt∏m∂v. ‘£nXnPPymhv CXn∂p

kZriambncnt∏mcp {Xy{iØn¶2se `pPbmIp∂Xv3. F∂m¬ Z£n-W-

tKm-f-Øn¶¬ c≠p t£{XßfpsS `pPmI¿ÆtbmKanXv. ]ns∂

Z£nWtKmfØn¶¬ Ombm`pPbmIp∂Xv A¿°m{KmiwIz{KßfpsS

tbmKw. Cu Ombm`pPsb £nXnPymhp IqSnbncn°p∂ D∂XPymhn¬

Iq´q. F∂m¬ c≠p t£{XßfpsS `pPmI¿ÆtbmKanXv ,

DØctKmfØn¶¬ `pPmI¿Æm¥cw. CXv OmbmtImSn,

ZypPymh¿§m¥caqehpw Ombm`pPbpw Xßfn¬ Iq´nbXmbn´ncn°pw.

ChnsS i¶p, i¶z{Kw, D∂XPymhv F∂nßs\ Hcp {Xy{iw.

A]{Iaw £nXnPymhv, A¿°m{K F∂nXv Hcp {Xy{iw. Cu t£{Xßƒ

c≠nt‚bpw `pPmZzbØnt‚bpw I¿ÆZzbØnt‚bpw tbmKw

Z£nWtKmfØn¶ep≠mIp∂Xv, DØctKmfØn¶¬ I¿ÆZzb

Ønt¶∂p `pPmZzbsØ If™p≠mIp∂Xv. Cu c≠p {Xy{ißfpw

Xpeykz`mhßfmIbm¬ tbmKm¥cßƒ  sNbvXmepw Hcp

t£{XØn¶te `pPmI¿ÆtbmKwXm\¥cwXms\∂t]mse

Ccn°pat{X. kz`mhw sIm≠p i¶z]{IatbmKw Cu t£{XØn\p

tImSnbmbn´ncn°pw. F∂m¬ Cu i¶z]{IatbmKØns‚ h¿§sØ

Z£nWtKmfØn¶¬ ̀ pPmI¿ÆtbmKw sIm≠p lcn∏q. ̂ ew A¥cw.

DØctKmfØn¶¬  `pPmI¿Æm¥cw sIm≠p lcn∏q. ^ew tbmKw.

Cßs\ `pPmI¿ÆßfpsS tbmKhpa¥chpap≠mbm¬ Xßfn¬ Iq´n

A¿≤n®Xp I¿Æw, A¥cn®v A¿≤n®Xp `pP. ]ns∂ `pPsb

{XnPysIm≠p KpWn®v I¿Æw sIm≠v lcn® ^ew A£w,

ew_m£{XnPyItfmSp Xpeykz`mhßƒ \tSsØ {Xy{ißƒ c≠pw

F∂n´Xv.

26.2. F. {Xn{iØn¶se
3. B. C. F. `pPbmbncns∏m∂v

26. Ggmw {]iv\w- : -A£hpw \Xnbpw
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27. F´mw {]iv\w : A]{Iahpw Bim{Kbpw

A\¥cw A]{Iamim{Kßsf hcpØp∂p. AhnsS  \X-hr-Øhpw

£nXn-P-hp-ap≈ ]c-am-¥-cmfw kztZi\XtImSn. CXp {]amWw.

kztZi\XhrØhpw £nXnPhpap≈ A¥cmfw \XhrØØnt∑teXv

hrØ]mZw. CXn\p Pymhymkm¿≤w {]amW^ew, i¶p C—m,

\XhrØØn¬ {Kl£nXnPyIfpsS A¥cmfw C—m^ew. Cu

{]amW^eßƒ°pXs∂ {[pthm∂Xn C—bmIptºmƒ

{[ph£nXnPm¥cmfw \XhrØØn¶teXp D≠mIpw.

]ns∂ kztZi\XhrØhpw \XhrØhpw Xßfnte

kw]mXØnt¶∂v hS°p {Klsa¶n¬ D≠m°nb C—m^eßfpsS

Nm]ßƒ Xßfn¬ A¥cn∏q. F∂m¬ \XhrØØn¶te

DØc{[ph{Klm¥cmfap≠mIpw. Cs®m√nb hrØkw]mXØnt¶∂p

sX°p {Klsa∂ncn°n¬ Cs®m√nb C—m^ePym°fpsS Nm]ßfpsS

tbmKsØ sNøq. AXp Z£nW{[ph\pw {Klhpap≈ A¥cmfNm]w

\XhrØØn¶teXv D≠mIpw. CXns‚ Pymhv ZypPymhv. CXns‚ tImSn

A]{Iaw. Bim{Kw apºn¬ sNm√nbt]mse.

28. H≥]Xmw {]iv\w : {Im¥nbpw A£hpw

A\¥cw {Im¥y£ßƒ. {Im¥nsb ZypPysb apºnep≠m°o´v

D≠m°ns°m≈q A£sØ \tStØXnsemcp {]Imcw.

29. ]Ømw {]iv\w : Bim{Kbpw A£hpw

A\¥cw ZnK{Km£ßsf hcpØp∂p. AhnsS

ZypPym\XPym°fpsSXm≥ OmbmtImSn{XnPyIfpsS Xm≥

XI. Ombm-{]-I-cWw
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LmXØnt¶∂p OmbsIm≠p lcn®^ew Bim{KmtImSn. A£w

\tStØt∏mse hcpØq. Cßs\ ]Øp {]iv\ßfptSbpw DØcw

sNm√oXmbn.

30. CjvSZnIvOmb : {]Imcm¥cw

A\¥cw CjvSZnIvOmbbn¬ Xs∂ {]ImcsØ sNm√p∂p.

AhnsS LSnImafieØn¶¬ CjvSZnMvafiekw]mXØn¶¬

{Klsa∂ncn°ptºmƒ ZzmZimwKpei¶phns‚ Omb D≠mIp∂p. \tS

AhnsS hnjphØn¶ep {Klw F¶n¬ ZzmZimwKpei¶phns‚

Ombm`pP hnjph—mbmXpeyw. {XnPymhrØØn¶te Bim{Km

ZzmZimwKpei¶p—mbm hymkm¿≤hrØØn¶¬ Ombm`pP

bmbn´ncn°pw. AXp hnjph—mbmXpeyamIptºmƒ F¥p tImSn F∂v

Bim{KmtImSnbpw hnjph—mbbpw Xßfn¬ KpWn®v Bim{KmsIm≠p

lcn∏q. ^ew OmbmtImSn. CXnt\bpw hnjph—mbtbbpw h¿§n®p

Iq´n aqen∏q. AXv LSnImafieØn¶ep {Klsa∂ncn°ptºmtg

ZzmZimwKpei-¶pOmb. ]ns∂ Cu Ombsb {XnPymhrØ

Øn¶em°nbm¬ CjvSZnMvafieØn¶te LSnIm¥cmfap≠mIpw.

CXv A£ÿm\obamIp∂Xv. ChnsS Z£ntWmØchrØØn¶te

Ja≤yLSnIm¥cmfw A£w. AXn¶¬ Xs∂ LSnImkzmtlm

cm{Xm¥cmfw A]{Iaw. F∂n´v A£hpw A£ÿm\obhpw

{]amWhpw {]amW^ehpambn´ncn°pw. A]{IaamIp∂ C—bv°v

C—m^ew LSnImkzmtlmcm{XhrØm¥cmfw CjvSZnKvhrØ

Øn¶teXv D≠mIpw. CXv A]{Iaÿm\obw. ]ns∂ a[ym”—mbsb

D≠m°p∂t]mse A£m]{Iaÿm\obßfpsS Nm]tbmKw

Xm\¥cØm≥ sNbvXp Pymhp≠m°nbm¬ AXv CjvSZnIv

—mbbmbn´ncn°pw.

30. CjvS-Zn-IvOmb : {]Im-cm-¥cw
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31. Imee·hpw DZbe·hpw

A\¥cw Imee·tØbpw DZbe·tØbpw hcpØpw{]Imcw.

ChnsS {]hlhim¬ ]Sn™mdpt\m°n {`an°p∂ cminN{IØns‚

a≤yhrØamIp∂ A]{IahrØw CjvSImeØn¶¬ ]q¿∆m]c

kzkvXnIßfn¬ H∂nt¶∂p hSs°bpw a‰Xnt¶∂p sXs°bpw

£nXnPØn¶¬ kv]¿in®ncns∏m∂v. A]{IaafieØn¶se

£nXnPkw]mX{]tZiØn\p ‘e·’sa∂pt]¿. Cu e·ßfnepw

Ja[yØn¶epw kv]¿in®n´v Hcp hrØsØ Iev]n∏q. CXn∂p

‘e·kaafie ’sa∂p t]¿. ]ns∂ Cu e·kaafiew

]q¿∆m]ckzkvXnIßfn¬ \n∂v F{X \oßnbncn°p∂p

Z£ntWmØckzkvXnIßfn¬ \n∂v A{X \oßntbSØv

£nXnPØn¶epw Ja[yØn¶epw kv]¿in®nSØv Hcp hrØsØ

Iev]n∏q. CXn∂p ‘ZrIvt£]hrØ ’sa∂p t]¿. CXpw

e·kaafiehpw  t\tc hn]coXZn°mbncn°pw. Cu c≠p hrØßfpw

£nXnPhpw Iq´o´p tKmfØn¶se ]Zhn`mKw. ChnsS \Spth

A]{IahrØw. ChnsS e·kaafiehpw A]{IahrØhpw

Xßfnte ]cam¥cmfw, A]-{I-a-hr-Ø-]m¿iz-Øn-t¶∂p hrØ-]m-Zm-

¥-cnXw cmin-IqSw, ZrIvt£]hrØØn¶¬ Ja≤yØnt¶∂p F{X

XmWp A]{IahrØkw]mXw Cu ZrIvt£]hrØØn¶¬ A{X

Xs∂ Db¿∂ncn°pw A]{IahrØ]m¿izamIp∂ cminIqSw,

£nXnPØnt¶∂p hrØ]mZm¥cnXw Ja[yw F∂n v́.

]ns∂ LSnImafieØnt¶∂v A]{IaafieØns‚

F√mbnepaI∂ {]tZiw bmsXmcnSw AhnSØn∂v ‘Ab\m¥’sa∂p

t]¿. Cu LSnIm]{IahrØßfpsS ]cam¥cmf{]tZisØ

kv]¿in°p∂ hrØw bmsXm∂v Cu hrØØn¶¬ Xs∂

LSnIm]{IaßfpsS ]m¿izßƒ \mepw kv]¿in°pw. BIbm¬

]m¿izm¥cmfßƒ c≠pw Cu Ab\m¥kv]¿iap≈ hrØØn¶¬

Xs∂ AIs∏Spw.

XI. Ombm-{]-I-cWw
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F∂m¬ \nc£tZiØn¶¬ ]q¿∆hnjphØv Ja≤yØn¶se∂p

Iev]n°ptºmƒ DØcmb\m¥w ]q¿∆kzkvXnIØnt¶∂p

]cam]{Iam¥cmfw hS°p \nc££nXnPØn¶ep,

A]ckzkvXnIØnt¶∂v A{X sX°p Z£nWmb\m¥w.

Z£nWkzkvXnIØnt¶∂p Ing°pw DØckzkvXnIØnt¶∂v

]Sn™mdpw £nXnPØn¶¬ cminIqSßƒ c≠pw. AhnSp∂p

{]hlhim¬ DØcmb\m¥w £nXnPØnt¶∂v Dbcptºmƒ Z£n-

W-cm-in-IqShpw IqSn Dbcpw. A∆-Æta Z£ntWmØchrØ{]m]vXnbpw

]Sn™mdp £nXnP{]m]vXnbpw c≠n∂pw H°pw.1 CuhÆw

Z£nWmb\m¥Øn\pw DØccminIqSØn\pw XpeyImeØn¶¬

DZbmkvXabßƒ. F∂n´ v Ab\mt¥m∂Xn°p X°hÆw

cminIqtSm∂Xn. F∂m¬ Ab\mt¥m∂XPymhpXs∂

cminIqtSm∂XPymhmIp∂Xv.

]ns∂ cminIqSØn\p i¶p hcptØWw. AXp £nXnPØnt¶∂p≈

cminIqtSm∂XnbmIp∂Xv. AhnsS cminIqSw {[pht¶∂v

A¥ym]{IatØmfw AI∂ncn°bm¬ A¥ym]{Iaw

cminIqSkzmtlmcm{XamIp∂Xv. F∂n´v Ab\mt¥m∂XPymhns\

]cam]{IawsIm≠p KpWn®v {XnPysIm≠p lcn∏q. CXpXs∂

\nc£tZiØv cminIqSi¶p. km£tZiØn¶¬ ]ns∂ CXn∂p

Ncnhp≠mIbm¬ ew_Iw sIm≠p KpWn®v {XnPysIm≠v lcn®v ]ns∂

Cu ^eØn¬, ]ns∂ £nXntPm∑fiem¥cmfØn¶se

i¶p`mKsØ Iqt´Ww. DØccminIqSi¶p`mKØn¶¬,

Z£nWcminIqSi¶phnt¶∂p IftbWw. CXp cminIqSi¶phmIp∂Xv.

ChnsS cminIqSØn¶epw Ja≤yØn¶epw kv]¿in®n´v Hcp

hrØsØ Iev]n∏q. AsXt√m ‘ZrIvt£]hrØ’amIp∂Xv. CXn¶¬

cminIqSi¶pthmfw XmWncn°pw Ja≤yØnt¶∂p A]{Iakw]mXw.

AXp ZrIvt£]amIp∂Xv. F∂n´p cminIqSi¶pXs∂

ZrIvt£]amIp∂Xv F∂p h∂p. ChnsS ]q¿∆m]ckzkvXnIØnt¶∂v

31. Ime-e-·hpw DZ-b-e-·hpw

31 1. C. F. Hs°ms°
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D∑-fi-e-Øn -¶se {[ph-¶ -temfw sN√p -tºmƒ £nXntPm

∑fiem¥cmfi¶phmIp∂Xv A£w, cminIqSkzmtlmcm{XtØmfw

sN√ptºmtf A¥yZypPymhn∂v GXv F∂v ChnSpsØ

£nXntPm∑fiem¥cmfØn¶te i¶pJfiap≠mIpw.

]ns∂ {Xncmiyq\Imee·`pPmPymhv ChnsS D∑fieØnt¶∂p≈

cminIqtSm∂XPymhmIp∂Xv. CXns\ ]ns∂ Xs‚

kzmtlmcm{XØn¶em°n A£himep≈ Ncnhns\ ew_Øn\p

X°hÆw If™m¬ cminIqSi¶php≠mIpw. tKmfmZnbmbncn°p∂

Imee·w {Xncmiyq\amIptºmƒ Ab\mZnbmbn´p hcpw. F∂m¬

Imee·tImSn°p Pymhp sIm≈ptI th≠q.

CuhÆap≠m°nbncn°p∂ ZrIvt£]Pymhns‚ tImSn

£nXnPm]{IaafießfpsS ]cam¥cmfamIp∂Xv. CXns\

{]amWsa∂pw, {XntPy {]amW^esa∂pw Iev]n∏q. ]ns∂

A]{IaaWvUeØn¶¬ {Klancn°p∂ {]tZiØnt¶∂p

£nXnPsa{XbIeap≠v F∂Xv {KlØns‚ Xev°mei¶phmIp∂Xv.

AXv C—mcminbmIp∂Xv. {KltØmSv £nXnPtØmSp≈

A¥cmfØn¶te A]{IahrØ`mKw C—m^ew. CXns\ Nm]n®p

{KlØn¶¬ Iq´pIXm≥ IfbpIXm≥ sNbvXm¬

{Im¥nhrØØn¶te hnjphØnt¶∂p £nXnPkw]mXØnt¶∂v2

A{XtØmfap≈ `mKap≠mIpw. AXp {]XyIvI]meØn¶se

AkvXe·w, {]mIvI]meØn¶se¶n¬ DZbe·w.

ChnsS i¶phns\ hcpØpw {]Imcw ]ns∂.

Xev°mekzmtlmcm{XhrØØn¶¬ Z£ntWmØchrØhpw

{Klhpap≈ A¥cmfw \XamIp∂Xv.  ChnsS F√m

kzmtlmcm{XhrØhpw Hcp Atlmcm{XImew sIm≠v

A\p{`an®pIqSpw. Atlmcm{XØn¶¬ {]mWßƒ

N{IIemXpeykwJyIƒ. F∂n v́ F√m kzmtlmcm{XhrØßtfbpw

Iemhbhßfmbn´p≈ {]mWßfmbn´p Iev]n°ptºmƒ

XI. Ombm-{]-I-cWw

31.2. B. D. £nXnPkw]mXtØmfap≈
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N{IIemXpeyambn´p hn`Pn°p∂p. F∂n´v \X{]mWßfmIp∂Xp

kzmtlmcm{X`mKat{X. BIbm¬ \X`mKØns‚ D¬{IaPymhns\

If™ Pymhv D∑fie{KlßfpsS A¥cmf`mKØn¶te3

kzmtlmcm{XhrØ`mKPymhv. CXn¬ NcPymhns\ kwkvIcn®m¬ AXv

£nXnPØnt¶∂p≈ D∂XPymhv . CXns\

{XnPymhrØØn¶em°phm\mbns°m≠v ZypPysbs°m≠v

A£himep≈ Ncnhp Ifhm\mbns°m≠p ew_sØs°m≠p KpWn®v

{XnPymh¿§sØs°m≠p lcn∏q. ^ew kzmtlmcm{XhrØØn¶¬

{Klancn°p∂ {]tZitØmSp £nXnPtØmSp≈ A¥cmfw

CjvSZnMvafieØnteXv D≠mIpw. CXv i¶phmIp∂Xv.

kzmtlmcm{XhrØØn¶¬ BZnXy≥ \nev°p∂ {]tZiw

A]{IahrØtØmSp kv]¿in®ncn°pw F∂n v́ A]{ItajvS{]tZihpw

£nXnPhpap≈ A¥cmfamIp∂Xv Cu i¶pXs∂. F∂n v́ Cu i¶p

C—bmIp∂p. {Kl£nXnPm¥cmfØn¶te A]{IahrØ

`mKPymhn—bmIpt∂SØv cm{Xnbn¶epw Cßs\ hcpØnb i¶p

A]{ItajvS{]tZihpw £nXnPhpap≈ A¥cmfambn´ncn°pw F∂n v́

i¶p cm{Xnbnepw C—mcminbmbn´ncn°pw. AhnsS cm{Xn{]amWm¿≤hpw

cm{Xnbn¶se KssXjy`mKßfmsem∂pw Xßfne¥cn®Xv

\X{]mW\mIp∂Xv At[m`mKØn¶se Z£ntWmØchrØhpw

{Klhpw Xßfnep≈ A¥cmfØn¶te kzmtlmcm{XhrØ`mKw

F∂n´v. CXn∂v D¬{IaPymhp≠m°n {XnPymhnt¶∂p If™m¬

{Ktlm∑fiem¥cmfØn¶te kzmtlmcm{X`mKPymhv D≠mIpw.

AhnsS £nXnP{Klm¥cmfamhm\mbns°m≠v NcsØ DØc

tKmfØn¶¬ Ifhq Z£nWtKmfØn¶¬ Iq´q. ]ns∂ apºntet∏mse

i¶phns\ hcpØq. B i¶phns\ {XnPysIm≠p KpWn®p

ZrIvt£]tImSnsIm≠p lcn∏q. ^ew {Im¥nhrØØn¶te

£nXnP{Klm¥cmfPymhv. CXns‚ Nm]sØ {]mIvI]meØn¶¬

{KlØn¬ Iq´q, At[mapJi¶psh¶n¬ {KlØnt¶∂p Ifhq. AXv

31.3. B. A¥cmfØn¶te

31. Ime-e-·hpw DZ-b-e-·hpw
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‘DZbe·’amIp∂Xv. {]Xy°]meØn¶¬ CXns\ {KlØn¶¬

hn]coXambn´p kwkvIcn®m¬ ‘AkvXe· ’ap≠mIpw.

DZbmkvXabßfpsS a[ye·w ZrIvt£]e·amIp∂Xv. AXp

ZrIvt£]hrØm]{Iaafiekw]mXØn¶embncn°pw.

32. a[ye·w

]ns∂ a≤y-e-·-am-Ip-∂Xv Z£n-tWm-Ø-c-hr-Øm1]{I-a-a-fi-e-kw-

]m-Xw. CXv apºnte ]©-Z-i-{]-iv\-\ymbw sIm≠p-≠m-Ipw. ]ns∂ a[y-

Im-e-am-Ip-∂Xv2 Z£n-tWm-Ø-c3hpw LSn-Im-a-fi-ehpw Xß-fn-ep≈

kw]mXw. CXp a[y-e-·-\ymbw sIm≠p hcpw.

Imee·amIp∂Xp a[yImeØn¬4 aq∂p cmin IqSnbXv. AXp

]q¿∆kzkvXnIhpw LSnImafiehpw Xßfnep≈ kw]mX{]tZiw.

CXns\ D≠m°pw {]Imcw ]ns∂.  kmb\m¿°≥ \tStØ ]ZØn¶eq

F¶n¬ CXns‚ `pPm{]mWßsf apºn¬ sNm√nbt]mse D≠m°q.

ChnsS BZnXy≥ \nev°p∂nSØv A]{IaafieØn¶epw

{[phZzbØn¶epw5 kv]¿in®n´v Hcp Xn¿øKvhrØsØ Iev]n∏q. CXp

LSnImhrØØns‚ bmsXmcp {]tZiØn¶¬ kv]¿in°p∂q

AhnSsØ LSnImafieØn¶te hnjphtØmSp≈ A¥cmfw

`pPm{]mWßfmIp∂Xv. ChnsS BZnXy≥ £nXnPØn¶eq F∂p

Iev]n°ptºmƒ LSnImXn¿øKvhrØßfpsS kw]mXw

]q¿∆kzkvXnIØnt¶∂v H´p Iogv, A¥cmfw CjvSNctØmSp Xpeyw.

F∂n´ v `pPm{]mWßfn¬ \n∂v CjvSNcsØ If™m¬

]q¿∆kzkvXnIØnt¶∂p hnjphtØmSp≈ A¥cmfw

LSnImafieØnteXv D≠mIpw. CXp kmb\m¿°≥ {]Ya]Z

amIptºmtf Imee·amIp∂Xv.

32.1. D. om. hrØ
2. H. a≤yZ£ntWm
3. D. Z£ntWmØchrØhpw
4. D. a≤ye·Øn¬
5. F. {[phØn¶epw

XI. Ombm-{]-I-cWw
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]ns∂ ZznXob]ZØn¶se BZnXy\pZn°ptºmtgbv°v6 BZnXys‚

`pPm{]mWßsf D≠m°q. apºntet∏mse Xn¿øKvhrØtØbpw

Iev]n∏q. AhntS°p apºn¬ sNm√nbt]mse Cu Xn¿øKvhrØtØmSv

DØchnjphtØmSp≈ A¥cmfw `pPm{]mWßfmIp∂Xv.  ChnsS

`pPm{]mWßƒ £nXnPØnt¶∂p Iogpw, Xo¿øKvhrØkw]mXw

]q¿∆kzkvXnIØnt¶∂p Iogpw BIbm¬ Ncw Iq´nb

`pPm{]mWßsf Bdp cminbnt¶∂p Ifhq. tijw

]q¿∆kzkvXnItØmSp ]q¿∆hnjphtØmSp≈ A¥cmfw

LSnImafieØn¶teXv D≠mIpw. AXv BZntXymZbØn¶se

Imee·amIp∂Xv.

aq∂mw ]ZØn¶se BZntXymZbw ]ns∂ ]q¿∆kzkvXnIØnt¶∂p

sXs°. AhnsS D∑fieØnt¶∂p B £nXnPw aotX BIbm¬,

AhnsS Iev]n® Xn¿øKvhrØw ]q¿∆kzkvXnIØn\p aosX. BIbm¬

AhnsS kzkvXnItØmfw sN√phm≥ `pPm{]mWßfn¬

Nc{]mWßsf Iqt´Ww. AXv DØchnjphZmZnbmbp≈Xv. BIbm¬

CXn¬ Bdpcminbpw  Iqt´Ww. CXp Imee·amIp∂Xv.

]ns∂ \memw ]ZØn¶epw c≠mw ]ZØn¶tet∏mse `pP

GjyamIbm¬ `pPm{]mWßƒ £nXnPØnt¶∂v At[m`mKØn¶ev.

Xn¿øKvhrØw ]q¿∆kzkvXnIØnt¶∂p aotX. BIbm¬

£nXnPmh[nbmhm≥ `pPm{]mWßfn¬ \n∂p Nc{]mWßsf

IftbWw. CXns\ ]{¥≠p cminbnt¶∂p IftbWw, GjyamIbm¬.

CXp Imee·amIp∂Xv BZntXymZbØn¶te°v. CuhÆw ]{¥≠p

cmiy¥Øn¶se Imee·tØbpap≠m°n aotØXnt¶∂p IotgXp

IotgXp If™p, A¥cßƒ {ItaWbp≈ cmin{]amWßfmIp∂Xv.

ChnsS A]{IaafieØn¶¬ ]q¿∆hnjphØnt¶∂p XpSßn

kaambn´v ]{¥≠mbn hn`Pnbv°q. CXv ]{¥≠p cminIfmIp∂Xv.

AhnsS {]hlhim¬ Hcp cmiosS BZn, CXv £nXnPØn¶¬

kv]¿in°ptºmƒ B cmin XpSßp∂p, HSp°w £nXnPsØ

32. 6. B. BZnXy≥ \n¬°ptºmtgbv°v

32. a[ye·w
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kv]¿in°ptºmƒ B cmin Ignbp∂p. Cu A¥cImeØn¶¬ D≈

{]mWßƒ ‘cmin{]mW’ßfmIp∂Xv. Cßs\ {]kwKm¬ cmintbbpw

cmin{]amWtØbpw sNm√oXmbn.

33. a[ye·m\b\w

Cßs\ BZntXymZbØn¶se Imee·sØbp≠m°n, AXn¬

]ns∂ Ign™ImetØbpw {]mW\mbn Iq´q. AXv CjvSImeØn¶se

Imee·w. CXnt¶∂p aq∂pcmin If™m¬ LSnImZ£ntWmØc

kw]mX{]tZiw hcpw. CXp a[yImeamIp∂Xv.

]ns∂ CXns‚ tImSnbmIp∂Xp hnjphtØmSp

]q¿∆m]ckzkvXnItØmSp≈ A¥cmfØn¶te LSnImafie`mKw.

]ns∂ Cu tImSn°v A]{IaPymhns\ D≠m°q. AXp

]q¿∆m]ckzkvXnIßfn¬ kv]¿in®ncn°p∂ cminIqShrØØn¶se

LSnIm]{Iam¥cmfw. ]ns∂ CXn∂p tImSnPymhnt\bpw

ZypPymhnt\bpap≠m°n `pPm{]mWßsf D≠m°q. AXv Cs®m√nb

cminIqSm]{Iakw]mXØnt¶∂p hnjphtØmSv CS

A]{IahrØ`mKw. CXns‚ tImSnbmIp∂Xp ]ns∂ hnjphtØmSp

Z£ntWmØchrØØn¶te A¥cmftØmSv D≈ A¥cmfØn¶te

A]{IahrØ`mKw, CXp a[y`pPbmIp∂Xv. ]ns∂ tijw

]ZØnt¶∂p X°hÆw Imee·Øn¶¬ sNm√nbt]mse. ChnsS

LSnImafietØt∏mse A]{IaafietØbpw A]{Ia

afietØt∏mse LSnImafietØbpw Iev]n°p∂p Ft∂

hntijap≈q. Cßs\ a[ye·m\b\{]Imcw.

XI. Ombm-{]-I-cWw
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34. ZrIvt£]PymtImSym\b\w

A\¥cw DZbe·hpw a[ye·hpw IqSn ZrIvt£]Pymhns\

hcpØpw {]ImcsØ sNm√p∂p. AhnsS A]{IaafietØbpw

ZrIvt£]afietØbpw1 apºn¬ sNm√nbhÆw Iev]n∏q. ]ns∂

Z£ntWmØchrØØn∂p2 Ingt°∏pdØv £nXnPtØmSp3

kv]¿in°p∂ A]{Iaafie{]tZiØn\v ‘DZbe·’sa∂p t]¿.

]Sn™msd ]pdØp kv]¿in°p∂ {]tZiØn\p ‘AkvXe·’sa∂p

t]¿. Z£ntWmØchrØsØ4 kv]¿in°p∂ {]tZiØn\p

‘a≤ye·’sa∂p t]¿. Chs‰ Adnbpw{]Imcw apºn¬ sNm√nbhÆw.

]ns∂ ]q¿∆m]ckzkvXnIßfn¬ \n∂v F{X AIeØv

£nXnPkv]¿iw A]{IahrØØn\v5 Ab\m¥6cmfw

DZbPymhmIp∂Xv. DZbe·sØ BZnXys\∂p Iev]n®v A¿°mt{K

D≠m°pw t]mse DZbPymhp≠mt°≠q. ]ns∂ Ja[yØnt¶∂v F{X

AIeØv Z£ntWmØchrØsØ kv]¿in°p∂q A]{IahrØw,

B  A¥cmfw a[yPymhmIp∂Xv. a[ye·sØ BZnXys\∂p Iev]n®p

A¿°mt{K7 D≠m°pwt]mse a[ym”—mbsb D≠mt°≠q.

]ns∂ kaafiehpw  ZrIvt£]kaafiehpw Xßfn¬

Ja[yØn¶¬ tbmKw, £nXnPØn¶¬ ]cam¥cmfw. Cu ]cam¥cmfw

DZbPymhmIp∂Xv. ]ns∂ ZrIvt£]kaafieØn∂p

hn]coXambncns∏m∂v ‘ ZrIvt£]hrØw ’ . BIbm¬

ZrIvt£]hrØhpw Z£ntWmØchrØhpw  Xßfnep≈

]cam¥cmfhpw £nXnPØn¶¬ DZbPymhnt\mSp Xpeyambncnt∏m∂v.

CuhÆancn°p∂nSØp a≤yaPymhp Z£nWm{Ksb¶n¬,

Z£nWkzkvXnIØn¶¬ A{K-am -bn -´n -cn -°p∂ Z£ntWmØc

34. ZrIvt£-]-Pym-tIm-Sym-\-b\w

34.1 B. adds ZrIvt£]kaafietØbpw
2. B. F. hrØØnt¶∂p
3. B. IvjnXnPsØ
4. D. Z£ntWmØc{]tZihrØsØ
5. D. A]{IaafieØn\v
6. F. om. Ab\m
7. A. a≤ym”—mb hcpØp∂t]mese CXns\ D≠mt°≠q



974

hrØsØ I¿Æambn {]amWambn Iev]n∏q 8. a≤yPymhv

DØcm{Ksb¶n¬, DØckzkvXnIØne{Kambncn°p∂

hymkm¿≤sØ CuhÆw Iev]n∏q. ]ns∂ Cu kzkvXnIØnt¶∂p

ZrIvt£]hrØm¥cmfw £nXnPØn¶teXv DZbPym

Xpeyambncn°p∂9 {]amW^ew. a[yaPymhv C—. a[yPm{KØnt¶∂p

ZrIvt£]hrØm¥cmfw A]{IahrØ`mKw C—m^ew. CXn∂v ‘`pP’
F∂p t]¿. CXp a[ye·ZrIvt£] e·m¥cmfØn¶se

A]{Iaafie`mKPymhv. CXns‚ h¿§sØ {XnPymh¿§Ønt¶∂p

If™p aqen®Xv, CXns‚ tImSn. CXp Z£ntWmØchrØhpw

£nXnPhpap≈ A¥cmfØn¶se A]{Iaafie`mKPymhv. ]ns∂

Cu D≠m°nb `ptPsS h¿§sØ a[yPymh¿§Ønt¶∂p If™p

aqen®Xv  a[ye·Ønt¶∂p ZrIvt£]kaafiem¥cmfw. CXn\v

{]amW^esa∂pw t]¿. apºn¬ sNm√nb tImSnsb {]amWsa∂pw

Iev]n∏q. ]ns∂ ZrIvt£]e·Øn¶e{Kambncn°p∂

A]{Iaafiehymkm¿≤sØ C—sb∂pw Iev]n®v, ss{XcminIw

sIm≠p hcp∂ C—m^ew ZrIvt£]Pymhv. CXv A]{Iaafiehpw

ZrIvt£]afiehpw Xßfnep≈ ]cam¥cmfamIbm¬,

C—m^eambn´p hcp∂p.

