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.sa;ma;pRa;Na;m,ana;a;na;a;yua;��+.a;a:�a;Za;ea;BMa na ;Æa;ma;ta;ma;na;�a;Da;kM ta:n:�a:ja;a;l+.a;Æa;Ba;n�a;a;tMag{a;a;sa;.C+.a;ya;a;
a;d;k+:a;yeRa bua;Da;Bxa;gua;
a;va;Sa;yea yua;�+:ma;a;g a ;
a;d;Za;nta;m,a Á:pra;a;NEa;S�a;a;t,a g{a;nTa:=+�Ma ga;a;Na;ta;
a;va;d;ma;l+.ea ta:n:�a;sa;	a:ñÍøå Á*:+.�a;�a;k+:a;K.yMaga;a;gyRaH (r�a;a;n�a;a;l+.k+:NFH kx +:ta;ba;hu ;l+.kx +:�a;ta;Ba;Ra;gya;mea;ta;dõâ â u ;Da;a;na;a;m,a Á Áv.ya;a;K.ya;a;le +.K.ya;
a;va;Zea;Sa;vxa;a:�a;Ba;�a:=+tMa va;ea ;D�a;a:jua;Sa;Ma .sa;mmua;de:pra;a;k+:a;Zya;�a;nua ta:n:�a;sa;ñÍç ÅÅ*:" +.h;ma;mMua :pr�a;a;tya;a na;ya;a;ma;eaY;Dua;na;a Á(r�a;a;ma;n}å.a;a;Da;va;ke +.=+l� +.a;ya;ga;a;Na;ta:$ya;ea;�a;ta;
a;vRa;d;Ma .sMa;h;teaH.sa;ntua;��Ea ..a .sa;ma;a;pRa;ya;a;ma ;
a;va;bua;Da;aH &+.�;a;nta:=+ñÍç ÅÅ*:+.a va;ya;m,a Á Á
The scholarly world is indeed fortunate that Nı̄lakan. t.ha—an astronomer-mathematician
hailing from the Garga lineage and blessed with a clear intellect—composed among
several other works a treatise called Tantrasaṅgraha, which is considered to be a gem
among works [in astronomy], resplendent with a variety of yuktis, neither terse nor too
elaborate, and which gives far more accurate procedures for solving the problems
involving eclipses, shadow measurements, [the application of the equation of centre] in the
case of Mercury and Venus, and so on.

We are now extremely happy to bring out this treatise, Tantrasaṅgraha, along with
translation, annotation and detailed mathematical exposition for the intellectual delight of
the scholarly community. We are also immensely pleased to dedicate this work of ours to
Mādhava and the galaxy of other astronomers that this great lineage has produced.





Foreword

In the history of mathematics and astronomy in India, the Kerala school which
flourished during the fourteenth–seventeenth centuries CE, has a unique position.
Mādhava of Saṅgamagrāma, Parameśvara, Nı̄lakan.t.ha Somayāj̄ı, Jyes.t.hadeva
and Śaṅkara Vāriyar were among the luminaries of this school, which made origi-
nal contributions in mathematics, formulating the infinite series for the trigonomet-
ric functions and π , that antedated similar achievements of European mathemati-
cians by a couple of centuries. The origin of calculus also can be traced to this
school.

In astronomy too, the Kerala school had significant achievements. The versa-
tile astronomer Nı̄lakan.t.ha Somayāj̄ı (1444-1545) produced several works on
astronomy, of which the Tantrasaṅgraha (about 430 verses in anus.t.ubh me-
tre in eight sections or prakaran. as) is a comprehensive treatise. He introduced
in this elegant work a major revision of the traditional Indian planetary model,
a detailed geometrical picture of which is discussed in his two small but lucid
works—Siddhāntadarpan. a (31 verses) and Golasāra (56 verses). According to
Nı̄lakan. t.ha’s geometrical picture of planetary motion, the five planets (Mercury,
Venus, Mars, Jupiter and Saturn) move in eccentric orbits around the mean Sun,
which in turn orbits around the Earth. Such a formulation was put forward by the Eu-
ropean (Danish) astronomer Tycho Brahe, nearly a century later. Tantrasaṅgraha
is also known for its other innovations introduced by Nı̄lakan. t.ha.

In March 2000, the Department of Theoretical Physics, University of Madras, or-
ganized a conference in collaboration with the Indian Institute of Advanced Studies,
Shimla, to celebrate the 500th anniversary of Tantrasaṅgraha. Though the impor-
tance of this text was known to historians of Indian astronomy for quite some time,
and several research papers have been published on the original ideas presented in
this work, there was a great need for an accurate English translation of this semi-
nal treatise, with detailed notes in modern notation. Profs K. Ramasubramanian and
M. S. Sriram, who have the linguistic and subject expertise, have fulfilled this need
admirably. As may be noted from the current volume, every attempt has been made
by the authors to make the work as self-contained as possible by giving detailed
explanations as well as several explanatory appendices besides a glossary and bibli-
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viii Foreword

ography. Historians of astronomy, both Indian and foreign, are most grateful indeed
to them for their devoted efforts in bringing out this publication.

The authors are already well known for their studies and publications in the area
of Indian mathematics and astronomy. Together with another savant, M. D. Srinivas
of the Centre for Policy Studies, Chennai, they were involved in preparing a detailed
explanatory notes for Gan. ita-yuktibhās. ā of Jyes.t.hadeva, which was published in
two volumes by the Hindustan Book Agency, New Delhi with a critical edition of
the text and English translation by K. V. Sarma, an eminent scholar who published
several works on Indian astronomy. A reprint of this work was also brought out
recently by Springer, the noted international publishers, to make it available for the
international readership. In fact, Jyes.t.hadeva, who was a junior contemporary of
Nı̄lakan. t.ha, at the commencement of his work states that his aim in composing the
work is to explain the calculational procedures given in Tantrasan. graha. It is but
fitting, therefore, that Profs Ramasubramanian and Sriram, who were involved with
the production of explanatory notes of Gan. ita-yuktibhās. ā, are the authors of the
present volume on Tantrasaṅgraha.

The Hindustan Book Agency has been rendering yeoman service to scholars in-
terested in the history of mathematics, by bringing out several volumes in its se-
ries ‘Culture and History of Mathematics’. I am happy that in collaboration with
Springer it is publishing the present work on Tantrasaṅgraha, which, I am sure,
will be of great value to historians of science in general and of astronomy in partic-
ular. It is my fond hope that several other timeless works of this type will emerge
from the pens of these erudite authors in future.

Bangalore B. V. Subbarayappa
March 2010 Former President, International Union of

History and Philosophy of Science



Preface

Tantrasaṅgraha composed in 1500 CE by the Kerala astronomer Nı̄lakan.t.ha So-
mayāj̄ı, has long been recognized as an important Indian text in astronomy. It is a
comprehensive text which discusses all aspects of mathematical astronomy such as
the computation of the longitudes and latitudes of planets, various diurnal problems,
the determination of time, eclipses, the visibility of planets etc. There are two crit-
ical editions of the Sanskrit text, by S. K. Pillai in 1958 and K. V. Sarma in 1977,
which between them include the commentaries Laghu-vivr. ti in prose for the entire
text, and Yukti-d̄ıpikā in verses for the first four chapters, both of which are com-
posed by Śaṅkara Vāriyar. The need has long been felt for an English translation
of the work, with detailed explanatory notes in modern notation, so that the work
is accessible to a larger audience. It is with this objective that we began a project
on Tantrasaṅgraha, funded by the Indian National Science Academy (INSA), in
2000.

Meanwhile, along with M. D. Srinivas (Centre for Policy Studies, Chennai),
we were involved in preparing detailed explanatory notes for Gan. ita-yukti-bhās.a
(GYB) of Jyes.t.hadeva, edited and translated by K. V. Sarma, and published in 2008
by the Hindustan Book Agency and reprinted in 2009 by Springer. Though the work
on GYB caused delay in the publication of the present work, it was very rewarding
as GYB gives detailed explanations of most of the algorithms in Tantrasaṅgraha,
and provides valuable insights on many topics covered in that work.

Scholars in the area of the history of astronomy in general, and Indian astronomy
in particular, form the natural readership for this work. However, keeping the larger
readership—anyone wanting to know the methods of Indian astronomy—in mind,
we have attempted to make it as self-contained as possible, so that any motivated
person with a sound background in mathematics at the final school (+2, as it is
termed in India) level and interested in spherical astronomy will find it useful. We
have also included a glossary of frequently occurring Sanskrit terms and several
appendices that should serve to clarify many concepts relevant to the topics in the
main text.

The modification of the traditional Indian planetary model by Nı̄lakan.t.ha in
Tantrasaṅgraha is what attracted us to the work initially. But this topic is dealt
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x Preface

with all too briefly in it, as it is a Tantra text devoted mainly to computational
algorithms. However, Nı̄lakan.t.ha has discussed his model extensively, along with
his geometrical picture of planetary motion, in other works. In collaboration with
M. D. Srinivas, we had made an incisive study of this model and published a paper
on it in the Indian journal Current Science way back in 1994. Since then we have
had occasions to study this in more detail. Appendix F, on the traditional Indian
planetary model and its revision by Nı̄lakan. t.ha Somayāj̄ı, of which M. D. Srinivas
is a co-author, reflects our current understanding on this subject.

We are deeply indebted to Prof. M. D. Srinivas—our collaborator on the different
aspects of studies on Indian astronomy and mathematics that we have been doing
for almost two decades now—for meticulously going through the entire manuscript
and offering several valuable suggestions. We would also like to acknowledge the
suggestions given by the two anonymous referees for improving the manuscript. We
are grateful to (the late) Prof. K. V. Sarma with whom we have had an extensive
collaboration, especially during the preparation of Yuktibhās. ā, and who has been
a source of great inspiration for us. We would like to thank Profs C. S. Seshadri
and R. Sridharan of the Chennai Mathematical Institute for their continued support
and encouragement. Our special thanks go to Prof. B. V. Subbarayappa, Bangalore,
the doyen of the history of science in India, for having readily agreed to write the
Foreword to this work.

Our heart-felt thanks are due also to Profs S. Balachandra Rao of Bangalore, and
V. Srinivasan of Hyderabad (currently with the University of Madras) for their con-
stant and vociferous support to us over all the years in all our work on Indian astron-
omy. We also thank Profs P. M. Mathews, G. Bhamati, M. Seetharaman, S. S. Vasan,
K. Raghunathan, A. S. Vytheeswaran, R. Radhakrishnan, and Dr Sekhar Raghavan
associated with the Department of Theoretical Physics, University of Madras, for
their kind and active interest in our work over the years.

We would like to acknowledge the keen interest expressed by Swami Atmapriya-
nanda, Belur Math, in promoting studies in Indian astronomy and mathematics. We
are indeed grateful to Profs David Mumford of Brown University and Manjul Bhar-
gava of Princeton University for their kind encouragement and enthusiastic support.
It is a pleasure to thank Profs S. M. R. Ansari, A. K. Bag, Jitendra Bajaj, V. Bal-
akrishnan, A. V. Balasubramanian, Rajendra Bhatia, S. G. Dani, Sinniruddha Dash,
Amartya Datta, P. C. Deshmukh, P. P. Divakaran, Raghavendra Gadagkar, George
Joseph, Rajesh Kocchar, S. Madhavan, Madhukar Mallayya, N. Mukunda, Rod-
dam Narasimha, M. G. Narasimhan, Jayant Narlikar, C. K. Raju, Sundar Sarukkai,
B. S. Shylaja, Navjyoti Singh, S. P. Suresh, T. Trivikraman, Mayank Vahia, Padmaja
Venugopal and K. Vijayalakshmi, as well as Profs Mohammad Bagheri, Subhash
Kak, Agathe Keller, Francois Patte, Kim Plofker, T. R. N. Rao, S. R. Sarma and Mi-
chio Yano for their kind interest in our work in Indian astronomy and mathematics
in general, and this work in particular.

One of the authors (Ramasubramanian) would like to acknowledge the unstint-
ing support and encouragement received from the former Director of IIT Bom-
bay, Prof. Ashok Misra, and other IIT Bombay fraternity members, particularly
Profs. S. D. Agashe, Rangan Banerjee, Jayadeva Bhat, S. M. Bhave, Amitabha
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Gupta, Devang Khakhar, Malhar Kulkarni, Ravi Kulkarni, H. Narayanan, Prabhu
Ramachandran, Krithi Ramamritham, H. S. Shankar, G. Sivakumar, A. K. Suresh,
Sivaramakrishnan and Jugal Verma. Special thanks are also due to K. Mahesh,
U. K. V. Sarma, R. Venketeswara Pai, Dinesh Mohan Joshi and Vanishri Bhat for
their devoted assistance at different stages of the preparation of the manuscript. In
fact, we are particularly indebted to Vanishri for spending countless hours in setting
a uniform style for all the figures that appear in the book and U. K. V. Sarma for
carefully proof reading the entire text.

This work is the outcome of a project sanctioned by INSA, New Delhi, during
October 2000–March 2004. We would also like to place on record our gratitude to
the Sir Dorabji Tata Trust and the National Academy of Sciences, India, for their
financial assistance by way of projects, which was extremely useful in offering
fellowship to the project staff as well as in the production of the manuscript in a
camera-ready form. We are deeply indebted to INSA for the financial support as
well as for readily granting the permission to publish the work. Our special thanks
go to Jainendra Jain and Devendra Jain of the Hindustan Book Agency, New Delhi,
for graciously coming forward to publish this work in collaboration with Springer,
London.

Finally, the authors are grateful to the copy-editor(s) for going through the
manuscript meticulously, and making valuable comments and suggestions.;
a;va;kx +:�a;ta-A;a:(õ;a;yua:ja;Zua;ë�ÅÉì*:+:d;Za;m�a;a, k+:�ya;b.d 5112 K. Ramasubramanian

Cell for Indian Science and Technology in Sanskrit
IIT Bombay

October 17, 2010 M. S. Sriram

Department of Theoretical Physics

University of Madras
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3.22 Hypotenuse of the shadow from samaśaṅku . . . . . . . . . . . . . . . . . . 193
3.23 Hypotenuse by a different method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
3.24 Gatais.yaprān. a from samaman. d. ala-śaṅku . . . . . . . . . . . . . . . 195
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3.13 The zenith distance of the Sun during meridian transit. . . . . . . . . . . . . 171
3.14 The equinoctial and the solsticial points (ayanāntas). . . . . . . . . . . . . . 173
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Moon, that is used in finding the distance of the Moon from the
observer on the surface of the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

5.17 The angular diameter of the Moon as seen by an observer on the
surface of the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342

5.18 The latitude of the Moon as seen by an observer on the surface of
the Earth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

5.19 The parallax of the Moon and the Sun. . . . . . . . . . . . . . . . . . . . . . . . . . . 344
5.20 The effective deflection from the ecliptic in a solar eclipse. . . . . . . . . . 346



xxiv List of Figures

5.21 (a) Parallax in the longitude of the Moon as seen by the observer at
the centre of the dr. ggola. (b) Spherical triangle formed by the pole
of the ecliptic, the zenith and the Moon. . . . . . . . . . . . . . . . . . . . . . . . . . 348

5.22 Distance of separation between the centres of the Sun and the
Moon’s discs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

5.23 Criteria for the visibility of the totality/annularity of a solar eclipse. . 351
5.24 Condition for the visibility of the totality/annularity. . . . . . . . . . . . . . . 353
5.25 Graphical representation of a solar eclipse. The solar and lunar

discs are drawn with A and X as centres. The shaded portion is the
eclipsed part of the Sun. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355

6.1 Positions of the Sun and the Moon during vyat̄ıpāta. . . . . . . . . . . . . . . 358
6.2a Finding the declinations of the Sun and the Moon. . . . . . . . . . . . . . . . . 360
6.2b Determination of the true declination of the Moon. . . . . . . . . . . . . . . . . 361
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Parameśvara. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
F.7 Geometrical picture of the motion of an interior planet given by
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2.1 Jyā values corresponding to arc lengths which are multiples
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and Mādhava’s values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2 Look-up table from which the values of arc lengths of small jyās
can be directly written down without performing any iteration,
when the difference between the jyā and the cāpa is equal to
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Introduction

Tantrasaṅgraha and its importance

Tantrasaṅgraha, a comprehensive treatise on astronomy, was composed by
the renowned Kerala astronomer Nı̄lakan.t.ha Somayāj̄ı (1444–1545 CE) of
Tr.kkan. t.iyūr. It ranks along with Āryabhat.ı̄ya of Āryabhat.a (499 CE) and
Siddhāntaśiroman. i of Bhāskarācārya (1150 CE) as one of the major works which
significantly influenced further work on astronomy in India. In Tantrasaṅgraha,
Nı̄lakan. t.ha introduced a major revision of the traditional Indian planetary model.
He arrived at a unified theory of planetary latitudes and a better formulation of the
equation of centre for the interior planets (Mercury and Venus) than was available,
either in the earlier Indian works or in the Greco-European or Islamic traditions of
astronomy, till the work of Kepler.1 Besides this, the work also presents many im-
portant innovations in mathematical techniques related to accurate sine tables, use
of series for sine and cosine functions, and a systematic treatment of spherical as-
tronomical problems. The relations of spherical trigonometry stated here are exact,
and are applied with care to diurnal problems, eclipses etc. The explanations of the
procedures of Tantrasaṅgraha are to be found in the commentaries Laghu-vivr. ti
and Yukti-d̄ıpikā by Śaṅkara Vāriyar, as well as the seminal Malayalam work
Yuktibhās. ā of Jyes.t.hadeva.

The present work and its context

There have been two critical editions of Tantrasaṅgraha, the first by Surnad Kunjan
Pillai in 1958 and the second by K. V. Sarma in 1977. While the former includes the

1 In his other works Āryabhat.̄ıya-bhās.ya, Golasāra, Siddhāntadarpan.a and Grahasphut.ā-
nayane viks.epavāsana, Nı̄lakan. t.ha also discusses the geometrical model implied by his theory
according to which the planets go around the Sun, which itself orbits around the Earth. See Ap-
pendix F for more details.
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commentary Laghu-vivr. ti in the form of prose for the whole text, the latter includes
the elaborate commentary Yukti-d̄ıpikā (for the first four chapters) in the form of
verses.2 Both these commentaries are by Śaṅkara Vāriyar. There is very little dif-
ference in the text between the two editions. While the main text, Tantrasaṅgraha,
as edited by K. V. Sarma, is based on 12 manuscripts, the commentary, Yukti-
d̄ıpikā, is based on only four manuscripts.3 The textual verses, as well as the ref-
erences to the citations from Laghu-vivr. ti and Yukti-d̄ıpikā, that are reproduced in
the present work are based on the above two editions of Tantrasaṅgraha.

We have gone through the entire Laghu-vivr. ti commentary in the process of
preparing the translation and explanatory notes. Some important portions of Yukti-
d̄ıpikā having a direct bearing on the contents of the main text have also been cited
in our explanations. For the most part, Laghu-vivr. ti gives a plain and direct descrip-
tion of the verses of the text in simple prose without excursions into related topics.
Nevertheless, it does offer very valuable insights on several occasions and clarifies
the contents of many verses, which would have been unclear otherwise. However,
the commentary Yukti-d̄ıpikā is of a different nature. Here Śaṅkara Vāriyar tran-
scends the confines of immediate utility and discusses several related issues that
would greatly enhance one’s understanding of the subject. Many verses in Yukti-
d̄ıpikā reveal several aspects of the Indian thinking on astronomy and mathemat-
ics. Besides these two commentaries, we have also consulted the astronomy part of
Jyes.t.hadeva’s Yuktibhās. ā which has proved to be extremely useful in understand-
ing the contents of Tantrasaṅgraha. In fact, according to Jyes.t.hadeva—as stated
by him at the very commencement of the work—the main purpose of Yuktibhās. ā

4

is to elucidate the procedures enunciated in Tantrasaṅgraha. We have made exten-
sive use of this work while preparing the explanatory notes on certain topics such
as the planetary model, spherical astronomical problems, visibility corrections, the
eclipses and so on.

There is an earlier translation of Tantrasaṅgraha by V. S. Narasimhan, which
was published in the Indian Journal of History of Science as a supplement in three
parts during 1998.5 Narasimhan has also presented some explanatory notes to his
translation. However, the author does not seem to have carefully studied the com-
mentaries of Śaṅkara Vāriyar in preparing the translation. He also did not have the
benefit of consulting an edited version of the astronomy part of Yuktibhās. ā. Often,
his translation and explanations do not really bring out the exact content of the verses
of Tantrasaṅgraha. This has been one of the motivating factors for undertaking the
present work.

2 See {TS 1958} and {TS 1977}.
3 {TS 1977}, p. xlii.
4 {GYB 2008}, p. 1; p. 313.
5 {TS 1999}, pp. S1–S146.
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The Kerala school of astronomy and mathematics

Kerala has had a long, continuous and vigorous tradition of astronomy and mathe-
matics from very early times. Āryabhat. ı̄ya (c. 499 CE) of Āryabhat.a, which sets
the tone for all further work on mathematical astronomy in India, appears to have
become popular in Kerala soon after its composition. The astronomical parameters
in Āryabhat.ı̄ya were revised by a group of astronomers who had gathered at the
celebrated centre of learning at Tirunāvāy in northern Kerala during 683–684 CE.
The revised system called Parahita-gan. ita was enunciated by Haridatta in his Gra-
hacāra-nibandhana.

Laghubhāskar̄ıya and Mahābhāskar̄ıya of Bhāskara I (c. 630), which ex-
pounded the Āryabhat.an school in detail, were also popular in Kerala. Govin-
dasvāmin (c. 800) wrote an elaborate commentary on Mahābhāskar̄ıya and his stu-
dent Śaṅkaranārāyan.a (c. 850) wrote one on Laghubhāskar̄ıya. Udayadivākara
(11th century), who also probably hailed from Kerala, wrote a detailed commentary,
Sundar̄ı on Laghubhāskar̄ıya, which contains the method for solving quadratic in-
determinate equations (varga-prakr. ti). This method is ascribed to Jayadeva (10–
11th century) and is the same as the famous Cakravāla algorithm, expounded in
detail by Bhāskara II in his Bı̄jagan. ita (c. 1150).

The Kerala tradition enters a new phase with Mādhava of Saṅgamagrāma
(c. 1340–1425). His known works like Ven. vāroha, Sphut.acandrāpti and
Agan. itagrahacāra may not be major works conceptually, but all the later as-
tronomers from Kerala invariably attribute to him the path-breaking results on infi-
nite series for the inverse tangent, sine and cosine functions, plus many innovations
in astronomical calculations.

Parameśvara of Vat.aśśeri (c. 1360–1455), a student of Mādhava, was a pro-
lific writer, who authored about 30 works. Emphasizing the need for revising the
planetary parameters through observations, he thoroughly revised the Parahita sys-
tem and introduced the Dr. ggan. ita system. Nı̄lakan. t.ha in his Jyotirmı̄mām. sā and
Āryabhat. ı̄ya-bhās. ya mentions that Parameśvara observed eclipses for 55 years
continuously and revised these parameters so that the observations and calcula-
tions tally with each other. Apart from Dr. ggan. ita, the other important works
of Parameśvara are Golad̄ıpikā, Bhat.ad̄ıpikā (a commentary on Āryabhat. ı̄ya),
Siddhāntad̄ıpikā (a super-commentary on Govindasvāmin’s Mahābhāskar̄ıya-
bhās.ya), Grahan. aman. d. ana on eclipses and Mahābhāskar̄ıya-bhās. ya, his own
commentary on Mahābhāskar̄ıya of Bhāskara I. Parameśvara also happens to be
one of the few astronomers to discuss in detail the geometrical model of plan-
etary motion implied by the calculational procedure in Indian astronomy in his
Siddhāntad̄ıpikā, Bhat.ad̄ıpikā and Golad̄ıpikā.