]ns∂ ChnsS sNm√nb {]amWsØØs∂ {]amWsa∂p Iev]n®v,

a[ye·£nXnPm¥cmfw Z£ntWmØchrØØn¶te Pymhv.

a[yaPymtImSnsb {]amW^esa∂v Iev]n®v, {XnPysb C—bmbpw

Iev]n®v, D≠mIp∂ C—m^ew A]{Ia£nXnPßfpsS ]cam¥cmfw.

ZrIvt£]e·£nXnPm¥cmfw ZrIvt£]hrØØn¶te Pymhv.

CXn∂p ‘ZrIvt£]i¶p ’sh∂p t]¿. ‘]ci¶p ’sh∂pw

‘ZrIvt£]tImSn’sb∂pw IqSn t]¿. Cßs\ ZrIvt£]PymtImSnIsf

hcpØpw {]Imcw.

35.8. B, C,F Z£ntWmØchrØhymkm¿≤Øn¶e{Kambncn°pw
9. F Ccn°p∂Xv

XI. Ombm-{]-I-cWw
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35. \Xnew_\en]vXm\b\w

A\¥cw \Xnew_\en]vXIsf hcpØpw  {]ImcsØ sNm√p∂p,

N{µ—mbm{KlWmZyp]tbmKØn∂mbns°m≠v. ChnsS `tKmfa[yw

tI{µambn´p≈ ZrMvafieØn¶te Ombtb°mƒ F{X Gdpw

ZrMva≤yw tI{µambncn°p∂ ZrMvafieØn¶te Omb F∂Xp

ew_\amIp∂Xv. CXns\ Ombm{]IcWØn¶¬ sNm√oXmbn. ]ns∂

Cu ew_\w I¿Æambn´ncnt∏m Nneh, ChnsS sNm√phm\ncn°p∂

\Xnew_\ßƒ. CXn\mbns°m≠p ZrIvt£]m]{IaZrMvafießƒ

aq∂nt\bpw apºn¬ sNm√nbt]mse Iev]n∏q. ]ns∂ c≠p

cminIqSßfnepw {KlØn¶epw kv]¿in®ncnt∏mcp cminIqS

hrØtØbpw Iev]n∏q. CuhÆamIptºmƒ {Klkv]rjvScminIqSw,

ZrMvafiew, A]{Iaafiew F∂nh aq∂nt‚bpw kw]mXØn¶eq

{Klw.

]ns∂ Cu aq∂p hrØßtfbpw ew_nbmsXbpw {KlsØ

ew_n®n´pw Iev]n∏q. ZrMvafieam¿§ØqsS Iog vt]m´p

XmWncn°pamdp {Klw ew_n°p∂p. ChnsS ew_nX{Klhpw

hrØßfpsS kw]mXhpw Xßfnep≈ A¥cmfw

ZrMvafieØn¶teXv Ombmew_\amIp∂Xv. ]ns∂ Cu

ew_nX{KlØnt¶∂v A]{IahrØØns‚ A¥cmfw \XnbmIp∂Xv.

Cu ew_nX{KlØnt¶∂p Xs∂ {Klkv]rjvScminIqShrØm¥cmfw

ChntSbv°p ew_amIp∂Xv. Cu \Xnew_\ßƒ `pPmtImSnIƒ.

Ombmew_\w I¿Æambncn°pw.

36. Ombmew_\w

ChnsS Ombmew_\sØ hcpØpw{]Imcw. apºn¬ sNm√nbhÆw

IemflIambn´ncn°p∂ Zr°¿ÆsØ hcpØo´v D≠m°pInepamw.

35. \Xn-ew-_-\-en-]vXm-\-b\w
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Zr°¿Æw tbmP\mflIambn v́ D≠m°o´p hcpØpInepamw. AXns‚

{]ImcsØ sNm√p∂p1.

ChnsS N{µm¿°∑mcpsS aµI¿ÆamIp∂ `tKmfa[ytØmSp

{KltØmSp≈  A¥cmfw, Ch-‰ns‚ Xs∂ ZznXobkv^pS-I¿Æ-am-Ip-

∂-Xv, L\-`q-a-≤y-Øn-t¶∂p {Kl-tØm-Sp≈ A¥-cm-fw. ChnsS

Nt{µm®hpw BZnXy\pw Xßfnep≈ AIeØn\p X°hÆw

`tKmfa[yhpw L\`qa[yhpw XßfneIepw. F∂n v́ Bb¥cmfsØ

D®\oNhrØhymkm¿≤ambn´p Iev]n∏p. ]ns∂

BZnXy_nw_L\a[ytØmSv `q—mbma[ytØmSv \Spthbp≈ kq{Xw

bmsXm∂v AXnt∑¬ L\`qa[yhpw, `tKmfa[yhpaIep∂p. F∂n´v

B2 kq{Xw D®\oNkq{XamIp∂Xv. Cu D®\oNkq{XØn¶¬

BZnXy\p kZm ÿnXnbmIbm¬ `tKmfa[yw tI{µambncn°p∂

hrØØn¶epw3, L\`qa[yw tI{µambncn°p∂ hrØØn¶epw

kv^pSIe4sa∂t{X I¿Æt`Zap≈q BZnXy\v. N{µ\p ]ns∂ Cu

D®\oNkq{XØnt¶∂p \o°ap≠v. AXv BZnXyt¶∂p≈

\o°ambn´ncn°pw. BIbm¬ {]Xn]ZmZnbmbn CjvSIemh[n5 D≈

XnYnIƒ Dt®m\{Klambncn°p∂ tI{µamIp∂Xv. BIbm¬

`tKmfa[ytØmSp L\`qa[ytØmSp≈ A¥cmfambncn°p∂

D®\oNhymkm¿≤sØs°m≠pw CjvSXnYnIfpsS6 `pPmtImSn

Pym°tfs°m≠pw IqSn `pPmtImSn^eßsf D≠m°n, Cht‰bpw

aµI¿ÆtØbpw IqSn ZznXobkv^pSI¿ÆsØ tbmP\mflI

ambn´pXm≥ IemflIambn´pXm≥ D≠m°q.  ]ns∂ Cu

I¿ÆtØs°m≠p `pPm^esØ kwkvIcn®v B `pPm^esØ

N{µ\nepw kwkvIcn∏q. F∂m¬ L\`qa[yw tI{µambncn°p∂

hrØØn¶se N{µkv̂ pSap≠mIpw. Cßns\ io{Lkv̂ pS\ymtb\

ZznXobkv^pSw. ChnsS D®\oNhymkm¿≤w \m\mcq]ambncnt∏m∂v,

XI. Ombm-{]-I-cWw

36.1 B. XXv{]Imcw
2. F. om.  B
3. C. a[ytI{µhØambncns∏m∂v
4. F. Ime
5. F. Imemh[n
6. B. XnYnbpsS
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AXns‚ \nbaw. ChnsS `q—mbm¿°∑mcn¬ IqSnbp≈ D®\oNkq{Xw

bmsXm∂v AXn∂p hn]coXambn´p `tKmfa[yØn¬ IqSn Hcp

kq{XsØ Iev]n∏q. Cu kq{XØnt¶∂v BZnXy\p≈]pdØp

Nt{µm®sa¶n¬ A∏pdØp \oßpw `qa[yØnt¶∂p `tKmfa[yw.

At∏mƒ BZnXy¶¬ D®ÿm\w.

]ns∂ Cu Iev]n® Xn¿øIvkq{XØnt¶∂p `q—mbbp≈]pdØp

Nt{µm®sa∂ncn°n¬ `q—mbsb t\m°n \oßpw L\`qa[yØnt¶∂p

`tKmfa[yw. At∏mƒ `q—mbbn¶¬ D®ÿm\amIbm¬

Cµqt®m\m¿°tImSn°p X°hÆw D®\oNhymkm¿≤Øns‚

hr≤n{lmkßƒ. ChntSbpw ]ns∂ Cµqt®m\m¿°tImSn°pw

A¿t°m\N{µs‚ tImSn°pw c≠n\pw IqSn arKI¿°ymZnIƒ Ht∂

F¶n¬ A¿t°m\N{µs‚ tImSn^ew aµI¿ÆØn¶¬ [\w,

As√¶n¬ EWw F∂p \nbXw F∂p hcpw. hnt£]ap≈t∏mƒ

hnt£]Øns‚ tImSnbn¬ kwkvIcnt°≠p Cu tImSn^ew. bmsXmcp

{]Imcw aµkv̂ pSØnt¶∂v D≠m°nb hnt£]sØ h¿§n®v, CXns\

{]XnafieIem{]anXsa¶n¬ aµI¿Æh¿§Ønt¶∂v, aµI¿ÆhrØ

Iem{]anXsa¶n¬ aµI¿ÆhrØhymkm¿≤ambncn°p∂ {XnPybpsS

h¿§Ønt¶∂p If™p aqen®v hnt£]tImSnbn¶¬ CXn\p

kZriambncn°p∂ am\w sIm≠p≈ tImSn^esØ kwkvIcn°p∂q.

A{]ImcanhntSbpw N{µs‚ {]Yakv^pSØnt¶∂v D≠m°nb

hnt£]sØ h¿§n®v CXns\ {]YaI¿Æh¿§Ønt¶∂p  Xm≥

{XnPymh¿§Ønt¶∂p Xm≥ If™p aqen®v  hnt£]tImSnbn¶¬

ZznXobkv^pStImSn^esØ kwkvIcn∏q. ChnsS Zz nXob

kv^pSØn¶te A¥y^eamIp∂Xv Cµqt®m\m¿°tImSnPymhns‚

A¿≤w. CXp tbmP\mflIambn´ncnt∏m∂v. BIbm¬ CXnt\s°m≠v

A¿t°m\N{µs‚ `pPmtImSnPym°sf KpWn®v {XnPysIm≠p

lcn®p≠mIp∂ ZznXobkv^pSØns‚ `pPmtImSn^eßfpw

tbmP\mflIßfmbn´ncnt∏m Nneh7. BIbm¬ hnt£]tImSntbbpw

tbmP\mflIambn AXn¶¬ tImSn^ew kwkvIcnt°Ww. ]ns∂

36. Ombm-ew-_\w

36.7. B. F. Ccnt∏∂v
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CXns‚ h¿§Øn¶¬ `pPm^eh¿§tØbpw Iq´n aqen∏q. F∂m¬

N{µ_nw_L\`qa[ytØmSv CSbnse tbmP\Iƒ D≠mIpw. ]ns∂

`pPm^esØ {XnPysIm≠p KpWn®v Cu I¿Æw sIm≠p lcn®Xns\

N{µkv^pSØn¶¬ kwkvIcn∏q. kwkvImc{]Imcw ]ns∂.

Cµqt®m\m¿°tImSn aIcmZnsb¶n¬ ]q¿∆]£Øn¶¬ N{µt¶∂p

`pPm^ew Ifhq. A]c]£Øn¬ Iq´q. ]ns∂ I¿°ymZnbn¬

]q¿∆]£Øn¶¬ Iq´q, A]c]£Øn¬ Ifhq. ]ns∂ a[yKXnsb

]Øn¬ KpWn®v {XnPysIm≠p KpWn®v Cu ZznXobkv^pSI¿Æw

sIm≠p lcn∏q. ^ew ZznXobkv^pSKXn. Cßs\

ZznXobkv̂ pS{]Imcw. CXnt\s°m≠v L\`qa[yØn¶¬ tI{µambn

N{µ_nw_L\a[yØn¶¬ t\anbmbncn°p∂ hrØØn¶se

N{µkv^pSap≠mIpw. ]ns∂ CXnt¶∂p `q]rjvTØn¶encn°p∂

{ZjvSmhn¶¬ tI{µambncn°p∂ hrØØn¶se kv^pSap≠mIpw.

\Xew_\kwkvImcw sIm≠v AXns‚ {]ImcsØ sNm√p∂p. ChnsS

Ombbn¶¬ sNm√nb ew_\\ymbØn¶∂v Ipds™mt∂

hntijap≈q. Ombmam¿§ØqsS ew_n°p∂ {Klw

A]{Iaafiem\pkmtcW F{X \oßn F∂pw. {Klkv]rjvScmin

IqShrØm\pkmtcW F{X \oßnsb∂pw. Cßs\

Ombmew_\sØs°m≠p c≠p ]IpØn´p \ncq]n°p∂p. AhnsS

\tStØXn\p ‘ew_’sa∂p t]¿. AXp kv^pSm¥cambn´ncn°pw.

]n∂tØXn∂p ‘\Xn’sb∂p t]¿. AXp hnt£]ambn´ncn°pw.

ChnsS {]hl{`aWhim¬ bmsXmcn°¬  A]{IaafieØns‚

Hcp {]tZiw Ja-≤ysØ kv]¿in°p∂q At∂cØp

hnt£]an√msXbncn°p∂ {Klw A]{IaafieØn¶¬ Xs∂

Ccn°pw. At∂cØv A]{Iaafiew Xs∂ ZrMvafieamIp∂Xv.

F∂n v́ Ombmew_\amIp∂Xv A]{Iaafieam¿§ØqsS £nXnPw

t\m°n  AS™p F∂p tXm∂p∂Xv. ]ns∂ ZrIvt£]afieØn¬

{Klancn°p∂p F∂n´ v At∂csØ Ombmew_\sams°

kv̂ pSm¥cambn´ncn°pw. bmsXmcn°¬ ]ns∂ ZrIvt£]afieØn¬

{Klancn°p∂p. At∂cØv {Klkv]rjvScminIqShpw

XI. Ombm-{]-I-cWw
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ZrMvafiehpsamt∂bmIbm¬ ZrMvafieam¿t§W ew_n°p∂

Ombmew_\w A]{Iaafiehn]coXambn´ncn°pw. F∂n´p

Ombmew_\sams° hnt£]ambn´ncn°pw, kv^pSm¥csam´pan√8.

bmsXmcn°¬ ]ns∂ {Klkv]rjvScminIqShpw A]{Iaafiehpw

ZrMvafiehpw aq∂pw aq∂mbn´ncn°p∂q, At∂cØp aq∂nt‚bpw

kw]mXØnt¶∂p ZrMvafieam¿t§W 9ew_n°p∂ {Klw  B {Kl

kv]rjvS10cminIqShrØambncn°p∂Xnt¶∂pw A]{Ia

hrØØnt¶∂pw11 AIepw. AhnsS cminIqShrØØnt¶∂p≈

AIew kv̂ pSm¥cw12, A]{IaafieØnt¶∂p≈ AIew hnt£]w.

\tS hnt£]ap≠m°nbn´ncn°n¬ hnt£]m¥cambn´ncn°panXv.

AhnsS cminIqSm]{Iaßtfs°m≠p ]Zhn`mKw. CXn¶¬ henb

hrØambn´p ZrMvafietØbpw Iev]n®v, ZrMvafieØnte

Ja≤y{Klm¥cmfambncn°p∂ Ombsb hrØ{Xbkw]mXØn¶¬

aqehpw Ja[yØn¶e{Khpambn Iev]n®v B Ombm{KØn¶¬ \n∂pw

F{X AIeap≠v A]{Iaafiehpw {Klkv]rjvScmin13IqS

hrØhpsa∂dnhq.

AhnsS Ja[yØnt¶∂v A]{IahrØm¥cmfamIp∂Xp

ZrIvt£]Pymhv. ]ns∂ ZrIvt£]hrØhpw {Klkv]rjvScminIqS

hrØhpw Xßfnep≈ tbmKw cminIqSßfn¬ ]cam¥cmfw.

A]{IaafieØn¶¬ Cu ]cam¥cmfamIp∂Xp

ZrIvt£]e·{Klm¥cmfw. CXv ChnsS {]amW^eamIp∂Xv.

cminIqShrØtØmSp ZrIvt£]e·tØmSp≈ A¥cmfw

ZrIvt£]`mKØn¶te {XnPymhp {]amWamIp∂Xv. Cu

ZrIvt£]hrØØn¶¬ Xs∂ Ja[ycminIqSm¥cmfw

ZrIvt£]tImSnbmIp∂Xv. AXv C—bmIp∂Xv. Ja[yØnt¶∂v

36. Ombm-ew-_\w

36.8. kv^pSm¥cmfsam´pan√
9. F.  adds  Kan°p∂
10. H. kv]pjvS
11. C. F.  A]{IaafiehrØ
12. B. C.  kv]pSm¥cmfw
13. H.  {Klkv̂ pS
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{Klkv]rjvScminIqS14hrØm¥cmfw C—m^ew. CXn∂p

‘Zr§XnPym’sh∂p t]¿. Cu ZrIvt£]Zr§XnIƒ  Ombbv°p

`pPmtImSnIfmbncnt∏m Nneh, OmbmI¿Æambn´ncn°pw. CuhÆw

hrØ{Xbkw]mXØnt¶∂p at‰∏pdØv ZrMvafie`mKØn¶te

Ombmew_\mwiambncn°p∂ I¿ÆØn∂v `pPmtImSnIfmbn´ncn°pw

hnt£]kv̂ pSm¥cßƒ. ChnsS Ombm {]amWw, ZrIvt£]Zr§XnIƒ

{]amW^eßƒ, Ombmew_\an—m, \Xnew_\ßƒ C—m^eßƒ

F∂mInepamw.

]ns∂ ZrIvt£]Zr§XnItfs°m≠pXs∂ \Xnew_\ßsf

hcpØpInepamw. AhnsS Ombm {XnPymXpeybmIptºmƒ

`qhymkm¿≤tØmfw Ombmew_\w, CjvS—mbbm¬15 F{X.

F∂t]mse. ZrIvt£]Zr§XnIƒ {XnPymXpeyßfmIptºmƒ

`qhymkm¿≤en]vXmXpeyßƒ \Xnew_ßƒ, Cu

CjvSZrIvt£]Zr§XnIƒ°v F{X  \Xnew_\ßƒ F∂mInepamw.

F∂m¬ ZrIvt£]Zr§XnIsf `qhymkm¿≤tbmP\sØs°m≠p

KpWn®v Zr°¿ÆtbmP\w sIm≠p lcn∏q. AhnsS {XnPysIm≠p

KpWn°bpw lcn°bpw Dt]£n®pIfhq16, ^et`Zan√mbvIbm¬.

ChnsS ZrIvt£]e·Ønt¶∂p Ing°p {Klsa¶n¬ Ingt°m´p

XmgpIbm¬ `qa[ykv^pStØ°mƒ `q]r -jvTkv^pStadpw

ZrIvt£]e·Ønt¶∂v17, ]Sn™mdp {Klsa¶n¬ Ipdbpw. ]ns∂

hnt£]w Z£nWsa¶n¬ sXt°m´p XmgpIbm¬ ChnsS \Xn Z£nWw,

adn®v F¶n¬ DØcw. Fs∂√mw bp‡nkn≤w. Cßs\

\Xnew_\ßfpsS {]Imcw.

36. 14. D. om.  {Klkv]rjvScmin
15. D,F,   CjvSOmbbv°v F{X
16. B.  Dt]£n°mw
17. B. adds  amdn

XI. Ombm-{]-I-cWw
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37. Zr°¿Æm\b\{]Imcw

A\¥cw N{µ∂p hnt£]ap≈t∏mƒ Zr°¿Æw hcpØphm\mbn

s°m≠p Ombmi¶p°sf hcpØpt∂SØp hntijsØ sNm√p∂p.

ChnsS ZrIvt£]Zr§XnPym°sf h¿§n®p Iq´n aqen®Xv ,

Ombmhnt£]an√mØt∏mƒ OmbbpsS tImSni¶phmIp∂Xv

F√mbvt∏mgpw F∂v \n-bXw. Cßs\ Ombmi¶p°sf D≠m°n

`qhymkm¿≤tbmP\w sIm≠p KpWn®v {XnPysIm≠p lcn® ^eßƒ

Zr°¿Æw hcpØpt∂StØ°p ̀ pPmtImSn^eßƒ, tbmP\mflIßƒ

Xm\pw. ]ns∂ tImSn^esØ ZznXobkv^pStbmP\I¿ÆØnt¶∂p

If™ tijØns‚ h¿§tØbpw `pPm^eh¿§tØbpw Iq´n aqen∏q.

AXp Zr°¿ÆtbmP\amIp∂Xv.

38. hn£n]vXN{µs‚ Ombmi¶p°ƒ

]ns∂ hnt£]ap≈t∏mƒ N{µs‚ Ombmi¶p°sf hcpØpw

{]Imcw. ChnsS A]{IaafieØnt¶∂p hn£n]vX{KlØns‚

CjvShnt£]tØmfw AI∂n´ v Hcp hrØsØ Iev]n∏q.

A]{IaafietI{µØnt¶∂v CjvShnt£]tØmfw AI∂ncn°pw

tI{µhpw. bmsXmcp{]Imcw LSnImafieØn∂v kzmtlmcm{Xw,

A∆Æancn°panXv.  CXn\v ‘hnt£]tImSnhrØ’sa∂pt]¿.  CXn¶¬

{Klkv]rjvScminIqShrØw kv]¿in°pt∂SØncn°pw {Klw. ChnsS

\sS DZbmkvXe·ßfmIp∂ A]{Ia£nXnPkw]mXßfnepw

Ja[yØn¶epw kv]¿in®ncn°p∂ e·kaafiew,

ZrIvt£]afiew, £nXnPw F∂nh aq∂p hrØßsfs°m≠p

tKmfhn`mKw Iev]n®v AhnsS henb hrØambn´ v

A]{IaafietØbpw1 Iev]n -∏q . B A]{IaafieØn∂v

e·kaafietØmSp≈ ]cam¥cmfw ZrIvt£]PymhmIp∂Xv. £nXn

37. Zr°¿Æm-\-b-\-{]-Imcw

38.1. H.  afietØbpw
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Pm]{IaßfpsS ]cam¥cmfw ZrIvt£]tImSn. CXp {]amW^ew.

{XnPymhp {]amWw. £nXnPm]{IatbmKØnt¶∂p {KltØmSp≈

A¥cmfw A]{IaafieØn¶teXv C—. {KlØnt¶∂p

£nXnPm¥cmfw C—m^ew. CXp hn£n]vX{KlØns‚

i¶phmIp∂Xv. ZrIvt£]Zr§XnPymh¿KvKßsf Iq´n aqen®Xv

OmbbmIp∂Xv.

]ns∂ hnt£]tImSnhrØØn¶se {KlØns‚

i¶p—mbIƒ°p≈ hntijw. ChnsS e·kaafiehpw

A]{Iaafiehpap≈ ]cam¥cmfsam∂mbn´ncn°p∂

Ja[yZrIvt£]e·m¥cmfZrIvt£]hrØ`mKw ZrIvt£]amIp∂Xv.

]ns∂  ZrIvt£]e·Ønt¶∂p hnt£]tImSnhrØm¥cmfw

ZrIvt£]hrØØn¶teXv hnt£]w. hnt£]Zrt£]ßfpsS

tbmKwXm\¥cw Xm≥ sNbvX Ja[yØnt¶∂p

hnt£]tImSnhrØØns‚ A¥cmfw ZrIvt£]hrØØn¶teXv.

CXn∂p ‘\Xn ’sb∂p t]¿. CXns‚ tImSn hnt£]tImSn.

hrØ£nXnPßfpsS ]cam¥cmfw ZrIvt£]hrØ`mKw. CXn∂p

‘]ci¶p’sh∂p t]¿. ChnsS bmsXmcp {]Imcw A£m]{IaßfpsS

tbmKm¥cßtfs°m≠pw ew_Im]{IaßfpsS tbmKm¥cßsf

s°m≠pw A¥cmfßsfs°m≠pw Z£ntWmØchrØØn¶te

a≤ym”—mbmi¶p°ƒ D≠m°p∂q, AhÆw ZrIvt£]hrØØn¶¬

ZrIvt£]hnt£]tbmKm¥cßtfs°m≠pw ZrIvt£]tImSn

hnt£]ßfpsS tbmKm¥cßtfs°m≠pw \Xnbpw ]ci¶phpw hcpw.

ChnsS e·{Klm¥cPymhv C—bm°n Iev]n®ncp∂Xns\

{]amWamIp∂ {XnPybnt¶∂p Ifhq. tijsØ C—bm°n Iev]n°mw.

At∏mƒ {]amtW—IfpsS ^em¥cw C—m^eambn´p≠mIpw.

ChnsS {Klkv]rjvScminIqShrØhpw ZrIvt£]hrØhpw
2Xßfnep≈ A¥cmfØn¶te A]{Iaafie`mKØns‚3 ictØ

XI. Ombm-{]-I-cWw

38. 2. B,H.  Xßfne¥cmfØn¶se
3. B. A]{IahrØ`mKØns‚
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\tS hcpØp∂Xv. ]ns∂ Cu icsØ  hnt£]tImSnsIm≠p KpWn®v

{XnPysIm≠p lcn®m¬ ^ew {Klkv]rjvScminIqShrØhpw

ZrIvt£]hrØhpw Xßfnep≈ A¥cmfØn¶se hnt£]tImSn

hrØØn¶te icambn´p hcpw. ]ns∂ hnt£]tImSnhrØØn¶te

icsØ ZrIvt£]tImSnsIm≠p KpWn®p {XnPysIm≠p lcn®

^esØ ]ci¶phnt¶∂p Ifhq. tijw hnt£]tImSnhrØØn¶¬

\nev°p∂ {KlØns‚ CjvSi¶p. ChnsS ]ci¶phnt\s°m≠p

KpWn°n¬ {XnPysIm≠p lcn° tbmKya√. £nXntPm∑fiem¥cmf

kwkvIrXambn´ncn°p∂ hnt£]tImSnsbs°m≠p lcn°

tbmKyamIp∂Xv. bmsXmcp {]Imcw kzmtlmcm{XhrØØn¶te

D∂XPymhnt\Øm≥ \XPymhns‚ ictØØm≥

ew_IsØs°m≠p KpWn®p {XnPysIm≠p lcn® ^ew

CjvSi¶pXm≥ a≤ymt”jvSiwIz¥cw Xm≥ Bbn´p hcp∂p. ChnsS

a[ym”i¶phnt\s°m≠p KpWn°n¬ {XnPysIm≠√ lcnt°≠p.

£nXnPØn∂p aotØ kzmtlmcm{X`mKambn kzmtlmcm{X

hymkm¿≤Øn¶¬ £nXnPym kwkvIcn®ncn°p∂Xns\s°m≠p

lcnt°≠p, A∆ÆanhnsS ew_Iÿm\obambncn°p∂Xv

ZrIvt£]tImSn, a[ym”i¶pÿm\obamIp∂Xp ]ci¶p.

ChnsS LSnImafieØns‚ Ncnhpt]mse kzmtlmcm{XßfpsS

Ncnhv, A]{IahrØØns‚5 Ncnhpt]mse hnt£]tImSnhrØØns‚

sNcnhv6. F∂n´p Xpeykz`mhßfmIbm¬ \ymbkmayap≠v.  Cßs\

i¶p hcpw.

A\¥cw Ombm. AhnsS hnt£]ZrIvt£]tbmKw

Xm\¥cwXm\mIp∂Xp bmsXm∂v AXp hnt£]tImSn

hrØØn¶∂p e·-k-a-a-fi-e-tØm-Sp≈ A¥-cm-fw, ZrIvt£-]-hr-Ø-

Øn-¶teXv. CXn∂v ‘\Xn’ sb∂p t]cm-Ip-∂p.

38. 4. H.  lcn°b√, tbmKyamIp∂Xv
5. C.  A]{IafieØns‚
6. B.  s‚bpw Ncnhv

38. hn£n]vX N{µs‚ Ombm-i-¶p-°ƒ
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]ns∂ {Kl-tØm-Sp ZrIvt£-]-hrØ-tØm-Sp≈7 A¥-cmfw hnt£-

]-tImSn hrØ-Ø-n¶-teXv bmsXm∂v CXns‚ Pym_mWßsf D≠m°q.

ZrIvt£]e·N{µm¥cPym_mWßsf hnt£]tImSnsbs°m≠v

KpWn®v {XnPysIm≠p lcn® ^eßfh8. CXn¬ _mWsØ

apºnep≠m°n ]ns∂ Cu _mWsØ ZrIvt£]Pymhns\s°m≠p

KpWn®v {XnPysIm≠p lcn∏q. ^ew _mWaqeØnt¶∂p

_mWm{KØn∂v F{X Ncnhp≠v F∂Xmbn´p hcpw. CXns\

ZnKvt`ZkmayØn\p X°hÆw apºn¬ sNm√nb \Xnbnt¶∂p

Iq´pIXm≥ IfIXm≥ sNøq. AXp _mWaqeØnt¶∂p

Ja[ytØmSp≈ A¥cmfap≠mIpw. ChnsS sNm√nb

`pPmaqeØnt¶∂mInepamw. Cu \ymbw sIm≠p Xs∂

`pPm{KØn¶te {KlØnt¶∂p  e·kaafietØmSp≈ A¥cmfw

BIp∂Xv CXpXs∂ F∂phcpw. CXn∂p ‘_mlp’ F∂pt]¿. ]ns∂

CXns\bpw apºn¬sNm√nb `pPtbbpw h¿§n®p Iq´n aqen∏q. F∂m¬

Omb D≠mIpw. Cßs\ i¶p—mbIsf hcpØpw{]Imcw.

CXnsem∂ns\ \tS C∆Æap≠m°n {XnPymh¿§m¥caqew sIm≠v

at‰Xnt\bpap≠m°mw.

[KWn-X-bp‡n`mj-bn¬

Ombm-{]-I-cWw F∂

]Xns\m-∂ma-≤ymbw kam]vXw]

XI. Ombm-{]-I-cWw

38. 7. F. adds.   hnt£]tØmSp≈
8. F.  ßfnh
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A≤ymbw ]{¥≠v
 {KlWw

1. {Kmly_nw_hpw {KlWImehpw

Cßs\ N{µs‚ i¶p—mbIsf D≠m°n, Cht‰s°m≠v

Zr°¿ÆtbmP\ap≠m°n, Zr°¿ÆtbmP\sIm≠v ew_\en]vXbpw

D≠m°n, BZnXyt‚bpw N{µt‚bpw kv^pSØn¬ Xs‚  Xs‚

ew_\en]vXIsf kwkvIcn®m¬ bmsXmcn°¬ kv̂ pSkmayw hcp∂q

At∏mƒ {KlWa[yImew. ]ns∂ Zr§Xnbnt¶∂p Xs∂ ew_\Imew

hcpØpIbpamw. AhnsS Zr§Xn {XnPymXpeybmIptºmƒ \mep\mgnI

ew_\w, CjvSZr§Xn°v F{X \mgnI ew_\sa∂v ss{XcminIw.

ChnsS ZrIvt£]Zr§Xn {XnPymXpeyßfmIptºmƒ

`qhymkm¿≤Xpeyßƒ KXnew_\tbmP\ßƒ F∂p \nbXw. ]ns∂

a[ytbmP\I¿ÆØn\p {XnPymXpeyßƒ IeIsf∂pw \nbXw.