Nı̄lakan.t.ha Somayāj̄ı (c. 1444–1545), of whom a brief biographical sketch is
provided in the next section, was a disciple of Dāmodara, who was the son and
disciple of Parameśvara. Suffice it to say here that the innovations in the plan-
etary model and spherical astronomical calculations made by Nı̄lakan.t.ha in his
Tantrasaṅgraha and other works were considered as major advances by the later
astronomers of Kerala.
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Jyes.t.hadeva (c. 1500–1610), of Parakrod.a or Paronnot.t.u family, was also a
pupil of Dāmodara, and seems later to have received instructions from Nı̄lakan.t.ha
Somayāj̄ı. In his Yuktibhās. ā (c. 1530), we have an elaborate and systematic ex-
position of the rationale of the algorithms employed in Indian mathematics in Part
I, and those employed in Indian astronomy in Part II. Though it claims to explain
the contents of Tantrasaṅgraha and to provide the rationale for the calculational
procedures in it, Yuktibhās. ā is indeed an independent work (especially Part I). This
treatise occupies a unique place in Indian mathematics and astronomy for two rea-
sons: (i) it is exclusively devoted to proofs and demonstrations, including those for
the infinite series for inverse tangent, sine and cosine functions, and (ii) it is writ-
ten in the local language of Kerala, Malayalam. Perhaps it is one of the reasons for
the title of the book, Yuktibhās. ā.6 Though there are innumerable commentaries on
Siddhāntaśiroman. i, L̄ılāvat̄ı etc. in the regional languages of India, we are yet to
find a major work of this nature among them.

Śaṅkara Vāriyar of Tirukkut.aveli (c. 1500–1560) was a disciple of Nı̄lakan.t.ha
Somayāj̄ı and was also deeply influenced by Jyes.t.hadeva. He is the author of two
commentaries on Tantrasaṅgraha, namely Laghu-vivr. ti, in prose, and a far more
elaborate one, Yukti-d̄ıpikā, which is composed entirely in verses. He has also au-
thored a commentary, Kriyākramakar̄ı, on L̄ılāvat̄ı of Bhāskara II. There are sim-
ilarities in the treatment of various topics in Yukti-d̄ıpikā and Yuktibhās. ā. It has
also been noted that there are several verses in common between Yukti-d̄ıpikā and
Kriyākramakar̄ı.

Citrabhānu (c. 1475–1550), the author of Karan. āmr. ta, was also a disciple of
Nı̄lakan. t.ha, whereas Acyuta Pis.ārat.i (c. 1550-1621) of Tr.kkan. t.iyūr was a stu-
dent of Jyes.t.hadeva. Acyuta has written a karan. a work, Karan. asāra and a more
detailed work on planetary theory, Sphut.anirn. ayatantra. He also discusses the ‘re-
duction to the ecliptic’ in detail in his Rāśigolasphut.an̄ıti. Karan. apaddhati of Pu-
tumana Somayāj̄ı (c. 1660–1740) is an important later work in the karan. a form.
Sadratnamāla of Rājā Śaṅkara Varman (c. 1800–38) is a compendium of the Ker-
ala school of mathematics and astronomy. The Kerala tradition continued even into
modern times, with some works incorporating a few results of modern positional
astronomy.

Nı̄lakan. t.ha and his works

Nı̄lakan. t.ha, generally referred to with the title Somayāj̄ı or Somasutvan, hailed
from Tr.kkan. t.iyūr (Sanskritized into Śr̄ıkun. d. apura or Śr̄ıkun. d. agrāma) near Tirūr
in south Malabar, a famous seat of learning in Kerala during the middle ages. He
is also called Gārgya-kerala, as he belonged to the Garga-gotra and hailed from
Kerala. The name of his Illam—as the house of a Nambuthiri Brahmin is called—

6 The word bhās.ā, when derived using karmavyutpatti, refers to the language that is spoken
bhās.yate iti bhās.ā. It is also possible that the title stems from the derivation—yuktayah. atra
bhās.yanta iti (the rationales are being elucidated here)—Yuktibhās. ā.
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was Kelallūr. Hence he was known locally as Kelallūr Comātiri.7 From several
references in his writings it is known that he was intimately connected with and was
patronized by Kaus.̄ıtaki Ād. hya Netranārāyan.a, known locally as Azhvānceri
Tamparkkāl, the religious head of the Nambuthiri Brahmins of Kerala. Nı̄lakan.t.ha
informs us in his writings that he studied Vedānta under one Ravi and Jyotis.a under
Dāmodara, son of Parameśvara. He refers to Parameśvara as his Paramaguru and
is indebted to him for many results and insights.

The phrases ‘he vis.n. o nihitam. kr. tsnam. ’ and ‘laks.mı̄́sanihitadhyānaih. ’ oc-
curring in the first and the last verses of Tantrasaṅgraha, though each literally
conveying the meanings appropriate to the context, also give the Kali-ahargan. a
(the number of days elapsed since the beginning of the Kaliyuga) corresponding to
the dates of the commencement and completion of the work. This has been pointed
out by the commentator Śaṅkara Vāriyar in his commentary Laghu-vivr. ti. The
numbers represented by the two phrases in Kat.apayādi notation are 1680548 and
1680553. These correspond in the Gregorian calendar to March 22, 1500 and March
27, 1500 CE respectively. Nı̄lakan.t.ha states in the commentary on Siddhānta-
darpan. a that he was born on Kali day 1660181 which corresponds to June 17,
1444 CE. That he lived to a ripe old age, even to become a centenarian, is attested
by a reference to him in Praśnasāra, a Malayalam work on astrology.

The erudition of Nı̄lakan.t.ha in several branches of Indian philosophy and learn-
ing such as Vedānta, Mı̄mām. sā, Dharmaśāstras, Purān. as etc. is quite evident
from the frequent references to them in his works, particularly Āryabhat. ı̄ya-bhās.ya
and Jyotirmı̄mām. sā. This is in addition to the citations from Jyotis.a works begin-
ning from Vedāṅga-jyotis.a down to the treatises of his own times.

Besides Tantrasaṅgraha, Nı̄lakan.t.ha composed many other works.
Āryabhat. ı̄ya-bhās. ya, composed by him late in his life, is perhaps the most
elaborate commentary on Āryabhat. ı̄ya, and is yet to be translated and studied in
detail. He himself calls it a Mahābhās. ya,8 which is amply justified considering
the wealth of information and explanations in it. In this work, he summarizes the
prevalent knowledge of mathematics and astronomy, in India in general and Kerala
in particular, and supplements it with his own insights. Apart from the detailed
explanations of mathematical results and procedures presented in the text, this work
also discusses the geometrical model of planetary motion, eclipses and even some
‘physical’ concepts.

Golasāra is a short work in 56 verses containing many details not covered in
Tantrasaṅgraha. The importance of Siddhānta-darpan. a lies in the fact that the
author presents therein the astronomical constants as verified through his own ob-
servations and investigations, and which can be taken as the final figures accepted by
him for his own times. It is noteworthy that Nı̄lakan.t.ha himself wrote a commen-
tary on it. There is also a small but important tract written by Nı̄lakan. t.ha, entitled
Grhasphut. ānayane viks.epavāsanā, where he presents a succinct but definitive ac-
count of his cosmological model of planetary motion.

7 Comātiri is the Malayalam version of the Sanskrit word Somayāj̄ı.
8 {ABB 1930}, p. 180.
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Computational methods for determining the exact time on the basis of the shadow
cast by the Sun or the Moon were important in Indian astronomy, so much so
that there are many tracts exclusively devoted to this aspect. The Candracchāyā-
gan. ita of Nı̄lakan.t.ha belongs to this genre of tracts and sets out the procedures
for the computation both of the kramacchāyā, the shadow from the time, and the
vipar̄ıtacchāyā, the time from the shadow.

Grahan. anirn. aya is a work on lunar and solar eclipses, which is quoted by
Nı̄lakan. t.ha himself and later authors, the manuscripts of which are yet to be discov-
ered. Sundararāja-praśnottara is another work whose manuscripts are yet to come
to light. Sundararājā was a contemporary of Nı̄lakan. t.ha hailing from Tamilnadu,
and author of a detailed commentary on the Vākyakaran. a or Vākya-pañcādhyāȳı,
which is a manual on the basis of which almanacs were computed in Tamilnadu.
Sundararājā sought clarifications on many topics in astronomy from Nı̄lakan.t.ha,
the answers to which formed the work Sundararāja-praśnottara. Sundararājā has
explicitly stated this in his commentary on Vākyakaran. a. So this work is different
in nature from texts and commentaries, and will be a valuable addition to the corpus
of literature on Indian astronomy if brought to light.

Jyotirmı̄mām. sā of Nı̄lakan. t.ha has a unique place in the history of Indian as-
tronomy, as it is a major work which focuses exclusively on epistemological issues
concerning the science of astronomy.9 It rebuts the claim of many scholars that In-
dian astronomy did not have a scientific methodology worth the name. It strongly
emphasizes the role of observation and experimentation in revising astronomical
parameters and testing any theory. Confronting the credulous view that the num-
bers of planetary revolutions given by Āryabhat.a are immutable since they form
part of ‘divine instruction’, Nı̄lakan. t.ha points out that by the expression ‘divine
instruction’ is not meant any direct instruction by gods, but only the chastening of
the intellect through divine grace, as a result of which the author could organize his
thoughts logically. This is what he has to say regarding the authority of established
texts::pa:úãÁ*.a;Æa;sa:;dÄâ ;nta;a;~ta;a;va;t,a ë�ÅëÁ*:+:�a;.a;tk+:a;le :pra;ma;a;Na;mea;va I+.tya;va;ga;nta;v.ya;m,a Á A;
a;pa ..a yaH ;Æa;sa:;dÄâ ;a;ntaHd;ZRa;na;a;
a;va;sMa;va;a;d� ;a Ba;va;�a;ta .sa;eaY;nvea;Sa;N�a;a;yaH Á d;ZRa;na;sMa;va;a;d;(ãÉa ta;d;a;n�a;a;nta;nEaH :pa:=� +a;[a;kE H g{a;h;Na;a;d;Ea;
a;va::℄a;a;ta;v.yaH Á

One has to accept that [each of] the five siddhāntas had been authoritative at one time
[though they might not be so now]. Therefore one has to look for a system which tallies
with observation. The said tallying has to be verified by contemporary experimenters at the
time of eclipses etc.

It had long been recognized that eclipses are very sensitive to the parameters
associated with the motion of the Sun and the Moon, and also the latitude and lon-
gitude of a place. It is precisely for this reason that Nı̄lakan.t.ha stresses the need for
utilizing eclipses to revise the parameters so that future eclipses could be computed
and predicted with accuracy.

9 See {JM 1977}, p. 6. See also M. D. Srinivas, ‘Indian approach to science: The case of
Jyotih. śāstra’, PPST Bulletin, 19–20, Madras 1990.
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Nı̄lakan.t.ha quotes the following passage from a Mı̄mām. sā text which expresses
his ideas regarding the maintenance and furtherance of astronomical tradition, and
the role of observations and logical inference in it.ga;a;Na;ta;ea;��a;a;ta;~ya ..a;ndÒ +a;de H :de ;Za;
a;va;Zea;Sa;a;nva;ya;~ya :pra;tya;[ea;Na .sMa;va;a;dH , ta;ta;ea ;�a;na;a;(ãÉa;ta;a;nva;ya;~ya:pa:=+~ya ga;a;Na;ta;�a;l+.ñÍç ÅÅ*:+.ea;pa;de ;ZaH , ta;ta;~ta;~ya;a;�a;ea;pa;de ;Za;a;va;ga;ta;a;nva;ya;~ya A;nua;ma;a;nMa .sMa;va;a;dH , :pa:=+smEa..a;ea;pa;de ;ZaH I+.�a;ta .sa;}å.pra;d;a;ya;a;
a;va;.Ce +.d;a;t,a :pra;a;ma;a;Nya;m,a Á

The correlation of the computed Moon etc., with actual observation at a particular place, the
revision of computation on the basis of such correlation, logical inference therefrom being
transmitted as tradition, it being again correlated [with observation and again revised] and
transmitted further down to others—this is how tradition is continued without interruption,
and hence its [continued] authoritativeness.

Summary of Tantrasaṅgraha

Tantrasaṅgraha, the magnum opus of Nı̄lakan. t.ha, is composed in eight chapters
or prakaran. as consisting of 432 verses.10 The division of the chapters is along the
same lines as in any other typical text in Indian astronomy such as Sūryasiddhānta
or Siddhāntaśiroman. i. The development of the subject is not only systematic, often
beginning with the basics, but also quite comprehensive. All the procedures needed
for the computation of quantities of physical interest, such as the longitudes and
latitudes of planets, various diurnal problems, the determination of time, eclipses,
the visibility of planets etc., are thoroughly discussed. However, explanations are
not provided, save on some occasions, as the work belongs to the Tantra class of
texts11 which are intended to be mainly algorithmic in nature. Explanations are to be
found in the two commentaries on the text, namely Laghu-vivr. ti and Yukti-d̄ıpikā,
and also in Yuktibhās. ā composed by Jyes.t.hadeva.

It is in Tantrasaṅgraha that Nı̄lakan.t.ha explicitly formulates his revision of the
traditional planetary model. Some of the procedures adopted by the earlier texts for
calculating quantities of astronomical interest like the latitude of a place, lagnaetc.
are improvised or made exact. Brevity, clarity, exactness and comprehensiveness are
hallmarks of this work. In what follows, we provide a brief chapter-wise summary
of the text.

10 Most of the verses are in anus.t.ubh metre, which has 8 syllables per quarter (pāda).
11 Based on the epoch chosen for calculations (beginning of a kalpa, a yuga or an appropri-
ate recent date), the Indian astronomical texts are broadly classified into three types: Siddhānta,
Tantra and Karan. a. While Siddhāntas provide theoretical explanations besides presenting al-
gorithms, Tantras are mainly algorithmic with explicit formulae but do not explain the procedures.
Karan. as often dispense with even the formulae, substituting them with abbreviated procedures
and tables to be used in computations.
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Madhyamādhikāra (Computation of mean positions)

The work begins with an invocation to Lord Vis.n.u: he vis.n. o nihitam. . . . This is
also the Kali chronogram of the date of commencement of the work, which turns
out to be 1680548, and corresponds to Mı̄na 26, 4600 gatakali (elapsed Kali years)
according to the Indian calendar, which corresponds to March 22, 1500 CE accord-
ing to the Gregorian calendar. Then, various time units, like the sāvana-dina (mean
civil day), the nāks.atra-dina (sidereal day), lunar month, solar month, yuga etc.,
are defined. Smaller units of time, such as the tithi (the time period during which
the elongation of the Moon from the Sun increases by 12 degrees), the nād. ı̄ (one-
sixtieth of a day), the prān. a (21600 prān. as constitute a day) etc. are also defined.

The adhimāsa (intercalary month) and its nature are then explained. The
ks.ayamāsa and its incorporation in the calendar are also discussed. The number
of revolutions of the Sun, Moon and the five planets (Mercury, Venus, Mars, Jupiter
and Saturn) in a large period called a Mahāyuga, consisting of 4320000 years, are
given. Also the number of revolutions made by the apsides of these planets and
their nodes in a Mahāyuga are listed. Here it is noteworthy that while specifying
the number of revolutions of the inner planets, the word svaparyayāh. is used, sig-
nifying the fact that the revolution number given refers to their own revolutions and
not of their ś̄ıghrocca as specified in the earlier texts. The significance of this depar-
ture has profound implications with respect to the computation of the longitudes of
the inner planets, which is explained in the next section.

After stating the yugasāvanadinas, the number of days in a Mahāyuga, the pro-
cedure for finding the Ahargan. a, the number of days elapsed since a given epoch,
is explained. Ahargan. a is the antecedent of the modern Julian day. The mean lon-
gitude of a planet at sunrise on any given day can be calculated given the Ahargan. a
and the revolution number of the planet. This is actually valid for the mean sunrise at
Laṅkā, a fictitious place on the Earth’s equator, whose longitude is the same as that
of Ujjayin̄ı. The correction to the mean longitudes due to the difference in longitude
(terrestrial) between the given place and Laṅkā is the Deśāntara-sam. skāra.

In some of the earlier Indian texts like Āryabhat. ı̄ya, the mean longitudes of
all the planets were taken to be zero at the beginning of the Kaliyuga, which is
of course a rough approximation. Noticing this fact, most of the later texts give
corrections which are called Dhruvas.12 Nı̄lakan.t.ha also specifies the values of the
Dhruvas for the planets and their ‘apsides’ (mandoccas) at the beginning of the
Kaliyuga. The latter are essential for the calculation of the true longitudes or the
sphut.a-graha.

12 Dhruvas are the initial positions of the planets at the beginning of an epoch. Hence, their values
will vary with a change in the epoch. Even for the same epoch, Dhruvas differ from text to text.
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Sphut.ādhikāra (Computation of true positions)

The second chapter of Tantrasaṅgraha commences with a discussion on the con-
struction of the sine table. In the Indian texts the quadrant of a circle is normally
divided into 24 equal parts and sines of multiples of 3◦45

′
are explicitly stated.

In constructing the sine table, Nı̄lakan.t.ha follows the method of Āryabhat.a,
involving the second differences of the sine values, and this essentially amounts to
making use of the differential equation

d2

dx2 sinx = −sinx.

However, Nı̄lakan. t.ha’s choice of the first sine value being more accurate, his sine
table is far more accurate than the ones provided in earlier texts. Generally, the sines
of intermediate angles are determined using the first-order interpolation known as
the trairāśika. But in Tantrasaṅgraha we find several methods discussed for find-
ing more accurate values of sines using the series expansion for sinθ . The inverse
problem of finding the arc from the sine is also discussed.

An epicycle model is used to obtain the manda correction to the planetary lon-
gitudes. This is essentially the ‘equation of centre’ in modern parlance and takes
into account the eccentricity of the planetary orbit. The manda-corrected mean po-
sition is called the manda-sphut.a-graha or simply the manda-sphut.a. The actual
distance of the manda-sphut.a from the centre of the concentric is called the manda-
karn. a (manda hypotenuse). Interestingly, the epicycle radius is assumed to be pro-
portional to the manda-karn. a. Then the manda-karn. a can be determined by an
iterative process. A formula for the avísis. t.a-manda-karn. a which is found without
iterations appears for the first time in the text and is ascribed to Mādhava. While
the manda correction gives the true (geocentric) position in the case of the Sun and
the Moon, in the case of actual planets (referred to as tārā-grahas) it gives their
true heliocentric position. The term tārā-graha includes both the interior planets
(Mercury and Venus) and the exterior ones (Mars, Jupiter and Saturn).

Besides the manda correction, one more correction, namely the ś̄ıghra, has to
be applied in the case of the tārā-grahas to get the true longitudes or the sphut.a-
grahas. By applying this correction, we essentially convert the true heliocentric lon-
gitude of the planet to the geocentric longitude. In the earlier Indian astronomical
texts (as well as in Ptolemy’s Almagest), the manda correction for Mercury and
Venus was wrongly applied to the mean Sun, which has no physical significance
whatsoever. It is Nı̄lakan. t.ha who sets this procedure right, for the first time in the
history of astronomy, by applying the manda correction to the actual mean helio-
centric longitude of Mercury/Venus. In his other works like Āryabhat. ı̄ya-bhās. ya,
Siddhānta-darpan. a, Grahasphut. ānayane viks.epavāsanā etc., Nı̄lakan.t.ha dis-
cusses the implications of this procedure for calculating planetary positions, and
describes a geometrical model in which all the five planets (Mercury, Venus, Mars,
Jupiter and Saturn) move in eccentric orbits around the mean Sun, which in turn
orbits around the Earth. Being a tantra text, Tantrasaṅgraha does not give details
of the geometrical model of planetary motion.
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It may further be mentioned here that as both the manda and the ś̄ıghra correc-
tions involve the inverse sine function, the expression for the geocentric longitude
of the planet also involves it too. Hence, if one wants to find the instantaneous ve-
locity of the planet called tātkālikagati, one will have to find the time derivative
of this function. It is indeed remarkable that the exact formula for the derivative of
the inverse sine function is given in Tantrasaṅgraha. If M is the manda-kendra
(mean anomaly which is the difference between the mean planet and the apogee or
aphelion), then the content of the relevant verse can be expressed in mathematical
form as

d
dt

(
sin−1

( r
R

sinM
))

=
r cosM dM

dt√
R2 − r2 sin2 M

.

This verse appears in the context of finding the true rate of motion of the planet
(instantaneous velocity) from its average rate of motion (mean velocity).

The time interval between the transits of the mean Sun and the true Sun across
the meridian is called the ‘equation of time’. The application of the equation of time
is exactly formulated for all the planets in the second chapter of Tantrasaṅgraha
and is the same as in modern astronomy. There is one more correction to the sunrise
at a given place, due to the latitude of a place. This is the ascensional difference,
which is also described correctly in this chapter. These corrections are also included
in this chapter to ensure that one has a complete procedure for obtaining the true
longitudes of the planets at the true local sunrise.

Tripraśnādhikāra (Time, place and direction)

The chapter Tripraśnādhikāra, dealing with the three problems of time, direction
and place from the chāyā (the shadow of a gnomon), has always received great
attention. The importance given to this topic by Nı̄lakan.t.ha can be gauged just
from the extent of this chapter. In Tantrasaṅgraha, it contains 117 verses, which
is more than a quarter of the text containing merely 432 verses. Here Nı̄lakan.t.ha
deals with the diurnal problems (mostly related to the motion of the Sun and the
shadow cast by it) in an exhaustive manner. It is here that his mastery over spherical
trigonometry comes to the fore.

The gnomon, invariably taken to be 12 units in length (normally referred to as
aṅgulas in astronomical texts), plays a central role in the diurnal problems. As
the first problem, the cardinal directions are determined using the shadow of the
gnomon, incorporating the correction due to the variation of Sun’s declination dur-
ing the day. The procedure is the same as the one given by Bhāskara II in his
Siddhāntaśiroman. i.

The second important problem is the determination of the latitude of a place. The
equinoctial midday shadow is 12 tanφ , where φ is the latitude of the observer’s loca-
tion. Thus, in principle, φ can be determined by measuring the equinoctial shadow.
However, one needs to take into account the correction due to the finite size of the
Sun and its parallax. Nı̄lakan.t.ha has given the exact formula for the correction that
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needs to be applied in order to take the above two effects into account in the deter-
mination of the latitude of the place through shadow measurements.

When the zenith distance of the Sun is z, the length of the shadow is simply
12tanz. There is an elaborate discussion on the determination of the shadow at any
instant after sunrise and the inverse problem of the determination of the time from
the shadow. Here again, the corrections to z due to the finite size of the Sun and its
parallax are discussed.
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Fig. 1 The five quantities involved in the ‘Ten Problems’.

Next we find a section dealing with the Daśapraśna or the ‘Ten Problems’, which
in short may be explained as follows. Consider the five quantities, the zenith distance
of the Sun (z), its hour angle (H), its declination (δ ), its amplitude (a) and the lat-
itude of the place (φ ) in Fig. 1. There are ten different ways to choose any two out
of the five. The subject matter of the daśapraśna is to determine any two of them,
given the other three. Perhaps it is for the first time that a problem of this type is
posed and systematically solved. The expressions for the two unknowns in terms
of the three known quantities are exact spherical trigonometrical results. The text
Yuktibhās. ā of Jyes.t.hadeva gives a systematic derivation of all these results.

The calculation of the lagna is another important problem discussed in this chap-
ter. The lagna (ascendant) is the longitude of the point of the ecliptic intersecting the
eastern horizon at any given time. The procedure for its calculation as delineated in
earlier astronomical texts involves certain approximations. It is remarkable that an
exact procedure for finding the lagna is discussed here, by introducing the concepts
of (i) the kālalagna, which is the time elapsed after the rising of the vernal equinox,
and (ii) the dr. kks.epa, which is the zenith distance of the point of the ecliptic 90◦

away from the lagna.
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All the diurnal problems involving the Sun depend upon the tropical longitude
of the Sun, referred to as the sāyana,13 whereas the true longitude considered
in the earlier chapter refers to the nirayan. a longitude.14 The difference between
them is due to the precession of the equinoxes, termed the ayanacalana (motion of
the equinoxes). The author appears to believe in the oscillation of the equinox Γ ,
whereas according to modern astronomy Γ moves continuously westwards at the
rate of approximately 50.2′ per year.

Candragrahan. a (Lunar eclipse)

A lunar eclipse occurs when the longitude of the Moon is 180◦ away from the Sun,
and the Moon happens to be close to one of its nodes. As usual, the exact instant
of conjunction is determined by an iterative process, starting from the longitudes of
the Sun and the Moon and their rates of motion at sunrise. It is interesting to note
that several corrections for improving the accuracy of the results over the earlier
treatments of the problem are suggested by Nı̄lakan. t.ha in this chapter.

The mean distance of the Moon from the Earth is given as 34380 yojanas.15

The mean Earth–Sun distance is taken to be 459620 yojanas, based on the as-
sumption that the linear velocities of the Sun and the Moon are the same.16 The
actual distances of the Sun and the Moon at any time are to be found by taking
the eccentricities of the orbits into account. A further correction is specified which
amounts to taking into account the ‘evection’ term, in the case of the Moon. It may
be recalled that the evection term for the Moon makes its first appearance in In-
dia in Laghumānasa of Mañjulācārya. There is a similar correction suggested for
the Sun. The resultant distance which is called the dvit̄ıya-sphut.a-yojana-karn. a is
used in all the relevant calculations.

The angular diameters of the Moon, the Sun and the Earth’s shadow, and the
length of the Earth’s shadow are all calculated as in the earlier texts. The linear
diameters of the Sun and the Moon are given as 4410 and 315 yojanas. Then the
criteria for partial and total eclipses are clearly enunciated. The first and second
half-durations of the eclipse are computed iteratively. It is interesting to note that
the instant of maximum obscuration is taken to be different from the instant of op-
position. An expression for this time difference is also given, perhaps for the first
time.

A feature that is noteworthy throughout the text is Nı̄lakan.t.ha’s concern for
detail. When the sparśa or the first contact is very close to the sunrise, it may not

13 The longitude determined with the vernal equinox Γ , as the zero-point of the ecliptic.
14 The longitude determined with respect to a fixed reference star—usually the beginning point of
Aśvin̄ı—as the zero-point of the ecliptic.
15 A yojana is a unit of distance employed in Indian astronomy.
16 It may be mentioned here that the linear velocities of all the planets, (not only the Sun and
the Moon) are taken to be the same in Indian astronomy as a first approximation. This fact, though
implicit in the procedures given in Tantrasaṅgraha, is explicitly mentioned at the very beginning
of Yuktibhās. ā.
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be visible. The exact criterion for visibility is given, taking the Moon’s parallax into
account. There is a similar discussion when the moks.a or the last contact is close to
sunset.

Generally, in deriving the expression for the bimbāntara or the separation be-
tween the centres of the Earth’s shadow and the Moon’s disc, a ‘planar’ approxima-
tion is made by replacing the arc by the chord. But here Nı̄lakan. t.ha gives the exact
expression for separation between the discs which does not involve this approxi-
mation. Towards the end of the chapter, he discusses the concept of valana, which
is essentially the angle between the line joining the centres of the Moon and the
shadow, and the vertical direction. This has two components, the āks.avalana (in-
clination due to latitude) and the āyanavalana (inclination due to obliquity of the
ecliptic). The expressions given in the text for these two are only approximate. They
are actually employed in depicting the geometrical representation of the motion of
the shadow as well as the evolution of the eclipse.

Ravigrahan. a (Solar eclipse)

A solar eclipse is far more sensitive to the Moon’s latitude, and the apparent lon-
gitudes of the Sun and the Moon, than a lunar eclipse. The parallaxes of the Sun
and the Moon play an important role in the computation of a solar eclipse and their
effect is treated in great detail in this chapter. The terms lambana and nati refer to
the parallaxes in longitude and latitude (that is, the projections along and perpendic-
ular to the ecliptic) respectively. Lambana introduces a correction to the parvānta
(instant of conjunction), the time at which the longitudes of the Sun and the Moon
are equal, which is given by

4coszv sin(λv −λs)

in nād. ikās. Here λv is the longitude of the vitribhalagna (lagna + 90◦, also referred
to as nonagesimal), zv its zenith distance and λs the Sun’s longitude (which is the
same as that of the Moon).

The above expression for parallax correction is under the assumption that the hor-
izontal parallax is equal to one-fifteenth of the daily motion of the object. Though
the formula given above is found in the earlier texts, it is noteworthy that the expres-
sion for coszv given here is exact. The effect of parallaxes in longitude and latitude
is to modify the half-durations of the eclipse, as the first contact, the last contact
and the instant of conjunction are all affected by them. Hence an iterative process is
used for the computation of the half-durations.

Further, a more accurate method for determining the instant of conjunction is
discussed here, using the notion of the dr. kkarn. a. This refers to the actual physical
distance of the celestial object from the observer on the surface of the Earth. Con-
sider for instance the Moon, which is at a distance Dm = CM from the centre of
the Earth (see Fig. 2). Dm is the dvit̄ıya-sphut.a-yojana-karn. a mentioned earlier,
which is calculated from the mean distance, after taking the ‘eccentricity’ (manda-
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Fig. 2 The actual distance of the celestial object from the observer.

sam. skāra) and ‘evection’ (dvit̄ıya-sam. skāra) corrections into account. Then the
dr. kkarn. a, dm, is given by

dm = OM =
√

(Dm −Re coszm)2 +(Re sinzm)2,

where Re is the Earth’s radius, and zm is the geocentric zenith distance of the Moon.
Then the expression for Moon’s parallax will be

pm ≈ sin pm =
Re

dm
sinzm,

where zm is calculated exactly by taking the Moon’s latitude into account. A similar
expression is used in order to take into account the effect of solar parallax also.

Thus the parvānta (the instant of conjunction of the Sun and the Moon) is to be
calculated by taking all these corrections due to parallax and dr. kkarn. a into account.
Further, the actual distances of the Sun and Moon from the observer are needed to
find their angular diameters and the latitude of the Moon. Then the criteria for the
visibility of a partial eclipse and a total eclipse are discussed along the usual lines.
Mention is also made of an ‘annular eclipse’, when the angular diameter of the Sun
happens to be more than that of the Moon.

Vyat̄ıpāta

We have a vyat̄ıpāta when the magnitudes of the declinations of the Sun and the
Moon are equal and their gradients are in opposite directions. This concept seems
to be peculiar to Indian astronomy. Issues such as the occurrence/non-occurrence of
vyat̄ıpāta, its duration etc. are discussed in detail in this chapter.

The exact expression for the declination of the Moon in terms of its longitude and
latitude is given in the text, perhaps for the first time in Indian astronomy. Further,
Nı̄lakan. t.ha gives an alternative expression for the Moon’s declination in terms of
the instantaneous inclination of its orbit with the equator. This expression, though
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not exact, is reasonably accurate when the inclination of the orbit with the ecliptic is
small, which is actually the case (mean value ≈ 5◦). The expression for the instanta-
neous inclination (with the equator) itself is exact, and non-trivial. This is useful in
the formulation of the criteria for the occurrence of vyat̄ıpāta. Further, an iterative
process for determining the time interval between a desired instant and the middle
of the vyat̄ıpāta is also discussed.

Dr. kkarma (Reduction to observation)

This chapter is devoted to Dr. kkarma, or the determination of the visibility of plan-
ets. For this, the lagna corresponding to the time when the planet is rising or set-
ting is to be determined. If the planet has a latitude, one needs to determine the
correction ∆λ to the longitude λ of the planet in order to find the lagna. The stan-
dard expression for this in terms of the āks.avalana and āyanavalana is first given.
Then an exact expression for ∆λ is given, which is similar to the expression for
the caraprān. a (ascensional difference), with the latitude of the planet replacing the
terrestrial latitude of the place, and the zenith distance of the dr. kks.epa replacing the
Sun’s declination. The criterion for the visibility of the planet is considered next.
The difference between the kālalagna of the Sun and the planet has to be greater
than a value specified for each planet for it to be visible. This criterion, specified in
the text, seems to be purely empirical.

Sr. ṅgonnati (Elevation of the lunar horn)

The ‘evection’, which is the second correction (dvit̄ıya-sam. skāra) for the Moon—
the first being the manda or eccentricity correction—is discussed in this chapter.
The true physical distance of the Moon, called the dvit̄ıya-sphut.a-yojana-karn. a is
calculated taking this correction into account. This is used in the calculation of the
angular diameter of the Moon’s disc and other quantities.

The distance between the centres of the solar and lunar discs and the angular sep-
aration between them is calculated exactly. This is for an observer on the surface of
the Earth and includes the effect of parallax. Lengthy as the procedure is, it reveals
Nı̄lakan. t.ha’s impressive geometrical insights, especially as it amounts to calculat-
ing the distance between two points in space, as in three-dimensional coordinate
geometry. The angle of separation determines the lunar phase.

Sr. ṅgonnati17 is the elevation of the lunar horn, or the angle between the line of
cusps and the horizontal plane. The expression for sr. ṅgonnati given here appears to
be valid only when the Moon is on the horizon. Further, a graphical representation
of the Moon’s disc, line of cusps etc. also provided in this chapter. The time interval
between sunset and moonrise is to be determined through an iterative procedure.

17 Sr. ṅga is horn and unnati is elevation.



xlvi Introduction

Nı̄lakan.t.ha takes up the issue of planetary distances in a couple of verses at the
very end of the last chapter. Here he seems to suggest that the kaks.yā-vyāsārdha,
or the mean distances in yojanas, obtained from the principle that all planets cover
equal distances in equal times, should be understood as the mean ś̄ıghrocca–planet
distance, and not as the mean Earth–planet distances as comprehended in earlier
texts.



Chapter 1ma;Dya;ma;pra;k+.=+Na;m,a
Mean longitudes of planets

1.1 ma;ñÍç ÅÅ*:+.l+.a;.a:=+Na;m,a
1.1 Invocation:he ;
a;va;SNa;ea ;�a;na;
a;h;tMa kx +:t=+:ïîåéMa .ja;ga;t,a tva;yyea;va k+:a:=+Nea Á.$ya;ea;�a;ta;Sa;Ma .$ya;ea;�a;ta;Sea ta;smEa na;ma;ea na;a:=+a;ya;Na;a;ya .tea Á Á 1 Á Á

he vis.n. o nihitam. kr. tsnam. jagat tvayyeva kāran. e |
jyotis. ām. jyotis.e tasmai namo nārāyan. āya te || 1 ||
O Vis.n. u! the entire universe is embodied in thee, who art the very cause of it. My saluta-
tions to thee Nārāyan. a, who art the source of radiance of all the radiating objects.

It is a time-honoured practice in Indian tradition to commence any worthwhile
undertaking with a maṅgalācaran. am. Literally the word maṅgalācaran. am means
‘doing something good’ or ‘doing something for the sake of good’. In this context,
it means both.

Here the author Nı̄lakan. t.ha, adhering to this traditional practice, commences the
composition of the text Tantrasaṅgraha with an invocation to Lord Vis.n. u seeking
His divine blessings for the successful completion of the work. Thus, the very act
can be conceived to be good (having a prayerful attitude) and it is for the sake
of good (viz., completion of the work) also. The first quarter of the verse is the
chronogram for the Kalyahargan. a (the count of days from the beginning of the
Kaliyuga) of the date of commencement of the work, which is 1680548, which
corresponds to March 22, 1500 CE.

The date of composition of Tantrasaṅgraha

In Laghu-vivr. ti it is noted that the date of commencement of Tantrasaṅgraha is
indicated in the first quarter of the invocatory verse.A;a;.a;a;yeRa;Na I+.mMa (ìÉÅ;+ea;k+:m,a A;a;
a;d;ta;ea b.rua;va;ta;a :pra;Ta;ma;pa;a;de ;na :pra;ba;nDa;a:=+}Ba;k+:�ya;h;gRa;Na;(ãÉa A;[a:=+sa;*ñÍËÉ ùÁ+;a;ya;ao+.pa;
a;d;�H Á

1



2 ma;Dya;ma;pra;k+.=+Na;m,a Mean longitudes of planets

The Ācārya,1 by composing this verse (maṅgalācaran. am. ) in the very beginning, has also
indicated the Kalyahargan. a corresponding to the date of commencement of the work, in
its first quarter (pāda), through aks.arasaṅkhyā.2

As mentioned earlier, in the Kat.apayādi system of numeration, the first pāda
(quarter) of the invocatory verse—he vis.n. o nihitam. kr. tsnam—refers to the num-
ber 1680548. Assuming that the beginning of the Kaliyuga is on February 17/18,
3102 BCE, this number corresponds to March 22, 1500 CE according to the Grego-
rian calendar and Mı̄na 26, 4600 gatakali (elapsed Kali years) according to the In-
dian calendrical system. Similarly, the pāda—laks.mı̄́sanihitadhyānaih. —occuring
in the last verse of the work, is identified by Śaṅkara Vāriyar as giving the date
of completion of the work. This quarter in the Kat.apayādi system is equivalent to
the number 1680553, which correponds to Mes.a 1, 4601 gatakali. Thus, from these
indication given by the author we understand that the work was completed in just
five days. The year of composition of the work can be thus fixed as 1500 CE.

Now we move on to briefly explain the purpose of maṅgalācaran. am as enunci-
ated by Śaṅkara Vāriyar in his Laghu-vivr. ti and Yukti-d̄ıpikā.

The purpose of the maṅgalācaran. am

The purpose of the maṅgalācaran. am is an important topic of discussion in itself
and is debated at great length in some of the texts on Indian logic.3 Here, it has been
succinctly stated by Śaṅkara Vāriyar in his Laghu-vivr. ti as follows:4ma;ñÍç ÅÅ*:+.l+.a;.a;a:=+yua;�+:a;na;Ma ;
a;va;�a;na;pa;a;ta;ea na ;
a;va;dùÅ;a;tea Á

Those who follow the practice of starting a work with invocation do not suffer a fall.

Expanding the same idea along similar lines, Śaṅkara Vāriyar in his Yukti-
d̄ıpikā observes::pra;�ë� +:a;Ba;a;va;ea na;ma;~k+:a:=+Za;b.d;a;TRaH .sa;vRa;
a;va;n}å.a;taH Á.sa;va;Ra;nua;g{a;a;h;ke ;
a;va:(õ;a;ea;tkx +:�e yua;�H .sa ta;a;dx ;ZaH Á ÁA;ta;~ta;a;dx ;ñÍîå Å*:+.ma;~k+:a:=+a;t,a ;Æa;sa:;dÄùÅ;ae ;t,a .sa;v a ya;Tea;�/////�a;psa;ta;m,a Á Á 5

It is accepted by all the scholars that the namaskāra6 is an expression of one’s humility.
Such an expression is quite appropriate towards Him, the one who is the most superior

1 Commentators usually refer to the author of the text, as Ācārya. Here for instance, Śaṅkara

Vāriyar refers to Nı̄lakan. t.ha as Ācārya.
2 The word aks.arasaṅkhyā refers to the Kat.apayādi system of numeration. An exposition of
this system with a few illustrations is presented in Appendix A.
3 See, for instance, Tarkasaṅgraha-d̄ıpikā by Annam. bhat.t.a or Muktāval̄ı of Vísvanātha

Pañcānana.
4 The source of this quotation cited by Śaṅkara Vāriyar in his Laghu-vivr. ti is not known.
5 {TS 1977}, p. 2.
6 It could be either the use of the word namah. or the physical act of bending down forward.
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and who blesses all the beings in the world. Thus by paying devout homage to Him, all
undertakings get accomplished as desired.

The commentator conveys the idea that prayer involves recognition of one’s lim-
itations. This very act brings in a certain strength and fortitude. Thus, by the act of
prayer, a person not only acknowledges the limitations but also gains a certain inner
strength to face a variety of obstacles that he would come across in accomplishing
the task that he has undertaken.

Vis.n. u as the cause

Another interesting discussion that is found in the commentary of this verse is re-
garding the description of the Vis.n. u as the kāran. a (the cause of the universe). For
any effect produced there are at least two types of causes that can be conceived
of: (i) the material cause (upādāna-kāran. a) and (ii) the efficient cause (nimitta-
kāran. a). Here Nı̄lakan. t.ha describes Vis.n. u as the kāran. a (cause) of the entire uni-
verse. The concept of Īśvara being both the efficient and the material cause of the
universe is central to Śaṅkara’s philosophy, Advaita-vedānta. Nı̄lakan.t.ha, being
a master of several disciplines of knowledge,7 including philosophy, purposefully
uses the word kāran. a without any qualifier to convey the fact that Vis.n. u is both
the material and the efficient cause of the universe. This concept is explained with
simile in Yukti-d̄ıpikā as follows:mxa;a:�a;k+:a;ya;Ma ya;Ta;a Ba;a;�a;ta kx +:t=+:ïîåéMa ku +:}Ba;Ga;f;a;
a;d;k+:m,a Ána;a:=+a;ya;Nea ta;Ta;a Ba;a;�a;ta .ja;ga;de ;ta;�a:=+a;.a:=+m,a Á Á.ja;ga;tk+:a:=+Na;ta;a ta;~ya ;�a;na;
a;vRa;va;a;d;a ;�//////�a;~Ta;ta;a ta;taH Á Á

As the pot and other things [made out of clay] shine (or owe their existence) due to clay
[the material cause], so too the entire universe shines in Nārayan. a [as he is both the ma-
terial and efficient cause]. Therefore the fact that he is the cause of the universe remains
unquestioned.

It is further observed that the adjective jyotis. ām. jyotih. used to describe
Nārāyan. a—in the third quarter of the verse—has its basis in Śr̄ıkr. s.n. a’s saying
in Bhagavadḡıtā: (XV.12).$ya;ea;�a;ta;�õÅM .$ya;ea;�a;ta;Sa;Ma ta;~ya :℄ea;ya;a Ba;ga;va;du ;�a;�+:taH Á

‘ya;d;a;
a;d;tya;ga;tMa .tea:ja;ea .ja;ga;;�ÂåÅ +a;sa;ya;teaY;��a;Ka;l+.m,a Áya;�a;ndÒ +ma;Æa;sa ya;�a;a;çÉîå+;a;Ea ta:�ea:ja;ea ;
a;va;�a:;dÄâ ma;a;ma;k+:m,a’ Á Á 8

That He is the source of brilliance of all the brilliant objects has to be understood through the
statement of Bhagavān himself. [He states:] May you understand that the tejas (brilliance)

7 This fact is brought out by Śaṅkara Vāriyar explicitly in his invocatory verses to Laghu-vivr. ti.
Śaṅkara Vāriyar observes:na;a:=+a;ya;NMa .ja;ga;d;nua;g{a;h:ja;a;ga:�+.kM (r�a;a;n�a;a;l+.k+:NF+.ma;
a;pa .sa;vRa;
a;va;dM :pra;Na;}ya Á
8 {TS 1977}, pp. 1–2.
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of the Sun which illumines the world, the tejas in the Moon and in the fire etc. all belong
to me.1.2 .sa;a;va;na;na;a;[a:�a;
a;d;na;ma;a;na;m,a

1.2 Measurement of civil and sidereal day.=+veaH :pra;tya;gBra;mMa :pra;a;hu H .sa;a;va;na;a;K.yMa ;
a;d;nMa nxa;Na;a;m,a ÁA;a;[Ra;mxa;[a;Bra;mMa ta;dõ ;t,a .$ya;ea;�a;ta;Sa;Ma :prea:=+k+:ea ma:�+:t,a Á Á 2 Á Á
raveh. pratyagbhramam. prāhuh. sāvanākhyam. dinam. nr. n. ām |
ārks.amr. ks.abhramam. tadvat jyotis. ām. prerako marut || 2 ||
It is said that the sāvanadina, the civil day of humans, is the time taken by the Sun for
[completing] one westward revolution. Likewise the ārks.a[dina], the sidereal day, is the
time taken by the stars for one [complete westward] revolution. The impeller of the celestial
objects is the marut [wind called pravaha].
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Fig. 1.1 The diurnal motion of a celestial object.

As the Earth rotates around its axis from west to east, the apparent motion of the
celestial objects is from east to west (see Fig. 1.1). This apparent westward motion
of the objects as seen by the terrestrial observer is described as pratyagbhrama.
The word pratyak means west, and bhrama is motion, and hence pratyagbhrama
is westward motion. In modern spherical astronomy, this apparent westward motion
is termed the ‘diurnal motion’.
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The time taken by the Sun to complete one revolution westwards is defined to be
the sāvana-dina/sāvana-vāsara (civil day). Sūryasiddhānta defines the civil day
as follows:o+.d;ya;a;du ;d;yMa Ba;a;na;eaH BUa;Æa;ma;sa;a;va;na;va;a;sa:=H Á 9

[Time interval between] one sunrise and the next sunrise is a terrestrial civil day.

Civil day and sidereal day

The time taken by the stars to complete one revolution around the Earth westwards
is defined to be a sidereal day. This corresponds to the time interval between suc-
cessive meridian transits of a particular star, which is the same as the time taken
by the Earth to complete one rotation around its own axis. It is precisely this ro-
tation of Earth which makes the stars appear to have a diurnal motion. Apart from
the diurnal motion, which is westward, the stars do not have any eastward motion
of their own.10 However, this is not true of the Sun, Moon and other planets. They
have both diurnal (which is westward) motion and eastward motion relative to the
stellar background.
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Fig. 1.2 The eastward motion of the Sun in the background of stars.

Suppose the Sun is near a star on a particular day. After one sidereal day (≈23h,
56m and 4s), the star would have completed one revolution around the Earth. But
the Sun would not have completed one full revolution around the Earth because of
its eastward motion of nearly 1◦ per day in the stellar background. This situation is
schematically depicted in Fig. 1.2.

Here, A and B represent the positions of the Sun and S1, S2, S3 are different stars
in the stellar background. On a particular day, let us assume that the Sun at the point

9 {SSI 1995} (I.36), p. 24.
10 As the relative positions of the stars seem fixed—which in fact have ‘proper’ motion, according
to modern physics—they are assumed to be stationary objects in the sky. In fact, it is only because
of the ‘fixed’ background provided by these stars that the motion of other celestial objects such as
Sun, Moon, planets etc. can be studied as motion with respect to them.
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A and the star S1 are in the same direction at a particular instant. Let us further
assume that at that instant both of them are in meridian transit (i.e. cutting across
the observer’s meridian). After one sidereal day, the star S1 would appear on the
meridian again. But the Sun would not appear on the meridian because it has moved
to the east to the point B by nearly 1◦. So the Earth has to rotate by this amount
before the Sun appears on the meridian again. It takes approximately 4 minutes
( 24

360 h) for this to happen.11 Thus, the sidereal day plus this time interval is a civil
day, which is the same as the time interval between two successive meridian transits
of the Sun.12

The cause of diurnal motion

In the last quarter of verse 2, it is stated that the celestial objects are impelled by a
flow of marut (wind). This is termed the pravaha-marut and the diurnal motion of
the celestial sphere is ascribed to it in Yukti-d̄ıpikā.:pra;tya;hM Bra;ma;NMa :pra;tya:ñÍíéÁÁ*+;u ;KMa dx ;�M dùÅ;au ;.a;a;�a:=+Na;a;m,a Á:pa:=+ta;eaY;Ta .~va;ta;~tea;Sa;Ma :pra;a:ñÍíéÁÁ*+;u ;KMa ..a;a;nua;m�a;a;ya;tea Á ÁBa;ga;ea;lM Bra;a;ma;yea;a;�a;tyMa :pra;tya;k, :pra;va;h;ma;a:�+:taH Áta;dõ ;Za;a;de ;va ta;t~Ta;a;�a;na g{a;h;[a;Ra;a;Na mua;hu ;mRua;hu H Á ÁA;taH :pra;tya:ñÍíéÁÁ*+;u ;KMa .tea;Sa;Ma Bra;ma;NMa :pa:=+ta;ea ma;ta;m,a Á 13

The daily westward motion of the celestial objects observed is due to an external agency,
whereas their eastward motion is inferred to be of their own accord.

The pravaha-vāyu continuously rotates the bhagola again and again westwards, and be-
cause of this the stars and planets situated in it [keep rising and setting]. Hence it is men-
tioned that their westward motion is due to an external agency.

The use of the word muhurmuhuh. (again and again) indicates that pravaha-
marut generates a continuous and uniform westward motion of the celestial objects.
The very word pravaha is suggestive of this meaning and much more. It consists of
two parts, a prefix and a verb.:pra;va;h = :pra (prefix) + va;h (verb)

The verb vaha means flow and the prefix pra means special and/or great. The spe-
ciality of the wind is that it flows perennially without cessation. It is also great,
because it is able to carry all the innumerable celestial objects along with it. The
earlier Indian texts also attribute the motion of the celestial objects to the pravaha
wind and this concept finds mention even in Āryabhat.a’s Āryabhat. ı̄ya.

11 This is obtained by the rule of three, as it takes nearly 24 hours for one rotation of the Earth
(corresponding to 360 degrees).
12 In this verse, only the mean civil day is defined. This is because the time interval between two
successive meridian transits of the Sun is not constant, but varies over the year. A more detailed
discussion of this topic can be found in Sections 11 and 12 of Chapter 2.
13 {TS 1977}, p. 4.
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Āryabhat.a on diurnal motion

It is well known that Āryabhat.a was the first Indian astronomer to have suggested
that the apparent diurnal motion of the celestial objects is actually due to the rotation
of the Earth. It is described thus in Āryabhat. ı̄ya:A;nua;l+.ea;ma;ga;�a;ta;na;ERa;~TaH :pa;Zya;tya;.a;lM ;
a;va;l+.ea;ma;gMa ya;dõ ;t,a ÁA;.a;l+.a;�a;na Ba;a;�a;na ta;dõ ;t,a .sa;ma;pa;a;(ãÉa;ma;ga;a;�a;na l+.ñÍö�ÅÅ*:+.a;ya;a;m,a Á Á 14

Just as a person in a boat moving in the forward direction observes the stationary objects
(trees etc. on the bank) to be moving in the opposite direction, so also the stationary stars
seem to move directly westward for an observer in Lan. ka.15

This verse clearly describes the rotation of the Earth. Āryabhat.a has presented an
apt example to describe relative motion and seems to explain the observed phe-
nomenon of diurnal motion of celestial objects as being actually due to the rotation
of the Earth around its axis.