F∂m¬ Cßs\ D≠mIp∂ ew_\en]vXIsf kv^pSKXnsIm≠p

KpWn®v a[yKXnsIm≠v lcn∏q. F∂m¬ ew_\w `tKmfIeIfmw.

F∂m¬ a[ytbmP\I¿Æhpw a≤yKXnbpw Xßfn¬ KpWn®v

`qhymkm¿≤tbmP\sIm≠p lcn∏q. ^ew ‘Asku kImax’ (51770)
F∂v. ]ns∂ ZrIvt£]Zr§-Xn-Isf kv^pS-K-Xn-sIm≠p KpWn®v

‘Asku- k-Imax ’ F∂XpsIm≠p lcn∏q. ^eßƒ

ZrIvt£]Zr§XnIƒ F∂pap≠m°mw. Cßs\ ew_\ImesØ

D≠m°n ]¿∆m¥Øn¬ kwkvIcn∏q. ]ns∂ At∂csØ

ZrIvt£]e·tØbpw {KltØbpap≠m°o´v ew_\ImesØ

D≠m°n ]¿∆m¥Øn¶¬ kwkvIcn∏q. Cßs\ AhnsS Ahntijn∏q.

ChnsS F{X ew_\en]vXIƒ F∂dnt™ kaen]vXImew

Ft∏msf∂dnbmhq. kaen]vXImeadnt™  ew_\en]vXbdnbmhq,

F∂n v́ Ahntijnt°≠p∂p.
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Cßs\ D≠m°nb ImeØn¶¬ kv^pSm¥can√mbvIbm¬

N{µm¿°∑m¿Ifn¬ Ing°p]Sn™md¥can√, \Xnhnt£]ßƒ°p

X°hÆw sX°phS°¥ctabp≈p. AXv F{X F∂dn™n v́, AXns\

_nw_m¿≤ßfpsS tbmKØnt¶∂p Ifhq. tijw {Kln®ncn°p∂

{]tZiw.

]ns∂ _nw_L\a[ym¥cw _nw_tbmKm¿≤tØmfw

D≠mIptºmƒ _nw_t\anIƒ Xßfn¬ kv]¿in®ncn°pw. At∏mƒ

{KlWØns‚ Bcw`mhkm\ßƒ. CXn¬ _nw_m¥ctadptºmƒ

{KlWan√, t\ankv]¿iw  hcmbvIbm¬.

2. CjvS{KlWImew

]ns∂ CjvSImeØn¶¬ ew_\w kwkvIcn®ncn°p∂

N{µm¿°∑mcpsS kv̂ pSm¥ctØbpw kv̂ pShnt£]tØbpw h¿§n®p

Iq´n aqen®Xv Xev°meØn¶te _nw_L\a[ym¥cmfw. CXns\

_nw_en]vXIfpsS tbmKm¿≤Ønt¶∂p Ifhq. tijn®Xv At∂csØ

‘{KlW{]tZiw’. Cßs\ C∂ t\cØv C{X {KlWsa∂dnbqw

{]Imcw.

]ns∂ {Kln®ncn°p∂ ̀ mKw C{XbmIptºmƒ ImetaXv F∂dnhm≥

{Kln® `mKsØ _nw_tbmKm¿≤Ønt¶∂p If™Xv

_nw_L\a[ym¥cmfamIp∂Xv. CXn∂p ‘_nw_m¥c’sa∂p t]¿.

CXnt\s°m≠p  ImesØ hcpØq. _nw_m¥ch¿§Ønt¶∂p

kv^pShnt£]h¿§sØ If™p aqen®Xp kv^pSm¥camIp∂Xv.

]ns∂ Zn\KXy¥cØn∂vv Adp]Xp \mgnI, kv^pSm¥cØn\v F{X

\mgnI F∂v ImesØ hcpØn, ]¿∆m¥ImeØn¶¬ kwkvIcn∏q.

]ns∂ A°metØ°p kv^pShnt£]sØ hcpØn h¿§n®v

CjvS_nw_tbmKm¿≤h¿§Ønt¶∂p If™p aqen®Xv

‘kv^pSm¥c ’amIp∂Xv. ]ns∂ Cßs\ Ahntijn®p h∂Xv

CjvS{KlWØns‚ ImeamIp∂Xv. ]ns∂ {KlWa[yImeØnt¶∂p

XII. {KlWw
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apºnepw ]nºnepw _nw_tbmKm¿≤tØmfw _nw_m¥c

amIptºmtf°v CuhÆw ImesØ hcpØq. \Xnew_\hnt£]ßsf

Ahntijn®v Ah kv]¿itam£ImeßfmIp∂h.

ChnsS {KlWØn¶¬ kv^pSkmayw hcp∂ Imew \tS

Adntb≠phXv. AhnsS BZnXy¶¬ \n∂v N{µ≥ Bdp cmin

AIt∂SØp s]u¿Æamkym¥w. B N{µs\ `q—mb adbv°p∂Xp

‘N{µ{KlW’amIp∂Xv.

Aamhmkym¥yØn¶¬ N{µ≥ kqcys\ adbv°p∂Xv

kqcy{KlWamIp∂Xv. AhnsS BZnXymkvXabØn¶¬ ASpØv

{KlWßfmsems∂¶n¬ AhntS°p N{µm¿°∑mtc hcpØq.

DZbØn\SpsØ¶nehntS°p1 hcpØq. AhnsS N{µ≥ GdpIn¬

ta¬ta¬ AIetadntbdn hcpw. N{µkv^pSw IpdIn¬ ta¬ta¬

AWhp hcpw. ]ns∂ KXy¥ctØs°m≠p tbmKImesØ hcpØq2.

3. _nw_m¥cm\b\w

A\¥cw _nw_m¥cßsf1 hcpØpw {]Imcw. AhnsS A¿°-

N{µXa- p-I-fpsS _nw_-ßƒ `qantbmSWbpt∂cØp hepXv F∂p

tXm∂pw. AIept∂cØp sNdpsX∂p tXm∂pw.

J`qay¥cI¿ÆØns‚ hen∏Øn\p X°hÆw _nw_Øns‚ AIew.

`qanbnt¶∂v AIeptºmƒ sNdp∏w2. I¿ÆØns‚ hep∏Øn\p

X°hÆw _nw_Øns‚ sNdp∏w. BIbm¬ I¿ÆtØs°m≠p

_nw_sØ hcpØpt∂SØv hn]coXss{X{XcminIw th≠phXv.

AhnsS _nw_IeIƒ°p {]Xn£Ww t`ZamIp∂p. _nw_tbmP\

F√mbvt∏mgpw H∂pXs∂. AhnsS kv^pStbmP\I¿ÆØn¶¬

{XnPymXpeyßƒ IeIƒ, _nw_tbmP\Øn¶¬ F{Xsb∂p

2. CjvS-{K-lWImew

2. 1. B.  DZbtØ°p
2. F reads  A\¥cw A¥csØs°m≠p tbmK^esØ

3. 1. B. _nw_m¥cIe
2. H. hep∏w



988

ss{XcminIamIp∂Xv. AhnsS A¿°N{µ_nw_ßfpsS

tbmP\hymkßsf3 {XnPysIm≠p KpWn®p tbmP\mflIambncn°p∂

J`qay¥cI¿Æw4 sIm≠p lcn∏q. ^ew IemflIambncn°p∂

_nw_hymkw5. ChnsS Zr°¿Æw sIm≠p lcnt°≠p

hykvXss{XcminIamIbm¬. [hykvXss{XcminI^ean—m`‡w

{]amW^eLmX] {_“-ÿp-S-knZv[m¥w, KWn-X, 11) F∂mWt√m

hn[n.

4. _nw_am\w

AhnsS tXtPmcq]nbmbn1 Dcp≠p s]cnsI hensbm∂mbn´ncnt∏m∂v

BZnXy_nw_w2. CXnt\°mƒ sNdpXmbn´ncn°ps∂m∂p3 `q_nw_w.

CXn∂v A¿°m`napJambncn°p∂4 ]mXn {]Imiambncn°pw. at‰∏mXn

Xa mbn´ncn°pw. CXv ‘`q—mb’bmIp∂Xv5. CXp NphSp hepXmbn A{Kw

Iq¿Øncns∏m∂v6. AhnsS BZnXy_nw_w hepXmIbm¬ ̀ qaosS ]pdta

t]mIp∂ civanIƒ BZnXy_nw_t\ao¶teh, civanIsfms° Xßfn¬

IqSpw. AhnsS `q—mbbpsS A{Kw. CXn∂v BZnbn¶¬

`qhymkm¿≤tØmSp Xpeyw hymkw. ]ns∂ {IaØmse Dcp≠p

Iq¿Øncnt∏m∂v. BZnXys‚ t\anbn¶se civanIƒ `q]m¿izØn¶¬

kv]¿in®p `qaosS adp]pdØp Xßfn¬ IqSpw. AhnsS BZnXyt¶∂p

`qan J`qay¥cI¿ÆtbmP\tØmfaIeØv. Cu AIeØn\p

`qhymktØmfaW™p _nw_t\aot¶∂p ]pds∏´q civanIƒ. F∂n v́

A¿°`qhymkm¥ctØmfw kwIpNnXamhm≥ tbmP\mI¿ÆtØmfw

3. 3. H hymkm¿≤ßsf
4. F. A¥cmfI¿Æw
5. B. IemflI_nw_hymkw

4. 1.. B.C.E. cq]-ambn
2. B. hen-sbmcp hkvXp kqcy-_nw_w
3. B. sNdn-sbm∂v
4. B. apJ-amb
5. B. CXp `q—mb
6. B. Iq¿Øn-cn°pw

XII. {KlWw
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AIew, `qhymktØmfw kwIpNnIXamhm≥ F{X AIesa∂p

`q—mbbpsS \ofap≠mIpw. ]ns∂ `q—mbbv°v A{KØnt¶∂p

aqeØn¶¬ `qhymktØmfw tbmP\hymkw, A{KØnt¶∂p

N{µam¿§Øn¶temfw sNt∂SØv F{X `q—mbmtbmP\hymksa∂v

N{µI¿Æw Du\ambncn°p∂7  ̀ q—mbmssZ¿LysØ ̀ qhymkw sIm≠p

KpWn®p `q—mbmssZ¿Lyw sIm≠p lcn∏q. ^ew N{µam¿§Øn¶te

`q—mbmtbmP\hymkw. CXn∂p N{µs\t∏mse en]vXmhymksØ

hcpØq. Cßs\ {Kmly{KmlI_nw_ßsf hcpØpw {]Imcw. Cu

_nw_ßtfs°m≠p aqºn¬ sNm√nb kv]¿iat[yjvS{KlWßsf

Adntb≠q.

5. {KlWmcw`hpw kwÿm\hpw

A\¥cw GXp]pdØp {KlWw XpSßp∂q, Fßs\

CjvSImeØn¶¬ kwÿm\w F∂Xnt\bpw Adnbpw {]Imcw. AhnsS

kqcy{KlWw XpSßpt∂cØp N{µ≥ ]Sn™mtd ]pdØn∂p

Ingt°m´p \oßn´v BZnXy_nw_Øns‚ ]Sn™mtd∏pdØp

t\anbn¶¬ HcnSw adbpw. AXv FhnSw F∂p \ncq]n°p∂Xv. AhnsS

N{µhnt£]an√1 F∂ncn°ptºmƒ N{µ_nw_L\a[yØn¶epw

BZnXy_nw_L\a[yØn¶epw IqSn kv]¿in®ncps∂m∂v

A]{Iaafiew. AhnsS BZnXy_nw_L\a[yØnt¶∂p Xs‚

]Sn™mdp ]m¿izØn¶¬ bmsXmcnSØv A]{IaaWvUew

]pds∏Sp∂p, AhnSw hnt£]an√mØ N{µs‚ _nw_w sIm≠p \tS

adbp∂Xv. AhnsS BZnXys‚ kzmtlmcm{Xhpw

Xev°mekzmtlmcm{XhrØhpw _nw_L\a[yØn¶¬

kv]¿in®ncns∏m∂v. AXp \nc£tZiØn¶¬ t\scIng°p

]Sn™mdmbn´ncn°ps∂m∂v. BIbm¬ AhnsS t\tc ]Sn™mdp

]pdØp kzmtlmcm{XhrØØns‚ ]pd∏mSv.

4. 7. H.I¿Æ-am-bn-cn-°p∂
5. 1. B. C. D N{µ\v hnt£]w C√

4. _nw_-am\w
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6. Ab\he\w

]ns∂1 kzmtlmcm{XhrØØnt¶∂v A]{IahrØØn\p

Ncnhp≠mIbm¬, t\tc ]Sn™mtd ]pdØn\v H´p sX°pXm≥  hS-

°p-Xm≥ \oßntbSØv A]{IahrØØns‚ ]pd∏mSv. BIbm¬

BZnXy_nw_Øns‚2 t\tc ]Sn™mtd∏pdØq∂v A{X \oßntbSØp

At∂cØv {KlWkv]¿iw. Cu \o°Øn\v ‘Ab\he\’sa∂p t]¿.

]ns∂ CsX{Xsb∂dnhm≥. AhnsS A]{IahrØØn¶te

Z£nWmb\m¥w Z£ntWmØchrØØn¶¬ kv]¿in®p a[y-e-·-am-

bn -´ n -c n -°p -amd v ]q¿∆-hn -jp -h -Ø, DZbe·amIpamdmbn´ v

Z£nWmb\m¥Ønt¶∂v Hcp cmin sNt∂SØp ]q¿∆I]meØn¶¬

BZnXy≥, Cßs\ Iev]n®n´p \ncq]n°p∂p. AhnsS A]{IahpØhpw

kzmtlmcm{XhrØhpw Xßfnep≈ kw]mXw

BZnXy_nw_L\a[yØn¶¬. AhnSp∂p t\tc ]Sn™mtdm´p

kzmtlmcm{XhrØØns‚ ]pd∏mSv. AhnS∂v H´p sX°p \oßo´v

A]{IahrØØns‚ ]pd∏mSv. Cu A¥cw F{X F∂dntb≠phXv.

AhnsS L\`qa[yØnt¶∂p Z£ntWmØchrØhpw

A]{IahrØhpw Xßfnep≈ kw]mXØn¶¬ A{Kambncn°p∂

hymkm¿≤Øn¶¬ icambncnt∏m Nneh A]{IahrØØn¶te

tImSnPym°fmIbm¬ B kq{XØn¶¬ tImSnPym°fpsS aqeßƒ.

]ns∂ Z£ntWmØcm]{IahrØßfpsS kw]mXØnt¶∂p

XpSßo´v BZnXy_nw_L\a[yØne{Kambn´ v Ccn°p∂

tImSnNm]Øn\v Hcp Pymhns\ Iev]n∏q. ]ns∂ BZnXy_nw_Øns‚

]Sn™mtd ]m¿izØn¶¬ A]{IahrØw ]pds∏Spt∂SØv

A{Kambn v́ Hcp tImSnPymhns\ Iev]n∏q. F∂m¬ Ch c≠nt‚bpw

aqew a[ye·Øn¶e{Kambncn°p∂ hymkkq{XØn¶¬ kv]¿in°pw.

6. 1. Cu
2. kqcy-_nw-_-Øn\v

XII. {KlWw
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AhnsS _nw_L\a[yØn¶e{Kambncn°p∂ 3Iotgt\ansb

kv]¿in°pw. hymkkq{XØn¶te tImSnaqem¥cw

t\ao¶e{Kambncn°p∂ aotØ kv]¿in°pw. Cu tImSnPymaqem¥cw

tImSnJfisa∂p \nbXw. ]ns∂ L\`qa[yØnt¶∂p

Ja[yØn¶e{Kambncnt∏mcp Du¿≤zkq{XsØ Iev]n∏q. ChnsS

Ab\m¥w. Z£ntWmØchrØsØ kv]¿in®ncn°ptºmtf

Ab\m¥chpw Du¿≤zkq{Xhpw Xßfnep≈ ]cam¥cmfw

]cam]{Iaambn´ncn°pw.

]ns∂ _nw_L\a[ym{Kambncn°p∂ tImSnPymaqew

Ab\m¥kq{XØn¶¬ bmsXmcnSØp kv]¿in°p∂q, AhnS∂v

Du¿≤zkq{XtØmSp≈ A¥cmfw CjvSm]{IaXpeyw. ]ns∂

_nw_t\anbn¶e{Kambncn°p∂ tImSnPymhns‚ aqeØnt¶∂v

Du¿≤zkq{Xm¥cw CjvSm]{IatØ°mƒ Gdo´ncn°pw. Cu

Gdnb`mKw `pPmJfiØns‚ A]{Iaambn´ncn°pw. Cu

`pPmJfim]{IatØmSp Xpeyambncn°pw Ab\he\w.

_nw_{]XyKv`mKØn¶te t\anbn¶te kzmtlmcm{X

hrØm]{IahrØkw]mXßfpsS ]pd∏mSns‚ A¥cmfw bmsXm∂v,

AXmbn´ncn°pw Cu `pPmJfim]{Iaw. ChnsS Nm]Jfi

a[yØn¶e{Kambn´ncn°p∂ tImSnPymhns\s°m≠p `pPmJfisØ

hcptØ≠q. L\a[yØn¶e{Kambn´ncn°p∂Xp kv^pStImSn.

L\a[ytØmSp t\antbmSp≈ A¥cmfw Nm]JfiamIbm¬

_nw_NXpcwiw t]mb kv^pStImSnNm]Pymhns\s°m≠p

_nw_m¿≤w kakvXPymhmbn C—mcminbmbncn°p∂Xns\ KpWn®v,

hymkm¿≤w sIm≠p lcn® ̂ ew ̀ pPmPymJfiambn´p≠mIpw4. ]ns∂

CXns\ ]cam]{Iaw sIm≠p KpWn®v, hymkm¿≤w sIm≠v lcn®^ew,

‘Bb\he\’amIp∂Xv. AhnsS tImSnPymhns\ \tS ]cam]{Iaw

6. 3. C.D.reads. Iogpkv]¿in-°p∂ hymkkq{X-Øn-¶se tImSnapem-¥cw `pPm-J-fi-
t\-ao-¶e{K-am-bn-cn-°p∂Xv, antØ kv]¿in°pw. Cu tImSn-Pym-aq-e-hym-k-kq-{Xm-¥-c-
Øn-¶-teXv `pPm-Pymaq-e-Jfi-am-bn-cn°pw. `pPm-aq-em-¥cw tImSnJfi-sa∂p \nbXw.
4. C. `pPm-J-fi-am-bn-´p-≠mIpw

6. Ab-\-h-e\w
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sIm≠pKpWn®v hymkm¿≤w sIm≠p lcn®v5 tImSnPym A]{Iaambn´p

hcpØmw ^e-t -̀Z-an√. Cßs\ Bb\w he\w.

7. A£-h-e\w

]ns∂ km£-tZ-i-Øn-¶¬ Cu kzmtlm-cm-{X-hr-Øhpw IqSn-®-cn-™n-

cn-°-bm¬ A®-cn-hns\1 Adn-bm-\mbns°m≠v Ahn-tS°p t\tc Ing°p

]Sn-™m-dm-bn´v Hcp hrØsØ Iev]n-∏q. CXp ka-a-fi-e-Øn-t¶∂p

Xev°m-e-—m-bm-̀ p-P-tbmfw tI{µhpw t\anbpw F√m-b-h-b-hhpw \oßn-

bn-cp-s∂m-∂v. LSn-Im-a-fi-e-Øn\v. bmsXmcp {]Imcw kzmtlm-cm{Xw,

A∆Æw Ccp-s∂m-∂nXv ka-a-fi-e-Øn∂v. CXn∂p “Omb-mtIm-Sn-hrØ”
sa∂p t]¿. ChnsS Ombm-tImSnhrØ-Øn\pw kzmtlm-cm-{X-hr-Ø-

Øn\pw A]-{I-a-hr-Ø-Øn\pw IqSn tbmK-ap-≠v _nw_-L-\-a-≤y-Øn-

¶¬. t\an-bn-¶¬ ]ns∂ aq∂pw aqt∂-SØp ]pd-s∏-Spw. AhnsS BZn-

Xy-_nw-_Øns‚2 t\tc ]Sn-™m-td-∏p-dØp ]pd-s∏Spw Ombm-

tImSnhrØw. CXn-t¶∂p sXt°m´p Ncn-™p-≈p kzmtlm-cm-{X-hrØw3.

BI-bm¬ Z£n-tWm-Ø-c-hr-Ø-Øns‚ Ing-t°-∏p-dØv BZn-Xy-s\¶n¬

]Sn-™m-td-∏pp-dØv sX°p \oßn kztlm-cm-{X-Øns‚ ]pd-∏mSv. ]ns∂

Z£n-tWm-ØchrØ-Øns‚ ]Sn-™m-td-∏p-dØv {Kl-sa-∂n-cn-°n¬

hS°p \oßn kzmtlm-cm{XØns‚ ]pd-∏mSv. Cu \o°-Øn\v “B£w

he-\”sa∂p t]¿.

8. he-\-Zz-b-kw-tbmKw

Cßs\ D≠mb he-\-ßƒ c≠n-t\bpw Zn°v Hs∂-¶n¬1 Iq´p-Ibpw

cs≠-¶n-e-¥-cn-°bpw2 sNbvX-Xv, C—m-tIm-Sn-hr-Ø-tØmSv A]-{I-a-

6. 5. F. adds. ^ew
7. 1. D. C®-cn-hns\

2. B. kqcy-_nw-_-Øns‚
3. C.E.F. kzmtlm-cm-{X-hr-Ø-Øns‚

8. 1. F. H∂m-In¬
2. C. c≠m-In¬

XII. {KlWw
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hrØtØmSp≈ A¥-cm-f-ap-≠m-Ipw. _nw_-t\-an-bn-¶te AXv km£-

tZ-i-Øn-¶te he-\-am-Ip-∂-Xv hnt£-]-an-√m-Ø-t∏mƒ. hnt£-]-

ap≈t∏mƒ ]ns∂ AXn-t¶∂p hnt£-]-Zn-°n-¶¬ hnt£-]-tØmfw3

\o°-ap-≠v. AhnsS ss{Xcm-inIw sIm≠p \tS hcp∂4 hnt£]w

_nw_m-¥-c-Øn-¶-te-Xm-bn-´n-cn°pw5. BI-bm¬ hnt£-]sØ A¿°-

_nw-_m¿≤w sIm≠p KpWn-®v, _nw_m-¥-cw-sIm≠p lcn-∏q. ̂ e-w BZn-

Xy-_nw-_-t\-an-bn-¶te hnt£-]-h-e\amIp-∂-Xv. Cßs\, CXn\p X°

h-Æhpw IqSn \oßpw _nw_-t\-an-bn-¶¬ kv]¿i{]-tZihpw tam£-{]-

tZ-ihpw. ]ns∂ _nw_t\an-bn-¶¬ Ing-t°-∏p-dØv AXn-\p X-°-h-Æw

he-\-Øns‚ Zn°p-Iƒ hn]-co-X-am-bn-´n-cn-°pw Ft∂ hnti-j-ap-≈p.

ChnsS BZn-Xy≥ {Kln-°-s∏-Sp-∂-Xm-I-bm¬ BZn-Xys\ {Kmly-{K-l-
6sa∂p sNm√p-∂p. ChnsS Cßs\ he-\-ß-fpsS ss{Xcm-inIw Bb-

\Øn-¶-teXp sNm√o-Xm-bn. AXp Xs∂ B£-Øn-¶-te°pw \ymbw.

CuhÆw Ombm-tImSn˛kzmtlm-cm-{X-hr-Ø-ßƒ°p _nw_-L-\-a-[y-

Øn-¶¬ tbmKw, Z£n-tWm-Ø-c-hr-Ø-Øn-¶¬ ]c-am-¥-cm-fw. AXp

Xev°m-e-\-tXm-Xv{I-a-Pym-hns‚ A£mw-i-am-bn-´n-cn-°pw. {Kl-tØmSp

Z£n-tWm-Ø-c-hr-Ø-tØmSp≈ A¥-cmfw kzmtlm-cm-{X-hr-Ø-Øn-¶-

teXp \Xnb-t√m. F∂n´v ChnsS \X-Pymhp tImSn-bm-Ip-∂-Xv7.

A¥y-m]-{I-a-ÿm-\obw A£-am-I-bm¬ \X-Pym-£-Pym-°ƒ Xß-

fn¬ KpWn®v {XnPy-sIm≠p lcn-®Xv B£w- h-e-\-am-Ip-∂-Xv. A£-h-

e-\sØ D≠m°n {Kmly-_nw-_sØ hc®v AXn¬ ]q¿∆m-]-c-tc-Jbpw

Z£n-tWm-Ø-c-tc-Jbpw D≠m°n ]q¿∆m-]ctc-Jm-{K-ß-fn¬ \n∂v {XnPym-

hr-Ø-Øn-¶-teXp, {Kmly-_nw-_m¿≤-Øn-¶-te°v F{X F∂v {Kmly-

_nw-_-t\-an-bn-¶te he-\w.

8. 3. F. hnt£-]-tØm-fhpw
4. D. hcp-Øp∂
5. F. hcpw
6. B. {Kmln-sb∂p sNm√p∂p
7. E. F. tImSn-Pym-hm-Ip-∂Xv

8. he\Zzb-kw-tbmKw
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9. {KlWteJ\w

Cßs\ kv]¿i-tam-t£-jvS-Im-e-ßfnte°v he-\sØ D≠m°n

{Kmly-_nw-_sØ hc-®v, AXn-¶¬ ]q¿∆-m]-c-tc-Jbpw Z£n-tWm-Ø-

c-tc-Jbpw D≠m°n, ]ns∂ ]q¿∆m-]-c-tc-Jm-{K-ß-fn¬ \n∂pw Xev°m-

e-h-e\-tØmfw \oßn Hcp _nµp-hns\ D≠m-°n, B _nµp-hn-¶-epw

{Kmly-_nw-_L\-a-≤y-Øn-¶epw IqSn Hcp he-\-kq-{XsØ D≠m-°n,

Cu kq{X-Øn-¶¬ {Kmly-_nw-_-Øns‚ tI{µ-Øn-t¶∂p Xev°m-e-

_nw-_m-¥-c-tØmfw AI-t∂-SØp tI{µ-am-bn´p {Kml-I-_nw-_sØ

Fgp-Xq. At∏mƒ {Kml-I-_nw-_-Øns‚ ]pdØv AI-s∏´ ̀ mKw {Kmly-

_nw-_-Øn¶¬ {]Im-i-am-bn-´n-cn-°pw. {Kml-I-_nw-_-Øn-\-I-Ø-I-s∏´

{Kmly-_nw-_-`m-Kw ad-™n-cn-°pw. Cßs\ {Kl-W-Øns‚ kwÿm-

\sØ Adn-tb-≠pw1 {]Im-cw. ChnsS {Kmly-_n-w_-Øn-¶-te°p he-

\-ap-≠m-t°-W-sa-∂p- \n-b-X-an-√. CjvS-hym-km¿≤-hr-Ø-Øn-¶-te°v

F¶n-epamw D≠m-°p-hm≥. At∏mƒ B hrØ-Øn-¶te ZnIvkq-{X-Øn-

t¶∂p thWw he\w \o°p-hm≥ Ft∂ hnti-j-ap-≈p. Cßs\2 kqcy-

{K-l-W-{]-Im-cw.

10. N{µ-{K-l-W-Øn¬ hntijw

N{µ-{K-l-W-Øn¶¬ hntijamIp-∂Xp ]ns∂. N{µ-_nw_w {Kmly-

am-Ip-∂-Xv, ̀ q—mb {Kml-I-am-Ip-∂-Xv. AhnsS N{µ-_nw-_-am¿§-Øn¶te

`q—m-b-bpsS hnkvXm-csØ “Xtam-_nw_w” F∂p sNm√p-∂p. AhnsS

{Kmly{Kml-I-_nw-_-ßƒ c≠n∂pw {ZjvSm-hn-t¶∂v AI-e-sam-°p-I-

bm¬, \Xn-ew-_-\-ßƒ c≠n\pw Xpey-ß-fm-I-bm¬, Ah c≠n-t\-bp-w

ChnsS Dt]-£n°mw1. a‰p≈ \ymb-ß-sf-√m-an-hn-tSbpw Xpey-ßƒ.

Cßs\ {Kl-W-{]-Im-csØ sNm√o-Xm-bn.

9. 1. F. Adnbpw
2. B. CXn kqcy{Kl-W-{]-Imcx

10. 1. F. Dt]-£n-°p-I-bpamw

XII. {KlWw
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ChnsS ]ns∂ N{µm-¿°-∑m-cpsS tI{µ-̀ pPm -̂e-Øn\v Al¿Zf]cn-

[n-kv^p-S-sa-s∂mcp kwkvIm-c-ap-≠v. AXp tlXp-hm-bn´v kv^pSm-¥-c-ap-

≠m-Ipw. BI-bm¬ ka-en-]vX-mIm-e-Øn\pw \o°w hcpw. CXn-t\-

s°m≠p {Kl-W-Im-e-Øn\pw \o°-ap-≠m-Ip-sa-s∂m-cp- ]-£w.

[KWn-X-bp‡n`mj-bn¬

{KlWw F∂

]{¥≠ma-≤ymbw kam]vXw]

10. N{µ-{K-l-W-Øn¬ hntijw
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A≤ymbw ]Xn-aq∂v
 hyXo-]mXw

1. hyXo-]m-X-e-£Ww

A\-¥cw hyXo-]m-XsØ sNm√p-∂p. AhnsS N{µm-¿°-∑m-cpsS A]-

{I-a-ß-fn¬ h®v H∂n\v HmP-]-Z-am-I-bm¬ hr≤nbpw, at‰-Xn-\p- bp-‹-]-Z-

am-I-bm¬ £bhpw hcp-t∂-SØp bmsXm-cn-°¬ Xß-fn¬ kmay-ap-≠m-

Ip∂p, At∂cw hyXo-]m-X-am-Ip∂ Imew.

2. CjvS-{Im-¥ym-\-b\w

Chn-sS N{µm¿-°-∑m-cpsS CjvSm-]-{I-asØ hcpØpw1 {]Imcw

apºn¬sNm√n. A\-¥cw N{µs‚ Xs∂ CjvSm-]-{I-asØ {]Im-cm-¥-

tcW hcpØpamdp sNm√p-∂p. ChnsS ]e-hr-Ø-ap-t≈-SØv F√m-‰n\pw

hen-∏-sam°pw F∂pw, Hcp {]tZ-iØn¶¬ Xs∂ tI{µ-sa∂pw t\an-

Iƒ AI-∂n-́ p-an-cn-°p∂p F∂pw Iev]n-°p-tºmƒ F√m hrØ-ß-fpsS

t\anbpw F√m- hr-Ø-ß-fpsS t\an-tbmSpw c≠n-SØp kv]¿in-°pw.

c≠n-SØv AI-∂n-́ p-an-cn-°p-sa∂pw \nb-Xw.

3. hnt£]w

ChnsS A]-{I-a-hr-Øhpw LSn-Im-hr-Øhpw Ct∂-SØp tbmKw C{X

]c-am-¥-cm-f-sa-∂-dn™v, ]ns∂ A]-{I-a-hr-Øhpw hnt£]-hr-Øhpw

2. 1. B. D≠m°pw
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Ct∂-S-Øp -tbmKw. C{X ]cam¥-cmfw, B tbm-K-Øn-t¶∂p hnt£-]-

hr-Ø-Øn-¶¬ C{X sNt∂-SØp N{µ-s\∂pw Adn-™n-cn-°p-tºmƒ N{µ-

t¶∂p LSn-Im-hrØw C{X AI-e-ap≠v F∂v BZn-Xys‚ A]-{I-a-

sØ-t∏mse Xs∂-b-dn-bmw.