The very next verse of Āryabhat. ı̄ya gives the standard description:o+.d;ya;a;~ta;ma;ya;�a;na;Æa;ma:�Ma ;�a;na;tyMa :pra;va;he ;Na va;a;yua;na;a ;Æa;[a;�aH Ál+.ñÍö�ÅÅ*:+.a;sa;ma;pa;a;(ãÉa;ma;gaH Ba;pa:úêÁÁ*+:=H .sa;g{a;h;ea Bra;ma;�a;ta Á Á 16

For the sake of the rising and setting [of all the celestial objects] the stellar sphere, along
with the planets being blown by the Pravaha wind, moves westward at a uniform rate.

Inferring the eastward motion of planets

While explaining the role played by the pravaha-marut, Yukti-d̄ıpikā describes
how the eastward motion of the celestial objects in the background of stars can be
inferred from the conjunction of these objects with different stars whose relative
positions are fixed in the sky:.$ya;ea;�a;ta;(ãÉa;kÒe ya;d;a .tea;na na;[a:�ea;Na yua;ta;ea g{a;hH Á Ák+:a;l+.a;nta:=e :pua;na;~ta;sma;a;t,a .sMa;yua;�+:eaY;nyea;na dx ;Zya;tea Ána;[a:�a;a;a;Na ;�//////�a;~Ta:=+a;Nyea;va .~va;pra;de ;Zea;Sua tua .~va;taH Á Ána k+:d;a;�a;.a;t,a ë�ÅëÁ*:+:�a;.a;dùÅ;a;a;�////�a;nta .~va;de ;Za;a;t,a ga;tya;Ba;a;va;taH Á:pra;de ;Za;a;nta:=+sMa;ya;ea;ga;ea na;ea;pa;pa;�a;ea;pya;ga;.C+.taH Á Áta;taH :pra;t�a;a;.ya;na;[a:�a;a;t,a :pra;a;.ya;na;[a:�a;ya;ea;ga;taH Á:pra;tya;hM :pra;a:ñÍíéÁÁ*+;u ;K�a;a Bua;�a;�H g{a;h;a;Na;a;ma;nua;m�a;a;ya;tea Á Á 17

The planet which is found to be in conjunction with a particular star at one time is found
to be in conjunction with some other star at a later time. The stars are fixed in their own
places. Because they do not have any motion, they never leave their location.

14 {AB 1976}, (Golapāda, 9), p. 119.
15 A ‘fictitious’ place on the equator.
16 {AB 1976}, (Golapāda, 10), p. 119.
17 {TS 1977}, p. 4.
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Moreover, conjunction of an object [with another object] at a different location is not pos-
sible if it does not move. Since the planets are found to be in conjunction with a star in the
east, after their conjunction with a star in the west, it can be inferred that they have a daily
motion in the eastward direction.

Continuing with the commentary on the eastward motion of the Sun, the Moon
and the planets, Yukti-d̄ıpikā makes a very interesting observation, which amounts
to a clear recognition of the fact that the speed of the planet changes continuously.;Æa;Ba;�a;a :pra;�a;ta;[a;NMa ..a;a;sa;Ea Ba;ga;ea;l+.a;va;ya;vEa;Æa;mRa;ta;a ÁBa;ga;ea;l+.ma;Dya;va;�a;tRa;nya;Ma BUa;ma;Ea dÒ +�u :=+va;�//////�a;~Ta;teaH Á Á 18

The eastward motion of the planets in the units of parts (arcs) of the bhagola (celestial
sphere) differs from instant to instant, because the location of the observer is on the Earth,
which is situated at the centre of the bhagola.1.3 :pa;�a:=+�/////�a;.C+.�a;k+:a;l+.ma;a;na;m,a

1.3 Measurement of smaller units of timeBra;ma;NMa :pUa;yRa;tea ta;~ya na;a;q� +.a;Sa;��a;a mua;hu ;mRua;hu H Á;
a;va;na;a;
a;q+.k+:a;
a;pa :Sa;��Ma;Za;ea na;a;q:�a;a gua;vRa;[a:=M ta;taH Á Á 3 Á Á:pra;a;Na;ea gua;vRa;[a:=+a;Na;Ma .~ya;a;t,a d;Za;kM ..a;kÒ +:pa;yRa;yea ÁKa;Ka;Sa:ñÈÅÅ*+:na;tua;�ya;a;~tea va;a;yuaH .sa;ma:ja;va;ea ya;taH Á Á 4 Á Á
bhraman. am. pūryate tasya nād. ı̄s.as.t.yā muhurmuhuh. |
vinād. ikāpi s.as.t.yam. śo nād. yā gurvaks.aram. tatah. || 3 ||
prān. o gurvaks.arān. ām. syāt daśakam. cakraparyaye |
khakhas.ad. ghanatulyāste vāyuh. samajavo yatah. || 4 ||
Its revolution (the revolution of the stellar sphere) gets completed in 60 nād. ı̄s again and
again. A vinād. i is one-sixtieth part of a nād. ı̄. One-sixtieth of a vinād. ı̄ is a gurvaks.ara.
Ten gurvaks.aras constitute one prān. a. In one complete revolution [of the vāyu (wind)],
there are 21600 prān. ās [and this remains fixed] since the vāyu moves with uniform speed.

Prān. a as a basic unit of time

Here the prān. a has been introduced as a fundamental unit of time. Though the
word prān. a is generally used to refer to life, in the context of astronomy it has to be
understood as a time unit which is 4 sidereal seconds (see Table 1.1). The relation
between the use of the word prān. a to refer to life/life energy and its definition as
above, as a time unit, can be understood from the fact that the average time taken by
a healthy person for one inhalation and exhalation is nearly 4 seconds.

18 {TS 1977}, p. 4.
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The period of revolution of the stellar sphere is defined to be 60 nād. ı̄s. This
implies that the duration of a sidereal day is taken to be 60 nād. ikās.19 Units of time
smaller than a nād. i/nād. ikā defined in the above verse are shown in Table 1.1.

Name of unit Its measure Modern equivalent
(sidereal) (sidereal)

ghat.ikā/nād. ikā
1
60 day 24 minutes

vinād. ikā
1

60 nād. ikā 24 seconds
gurvaks.ara

1
60 vinād. ikā 0.4 seconds

prān. a 10 gurvaks.ara 4 seconds

Table 1.1 Units of time from day to prān. a.

Uniform diurnal motion

In Laghu-vivr. ti it is explained that the word muhurmuhuh. – which literally means
‘again and again’ – has been specifically employed here to indicate the fact that the
stellar sphere always moves with uniform speed (60 ghat.ikās for all cycles):mua;hu ;mRua;hu H I+.tya;nea;na .sa;veRa;Sa;Ma ta;;�ÂåÅ +ga;Na;a;na;Ma ;Æa;ma;TaH k+:a;l+.sa;a;}yMa d;a;ZRa;ta;m,a Á

By the use of the word muhurmuhuh. it is shown that the period of revolution of it (the
stellar sphere) remains the same [at all times].

Units of time smaller than the prān. a

Units of time smaller than the gurvaks.ara have also been used in Indian astronomy
texts. For instance, Vat.eśvara in his Vat.eśvara-siddhānta observes:k+:ma;l+.d;l+.na;tua;�yaH k+:a;l o+.�+:~:�ua;�a;f;~ta;t,aZa;ta;Æa;ma;h;l+.va;sMa::℄aH ta;.C+.tMa .~ya;a;a;�a;mea;SaH Á.sa;d;l+ja;l+.�a;Da;Æa;Ba;~tEaH gua;
a;vRa;hE ;va;a;[a:=M ta;t,akx +:ta;pa;�a:=+Æa;ma;ta;k+:a;�+a ta;.C+=+a;DeRa;na ..a;a;suaH Á Á 20

The time [taken by a sharp needle] to pierce [a petal of] a lotus is called a trut.i; one hundred
times that is called a lava; one hundred times that is a nimes.a (i.e., the time required for
blinking the eyes); four and half times that is a long syllable or gurvaks.ara (i.e., the time
required by a healthy person to pronounce a long syllable); four times that is a kās.t.ha and
one half of five times that is an asu (prān. a).

The units of time that are orders of magnitude smaller than a prān. a—starting
with a kās. t.ha up to a trut.i—described in the above verse are given in Table 1.2.

19 This is a sidereal day which is slightly less than the civil day, which is equal to the time interval
between two mean sunrises. The difference is about 4 minutes and is due to the eastward motion
of the Sun by about 1◦ per day.
20 {VS 1986}, (1.1.7), p. 2.
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Name of unit Its measure Modern equivalent
(sidereal) in seconds

kās.t.ha
2
5 prān. a 1.6

gurvaks.ara
1
4 kās.t.ha 0.4

nimes.a
2
9 gurvaks.ara 0.889

lava 1
100 nimes.a 8.889×10−4

trut.i
1

100 lava 8.889×10−6

Table 1.2 Units of time much smaller than a prān. a described in Vat.eśvara-siddhānta.

As regards the units of time, the following significant observation is made in
Yukti-d̄ıpikā:k+:a;l+.ea ya;taH :pa;�a:=+.Ce +.dùÅ;aH .$ya;ea;�a;ta;(ãÉa;kÒ +:pa;�a:=+Bra;ma;a;t,a Á 21

Since the time gets delimited by the motion of the planets in the celestial sphere.

This in turn is based on Āryabhat.a’s understanding of the nature of time.k+:a;l+.eaY;ya;ma;na;a;dùÅ;a;nta;ea g{a;h;BEa:=+nua;m�a;a;ya;tea [ea:�ea Á 22

This time, which is without beginning and end, is measured with the help of the [motion of]
planets and the asterisms on the celestial sphere.

It seems that in the Indian astronomers’ conception ‘time’ is limitless or unbounded
and the smaller units of time, like the day, week, fortnight, month etc., are all lim-
itations in time, created by us—for our own convenience—based purely upon the
motion of the celestial objects.1.4 ..a;a;ndÒ +ma;a;na;m,a
1.4 Lunar reckoning of time:pUa;vRa;pa;[aH Za;Za;a;ñÍö�ÅÅ*:+.~ya ;
a;va;pra;k+:Sa;eRa .=+veaH .smxa;taH Á.sa;a;�a;k+:Sa;eRaY;pa:=H :pa;[aH ;Æa;sa;ta;vxa;�a:;dÄâ ;[a;ya;Ea ya;ya;eaH Á Á 5 Á Áma;a;sa;~ta;a;Bya;Ma ma;ta;(ãÉa;a;ndÒ H ;
a:�Ma;Za;a:�a;Tya;a;tma;kH .sa ..a Á

pūrvāpaks.ah. śaśāṅkasya viprakars.o raveh. smr. tah. |
sannikars.o

′parah. paks.ah. sitavr. ddhiks.ayau yayoh. || 5 ||
māsastābhyām. mataścāndrah. trim. śattithyātmakah. sa ca |
The [period of] separation of the Moon from the Sun is termed the pūrva-paks.a (the first
fortnight) and its approach [towards the Sun] is the apara-paks.a (the other fortnight).
These two fortnights, in which the brightness of the Moon (the phase that looks bright)
increases and decreases, constitute a lunar month. It is made up of 30 tithis.

21 {TS 1977}, p. 2.
22 {AB 1976}, (Kālakriyāpāda, 11), p. 98.
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Verses 5–8 in Tantrasaṅgraha are devoted to the description of the Indian calendar.
To begin with, a paks.a (fortnight) and a cāndramāsa23 (a lunar month) are defined.
Both these units are primarily based on the motion of the Moon relative to the Sun.

The Indian calendrical system is based on the motion of the Sun and the Moon. In
other words, it is luni-solar in nature, i.e. based on the positions of both the Sun and
the Moon against the background of different rāśis (zodiacal signs) and naks.atras
(asterisms) along the ecliptic.

The luni-solar nature of the Indian calendrical system is evident from the fact
that some of the social and religious functions/festivals are celebrated according to
tithis, naks.atras etc. (which are essentially based upon the motion of the Moon rel-
ative to the Sun) while others that depend on saṅkrānti, ayana etc., are based on
the motion of the Sun alone. For instance, festivals like Rāma-navamı̄, Gan. eśa-
caturth̄ı etc., are based on Moon’s position relative to the Sun, whereas others like
Makara-saṅkrānti, Vis.u etc., are based on the Sun’s position against the back-
ground of stars.

Lunar month and tithi

Earth

M

M

2

1

Sun   (in conjunction  
             with Moon)

śu
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-pa
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s .n .

a
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Fig. 1.3 Lunar month consisting of bright and dark fortnights.

Both the Sun and the Moon are in continuous motion as seen by an observer
on the Earth. The angular distance covered by them against the background of stars

23 A cāndramāsa consists of two fortnights.
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each day is roughly 1◦ and 13◦ respectively. Since the Moon moves much faster than
the Sun, the angular separation between them keeps increasing with time. A tithi is
the time unit during which the angular separation between the Sun and the Moon
increases precisely by 12◦. A lunar month consists of 30 tithis and two fortnights,
the śukla (bright) and kr. s.n. a (dark) as indicated in Fig. 1.3.

Suppose at a particular instant the Sun is in conjunction with the Moon (M1 in
Fig. 1.3). This instant is taken to be the ending moment of the amāvāsyā, or the new
Moon day. As the Moon’s angular velocity is much greater than that of the Sun,
the angular separation between them keeps increasing. When it becomes exactly
12◦, that corresponds to the ending moment of the first tithi, namely the pratipad.
Similarly, when the angular separation becomes exactly 24◦, it corresponds to the
ending moment of the second tithi, namely the dvit̄ıyā, and so on. The names of the
different tithis constituting a lunar month are listed in Table 1.3.

Śukla-paks.a Kr. s.n. a-paks.a
Name of Angular separation Name of Angular separation
tithi bet. Moon and Sun tithi bet. Moon and Sun
Prathamā 0◦−12◦ Prathamā 180◦−192◦

Dvit̄ıyā 12◦−24◦ Dvit̄ıyā 192◦−204◦

Tr. t̄ıyā 24◦−36◦ Tr. t̄ıyā 204◦−216◦

Caturth̄ı 36◦−48◦ Caturth̄ı 216◦−228◦

Pañcamı̄ 48◦−60◦ Pañcamı̄ 228◦−240◦

S. as.t.h̄ı 60◦−72◦ S. as.t.h̄ı 240◦−252◦

Saptamı̄ 72◦−84◦ Saptamı̄ 252◦−264◦

As.t.amı̄ 84◦−96◦ As.t.amı̄ 264◦−276◦

Navamı̄ 96◦−108◦ Navamı̄ 276◦−288◦

Daśamı̄ 108◦−120◦ Daśamı̄ 288◦−300◦

Ekādaś̄ı 120◦−132◦ Ekādaś̄ı 300◦−312◦

Dvādaś̄ı 132◦−144◦ Dvādaś̄ı 312◦−324◦

Trayodaś̄ı 144◦−156◦ Trayodaś̄ı 324◦−336◦

Caturdaś̄ı 156◦−168◦ Caturdaś̄ı 336◦−348◦

Pūrn. imā 168◦−180◦ Amāvāsyā 348◦−360◦

Table 1.3 The names of the 30 tithis and their angular ranges.

Pūrn. imā and Amāvāsyā

When the angular separation becomes exactly 180◦, the Moon (M2 in Fig. 1.3) will
be in opposition to the Sun and it corresponds to the ending moment of the pūrva-
paks.a, or the first half of the lunar month. The first fortnight consists of 15 tithis.
It is also referred to as the śukla-paks.a (white fortnight) or the sita-paks.a (bright
fortnight)24 in view of the fact that the brightness of the Moon keeps increasing
during this period. The fifteenth tithi of the bright fortnight is the full Moon day,

24 The terms śukla and sita mean white or bright.
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called the pūrn. imā. The etymological derivation of the word pūrn. imā, along with
a couple of slight variations of it, are given below:

• :pUa;a;NRa;ma;a ≡ :pUa;a;NRaH (=:pUa:=+NMa) ;Æa;ma;m�a;a;tea I+.�a;ta Á
• :pUa;NRa;ma;a;s�a;a ≡ :pUa;Na;eRa ma;a;saH (..a;a;ndÒ H) ya:�a Á (:pUa;NRa + ma;a;sa + .z� +.a;S,a)
• :pa;Ea;NRa;ma;a;s�a;a ≡ :pUa;Na;eRa ma;a;saH A;~ya;Ma (;�a;ta;Ta;Ea) Á (:pUa;NRa + ma;a;sa + A;N,a + .z� +.a;S,a)

The other half of the lunar month is called the apara-paks.a. It is also known as
the kr. s.n. a-paks.a or asita-paks.a

25 (dark fortnight), as the phase of the Moon keeps
decreasing during this period. When the angular separation between the Sun and the
Moon becomes exactly 360◦ or 0◦, the Moon looks completely dark and once again
it is in conjunction with the Sun. During the dark fortnight, the angular separation
between the Sun and the Moon keeps increasing from 180◦ to 360◦. Like the bright
fortnight, the dark fortnight also consists of 15 tithis. The fifteenth tithi of the dark
fortnight is the new Moon day, called the amāvāsyā. It is also known by the name
amāvās̄ı and the derivation of these terms is as follows:

• A;ma;a;va;a;~ya;a ≡A;ma;a (=.sa;h) ..a;ndÒ +a;k+:ERa va;sa;taH ya:�a Á
(A;ma;a + va;s,a + :Nya;t,a (A;a;Da;a:=e ) + f;a;p,a)

• A;ma;a;va;a;s�a;a ≡ A;ma;a (=.sa;h) ..a;ndÒ +a;k+:ERa va;sa;taH ya:�a Á
(A;ma;a + va;s,a + :Nya;t,a (A;a;Da;a:=e ) + .z� +.a;S,a)

Commencement of a lunar month/year

The two fortnights, bright and dark, together consisting of 30 tithis, form a cāndra-
māsa (lunar month). A normal lunar year has twelve lunar months. The names
of the twelve lunar months are: Caitra, Vaísākha, Jyes.t.ha, Ās. ādha, Śrāvan. a,
Bhādrapada, Āśvayuja, Kārtika, Mārgaśira, Pus.ya, Māgha and Phālguna. Dur-
ing most Caitra months the Moon will be close to the star Citrā (Spica), on the full
Moon day of the month. Similarly, during most Vaísākha months, the moon will be
near to the star Vísākhā on the full moon day in that month. This is the reason for
the nomenclature.

Regarding the commencement of a lunar month there are two different systems,
namely the Amānta system and the Pūrn. imānta system. In the Amānta system, a
lunar month commences with the ending moment of the new Moon day or equiva-
lently the beginning of the bright fortnight, whereas in the Pūrn. imānta system a lu-
nar month commences with the ending moment of the full Moon day or equivalently
the beginning of the dark fortnight. In both systems, the names of the lunar months
being the same, the bright fortnights will share the same name, while the dark fort-
nights will have different names; i.e. the caitra-śukla-paks.a of the Amānta system
will be the same as the caitra-śukla-paks.a of the Pūrn. imānta system, though the
caitra-kr. s.n. a-paks.a of the Amānta system will be the vaísākha-kr. s.n. a-paks.a of the
Pūrn. imānta system.

25 The terms kr. s.n. a and asita mean dark or black.
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The Amānta system is more popular in south India, whereas the Pūrn. imānta
system is so in the north. For instance, places like Tamil Nadu, Andhra Pradesh, Kar-
nataka etc. follow the Amānta system and places in the North like Uttar Pradesh,
Bihar, Rajasthan etc. follow the Pūrn. imānta system. As a result, the commence-
ment of the lunar year also differs by about 15 days. The commencement of the
lunar year, yugādi (as it is popularly called in the south), is celebrated a fortnight
earlier in the north.1.5 .sa;Ea:=+ma;a;na;m,a
1.5 Solar reckoning of time.sa;Ea:=+a;b.d;ea Ba;a;~k+.=+~yEa;va .$ya;ea;�a;ta;(ãÉa;kÒ +:pa;�a:=+Bra;maH Á Á 6 Á Áma;a;sa;~tua .=+a;a;Za;Ba;ea;gaH .~ya;a;t,a A;ya;nea ..a;a;
a;pa ta;�çÅ +t�a;a Á

saurābdo bhāskarasyaiva jyotíscakraparibhramah. || 6 ||
māsastu rāśibhogah. syāt ayane cāpi tadgat̄ı |
The [time required for one] complete revolution of the Sun around the ecliptic is a solar
year. The period for which it (the Sun) dwells in a rāśi is a solar month. The two ayanās
are nothing but its motion [towards the north and south].

In the above verse, the word jyotíscakra refers to the apparent path traced by the
Sun in the celestial sphere, as seen from the Earth. This is the same as the ‘ecliptic’
in modern spherical astronomy. The time taken by the Sun to go around the ecliptic
once, thereby covering 360◦ (cakra), is defined as a saurābda, a solar year. What
is referred to here is the sidereal year,26 which corresponds to the time interval
between two successive transits of the Sun across the same star along the ecliptic.

The ecliptic is actually inclined to the celestial equator, as shown in Fig. 1.4.
The angle of inclination, denoted by ε , is currently around 23 1

2
◦

and is called as
the obliquity of the ecliptic. However, in the Indian tradition, most of the texts on
astronomy including Tantrasaṅgraha take the angle of inclination to be 24◦.

Rāśi division of the ecliptic and solar month

The ecliptic is divided into twelve equal parts, each corresponding to 30◦, called
rāśis. The rāśis Mes.a (Aries), Vr. s.abha (Taurus), Mithuna (Gemini) etc. as indi-
cated in Fig. 1.4a are known as sāyana-rāśis whereas the ones depicted in Fig. 1.4b
are known as nirayan. a-rāśis. In Indian astronomy, the beginning point of the
‘Mes.a-rāśi’ known as ‘Mes. ādi’ (first point of Aries) is a fixed point on the eclip-
tic, which is 180◦ away from the location of the star ‘Spica’. This point is different
from the vernal equinox27 (the beginning point of the sāyana-mes.a) because the

26 This is different from the tropical year, which is marked by the successive transits of the Sun
across the vernal equinox.
27 It can be shown by computing backwards that the vernal equinox and Mes. ādi were coincident
around fifteen centuries ago.
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latter drifts continuously westwards along the ecliptic at the rate of nearly 50′′ per
year. In other words, the ‘Mes.ādi’ moves continuously eastwards with respect to
the vernal equinox as indicated in Fig. 1.4b. This phenomenon of the westward mo-
tion of the equinox is known as the ‘precession of equinoxes’ in modern astronomy.
A closely related but different model of motion of the equinoxes is described by
the name ayanacalana (motion of equinoxes) in the works of Indian astronomy. In
this, the equinox executes an oscillatory motion, moving both eastwards and west-
wards from Mes. ādi to a maximum extent of 24◦. This phenomenon is called the
‘trepidation of the equinoxes’.
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Fig. 1.4a The rāśi division of the ecliptic, with markings of sāyana-rāśi.
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Fig. 1.4b The rāśi division of the ecliptic, with markings of nirayan. a-rāśi.

At the beginning of the year 2008, ‘Mes. ādi’ is situated nearly 23◦ 58′ from the
vernal equinox. A schematic sketch of this is shown in Fig. 1.4b. The rāśis Mes.a,
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Vr. s.abha etc. marked here are called nirayan. a-rāśis, in contrast to the markings in
Fig. 1.4a.

The time taken by the Sun to travel across one rāśi, which is a 30◦ segment on
the ecliptic, is defined to be a sauramāsa or solar month. The names of the solar
months are the same as those of the lunar months. The solar caitramāsa is the solar
month during which the Sun is in Mı̄na-rāśi (Pisces sign). Similarly, the Sun is in
Mes.a-rāśi during the solar vaísākhamāsa and so on.

Uttarāyan. a and Daks.in. āyana

The ecliptic intersects the celestial equator at two points S1 and S3 (see Fig. 1.5). At
these points, known as the equinoctial points, the Sun is on the equator. The point
S1—at which the Sun is moving northwards—is called the spring equinox or the
vernal equinox and this occurs around March 21st each year.
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Fig. 1.5 Uttarāyan. a and Daks.in. āyana.

It may be observed from the figure that before reaching the vernal equinox the
Sun lies below or south of the equator. After crossing the vernal equinox it lies to the
north of the celestial equator, till it reaches the position S3. The point S3 is known
as the autumnal equinox and it occurs around September 23rd. At the autumnal
equinox, the Sun transits from the northern to the southern hemisphere.

When the Sun is at S2, it is the summer solstice, which occurs around June 21st.
At the summer solstice, the Sun is at the maximum distance from the equator to-
wards the north, and the duration of daytime will be maximum for all observers
having a northern latitude. It will be minimum for all observers having a southern
latitude. When the Sun is at S4, it is the winter solstice, which occurs around De-
cember 21st. At the winter solstice, the Sun is at the maximum distance towards
the south of the equator. On this day, the duration of daytime is minimum for all
observers having a northern latitude.
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Further, it may be observed from Fig. 1.5 that between the winter solstice (S4)
and the summer solstice (S2), the Sun steadily moves northwards and this time in-
terval is known as the uttarāyan. a/saumyāyana. The choice of this terminology
stems from the fact that uttara/saumya mean north and ayana means motion. Simi-
larly, between the summer solstice (S2) and the winter solstice (S4), the Sun steadily
moves southwards and it is known as daks. in. āyana/yāmyāyana. These two ayanās
together constitute a saurābda or a solar year.

The commentary Laghu-vivr. ti defines the sauramāsa and the two ayanās as
follows:.sa;Ea:=+a;b.d;~ya dõ ;a;d;Za;Ma;Za;BUa;taH yaH .sa;Ea:=+ma;a;saH , .saH ta;~yEa;va Ba;a;~k+.=+~ya .$ya;ea;�a;ta;(ãÉa;kÒ +:dõ ;a;d;Za;Ma;Za-BUa;ta;~ya .=+a;Zea;Ba;eRa;ga;k+:a;lH .~ya;a;t,a Á ta;~yEa;va o+.d;gd;Æa;[a;Na;a;
a;d;ga;Æa;Ba;mua;Ka;ga;�a;ta;dõ ;yMa .sa;Ea;}ya;ya;a;}ya:�+.pa-ma;ya;na;
a;dõ ;ta;ya;ma;
a;pa Á Á

The solar month which is one-twelfth of a solar year is equal to the time spent by the Sun in
a rāśi, which in turn is one-twelfth of the jyotíscakra (ecliptic). The motion of the same
(Sun) along the north and the south directions is termed saumyāyana and yāmyāyana.281.6 A;�a;Da;ma;a;sa;l+.[a;Na;m,a

1.6 Definition of an intercalary month�a;ya;ea;d;Za;~ya ..Ea:�a;a;
a;d;dõ ;a;d;Za;a;na;a;Æa;ma;yMa ;Æa;Ba;d;a Á Á 7 Á Ámea;Sa;a;dùÅ;ae ;kE +:k+.=+a;a;Za;~å.Pu +.f;ga;�a;ta;
a;d;na;kx +:tsa;ñÍö�ÅÅ*:" +.mEa;kE +:k+:ga;Ba;RaH..a;a;ndÒ +a;(ãÉEa:�a;a;
a;d;ma;a;sa;aH I+.h na ya;du ;d:=e .sa;ñÍö�ÅÅ*:" +.maH .sa;eaY;�a;Da;ma;a;saH Á.sMa;sa;pRaH .~ya;a;t,a .sa ..a;Ma;h;~å.pa;�a;ta:�+:pa;�a:= ya;
a;d g{a;~ta;sa;ñÍö�ÅÅ*:" +.a;�a;ta;yua;gmaHta;Ea ..a;a;b.d;tvRa;ñÍç ÅÅ*:+.BUa;ta;Ea .sa;h .sua;�a;.a:=+Ba;va;Ea .sa;eaY;�a;Da;ma;a;sa;eaY:�a :pa;(ãÉa;a;t,a Á Á 8 Á Á
trayodaśasya caitrādidvādaśānāmiyam. bhidā || 7 ||
mes.ādyekaikarāśisphut.agatidinakr. tsaṅkramaikaikagarbhāh.
cāndrāścaitrādimāsāh. iha na yadudare saṅkramah. so ′dhimāsah. |
sam. sarpah. syāt sa cām. haspatirupari yadi grastasaṅkrātiyugmah.
tau cābdartvaṅgabhūtau saha sucirabhavau so ′dhimāso ′tra paścāt ||8 ||
The following is the difference between the twelve lunar months, Caitra etc., and the thir-
teenth month.

Lunar months which include only one saṅkrama (transit) of the true Sun into any of
Mes.ādi rāśis are the usual Caitra etc. Those lunar months which do not include a
saṅkrama are adhimāsas. The same adhimāsa is referred as a sam. sarpa if it is fol-
lowed by an am. haspati, a lunar month which has two saṅkramas in it. These two lunar
months, a sam. sarpa and an am. haspati, which always occur together in pairs and keep
recurring, are considered to be part of the year and seasons. Here, that (month without a
saṅkrama) which occurs later (after an am. haspati) is the [actual] adhimāsa.

In India, three types of calendrical system are followed: solar, lunar and luni-
solar. While the solar calendar is based only on solar months and the lunar on lunar

28 The term ayana essentially means motion; the words saumya and uttara refer to the north
direction. Hence the term uttarāyan. a refers to the northerly motion of the Sun.
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Māgh.Mārga. Pus.ya

Phāl.
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Fig. 1.6 A normal lunar year consisting of 12 lunar months.

months, the luni-solar is based on both. It is well known that a solar year has nearly
365.25 days. If twelve lunar months constitute a lunar year, it would have nearly
354 days. Hence, there is a shortage of nearly 11.25 days in such a lunar year. If the
lunar and solar calendars are to be mutually linked, it is necessary to introduce an
additional thirteenth month in some lunar years to align the lunar calendar with the
solar one. The additional thirteenth month occurring in some lunar years is known as
the ‘intercalary month’, or adhikamāsa. In the Indian calendrical system, there is a
definite, well-defined procedure for introducing the adhikamāsa. This is described
in the first half of the above verse.

In Fig. 1.6, the markings A0, A1, A2, A3, . . . below the horizontal line repre-
sent the occurrence of the new Moons. The vertical lines above the horizontal line
marked with Mı̄na, Mes.a, etc., represent the saṅkramas or solar transits. A lunar
month by definition is the time interval between two successive new Moons or full
moons. Here we consider the Amānta system. Normally each lunar month will in-
clude one saṅkrama, i.e. transit of true Sun from one rāśi to another. Under this
circumstance, both the solar and lunar year will consist of 12 months each. This
situation is schematically sketched in Fig. 1.6.

However, when the rate of motion of the Sun is slower than average,29 it may
so happen that in between two sucessive new moons or full moons there is no
saṅkrama/saṅkrānti (solar transit). Such a lunar month is called an adhimāsa
(an intercalary month). Approximately, an adhimāsas occur once in three years.
Somewhat more precisely, they occur 7 times in a span of 19 years. If an adhimāsa
occurs, then that particular lunar year will have 13 lunar months.

Here it must be noted that in the Indian calendrical system, all the units of time,
namely solar year, lunar year, solar month, lunar month, adhimāsa, day and tithi,
are determined based on the positions of the true Sun and the Moon. This is in

29 This will occur when Sun is near its apogee.
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contrast to the modern calendar, where the day and the year are based on the position
of the mean Sun.

Lunar year with an adhimāsa

In Fig. 1.6, A0 refers to the amāvāsyā just preceding the Mes.a saṅkrānti that marks
the beginning of a solar year. Similarly, A12 marks the amāvāsyā just before the
next Mes.a saṅkrānti. By definition, a lunar year is the time period between these
two amāvāsyās. It is evident from the above definition that a lunar year always
commences before the solar year.

Usually there will be one saṅkrānti between two amāvāsyās. But as men-
tioned earlier, because of the non-uniform motion of the Sun and the Moon, dur-
ing the course of a lunar year it may so happen that no saṅkrānti occurs between
two amāvāsyās. In other words, there are two amāvāsyās occuring within a solar
month. Such a situation is depicted in Fig. 1.7, wherein Śrāvan. a happens to be the
solar month in which two amāvāsyās occur.
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Fig. 1.7 A lunar year including an adhikamāsa.

The lunar year shown in Fig. 1.7 has 13 lunar months instead of the normal
12. The extra month is called an adhikamāsa (adhika = excess). Conventionally,
the name of the adhikamāsa is the same as the name of the solar month with
two amāvāsyās. The ‘true’ (= ni ja) lunar month with the same name follows
this adhikamāsa. In the figure depicted, since it is the solar Śrāvan. a which has
two amāvāsyās we have marked the lunar month following the Ās. ād. ha-māsa as
Adhika-śrāvan. a and the month following that as Nija-śrāvan. a.

Further, it may be mentioned here that generally an adhikamāsa is considered
inauspicious and no festivals are observed during that period. With this in mind,
sometimes the adjectives mala (inauspicious) and śuddha (auspicious) are used in-
stead of adhika and nija. As far as the pattern of occurrence is concerned, generally
one observes that an adhikamāsa occurs after 33 months and the cycle repeats al-
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most exactly once in 19 years. Māgha-māsa cannot be an adhikamāsa because the
angular velocity of the Sun is quite large during this period (December–January)—
since currently the Sun approaches its perihelion around 3rd January.

Lunar year with a sam. sarpa and an am. haspati

Very rarely, one also comes across a lunar year in which two saṅkramās take place
within a lunar month. Such a lunar month is referred to as an am. haspati (see
Fig. 1.8). It has been observed that if an am. haspati occurs then it is invariably
preceeded and succeeded by an adhimāsa. Of these two adhimāsas, the one which
occurs earlier is called a sam. sarpa. This sam. sarpa–am. haspati pair is taken to be
part of the lunar year. In otherwords, they form part of the twelve caitrādi lunar
months constituting a lunar year. The other lunar month without a saṅkrānti which
occurs after an am. haspati, is considered to be an actual adhimāsa, a thirteenth lu-
nar month which does not form part of the lunar calendar year. One such instance is
shown in Fig. 1.8.

Here, the lunar month following Bhādrapada is without a saṅkrānti. Later, we
have a lunar month with two saṅkrāntis (Makara and Kumbha), immediately fol-
lowed by another lunar month without a saṅkrānti. In this case, the earlier lunar
month without a saṅkrānti is the sam. sarpa, corresponding to Āśvayuja, and the
later one with two saṅkrāntis is the am. haspati, corresponding to Māgha. Both are
treated as other lunar months in that year, whereas the lunar month following Māgha
is Adhika-phālguna.
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Fig. 1.8 A lunar year including a sam. sarpa and an am. haspati.

The reason for considering a sam. sarpa and an am. haspati—the former not hav-
ing a saṅkrānti and the latter having two saṅkrāntis—to be an integral part of the
lunar year, that is, treating them as any other lunar month, is explained in Laghu-
vivr. ti as follows:



1.7 Nature of the intercalary month 21ya;d;a :pua;naH k+:ba;l� +.a;kx +:ta;sa;ñÍö�ÅÅ*:" +.ma;
a;dõ ;ta;yaH ..a;a;ndÒ +ma;a;saH o+.pa;�a:= ;
a;va;dùÅ;a;tea ta;d;a ta;tpua:=+ea;ga;ta;eaY;sa;Ea.sa;ñÍö�ÅÅ*:" +.ma:=+
a;h;ta;(ãÉa;a;ndÒ H na �a;ya;ea;d;Zea;�a;ta v.ya;pa;
a;d;Zya;tea ..Ea:�a;a;
a;d;l+.[a;Na;sa;;�ÂåÅ +a;va;a;t,a Á 30ya;dùÅ;ae ;vMa :pUa;vRa;~ya;a;sa;ñÍö�ÅÅ*:" +.ma;~ya k+:TMa ..Ea:�a;a;
a;d;tvMa ta;�+:[a;Na;a;Ba;a;va;a;t,a I+.�a;ta ..ea;t,a, o+.pa;�a:=+ta;na;
a;dõ ;sa;ñÍö�ÅÅ*:" +.ma;a;ya-�a;tva;a;
a;d;�a;ta b.rUa;maH Á A;ta O;;va ;
a;h ta;ya;eaH .sa;h;Ba;a;
a;va;tvMa A;nya;ea;nya;a;(ra;ya;tvMa ..a Á :pUa;vRa;~yaA;sa;ñÍö�ÅÅ*:" +.ma;ga;BRa;tva;d;ea;Sa;~ya ta;dU ;DvRa;ga;ta;
a;dõ ;sa;ñÍö�ÅÅ*:" +.ma;tvea;na :pa;�a:=+&+.ta;tva;a;t,a, :pa;(ãÉa;a:�a;na;a;sa;ñÍö�ÅÅ*:" +.mea :pua;na;nERa;vMata;du ;pa;�a:= k+:~ya;�a;.a;d;
a;pa ;
a;dõ ;sa;ñÍö�ÅÅ*:" +.ma;~ya A;Ba;a;va;a;t,a ÁA;taH .sa;ñÍö�ÅÅ*:" +.ma:=+
a;h;ta;ya;eaH :pa;(ãÉa;a:�a;na O;;va A;�a;Da;ma;a;saH na :pUa;vRaH .sMa;sa;pRa;tva;a;t,a; ta;ya;eaH ma;Dya;ga;taH:pua;naH ;
a;dõ ;sa;ñÍö�ÅÅ*:" +.maH AM ;h;~å.pa;�a;ta;�a:=+tyua;.ya;tea; :pa;Ea:=+~tya;~ya;a;sa;ñÍö�ÅÅ*:" +.ma;tva;d;ea;Sa;~ya ta;dU ;DvRa;ga;ta;a;na;Ma ..a.sa;ñÍö�ÅÅ*:" +.ma;a;nta:=+ga;BRa;tva;~ya ta;tpa;yRa;ntMa :pra;vxa:�a;tva;a;t,a .tea;nEa;va :pa;�a:=+&+.ta;tva;a;t,a; A;ta O;;va ;
a;h A;~yaAM ;h;~å.pa;�a;ta;tva;ma;
a;pa Á ta:�a .sMa;sa;pa; a;h;~å.pa;t�a;a dõ ;a;va;
a;pa A;b.d;tva;eRa:=+ñÍç ÅÅ*:+.BUa;ta;Ea .sa;h;Ba;a;
a;va;na;Ea .sua;�a;.a:=+k+:a;l-Ba;a;
a;va;na;Ea ..a Á A;�a;Da;ma;a;saH :pua;naH na k+:d;a;�a;.a;d;
a;pa ta;d;ñÍç ÅÅ*:+.BUa;ta I+.�a;ta Á
If there is a lunar month with two saṅkramas ahead, then the earlier lunar month without
a saṅkrama is not considered to be a 13th lunar month as it is included into the caitrādi
[usual 12 lunar months].

If you ask how it is that the lunar month without a saṅkrama is included in the caitrādi
lunar months and not considered as an adhimāsa, we say it is because of the lunar month
with two saṅkramas occurring later. In fact, because of this, there is co-occurrence and
dependence on each other of these two months. The ‘error’ due to the earlier asaṅkrama
(month with absence of transition) is nullified by the subsequent dvisaṅkrama (month with
two transitions). Moreover, there is no dvisaṅkrama occurring after the later asaṅkrama.

Therefore, of the two lunar months in which saṅkrama does not take place, the later one
is the adhimāsa and not the former; because the former one is sam. sarpa. The one which
includes a dvisaṅkrama and which lies in between the two asaṅkramas is referred to as
an am. haspati because it has nullified the error due to the asaṅkrama and the following
inclusion of extra saṅkramas that had accumulated so far. Thus we find the quality of an
am. haspati31 in this. These two lunar months, the sam. sarpa and the am. haspati, which
form part of the [lunar] year and the seasons, always occur in pairs and will keep recurring
over time. But the adhimāsa never forms a part of that (lunar year and seasons).1.7 A;�a;Da;ma;a;sa;~va:�+.pa;m,a

1.7 Nature of the intercalary monthA;keR +:ndõ ;eaH .~å.Pu +.f;taH ;Æa;sa:;dÄâ ;aH �a;ya;ea ma;a;sa;a ma;�a;l+.}åÅÉì+u +..a;aH ÁI+.�a;ta ..a b.ra;Ǒ;Æa;sa:;dÄâ ;a;ntea ma;l+.ma;a;sa;a;~:�a;yaH .smxa;ta;aH Á Á 9 Á Ádõ ;a;Bya;Ma dõ ;a;Bya;Ma va;sa;nta;a;
a;dH ma;Dva;a;
a;d;Bya;a;mxa;tuaH .smxa;taH Áma;Dva;a;
a;d;Æa;Ba;~ta;pa;~ya;a;ntEaH va;S a dõ ;a;d;Za;Æa;BaH .smxa;ta;m,a Á Á 10 Á Á�a;ya;ea;d;Za;Æa;Ba:=+pyea;kM va;S a .~ya;a;d;�a;Da;ma;a;sa;ke Á.~va;ea:�a:=e +Na;a;�a;Da;ma;a;sa;~ya .sa;}ba;nDa;ea mua;�a;na;Æa;BaH .smxa;taH Á Á 11 Á Á
30 The reading in the text happens to be ..Ea:�a;a;
a;d;l+.[a;Na;a;Ba;a;va;a;t,a, which seems to be inappropiate.
31 The term AM ;hH refers to the error/sin; and the term :pa;�a;ta refers to head/leader; hence the termAM ;h;~å.pa;�a;ta means the destroyer of errors.
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a;ñÍÈÅÅ*:+.ta;ea ma;a;saH hùÅ:a;na;hR H .sa;vRa;k+:mRa;sua Á:Sa;
a;�;Æa;Ba;
a;dR ;va;sEa;ma;Ra;saH k+:�a;Ta;ta;ea ba;a;d:=+a;ya;NEaH Á Á 12 Á ÁI+.�a;ta :ke +:Sua;�a;.a;d;b.de ;Sua .sa;�////�a;nta ma;a;sa;a;~:�a;ya;ea;d;Za Á(rUa;ya;tea ..a;tRua;ya;a;ga;a;
a;d;Sva;ya;mea;va �a;ya;ea;d;Za Á Á 13 Á Á
arkendvoh. sphut.atah. siddhāh. trayo māsā malimlucāh. |
iti ca brahmasiddhānte malamāsāstrayah. smr. tāh. || 9 ||
dvābhyām. dvābhyām. vasantādih. madhvādibhyāmr. tuh. smr. tah. |
madhvādibhistapasyāntaih. vars.am. dvādaśabhih. smr. tam || 10 ||
trayodaśabhirapyekam. vars.am. syādadhimāsake |
svottaren. ādhimāsasya sambandho munibhih. smr. tah. || 11 ||
bhānunā laṅghito māsah. hyanarhah. sarvakarmasu |
s.as.t.ibhirdivasairmāsah. kathito bādarāyan. aih. || 12 ||
iti kes.ucidabdes.u santi māsāstrayodaśa |
śrūyate cartuyāgādis.vayameva trayodaśa || 13 ||
The three months (sam. sarpa, am. haspati and adhimāsa), which are obtained from the
true motions of the Sun and the Moon, are impure (inauspicious); Therefore in Brah-
masiddhānta, the three months are considered to be malamāsas (impure months).

The madhvādimāsas32 in pairs are said to constitute the vasantādi r. tus.33 The madhvādi
12 months ending with tapasya is [generally] said to constitute a [lunar] year. If there is an
adhimāsa, then even 13 months constitute a year. The munis (wise ones) have associated
the adhimāsa with the later one.

The [lunar] month which has been by-passed by the Sun—the month in which a saṅkrama
does not take place—is not suitable for any [auspicious] activities. The followers of
Bādarāyan. a have stated that the month consists of 60 days (tithis).

Thus we find that there are 13 months in certain years. It is this month, the adhimāsa,
which is referred to as the 13th month in the context of seasons and sacrifices [in śrutis].

In verse 11, it is stated that ‘the munis have associated the adhimāsa with the
later one.’ This statement is with reference to a lunar year in which both sam. sarpa
and am. haspati occur. According to another view ascribed to Bādarāyan.a, the ad-
hika (extra) and nija (true) months together constitute a lunar month consisting of
60 tithis.

Reference to adhimāsa and am. haspati in the Vedas

There are several passages in the Vedas referring to the names of the months, sea-
sons, etc.34 Some of these passages present a list consisting of 13 names, while
others present 14, whereas certain others present 24 names. While using the term
madhvādibhyām in verse 10, the author presumably has the following passage oc-
curring in Taittir̄ıya-sam. hitā in his mind, which provides a list of names of the 12
regular lunar months and 2 special months.

32 The names of the list of months commencing with Madhu is provided in the following section.
33 The six r. tus (seasons) are: vasanta, gr̄ıs.ma, vars.a, śarat, hemanta, and śísira.
34 See for instance, R. g-veda 1.25.8; Yajur-veda, Taittir̄ıya-Brāhman. a 3.10.1; Itareya-
Brāhman. a 1.1.
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[Taittir̄ıya-sam. hitā 1.4.18]

The twelve lunar months that form a part of the normal lunar year, the caitradi,
are named as madhu, mādhava, śukra, śuci, nabha, nabhasya, is.a, ūrja, saha,
sahasya, tapa and tapasya. The two names sam. sarpa and am. haspati at the end of
the list refer to the special lunar months discussed above. The former corresponds
to the asaṅkrama (no transit) occurring just before the am. haspati and the latter is
am. haspati itself, which is a dvisaṅkrama (two transits).

Commenting upon a different viewpoint held regarding the adhimāsa by those
belonging to the school of Bādarāyan.a, Laghu-vivr. ti notes:ba;a;d:=+a;ya;Na;aH :pua;naH A;�a;Da;ma;a;sea;na .sa;h ta;du :�a:=M ..a;a;ndÒ +ma;a;sMa ;�a;ta;�a;Ta;Sa;��a;a;tma;kM :pra;�a;ta;pa;�a;aH Áta:�a;a;
a;pa ta;n}å.a;a;sa;pUa;va;Ra;D a .sa;vRa;k+:mRa;~va;ya;ea;gya;tva;a;t,a :pa;�a:=+tya:$ya;ta O;;va Á A;ta O;;va ;
a;h :ke +:Sua;�a;.a;t,a:pua;~ta;ke +:Sua ‘:pUa;va;Ra;D a tua :pa;�a:=+tya:$ya o+�a:=+a;D a :pra;Za;~ya;tea’ I+.�a;ta :pa;F:�a;tea Á

The Bādarāyan. as combining an adhimāsa with the succeeding lunar month consider a
month consisting of 60 tithis. Even then, the first half of that month is left out as it is not
suitable for any [auspicious] activities. It is therefore stated in certain texts: ‘The later half
is considered leaving out the earlier one.’1.8 ;
a;d;v.ya;
a;d;na;a;
a;dH

1.8 Days of the God etc.;
a;d;v.yMa ;
a;d;nMa tua .sa;Ea:=+a;b.dH ;
a;pa;tXa;Na;Ma ma;a;sa Oe;;nd;vaH Á.sa;veRa;Sa;Ma va;tsa:=+eaY;�îå+:Ma .~ya;a;t,a :Sa;��ua:�a:=+Za;ta:�a;ya;m,a Á Á 14 Á Á
divyam. dinam. tu saurābdah. pitr̄. n. ām. māsa aindavah. |
sarves.ām. vatsaro ′hnām. syāt s.as.t.yuttaraśatatrayam || 14 ||
A solar year [of humans] is [said to constitute] a day of the Gods, and a lunar month of the
pitr. s. An year consists of 360 days35 [in their own measure] for all of them.

As mentioned earlier, a solar year is made of two ayanas. Thus six months,
corresponding to the northern motion for us, are equal to a day for the devas; and
six months, corresponding to the southern motion for us, forms the period of night
for them. In the same way, it is stated that a lunar month consisting of two fortnights
is one complete day for the pitr. s. Obviously, the bright and dark fortnights would
form the day and night for the pitr. s.