ChnsS LSn-Im-hn-t£-]-hr-Ø-ßƒ°v Ct∂-SØp tbmKw, C{X ]c-

am-¥-cmfw F∂-dn-hm-\p-]m-bsØ1 sNm√p∂p. Ahn-sS Hcp-\mƒ ao\-a-

[y-Øn-¶¬ A]-{I-a-L-Sn-Im-kw-]m-Xw, B kw]m-X-Øn-t¶∂p A]-{I-

a-hrØw hS-t°m´v AIepw A∂v I\ym-a[y-Øn-t¶∂v sXt°m´Iep-

∂p. AI-∂p-Iq-Sp-tºmƒ 24 XobXn AIepw A]-{I-a-hr-Ø-Øn-¶¬

cmlp \nev°p-t∂-SØp2 hnt£-]-hr-Ø-Øn\p tbmKw, Ahn-Sp∂p hS-

t°m´v AI-epw, tIXp \nev°p-t∂-S-Øp∂v sXt°m-́ -I-epw. A]-{I-a-hr-

Ø-Øn-¶te3 LSn-Imkw]mX-Øn-¶eq cmlp-sh∂pw, AhnSw \nc-£-

£nXn-P-Øn-¶¬ DZn-°- sN-øp-∂Xv F∂pw Iev]n-∏p. At∏mƒ Z£n-

tWm-Ø-c-hr-Ø-Øn-¶ep ]c-ma-]-{I-a-hr-Øhpw ]c-a-hn-t£-]hpw. AhnsS

LSn-Im-hr-Ø-Øn-t¶∂v A]-{I-a-hr-Øhpw AXn-t¶∂p hnt£-]-hr-

Øhpw Hcp Zn°p-t\m°n AIepw. BI-bm¬ ]c-am-]-{I-ahr-Øhpw ]c-

a-hn-t£-]hpw IqSn-tbm-f-a-I-e-ap-≠v LSn-Im-hr-Ø-Øn-t¶∂p hnt£-]-

hr-Ø-Øns‚ Ab-\m-¥-{]-tZ-iw. F∂m¬ A∂v AXp N{µs‚ ]c-am-

]-{I-a-am-bn-́ n-cn-°pw. F∂m¬ A∂v AXv {]am-W-̂ -e-am-bn´p hnjp-h-Zm-

Zn-N-{µs‚ CjvSm]-{I-a-tØbpw hcp-Ømw.

CuhÆ-an-cn-°p-tºmƒ DØ-c-{[p-h-Øn-t¶∂p ]c-am]-{I-a-tØmfw

Db¿t∂-SØp Z£n-tWm-Ø-c-hr-Ø-Øn-¶¬ DØ-c-cminIpSw. Chn-Sp∂v

]c-a-hn-t£-]-tØmfw Db¿t∂-SØp DØ-c-am-Ip∂ hnt£]]m¿iz-am-

I-bm¬ ]c-am-]-{I-a-]-c-a-hn-t£-]tbmK-tØmfw AIeap≠v {[ph-t¶∂v

hnt£-]-]m¿izw LSn-Im-hr-Ø-Øn-t¶∂p bmsXmcp {]Imcw {[ph≥,

A]-{I-a-hr-Ø-Øn\v bmsXm-cp- {]-Imcw, cminIp-Shpw A∆-Æ-an-cn-s∏m-

∂v, hnt£-]-hr-Ø-Øn\v hnt£-]-]m¿izw. BI-bm¬ {[ph\pw hnt£-

3. 1. C. Adn-hm-\p≈
2. B. C.F. \nt∂SØv
3. D. adds. hrØ-Øn-t¶∂v a≤y-Øn-¶te

3. hnt£]w
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]-]m¿izhpw Xß-fn-ep≈ AI-e-tØmSv HØn-cn-°pw LSn-Im-hn-t£-]-

hrØß-fpsS ]c-am-¥-cm-fw. ]ns∂ {[ph-¶epw hnt£]]m¿iz-Øn-¶epw

kv]¿in-®n´v Hcp hrØsØ Iev]n-∏q. Cu hrØ-Øn-¶¬ Xs∂-bm-bn-

cn°pw LSn-Im-hn-t£-]-hr-Ø-ß-fpsS ]c-am-¥-cm-fw.

F∂m¬ {[ph-hn-t£-]]m¿izm-¥-cm-f-a-dn-tb-≠p-hXv ]ns∂. A]-{I-

a-kw-ÿm-\sØ CuhÆw Xs∂ Iev]n-°p-tºmƒ 4Nm]-a-[y-Øn-¶se

Ab-\m-¥-Ønep cmlp F∂pw Ccn-°p-tºmƒ, hnjp-h-Øn-¶¬ kv]¿in-

®n-cn-°p∂ cmin-Iq-S-hr-Ø-Øn-¶¬ ]q¿∆-hn-jp-h-Øn-t¶∂p ]c-a-hn-t£-

]-tØmfw hS°p \oßn-bn-cn-°pw hnt£-]-hr-Øw. BI-bm¬ DØ-c-cm-

in-Iq-S-Øn-t¶∂v C{X ]Sn-™mdp \oßn Ccn°pw hnt£-]]m¿izw.

ChnsS ]c-a-hn-t£-]hpw ]c-am-]-{I-ahpw Xß-fn¬ `pPm-tIm-Sn-I-fm-bn-

´n-cn-°p-tºm-tf I¿Æ-am-bn-́ n-cn°pw {[ph-hn-t£-]-]m¿izm-¥-cmfw. ]ns∂

hnt£-]-]m¿iz-{[p-h-ß-fn¬ kv]¿in-°p∂ Hcp hrØsØ Iev]n-∏q.

B hrØ-Øn¬ hcp∂ LSn-Im-]-{I-aß-fpsS ]c-am-¥-cmfw AhnsS

hnt£-]hrØm-b-\m-¥-am-Ip-∂-Xv. Cu hrØ-Øn\v ‘hnt£--]m-b-\m¥w’
F∂p t]¿. CXn∂p Z£n-tWm-Ø-c-hr-Ø-tØmSp tbmKw {[ph-¶¬.

Chn-Sp∂p ]c-am-]-{I-a-tØmfw sN√p-tºmƒ ]c-a-hn-t£-]-tØmfw ]Sn-

™mdp \oßpw5 hnt£-]m-b-\m-¥-hr-Øw. hrØ-]mZw sN√p-tºmƒ Z£n-

tWm-Ø-c-hr-Ø-Øn-t¶∂v F{X ]Sn-™mdp \oßp-sa∂p LSn-Imhr-Ø-

Øn-¶-ep≠mw ]c-am-¥-cmfw. BI-bm¬ Z£n-tWm-Ø-c-hr-Ø-Øn-t¶∂v

A{X ]Sn-™mdp \oßn-tb-SØp LSn-Im-hr-Ø-Øn-¶¬ hnt£-]m-b-

\m¥w. BIbm¬ £nXn-P-Øn-¶se ]q¿∆-hn-jp-h-Øn-t¶∂p LSn-Im-a-

fi-e-Øn-¶¬6 C{X taevt]m´p \oßn-tb-SØp hnt£-]-hn-jp-hØv

F∂pw hcpw, hrØ-ß-fpsS ]c-am-¥-cm-fhpw tbmKhpw Xß-fn¬ hrØ-

]m-Zm-¥-cn-X-sat√m F∂n v́. Cu \o°-Øn\v ‘hnt£-N-N-e-\’-sa∂p t]¿.

F∂m¬ A]-{I-a-hn-jp-h-ZmZnbn¶¬ Cu hnt£-]-Ne\w kwkvI-cn-®m¬

hnt£-]-hn-jp-h-Zm-Zn-bm-Ipw.

3. 4. C.D.E. om. Nm]
5. C. F. \oßn-bn-cn°pw
6. B. C. LSn-Im-hr-Ø-Øn-¶¬

XIII. hyXo]mXw
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]ns∂ bmsXm-cn-°¬ I\ym-a-[y-Øn-¶te hnjphØn-¶¬ cmlp

\nev°p-∂p, At∏mƒ Nm]-a-[y-Øn-¶se Ab-\m-¥-Øn-t¶∂v ]c-a-hn-

t£-]-tØmfw hS°p \oßpw hnt£-]-hrØw. DØ-c-cm-inIq-S-Øn-t¶∂v

A{X XmWn-cn°pw hnt£-]-]m¿izw. At∏mƒ Ahn-S∂v {[phm-¥-cmfw

N{µs‚ ]c-am-]-{I-a-am-Ip-∂Xv, Ac-Ip-db Ccp-]Xp Xob-Xn-bm-bn-´m-bn-

cn°pw. Cu hnt£-]-]m¿iz-{[p-hm-¥-cm-fw Z£n-tWm-Ø-c-hr-Ø-Øn-¶-

emI-bm¬ t£]m-b-\m¥w A]-{I-am-b-\-m¥Øn-¶¬ Xs∂. t£]m-

]{I-a-hn-jp-h-Øp-Ifpw Hcn-S-Øp-Xs∂. At∏mƒ hnt£-]-N-e-\-an-√.

]ns∂ anYp-\-a[y-Øn¬ Ab-\m-¥-Øn-¶¬ cmlp \nev°p-tºmƒ I\ym-

a-[y-Øn-¶¬ kv]¿in-®n-cn-°p∂ cmin-Iq-S-hr-Ø-Øn-t∑¬ ]c-a-hn-t£-

]-tØm-fw- h-S°p\o-ßn-tb-SØp kv]¿in-°pw hnt£-]-hrØw. BI-

bm¬ DØ-c-cm-in-Iq-S-Øn-t¶∂p ]c-a-hn-t£-]-tØmfw Ing-°p -\o-ßn-

bn-cn°pw7 t£]-]m¿izw. Ahn-sSbpw I¿Æ-mIm-tc-W-bn-cn-°pw t£]-

]m¿iz-{[p-hm-¥-cmfw. ]nt∂bpw ]q¿∆-hn-jp-h-Øn-¶¬ cmlp-hm-Ip-tºmƒ

DZKvcm-in-Iq-S-Øn-t¶∂v aotØ Ccn°pw hnt£-]-]m¿izw. Cßs\ Xs∂

Z£nWcmin-Iq-S-hrØØn-¶¬ Z£n-W-hn-t£-]-]m¿izw. Cßs\ cmin-

IqS-Øn-t¶∂p ]c-a-hn-t£-]m¥-cmfw AI-t∂-SØp cmlp-hns‚ KXn-

°p- X-°-hÆw ]cn-{ -̀an-°p-tºmƒ t£]-]m¿izw.

4. hnt£-]-N-e\w

ChnsS ]c-a-hn-t£]hymkm¿≤-am-bn´v Hcp hrØsØ Iev]n-∏p. Cu

hrØ-Øn\v tI{µw cmin-Iq-S-Øn-t¶∂p ]c-a-hn-£-]-i-c-tØmfw `tKmf

a[yw t\m°n \oßntbS-Øm-bn-́ n-cn°pw. ]ns∂ CXns‚ tI{µ-Øn-¶¬

t\an-bm-bn´v A£-Z-fin-¶¬ tI{µ-am-bn´v, as‰mcp hrØsØ Iev]n-

∏q. At∏mƒ I£ym-hr-Øhpw D®-\o-N-hr-Øhpw F∂ t]mse Ccn-°p-

an-h- c-≠pw. ChnsS A£-Z-fin-t¶∂p t£]-]m¿tizm-∂Xn {XnPym-

ÿm-\obw. ]ns∂ hnt£-]-]m¿iz-Øn-¶¬ bmsXm-cn-SØp t£]]m¿izw

3. 7. C. hS-°p-\o-ßn-bn-cn°pw

3. hnt£]Ne\w
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Ahn-S∂p Xs‚ tI{µ-tØmSp ta¬Io-gp-≈Xp tImSn-^-e-ÿm-\o-bw.

Ing-°p-]-Sn-™m-dm-bn´v Z£nWhrØ-tØm-SnS `pPm-^-e-ÿm-\o-bw.

ChnsS ]cn-{ -̀an-°p∂ hnt£-]-]m¿izw cmin-Iq-S-Øn-t¶∂p antØ-∏p-d-

Øm-Ip-tºmƒ t£]-]m¿tizm-∂-Xn-bn¬ tImSn-^ew Iq´q, Iotg-∏p-d-

Øm-Ip-tºmƒ If-hq. AhnsS ao\-a-[y-Øn-¶¬ cmlp \n¬°p-∂mƒ

{[ph-t¶∂v F√-mbnepw1 Db-c-Øm-Ip∂p, I\ym-a-[y-Øn¬ cmlp- \n-ev°p-

tºmƒ F√m-bnepw Iogm-Ip∂p2. BI-bm¬ ta¬Io-gp-≈Xp tImSn-̂ -e-

sa∂pw, aI-cm-Zn-bn¬ Iq´q, I¿°ym-Zn-bn¬ If-hq F∂pw h∂p.

Ab-\m-¥-Øn-¶¬ `pP XnI-bp-∂p. AhnsS cmlp \n¬°p-tºmƒ

t£]-]m¿iz-Øn-t¶∂p Ing°p]Sn-™mdp \o°-am-bm¬ Ing-°p-]-Sn-™m-

dp≈Xp ̀ pPm^ew. Ahn-tSbpw Xpem-Zn-bn¬ cmlp \nev°p-tºmƒ3 Z£n-

tWm-Ø--c-hr-Ø-Øn-t¶∂p ]Sn-™mdp t£]-]m¿iz-am-I-bm¬ Xpem-Zn-

bn-¶¬ hnt£-]-N-e\w Iq´pI th≠p-h-Xv. tajm-Zn-bn-¶¬ Z£n-tWm-

Ø-c-hr-Ø-Øns‚ Ingt°-∏p-dØp hnt£-]-]m¿izw F∂n´p4 If-Ith-

≠p-hXv. ChnsS hnjp-h-Zm-Zn-cm-lp-hns‚ `pPm-tIm-Sn-Pym-°sf ]c-a-hn-

t£-]w-sIm≠p KpWn®v {XnPy-sIm≠p lcn-∏q. F∂m¬ `pPm-tImSn

^e-ß-fp-≠m-Ipw.

5. I¿Æm-\-b\w

]ns∂ Ch-t‰-s°m≠p I¿Æw hcpØpw {]Imcw. I¿Æ-am-Ip-∂Xv

{[ph-hn-t£-]-]m¿izm-¥-cm-f-Pymhv. Cu t£]m-b-\m-¥-hrØw cmin-Iq-

S-Øn¶¬ IqSn kv]¿in-°p-tºmƒ ]c-am]-{I-ahpw ]c-a-hn-t£-]hpw Xß-

fn¬ tbmKw Xm\-¥cw Xm≥ sNbvXm¬1 CX-tc-X-c-tImSnKpW-\hpw

{XnPym-l-c-Whpw sNtø-Ww.

4. 1. F. adds. Db¿∂-Xm-Ip-∂p. ao\w a≤y-Øn¬ cmlp \n¬°ptºmƒ F√m-bnepw Iogm-
Ip∂p.

2. D. Xmg-Øm-Ip∂p
3. H. \nev°p-∂-\mƒ
4. F. adds. AXv

5. 1 B. sNbvXm¬

XIII. hyXo]mXw
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]ns∂ ]c-am-]-{I-ahpw tImSn-^-ehpw Xß-fn¬ Iq´p-I-Xm-\-¥-cn-°-

Xm≥ sNøp-t∂-SØpw A¥y-t£-]-tIm-Snbpw A¥ym-]-{I-a-tIm-Sn-bp-at{X

KpW-Im-c-am-Ip-∂-Xv. ChnsS Z£n-tWm-ØchrssØ-I-tZ-i-Øn-¶te

Pymhmbn t£]-]m¿iz-hr-Ø-Øns‚ tI{µ-Øn-t¶∂p XpSßn CXns‚

t\an-tbmfw sN√p-∂Xp ]c-a-hn-t£-]-am-Ip-∂-Xv. CXn¬ Ht´Sw sN∂Xp

tImSn -̂e-am-Ip-∂-Xv. Ct{X hnti-j-ap-≈p, kwÿm-\-t -̀Z-an√, BI-bm¬

tbmK-hn-tbm-K-Øn-¶¬ KpW-Im-c-t`-Z-an-√, KpWy-t`-Z-ta-bp-≈q. ChnsS

]c-am-]{IasØ ]c-a-hn-t£-]-tIm-Sn-sIm≠p KpWn®v {XnPy-sIm≠p lcn-

®-̂ ew t£]-]m¿iz-tI-{µ-tØmSv A£-Z-tfim-Sp≈ A¥-cm-fw. ]ns∂

tImSn-^ew CXn∂p t£]-am-bn-cn°pw2. ]cam]{IatIm-Sn-sIm≠p

KpWn®v {XnPy-sIm≠p lcn-®m¬ tImSn-^-em-{K-Øn-t¶∂p hnt£-]-

]m¿izm¥-cmfw `pPm-̂ -e-am-Ip-∂-Xv. ]ns∂ Cht‰ Xß-fn¬ tbmKm-¥-

c-ßƒ3 sNbvXv, h¿§n®v `pPm-^eh¿§w Iq´n aqen-®Xp {[ph-t\mSp

hnt£-]-]m¿iz-tØm-SnS A¥-cmfNm]-̀ mKØn-¶te Pymhm-bn-́ n-cn-°pw.

6. hnt£-]-N-e\w

F∂m¬ LSn-Im-hn-t£-]-hr-Ø-ß-fpsS ]c-am-¥-cmfamIp∂ ]c-am-

]-{Ihpw CXp Xs∂. ]ns∂ {[ph-t¶∂p t£]m-b-\m-¥-hr-Ø-Øn-¶¬

t£]-]m¿iz-tØmfw sN√p-tºmƒ Z£n-tWm-Ø-c-m¥-cmfw1, `pPm-̂ -e-

tØmfw hrØ-]mZw2  sN√p-tºm-sf{X F{X F∂p t£]m-b-\m-¥-hr-

Ø-Øn--t¶∂p Z£n-tWm-Ø-c-hr-Ø-Øns‚ ]c-am-¥-cmfw LSn-Im-hr-Ø-

Øn¶ep≠m-Ipw. CXv Ab-\m-¥--ßƒ c≠pw Xß-fn-ep≈ A¥-cm-f-am-

Ip-∂-Xv. CXp Xs∂ hnjp-h-Øp-°-fpsS A¥-cm-f-am-Ip-∂-Xv. F∂n´v

CXn\v ‘hnt£-]-N-e-\’-sa∂p t]¿. ]ns∂ kmb-\-N-{µ-\n¬ hnt£-]-N-

e\w kwkvI-cn-®m¬ LSn-Im-hn-t£-]-hr-Ø-kw-]m-X-Øn-t¶∂p N{µ-t\m-

Sp≈ A¥-cmfw hnt£-]-hr-Ø-Øn-¶-teXv D≠m-Ipw.

5. 2. A.E. tij-am-bn-cn°pw
3. B. tbmKwXm-\-¥cw Xm≥

6. 1. E. om. Z£n-tWm-Ø-cm-¥-cmfw....to....hrØ-]m-Zw
2. B. om. hrØ-]mZw

6. hnt£-]-N-e\w
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7. hyXo-]m-X-Imew

Cßs\ hnt£-]-N-e-\hpw Ab-\-N-e-\hpw kwkvI-cn-®n-cn-°p∂

N{µ\pw Ab-\--N-e\w kwkvIcn-®n-cn-°p∂ BZn-Xy\pw, Ch c≠n-sem∂v

HmP-]-Z-Øn-¶epw at‰Xp bp‹-]-Z-Øn-¶-ep-sa-∂o-h-Æ-an-cn-°p-tºmƒ1 A]-

{I-a-kmayw hcp-t∂-SØv hyXo]m-X-am-Ip∂ ]pWy-Im-ew2.

8. hyXo-]m-Xm-\-b\w

Cu A]-{I-a-ß-fpsS kmay-Im-e-a-dnbpw {]Imcw ]ns∂. HmP-bp-‹-

]-Z-ß-fn¬ c≠n¬ \n¬°p∂1 N{µm¿°-∑m-cpsS `pPm-kmayw hcp∂p

bmsXm-cn-°¬ F∂nXns\ Duln®v Iev]n®v At∂-csØ BZn-Xys‚2

`pPm-Pym-hnt\s°m≠p hcp∂ CjvSm-]-{I-a-tØmSp Xpey-am-bn v́ N{µs‚

A]-{I-a-ap-≠m-hm≥ GXp `pPm-Pym-hp -th≠phXv F∂n-Xns\ ss{Xcm-

inIw sNbvXp hcp-Øq. ChnsS ‘ZpKv[-temIw’  F∂p ]c-am-]-{I-a-am-

Ip∂ BZn-Xy\v3 CXp `pPm-Pym-hm-Ip-∂Xv. At∏mƒ Xev°m-e-Øn-¶¬

hcp-Øn-bXv A¥y-m]-{I-a-am-Ip∂ N{µ\v BZn-Xy-m]-{I-a-tØmSp Xpey-

am-hm≥ GXp `pPm-Pym-hm-Ip-∂Xv N{µ∂v F∂p ss{Xcm-in-I-am-Ip-∂-

Xv.   ChnsS BZn-Xys‚ ]c-am-]-{Iaw {]amWw, BZn-Xys‚ `pPm-Pymhp

{]am-W-̂ ew. N{µs‚ A¥ym-]-{I-aw C—. N{µs‚ ̀ pPm-Pym-hn—m^ew.

ChnsS A¥y-m]-{Iaw hen-b-Xn∂p ̀ pPm-Pymhp sNdp-Xm-bn-́ n-cn-°pw, sNdn-

b-Xn∂v hep-Xm-bn´n-cn-°pw. At∂-cØv A]-{I-a-kmayw hcp-∂p. F∂n´p3a

hn]-co-Xss{XcminIw Chn-tSbv°p th≠p-hXv. BI-bm¬ BZn-Xys‚

7. 1. B. F∂n-cn-°p-tºmƒ
2. B. hyXo]m-X-Imew

8. 1. B. c≠p ]Z-ß-fn¬ \nev°p∂
2. B. A¿°s‚ ; B. om. BZn-Xys‚
3. B. A¿°∂v
3a. B.adds, F∂n v́ ChnsS hykvX-ss{X-cm-inIw th≠p-h-Xm-I-bm¬ C. ChnsS

XIII. hyXo]mXw
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`pPm-Pymhpw A¥ym-]-{I-ahpw Xß-fn¬ KpWn-®-Xn-t¶∂p N{µs‚

A¥ym-]-{I-a-tØ-s°m≠p lcn-®-̂ ew N{µ-̀ p-Pm-Pymhv. ]ns∂ CXns\

Nm]n®p ]Z-h-im¬ Ab-\-k-‘n-bn-¶¬ Xm≥4 tKmf-k-‘n-bn-¶¬ Xm≥5

kwkvI-cn®v N{µs\ D≠m-°q.

]ns∂ BZn-Xy-t¶-∂p-≠m-°nb N{µ-t\bpw Xev°m-e-N-{µ-t\bpw  Xß-

fn-e-¥-cn®p ct≠-SØp h®v, A¿°-N-{µ-∑m-cpsS KXn-sIm≠p KpWn®v,

KXn-tbmKw6 sIm≠p lcn-®-̂ -ew AXXn-¶¬ kwkv°-cn∏q. hyXo-]mXw

Ign-™p-sh-¶n¬ If-hq, ta¬h-cp-∂qsh¶n¬7 Iq´q, ]mX-¶¬ hn]-co-X-

am-bn v́, Cßs\ Ah-nti-jn∏q, BZn-Xy-t¶∂p8 D≠m-b -N-{µ-̀ p-Pm-[-\p pw

Xev°me N{µs‚ `pPm-[-\p pw ka-ambn´p hcp-thmfw. AhnsS HmP-

]-Z-Øn-¶se Xev°m-e-N-{µs‚ ̀ pPm-[-\p v hep-Xm-In¬ Ign-™q. hyXo-

]mXw, sNdp-Xm-In¬ taeq. bp‹]Z-Øn-¶¬ hn]-co-Xw. ChnsS A¿°-

N-{µ≥am¿°p-Xm≥ `q—mbm9N{µ≥am¿°p Xm≥ kzmtlm-cm-{X-sam-t∂-

bm-Ip-tºmƒ hyXo-]m-X-ap-≠m-Ip-∂p. ]ns∂ _nwss_-I-tZ-i-Øn\pw

kzmtlm-cm-{X-hr-ssØ-Iy-an-√m-XmIp-tºmƒ hyXo-]m-X-an-√. BI-bm¬

an°-hmdpw10 \mep \mgnI hyXo-]m-X-am-bn-́ n-cn-°pw.

[KWn-X-bp‡n`mj-bn¬

hyXo]m-X-sa∂

]Xn-aq∂ma-≤ymbw kam]vXw]

8. 4. F. k‘n-bn-¶∂p Xm≥
5. F. k‘n-bn-¶∂p Xm≥
6. B. AXns‚ tbmKw
7. B. `mhn-sb-¶n¬
8. B. A¿°-t¶∂p
9. B. C. D. Xev°m-e-N-{µ-—m-bm
10. B. an°Xpw

8. hyXo]m-Xm-\-b\w
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A≤ymbw ]Xn-\mev

 sauVyhpw Z¿i-\-kw-kvIm-chpw

1. Z¿i-\-kw-kvImcw

A\-¥cw Z¿i-\-kw-kvIm-csØ sNm√p-∂p1. AXm-Ip-∂Xp hnt£-

]n-®n-cn-°p∂ {Klw £nXn-P-Øn-¶¬ DZn-°p-tºmƒ2 A]-{I-a-a-fi-e-

Øns‚ bmsXmcp {]tZiw £nXn-PsØ kv]¿in-°p-∂Xv F∂p-≈Xv.

ChnsS CuhÆw t£{XsØ Iev]n-®n´p \ncq-]n-∏q. DØ-c-cm-in-IqSw

Db¿∂n-cn-°p-amdv tajm-Zn- aq-∂p- cm-in-I-fn¬ Fßm\pw Hcn-S-Øn-cn-°p∂

{Kl-Øn-¶¬ kv]¿in-®n-cn-°p∂ cmin-Iq-S-hr-Øhpw A]-{I-ahrØhpw

Xß-fn-ep≈ kw]mXw £nXn-P-Øn-¶-ep-Zn-°p-amdv. Chn-S∂v DZ-{Km-in-

IqSw- t\m°n hnt£-]n-®n-cn-°p-amdv {Kl-sa∂p Iev]n-∏q. At∏mƒ £nXn-

P-Øn-¶¬ Db¿∂n-cn-°pw {Klw F∂m¬ {Kl-Øn∂v At∂-cØv F{X

i¶p-sh-∂Xp \tS D≠m-°p-∂-Xv. ]ns∂ Cu i¶p tImSn-bm-bn-́ n-cn-°p-

tºmƒ CXn∂p I¿Æ-am-bn´p hnt£-]-tImSnhrØ-Øn-¶te {Kl-Øn\v

£nXn-Pm-¥-cm-f-ap-≠mIpw3. ChnsS ZrIvt£-]-hr-Ø-Øn-¶¬ Ja-≤y-Øn-

¶∂p ZrIvt£-]-tØmfw sX°p \oßn-tb-SØv A]-{I-a-hr-Ø-kw-]mXw.

ZrIvt£]hrØ-Øn-¶¬ Xs∂ £nXn-P-Øn-t¶∂v ZrIvt£-]-tØmfw

Db¿t∂-SØp cmin-IqSw DØcw. DØ-c-cm-in-IqSw t\m°n \oßp-∂Xv

DØ-c-hn-t£]w, {Kl-kv]r-jvS-cm-in-Iq-Shpw £nXn-Phpw Xß-fn-ep≈

1. 1. B. AY Z¿i\kwkv°mcw
2. B. \nev°p-tºmƒ
3. D. F. {Kl-£nXn;Pm¥-cm-f-ap-≠mIpw
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]c-am-¥-cmfw ZrIvt£-]w F∂m¬ £nXn-P-Øn-t¶∂p hn£n-]vX

-{K-l-tØmfw sN√p-tºmƒ £nXn-Pm¥-cmfw F{X-sb∂p hn£n-]vX-{K-

l-Øns‚ i¶p D≠m-Ipw. ]ns∂ ZrIvt£-]-tIm-Sn°p {XnPymhp I¿Æw,

Cu i¶p-hn∂v F¥p I¿Æ-sa∂p {Kl-£n-Xn-Pm-¥-cm-f-Øn-¶se A]-

{I-a-Nm-]-̀ m-K-ap-≠m-Ip-∂Xp t]mse, Cu hn£n-]vX-{K-l-tØmSp £nXn-

P-tØm-Sp≈ A¥-cm-f-Øn-¶se hnt£-]-tImSnhrØ-`m-K-ap-≠m-Ipw.

2. {Kl-mkvtXm-Zbw ̨  auVyw

]ns∂ hnt£-]-tIm-Sn-hr-Øhpw £nXn-P-hp-ap≈ kw]m-X-Øn-¶¬

kv]¿in-®n´v Hcp cminIqS-hr-ØsØ Iev]n-∏p. CXn\pw {Kl-kv]rjvS-

cminIqS-hr-Ø-Øn\pw cmin-Iq-S-Øn-¶¬ tbmKw. Cu tbmK-Øn-t¶∂p

hnt£-]-tIm-Sn-tbmfw sN√p-t∂-SØp {Kl-an-cn-°p-∂p. AhnsS Cu cmin-

Ip-S-hr-Ø-ß-fpsS A¥-cm-fw hcp-Ønb hnt£-]-{K-l-i-¶p-hns‚ I¿Æ-

tØmfw, At∏m-fn-h-‰ns‚ ]c-am-¥-cm-f-sa-{X-sb∂v Cu cmin-Iq-S-hr-Ø-

ßƒ c≠n-t‚bpw ]c-am-¥-cmfw A]-{I-a-hr-Ø-Øn-¶teXv D≠m-Ipw.

ChnsS {Kl-kv̂ pSw e·-am-Ip-tºmƒ C{X Cen Db¿∂n-cn-°p-∂p1 {Klw

F∂n´v {Kl-kv^p-Shpw {Kl-ap-Zn-°p-tºmtf e·hpw Xß-fn-e-¥-cmfw

Cu cmin-Iq-S-ß-fpsS ]c-am-¥-cm-f-am-bn-́ n-cn-°pw. ChnsS C{X aptº DZn-

°-bm¬ {Kl-kv^p-S-Øn-t¶∂v Cu A¥cw If-™Xp {Ktlm-Z-b-Øn-

¶te e·-am-Ip-∂Xv2. Cßs\ DØ-c-hn-t£-]-Øn-¶¬. Z£n-W-hn-t£-

]-Øn-¶¬ ]ns∂ Cßs\ Xs∂ t£{X-kw-ÿm-\sØ Iev]n-°p-

tºmƒ £nXn-Pm-]-{I-a-k-ºm-X-Øn-t¶∂p {Klw {Kl-kv]rjvS-cm-in-Iq-

S-Øn-¶¬3 tate sXt°m-́ -v hn-t£-]n-°-bm¬ £nXn-P-Øn-t¶∂v Iotg-

∏p-dØv Ccn°pw {Klw.