35 Here the day refers to solar day and (sauradina) and not the civil day (sāvanadina). The
duration of a sauradina is equal to the time taken by the Sun to move by one degree along the
ecliptic, and on an average this would be greater than that of a civil day.
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1.9 Number of revolutions of planets in a Mahāyuga;
a;d;v.ya;a;b.d;a;na;Ma .sa;h;~åò:a;a;a;Na dõ ;a;d;ZEa;kM ..a;tua;yRua;ga;m,a Á.sUa;yRa;~ya :pa;yRa;ya;a;~ta;sma;a;d;yua;ta.Èåî ÁÁ*+:=+d;a;NRa;va;aH Á Á 15 Á ÁKa;a;��a:(õ;a;de ;vea;Sua;sa;�a;a;
a;dÒ +Za:=+a;(ãÉea;nd;eaH , ku +.ja;~ya tua Á:vea;d;a;ñÍç ÅÅ*:+.a;
a;h:=+sa;a;ñÍö�ÅÅ*:+.a;��a:(õ;a;k+.=+aH , :℄a;~ya .~va;pa;yRa;ya;aH Á Á 16 Á Ána;a;ga;vea;d;na;Ba;ssa;�a:=+a;ma;a;ñÍö�ÅÅ*:+.~va:=+BUa;ma;yaH Áv.ya;ea;ma;a;�:�+.pa;vea;d;a;ñÍç ÅÅ*:+.pa;a;va;k+:a;(ãÉa bxa;h;~å.pa;teaH Á Á 17 Á ÁA;�;a;ñÍç ÅÅ*:+.d;~åò:a;nea:�a;a;��a:(õ;a;Ka;a;dÒ +ya;ea Bxa;gua;pa;yRa;ya;aH ÁBa;a;~k+.=+a;ñÍç ÅÅ*:+=+sea;ndÒ +a;(ãÉa Za;neaH , Za;Zyua;�a;pa;a;ta;ya;eaH Á Á 18 Á Ánea:�a;a;k+:Ra;�;a;
a;h;vea;d;a;(ãÉa Ka;Ka:=+a;ma:=+d;a;��a:(õ;a;naH Á

divyābdānām. sahasrān. i dvādaśaikam. caturyugam |
sūryasya paryayāstasmādayutaghnaradārn.avāh. || 15 ||
khāśvideves.usaptādrísarāścendoh. , kujasya tu |
vedāṅgāhirasāṅkāśvikarāh., jñasya svaparyayāh. || 16 ||
nāgavedanabhassaptarāmāṅkasvarabhūmayah. |
vyomās.t.arūpavedāṅgapāvakāśca br. haspateh. || 17 ||
as.t.āṅgadasranetrāśvikhādrayo bhr. guparyayāh. |
bhāskarāṅgarasendrāśca śaneh. , śaśyuccapātayoh. || 18 ||
netrārkās.t.āhivedāśca khakharāmaradāśvinah. |

Twelve thousand years of the Gods correspond to one caturyuga. Therefore the number of
revolutions of the Sun [in a caturyuga] is ten thousand multiplied by 432. The number of
revolutions of the Moon is 57753320; and that of Mars is 2296864; the number of Mercury’s
own revolutions is 17937048; that of Jupiter is 364180. The number of revolutions of Venus
is 7022268; that of Saturn is 146612; those of the apogee and the node of the Moon are
488122 and 232300 respectively.

It is mentioned that 12000 years of the Gods corresponds to one caturyuga
(group of four yugas), which is also referred to as a Mahāyuga. Since one so-
lar year is taken to be a day of the Gods, and a year is assumed to consist of
360 days, the number of revolutions made by the Sun in a Mahāyuga is equal to
12000× 360 = 4320000. As the period of revolution of the Sun is the same as the
sidereal year, the number of sidereal years in a Mahāyuga is also equal to 4320000.

The yugas that constitute a Caturyuga/Mahāyuga

The term caturyuga refers to a group of four yugas. The four yugas which con-
stitute a caturyuga are Kr. tayuga, Tretāyuga, Dvāparayuga and Kaliyuga. The
details regarding the periods of these yugas are not presented in the text or in the
commentaries Laghu-vivr. ti or Yukti-d̄ıpikā. But nevertheless it is an interesting di-
vision of time, and hence we present the details—as given in Sūryasiddhānta and
other important works of astronomy—in the form of Table 1.4.
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No. Name of Yuga Duration (years)
1 Kr. tayuga 1728000
2 Tretāyuga 1296000
3 Dvāparayuga 864000
4 Kaliyuga 432000

Table 1.4 The four yugas constituting a Mahāyuga and their durations as given in
Sūryasiddhānta.

It may be noted that the periods of these four yugas are in the ratio 4:3:2:1 re-
spectively. Because of this pattern the total number of years in a Mahāyuga happens
to be just 10 times the number of years in the Kaliyuga. However, some scholars
are of the view that Āryabhat.a might have employed a different scheme for the di-
vision of the four yugas, in which all of them are taken to be of equal periods. This
view is based on the use of the term ‘pāda’, which means quarter, in the expression
‘kalpāderyugapādāh. ga ca’ (... [and] three-fourths of the yuga [have elapsed] since
the beginning of the Kalpa [till the beginning of the current Kaliyuga]).36

Revolutions completed by the planets in a Mahāyuga

In verses 16–18a, Nı̄lakan.t.ha gives the number of revolutions completed by the
planets in a Mahāyuga. In doing so, he has adopted the Bhūta-saṅkhyā37 system of
numeration. Table 1.5 presents the number of revolutions completed by the planets
in a Mahāyuga, along with their Sanskrit equivalents as given in the text.

Planet Number of revolutions
in bhūtasaṅkhyā-paddhati in numerals

Sun A;yua;ta.Èåî ÁÁ*+:=+d;a;NRa;va;aH 4320000
Moon Ka;a;��a:(õ;a;de ;vea;Sua;sa;�a;a;
a;dÒ +Za:=+aH 57753320
Mercury na;a;ga;vea;d;na;Ba;ssa;�a:=+a;ma;a;ñÍö�ÅÅ*:+.~va:=+BUa;ma;yaH 17937048
Venus A;�;a;ñÍç ÅÅ*:+.d;~åò:a;nea:�a;a;��a:(õ;a;Ka;a;dÒ +yaH 7022268
Mars :vea;d;a;ñÍç ÅÅ*:+.a;
a;h:=+sa;a;ñÍö�ÅÅ*:+.a;��a:(õ;a;k+.=+aH 2296864
Jupiter v.ya;ea;ma;a;�:�+.pa;vea;d;a;ñÍç ÅÅ*:+.pa;a;va;k+:aH 364180
Saturn Ba;a;~k+.=+a;ñÍç ÅÅ*:+=+sea;ndÒ +aH 146612

Moon’s apogee nea:�a;a;k+:Ra;�;a;
a;h;vea;d;aH 488122
Moon’s node Ka;Ka:=+a;ma:=+d;a;��a:(õ;a;naH 232300

Table 1.5 The number of revolutions completed by the planets in a Mahāyuga.

36 k+:a;h;ea ma;na;va;ea Q, ma;nua;yua;ga;aH ZKa, ga;ta;a;~tea ..a, ma;nua;yua;ga;aH �îÅÉå*:+a ..a Ák+:�pa;a;de ;yRua;ga;pa;a;d;a ga ..a, gua:�+:
a;d;va;sa;a;�a Ba;a:=+ta;a;t,a :pUa;vRa;m,a Á Á – {AB 1976} (Gı̄tikāpāda, 5), p. 9
37 For details regarding the Bhūta-saṅkhyā system, the reader is referred to Appendix A.
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Nı̄lakan. t.ha’s modification of the traditional model for Mercury and Venus

While presenting the number of revolutions completed by the planets in a Mahā-
yuga, Nı̄lakan.t.ha makes a clear departure from the traditional planetary model in
the case of Mercury and Venus. This is clearly indicated by the use of the adjective
sva (one’s own) with the word paryaya (revolution). This special usage is com-
mented upon in Laghu-vivr. ti thus::℄a;~ya .~va;pa;yRa;ya;aH :pua;naH na;a;ga;vea;d;na;Ba;ssa;�a:=+a;ma;a;ñÍö�ÅÅ*:+.~va:=+BUa;ma;yaH Á A:�a .~va;Za;b.de ;na :pa;ya;Ra;ya;a;Na;MaBa;a;~k+.=+a;.a;a;ya;Ra;dùÅ;a;Æa;Ba;ma;tMa .~va;Z�a;a;Gra;ea;�a;sa;}ba;�////�a;nDa;tvMa bua;Da;~ya ;�a;na:=+~ta;m,a Á . . .Bxa;gua;pa;yRa;ya;a;~tua A;�;a;ñÍç ÅÅ*:-d;~åò:a;nea:�a;a;��a:(õ;a;Ka;a;dÒ +yaH Á

And the number of Mercury’s own revolutions is 17937048. Here by the use of the word sva
(its own), the association of this number of revolutions with the śighrocca of Mercury as
done by Bhāskarācārya and others has been discarded. ... And the number of revolutions
of Venus is 7022268.

The same idea is highlighted in Yukti-d̄ıpikā as follows:bua;Da;Ba;a;gRa;va;ya;ea;vRxa:�Ma ZEa;Grya;n�a;a;.a;ea;�a;vxa:�a;ta;a;m,a Áya;a;�a;ta, ta;�/////////�a;sma;n,a .~va;ga;tyEa;va ..a:=+ta;ea bua;Da;Zua;kÒ +:ya;eaH Á Áyua;ga;ea;tTa;aH :pa;yRa;ya;a;~tvea;tea ta;t,a .~va;Za;b.de ;na d;a;ZRa;ta;m,a Á 38

The circles of Mercury and Venus (the actual orbits in which they move) become the
śaighrya-n̄ıcocca-vr. tta [in the śighra-sam. skāra]. The fact that the numbers of revo-
lutions given here are the revolutions of the Mercury and Venus, moving in these circles
with their own velocities, is indicated by the word sva.

In fact, this novel view regarding the motion of interior planets—according to
which what were traditionally identified as the śighroccas are now identified with
the mean planets themselves—became the starting point of a major revision of the
traditional planetary model. This will be explained in Chapter 2 as well as in Ap-
pendix F.1.10 yua;ga;sa;a;va;na;
a;d;na;a;
a;dH
1.10 Number of civil days in a Mahāyuga etc.Ka;Ka;a;[a;a;tya;
a;�;ga;ea;sa;�a;~va:=e +Sua;Za;a;Za;na;ea yua;gea Á Á 19 Á Á.sa;a;va;na;a ;
a;d;va;sa;aH , ..a;a;[a;Ra ma;a;ta;Ra;Nq+.Ba;ga;Na;a;�a;Da;k+:aH ÁA;�a;Da;ma;a;sa;aH Ka;nea:�a;a;�a;çÉîå+;a:=+a;ma;na;nde ;Sua;BUa;ma;yaH Á Á 20 Á ÁA;yua;ta.Èåî ÁÁ*+;a;�///�a;b.Da;va;~vea;k+:Za:=+a ma;a;sa;a .=+veaH .smxa;ta;aH ÁKa;v.ya;ea;mea;ndu ;ya;ma;a;�;a;Bra;ta:�va;tua;�ya;a;�/////�a;~ta;�a;Ta;[a;ya;aH Á Á 21 Á ÁKa;Ka;Sa;NNa;va;ga;ea;na;nd;nea:�a;ZUa;nya:=+sea;nd;vaH Á;�a;ta;Ta;yaH , ..a;a;ndÒ +ma;a;sa;aH .~yuaH .sUa;yeRa;ndu ;Ba;ga;Na;a;nta:=+m,a Á Á 22 Á Á

khakhāks.ātyas.t.igosaptasvares.uśaśino yuge || 19 ||
sāvanā divasā.. h, cārks.ā mārtān. d. abhagan. ādhikāh. |

38 {TS 1977}, pp. 9–10.



1.10 Number of civil days in a Mahāyuga etc. 27

adhimāsāh. khanetrāgnirāmanandes.ubhūmayah. || 20 ||
ayutaghnābdhivasvekaśarā māsā raveh. smr. tāh. |
khavyomenduyamās.t.ābhratattvatulyāstithiks.ayāh. || 21 ||
khakhas.an. n. avagonandanetraśūnyarasendavah. |
tithayah. , cāndramāsāh. syuh. sūryendubhagan. āntaram || 22 ||
The number of civil days in a Mahāyuga is 1577917500; and the number of sidereal days
(ārks. āh. ) is [equal to] this number increased by the number of revolutions of the Sun. The
number of adhimāsas is 1593320.

The number of solar months is stated to be the product of 5148 and ayuta (10000). The
number of ks.ayatithis (unreckoned tithis) is 25082100. The number of [actual] lunar
tithis is 1602999600; the number of lunar months will be equal to the difference in the
number of revolutions of the Sun and the Moon.

The number of civil days in a Mahāyuga is the number of sunrises that take place
in it. Similarly the number of sidereal days is equal to the number of star-rises that
take place in a Mahāyuga. Since the stars do not have any eastward motion, and the
Sun completes one full revolution eastwards once in a sidereal year, the number of
sidereal days in a sidereal solar year will be greater than the number of civil days by
one unit. Hence, in a Mahāyuga, the total number of sidereal days will be exceeding
the total number of civil days by exactly the number of solar years or the revolutions
of the Sun. That is,

Sidereal days = Civil days + No. of Sun’s revolutions
= 1577917500 + 4320000
= 1582237500.

On the other hand, if we know the number of sidereal days in a Mahāyuga then
the number civil days (sāvana-dinas) may be obtained by subtracting the number
of revolutions of the Sun from the former:

Civil days = Sidereal days−No. of Sun’s revolutions. (1.1)

As there are 12 solar months in a solar year, the number of solar months in a
Mahāyuga is 51480000. The number of lunar months is the number of conjuctions
of the Sun and the Moon. Hence, it is equal to the difference in the number of
revolutions of the Sun and the Moon, which is 53433320. As there are 30 tithis in a
lunar month, the number of lunar tithis is 30 times this number, which is 160299960.
As an intercalary month or adhimāsa is introduced to match the solar and lunar
calendars, the number of adhimāsas is the difference between the number of lunar
and solar months and is 1593320.

As there are 30 tithis in a lunar month whose duration is less than 30 civil days,
the average duration of a tithi is less than a civil day. Because of this, a certain
number of tithis, known as ‘ks.ayatithis’, or ‘avamadinas’, are to be dropped from
the calendar in order to have a concurrence between the number of civil days and
the number of reckoned tithis in a yuga. In fact, the number of ks.ayatithis in a
Mahāyuga is 25082100, which is exactly the difference in number between the
tithis and the civil days (see Table 1.6).
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Number of risings and settings of planets in a Mahāyuga

By definition, the number of sunrises in a Mahāyuga is the same as the number of
civil days. Hence from (1.1) we have:

No. of sunrises = Sidereal days−No. of Sun’s revolutions. (1.2)

A similar relation must be valid for other planets also. In Yukti-d̄ıpikā it is ob-
served:.=+v.ya;a;de :�+:d;ya;aH .~va;~va;Ba;ga;Na;ea;na;a;[Ra;pa;yRa;ya;aH Á 39

The numbers of risings of the Sun and other planets in a Mahāyuga are equal to their own
revolutions subtracted from the number of revolutions of the stars (sidereal days).

No. of planet-rises = Sidereal days−No. of planet’s revolutions. (1.3)

For the sake of convenience we present the numbers for various relevant time
units in a Mahāyuga stated above in the form of a table (see Table 1.6).

No. (in a Mahāyuga) Rationale behind the number
No. of solar months = 12 × No. of solar years in a Mahāyuga

= 12×4320000
= 51840000.

No. of lunar months = Difference in the No. of revolutions made
by the Sun and the Moon in a Mahāyuga

= 57753320−4320000
= 53433320.

No. of adhimāsas = Difference in the No. of lunar months
and solar months in a Mahāyuga

= 53433320−51840000
= 1593320.

No. of avamadinas = Difference in the No. of lunar days
or ks.ayatithis and civil days in a Mahāyuga

= (53433320×30)−1577917500
= 25082100.

No. of normal tithis = 30 × No. of lunar months in a Mahāyuga
= 30×53433320
= 1602999600.

Table 1.6 Number of solar months, lunar months, adhimāsas, avama-dinas etc. in a
Mahāyuga.

In Yukti-d̄ıpikā, the above set of verses (19b–22) of Tantrasaṅgraha are com-
mented upon elaborately. This commentary runs to more than 100 verses and
touches upon several related issues. In the following we make a brief mention of
some of them:

39 {TS 1977}, p. 10.
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1. Kālapramān. ādhārah. (The basis for reckoning time): Having mentioned the
cause for the eastward motion of the planets, the following interesting remark
is made regarding the basis for different units employed for reckoning time.g{a;h;a;Na;Ma :pra;a:ñÍíéÁÁ*+;u ;K�a;a Bua;�a;�H .~va;v.ya;a;pa;a:=+kx +:ta;ea;
a;d;ta;a Ádx ;#sMa;va;a;d;
a;va;Zua:;dÄâ ;a;sa;Ea gxa;hùÅ:a;tea ga;ea;l+.
a;va:�a;mEaH Á Áya;tkx +:ta;ea ;�a;na;��a;Ka;lH k+:a;lH va;SRa;ma;a;sa;
a;d;na;a;tma;kH Ág{a;h;Bua;�a;�M ;
a;va;na;a ya;sma;a;t,a na k+:a;l+.ea .ja;a;tua .ja;a;ya;tea Á Á 40

The eastward motion of the planets is stated to be due to their own vyāpara (action)
[and not due to the pravaha-vāyu]. This (eastward motion) is noted down [in terms of
revolution numbers] by experts in spherics only after careful observation and verifica-
tion. The different units of time like the year, month, day etc. are all dependent on the
[motion of planets] because without the motion of planets the concept of time does not
arise.

2. Bhagan. a-par̄ıks.an. am (Verification of the revolution numbers): There is a lengthy,
detailed and thorough discussion on this topic. Starting with observation and in-
ference, the different methods employed in measuring and verifying these, such
as conjuctions with celestial objects, are described at great length.

3. Bhagan. a-nānātvopapattih. (Reconciliation of differences in parameters between
different texts): Having described the procedure for finding/verifying the revo-
lution numbers etc., Śaṅkara Vāriyar proceeds to reconcile the discrepancies
one may observe, when comparing different texts. He attributes the differences
to variation in the accuracy of measurement. Further, he emphasizes that the
purpose of a text is only to acquaint the reader with the procedures and not to
give him a false impression about the ultimate accuracy of the parameter values
mentioned therein. It is precisely for this reason that the parameter values are
specified in a separate section (saṅkhyābhāga) in texts such as Āryabhat. ı̄ya.o+.�a;n�a;a;.a;pa;�a:=+Dya;a;
a;dH A;Ta;Ra;pa:�ya;a ;�a;na;ya;}ya;tea ÁA;t�a;a;�///�a;ndÒ +ya;a;(ãÉa Ba;ga;Na;aH ;�a;na;ya;}ya;nteaY;nua;ma;a;na;taH Á Á.tea;Sa;Ma Za;a;~:�ea;Sua na;a;na;a;tvMa :pa:=� +a;[a;a;ta;a:=+ta;}ya;taH Á.sua;g{a;h;tva;a;ya ta;�//////�a;tsa:;dÄâ M .sa;v a ya:�a;ea;pa;
a;d;Zya;tea Á ÁA;taH .sa;veRa;Sua Za;a;~:�ea;Sua nya;a;ya;ma;a;gRa;pra;d;a;ZRa;Sua Á.sa;*ñÍËÉ ùÁ+;a;a;Ba;a;gMa :pxa;Ta;ë�Åë�Á*:x +:tya ba;Ba;Nua;ga;eRa;l+.�a;.a;nta;k+:aH Á Á 41

The dimensions of the epicycles etc. are fixed by the process of arthāpatti (presumptive
reasoning). The number of revolutions of planets which are not directly accessible to the
senses are fixed through the process of inference.

The difference in the number of revolutions from text to text is due to differences in
measurement. In order to facilitate understanding [of future generations], whatever is
obtained is stated as such.

Therefore (since the parameters have to be updated from time to time), in all the texts
which purport to explain the rationale of the procedures, the experts in spherics have

40 {TS 1977}, p. 11.
41 {TS 1977}, pp. 17–18.
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stated the parameter values in a separate section called saṅkhyā-bhāga, distinguishing
it from the rest.

Besides these issues which are of immediate relevance in understanding the pro-
cedures described, certain other topics such as the theory of the rotation of the
Earth,42 the distance moved by the planets in their orbits, etc., are also discussed.
According to the general principle stated in most Indian texts, all the planets move
equal distances in equal intervals of time, or, equivalently, the linear velocity of all
the planets is the same. This is reiterated in Yukti-d̄ıpikā.1.11 A;h;gRa;Na;a;na;ya;na;m,a
1.11 Finding the number of days elapsed since an epochdõ ;a;d;Za.Èåî ÁÁ*+;a;n,a k+:le +=+b.d;a;n,a ma;a;sEa;(ãÉEa:�a;a;
a;d;Æa;Ba;gRa;tEaH Á.sMa;yua;�+:a;n,a :pxa;Ta;ga;a;h;tya;a;pya;�a;Da;ma;a;sEa;~ta;ta;ea &+.tEaH Á Á 23 Á Á.sa;Ea:=+ma;a;sEa;yRua;ga;ea;�E +:~tEaH A;�a;Da;ma;a;sEa;yRua;ta;a;n,a ga;tEaH Áma;a;sa;Ma;(ãÉa ;
a:�Ma;Za;ta;a h;tva;a ;�a;ta;T�a;a;yRua;�+:a ga;ta;aH :pxa;Ta;k, Á Á 24 Á Á;�a;ta;�a;Ta;[a;yEa;�a;nRa;h;tya;a;ta;ea yua;ga;ea;�+:�a;ta;�a;Ta;Æa;Ba;&R +.ta;a;n,a ÁA;va;ma;a;VC+.ea;Da;yea;.Ce +.SaH .sa;a;va;na;ea dùÅ;au ;ga;NaH k+:le H Á Á 25 Á Á.sa;�a;Æa;BaH [a;
a;pa;tea Zea;Sa;a;t,a Zua;kÒ +:a;
a;dH .~ya;a;	a;�+na;a;�a;Da;paH Á

dvādaśaghnān kalerabdān māsaíscaitrādibhirgataih. |
sam. yuktān pr. thagāhatyāpyadhimāsaistato hr. taih. || 23 ||
sauramāsairyugoktaistaih. adhimāsairyutān gataih. |
māsām. śca trim. śatā hatvā tith̄ıryuktvā gatāh. pr. thak || 24 ||
tithiks.ayairnihatyāto yugoktatithibhirhr. tān |
avamāñchodhayecches.ah. sāvano dyugan. ah. kaleh. || 25 ||
saptabhih. ks.apite śes. āt śukrādih. syāddinādhipah. |

The number of years elapsed since the beginning of the Kaliyuga multiplied by twelve and
added to the caitrādi lunar months elapsed in the present year [is stored separately and]
is multiplied by adhimāsas and divided by the number of solar months in a Mahāyuga.
[This gives the adhimāsas elapsed.] This is added to the number of solar months elapsed,
multiplied by 30 and the resultant is added to the number of tithis elapsed [in the current
lunar month] and stored separately (A′).

This (A′) is multiplied by the number of ks.ayatithis, and divided by the total number of
tithis in a Mahāyuga, and this quantity, referred to as the avama, has to be subtracted

42 After giving the number of sidereal days in a Mahāyuga, Śaṅkara Vāriyar states that
this number is exactly the same as the number of eastward revolutions made by the Earth in a
Mahāyuga (Yukti-d̄ıpikā, Chapter 1, verse 73):A;a;[a;RaH Ka;Kea;Sua;sa;�a;a;�a;çÉîå+;a;nea:�a;a:(õ;ya;�e ;Sua;BUa;ma;yaH Á �+.[a;pa;yRa;ya;tua;�yMa ..a :pra;a:ñÍíéÁÁ*+;u ;KMa Bra;ma;NMa Bua;vaH Á Á

The number of sidereal days is equal to 1582237500. The number of eastward revolutions
of the Earth is same as the revolutions made by the stars [westwards].

This idea of the rotation of the Earth (eastwards) has been given by Śaṅkara Vāriyar as perhaps
a tribute to Āryabhat.a, who proposed the idea for the first time in the Indian tradition.
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[from A′ itself]. The result is the number of civil days [Ahargan. a] elapsed since the begin-
ning of the Kaliyuga. From the remainder obtained by dividing [the Ahargan. a] by 7, the
Lord of the day, beginning with śukra is to be found.