2. 1. D. E. Db¿∂n-cn°pw
2. B. {Ktlm-Z-b-e-·-am-Ip-∂Xv
3. F. cmin-Iq-S-hr-Ø-Øn-¶¬

2. {Klm-kvtXm-Zbw ˛ auVyw
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CuhÆ-an-cn-°p-tºmƒ apºn¬ At[m-ap-J-i-¶p-hn-s\-s°m≠v DZ-bm-

kvX-e-·-ßsf hcp-Øp-hm≥ sNm√n-bXp t]mse hnt£-]m-{K-Øn-¶-en-

cn-°p∂ {Kl-Øns‚ DZ-b-Im-e-Øn-¶te e·hpw {Kl-kv^p-Shpw Xß-

fne¥-cm-f-Øn-¶te Ie-I-fp-≠m-Ipw. AhnsS {Klw C{X ]ns∂ DZn-

∏q F∂n´v, Cu A¥-cm-f-I-e-Isf {Kl-kv^p-S-Øn-¶¬ Iq´p-I-th-≠p-

hXp {Ktlm-Z-b-Øn-¶te e·w hcp-Øp-hm≥.

CuhÆw {Klm-kvX-ab-Ønte AkvX-e-·hpw hcp-Øq. AhnsS

At[m-ap-J-i-¶p-sh-¶n¬ {Klw aptº AkvX-an-°pw, Du¿≤z-ap-Ji-¶psh-

¶n¬ ]ns∂ AkvXan-∏p {Kl-kv^p-Sm-kvX-e·Ønt¶∂v. F∂n´v EW-

[-\-ßƒ°v ]I¿®-bp-≠v. At{X hnti-j-ap-≈p.

]ns∂ Z£n-W-cm-in-IqSw £nXn-P-Øn-t¶∂v Db¿∂n-cn-°p∂p F¶n¬

Z£n-W-hn-t£-]-Øn-¶¬ {Klw Db¿∂n-cn-∏q, DØ-c-hn-t£-]-Øn-¶¬

XmWn-cn-∏q. BI-bm¬ AhnsS DØ-c-cm-in-IqtSm-∂-Xn-bn¶¬ sNm√n-

b-Xn-t¶∂p hn]-co-X-am-bn-́ n-cn-°pw [\¿Æ-{]-Imcw. Ct{X hnti-j-ap-≈q.

ChnsS ZrIvt£]w Z£n-W-am-Ip-tºmƒ hS-t° cmin-IqS-ap-b¿∂n-cn-

°pw, DØ-c-am-Ip-tºmƒ sXt°Xv. BI-bm¬ hnt£-]-Zr-Ivt£-]-ß-

fpsS Zn°v Ht∂ F¶n¬ DZ-b-Øn-¶¬ Z¿i-\-kw-kvIm-c-^ew {Kl-

Øn-¶¬ [\w, ZnKvt -̀Z-ap-s≠-¶n¬ EWw. AkvX-a-b-Øn\p hn]-co-Xw.

3. {Kl-ß-fpsS Z¿i-\-kw-kvImcw

]ns∂ Cu {Ktlm-Z-b-Øn\pw BZn-Xy\pw Ime-e·w hcpØn A¥-

cn-®m¬ A¥cw C{X XobXn D≠m-bn-cn-°p-tºmƒ Cu {KlsØ

ImWmw, CXn¬ Ipd-™m¬ ImW-cp-Xv, F∂p-≠v. AXn∂p X°-hÆw

]mSpw, ]nd∏pw Adnbpw {]Imcw ]ns∂. hn£n-]vX-{K-l-Øn-¶te a[ym-

”-Øns‚ -a-[y-e-·sØ hcp-Øp-Ibpw, CuhÆw Xs∂ AhnsS

A£w IqSmsX hcpØnb ZrIvt£]w sIm≠v Ft∂ hnti-j-ap-≈p.

XIV. auVyhpw Z¿i\kwkv°m-chpw
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Z£n-tWm-Ø-c-hrØw km£-Øn-¶epw \nc-£-Øn-¶epw Ht∂ At{X.

F∂n´v Cßs\ Z¿i-\-kw-kvIm-c-{]-Im-cw.

[KWn-X-bp‡n`mj-bn¬

auVyhpw Z¿i\kwkvIm-chpw

F∂ ]Xn-\mema-≤ymbw kam]vXw]

3. {Kl-ß-fpsS Z¿i\ kwkv°mcw
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A[ymbw ]Xn-\©v

 N{µ-ir-wtKm-∂Xn

1. N{µ-kq-cy-∑m-cpsS ZznXo-b-kv̂ p-S-I¿Æw

A\-¥cw N{µs‚ irwtKm-∂-Xnsb sNm√p-∂p. Ahn-sS \tS N{µm-¿

°-∑m-cpsS ZznXo-b-kv^p-S-I¿Æw hcp-Øq. N{µ\p ZznXo-b-kv^p-S-kw-

kvIm-chpw sNøq. ChnsS apºn¬ sNm√n-b-hÆw1 D®-\o-N-hym-

km¿≤sØ hcp-Øn-bm¬ ]ns∂ AXn-s\mcp kwkvImcw sNø-W-sa∂p

‘kn≤m-¥-ti-J-c’ -]£w. AhnsS Cu hcp-Ønb A¥y-̂ -esØ N{µs‚

aµ-I¿Æw sIm≠pw A©nepw KpWn®v {XnPy-sIm≠p lcn-°-W-sa∂p

‘am\-k-’]£w. F∂m¬ CXns\ hnNm-cn-°-Ww. A\-¥cw Zr°¿-Æ-ap-

≠m°n `q]r-jvT-kw-kvIm-csØ sNbvXp -\-Xn-tbbpw kwkvI-cn®v BZn-

Xy\pw2 \Xnsb D≠m°n ]ns∂ BZn-Xy\pw3 N{µ\pw ew_\w kwkvI-

cn®v At∂-csØ BZn-Xy-t‚bpw N{µ-t‚bpw _nw_-L-\-a-[y-ßƒ Xß-

fn-¬ F{X AI-e-ap-≠v F∂-Xn-t\bpw Adn-bq.

2. -kq-cy˛N{µ-̨ -_nw-_m-¥cw

AhnsS bmsXm-cn-°¬ \Xnbpw hnt£-]hpw C√m™q1 At∂-csØ

kv^pSm-¥-c-Øns‚ {Ia-Pymhpw D¬{I-a-Pymhpw h¿§n®p Xß-fn¬ Iq´n

aqen-®Xp ka-kvX-Pym-hv, {ZjvSm-hn-¶¬ tI{µ-ambn c≠p _nw_-Øn-

1. 1. B. ap≥sNm-√n-b-hÆw
2. B. A¿°\pw
3. A¿°\pw

2. 1. F. C√
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¶epw kv]¿in-®n-cn-°p∂ hrØ-Øn-¶-te-Xv. ChnsS _nw_m-¥-csØ

Adnbpw t\cØv Ffp-∏-Øn-\m-bn-s°m≠v A]-{I-a-a-fi-esØ {ZjvSm-

hn-t\-°p-dn®v ka-a-fiew F∂ t]mse Ja-[ysØ kv]¿in®v t\tc

Ing°p]Sn-™m-dmbn Iev]n-∏q. Ja-[y-Øn-¶-em-Zn-Xy-t\bpw Iev]n-∏q.

BZn-Xys\ kv]¿in-°p∂2 cmin-IqS-hrØw Z£n-tWm-Ø-c-am-bn´p Iev]n-

∏q. ChnsS H -́I-∂n´p N{µ-t\bpw Iev]n-∏q. N{µ-s\- kv]¿in-®n´v Hcp

cmin-Iq-S-hr-Ø-tØbpw Iev]n-∏q. ]ns∂ hrØtI{µ-Øn-t¶∂v BZn-

Xy-¶epw N{µ-¶epw kv]¿in-®n´p c≠p kq{X-ß-tfbpw Iev]n-∏q. AhnsS

t\tc ta¬Io-gm-bn-cn°pw A¿°-kq-{Xw. Ahn-S∂v H´p -N-cn-™n-cn°pw

N{µ-kq-{Xw. AhnsS N{µ-cm-in-IqSm]-{I-akw]mX-Øn-¶-e-{K-ambn

Du¿≤zkq-{X-Øn-¶¬ aqe-am-bn-cn-°p∂t∏m∂v. cmin-Iq-S-hr-Ø-ßƒ c≠n-

t‚-bpw A¥cm-f-Øn-¶te A]-{I-a-Nm-]-̀ m-K-Øn-¶te A¿≤-Pymhp ̀ pPm-

Pym-hm-Ip-∂-Xv. CXns‚ aqe-Øn-t¶∂p Du¿≤zkq-{X-Øn-¶¬ BZn-Xy-

t\m-f-ap≈Xp icw. Ch c≠n-t‚bpw h¿§-tbm-K-aqew _nw_m-¥-c-k-a-

kvX-Pymhv. CXns‚ A¿≤-Øns‚ Nm]sØ Cc-́ n-®Xp _nw_m-¥cNm]w.

\Xn-hn-t£-]-an-√mØt∏mƒ3 bmsXm-cn-°¬ ]ns∂ N{µs‚ cmin-Iq-S-

Øn-t∑te hnt£-]n-°p-∂p, At∏mƒ hnt£-]-Pym-hns‚ aqew N{µ-kq-

{X-Øn-¶¬ N{µ-t¶∂p hnt£--i-c-tØmfw Iogp-\oßn kv]¿in-°pw. N{µ-

kq-{Xm-{Khpw Du¿≤z-kq-{Xhpw Xß-fn-e-¥-cmfw `pPm-Pymhv. At∏mƒ

hnt£-]-Pym-aq-e-Øn-t¶∂v Du¿≤z-kq-{Xm-¥-cm-fsØ ss{Xcm-inIw

sNbvXp≠m°-Ww. N{µ-kq-{Xm-{K-Øn-t¶∂p Du¿≤z-kq-{Xm-¥-cmfw

tZm¿Pym-hp, hnt£-]-i-c-tØmfw Ipd-t™-S-Øn\v F{X F∂p ss{Xcm-

in-I-am-Ip-∂-Xv. hnt£-]-i-cw-sIm≠p ss{Xcm-inIw sNbvXv tZm¿Pym-hn-

t¶∂p If-In-epamw. ]ns∂ hnt£-]-i-c-̂ -eh¿§sØ t£]-i-c-h¿§-

Øn-t¶∂p If-™p- aq-en-®Xv N{µ-kq-{Xm-{K-Øn-¶¬ kv]¿in-°p∂4

tZm¿Pymhpw t£]-aq-e-Øn-¶¬ kv]¿in-°p∂5 tZm¿Pymhpw Xß-fn¬

ta¬Io-gp≈ A¥-cm-f-am-Ip-∂-Xv. Cu A¥-cm-fsØ kv^pSm-¥-tcm¬{I-

2. 2. F. kv]¿in-®n-cn-°p∂
3. F. hnt£-]-ßfn-√m-Ø-t∏mƒ
4. C. kv]¿in-®n-cn-°p∂
5. C. kv]¿in-®n-cn-°p∂

2. kqcy-˛-N-{µ-˛-_nw-_m-¥cw



2. 6. F. kv]¿in-®n-cn-°p∂
7. B. F. tcJ
8. C. D.E. adds. ]ns∂
9. D. ChnsS

a-Pym-hn-¶¬ Iq´q. F∂m¬ A¿°-t¶∂p hnt£-]-aq-e-Øn-¶¬ kv]¿in-

°p∂6 tZm¿Pym-aq-e-tØm-f-ap-≠m-Ipw. Ct∏mƒ icw Ipd-s™m∂p

\oftadpw, tZm¿Pym-thmSp \ofw Ipd-bpw. Ch c≠n-t‚bpw h¿§-tbm-K-

aqew A¿°-t¶∂p hnt£-]-Pym-aq-e-tØm-f-ap≈ kq{X-am-bn-́ n-cn-°pw.

CXns‚ h¿§-Øn¬ hnt£-]-h¿§w Iq´n aqen-®m¬ _nw_m-¥cka-

kvX-Pym-hm-bn-´p- hcpw. bmsXm-cn-°¬ ]ns∂ A¿°∂p \Xn D≈p,

At∏mƒ Ja[yØnt¶∂p Z£n-tWm-Ø-c-Øn-¶se hnt£-]n®p F∂p

Iev]n-∏q. AhnsS kv^pSm-¥-c-i-c-Øn-t¶∂v A¿°s‚ \Xn-i-csØ If-

tb-Ww. tijw t£]-icw t]mb tZm¿Py-maq-e-Øn-t¶∂v A¿°-\-Xn-

Pym-hns‚ aqe-tØm-f-ap≈ Du¿≤z-kq-{X-J-fiap≠m-Ipw. CXp kv^pSm-

¥-c-i-c-Øn-t¶∂v A¿°s‚ \Xn-i-csØ If™p N{µs‚ t£]-i-c-

Øns‚ tImSn^esØ Iq´o-´p-an-cn-t∏m∂v. CXv Hcp cmin-bm-Ip-∂-Xv,

kv^pSm-¥-c-tZm¿-Pymhv Hcp cmin-bm-Ip-∂-Xv.

BZn-Xy\pw N{µ\pw A]-{I-a-a-fi-e-Øn-t¶∂v Hcp]pdtØ \o°-sa-

¶n¬ \Xy-¥cw, c≠p ]pd-sØ-¶n¬ \Xn-tbm-Kw. CXv Hcp cmin-bm-Ip-

∂-Xv. ChnsS \Xn Ipd-™ -{K-l-Øn-t¶∂p t\tc7 Iev]n-°Ww kv̂ pSm-

¥-c-tZm-¿Pym-i-c-ßsf Ft∂ hnti-j-ap-≈p. Ch aq∂n-t‚bpw h¿§-

tbm-K-aqew sIm≠p _nw_m-¥-c-k-a-kvX-Pym-hp-≠m-Ipw. Cßs\ kv̂ pSm-

¥cw aq∂p -cm-in-bn¬ Ipd-bp-tºmƒ CXn¬ Gdp-∂mfpw {Im¥n-hrØw

C∆Æw Xs∂ Iev]n-∏q. Ja-≤y-Øn-t¶∂v Ccp-]p-d-hp-sam-∏-a-I-∂n´v

N{µm¿°-∑m-tcbpw Iev]n-∏q. At∏mƒ c≠n\pw \Xn-bn-√msX Ccn-°-

bm¬ kv^pSm-¥-cm¿≤Øns‚ A¿≤-Pym-hns\ Cc-´n-®Xv _nw_m-

¥camIp-∂-Xv. c≠n\pw \Xn-bp-≠m-Ip-tºmƒ8 kv^pSm-¥-cm¿≤-Øns‚

Pymhp-Iƒ cmin-IqS-hr-Øm-]-{I-a-kw-]m-X-Øn-t¶∂v Du¿≤z-kq-{X-tØm-

Sp≈ A¥-cmfw. AhnsS9 AXXp \Xn-i-c-Øn-t¶∂v D≠m-°nb tZm¿Pym-

-̂esØ AXXv A¿≤-Øn-t¶∂v If-hq. F∂m¬ \Xn-Pym-aq-e-Øn-t¶∂v

Du¿≤z-kq-{Xm--¥-cm-f-ap-≠m-Ipw. Chn-tSbpw ]ns∂ \XosS hen-∏-Øn\p

XV. N{µ-irw-tKm-∂Xn1010



X°-hÆw Du¿≤z-kq-{X-Øn-¶¬10 ta¬Io-gmbn kv]¿in-®n-cn-°pw.

]ns∂ Du¿≤z-kq-{X-Øn-¶se tZm¿Pym-aq-e-Øns‚ A¥-cm-fsØ

D≠m-°q. AXv ChnsS \Xn-i-c-Øns‚ tImSn-^-eamIp-∂-Xv Cu ic-

Øns‚ A{Khpw, aqehpw Xß-fn¬ ta¬Io-gp≈ A¥-cmfw11. F∂m¬

c≠p ic-Øn-t‚bpw tImSn-̂ ew Xß-fn-e-¥-cn-®Xv tZm¿Pym-aq-e-ß-fpsS

ta¬Io-gp≈ A¥-cm-f-am-Ip-∂Xv12. CXv Hcp cmin-. kv^p-Sm-¥-cm¿≤-

Øns‚ Pym°-fn¬ \n∂p Xs‚ Xs‚ \Xn-i-c-Øns‚ tZm¿Pym-̂ -esØ

If-™Xp kv^pSm-¥-c-tZm¿-Pym-hv. Ch c≠n-t\bpw Iq´nbXp c≠mw-

cm-in. \Xy-¥cw Xm≥ \Xn-tbmKw Xm≥ ap∂mw-cm-in-bm-Ip-∂-Xv Ch‰ns‚

h¿§-tbm-K-aqew _nw_m-¥cka-kvX-Pymhv. \Xn-tbm-K-wXm-\-¥cw Xm≥

N{µm¿°-∑m-cpsS sX°p-h-S-°p≈ A¥cw. \Xn-̂ ew If-™n-cn-°p∂

A¥-cm¿-≤-Pym-°-fpsS tbmKw Ing-°p-]-Sn-™m-d-¥-c-am-Ip-∂-Xv. ]ns∂

\Xn-i-c-ß-fpsS tImSn^em-¥cw ta¬Io-gp-≈-¥-c-am-Ip-∂-Xv. Cßs\

aq∂n-t‚bpw h¿§-tbm-K-aqew _nw_m-¥-cka-kvX-Pym-hv. Cßs\

kv^pSm-¥cw hrØ-]m-Z-Øn-¶-te-dp-tºmƒ _nw_m-¥-cm-\-b-\-{]-Imcw.

CXp {Kl-W-Øn-¶se _nw_m-¥cw hcp-Øp-t∂-SØpw Xpey-\ym-bw13.

[KWn-X-bp‡n`mj-bn¬ N{µ-irw-tKm-∂Xn

F∂ ]Xn-\-©ma-≤ymbw kam]vXw]

KWn-X-bp‡n`mjm kam]vXw

2. kqcy-˛-N-{µ-˛-_nw-_m-¥cw

2. 10 F. kp{Xm-{K-Øn-¶∂v
11. B. C. E. A\-¥cw
12. C. F. A¥-c-am-Ip-∂Xv
13. D. {KŸm-h-km-\-Øn¬ teJ-Is‚ Ipdn∏v

“ \yteJn bp‡n-`mjm hn{]tW {_“-Z-Ø-kw-t⁄-\” |
‘tKmf-]-Y-ÿmx kypx’ Ien-c-ln-Xm-t»m-[-b-¥kvtX ||

IcIrX-a-]cmm[w £¥p-a¿-l¥n k¥x |
{ioKpcpt`ym \ax. {io kmc-kzssXy \ax ||

thZ-hym-kmb \ax. Fs‚ Nß-tWm-¶-p∂Øp `K-hXn ic-W-am-bn-cn-°Ww.
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A\p-_‘w˛I

kmt¶-XnI]Z-kqNn : ae-bmfw ˛ Cw•ojv
(Glossary of Technical Terms : Malayalam - English)

{i≤n-°pI˛

1. kmt¶-XnI]Z-ßƒ BZy-ambn Ah-X-cn-∏n-°-s∏-´n-´p-≈-tXm, \n¿∆-Nn-°-s∏-´n-

´p-≈tXm Bb ÿm\-ß-fn¬, B ÿm\-ß-fpsS A≤ym-bw, hn`m-Kw, D]-hn-

`mKw F∂n-h-I-tfm-Sp-IqSn Ah tcJ-s∏-Sp-Ø-s∏-́ n-cn-°p-∂p.

2. kmt¶-XnI]Z-ßƒ ho≠pw D]-tbm-Kn-°-s∏-́ n-́ p≈ ÿm\-ßsf Cßns\ tcJ-

s∏-Sp-Øn-bn-´n-√.

3. Xs‚ Xs∂ A¿∞-tØm-Sp-IqSn Aev]w kmt¶-Xn-I-Xzhpw tN¿Øv D]-tbm-Kn-

®n-́ p≈ km[m-cW]Z-ßsf (common words) A≤ymb˛hn-̀ m-Km-Zn-]-cm-a¿i-ßƒ

C√m-sX, ‘c.w.’  F∂ Npcp-°-t∏-cn¬ tcJ-s∏-Sp-Øn-bn-cn-°p-∂p.

4. ct≠m aqt∂m kmt¶-XnI]Z-ßƒ tN¿∂p-≠m-b- kmt¶-XnI]Z-ßsf (derived
words) A≤ym-b-̨ -hn-̀ m-KmZn]cm-a¿i-ßƒ C√msX ‘d.w.’  F∂ Npcp-°-t∏-cn¬

tcJ-s∏-Sp-Øn-bn-cn-°p-∂p.
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Awiw, I.6 1. Part; 2. Numerator; 3. Degree in angular
measure

Awi-t£{Xw, I.6. iii Area segment

Awi-Kp-W\w, III.3 Multiplication of fractions

Awi-̀ m-K-l-cWw, III.4 Division of fractions

Awl-kv]Xn, (c. w) Intercalary month in which two sankrantis
occur, considered inauspicious.

A£w, IX. 1; XI.2 1. Latitude; 2. Terrestrial latitude

A£-t£{Xw, (d.w) Latitudinal triangle

A£Pym, (d.w) Rsine terrestrial latitude

A£-Zfiw, IX.7 Axle of a wheel

A£-ZrIv I¿Ωw, (d.w) Reduction due to the latitude of the observer

A£-h-e\w, XII.5 1. Angle subtended at the body on the ecliptic
by the arc joining the north point of the ce-
lestial horizon and the north pole of the equa-
tion; 2. Deflection due to the latitude of the
observer.

A{Kw, VII.3 1.The extremity of a line or arc;
2. Remainder in division in Ku∂∂°k°ra

A{Km, XI. 14 Amplitude at rising, i.e., the north south dis-
tance of the rising point from the east-west
line; the Rsine thereof,

A{KmwKpew, X. 14 Agr¡ in terms of a¥gulas

AMvKpew, (c.w) Linear measure, inch

AWp-]-cn-amWw, VIII.8 Infinitesimal

AXn-tZiw, XI.19 Application or use a general rule

A\p-_‘w I
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A[nIw, (c.w) Additive

A[n-Im_vZw, (d.w) Additive lunar year

A[n-I-tijw, V.1 The positive remainder after division

A[n-Im-{K-lmcw, (d.w) The divisor in S°gra- ku∂∂°k°ra which has
numerically the greater remainder

A[n-amkw, V.1 Intercalary month

At[m-ap-J-i¶p Downward gnomon

A¥-c-Nm]w, (d.w) The intervening arc between two points in
the circumference of the circle

A¥-cmfw, (d.w) 1. Difference; 2. The perpendicular distance
from a point to a straight line or plane; 3. Di-
vergence;  4. Intervening

A¥yw, I.2 1. 1015  (Place and number); 2. The digit of
highest denomination; 3. The last term in a
series

A¥y-{Im¥n = ]-c-a-{Im-¥n, (d.w) Maximum declination, 240

A¥y-ÿm\w, I.5.ii 1. The place of the digit of the highest de-
nomination; 2. The ultimate place when ar-
ranged in a column.

At\ym-\y-l-cWw, (d.w) Mutual continued division (as in finding
G.C.M.)

A]-{Iaw (A-]-{I-a-[-\p-kv,

    A]-{Im-¥n, A]-a-{Im-¥n), IX.3 Declination of celestial body; obliquity of the
ecliptic.

A]-{I-a-a-fiew (hr-Øw,

    {Im¥nhrØw), VIII.16; IX.3, 12 Ecliptic, path of the Sun in the sky.

A]--a-fiew, VIII.16; IX.3 Ecliptic

kmt¶-XnI]Z-kqNn ˛ ae-bmfw : Cw•ojv
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A]-c-]£w, (c.w) The period from full moon to new moon

A]-c-hn-jp-hØv, IX.3 Point at which the Sun coursing along the
Ecliptic crosses the Celestial sphere from the
north to the south.

A]-h¿Ø\w, V.3 1. G.C.M; 2. Reducing a fraction or ratio to
lowest terms; 3. Abrader

A]-h¿Ø-\-lm-cIw, V.3 Greatest Common Multiple (G.C.M.)

A_vPw, I.2 109 (number and place)

Aam-hmkn, (c.w) New Moon

Ab\w, (c.w) XI. 3 1. Northward and southward motion of the
Sun or other planets; 2. Declination

Ab-\-N-e\w, IX. 4 Precession of the equinoxes

Ab-\-Zr-°¿Ωw, (d.w) Reduction for observation on the ecliptic

Ab-\-h-e\w, XII.5 1. Angle between the secondaries and the
ecliptic of the place of the eclipsed body on
the ecliptic; 2. Deflection due to declination

Ab-\-k‘n, IX.3 Solstice

Ab-\m¥w, IX.3 Solstice, vernal and autumnal

Ab-\m-¥-hn-]-co-X-hrØw, IX.10 Reverse solsticial circle

Ab-\m-t¥m-∂Xn, (d.w) Elevation of the Solstices

AbpXw, I.2 Number and place of 10,000

A¿°m{Km, XI.13 1. Measure of the amplitude in the arc of the
celestial horizon lying between the east point
and point where the heavenly body con-
cerned rises; 2. The distance from the ex-
tremity of the gnomonic shadow and the
equinoctical shadow.

A\p-_‘w I
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A¿°m-{Kmw-Kpew, XI.2 Measure of the ark°gr° in a¥gulas

A¿≤Pym, (Pym-hv, Pym) VII.3 Rsine

Aev]-hrØw, VIII.1 Smaller circles parallel to the Big circle, the
ecliptic

Aev]-tijw, V.3, 4 In Ku∂∂°k°ra the smaller of the last two re-
mainders taken into consideration

Ahaw (Xn-Yn-£-bw), V.1 Omitted lunar day.

Ah¿§-ÿm\w, (d.w) Even place counting from the unit’s place.

Ah-ew-_Iw, (c.w) Plumb

Ahm-¥-c-bpKw, V. 3 A Unit of time. viz. 576 years or 210389
days adopted by ancient Hindu astronomers.

Ahn-in-jvSw, V.3, 4 Obtained by successive approximation or it-
eration.

Ahn-tijw, V.3, 4 Successive approximation process of itera-
tion

Ahy-‡-cmin, (c.w) An unknown quantity

A{iw, (c.w) 1. A side of a polygon; 2. An edge.

Ajv{Sm{iw, VI.2 Octogon

AknXw, XII. 1, 2 Non-illuminated part of the moon in eclipse

Akp ({]m-W≥), (c.w) Unit of time equal to 4 seconds

AkvXa-bw, IX.2 Setting, Diurnal or heliacal

AkvXe·w, XI.3, 34 1. Lagna of time of planet’s setting; 2. Set-
ting or occident ecliptic.

Akv̂ pSw, (d.w) 1. Rough; 2. Inexact

Al¿-KWw Days elapsed from epoch

..
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Al-¿Zew, XII.7 Mid day

Atlm-cm-{X-hrØw (Zyp-hr-Øw) (d.v) Dirunal circle; Smaller circle, parallel to the
Gha…ik°ma∏∑ala (celestial equator) along
which stars rising north or south of the poles
move.

BImiw, IX.1 1. Celestial Sphere; 2.  Sky

BImiI£ym

   (Aw_-c-I-£ym, JI£ym), IX.1 Boundary circle of the sky, having the linear
distance which a planet travels in a yuga,
equal to 124,74,72,05,76,000 yojanas,
denoted by the expression ajñ°nitaamonam°
sar°evpriyo nanu in KaΩapay°di notation.

B£w, (d.w) Relating to Latitude

BZn, VIII.1 1. Beginning; 2. Commencement;
3. Starting point

BZn-Xy-a-≤yaw, (d.w) The mean longitude of the Sun

BZy-I¿Æw, VIII.15 One of the diagonals of a quadrilateral taken
for reference. The other is known as
dvit¢yakar∏a or itaraka∏a

BZy-kw-I-enXw, VI.5.v First integral or sum of an Arithmetic pro-
gression.

BZyÿm\w, (d.w) Unit’s place

B_m[, VII.2 The two segments into which the base of a
triangle is divided by the perpendicular from
the vertex

Bb-X-N-Xp-c{iw, (d.w) Rectangle

Bbmaw, (c.w) Length

Bbm-a-hn-kvXmcw, (c.m) Length and breadth

B¿£w, (\£{Xw) (c.m) Sidereal

A\p-_‘w I
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B¿Ø-h-’cw, (d.w) 1. Tropical year, from vi¿uvat to vi¿uvat;
2. S°yanavatsara

Bim{Kw, (d.w) North-South distance of the rising point from
the east-west line.

BlXn, (d.w) Product

C—m, IV.1 Requisition, being the third of the three quan-
tities in the Rule of Three

C—m-̂ ew, IV.1 1. The desired consequent; 2.The fourth pro-
portional.

CSw, (c.w) Breadth

CX-c-I¿Æw, VII.15 The second diagonal in a quadrangle

CXc-Pymhv, (d.w) The other co-ordinate

CX-tc-X-c-tImSn, (d.w) The ordinate of the other Rsine

Cµp-]mXw, (d.w) Ascending node of the Moon

Cµq®w, (d.w) Higher apsis of the Moon

Cen (en-]vX, Ie), VIII.1 1. Minute of angular measure; 1/360 of the cir-
cumference in angular measure

CjvSw, (c.w) Desired or given number

CjvS-Im-e-kzm-tlm-cm{Xw, XI.3 Day duration relating to the desired time.

CjvS-{K-l-W-Imew, XII.2 Moment of desired occultation

CjvSPym, IX.1 Rsine at the desired point on the circumfer-
ence of a circle

CjvS-Zn-IvOmbm, XI.20.iv Shadow in desired direction

CjvS-ZnKvhrØw, XI. 20 Circle passing through the zenith and the
planet

CjvS-tZmx-tImSn [\p v, (d.w) The complementary arc of any chosen arc

kmt¶-XnI]Z-kqNn ˛ ae-bmfw : Cw•ojv
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CjvS-{]-tZiw, (d.w) The desired piont

CjvS-̀ p-Pm-Nm]x, VII.3 Arc of specified Rsine

CjvSm-]{Iax, IX.9 Desired declination

CjvSm-]-{I-a-tImSnx, IX.9 Rcos. desired declination

CjvSkwJy, I.6.ii The desired number

D®w, VIII.5 1. Higher apsis, especially pertaining to the
epicycle of the equation of the centre; 2.
Apogee of the Sun and the Moon; 3. Aph-
elion of the planets.

D®-\o-N-hrØw, VIII.3 Epicycle

D®\oN]cn[n, VIII.3 Epicycle

D®-\o-Nkq{Xw, VIII.7, 8 See Ucca

D®-kq{Xw, VIII.7,8 See Ucca

D÷-bn\n, IX.1 City in Central India, the meredian passing
through which is taken as zero

DXv{I-aPym, VII.4 Rversed sine

DØ-c-hn-jp-hØv, IX.3 Autumnal equinox

DØtcm-Ø-c-kw-I-en-ssXIyw, VI.14 Summation of Summation of progressive
numbers

DZbw, IX.2,  XI.3 1. Rising; 2. Heliacal rising; 3. Rising point
of a star or constellation at the horizon

DZb-Imew, XI.3 Moment of the rising of a celestial body.

DZ-bPym, XI.3 1. Rsine of the amplitude of the rising point
of the ecliptic; 2. Oriental sine; 3. Rsine of
the amplitude of lagna in the east.

DZ-b-e·w, XI.3 1. Rising sign; 2. Rising on orient ecliptic point

DZ-bm-kvX-abam¿§w, IX.2 Path of a Planet from rising to setting
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D∂-XPym, XI.4, 26 Rsine of 900 less zenith distance

D∂-X-{]m-W≥, XI.16 The Pr°∏as in time yet to expire for a planet
to set

D∑-a-fiew

   (e¶m-£n-Xn-Pw), IX. 7 1. Diurnal circle at La¥k°; 2. East-West hour
circle; Equinoctial colure; 3. Big circle
passing through the North and South poles
and the two East-West svastika; 4. Equitorial
horizon.