The term Ahargan. a
43 literally means a count of days. It is a positive integer

which gives the number of civil days that have elapsed since a given epoch,44 till
the date for which the Ahargan. a is calculated.45 In Tantrasaṅgraha, the epoch has
been chosen to be the beginning of the Kaliyuga. Hence, the Ahargan. a computed
by the procedure given in the text gives the number of civil days that have elapsed
since the beginning of the Kaliyuga, which is taken to be the sunrise of February
18, 3102 BCE as per the Julian calendar.

In the following, we shall explain the procedure for finding the Ahargan. a, as
given in the above verses, and this will be followed by a few illustrative examples.

Procedure for finding Ahargan. a

Let p represent the number of years that have elapsed since the beginning of the
Kaliyuga and q represent the number of lunar months that have elapsed since the
beginning of the present lunar year. Then the quantity

m = 12p +q, (1.4)

represents the number of solar months that have elapsed since the beginning of
the Kaliyuga, which is also the number of lunar months excluding the number of
adhimāsas. The number of adhimāsas that have elapsed since the beginning of
the Kaliyuga till the desired date is found from the number of adhimāsas in a
Mahāyuga, and employing the rule of three:

51840000 : 1593320

m : ? (1.5a)

If a be the number of adhimāsas elapsed, then

a =
m×1593320

51840000
. (1.5b)

The number of lunar months l that have elapsed since the beginning of the Kaliyuga
is given by

l = m+[a], (1.6)

43 The word ahah. means a day and the term gan. a refers to a group.
44 The choice of the epoch can be the beginning of the kalpa, the beginning of the Kaliyuga or
any desired date on which the planetary positions are known.
45 The computation of the Ahargan. a plays a crucial role in determining the mean positions of the
planets, as will be seen in Section 1.12.
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where [a] is the integral part of a. To find the number of tithis that have elapsed since
the beginning of the Kaliyuga till the desired date, we need to simply multiply l by
30 and add to this the number of tithis that have elapsed in the current lunar month.
If s be the number of tithis that have elapsed in the present month, then the total
number of tithis A′ that have elapsed till the required date since the beginning of the
Kaliyuga is given by

A′ = l ×30 + s. (1.7)

Once again, by the rule of three, the number of ks.ayatithis elapsed since the begin-
ning of the Kaliyuga is found:

1602999600 : 25082100

A′ : ? (1.8a)

If k is the number of ks.ayatithis that have elapsed since the beginning of the
Kaliyuga, then

k =
A′× 25082100

160299600
. (1.8b)

Now the Ahargan. a A, the number of civil days elapsed since the beginning of the
Kaliyuga is given by

A = A′− [k], (1.9)

where [k] is the integral part of k. There is a possibility of round off errors which
may occur at different stages in the computation of the Ahargan. a. We discuss these
before moving on to some illustrative examples for finding the Ahargan. a.

Resolution of likely errors in the calculation of the Ahargan. a

In the procedure for finding Ahargan. a, or the number of civil days elapsed, we
round off the fractional part and use the integers in further calculation, at least in
two places, namely the computation of the adhimāsas and ks.ayatithis. In doing so,
it is quite likely that this rounding off may lead to errors. The following discussion
would be useful in removing the errors.

1. Error in the computation of adhimāsas: The number of adhimāsas obtained
using (1.5b), has a fractional part that is indicative of the proximity of the ad-
himāsa to the date for which Ahargan. a is calculated. The closer the value of
the fraction to unity, the closer the adhimāsa will be to the date for which the
Ahargan. a is being computed. As per the calculational procedure, we have to use
only the number of adhimāsas that have completely elapsed and hence we round
off the number and choose the closest integer. This could introduce an error at
times, which can be easily dealt with as shown in the examples discussed below.

2. Error in the computation of ks.ayatithis: The average duration of a tithi is less
than that of a civil day. In the computation of the Ahargan. a we are trying to find
the number of civil days elapsed from the measure of tithis elapsed. From the
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computed value of the number of tithis elaspsed, the number of ks.ayatithis (k)
has to be computed in order to obtain the Ahargan. a. The quantity k obtained us-
ing (1.8b) essentially represents the excess of the tithis that has to be subtracted
from the total number of tithis, A′, elapsed since the beginning of the Kaliyuga.
As we are interested only in the integral number of tithis that have to be sub-
tracted (to get A from A′), we round off k to the nearest integer. However, in
doing so, when the fraction is close to unity, an error is likely to occur. This can
be at most one day, and can be easily rectified by comparing the weekday that is
obtained from the computation, and the actual weekday for which the Ahargan. a
is being computed. The idea behind this is explained below.

3. Fixing the error: In Tantrasaṅgraha the beginning of the Kaliyuga is taken as
mean sunrise on February 18, 3102 BCE, a Friday. This fact, is implicit in verse
26. Suppose that the value of A obtained, when divided by 7, leaves a remainder
of 0, 1, 2, . . . , 6. Then it means that the day on which A has been computed
must be Friday, Saturday, . . . , Thursday. If the actual weekday differs from the
computed one, then it implies that there has been an error in rounding off k. The
new k is obtained by adding ±1 to the old k. This is demonstrated in Example 3
below.

4. Popular eras and conversion factors: Different kinds of eras (sam. vats) have
been popular in different parts of India.46 Most of the Indian pañcāṅgas would
mention the Śaka and Vikrama besides the most popular Kali sam. vat. The re-
lationship between the three is given by

Śaka 0 = Vikrama 135 = Kali 3179.

Regarding the convention adopted in the pañcāṅgas, it may be mentioned that,
whether it is Śaka, Vikrama or Kali, the value given always corresponds to the
number of years elapsed since the commencement of epoch, and not the number
of the year currently in progress.

Example 1:

Find the Kalyahargan. a corresponding to Phālgun. a-kr. s.n. a-trayodaś̄ı, Śaka 1922
(March 22, 2001 CE).

Number of Kali years elapsed, p = 1922 + 3179
= 5101

Number of lunar months elapsed in the present year, q = 11

No. of lunar months elapsed (excluding adhimāsas), m = (5101×12) + 11
= 61223

No. of adhimāsas corresponding to m lunar months, a =
61223×1593320

51840000
46 For instance, the Kollam era has been popular in Kerala, whereas the Śaka and Vikrama eras
have been popular in northern India.
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= 1881.70969
Since we are interested in the integral part, we take a = 1881

No. of lunar months elapsed (including adhimāsas), l = 61223 + 1881
= 63104

No. of tithis elapsed in the present lunar month, s = 15+12 = 27

No. of tithis elapsed (including ks.ayatithis), A′ = (63104× 30) + 27
= 1893147

Number of ks.ayatithis, k (corresponding to A′) =
1893147×25082100

1602999600
= 29622.03008

We round off the above fraction and take k to be = 29622

Kalyahargan. a is given by, A (= A′− k) = 1893147 - 29622
= 1863525
= (266217×7) + 6

The remainder 6 implies that the day has to be a Thursday. March 22, 2001
happens to have been a Thursday, and hence the computed value of the Ahargan. a is
correct. Thus the number of civil days elapsed since the beginning of the Kaliyuga
till Phālgun. a-kr. s.n. a-trayodaś̄ı, Śaka 1922 is 1863525.

Example 2:

Find the Kalyahargan. a corresponding to Nija-ās. ād. ha-kr. s.n. a-navamı̄, Śaka 1891
(August 6, 1969 CE).

Number of Kali years elapsed, p = 1891 + 3179
= 5070

Number of lunar months elapsed in the present year, q = 3

No. of lunar months elapsed (excluding adhimāsas), m = (5070×12) + 3
= 60843

No. of adhimāsas corresponding to m lunar months a =
60843×1593320

51840000
= 1870.03

Since we are interested in the integral part, we take a = 1870

No. of lunar months elapsed (including adhimāsas), l = 60843 + 1870
= 62713

No. of tithis elapsed in the present lunar month s = 15 + 8 = 23

No. of tithis elapsed (including ks.ayatithis), A′ = (62713× 30) + 23
= 1881413
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Number of ks.ayatithis k (corresponding to A′) =
1881413×250821000

1602999600
= 29438.42844

We round off the above fraction and take k to be = 29438

Kalyahargan. a is given by A (= A′− k) = 1881413 - 29438
= 1851975
= (264567×7) + 6

The remainder 6 implies that the day has to be a Thursday. But August 6, 1969
happened to be a Wednesday. Hence the computed value of the Ahargan. a is in-
correct by one day. The error is due to the error in the computation of k. Hence
we round off k to the next integer and take its value to be 29439, and so the actual
Ahargan. a is given by 1881413−29439 = 1851974. Thus the number of civil days
elapsed since the beginning of the Kaliyuga till Nija-ās. ād. ha-kr. s.n. a-navamı̄, Śaka
1891 is 1851974.

Note:

1. In this example, a was found to be 1882.0170. A very small value of the decimal
part indicates that an adhimāsa has just occurred. In fact, in the previous lunar
month there was no saṅkrānti and it was an adhimāsa referred to as Adhika-
ās. ād. ham.

2. In Example 1, rounding off the value of k obtained to the closest integer gave
the correct value of the Ahargan. a. But in this example when it was rounded off
to the closest integer there was an error in the Ahargan. a by one day and it was
fixed by comparing the result obtained with the day of the week. The source of
the error can be explained as follows.

3. By using the rule of three for finding the adhimāsas and ks.ayatithis, it is im-
plicitly assumed that they occur periodically. Since they do not occur with exact
periodicity, and it is fixed depending upon the occurrence or absence of true
saṅkrānti in the true lunar month, care has to be taken when the value of a is
close to an integer. If there is an error in the choice of a, the Ahargan. a would dif-
fer from the actual value by nearly 30 days, and if there is an error in the choice
of k then we will miss the Ahargan. a by one day. These errors can be easily fixed
from the knowledge of the occurrence or otherwise of the adhimāsa near the
desired date and the day of the week respectively.

In the last example we find out the Kalyahargan. a corresponding to August 18,
1947 CE. This forms an interesting example, for there was an adhimāsa in the year
1947 CE.
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Example 3:

Find the Kalyahargan. a corresponding to Nija-śrāvan. a-śukla-dvit̄ıyā, Śaka 1869
(August 18, 1947 CE).

Number of Kali years elapsed, p = 1869 + 3179
= 5048

Number of lunar months elapsed in the present year, q = 4

No. of lunar months elapsed (excluding adhimāsas), m = (5048×12) + 4
= 60580

No. of adhimāsas corresponding to m lunar months, a =
60580×1593320

51840000
= 1861.9468

Since the decimal part is close to 1, we take a to be = 1862

No. of lunar months elapsed (including adhimāsas), l = 60580 + 1862
= 62442

No. of tithis elapsed in the present lunar month, s = 1

No. of tithis elapsed (including ks.ayatithis), A′ = (62442× 30) + 1
= 1873261

Number of ks.ayatithis, k (corresponding to A′) =
1873261×25082100

1602999600
= 29310.87427

We round off the above fraction and take k to be = 29311

Kalyahargan. a is given by A (= A′− k) = 1873261 - 29311
= 1843950
= (263421×7) + 3

The remainder 3 implies that the day has to be a Monday. August 18, 1947 was a
Monday. Thus the number of civil days elapsed since the beginning of the Kaliyuga
till Nija-śrāvan. a-śukla-dvit̄ıyā, Śaka 1869 is 1843950.

Note: In this example, a was found to be 1861.9468. A very high value of the
decimal part indicates that an adhimāsa was in the vicinity. In fact, an adhimāsa
had just then occurred and that is why a has to be taken to be 1862, and the present
month is referred to as Nija-śrāvan. a, preceded by an Adhika-śrāvan. a.1.12 A;h;gRa;Na;a;t,a ma;Dya;ma;a;na;ya;na;m,a
1.12 Finding the mean positions from Ahargan. adùÅ;au ;ga;Na;a;t,a Ba;ga;Na;a;Bya;~ta;a;t,a BUa;
a;d;nEa;BRa;ga;Na;a ga;ta;aH Á Á 26 Á Ádõ ;a;d;Za.Èåî ÁÁ*+;a;(ãÉa :tEa;=e +va Zea;Sa;a;d;a;�a;a;(ãÉa .=+a;Za;yaH Á
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a:�Ma;Za;ta;a :Sa;��a;a ;�a;na.Èåî ÁÁ*+;a;d, Ba;a;ga;a;d;ya;(ãÉa :tEaH Á Á 27 Á Ák+:�ya;a;
a;d;Drua;va;yua;�M ta;t,a ma;DyMa .~ya;a;du ;d;ya;ea;;�ÂåÅ +va;m,a Á
dyugan. āt bhagan. ābhyastāt bhūdinairbhagan. ā gatāh. || 26 ||
dvādaśaghnāśca taireva śes. ādāptāśca rāśayah. |
muhuśca trim. śatā s.as.t.yā nighnād bhāgādayaśca taih. || 27 ||
kalyādidhruvayuktam. tat madhyam. syādudayodbhavam |
The Ahargan. a multiplied by the revolutions and divided by the total number of civil days
[in a Mahāyuga] gives the revolutions that have elapsed. Multiplying the remainder by
twelve [and dividing by the same divisor], the rāśis are obtained. The remainder again
multiplied by 30 and 60 [and dividing by the same divisor] gives the degrees etc. elapsed.
The result, added to the mean longitude of the planet at the beginning of the Kaliyuga,
gives the mean planet at sunrise.

It is straightforward to obtain the mean longitudes of the planets from the
Ahargan. a. In Indian astronomy, the longitudes are generally expressed in rāśis,
am. śas, liptās and viliptās. (i.e., signs, degrees, minutes and seconds). In what fol-
lows we first explain the procedure described in the above verses, before taking up
a numeric example.

Let A be the Ahargan. a and N the number of revolutions completed by the planet
in a Mahāyuga. Then, the number of revolutions including the fractional part cov-
ered by the planet since the epoch, till the mean sunrise, is given by

n =
A×N

1577917500
= I1 + f1, (1.10)

where I1 represents the integral part of n, and f1 the fractional part. The integral
part gives the number of revolutions completed by the planet since the beginning of
Kaliyuga. It is from the fractional part f1 that the rāśis etc. elapsed are obtained.
For this, the fractional part f1 is first multiplied by 12 and this gives the number of
rāśis elapsed in the present revolution. Let

f1 ×12 = I2 + f2.

Here the integral part I2 gives the number of rāśis that the planet has traversed.
The fractional part f2 multiplied by 30 gives the number of degrees elapsed in the
present rāśi. Let

f2 ×30 = I3 + f3,

where the integral part I3 gives the number of degrees covered by the planet in
the present rāśi. The integral part of the fractional part f3 multiplied by 60 gives
the number of minutes covered in the present degree, and so on. Hence the mean
longitude of the planet is given by

θ0 = I2 signs+ I3 degrees+ I4 minutes, (1.11)

where I4 represents the integral part of f3 ×60.
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Illustrative example

Now we illustrate the above procedure with an example. Suppose we want to find the
mean longitude of the Moon at mean sunrise on January 14, 2002. The Ahargan. a
A corresponding to this date is found to be 1863823. The number of revolutions
N completed by the Moon in a Mahāyuga is given to be 57753320. Therefore the
number of revolutions completed by the Moon is

n =
1863823×57753320

1577917500
= 68217.7402447. (1.12)

Here 68217 represents the complete number of revolutions made by the Moon since
the beginning of the Kaliyuga. From the fractional part 0.7402447 we get the num-
ber of rāśis etc. covered.

0.7402447×12 = 8 +0.8829364.

This shows that 8 rāśis have been covered and the Moon is in the 9th one, namely
Dhanus. To get the degrees etc. we multiply the fractional part by 30. Thus we have

0.8829364×30 = 26 + 0.488092.

This means that the mean Moon has crossed 26◦ in Dhanū-rāśi (Sagittarius sign).
The fractional part of the above expression further multiplied by 60 gives 29.28552.
The fractional part of this can further be multiplied by 60 to get the seconds etc.
Thus the mean longitude of the Moon on January 14, 2002 is found to be

θ0 = 8 signs+ 26 degrees+ 29 minutes = 8r26◦29
′
. (1.13)

Note: The mean longitude of the Moon obtained above corresponds to the longi-
tude of the Moon at mean sunrise for an observer situated on the meridian passing
through Ujjayin̄ı. For other observers, the Deśāntara correction has to be applied,
which is explained in the following verses.1.13 :de ;Za;a;nta:=+sMa;~k+:a:=H
1.13 Correction due to difference in longitudel+.ñÍö�ÅÅ*:+.a;mea:�+:ga:=e +Ka;a;ya;Ma o+êêÁ*.a;�a;ya;nya;a;
a;d;ta;~ta;taH Á Á 28 Á Á:pUa;va;Ra;pa:=+
a;d;Za;eaH k+:a;y a k+:mRa :de ;Za;a;nta:=+ea;;�ÂåÅ +va;m,a Á

laṅkāmerugarekhāyām. ujjayinyāditastatah. || 28 ||
pūrvāparadísoh. kāryam. karma deśāntarodbhavam |
The deśāntara-karma has to be done for those places which lie to the east or west of
Ujjayan̄ı, which itself is situated in the meridian passing through the Laṅkā and Meru.
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In Indian astronomical texts, the meridian passing through Ujjayin̄ı (23◦11′N,
75◦46′E, of the Greenwich meridian) is taken to be the reference meridian. For the
sake of convenience, we refer to it hereafter as the standard meridian. The mean
positions of the planets obtained from the Ahargan. a correspond to the positions
of the planets at the mean sunrise for an observer along the standard meridian. For
observers lying to the east of the standard meridian, the sunrise would be earlier;
and for the observers lying west it will be later. Hence the mean longitudes of the
planets obtained using the Ahargan. a will not be the mean longitudes at the mean
sunrise at the observer’s location. To obtain the mean longitudes at sunrise at the
observer’s location, a correction due to the difference in terrestrial longitude has to
be made and this correction is called the Deśāntara-sam. skāra.

In this context, there is an elaborate discussion in Yukti-d̄ıpikā on some related
and interesting issues such as: how the Earth is situated in the space, how it is sup-
ported etc.

Does the Earth remain unsupported in the sky ?

In the following we shall present some of the verses of Yukti-d̄ıpikā, with a trans-
lation.na;nua ;�a;ta;�e +t,a k+:TMa BUa;Æa;maH Ka;ma;DyeaY;sa;Ea ;�a;na:=+a;(ra;ya;a Água:�+:tva;a;�a;Ba;sa;~ta;~ya;aH :pa;ta;nMa na Ba;vea;t,a k+:Ta;m,a Á Á:pa;ta;�////�a;nta ya;a;�a;na va;~tUa;�a;na ya:�a ta:�a :pa;ta;tva;sa;Ea ÁA;DaH :pa;ta;�////�a;nta dx ;Zya;ntea .sa;va;Ra A;
a;pa ;
a;va;h;a;ya;saH Á Á.sa;ma;TRa;ya;a;ma;he ta;sma;a;t,a A;Da;~ta;a;t,a :pa;ta;nMa Bua;vaH ÁA:�a;ea;.ya;teaY;��a;Ka;lM va;~tua :pa;ta;t�a;a;h ya;Ta;a Bua;
a;va Á Áta;dõ ;�a;a;nya:�a :pa;ta;nMa BUa;ga;ea;l+.~ya tua k+:�pya;ta;a;m,a Á;
a;va:(õ;a;a;(ra;ya;eaY;yMa BUa;ga;ea;lH ya;ta;ea ;
a;va:(õ;a;}Ba;=E +va BUaH Á Á:pa;ta;nMa .sa;vRa;va;~tUa;na;Ma BUa;pxa;�+a;va;�a;Da dx ;Zya;tea Á;
a;d;vaH :pa;ta;tya;a;~tua Bua;vaH :pra;�a;ta;�+a na ë�ÅëÁ*:+:�a;.a;t,a Ba;vea;t,a Á ÁBUa;ga;ea;le .sa;vRa;va;~tUa;�a;na :pa;ta;ntyea;va .sa;ma;nta;taH Ána :pua;naH ë�ÅëÁ*:+:a;
a;pa BUa;ga;ea;lH .sa;vRa;ta;eaY;Da;ea ga;ta;ea ya;taH Á Áta:�a;a;
a;pa ;Ga;na;BUa;ma;DyMa .~va;Za;��+.a;a ;Da;a:=+yea;d;DaH ÁBUa;pxa;�+a;va;ya;va;a;n,a .sa;va;Ra;n,a ;�a;na;ya;}ya v.ya;~ta;
a;d;gga;ta;a;t,a Á ÁBUa;pxa;�+a;va;ya;va;aH .sa;veRa ga;ea;l+.a;Da;Ra;nta;�a:=+ta;tva;taH Á.sa;ma;nta;a;t,a :pra;�a;ta;ba.éÈåî Åéé:a;�////�a;nta ;Æa;ma;TaH ;
a;pa;pa;�a;ta;Sa;Ma ..a ta;a;m,a Á ÁKa;ma;Dya;a;t,a :pa;ta;na;a;Ba;a;vaH BUa;ga;ea;l+.~ya ta;ta;ea ;Drua;vaH Ága;ea;l+.a;k+:a:=+tva;ma;pya;~ya .sa;ma;nta;a;t,a .sa;ma;ga;Ea:=+va;a;t,a Á Ána ;�a;ta;�+�a;ta ë�ÅëÁ*:+:�a;.a;t,a ;
a;k+:�a:úãÁ*.a;t,a A;a;(ra;yea;Na ;
a;va;na;a ya;
a;d Áta;a;dx ;Za;ea;pya;a;(ra;ya;ea;~tya;~ya na;Ba O;;va ;�a;na:=+nta:=+m,a Á Á
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a;pa ta:�a;a;
a;k+:�a:úãÁ*.a;tk+.=+ea Ba;vea;t,a Á Á 47

How is it that the Earth stands in space without any support? Being heavier than the sky,
how is it that it does not fall? All those objects which fall from the sky, wherever they may
reach (on the Earth), they are always found to fall below. Therefore we justify that the Earth
should also fall below.

Here it is said: Do not presume that the Earth will fall somewhere as the objects fall on the
Earth. This is because it (the Earth) is the āśraya for the entire world and hence it is also
referred as the vísvambharā. All the objects are observed to fall till they reach the surface
of the Earth. For the falling Earth, there will be no pratis.t.hā, support from where it would
be stopped from falling further down.

All the objects keep falling on the Earth from all sides. The Earth does not fall because it
is in the lowest position vis-à-vis all objects. Even then [it has to be understood that] the
centre of the Earth, by its own force, will keep all the objects situated on the surface of it in
different directions bound downwards (to it).

Different parts on the surface of the Earth are at a distance equal to the radius of the sphere
[from the centre of the Earth]. These parts, [which are] spread all over, try to bind them-
selves mutually as they tend to fall. Therefore certainly the Earth does not fall from the
centre of space. The circular shape of the Earth is also because of the equal distribution of
weight in all directions.