D∑oe-\w, XII, 1,2 Emersion, in eclipse

D]-]Øn (bp-‡n), V.3, 8 Proof, Rationale

D]m[n, (c.w) Assumption

D]m¥yw, I.5.ii 1. Penultimate; 2. Penultimate term

Du\-tijw, (d.w) The smallest number to be added to the divi-
dend to make it exactly divisible by the given
divisor

Du\m-{K-lmcw, V The divisor in S°gra - Ku∂∂°k°ra which has
numerically the smaller remainder

Du\m-[n-I-[-\p v, (d.w) The deficit or excess of an arc

Du¿≤zw, (c.w) The topmost; The earlier; Preceeding

Du¿≤zm-t[m-tcJ, VIII.1, 3 Vertical

E£w, (\-£{Xw) (c.w) 1. Asterism; 2. Star-group

EWw, (c.w) 1. Negative; 2. Subtractive quantity

GIw, I.2 1. Unit; 2. Unit’s place; 3. One

GI-tZiw, (d.w) 1. In the same straight line; 2. A part

GIZzn{XymZn, VI. 5.iv 1. Consecutive;
   (GIm-Zn-{I-taW) 2. Numbers starting from unity
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GIm-tZy-tImØcw, VI. 4 1+2+3+4  etc.
    (GIm-tZytIm-Ø-c -kw-I-enXw)

GI-mtZytIm-Ø-ch¿§kw-I-enXw, VI. 412+22+32+-------------------

GIm-tZytIm-Ø-cL-\-kw-I-enXw, VI.4.iii 1 3+23+33+-------------------

GIm-tZytIm-Ø-c-h¿§-h¿§-

          kw-I-enXw, VI.4.iii 1 4+24+34+-------------------

GIm-tZytImØc ka-]-©-LmX

          kwI-enXw, V.4, iii, iv 15+25+35+---------------

GIm-tZy-tIm-Ø-c-kw-I-enXw, VI.5.v 1+2+3+------------------

GssItIm\w, (d.w) Numbers descending by unity

Gjy-Nm]w, (d.w) The arc to be traversed

HmPw; ̨  ]Zw, I.8.i;  VII. 3 1. First and third quadrants of a circle; 2.
Odd

I£ym, VIII. 1, 2  Orbit

I£ym-{]-Xn-afiew, VIII. 2 Eccentric

I£ym-a-fiew, VIII.7 1.Mean orbit; 2.Deferent;
3. Concentric

I£ym-hrØw, VIII.4 Orbital circle of a planet

I]mew, (c.w) Hemisphere

IcWw, (c.w) Half-tithi period

I¿°n, IX.3 Sign Ka∂aka, Cancer

I¿°ymZn, IX.3 Commencing from the sign Karki or Can-
cer, the fourth zodiaed constellation

I¿Æw, VI.2, VII.3 1. The diagonal of a quadrilateral;
2. Hypotenuse of a right angled triangle; 3.
Radias vector

I¿Æ-hrØw, VIII. 7, 8 Hypotenuse circle
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I¿Æ-hr-Ø-Pymhv, VIII. 7 Rsine in hypotenuse circle

Iem, (Aw-iw, en]vX) 1. 1/21600 of the circumference of a circle;
2. Minute of arc

Iem-KXn, (d.w) Daily motion of planets in terms of minutes
of arc

Iem¿≤Pym, (d.w) The 24 Rsine differences in terms of min-
utes.

Iem-hymkw, (d.w) Angular diameter in minutes

Ien-Zn\w, (Iey-l¿K-Ww) (d.w) Number of days elapsed since the Kali ep-
och

Ien-bpKw, (d.w) The aeon which commenced on Feb,18th,
3102 B.C. at sunrise at Lanka

IeymZn, V.1 Commencing from Kali epoch

Ieym-Zn-{[phw, (d.w) Zero positions of Planets at the commence-
ment of the Kali epoch

Ime-tIm-SnPym, IX.11 Sine from the zenith with its tip at the point
of contact of the R°øik£∂a and Gha∂ik°v§tta
on the Gha∂ik°v§tta

Ime-tIm-Sy-]-{Iaw, IX.11 Declination of the K°lako…i on the
R°øik£∂av§tta

ImePym, (Im-e-tZm¿Kp-Ww), IX.12 Rsine of the angle between two points of time
in degrees.

Ime-̀ mKw, (Im-emw-iw) Degree of time at the rate of one hour equal
to 15 degrees of time

Ime-e·w, XI. 31, 32 Ecliptic point on the horizon at the desired
time.

Ip´m-Imcw, V. 3 Pulveriser, a type of indeterminate equation,
called also Diophantine equation
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IrXn Square

IrjvW]£w, (c.w) Dark half of the lunar month

tI{µw, VIII. 1,8;  XI.1 1. Centre of a circle; 2. The particular point
on the circumference from which the arc is
measured; Anomaly 3. Mean anomaly or
commutation; 4. Distance from Mandocca
or ·¢ghrocca to mean planet

tI{µ-{ -̀aWw, VIII.2 Movement of the Kendra

tImSn, VII.1 1. Abscissa; 2. Adjacent side of a
rightangled triangle; 3. Corner rafters of
kipped roof, 4.107 (number and place); 5.
Complement of  bhuja.

tImSn-Jfiw, VII.2, 3 1. The difference between two successive
abscissa; 2. The first differential of ko∂ijy°

tImSn-Nm]w, VII.5 Arc of R. cos

tImSnPym, VII.5 Rsine ko∂i or Rcosine of  bhuj°

tImSn-aqew, tImSy-{Kw, VII.2, 3 The point at which ko∂i (R.cos) touches the
circle at its statrting point and the other end
is its end

tImSn-hrØw, VII.3 R cos circle

tIm¨, VI.1 1.Corner; 2.Direction; 3.Angle

tImW-—mbm, XI. 20, iii 1. Shadow at the moment of passing the
Kar∏atta 2. Corner shadow

tImW-hrØw, (d.w) Vertical circle extending from North-east to
South-west or from North-west to South -
east

tImW-i¶p, XI. 20.iii 1.Ša¥ku formed at the moment of passing
the ko∏av§tta. 2.Corner Ša¥ku
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tIm¬, (c.w) A unit of length equal to about 28 inches

{IaPym Sum of the sine segments taken in order

{Ia-i¶p Gnomon formed at the moment of passing
the ko∏av§tta.

{Im¥n-, A]-{Iaw, IX. 3 1. See Apakrama, 2.Declination

{Im¥n-tImSn Reverse declination

{Im¥nPym, XI.21 Rsine declination

{Im¥n-a-fiew, (d.w)
    {Im¥n-hrØw, (d.w) 1. Zodiacal circles;

2. Path of the Sun in the sky

{Inbm, (c.w) Sign Me¿a, Aries

£nXnPw, IX.10 Terrestrial horizon passing through the four
cardinal directions, where there is no lati-
tude

£nXnPymhv, XI. 14, 26 Sine on that part of the diurnal circle

t£{Xw, I.5 Plane figure Geometrical figure

t£{X-̂ ew, I.5 v Area of a plane or geometrical figure

t£]w, V.1 1. Celestial latitude; 2. Additive quantity

JI£ym, IX. 3 Àk°øakak¿y°

JtKmfw, VIII.1; IX. 3 Celestial sphere or globe

Jfiw, I.8.ii Part

Jfi-Kp-W\w, (d.w.) Multiplication by parts

Jfi-{K-lWw, (d.w.) Partial eclipse

JfiPym, VII.5 1. The difference between two successive
ordinates; 2. The first differential of Bhuj°jy°
(Rsine; Sine segment)

Jfi-Pym-¥cw, VI.7 The second differential of Jy°
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Jfi-Pym-tbmKw, VI.8 Sum of sine segments

Ja[yw, IX.3 1.Zenith; 2.Middle of the sky

J¿∆w, I.2 1010 (Number and place)

K—w, VI.4 Number of terms in a Series

K—-[\w, (d.w) Sum of specified number terms in a Series

KWnXw, I.2.3 Mathematics

KXw, (c.w) Elapsed portion of  the days.

KX-K-¥-hy-{]m-W≥, XI.4 The pr°∏as gone and to go

KX-Nm]w, (d.w) The arc already traversed

KXn, VIII.1 1. Motion ; 2. Motion of celestial bodies

KXn-Iem, (d.w) Motion in terms of minutes of arc of a planet

KXn-t`Zw, (d.w) Difference in motion or rate of motion

KpWw, I.3 1.Multiplication; 2.Multiplier; 3.Rsine

KpWIw, I.5 Multiplier

KpWImcw, I.5 Multiplier

KpW-\w, I.5 Multiplication

KpWyw, I.5 Multiplicand

Kp¿∆£cw, (c.w) 20, One-sixtieth of a vina∑i, 24/60/of a  sec-
ond in time measure

tKmfw, VII.18, IX.7 1.Sphere;  2.Celestial sphere; 3. Globe

tKmf-tI{µw,  VIII.1.2 Centre of a sphere

tKmf-L-\w, VII.19 Volume of a sphere

tKmf-]rjvTw, VII.18 Surface of a sphere

tKmf-]r-jvT-̂ ew, VII.18 Surface area of a sphere

tKmf-_‘w, IX.8 Construction of the armillary sphere
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tKmf-a[yw, VIII.1 Centre of the sphere

tKmfmZn, XI.5 The point of contact of the gha∂ik° and
apakramav§tta

{Klw, VIII.1 Planet, including the Sun and the Moon, and
the ucca or higher apsis, and p°ta or ascend-
ing node

{Kl-KXn, VIII.1, 3, 4 Daily motion of a Planet

{KlWw, XII.1-10 Eclipse

{Kl-W-Imew, XII.1, 2 Duration of occulation during an eclipse

{Kl-W-{]-tZiw, XII. 1 1. Portion of Sun or Moon eclipsed;

2. Magnitude of an eclipse

{Kl-W-a≤yw, XII.2 Middle of eclipse

{Kl-W-te-J\w, XII.9 Geometrical representation of the eclipse

{Kl-W-kw-ÿm\w, XII.3 State or situation of an eclipse at a particular
time

{Kl-̀ p‡n, VIII.1 Daily motion of a planet

{Kl-{ -̀a-W-hrØw, VIII, 3, 5 Circle of motion of a planet

{Kl-tbmKw, (d.w) Conjunction of two planets

{Kl-hr-Ø-tI{µw, VIII. 1,2 Centre of a planet’s orbit

{Kl-kv̂ pSw, VIII. 1 True longitude of a planet

{Klm-kvtXm-Zbw, XIV.2 Rising and setting of a planet

{Kmkw, VII.22 The maximum width of the overlap of two
intersecting circles or an eclipse and mea-
sure thereof.

{Kmtkm-\-hymkw, (d.w) The difference between the diameter and
eclipsed portion in eclipse
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{KmlIw, XII.1 Eclipsing body in an eclipse

{Kml-I-_nw_w, XII.1 Eclipsing body

{Kmlyw, XII.1 Eclipsed body in an eclipse

{Kmly-_nw_w, XII.1 Orb of the eclipsed body

LSnIm (\m-Un-I), (c.w.) Unit of time equal to 24 minutes

LSnIm-\-X-hrØw, IX.10
   (LSn-Im-a-fiew) Celestial Equator; path of the star rising

exactly in the east and setting exactly in the
west.

L\w, I.3 1.Cube of a number; 2. Solid body;
3. Sphere

L\-t£-{X-̂ ew, (d.w) Volume of a body

L\-a≤yw, (d.w) Centre of a sphere

L\-aqew, I.3 Cube root

L\-kw-I-enXw, VI. 5.iii, Sum of a Series of cubes of natural numbers

LmXw, I.10 Product

LmX-t£{Xw, I.5; v; I.8.ii Rectangle

N{Iw, (c.w.) 1. Circle; 2. Cycle

N{I-Iem (N-{I-en-]vX), (d.w.) Minutes of arc contained in a circle being
21600

NXp-c{iw, (c.w.) Quadrilateral

NXp-c-{i-̀ qan, VII.18 The base of a quadrilateral. The opposite
side is known as face (Mukham)

NXp¿bpKw, V.1 A unit of time,  viz. 4320000 years,  adopted
by ancient Hindu astronomers

N{µ-{K-lWw, XII.2, 10 Lunar eclipse

N{µ-irw-tKm-∂Xn, XV. 1, 2 Measure of the Moon’s phases
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Nbw, VI. 4 The common difference in an Arithmetic pro-
gression

Ncw, VII.2 1. Arc of the celestial equator lying between
the 6 o’ clock circle and  the hour circle of a
heavenly body at rising; half the variation of
a siderial day from 30 na∑ik°s; 2. Declina-
tional ascensional difference

Nc-Iem, (d.w.) Minutes of longitude corresponding to cara

NcPym, (c.w) Rsine caradala

Nc-Zfw (Ncm¿≤w) (d.w.) Half ascensional difference

Nc-{]mWw (Ncm-kq) (d.w.) Pr°∏as or asus of ascensional difference

Ncm¿≤w, VII.I Half ascensional difference

Nm{µ-amkw, V.I 1. Lunar month; 2. Period from one new
moon to the next, equal to about 29.53 civil
days

Nm]w, VII.I 1. Arc or segment of the circumference of
 a circle; 2. Constellation Dhanus

Nm]-tImSn, (d.w.) Complementary arc of  Bhujac°pa

Nm]-Jfiw, (d.w.) C°pa segment

Nm]-̀ pPm, (d.w.) An arc measured from Me¿°di and Tul°di in
the anti-clock-wise direction in the first and
third quadrants and in the clock-wise direc-
tion in the second and fourth quadrants

Nm]o-I-cWw, VI.6 Calculating the arc of a circle from its
semichord

Nmcw, (c.w) Motion

OmZIw ({Km-l-Iw), (d.w.) Eclipsing body
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OmZyw, (d.w) Eclipsed body

Omb, X.I 1. Shadow; 2. Rsine of zenith distance, i.e.,
mah°cch°y°

OmbmI¿Æw, VII.17 Hypotenuse of a right angled triangle one of
whose sides is the gnomon and the other is
the shadow.

Ombm-tImSn, XI.3 R.Cos. shadow of a gnomon

Ombm-tIm-Sn-hrØw, XII.7 Circle described by Rcos. shadow of gno-
mon

Ombm-̀ qP, XI.13 Rsine gnomonic shadow.

Ombm-ew-_\w, XI.8, 37 Parallax of  the gnomon

tOZw, III.2 Denominator

tOZIw, tOZyw, III.1 1.Figure; 2.Diagram; 3.Drawing

Pe[n, I.2 1014, (number and place)

Pohm, Pym VI.19 Rsine

Poth]c-kv]-c-\ym-bw, VII.8, 11 R sine (A plus or minus B)

PqIw, (c.w.) Sign Tul°, Libra

Pym, Pymhv, (Pym¿≤w), VII. 1 1.Semi-chord; 2.Ordinate of an arc; 3.Rsine
line joining the two ends of an arc.

PymJfiw, (d.w.) 1.Segment of arc; 2.Sine segment, 3.Sine dif-
ference.

PymNm-]m-¥cw, (d.w.) Difference between an arc and the corre-
sponding semi-chord

Pym]nfiw, (d.w.) The semi-chords of one, two etc. parts of
the arcs of a quadrant which is divided into
any number of equal parts.
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Pym¿≤w, VII.I See  jya

Pymh¿§w, VII.7 Square of  R sine

Pymi-c-h¿§-tbm-K-aqew, (d.w.) VII.1 Root of the sum of the squares of  R sine
and R reversed sine

Pymkw-I-enXw, VII.5 The summation of semi-chords

Pym (k-akvX˛), VII.1 Complete chord of the arc

tPymXn¿tKmfw, X.2, 3, 7 Celestial sphere

tPymXn-›{Iw, VIII.1, IX.1 Circle of asterisms

Qjw (a’yw), (c.w) Figure of fish formed in a geometrical dia-
grams., like as in intersecting circles

X£Ww, V.3 1.The method of abrasion; 2.The numbers
by which the gu∏ak°ra and phala are
abraded

Xa v, (c.w) 1.Shadow cone of the earth at the Moon’s
distance; 2.Moon’s ascending node.

Xev]c One sixtieth of a vikal° or vili of angular mea-
sure

XjvSw, V.3 Abraded

XmU\w Multiplication

Xmcm-{Klw, (d.w) Star planets, viz., Mars, Mercury, Jupiter,
Venus and Saturn

XnYn, V.1 1.Lunar day, 2.Thirtieth part of the lunar or
synodic month

XnYn-£bw, (d.w) 1.Omitted lunar day, 2. Subtractive day

XnYy¥w, (d.w) End of the new moon tithi or the full moon
tithi

Xn¿øKvhrØw, XI.20.i Oblique or Transverse circle
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XoøXn (Aw-iw,- ̀ m-Kw), IX.9 One degree of angular measure

XpwK≥, VIII.5 Apogee of the Moon

XpemZn, IX.3 1.The six signs commencing from Tul°, 2.The
other side of Me¿°di

Xpey-mIm-c-t£{Xw, (d.w) Similar figures

XrXo-b-I¿Æw, VII.10 In a cycle quadrilateral if any two sides are
interchanged, a third diagonal is obtained
which is called by this term

XrXo-b-kw-I-enXw, VI.5 Third integral

{XnPym, ({Xn`Pym, {Xncm-inPym) (d.w) 1. Rsine 900; 2. The radius of length 3438
units, with the length of a minute of arc taken
as unit and corresponding to unity in the
tabular sines.

{Xn`Pym, ({XnPym), (d.w) Rsine 90 degrees

{Xncm-inPym ({XnPym), (d.w) Rsine of 900, Rsine of three r°øis

{Xncm-iyq\ Ime-e·w, (d.w) K°lalagna less 900

{Xni-cmZn, (d.w) Set of odd numbers (3, 5, 7, etc.)

ss{XcminIw, IV.1. 1.Rule of Three, 2.Direct proportion

{Xn`pPw ({Xy-{iw), (d.w) Triangle

{Xy{iw hn-j-aw, (d.w) Scalene triangle with all three sides of a dif-
ferent lengths.

Z£n-tWm-Øc-\-X-hrØw, IX. 10 1. North-south big circle

Z£n-tWm-Ø-c-a-fiew, IX.10 Meridian Circle

Z£n-tWm-Ø-c-tcJ, VIII.3 North-south line; Meridian; Solstical colure

Z£n-tWm-Ø-c-hrØw, IX.2 North-South Big circle passing through the
zenith, round the celestial sphere

Z¿i-\-kw-kvImcw, XIV.1,3 Visibility correction of planets
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Zfw, (C.W.) Half

Ziw, 1.2 10 (number and place)

Zn°v, (c.w) Direction

ZnIvN{Iw (£n-Xn-Pw), (d.w) Terrestrial horizon passing through the four
cordinal directions at which that is no latitude.

ZnIv⁄m\w, IX.1, 15 Method of ascertaining the directions

ZnIvkmayw, (d.w) Same or parallel line or direction

ZnIvkq{Xw, VI.1, 3 Straight lines indicating directions

ZnK{Km, (d.w) North-south distance of the rising point from
the east-west line

ZnssKz-]-coXyw, VI.3 Perpendicularity

Zn\-̀ p‡n, (d.w) Motion per day

Znhkw, (c.w) Solar day

Znhy-Zn\w, (d.w) Divine day

Znhym_vZw, (d.w) Divine year, equal to 360 years of  men

Zr°¿Æw, XI.17, 28 Hypotenuse with D§ggolaøa¥ku and
D§ggolacch°y° as sides

Zr°¿Ωw, IX.6, 7 Reduction to observation

ZrIvOmbm, XI.7 Parallax

ZrIvt£]w, XI.34 1. Ecliptic zenith distance; 2. Zenith distance
of the non-agesimal or its Rsine

ZrIvt£]-tImSn, XI.34 Rcos D§kk¿epa

ZrIvt£]Pym, XI.34 Rsine D§kk¿epa

ZrIvt£]-Pym-tImSn, XI.34 Rcos D§kk¿epa

ZrIvt£]-a-WvUew ( -̨hr-Øw), XI.31 1. Vertical circle through the central ecliptic
point. 2. Secondary to the ecliptic passing
through the zenith.
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ZrIvt£]-e·w, (d.w) Nonagesimal; point on the ecliptic 900 less
from the lagna or rising point of the ecliptic

ZrIvt£]-hrØw, XI.31 1. Vertical circle through the central ecliptic
point. 2. Secondary to the ecliptic passing
through the zenith

ZrIvt£]-i¶p, XI.34 Gnomon re- ecliptic zenith distance

Zr§Xn, (d.w) Arc of the ecliptic measured from the cen-
tral ecliptic point or its Rsine; Rsine altitude
of the nongesimal

Zr§-Xn-Pym, (d.w) Rsine  of  the attitude of the nonagesimal
points of  the  ecliptic

Zrt§mfw, X.7 1. Visible celestial sphere;

2. Khagola and Bhagola together

Zrt§mf-—mb, XI.7 Shadow relating to D§ggola

Zrt§mf-i¶p, XI.7 Gnomon relating to D§ggola

ZrKvPym, (d.w) Rsine of  the zenith distance

ZrKvhrØw (Zr-Mva-WvU-ew)1, XI.6, 20 Vertical circle passing through the zenith of
the observer and the planet

Zr-Mva-WvU-ew, XI. 6, 20 Vertical circle in the D§ggola

Zr-Mva[yw, (d.w) Centre of the eye-level of the seer on the
surface of the earth

ZrVw, (c.w) Reduced by the G.C.M., i.e. converted into
primes of each other in indeterminate equa-
tions

ZrVt£]w (ip-≤n), (d.w) Additive and subtractive divided by the G.C.
M of dividend and divisor in Ku∂∂°k°ra

ZrV`m-PIw, V.3 Reduced divisor (by the G.C.M)

ZrV`mPyw, V.3 Reduced dividend by G.C.M
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tZim-¥cw, (d.w) 1. Longitude; 2. Difference in terrestrial lon-
gitude; 3. Correction for terrestrial longitude

tZim-¥-c-Imew, (d.w) Time difference due to terrestrial longitude

tZim-¥-c-kw-kvImcw, (d.w) Correction for local longitude

tZmkv (`p-P), (d.w) 1. Side of a triangle, 2. Ordinate of an arc,
3. Opposite side of a right angled triangle

ZypKWw (I-en-Zn-\w), (d.w) Number of days from Kali epoch

ZypPym, (d.w) Day - radius

ZyphrØw (A-tlm-cm-{X-hr-Øw), IX.9 Diurnal circle. Smaller circles parallel to the
Gha∂ik°ma∏∑ala (celestial equator), along
which stars rise north or south of the poles

Zzm{Xnw-i-Z{iw, (d.w) A polygon of 32 sides

ZzmZ-imw-Kp-e-i¶p, XI.2 A gnomon 12 digits long used by the ancient
Hindu mathematicians in the measurement of
shadows

ZzmZ-imw-Kp-e-i-¶p-—mb, XI.2,10 Shadow of a 12 digit gnomon

ZznXobI¿Æw, VII.10 The seemed hypotenuse in a poygon

ZznXo-b-kw-kvIm-c-lm-cIw, (d.w) The divisor used to calculate a second cor-
rection after a first correction

ZznXob-k-¶-enXw, (d.w) Sum of the series of second integrals

[\w, (c.w) 1. Positive, 2. Additive

[\p v, (c.w) Arc of a circle

{[phw, IX.1 1. Celestial pole, pole-star, north or south;
2. Zero positions of planets at epoch

{[ph-hrØw ({[p-h-I-hr-Øw), IX.7 Meridian circle

{[ph-\-£{Xw, IX.1 Pole star

[pthm-∂Xn, IX.7,8 Elevation of the celestial pole
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\£{Xw, VIII.1,2 Star; Asterism; Constellation

\£-{X-I£ym, (`I-£ym) (c.w) Orbit of the asterisms, equal to 17,32,60,008
yojanas, denoted by the expression jan° nu
n¢tira¥gasarpa being 50 times the orbit of
the sun.

\£-{X-tKmfw, IX.1,2 The starry sphere

\Xw, IX.10 Meridian zenith distance; Hour angle;
Interval between mid-day and time taken

\X-tIm-Sn-Pymhv, IX.12 Rcos. of the hour angle

\X-Pymhv, IX, 20.v Rsine of zenith distance or hour angle

\X-Zr-Ivt£-]-hrØw, XI.21i Circle touching the zenith and
Natsamama∏∑ala

\XPy, XI.20.v Rsine hour angle

\X-\mUn, IX.10 Interval in n°∑is between midday and time
taken

\X-{]mWw, (d.w) Pr°∏as of zenith distance

\X-̀ mKw, (\-Xmw-iw) (d.w) Degree of zenith distance

\X-hrØw, IX.10 A Big Circle which passes through the sides
(p°røva) of another Big Circle around the
sphere

\X-k-a-a-fiew, XI.21 Prione vertical at the meridian

\Xn, XI.2, 35 Parallax in  celestial latitude

\Xn-Iem, (d.w) Nati in minutes

\Xn-tbmKw, XV.2 Sum of two parallaxes in celestial latitude

\Xn-ew-_-\-en]vXm, XI.35 R.cos. Parallax in celestial longitudes in terms
of minutes of arc

\Xy-¥cw, XV.2 Difference beteween parallaxes in celestial
latitude
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\m£-{X-h¿jw, \m£-{Xkwh-’cw (d.w) 1. Sidereal year; 2. Equivalant to me¿°di to
me¿°di; Nirayana year; Solar Year

\mUo-hrØw, (\m-Uo-h-e-bw) (d.w) ..................

\m`n-tI{µw Centre of a circle

\m`yp-{—bw (\m-̀ yp-t’-[w), (d.w) Elavation of n°bhi (Centre)

\mgn-I, (c.w) Measure of time equal to 1/60th of a solar
day, i.e; 24 minutes

\nJ¿hw, I.2 1011 (number and place)

\nao-e\w Immersion, in eclipse

\nc£w, IX.2 Region of zero latitude, i.e. terrestrial equa-
tor

\nc-££n-XnPw, IX.7 Equatorial horizon

\nc-£-{]-tZiw, (˛tZiw) IX.1 Equatorial region

\nc-£-tcJ, (d.w) Equator

\nc-¥-c-kwJy, I.4 Consecutive numbers

\oNw, V.III.1 Perigee or perihelion

\ntNm-®-a-fi-ew,  VIII.1 Epicycle

t\an, VIII.3; XI.1 Circumference of a Circle

]£w, (c.w) Light or dark half of the lunar month

]Mv‡n, (c.w) Column; Ten, (Number and place)

]©-cminIw, (d.w) Compound proportion involving five terms

]Tn-XPym (a-lm-Pym), VII.3,4 The 24 specified Rsines

]Zw, VII.2,3 1. Square root; 2. Terms of a series; 3.
Quadrant of a circle

]c-{Im¥n, ]c-a-{Im{¥n, (d.w) Maximum declination, 240

]c-a-{Kmkw, (d.w) Maximum eclipse or obscuration
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]c-a-kz-mtlm-cm{Xw, IX.9 Longest day in the year

]c-ºc, (c.w) A series

]c-evt]cv 1. Word and letter numerals; 2.Numbers
formed through letters, words and phrases

]c-am-¥-cmfw Maximum distance between two things

]c-am-¥-cmfw, IX.5 A big circle which passes through the two
sides (parsua) of the other Big Circle around
a sphere

]c-am-]{Iaw, IX.9 Maximum declination of a celestial body
from the Ecliptic to its orbit

]c-am-]{I-a-Pohm, IX.9 Rsine of the greatest declination

]c-i¶p, ]c-a-i¶p, (d.w) Rsine of greatest altitude, i.e, Rsine of me-
ridian altitude

]cm¿≤w, I.2 1017 (Number and place)

]cn-I¿Ωw, I.2 Arithmetical processes or manipulations

]cn[n (t\an) Cicumference

]cn-{ -̀aWw, VI (c.w) A complete revolution of a planet along the
zodiac with reference to a fixed star

]cn-teJw, (]cn-te-J-\w) XII.9 Graphical or diagrammatic representation

]cybw, ( -̀K-Ww) V.1, 3; VIII.3 1.Revolution; 2. Number of revolutions of a
planet in a yuga

]¿∆m¥w, (d.w) The time when moon is in conjunction with
or opposition to the sun; End point of the
new or full moon

]ePym, Sine latitude

]e`m, Equinoctical shadow
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]mSv (sau-Vyw), XIV.3 Invisibility of a planet due to its light or ret-
rograde motion opposite to the disc of the
Sun

]mX≥, VIII.16 Mode, Generally ascending node

]m¿izw, VI.2 Side, Surface

]nXr-Zn\w, (c.w) Day of the manes

]nd∏v, XIV.3 Rising or reappearance of a planet after p°∂u
(Mau∑hya) which see.

]q¿∆-hn-jp-hØv, IX.3 1. Point at which the sun coarising along the
Ecliptic crosses the celestial equator from the
south to the north; 2.Vernal equinox

]q¿∆m-]-c-tcJ, VIII.3 East-west line or direction; Prime vertical

]q¿∆m-]-c-_nµp, XI.1 East and west points

]q¿∆m-]-c-hrØw, IX.3 East-west Big Circle passing throug the ze-
nith round the celestial globe

]rjvTw, (c.w) Surface

{]XXv]c One sixtieth of a tatpara in angular measure

{]Xn-]Xv ({]-Xn-]-Zw), (c.w) The first day of a lunar fortnight

{]Xn-̀ pPw, (d.w) Opposite side

{]Xn-a-fiew, VIII.3 Eccentric circle with its centre on the cir-
cumference of a planet’s orbit of a circle

{]Xn-a-fi-e-I¿Æw, VIII.7 Distance of the planet on the eccentric

{]Xn-a-fi-e-kv̂ pSw, VIII. I,3 True longitude of a planet in the eccentric
circle

{]Xn-a-tµm®w, (d.w) Perigee as opposed to apogee

{]XyIvI-]mew, (d.w) The hemisphere other than the one that is
being considered in a sphere
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{]`m-K-PmXn, III.1 Fractions of fractions

{]amWw, IV.1 Antecedant; First term of a proportion, i.e
argument in a Rule of Three.

{]am-W-̂ ew, IV.1 1. The consequent; 2. Second term in a pro-
portion

{]bpXw, I.2 1016,  (number and place)

{]h-l-{ -̀aWw, IX.3, XI.4 Revolution of the planets due to the
provector wind

{]h-l-am-cqXw, {]hm-l-hm-bp, IX.3; XI.4 Provector wind

{]kvXmcw, (c.w) Number of combinations

{]mIvI-]mew, (d.w) The eastern hemisphere

{]mKve·w, (d.w) Orient rising of the ecliptic

{]mWw, XI.4 Unit of time equal to one-sixth of a vin°∑i or
four sidereal seconds

^ew, (c.w) 1. Fruit, in the Rule of Three;

2. Result; 3. Bh£ja

_U-hm-apJw IX.1 1. Terrestrial south pole. 2. The place in the
South of the earth from where the south po-
lar star is right above.

_mly, XI.1 Lateral side of a rt. angled triangle; Semi-
chord; Rsine

_nw_w, XII.4 Disc of  Planet

_nw_-L-\-a-[ym-¥cw, XII.2 Sum of the semi-diameters of a Planet less
the eclipsed part

_nw_-am\w, XlI. 3, 4 Measure of the discs of Planets

_nw_m-¥cw, XII.3 Sum of the semi-diameters of two planets
minus the eclipsed part.
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`w (\-£-{Xw) (c.w) Asterism : Star

`I£ym, (d.w) Path of the asterisms

`IqSw, (cm-in-Iq-Sw) VIII.16 The two apexes of the circles cutting the
ecliptic at rt. angles.

`KWw (]-cy-bw), V.1, V.3, VIII.1 1. Revolution of a planet along the Ecliptic;
2. Number of revolutions of a planet during
a  certain period.
3. 12 rasis or 360 degrees

`tKmfw, VIII.2, IX.3 1. Sphere of asterisms; 2. Zodiacal sphere,
with its centre at the Earth’s centre.

`tKm-f-a[yw, VIII.2 Centre of the zodiacal shpere

`tKm-f-i¶p, XI.5 Gnomon with reference to the surface of the
bhagola

`N{Iw, (`a-fi-ew) (d.w) Circle of asterisms

`]-RvPcw, (d.w) Circle of asterisms

`mKw, (Aw-iw, Xob-Xn) 1.  
360

1
of a circle,

2. Degree of angular measure

`mK-PmXn, III.1 Fraction

`mK-l-cWw, III.3 Division

`mKm-\p-_‘w, Associated fraction

`mKm-]-hmlw, Dissociated fraction

`mPIw, V.3 Divisor (General and in Ku∂∂°k°ra)

`mPyw, V.3 Dividend; The multiplicand in Ku∂∂°k°ra

`n∂-aqew, III.5 Square root of fractions

`n∂-h¿§w, III.5 Square of fractions

`n∂-kwJy, 1.III Fraction
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`p‡n (= K-Xn), VIII.1 Motion; daily motion

`pP, VI.2; VII.9 1. Lateral side of a rt. angled triangle; 2. of
the angle, the degrees gone in the odd quad-
rants and to go in the even quadrants.

`pPm-Jfiw, (d.w) The difference between two successive or-
dinates

`pPmPym, (d.w) Rsine of an angle

`pPm-¥-c-̂ ew, (d.w) Correction for the equation of time due to the
eccentricity of the ecliptic

`pPm-̂ ew, VIII.9 Equation of the centre.

`qan, VI.2; IX.7 One side of a triangle or quadrilateral taken
for reference, generally the trase; Earth

`qtKmfw, IX.1 Earth-sphere

`q—mbm, XII.4 Earth’s shadow

t`mKw, (`p‡n), VIII.1 1. Motion; 2. Daily motion

`qXm-c-m{Kl-hn-hcw, (d.w) Angular distance between the Earth and a
Planet.

`qZn\w, V.1 1.Terrestrial day, 2.Civil day; 3. Sunrise to
sunrise;  4.The number of terrestrial days in
a yuga or kalpa

`q]-cn[n, (d.w) Circumference of the Earth, 3350 Yojanas.

`q]m¿izw, IX.7 Side of the Earth

`q{ -̀aWw, VIII.1 Earth’s rotation

`qa[yw, VIII.1 Centre of the Earth

`qa-[y-tcJ, (d.w) Terrestrial equator

`qhym-km¿≤w, (d.w) Radius  of the Earth

aI-cmZn, (d.w) The six signs commencing from Makara
(Capricorn)
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afi]w, VI.3 A square with a pyramidal roof usually found
in Hindu temples

afiew, (c.w) 1. Circle; 2. Orb

aXn, Small tentative multiplier in Ku∂∂°k°ra  got
by guessing correctly according to the con-
ditions given

aXn-̂ ew, (d.w) The result corresponding to a given mati

a’yw (Q-jw), (c.w) The overlapping portion of two intersecting
circles, taking the form of a fish.

a[yw, I.2 1016 (number and place); Middle point;
Mean (Planet etc.)

a[y-Imew, (d.w) Mean time.

a[y-KXn, (d.w) Mean motion of Planets; Mean daily motion

a[y-{Klw, (d.w) Mean Planet

a[y-{K-lWw, XII.1 Mid-eclipse

a[y-—mb, (d.w) Mid-day shadow

a[yPy, (d.w) Meridian sine, i.e. Rsine of the zenith dis-
tance of the meridian ecliptic point

a[yµn\-—mb, XI.12 Mid-day shadow

a[y-̀ p‡n, (d.w) Mean daily motion

a[yaw, VIII.7 1.Mean; 2.Mean longitude of a Planet

a[y-a-KXn, (a-≤y-K-Xn), VIII.3 Mean motion of a Planet

a[ye·w, XI.32,33 Meridian ecliptic piont

a[y-kv̂ pSw, VIII.7 Mean Planet

a[ym”w, (c.w) Mid-day

a[ym-”-—mb, XI. 12 Mid-day shadow
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a[ym-”-m{Kmw-Kpew, (d.w) Measure of amplitude at noon in terms of
a¥gula

aµw, VIII.13 1. Slow; mandocca, 2. Apogee of slow
motion; See also mandocca

aµ,(\otNm-®) hrØw VIII.13 1. Manda epicycle; 2. Epicycle of the equa-
tion of the centre

aµ-I¿Æw, VIII.8,13 Hypotenuse associated with mandocca; ra-
dius vector

aµ-I¿ÆhrØw, VIII.14 Circle extended by Mandakar∏a

aµ-I¿Ωw, VIII.1, 2, 13 1. Manda operation in planetary computa-
tion

aµ-tI{µw, VIII.13 Manda anomaly

aµ-tI{µ^ew, VIII.13 1. Manda correction; 2. Equation of the
centure

aµ-]-cn[n, Epicycle of the equation of the centre

aµkv̂ pSw, VIII.13 True longitude of Planet at the aper of the
slowest motion

atµm®w, (XpwK≥) VIII.3 1. Apogee or aphelion; 2. Higher apsis relating
to the epicycle of the equation of the centre

atµm-®-\o-N-hrØw, (aµ-hrØw), VIII.3 Manda-n¢ca epicycle

acpXv, IX.3 Proveetor wind, supposed to make the plan-
ets revolve

alm-—mb, XI.5 1. Great shadow; the distance from the foot
of the Mah°øa¥ku to the centre of the Earth;
Rsine zenith distance; 2.The gnomonic
shadow subtended on the horizon by the sun
on the diurnal circle.

almPym, (]-Tn-X-Pym), VII.3,4 The 24 Rsines used for computation

alm]flw, I.2 1012, (number and place)
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alm-tacp, (ta-cp) IX.1 Mount Meru, taken to mark the
Terrestrial pole in the north

alm-hrØw, IX.9 The Big Circle around a sphere, touching its
two opposite sides with radius being that of
the sphere

alm-i¶p, XI.5 1. Great gnomon; 2.The perpendicular
dropped from the Sun to the earth-line; 3.
Rsine  altitude

alm-tijw, In Ku∂∂°k°kara, the greater of the last two
remainders taken into consideration.

am\w, (c.w) 1. Measure; 2. An arbitrary unit of measure-
ment.

aqew, I.9; VII.3 1. The starting point of a line or arc; 2.
Square root, cube root etc.

aqe-kw-I-enXw, VI.5, i; VI.5.v Sum of a Series of natural numebrs

arKw, (c.w) Sign Makara or Capricorn

tacp, (a-lm-ta-cp) IX.1 1. Terrestrial North pole; 2.The place in the
north of the earth from where the North po-
lar star is right above; 3. Situated 90 de-
grees north of  La¥k°.

tajmZn, VIII.3, VIII.1 1. First point of Aries; 2. Commencing point
of the ecliptic.

tam£w, 1.Emergence, in eclipse; 2.Last point of con-
tact.

auVyw,({I-aw, h{Iw) XIV.1,2 Invisibility of a Planet due to its right or ret-
rograde motion opposite the disc of the Sun

bh-tImSn, IX.1 An astronomically postulated city on the
Terrestrial Equator, 90 degrees east of
La¥k°.
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bmayw, (d.w) Southern.

bmay-tKmfw, (d.w) 1. Celestial sphere as viewed from the south;
2. Southern celestial sphere.

bmtaym-Ø-c-tcJ South-north line, meridian
(Z£n-tWm-Ø-c-tcJ), VIII.3

bp‡n, (c.w) Proof, Rationals

bpKw, (c.w) Aeon

bpK-̀ -KWw, V.3; VIII.1 Number of revolutions of a planet during a
yuga (aeon)

bp‹w, (˛]-Zw) I.8, i; VIII.3 1. Even; 2. Second or fourth quardeant in a
circle.

bp‹-ÿm\w, (d.w.) Even place cunting from unit’s place

tbmKw, I.3 1. Conjuction of two planets; 2. Sum,
3. Daily yoga, nityayoga, twentyseven in
number and named vi¿kambha, Pr¢ti,
Àyu¿m°n, etc. being Sun plus Moon; cf.
candro yogo ‘rkayukta≈; 3. addition

tbmK-Nm]w, (d.w) Arc whose semi-chord is equal to the sum
of two given semi-chords.

tbmP\, VIII.1 Unit of linear measure, equal to about seven
miles.

tbmP-\-KXn, VIII.1 Daily motion of  Planets in yojanas

tbmP-\-hymkw, (d.w) Diameter in yojanas

cmin, VII.1 1. A number; 2. One sign in the zodiac equal

to 30 degrees in angular measure. 3. 12

1

 
of

the circumference in angular measure.
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cmin-IqSw, VIII.16 1. The two apexes of circles cutting the eclip-
tic at rt. angles. 2. The two points on the
celestial sphere 900 degrees north and south
of the ecliptic from where the r°øi-s (signs)
are counted.

cmin-Ip-S-hrØw, VIII.16;IX.10 The circle commencing from the R°øik£∂as
and cutting the ecliptic at internvals of one
r°øi (30 degrees) each.

cmin-Iq-S-i¶p, XI.31 Gnomon at the r°øik£∂as

cmin-IqtSm-∂-Xn, Altitude of  the r°øik£∂as

cmin-tKmfw, IX.3 Zodiacal sphere. See also Bhagola.

cmin-N{Iw, Ecliptic.

cmin-{]-amWw, VII.1 Measure of the r°øi

cmiyp-Zbw, (d.w) Rising of the signs.

cmlp, (=]mX≥) (c.w) Node of Moon, esp. the ascending node

cq]w, I.4; III.1 1. Unity; 2.One; 3. Form

cq]-hn-̀ mKw, (d.w) Division by magnitude.

tcma-I-hn-jbw IX.1 Astronomically postulated city in the Terres-
trial Equator, 90 degrees east of La¥k°.

e£w, I.2 105 (number and place), Lakh.

e·w, XI.31 1. Ecliptic point on the horizon;

2. Rising point of the ecliptic

e·-k-a-a-fiew,  XI.31 Prime vertical as the Orient ecliptic point

eLp-hrØw, VIII.1 Smaller circle parallel to the Mah°v§tta (Big
circle) in a sphere

e¶, IX.1 La¥k°., a city postulated astronomically on the
Earth’s  equator at zero longitude.
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e¶m-£n-XnPw, IX.2,
(DZvhr-Øw, D∑-fi-ew) Diurnal circle as La¥k°; East-West hour

circle; Equinoctial colure. Big circle passing
through the North and South poles and the
two East-West Svastika

et¶m-Zbw, IX.1 Time of the rising of the signs at Lanka, i.e,
right ascensins of the signs.

et¶m-Z-bPym, IX.II Sine right ascension

ew_w, VI.2;VII.1,9 1. Altitude; 2. Co-latitude; Perpendicular;
Vertical

ew_Iw, XI.2 Plumb

ew_Pym, (d.w) Rsine co-latitude, i.e, Rcos latitude

ew_\w, X.2 Rcos latitude; Parallax in longitude, or dif-
ference between the parallaxes in longitude
of the Sun and the Moon in terms of time.

ew_-\-\m-gnI, (d.w) Parallax in  longitude in terms of n°∑ik°s

ew_-\-tbm-P\w, (d.w) Parallax in terms of yojanas

emSw, XIII.2 A type of vyat¢p°ta, which occurs when Sun
plus Moon is equal to 1800 degrees.

en]vX (C-en), Ie Minute of arc in angular measure.

en]vX-mhym-kw, (d.w) Angular diameter in minutes

h{Iw, Retrograde.

h{I-KXn, (d.w) Retrograde motion of a planet.

hÆsam∏n-°pI, Convert fractions to the same denomination

h¿§w, I.3,8.i Square.

h¿§-t£{Xw, I.8.i.ii Square area, place, space.

h¿§-aqew I.9 Square root.
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h¿§-h¿§w V.7 Square of squares.

h¿§-h¿§-kw-I-enXw, VI.4 Summation of squares of squares

h¿§-kw-¶-enXw, VI.4,5.ii Sum of a series of squares of natural num-
bers

h¿§-ÿm\w, I.9; XII.6,7 The odd place counting from the unit’s place

he\w, XII. 6,7 Deflection of a planet due to ak¿a, or ayana

he-\-Zz-b-kw-tbmKw, XII.8 Sum of ak¿a and ayana valanas

heyp-]-kw-lm-cw, V.4 A particular kind of operation in Ku∂∂°k°ra

h√n, V.3 1. Series of results in Ku∂∂aka, i.e,
Ku∂∂°k°ra operation; 2. Column of numbers

hmbp ({]-h-lhmbp), IX.3 Provector wind supposed to make the plan-
ets revolve

hmbp-tKmfw, IX.3 Atmopheric spheres

hnIe (hnen, hnen]vX) 1. One sixtieth of a minute of angular mea-
sure, 2. One second.

hn£n]vXw, VIII.16 Having  celestial  latitude, deviated from the
ecliptic

hn£n-]vX-{K-l-{Im¥n, IX.11 Declination of a planet in its polar latitude

hnt£]w, VIII.16 1. Celestial latitude; 2. Polar latitudes. Lati-
tude of the Moon or a planet

hnt£-]-tImSnhrØw, VIII.16 Circle on which Rcos celestial latitude is mea-
sured.

hnt£-]-N-e\w, XIII.6 Precession of the equinoxes

hnt£-]-a-fiew (hn-a-fi-ew), VIII.16 Orbit of a Planet

hnt£-]-e·w, XIII.3 Celestial latitude at the Orient ecliptic point

hn\m-gnI (hn-\mUn, hnL-Sn-Im), (c.w) One-sixtieth of a n°∑ik°; 24 seconds.

hn]-co-X-I¿Æw, VIII. 10,11,12 Reverse hypotenuse.
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hn]-co-X-—mb, XI. 11 Reverse computation from gnomonic
shadow

hn]-co-X-ZrKvhrØw, XI.20. i Reverse computation from D§gv§tta

hn]-co-X-hrØw, IX.10; XI.20. i Circle computed reversely

hna¿Zm¿≤w Half total obscuration in an eclipse.

hntbmKw, I.iii; III.1 Subtraction

hnen, hnen]vX (hnI-e) Second of arc in angular measure

hnhcw, (c.w) Difference

hntijw, (c.w) Difference

hnt«jw, (c.w) Difference

hnjaw,  (c.w) 1. Odd; 2. Odd number.

hnjp-hØv, IX.3 1. Equinox 2. Point of intersection of the
ecliptic and (kr°ntiv§tta or Apakrama-v§tta)
and the celestial equator (Gha∂ik°∏∑ala)
3.Vernal: March 21; Autumnal Sept.23

hnjp-h-—mb, XI.2 Equinoctial shadow at midday

hnjp-h-÷oh, (˛Pym), XI.3 Rsine of  latitude at equinox.

hnjphXvI¿Æw, IX.3 Hypotenuse of equinoctial shadow.

hnjp-hZv`m (hnjp-h-—m-b),  IX.3 Equinoctial shadow, i.e Midday shadow of
a 12-digit gnomon when the Sun is at the
equinox

hnjp-h-Zzn-]-co-X-\-X-hrØw, IX.9,10 The circle cutting the Celestial Equator.

hnjph∑-fiew (LSn-Im-a-fiew,

LSn-Im-hrØw),  IX.3 1. Celestial Equator. 2. Path of a star rising
exactly in the east and setting exactly in the
west

hnjvIw`w I.3 1. Diameter; 2. The first of 27 daily yogas,
being Sun plus Moon
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hnkvXmcw, (c.w) Breadth

hrØw (k-a-hr-Øw),  VIII.1 1. Circle; 2. Perfect Circle

hrØ-tI{µw,  VIII.3, IX.1 Centre of a circle.

hrØ-t\-an,  VIII.3; IX.1 Circumference of a circle

hrØ-]-cn[n,  VI.9 Circumference of a circle

hrØ-]mXw, VIII.1 The two points at which two Big circles
around a shpere intersect.

hrØ-]mZw, VII.2; 1. Quadrant; 2. Quarter of a Circle;  90 de-
grees

hrØ-]m¿izw, VII.2 The two ends of the axis around which a
sphere is made to rotate; Two directly op-
posite sides of a sphere on the line of its di-
ameter

hrØm-¥¿§X NXp-c{iw, VII.10 A cyclic quadrilateral

hrµw, I.2 109 (number and place)

ssh[rXw, XIII.2 The type of Vyat¢p°ta which occurs at a time
when the sum of the longitudes of the Sun
and the Moon amounts to 12 signs or 360
degrees

hy‡n, (c.w) Unity.

hyXo-]mXw, XIII.2 The time when Sun Plus moon equals six
signs i.e, 1800

hyXo]m-X-Imew, XIII.2 Duration of Vyat¢p°ta

hyh-I-enXw, I.4 Subtraction

hykvX-Ip-́ m-Imcw, (d.w) Inverse process in Ku∂∂°k°ra

hykvX-ss{X-cm-inIw, IV.2 Inverse proportion

hym]vXn-{K-lWw, (d.w) Generalisation

kmt¶-XnI]Z-kqNn ˛ ae-bmfw : Cw•ojv



1052

hymkw, (c.w) Diameter of a circle or sphere

hymkm¿≤w, (d.w) Semi - diameter, radius

i¶p, I.2; IX.1, 21 1. Gnomon; 2. 12-digit gnomon;

3. Mah°øa¥ku or great gnomon, the per-
pendicular dropped from the Sun to the
earth-line, or the Rsine altitude; 4. The num-
ber 1013.

i¶p-tImSn, (d.w) Complement of altitude or zenith distance

iwIz{Kw, XI.13 North-south distance of the rising or setting
point from the tip of the shadow, i.e. agr°. 2.
Natijy°; 3. Distance of the planet’s projec-
tion on the plane of the horizon from the ris-
ing-setting line.

iXw, I.2 102 (number and place); Hundred

icw, VII.2 1. Arrow, 2. Rversed sine 3. Sag or height
of an arc

ic-Jfiw, VII.16 Parts of the height of an arc

itcm-\-hymkw, VII.16 Diameter less øara

injvSw, (c.w) Remainder in an operation

injvS-Nm]w, VII.4 The difference between the given c°pa and
the nearest Mah°jy°c°pa

io{Lw, VIII.1,2,19 Higher apsis of the equation of the epicycle
in the equation of conjunction

{io{L-I¿Æw, VIII.8-12 1. Hypotenuse associated with ø¢ghrocca;
2. Geocentric radius vector

io{LI¿Ωw, VIII.1,2, 14 ·¢ghra operation in planetary computation

io{L-tI{µw, VIII.10, 11 Centre of the ø¢ghra epicycle

io{L-]-cn[n, VIII.16 Epicycle of the equation of conjunction
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io{L-hrØw, VIII.6 ø¢ghra epicycle.

io{L-kv̂ pSw, VIII.14 True longitude of a planet at ø¢ghra position,
i.e, apex of its swiftest motion

iot{Lm®w, VIII.6 1. Higher apsis of the epicycle related to the
equation of conjunction. 2. Apex of the fast-
est motion of a planet

imt{Lm-®-\oNhrØw, VIII.16 ·¢ghra epicycle

ip≤n, (c.w) Subtraction

iq\yw, (c.w) Zero

irwtKm-∂Xn, XV.1,2 Elevation of the lunar horns

tijw, (in-jvSw) (c.w) Remainder in an operation

tim[y-̂ ew (d.w) Correction to be applied to a result

{ipXn(I¿Æw), (c.w) Hypotenuse

t{iVn, I.8.v Series

t{iVo-t£{Xw, I.8.v A figure representing a series graphically

jU{iw,  VII.1 1. Hexagon; 2. Regular hexagon

tjmU-im{iw, VI.2 Polygon of 16 sides.

kwh-’cw, V.1(skuckw-h-’cw) 1. Siderial year; 2. Time taken by the Sun
starting from the vernal equinox (P£rva-
visuvat) to return again to the Equinox

kwh¿§w Product

kwk¿]w The lunar month preceding a lunar month
called  A∆haspati which latter does not con-
tain a sa¥kr°nti

kwkvImcw, (c.w) Correction by addition or subtraction

k¶-e\w, I.4 Addition
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k¶-enXw, I.4. VII.5 1. Sum of a Sseries of natural numbers;
 2. Addition

k¶-en-X-kw-I-enXw, VI.5.ii Integral of an integral

k¶-en-ssXIyw VI.4 Sum of the integrals

kw-{Im-¥n 1. The moment a planet enters into a sign of
the zodiac; 2. Entry from one sign to the next

kwJym-kz-cq]w, I.2 Nature of numbers

kZriw, (c.w) 1. of the same denomination or kind; 2. Simi-
lar

kaw, (c.w) Level, Equal

ka-LmXw, Product of like terms

ka-—mb, XI.17 Prime vertical shadow

ka-t—Zw, III.2 Same denominator

ka{Xy{iw, VII.1 Equilateral triangle

ka-\new, (`q-an) XI.1 1.Plane ground; 2.Level space; 3.Horizon-
tal

ka-t{]mXw, (kat{]mX-hr-Øw), (d.w) Secondary to the prime vertical

ka-a-fiew, IX.7 Prime vertical

ka-tcJ, IX.1 Prime vertical

ka-ew-_-N-Xp-c{iw, (d.w) Trapezium

ka-hn-Xm\w, III.1; VII.1 Level

ka-i¶p, (k-a-a-fie i¶p) XI.16 Rsine of altitude of a celestial body when
upon the prime vertical

ka-kwJy, (d.w) Even number

ka-kvX-{K-lWw (]q¿Æ-{K-l-Ww), XII.5 Total eclipse

ka-kvXPym, VII.1 Rsine of a full arc
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kam-¥-c-tcJ, (d.w) Parallel straight line

kº¿°m¿≤w, (d.w) Half the sum of the eclipsed and eclipsing
bodies

kºmXPohm Common chord of the same denomination
or nature

k¿htZm¿øp-Xn-Z-fw, VII.15 Semi-perimeter.

k¿h-km-[m-c-WXzw, (c.w) Universality.

kh¿Æw, (c.w) Of the same denomination or nature

kl{kw, I.2 1. 103 (number and place); 2. One thousand.

km{Kw 1.With remainder; 2.A kind of Ku∂∂°k°k°ra

km[\w, (c.w) Given data.

km¿]-a-kvXIw Vyat¢p°ta when the Sun plus Moon is equal
to 7 degrees 16 minutes

kmh-\-Zn\w,  V.i 1. Civil day; 2. Duration from sunrise to sun-
rise; 3. Solar day

knXw Illuminated part of the Moon, Phase of the
Moon

kn≤-]pcw, IX.1 An astronomically postulated city on the Ter-
restrial Equator; 180 degrees into opposite
to La¥k°.

kq{Xw, (c.w.) 1. Line; 2. Direction; 3. formula

kqcy-{K-lWw, XII.2 Solar eclipse.

kqcy-kv̂ pSw, VIII.7 True longitude of the Sun

skuayw, (c.w) Northern

sku-ay-tKmfw, (c.w) The Northern hemisphere

skucw, V.1 Solar.

sku-cm_vZw, (d.w) Solar year
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ÿm\-hn-̀ mKw, (d.w) Division according to place

ÿnXy¿≤w Half  duration of an eclipse

sÿueyw, (d.w) 1. Difference from the correct value,
2. Error

kv]¿iw, (d.w) 1. First contact in an eclipse; 2. Touch

kv̂ pSw, VIII.7 True longitude of a planet

kv^pSw, ({K-lw), VIII, 13 True position of a planet

kv̂ pS-{Inb, VIII.1 Computation of true longitude of a planet

kv̂ pS-a-[ym-¥-cmfw, VIII.7 Difference between the true and mean
longitudes of a planet

kv̂ pS-a-[ym-¥-cmfNm]w, VIII.7 Arc of the longitude between the true
and mean of a planet

kv̂ pS-hnt£]w, (d.w.) Celestial latitude as corrected for parallax

kv̂ pSm¥cw, (d.w.) Difference between  true longitudes

kzw, (d.w.) 1. Addition, 2. Additive quantity

kztZ-i-£n-XnPw, IX. 7 Horizon at one’s place or the place
of observation

kztZ-i-\Xw, (d.w.), XI.21.i Meridian zenith distance, at one’s place or
the place of observation

kztZ-i-\-X-tImSn, (d.w.), XI.21.i R.cos of ·vadesanata

kv̂ pSKXn, VIII.1, 8 True daily motion of a planet

kv̂ pS-{Klw, VIII.1, 8 True longitude of a planet

kv̂ pS-\ymbw VIII.2 Rationate or method for  exactitude

kzmtlm-cm-{X-hrØw, Diurnal circle
(a-fi-ew), ZypPym-hrØw

tkzm¿≤zw The number above the penultimate in
Ku∂∂°k°k°ram
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l\\w, (c.w) Multiplication

lcWw, I.7 Division

lc-W-̂ ew Quotient

lmcIw Divisor

lmcyw, I.7 Dividend

lrX-tijw, I.7 Remainder after division
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A\p-_‘w˛II
INDEX OF QUOTATIONS

D≤r-X-t«m-I-ßfpsS kqNn

tÇmIw B[m-c-{KÙw \nÀtZiw

At{XitIm-W-KmcnjvSx eoem-hXn VII. 15

A -́c-tbmtK Imcvt¿ VII. 15

At´ ka-kw-JymZf VI. 10

A´y{Im´o-jvS-XXvtIm-Sym kn²m-´-ZÀ¸-Ww, 28, 29 IX. 12

A´yZyptPyjvS`{Imt´ymx kn²m-´-ZÀ¸-Ww IX. 12

At\ym\ylm-cm-`n-l-Xu eoem-hXn , 30 VI. 8

Ahy-à-hÀ¤-L-\-h¤ VI. 8

CjvSPym-{Xn-PytbmÀLm-XmÂ X{´-kw-{K-l-hym-Jym, II 206 VI. 6

CjvS-tZmx-tIm-Sn-[-\ptjmx X{´-kw-{K-lw, II 10 B VII.4

CjvtSm\bptà\ eoem-hXn , 16 XI. 20.ii

CjvtSm\-bp-{Km-in-h[x IrXnx eoem-hXn , 20 VII. 15

EW-ar-W-[\tbmÀLmtXm {_Òkv^pSkn²m´w, 183 VI. 8

GI-Z-i-iX-k-l-{km-bpX eoem-hXn , 10 I. 2

GI-hnw-i-Xn-bp-Xw- i-X-Zzbw eoem-hXn , 247 V. 4

Ghw -X-ssZhm{X bZm eoem-hXn , 246 V. 4

HmPm\mw kwbptXkvXyàzm X{ -́kw-{K-l-hymJym, II.208 VI.6

{Kmtkmt\ tZz hrt¯ VII.16

Ombtbmx IÀ®-tbm-c-´tc eoem-hXn , 232 VII.17
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bhūgola 509, 667, 680
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bhujā-jyā-khan. d. a 599
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bhujā-prān. a 778
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cāp̄ıkaran. a 68, 71, 198, 200
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darśana-sam. skāra 611, 822, 825
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dr. ggolacchāyā 546, 722, 725
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dr. kks.epa-vr. tta 576, 577, 582, 583,
770, 776

dr. k-sūtra 602
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is. t.adik-chāyā 559, 568, 767

another method 574, 767
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date of xxxv

evidence indicating his author-
ship of Yuktibhās. ā xxxv

family name of xxxvi

pupil of Dāmodara xxxvi

teacher of Acyuta xxxvi, xxxvii

the younger contemporary of-
Nı̄lakan. t.ha xxxvii

jyotir-gola 514

kaks.yā-man. d. ala 474–476, 481, 627,
628, 631, 638

kaks.yā-pratiman. d. ala 494
kaks.yā-vr. tta 474–477, 479–484, 486,

493, 494, 500, 624, 633

kāla 686

kalā 34, 172, 208
cakra-kalā 83

kāla-dorgun. a 531, 691

kāla-jyā xliv, 525, 531, 539, 540,
686, 691, 699

kāla-kot.i 702

kāla-kot.i-jyā 525, 702

kāla-kot.i-krānti 527, 686
kāla-kot.i-krānti-kot.i 527

kāla-lagna 575, 577, 580, 581, 613,
770, 771, 774, 775, 777–780,
826

corresponding to sunrise 579,
777

kalā-śes.a 34, 172

kali day

computation of 31, 170
kaliyuga 170, 171, 621

Karkyādi 491, 501

karn. a 45, 46, 481, 484, 485, 487,
492, 501–503, 550, 572, 573,
596, 607, 638, 762

alternative method for finding
483, 633

computation of 481, 628

definition of 7, 45
sakr. t-karn. a 632

karn. ānayana 607, 815

karn. a-vr. tta 477, 481, 482, 484–488,
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492, 546, 626, 628, 635, 640,
641, 647

karn. a-vr. tta-kot.i 482, 629
Kat.apayādi l, 173
Katz V J 150
kazhukkol 50, 51, 185
kendra-gati 494
Kepler 837, 849
Kerala

Āryabhat.an school xxv
centres of learning xxi
geographical location xxi

Nampūtiri Brahmins of xxv
royal patronage xxv
school of astrology xxii
school of astronomy xxii, 150,

837
school of mathematics v, viii,

150
science texts in Sanskrit in the

manuscripts repositories of
xxvi

Kern H., 851
Ketu 604, 810
khan. d. a-jyā xli, 95, 224, 502, 548
khan. d. a-jyāntara 95
Khan. d. akhādyaka xlii, xliv, 294
Kline Morris xxiii, xxiv, 269
kol 6
kon. a-śaṅku 562, 747
kot.i 45

krānti-kot.i xliv
kot.i-cāpam 69
kot.i-jyā 69, 212, 222, 548
kot.ijyā-khan. d. a 89
kot.i-khan. d. a xli, 86
kot.i-phala 483, 833

kot.i-phalāgrā 608
kot.i-śara 85
kot.yapakrama-kot. i 530

kramacchāyā 550
krānti-jyā 528
krānti-kot.i 527
Krishnaswamy Ayyangar A A 270
Kriyākramakar̄ı xxvi, xxxviii, 207,

249, 277, 295
Kr.s.n. a Daivajña 176, 270
ks.epa 38, 40, 41, 43, 44, 172, 175,

176, 178, 296, 297, 299–301,
303–305, 307–310

apavartita-ks. epa 42
dhana-ks.epa 44
dr. d. ha-ks.epa 40
is. t.a-ks.epa 43, 44
r. n. a-ks.epa 36, 37, 41, 43, 44,

177
ks.epa-pārśva 606
ks.epa-pārśvonnati 607

ks.epa-śara 615, 831
ks.etra 6, 157, 159

ekādi-dvicaya-śred. h̄ı-ks.etra 17
ghāta-ks.etra 7, 11, 13, 14
khan. d. a-ks.etra-phala 7
pramān. a-ks.etra 50
saṅkalita-ks.etra 98
śred. h̄ı-ks.etra 17, 161
varga-ks.etra 7, 11, 13

ks.etra-gata 278
ks.etra-kalpana 565
ks.etra-víses.a 555
ks.itija 512, 678
ks.iti-jyā 551, 556, 569, 572, 573,

732
kujyā xlv
Kuppanna Sastri T S 851

Kusuba T 150
kut.t.ākāra xxxviii, xl, 31, 34, 36, 38,

170, 296

an example 36, 174
for finding ahargan. a 34, 172
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for mean Sun 43, 177

in planetary computations 33,
171

rationale when the ks.epa is non-
zero 303

rationale when the ks.epa is zero
303

the method to know the icchā-
rāśi 35

upapatti of 296

labdhi 39, 44, 175, 176, 178, 298,
299, 303

derivation of 42, 176

for even and odd number of quo-
tients 308

Laghumānasa 507, 614, 827
Laghuvivr. ti xxxii, 224, 799, 846

lagna 579, 612, 793

lagna-sama-man. d. ala 575, 590, 592,
770, 771, 783, 784

Lagrange 269

Lakatos I 292

Lalla 273

lamba 542
lambaka 549

lambana 543, 547, 549, 583, 584,
588, 589, 594, 719, 727

as the karn. a 584
definition of 725, 785

of the shadow 548

of the Sun and Moon 593, 614,
798

lamba-nipātāntara 124, 125, 128, 130,
250, 251

area in terms of 124, 250

derivation of 124, 251
lamba-yoga 124

Laṅkā 509, 511, 519, 670

Laṅkā-ks.itija 670

Laṅkodaya-jyā 525, 686, 700
Laṅkodaya-jyā-kot.i 686, 700
latitude 495, 519, 526, 527, 529–

531, 550, 551, 553, 655, 718,
825

arc of the latitude 526
calculation of latitude in Ptole-

maic model 849
celestial 550, 591
co-latitude 542
deflection in 587
different rules for the calcula-

tion of 846
effect of parallax on 714

justification for two different rules
by Pr. thūdakasvāmin 846

method of arriving at the decli-
nation of a planet with lat-
itude 528

of interior planets 850

Rcosine of 530, 532
representative of 559
Rsine of 529, 530, 532, 554, 556
rule for exterior planet 845
rule for interior planet 845
unified formulation for its cal-

culation by Nı̄lakan. t.ha 848
latitudinal triangle 739
Leibniz xli, 150
L̄ılāvat̄ı xxxviii, 2, 38–40, 75, 79,

122, 123, 133, 137–139, 174,
249, 251, 255, 258, 261, 270,
274, 275, 295, 563

commentary Buddhivilāsin̄ı xxiii
linear indeterminate equations

solution of 279
liptā 32
local horizon 678

longitude circle 668
lunar eclipse 595, 602, 802, 803, 809
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Mādhava v, xxvii, xxxi, 57, 191,
198, 282, 635, 837

and j̄ıve-paraspara-nyāya 234
author of

Lagnaprakaran. a xxviii
Sphut.acandrāpti xxix
Ven. vāroha xxviii

contribution to mathematical anal-
ysis 837

exact formula for manda-karn. a
841

tabulated sine values 233
madhya 625
madhya-bhujā 581
madhyacchāyā-karn. a 739
madhya-gati 473
madhyāhnacchāyā 783

madhyāhnāgrāṅgula 555
madhya-jyā 582, 783
madhya-kāla 579, 777, 781
madhya-lagna 575, 579, 582, 583,

613, 770, 776, 777, 781–783
madhya-lagnānayana 581, 780
madhyama 475, 625
madhyama-graha 623
madhyama-jyā 582
madhyārka-gati 854
madhya-yojana-karn. a 548, 593, 725
Mahābhāskar̄ıya 631, 665, 850
mahācchāyā 545, 721
Mahāmeru 509, 668
mahā-śaṅku 545, 721
Mahāyuga 621
Makarādi 491, 501
Malayālam

astronomical manual in xxxvii
commentary on Sūryasiddhānta

xxxv
texts in xxii
the language of Kerala xxi

Mallāri xxiv
manda 503, 508, 631, 642, 665, 847
manda-bhujā-khan. d. a 505
manda-bhujā-phala 488, 490
mandaccheda 507

manda-doh. -phala 504, 505
manda-jyā 502
manda-kaks.yā 853
manda-kaks.yā-man. d. ala 852
manda-karn. a 482, 488, 490–492, 495,

498, 503, 505, 507, 508, 584–
586, 614, 631, 635, 642–647,
650–652, 658–660, 663, 665,
666, 724, 786, 787, 827, 839,
841

computation of true planets with-
out using manda-karn. a 503,
664

without successive iterations 841
manda-karn. a-viks.epa 658
manda-karn. a-viks.epa-kot.i-vr. tta 659
manda-karn. a-vr. tta 484, 489–491, 495–

497, 499, 508, 644, 648, 654,
655, 657, 661, 663, 788

manda-karn. a-vyāsārdha 497
manda-kendra 505, 506, 662, 663,

665, 840
manda-kendra-jyā 490
manda-khan. d. a-jyā 504
manda-kot.i-phala 504, 508
man. d. ala

dr. kks.epa-man. d. ala 590, 794
kaks.yā-man. d. ala 649

pratiman. d. ala 633
unman. d. ala 577

manda-n̄ıca-vr. tta 472, 488
manda-n̄ıcocca-vr. tta 473, 474, 488–

490, 496, 507, 508, 624, 625,
631, 640, 643, 644, 652, 654,
660
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man. d. apa 50, 51, 184
manda-phala 495, 503, 505–507, 665,

725
manda-phala-khan. d. a 503
manda-pratiman. d. ala 508
manda-sam. skāra 622, 624, 644, 659,

664, 665, 725, 838–840
different computational schemes

in the literature 839
for exterior planets 839

its equivalence to the eccentric-
ity correction 839

leading to true heliocentric lon-
gitude of the planet 839

manda-sphut.a 484, 488, 489, 493,
495, 497, 499, 501–503, 507,
586, 642–644, 647–649, 652,
659, 660, 663–665, 786, 827,
841

from the madhyama 487, 641

manda-sphut.a-graha 490, 494, 648,
657, 845, 847

manda-sphut.a-nyāya 495, 652
manda-vr. tta 495, 622, 652, 854
mandocca 472–474, 489, 495, 503,

623–625, 637, 643, 827, 854
and pratiman. d. ala in the com-

putation of manda-sphut.a
644

direction of 631
longitude of 839
motion of planet due to man-

docca 622
mandocca-vr. tta 473, 496, 497
Maragha school of astronomy 849
māsa 32
mathematical operations 3, 151

mathematics
as a search for infallible eternal

truths 282

its course in the western tradi-
tion 282

new epistemology for 291
maud. hya 611, 822
mean Moon

from the true Moon 500, 659
from the true Moon (another

method) 501, 660
mean planet

computation of 32, 171
from true planet 502, 663

mean Sun 35, 491, 495, 850, 854
from the true Sun 500, 659

from the true Sun (another method)
501, 660

Mercury 493–495, 507, 508, 648, 651,
652, 665, 837, 838, 842, 847,
851, 852, 855

meridian ecliptic point 581, 780
determination of 780

longitude of 770
Mes.ādi 471, 489, 512, 514, 550, 607,

621, 671, 674–676, 786

minute 471
Mithunādi 673
Mohanty J N 289
moks.a 807
month

intercalary 170
lunar 31, 32, 170
solar 31, 170

Moon
second correction for 584, 786

Moon’s cusps
elevation of 827

Morrow G R 283
Mukunda Marar K 149
multiplication

general methods 4–6, 151, 152
is only addition 4
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special methods 7, 8, 10, 153–
156

Muñjāla 507, 614, 666, 827

nābhi 516, 541
naks.atra 510

naks.atra-gola 509, 667

Narasimhan V S xxxii
Nārāyan. a Bhat.t.atiri xxxvi

Nārāyan. a Pan.d. ita 197, 227

Nasir ad-Din at-Tusi 849
nata 526, 534, 568, 570, 572

ghat.ikā-nata 525, 539

svadeśa-nata 566
vis.uvat-vipar̄ıta-nata 533

yāmyottara-nata 524, 534, 538

nata-dr. kks.epa 567
nata-dr. kks.epa-man. d. ala 566

nata-dr. kks.epa-vr. tta 565, 575, 750–
752

nata-jyā 533, 536, 565, 567, 574,
699

derivation of 565, 748

nata-jyā-kot.i 700
nata-kot.i 534, 703

nata-kot.i-jyā 537

nata-lambana-sam. skāra 587
nata-pārśva 568

nata-pārśvonnati 568

nata-prān. a 552, 578, 733
nata-sama-man. d. ala 565, 750

nata-sama-vr. tta 752

nata-vr. tta 523, 525, 526, 535, 537–
540, 565–568, 573, 574, 682,
685, 699, 707, 750, 752, 764–
766

nata-vr. tta-pārśva 568

nati 548, 583, 584, 587, 588, 590,
593–595, 602, 607, 614–617,
725, 833, 834

definition of 592, 785

for the Sun 616
of the Sun and Moon 800, 831,

834

nati-jyā 616

nati-phala 617
nati-śara 616, 617, 831

natotkrama-jyā 601, 806

nemi 516, 541
Neugebauer O xliii, 850

Newton xli

n̄ıcocca-vr. tta 475, 485
Nı̄lakan. t.ha-Somayāj̄ı v, xxxii, xxxiii,

xxxv, xxxvii, xxxviii, xlii,
xliii, 149, 233, 531, 642, 837,
841, 846–849, 851–856

consistent formula for equation
of centre 848

geometrial picture of planetary
motion 851

improved planetary model 846

unified formula for obtaining the
latitude of a planet 848

niraks.a-deśa 510, 668

niraks.a-ks.itija 519, 678

nirayan. a longitude 622, 675
northern hemisphere 544

numbers 2

nature of 1
nyāya

bhujā-kot.i-karn. a-nyāya 14, 30,
159, 169, 179, 182, 271

j̄ıve-paraspara-nyāya 105, 107,
115, 117, 234, 237, 245, 246

trairāśika-nyāya 30, 169

tribhuja-ks.etra-nyāya 108
tryaśra-ks. etra-nyāya 109

nyāya-sāmya 562, 591

obliquity of the ecliptic 675
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oja 12

operations
mathematical 1, 151

orb
distance between the orbs of the

Sun and Moon 614, 828

eclipsed 601
measure of the planets 596, 804

of darkness 602, 809

radius of 601
yojana measure of the orb al-

ways remains the same 596

orient ecliptic point
longitude of 770

pada 56
Parahita 666

parallax
in latitude and longitude 583,

785

of the gnomon 587, 789
parama-krānti 528, 696, 698, 700,

701, 703, 704, 708

parama-krānti-kot. i 528, 689

paramāpakrama 522, 681, 691, 692
paramāpakrama-kot. i 534, 608

parama-śaṅku 590, 591, 794, 795
parama-svāhorātra 522, 681

parama-viks.epa 496

Parameśvara 837
author of

Āryabhat. ı̄ya-vyākhyā xxvi
Laghubhāskar̄ıya-vyākhyā xxvi

Laghumānasa-vyākhyā xxvi

Vākyakaran. a xxviii
Vyat̄ıpātās. t.aka-vyākhyā xxix

family name of xxxv
of Vat.asseri 850

the father of Dāmodara xxxvi

Parameswaran S 149

para-śaṅku 583
paridhi-sphut.a 809
parvānta 593, 594

time of 595
pāta 499, 654, 844
pat.hita-jyā 90, 214, 221
Pell’s Equation 270
phala

śodhya-phala 54, 58, 59
phala-parampara 55, 57, 69, 189, 190,

192
phala-yoga 55, 56, 58, 61
pin. d. a-jyā 95, 96, 222, 225, 226, 229–

232
Pingree D 272, 847
planetary latitudes

computation of 844
planetary model

conventional 838
of Nı̄lakan. t.ha Somayāj̄ı 846

planetary motion 471, 621
conception I : eccentric model

472, 622
conception II : epicycle model

474, 623
constancy of linear velocity 621
conventional model of 851
equivalence of eccentric and

epicyclic models 623
geometrical picture of 850
in Siddhānta-darpan. a 853
Nı̄lakan. t.ha’s model of 851

planetary visibility 613, 826

planets
maud. hya and visibility correc-

tions of 611, 822
declination of, with latitude 525,

685

rising and setting of 612, 824
Plato 283
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distinction between knowledge
and opinion 290

pramān. a 28–30, 32–35, 42
pramān. a-phala 28–30, 32–35, 42, 47,

48, 93, 94, 107, 120, 136,
139, 140

pramān. a-rāśi 29, 107
prān. a 499, 531, 549, 578

bhujā-prān. a 579
cara-prān. a 720
gantavya-prān. a 544
gata-prān. a 544
nata-prān. a 552, 733
rāśi-prān. a 581
unnata-prān. a 720

pratiman. d. ala 472–499, 501, 546, 547,
586, 622, 649

pratiman. d. ala-sphut.a 487
pratiman. d. ala-vr. tta 486
Pravaha-vāyu 514, 543, 544, 551,

575, 576, 581, 587, 667
prāyen. a 52, 62, 193
precession of the equinoxes 675
prime meridian 670
Proclus 282, 283
progression of odd numbers

sum of 17, 161
proof 267

alleged absence of, in Indian tra-
dition 267

by contradiction 287
for the sum of an infinite geo-

metric series 280
in Indian tradition xxiii
of infinite series for π, 281
oral tradition of xxv
sources of xxiv
the western concept of 290

upapatti and 282, 288
Pr. thūdakasvāmin 270, 846

Vāsanābhās.ya of 272, 294

Ptolemy 283

Greek planetary model of 849

incorrect application of equa-
tion of centre 849

singling out Mercury from other
planets 849

pūrva-sūtra 476, 477

pūrva-vis.uvat 513, 671

Putumana Somayāj̄ı xxvii, 838, 856

Pythagoras Theorem 159, 169, 277
Pythagorean problem 268

quadrilateral xli, 6, 124, 250

Rāhu 604, 606, 607, 810, 812, 814

at the autumnal equinox 812,
815

at the ayanānta 605, 606

at the summer solstice 813

at the vernal equinox 604, 815

at the vis.uvat 605, 606, 811

at the winter solstice 811
Rajagopal C T xxxiv, 149

Raju C K 150

Ramasubramanian K xxxii, 150, 837

Ramavarma Maru Thampuran xxxii,
xxxiv, 149

Rangachari M S xxxiv, 149

rāśi 12, 32–34, 52, 72

avyakta-rāśi 202

rāśi-kūt.a 499, 513–517, 523, 525,
526, 528, 529, 539, 540, 576,
577, 584, 587, 588, 604, 606,
607, 611–613, 653, 675, 676,
770–774, 781, 811, 814, 822

definition of 496, 671

rāśi-kūt.a-svāhorātra-vr. tta 516

rāśi-kūt.a-vr. tta 513, 514, 524–526,
528, 529, 531, 535, 536, 539,
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540, 584, 590, 606, 612, 615,
671, 676, 824

rāśi-śes.a 34, 171

rāśi-sthāna 75

rationale

commentaries presenting xxvi

doubts about the originality of
xxiii

full-fledged works on xxvii

presentation of xxxix

texts presenting xxix

tradition of rationale in India
xxii

Rcosines

accurate Rcosine at a desired
point 93, 219

definition of 86, 212

derivation of 84, 209

in different quadrants 88, 213

Rcosine differences 87, 89, 213

reductio ad absurdum 287

right ascension 533, 687, 691–694,
696, 775, 778

Romakapur̄ı 509, 668

Roy J C 856

Roy Ranjan 150

Rsine

hour angle 565

latitude 530, 742

of the ascensional difference 550

of the difference between the
sphut.a and the ucca 485

of the madhya-kendra 488

of the sphut.a-kendra 488

Rsines 49, 90

accurate computation without
using tables 102, 232

accurate Rsine at a desired point
93, 219

computation of accurate tabu-
lar Rsines 91, 215

definition of 86, 212
derivation employing j̄ıve-

paraspara-nyāya 105, 234
derivation of tabular Rsines 118,

247
desired, from jyā-saṅkalita 96,

224
first and second order differences

of 94, 221
in different quadrants xlvii, 88,

213
Rsine difference 87, 213
square of 86, 234

tabular Rsine 90, 94–96, 107,
117, 119, 121, 220

Rule of Three xxxviii, 139, 169
for finding area of triangles 136
in computation of adhimāsa-s

31
in computation of avama-dina

32, 170
in computation of current Kali-

dina 170
in computation of mean plan-

ets 171
in finding the area of the sur-

face of a sphere 140
nature of 28, 169
reverse rule of three 29
should not be applied to derive

the Rsines 91
rūpa 56
Russel Bertrand 285

Rversine 84
accurate computation without

using tables 102, 232
desired, from jyā-saṅkalita 96,

224
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sakr. t-karn. a 632
sama-caturaśra 7, 11

filling with 6
samacchāyā 554, 555, 737
samacchāyā-karn. a 737
samaccheda 74, 202
sama-man. d. ala 519, 550, 552, 553,

570, 678, 730, 736, 739
Sāmanta Candraśekhara 856
sama-pañca-ghāta 65
sama-rekhā 519, 668
sama-śaṅku 553, 554, 736

related triangles 555, 739
samasta-jyā 71, 83, 91, 200, 209,

544, 562

samasta-jyā-karn. a 92
sama-tryaśra 83
samavitāna 84
Sambasiva Sastri K 851
sam. khyā 1, 74

sam. khyā-vibhāga 19
sampāta-śara 137, 258

derivation of 137, 258
sam. skāra 93, 659

antya-sam. skāra 72, 201
darśana-sam. skāra 611, 822, 825
dvit̄ıya-sphut.a-sam. skāra 614
manda-n̄ıcocca-sam. skāra 622
manda-sam. skāra 665, 666, 838,

839
nata-lambana-sam. skāra 587
śara-sam. skāra 101
ś̄ıghra-sam. skāra 665, 838, 839,

841, 842
sūks.matara-sam. skāra 207

sam. skāra-hāraka 202
sam. skāra-phala 102

sam. skāra-phalayoga 76
saṅkalita 1, 4, 61, 62

ādya-dvit̄ıyādi-saṅkalita 67, 226

ādya-saṅkalita 66, 196, 226
bhujā-saṅkalita 62
bhujā-varga-saṅkalita 56, 190,

192–194
bhujā-varga-varga-saṅkalita 191,

192
cāpa-saṅkalita 97
dvit̄ıya-saṅkalita 66, 196, 197,

226, 229, 230
ekādyekottara-saṅkalita 97
ekādyekottara-varga-saṅkalita 61
ekādyekottara-varga-varga-saṅkalita

60, 192
ghana-saṅkalita 64, 65, 99, 194,

230
ghana-saṅkalita-saṅkalita 65
jyā-saṅkalita 97
kevala-saṅkalita 61

khan. d. āntara-saṅkalita 97
mūla-saṅkalita 61, 66, 192, 196
mūla-saṅkalita-saṅkalita 63
sama-ghāta-saṅkalita 65, 66, 192,

195, 197
sama-pañcādi-ghāta-saṅkalita 65
samas.ad. ghāta-saṅkalita 56
trit̄ıya-saṅkalita 230
vāra-saṅkalita 197
varga-saṅkalita 62, 99, 144, 193
varga-saṅkalita-saṅkalita 64, 195
varga-varga-saṅkalita 64, 65, 195

saṅkalita-ks.etra 98, 226
saṅkalita-saṅkalita 65, 194, 196
Śaṅkara Vāriyar xxvii, xxxii, xxxviii,

57, 191, 224, 249, 277, 295,
666, 846, 856

Mahis.amaṅgalam xxviii
author of

L̄ılāvat̄ı-vyākhyā xxvi

Tantrasaṅgraha-vyākhyā xxvi
Śaṅkaravarman xxix
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gun. akāra-saṅkhyā 36

śaṅku 541, 556, 557, 568, 570–573,
591, 612, 726, 760

bhagola-śaṅku 546, 723
chāyā-śaṅku 723, 792
dr. ggola-śaṅku 546, 723
dr. kks.epa-śaṅku 583
kon. a-śaṅku 564, 747, 748
kot.i-śaṅku 589
mahā-śaṅku 545, 549, 554, 721,

722, 725, 726, 728, 736, 755
parama-śaṅku 591
sama-śaṅku 553, 554, 556, 736,

737, 740
śaṅkvagrā 551, 730
śara 69, 85, 91, 113, 119, 138, 144,

591
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śis. t.a-cāpa-śara 106
successive corrections to 100, 228

śara-khan. d. a 96, 213
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śara-sam. skāra 101, 229, 231
Sarasvati Amma T A 150, 267
Sarma K V xxii, 150, 272, 837, 838,

853, 854
savarn. ana 23, 24, 167
savarn. ı̄-karan. a 23
sāyana

longitude 674, 818
Sun 778

semi-diameter of the Sun
angular 726

Sen S N xxxiv, 838
Sengupta P C xlii
śes.a 32

adhika-śes.a 35, 37
am. śa-śes.a 171
bhagan. a-śes.a 33, 34, 36, 172

bhāga-śes.a 171
bhājya-śes.a 42, 43
hāra-śes. a 43
kalā-śes.a 172
rāśi-śes.a 34, 171
ūna-śes.a 35, 37, 173

shadow
derivation of 139, 259

noon-time 550, 729
reverse 549, 727
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792
shadow-hypotenuse 542
Shukla K S xlvii, 278, 294, 631, 838,

846
Siddhānta-darpan. a 531, 532, 838,

853, 854, 856
Siddhānta-d̄ıpikā 850
Siddhānta-śekhara 614, 827
Siddhānta-śiroman. i 273, 716, 846
Siddhapura 509, 668
ś̄ıghra 488, 492, 506, 657, 665, 839,

843, 847
ś̄ıghra-antya-phala 490, 491, 495, 643,

646, 651, 652
ś̄ıghra-bhujā-jyā 647
ś̄ıghra-bhujā-phala 489, 490, 494, 499,

503, 504, 646, 659, 664
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ś̄ıghra correction
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ś̄ıghra-doh. -phala 504, 505, 507
ś̄ıghra-jyās xliii
ś̄ıghra-karn. a 489–492, 494, 498, 504,

505, 507, 508, 644, 665
ś̄ıghra-karn. a-bhujā-khan. d. a 505

ś̄ıghra-karn. a-bhujā-phala 508
ś̄ıghra-kendra 491, 504–506, 665, 841,

843, 847
ś̄ıghra-kendra-bhujā 491
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ś̄ıghra-kendra-bhujā-jyā 491, 492, 494,
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ś̄ıghra-kendra-bhujājyā-cāpa 651
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ś̄ıghra-sphut.a 488, 489, 493, 495, 497,
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841, 845
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ś̄ıghrocca-n̄ıca-vr. tta 488, 490, 491,
496, 497, 499, 507
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Singh A N 267
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six-o′ clock circle 551, 720
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śodhya 59
śodhya-phala 54, 58, 59, 188, 189,

191, 199
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iterative corrections 54, 188
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solstices 512
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Somayaji D A 838
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sparśa 807
sphere 143, 264
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sphut.a-graha 623, 625, 642
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sphut.a-kendra 487
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sphut.a-madhyāntarāla 479
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Sridhara Menon P xxxiv
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sthaulya-parihāra 205
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sūks.ma 49, 62, 98, 100
sūks.matā 56
sūks.matara 82
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general principle of 65, 195
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196, 226
of series 61, 192
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194
repeated 66, 98, 196
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summer solstice 671, 813
Sūrya-siddhānta xxxv, xlii, 214, 295,

296
sūtra xxii

daks. in. a-sūtra 46
dik-sūtra 47, 52
pūrva-sūtra 46, 47, 50

sva-bhūmyantara-karn. a 596, 597
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svadeśa-nata-jyā 566, 751
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svadeśa-nata-vr. tta 566, 568, 764, 766

svāhorātra-vr. tta 498, 499, 511, 516,
531, 543, 545, 569, 601, 669,
719
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svastika 511, 520, 522, 540, 544,
557, 566–568, 570, 571, 575–
577, 579, 580, 582, 670, 680

yāmyottra-svastika 539

Swerdlow N M 850

syzygy 593

tamo-bimba 602, 809
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1, 57, 68, 80, 94, 150, 173,
191, 221, 224, 234, 271, 282,
295, 495, 631, 635, 642, 652,
660, 663, 665, 666, 716, 786,
799, 818, 821, 826, 835, 837
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corresponding to a given eclipsed
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elapsed after sunrise 543, 719

elapsed after the rising of the
first point of Aries 770

to elapse before sunset 543, 719
tiryag-vr. tta 540, 558, 559, 567, 580,

711, 742–744, 750, 751, 753

tithi

number of tithi-s elapsed 32

Toomer G J 285, 849
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trairāśika xxxvii, 29, 31, 32, 36, 43,
44, 256

vyasta-trairāśika 29

trairāśika-nyāya 30, 169

transverse circle 540

trepidation of equinoxes 675

triangle

altitude and circum-diameter of
119, 247

area of 108, 109, 134, 237, 255

scalene 108, 237

trijyā-karn. a 526, 528

trijyā-vr. tta 545, 568, 601, 769

true planet

without using manda-karn. a 503,
664

true Sun

computation of 476, 625

tryaśra-ks. etra-nyāya 109

tulādi 506, 673

tulya-svabhāva 573

tuṅga 475, 625

ucca

position of 625

ucca-gati 494, 853

ucca-kendra-vr. tta 492

ucca-n̄ıca-sphut.a 547

ucca-n̄ıca-sūtra 477, 481, 486, 487,
500, 628, 630

ucca-n̄ıca-vr. tta 472, 474–476, 478,
480, 482, 625

udaya-jyā 582

udaya-lagna 575, 578, 582, 714, 770,
774–776

Ujjayin̄ı 509, 668

ūna-śes.a 35, 173

unman. d. ala 520, 543, 551, 556, 570,
572, 591, 678, 729, 732, 774

unnata-jyā 544, 545, 720–722, 762,
764, 775

unnata-prān. a 544
upādhi 29

upapatti 176
according to Bhāskarācārya 273

and reductio ad absurdum 287

as enunciated by Gan. eśa Daivajña
275

avyaktar̄ıtya 277

by Kr.s.n. a Daivajña for the rules
of signs in algebra 279

for the elevation of the intellect
286

for the square of the hypotenuse
of a right-angled triangle 277

in Indian mathematics 271
includes observation 287

ks.etra-gata 277

list of works containing 294
mathematical results should be

supported by 274

of the Kut.t.aka process 296
the raison d’être or purpose of

upapatti 285, 286

ūrdhvādho-rekhā 473

utkrama-jyā 90, 212, 214
uttara-dhruva 668

uttara-vis.uvat 512, 671

uttarottara-saṅkalitaikyānayana 58

val.a 185

valana 600, 601, 805

āks.a-valana 600, 805
āyana-valana 598, 599, 805, 807

combined 600, 807

viks.epa-valana 600, 807
val.attul.a 51

valita-vr. tta 520, 521, 680

distance from 680
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vall̄ı 41, 42
construction of vall̄ı 177
finding bhājya and bhājaka us-

ing vall̄ı-results 41
gun. a as the penultimate entry

of the vall̄ı 306
of the quotients 280
reading from the bottom 42
reverse 41
transformed vall̄ı 306, 307

vallyupasam. hāra 41–43

vāmat.a 50, 51, 185
varga 3, 7, 11, 13, 276
varga-mūla 3
varga-saṅkalita 62, 193
varga-varga 56
varga-varga-saṅkalita 64, 194
Vāsanābhās.ya 846
vāyugola 509, 510, 514, 518–520, 667,

669–671, 680
for a non-equatorial observer 677
pravaha-vāyugola 513

Venkataraman A 149
vernal equinox 671

vidig-vr. tta 566–568, 750
vidig-vr. ttāntara 568
viks.epa 495, 497–500, 527, 530, 586,

589, 590, 592, 594, 595, 597,
600, 604, 607, 654, 655, 657,
658, 687, 800, 805, 807, 810–
812, 814, 822, 825, 826, 828,
830, 832, 833, 844, 851

at the desired instant 802
extent of 498

in the measure of pratiman. d. ala
658, 788

obtaining bhagola-viks.epa 498
of the manda-karn. a-vr. tta 499
of the centre of manda-karn. a-

vr. tta 657

true 595
true planets when there is no

viks.epa 495
viks.epa-calana 605–608, 812–814, 818

determination of 608, 817
viks.epa-cāpa 526
viks.epa-jyā 529, 615
viks.epa-kot.i 497–499, 527, 529, 586,

591, 592, 612, 655, 658, 688
viks.epa-kot.i-vr. tta 498, 499, 590, 611,

655, 657, 792–794, 822–824
viks.epa-pārśva 604–607, 811, 812,

814
viks.epa-pārśva-vr. tta 814, 815
viks.epa-śara 615, 616, 829, 831
viks.epa-śaraphala 615
viks.epa-valana 600, 807

viks.epa-vis.uvat 605, 812, 813
viks.epa-vr. tta 603–606, 608, 810–812
viks.epāyanānta 605, 812
viks.epāyana-vr. tta 605, 812, 813, 817
vinād. ı̄ 531
vipar̄ıtacchāyā 543, 549, 727
vipar̄ıta-digvr. tta 557, 742
vipar̄ıta-dik 576
vipar̄ıta-karn. a 484–486, 635, 636,

638, 640
vipar̄ıta-vr. tta 682
vis.ama-tryaśra 108, 237
visibility correction

computation of 822
of planets 611

vis.uvacchāyā 542, 552, 555, 734, 768

vis.uvad-vipar̄ıta-nata-vr. tta 523, 682,
683

vis.uvad-vipar̄ıta-vr. tta 521, 523, 524,
531, 682, 683

vitribha-lagna 770

volume
of a sphere 142, 263
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Vr. s.abhādi 673
Vr. ścikādi 673
vr. tta-pāda 479, 512, 558, 559
vr. tta-prāya 48
vyāpti 29, 169
vyāpti-jñāna 290
vyāsārdha 71
vyasta-digvr. tta 566, 750
vyat̄ıpāta 603, 610, 810, 819

derivation of 609, 819
lasting for four nādika-s 610
time of 608, 819

vyavakalita 4

Wagner D B 278
Warren John 150
Weil Andre 270
Whish C M v, vii, xxxiii, xxxvi,

xxxvii, 150, 271
winter solstice 671, 812

yāmyottara-nata 706
yāmyottara-nata-jyā 534
yāmyottara-nata-vr. tta 524, 534, 537–

539, 710
yāmyottara-svastika 539
Yano Michio 150
Yavakot.i 509, 668
yojana 471, 547, 584–586, 588, 589,

593, 596, 597, 621, 799
dr. kkarn. a-yojana 593

yojana-s
of the Earth’s radius 547
of the hypotenuse 547

yuga 31–36, 170, 171
avāntara-yuga 35, 173
caturyuga 31
number of civil days in a yuga

171, 173
number of revolutions of Sun in

a yuga 173

yuga-adhimāsa 31
yuga-avama 32
yuga-bhagan. a 32, 34, 170, 171, 471,

621
yuga-bhagan. a-śes.a 35
yuga-sāvana-dina 799
yukti 275
Yukti-bhās. ā xxi, xxxii, xxxiv, xxxv,

xxxvii, xl, 57, 149, 150, 191
1948 edition xlviii
1953 edition l
analytic contents of xl
authorship of xxxiv, xxxvi
chronogram found in one of the

manuscripts l
date of xxxv
in Sanskrit and Malayālam xxxix
Malayālam version of xlviii
manuscript material used in the

current edition xlviii
notes in Malayālam 149
Sanskrit version l, li
scope and extent of xxxvii
style of presentation xxxix

Yukti-d̄ıpikā xxvi, xxxii, xxxviii, xlvi,
57, 68, 69, 78, 80–82, 191,
198, 200, 206, 207, 232–234,
666

colophonic verses of xxxix
similarity with Yuktibhās. ā xxxviii

Zadorozhnyy A 150
zenith 518, 678
zenith distance

change in, due to the effect of
parallax 790

Zeno 268
zero latitude 668
zodiacal celestial sphere 622, 667
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