If [you say that] no object can stand without any support, even in that case space itself serves
as permanent support for the Earth. It is found among objects that they can be mutually
supportive [the supporter can become the supported and vice versa]. It does not matter that
one has a manifest form (mūrta, referring to the Earth) and the other has an unmanifest
form (amūrta, referring to space).1.14 :de ;Za;a;nta:=+k+:a;lH

1.14 Duration corresponding to difference in longitudeKa;Ka;de ;va;a Bua;va;ea vxa:�Ma ;
a:�a:$ya;a;�Ma l+.}ba;k+:a;h;ta;m,a Á Á 29 Á Á.~va;de ;Za:jMa, ta;taH :Sa;��a;a &+.tMa ..a;kÒ +:Ma;Za;k+:a;h;ta;m,a ÁKa;Ka;de ;va;&+.tMa Ba;a;ga;a;dùÅ;a;nta:=M tva;[a;Ba;a;ga;ya;eaH Á Á 30 Á Á.~va;de ;Za;sa;ma;ya;a;}ya;ea;d;g{ea;Ka;a;ya;Ma :de ;Za;ya;ea;yRa;ya;eaH Áta;d;nta:=+a;l+.de ;Za;ea;tTa;ya;ea:ja;nEaH .sa;�/////////�a;mma;tea .~va;ke Á Á 31 Á ÁBUa;vxa:�ea na;a;
a;q+.kE +:k+:a .~ya;a;t,a k+:a;l+.ea :de ;Za;a;nta:=+ea;;�ÂåÅ +vaH Á;�a;na;m�a;a;l+.na;a;nta:=M ya;dõ ;a .~va;de ;Za;sa;ma:=e +Ka;ya;eaH Á Á 32 Á Á:de ;Za;a;nta:=+Ba;vaH k+:a;lH I+.nd;ea:�+:n}å.�a;a;l+.na;a;d;
a;pa Á:pra;a;gea;va dx ;Zya;tea :pra;tya;k, , :pa;(ãÉa;a;t,a :pra;a;.ya;Ma g{a;hH .sa;d;a Á Á 33 Á Á:de ;Za;a;nta:=+Ga;f� ;a;[ua;NNa;a ma;Dya;a Bua;�a;�+:dùÅ;aRu ;.a;a;�a:=+Na;a;m,a Á:Sa;��a;a Ba;�+:mxa;NMa :pra;a;.ya;Ma :=e +Ka;a;ya;aH :pa;a;(ãÉa;mea ;Da;na;m,a Á Á34 Á Á
khakhadevā bhuvo vr. ttam. trijyāptam. lambakāhatam || 29 ||
svadeśajam. , tatah. s.as.t.yā hr. tam. cakrām. śakāhatam |
khakhadevahr. tam. bhāgādyantaram. tvaks.abhāgayoh. || 30 ||
svadeśasamayāmyodagrekhāyām. deśayoryayoh. |

47 {TS 1977} pp. 68–69.
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tadantarāladeśotthayojanaih. sammite svake || 31 ||
bhūvr. tte nād. ikaikā syāt kālo deśāntarodbhavah. |
nimı̄lanāntaram. yadvā svadeśasamarekhayoh. || 32 ||
deśāntarabhavah. kālah. indorunmı̄lanādapi |
prāgeva dr. śyate pratyak, paścāt prācyām. grahah. sadā || 33 ||
deśāntaraghat.̄ıks.un. n. ā madhyā bhuktirdyucārin. ām |
s.as.t.yā bhaktamr. n. am. prācyām. rekhāyāh. paścime dhanam ||34 ||
The [measure of the] circumference (vr. tta) of the Earth [at the equator] 3300, when divided
by trijyā and multiplied by the Rsine of colatitude (lambaka) is [the circumference of the
latitudinal circle] at one’s own place. The same divided by 60, multiplied by 360 and again
divided by 3300, gives the distance of separation between two places in the latitudinal circle
[corresponding to one ghat.ikā] in degrees and so on (bhāgādi).

The deśāntara-kāla will be one nād. ikā between the places on the two meridians (yāmyo-
dagrekhā), the one passing through the observer and the other separated from it by a dis-
tance in yojanas, measured along the latitudinal circle, corresponding to the above circular
measure.

Or, the difference between the time of obscuration of the Moon in [the meridian passing
through] one’s own place, and the one passing through the meridian (samarekhā) [at an-
other location], is the deśāntara-kāla (time difference due to the difference in the longi-
tude). This deśāntara can also be determined from the release of the Moon [at the two
longitudes]. The planet is always seen earlier in the west and later in the east. Hence, the
deśāntara-kāla, multiplied by the mean daily motion of the planet and divided by 60, must
be subtracted in the east and added in the west.
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Fig. 1.9 Deśāntara-sam. skāra to find the longitude of a planet at sunrise at one’s own place.

In Indian astronomy the linear distances are measured in yojanas. In Fig. 1.9,
PCAQ is the prime meridian through Ujjayin̄ı. PDBQ is the meridian through the
observer. ABEF represents the terrestrial equator whose circumference Ce is given
to be 3300 yojanas. CDGH is a latitudinal circle corresponding to a latitude φ . The
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radius of this circle (a small circle) is the radius of the sphere multiplied by cosφ .
The circumference of this latitudinal circle C0 or svadeśabhūmiparidhi in yojanas
is stated to be:

C0 =
3300×Rcosφ

R
= 3300cosφ . (1.14)

As mentioned earlier (Section 1.3), the time taken by the stellar sphere (or the
Earth) to rotate through 360◦ is 60 ghat.ikās and this duration corresponds to one full
rotation of the latitudinal circle C0. Hence the distance along the latitudinal circle
that corresponds to one ghat.ikā is C0

60 . In other words, the distance of separation

whose measure in yojanas is equal to C0
60 corresponds to a difference of one ghat.ikā

in local time.
Further, the text also mentions that the distance in bhāgādis between two places

in the latitudinal circle corresponding to a separation of one ghat.ikā can be ex-
pressed as

C0 × 360
60× 3300

= 6cosφ . (1.15)

Let t0 be the time of an event, such as the obscuration of the Moon, for an ob-
server in the standard meridian. Let δ t be the difference in the sunrise times between
the observer on the standard meridian and an observer elsewhere. Then the local
time t at which the observer will observe the event is given by

t = t0 −δ t (if the observer is to the west)

t = t0 +δ t (if the observer is to the east). (1.16)

Let d be the distance of separation between the given place and the standard
meridian along the latitudinal circle. Then

δ t =
d

3300cosφ
×60 in ghat.ikās. (1.17)

It is suggested that δ t can be determined from the difference in times correspond-
ing to the beginning or end of a lunar eclipse at these places (with respect to their
local sunrise times). This particular physical phenomenon is chosen probably be-
cause the beginning of obscuration and the release of the Moon are sharply defined
events.

Let ∆θ be the daily motion of the planet, that is, the angle covered by it in 60
ghat.ikās. Then the angle covered by it in a time δ t is given by

δθ =
δ t ×∆θ

60
. (1.18)

Here δ t is called the deśāntarakāla and the term deśāntara-sam. skāra refers to the
application of δθ to the mean longitude of the planet obtained from the Ahargan. a,
to get the mean longitude at sunrise at the observer’s location.
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The above correction has to be applied positively to the mean longitude of the
planet obtained from the Ahargan. a, if the meridian passing through the observer
lies to the west of the standard meridian; and negatively if it lies to the east of it.
If θ0 is the mean longitude of the planet obtained from the Ahargan. a, then the
longitude at sunrise at the observer’s location is given by

θ = θ0 + δθ (the observer is to the west)

θ = θ0 − δθ (the observer is to the east). (1.19)

As the sunrise takes place earlier for observers to the east of the prime meridian, and
later for the observers to the west, the corrections have the signs as indicated above.1.15 k+:�ya;a;
a;d;Drua;va;aH
1.15 Initial positions at the beginning of the Kaliyuga:Sa;qõÅÉe +:de ;Sva;�///�a;b.Da;vea;d;a;~tua ;
a;va;�a;l+.�a;a;
a;d ;Drua;va;ea ;
a;va;Da;eaH Á:pra;a;Na;a;tya;��a;ñÍö�ÅÅ*:+.nea:�a;a;�a;çÉîå+;a;tua;�yMa ..a;ndÒ +ea;�a;ma;Dya;ma;m,a Á Á 35 Á Á.sa;�a;sa;a;ga:=+ZEa;le +.ndu ;Ba;va;a ;�a;l+.�a;a;d;ya;eaY;sxa:jaH Á:Sa;	a;æÅÅò÷*M +.Za;
a;�+:�a;�a;k+:a Za;ea;Dya;a ;
a;va;d;ea .j�a;a;vea tua ya;ea:ja;yea;t,a Á Á 36 Á Á:pa;*ñÍï Ù�å ÅÅ ùÁ+:a;kR +:tua;�ya;�a;l+.�a;a;
a;d ;Æa;sa;tea .=+a;a;ZaH :Sa;qM +.Za;k+:aH Á;
a;va:(õ;a;tua;�ya;aH k+:l+.a;(ãÉa .~vMa na;Ka;a;tya;
a;�;Ba;va;aH Za;neaH Á Á 37 Á Á:pa;a;tea tua ma;Nq+.l+.a;.Cu +;dÄâ e na;Ka;a;kx +:�a;ta:=+sa;a A;
a;pa Á

s.ad. vedes.vabdhivedāstu viliptādi dhruvo vidhoh. |
prān. ātyas.t.yaṅkanetrāgnitulyam. candroccamadhyamam || 35 ||
saptasāgaraśailendubhavā liptādayo ′sr. jah. |
s.at.trim. śalliptikā śodhyā vido j̄ıve tu yojayet || 36 ||
paṅktyarkatulyaliptādi site rāśih. s.ad. am. śakāh. |
vísvatulyāh. kalāśca svam. nakhātyas.t.ibhavāh. śaneh. || 37 ||
pāte tu man. d. alācchuddhe nakhākr. tirasā api |
The correction to the initial position of the Moon [at the beginning of the Kaliyuga] is
4◦ 45

′
46

′′
; of the Moon’s apogee it is 3r 29◦ 17

′
5
′′
; of Mars in minutes etc. it is 11r 17◦ 47

′
;

For Mercury 36 seconds have to be subtracted. In the case of Jupiter 12◦ 10
′
has to be added.

In the case of Venus add 1r 6◦ 13
′
; and for Saturn 11r 17◦ 20

′
[has to be added]; in the case

of the node of the Moon, 6r 22◦ 20
′

has to be added to the longitude obtained by subtracting
the mean longitude from the man. d. ala (360◦).

The term dhruva refers to the epochal position of the planets, i.e. the mean lon-
gitudes of the planets at the beginning of a given epoch. The epoch could be the
beginning of the Kaliyuga, or any other date chosen by the astronomer. In modern
parlance, the dhruva is the same as the initial value. The mean longitude of a planet
(madhyama-graha) is obtained by adding the dhruva to the product of the daily mo-
tion of the planet and the time elapsed (the Ahargan. a) since the epoch. From this,
the true position (sphut.a-graha) can be calculated by applying sam. skāras (correc-
tions).
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In specifying the dhruvas of the planets, one observes that there are slight vari-
ations from text to text. Some of the important Indian astronomical texts such
as Āryabhat. ı̄ya, Sūryasiddhānta etc. have assumed that the five planets, namely
Mercury, Venus, Mars, Jupiter and Saturn, and the Sun and the Moon were in
conjunction with the beginning point of Mes.a-rāśi at the commencement of the
present Kaliyuga. In other words, their mean longitudes at the beginning of the
Kaliyuga are taken to be 0r 0◦0

′
. This is an assumption.48 For instance, the follow-

ing verses in Sūryasiddhānta specify the dhruvas of the planets at the beginning of
the Kaliyuga:A;�/////////�a;sma;n,a kx +:ta;yua;ga;~ya;a;ntea .sa;veRa ma;Dya;ga;ta;a g{a;h;aH Á;
a;va;nea;ndu ;pa;a;ta;ma;nd;ea;�a;a;n,a mea;Sa;a;d;Ea tua;�ya;ta;a;Æa;ma;ta;aH Á Áma;k+.=+a;d;Ea Za;Za;a;ñÍö�ÅÅ*:+.ea;�Ma ta;tpa;a;ta;~tua tua;l+.a;
a;d;gaH Á;�a;na:=M +Za;tvMa ga;ta;a;(ãÉa;a;nyea na;ea;�+:a;~tea ma;nd;.a;a;�a:=+NaH Á Á 49

But for the apogees and nodes, the mean positions of all the planets at the end of the
Kr. tayuga were at the beginning of Mes.a rāśi (0r 0◦ 0

′
). The apogee of the Moon was

at the beginning of Makara (Capricorn) rāśi (270◦) and its node was at the beginning of
Tulā (Libra) rāśi (180◦). The positions of the nodes and apogees of the other planets are
not mentioned [separately], since their rate of motion is very slow.

Here one may wonder why the verse gives the epochal positions at the end of the
Kr. tayuga and not at the beginning of the Kaliyuga. The positions at the beginning
of the Kaliyuga would be the same as the positions at the end of the Kr. tayuga, as
the planets make an integral number of revolutions in the intervening period. This
is because the number of revolutions made by the planets in a Mahāyuga is even
and the combined duration of Tretāyuga and Dvāparayuga is exactly half that of a
Mahāyuga (see Section 1.9.1).

Dhruvas given in Tantrasaṅgraha

In contrast to the dhruvas specified in Sūryasiddhānta, non-zero epochal po-
sitions (at the beginning of the Kaliyuga) are specified by Nı̄lakan.t.ha in his
Tantrasaṅgraha. The values given by him are listed in Table 1.7.

Need for changing the dhruva

The reason for choosing the epochal positions to be different from those in Sūrya-
siddhānta and other texts is given in Yukti-d̄ıpikā. It is pointed out that the rate
of motion of the planets might have changed over time, and hence, the epochal

48 It is possible that the astronomers would have arrived at it by doing back-computation. That is,
computing their position by moving backwards in time, based on their present position and rate of
motion observed by them.
49 {SSI 1995} (I. 57–8), p. 37.
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Name of planet Dhruvas
in Sanskrit in English (in rāśis etc.);
a;va;DuaH Moon +4◦ 45

′
46

′′;
a;va;DUa;�a;m,a Moon’s apogee +3r 29◦ 17
′
5
′′A;sxa;k, Mars +11r 17◦ 47

′
0
′′;
a;va;t,a Mercury –36

′
0
′′.j�a;a;vaH Jupiter +12◦ 10

′
0
′′;Æa;sa;taH Venus +1r 6◦ 13

′
0
′′Za;�a;naH Saturn +11r 17◦ 20

′
0
′′;
a;va;Dua;pa;a;taH Moon’s node +6r 22◦ 20

′
0
′′

Table 1.7 Dhruvas of the planets at the beginning of the Kaliyuga as given in Tantrasaṅgraha.

positions at the beginning of the Kaliyuga based on the current observed rates (de-
termined from back-computations) should be taken to be the correct ones.k+:�ya;a;d;Ea na ;�a;na:=M +Za;tvMa Ba;ga;Na;a;de ;dùÅ;aRu ;.a;a;�a:=+Na;a;m,a Ága;�a;ta;Bea;d;a:�ua dx ;�///////////�a;#sa:;dÄâ ;aH ta:�Ea;Sa;Ma .~yua;DrRua;va;a;~ta;taH Á Á 50

The mean positions of the planets at the beginning of Kaliyuga is not 0r 0◦ 0
′
. Since there

is a difference in the rate of motion, whatever is determined on the basis of [current] obser-
vations are to be considered as the dhruvas.1.16 yua;ga;a;nta:=+pa;�a:=+k+:�pa;na;m,a

1.16 Introducing an alternative yugak+:�ya;a;
a;d;Drua;va;k+:a hùÅ:ae ;tea yua;ga;Ba;ea;ga;sa;ma;�///�a;nva;ta;aH Á Á 38 Á Áta:�a;dùÅ;au ;gea ;Drua;va;a :℄ea;ya;aH :Sa;q+(õ;ea;Sva;b.d;kM yua;ga;m,a ÁBa;ga;Na;a;t,a Ka;Ka;BUa;ta;a:(õ;Ea;yRua;ga;Ba;ea;ga;~tva;va;a;pya;tea Á ÁA;�.Èåî ÁÁ*+;yua;ga;Ba;ea;ga;aH .~vMa A;taH k+:�ya;a;
a;d:jea ;Drua;vea Á Á 39 Á Á
kalyādidhruvakā hyete yugabhogasamanvitāh. || 38 ||
tattadyuge dhruvā jñeyāh. s.ad. aśves.vabdakam. yugam |
bhagan. āt khakhabhūtāśvairyugabhogastvavāpyate ||
as.t.aghnayugabhogāh. svam. atah. kalyādije dhruve || 39 ||

These are the initial positions of the planets at the beginning of the Kaliyuga. These, added
to the angle covered by the planets in [all the] yugas [elapsed before the commencement
of the present yuga], give the initial positions of the planets at the beginning of the present
yuga. The yuga [defined here] consists of 576 years. The revolutions [completed by the
planets in a Mahāyuga] divided by 7500 gives the angle covered by the planets in a yuga
[of 576 years]. This angle multiplied by 8 has to be added to the initial positions at the

50 {TS 1977}, p. 73. The prose order for the second half of the verse is as follows – ta;taH (=ta;sma;a;t,a k+:a;l+.a;t,a) ga;�a;ta;Bea;d;a;t,a tua, ta:�a (= k+:�ya;a;d;Ea) O;;Sa;Ma (= g{a;h;a;Na;a;m,a) dx ;�///////////�a;#sa:;dÄâ ;aH (= I+.d;a;n�a;Maya:n:�EaH :pa:=� +a;[ya .sa;a;�a;Da;ta;aH O;;va) ;Drua;va;aH .~yuaH Á
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beginning of the Kaliyuga [to obtain the dhruvas], at the beginning of end of the eight
yugas [of 576 years] after the beginning of the Kaliyuga.

Here a shorter yuga of 576 years which is 1
7500 th of a Mahāyuga is defined for

computational convenience. The beginning of the ninth such yuga (or the end of
8 such yugas or 4608 years) after the Kaliyuga’s beginning is in 1507 CE, which
is close to the date of composition of Tantrasaṅgraha. That is why the method of
obtaining the dhruvas 4608 years after the beginning of the Kaliyuga is spelt out.1.17 k+:�ya;a;d;Ea ma;nd;ea;�a;aH
1.17 The Mandoccas at the beginning of the Kaliyuga.~va:=;=+va;yaH Ka;a;kx +:ta;yaH ;
a;dõ ;na;ga;Bua;va;eaY;Z�a;a;�a;ta:=+Bra;Æa:ja;na;aH ÁBa;Ea;ma;a;n}å.a;nd;ea;�a;Ma;Za;aH va;sua;tua:=+ga;a Ba;a;~k+.=+~ya;a;
a;pa Á Á 40 Á Á

svararavayah. khākr. tayah. dvinagabhuvo ′́s̄ıtirabhrajināh. |
bhaumānmandoccām. śāh. vasuturagā bhāskarasyāpi || 40 ||
The mandoccas of the planets beginning with Mars are 127, 220, 172, 80 and 240 degrees
respectively. And for the Sun [the mandocca] is 78 degrees.

The term mandocca refers to the direction of that point on the planetary orbit
where the planet has the least angular velocity. In modern parlance, it refers to the
direction of aphelion in the case of the five planets and the apogee in the case of the
Sun and the Moon.

Like the planets, the mandoccas of the planets are also in continuous motion.
But, since their rate of motion is very small (hardly a few minutes over hundreds of
years), they can be taken to be fixed for practical purposes. The longitudes of the
mandoccas at the beginning of the Kaliyuga, referred to as mandoccām. śāh.

51 in the
above verse, are listed in Table 1.8.

Name of planet Its Mandocca
in Sanskrit in English (in degrees)ku +.jaH Mars 127bua;DaH Mercury 220gua:�H Jupiter 172Zua;kÒ H Venus 80Za;�a;naH Saturn 240.sUa;yRaH Sun 78

Table 1.8 Longitudes of the mandoccas of the planets at the beginning of the Kaliyuga.

In the revised planetary model of Nı̄lakan. t.ha, discussed in the next chapter, the
Sun is the ś̄ıghrocca of all the planets, including the interior planets Mercury and

51 The term am. śāh. in this context refers to degrees.
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Venus, which had separate ś̄ıghroccas in the traditional planetary model. This is
emphasized in Laghu-vivr. ti in the present context:na;nua ku +.ja;a;d� ;a;na;Ma Z�a;a;Gra;ea;�a;~ya;a;
a;pa ;
a;va;dùÅ;a;ma;a;na;tva;a;t,a ta;d;
a;pa va;�+:v.ya;mea;vea;�a;ta ..ea;t,a na, .=+
a;va;ma;Dya;ma;~yEa;vaZ�a;a;Gra;ea;�a;tva;a;t,a ta;~ya :pra;d;a;ZRa;ta;tva;a;�a Á

The planets Mars etc. also have śighroccas. If so, is it not true that their longitudes
should also be mentioned? No, [they need not be mentioned] because the mean Sun is
the śighrocca for all these planets and its longitude (the procedure to obtain it) has already
been shown.

The commentary Yukti-d̄ıpikā on this chapter ends with the following verse,
where Śaṅkara Vāriyar acknowledges that the Malayalam work Yuktibhās. ā of
Jyes.t.hadeva52 happens to be the basis for the commentary Yukti-d̄ıpikā.I+.tyea;Sa :pa:=+kÒ +:ea;q+.a;va;a;sa;
a;dõ :ja;va:=+sa;m�a;a;�a:=+ta;ea ya;eaY;TRaH Á.sa tua ta:n:�a;sa;ñÍç ÅÅ*:" +.h;~ya :pra;Ta;meaY;Dya;a;yea ma;ya;a k+:�a;Ta;taH Á Á 53

The principles expounded by the reputed dvija living in the Parakrod. a have been ex-
plained by me thus in the first chapter of Tantrasaṅgraha.

52 Jyes.t.hadeva has been referred to as parakrod. āvāsa—one who lives in Parakrod. a.
53 {TS 1977}, p. 77.





Chapter 2.~å.Pu +.f;pra;k+.=+Na;m,a
True longitudes of planets

2.1 :ke +:ndÒ +l+.[a;NMa :pa;d;l+.[a;NMa ..a
2.1 Definition of the anomaly and the quadrant.~va;ea;�a;ea;na;ea ;
a;va;h;gaH :ke +:ndÒ M ta:�a .=+a;a;Za:�a;yMa :pa;d;m,a ÁA;ea:jea :pa;de ga;tEa;Sya;a;Bya;Ma ba;a;hu ;k+:ea;f� ;a .sa;meaY;nya;Ta;a Á Á 1 Á Á

svoccono vihagah. kendram. tatra rāśitrayam. padam |
oje pade gatais.yābhyām. bāhukot.̄ı same ′nyathā || 1 ||
The ucca subtracted from the planet is the kendra (anomaly). Three rāśis constitute a
pada (quadrant). In the odd quadrants, the bāhu and kot.i [are to be found] from the angle
covered and to be covered [respectively]. In the even quadrants it is otherwise.

The procedure for obtaining the madhyama-graha i.e. the mean longitude of
a planet from the Ahargan. a, was explained in the previous chapter. Two correc-
tions, namely manda-sam. skāra and ś̄ıghra-sam. skāra, have to be applied to the
madhyama-graha to obtain the sphut.a-graha or the true longitude of the planet. In
these two sam. skāras, to be described later in this chapter, two angles, namely the
manda-kendra (manda anomaly or mean anomaly) and the ś̄ıghra-kendra (́s̄ıghra-
anomaly or anomaly of conjunction or solar anomaly) play important roles. In the
above verse, the kendras and their sines and cosines (known as bāhus and kot.is)
pertaining to both the sam. skāras are dealt with. For this, two quantities, namely the
ucca and the kendra, are introduced.

Ucca and kendra

The ucca and kendra essentially refer to the apsis and anomaly respectively. These
two terms are generally used with the adjectives manda and ś̄ıghra and appear in
the two processes of correction, namely manda-sam. skāra and ś̄ıghra-sam. skāra.

49
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The manda-sam. skāra1 is a procedure to obtain the correction for the eccentricity
of the planetary orbit. The terms ucca and kendra used in this context refer to the
direction of the mandocca (apogee/aphelion of the planet) and the manda-kendra
respectively.

Similarly, ucca and kendra used in the context of ś̄ıghra-sam. skāra—the process
by which the geocentric longitudes of the planets are obtained from their heliocen-
tric longitudes2—refer to the directions of the ś̄ıghrocca and ś̄ıghra-kendra respec-
tively. If θ0 refers to the longitude of the mean planet, and θm that of its mandocca,
then the manda-kendra, θmk, is defined as

θmk = θ0 −θm. (2.1)

If θms is the longitude of the manda-sphut.a-graha, that is, the mean longitude of
the planet corrected by manda-sam. skāra, and θs that of the ś̄ıghrocca, then the
ś̄ıghra-kendra, θsk, is defined as

θsk = θms −θs. (2.2)

In the second quarter of the above verse, it is mentioned that three rāśis constitute a
pada. Since rāśi is a 30◦ division on the ecliptic, by definition the term pada refers
to a quadrant. In Fig. 2.1a, APB represents a pada. Before explaining the second
half of the verse, it would be useful to introduce the concepts of bāhu and kot.i,
which are frequently employed in this and the following chapters.

Bāhu and Kot.i

In Indian astronomical texts, the terms bāhu3 and kot.i are used in association with
either cāpa or jyā. The terms cāpa and jyā literally mean bow and string respec-
tively. In this context, they refer to the arc of a circle and the chord associated with
it. Sometimes instead of the term cāpa, dhanus is also used to refer to the arc of a
circle.

In Fig. 2.1a, the arc PAL represents the cāpa and PQL is the jyā associated with
the cāpa (arc). Though literally the term jyā refers to the chord PL, in most situations
PQ, which is half of PL, is referred to as the jyā (Rsine) of the arc PA. Since PQ
is only half of PL, it must actually be referred to as the jyārdha. However, since
only PQ is involved in planetary computations (as will be clear later), the term jyā
itself is used to refer to the semi-chord PQ, for the sake of brevity in the use of
terminology. Hence the terms bāhucāpa and bāhujyā or Rsine refer to the arc AP
and the semi-chord PQ in the figure, respectively. The terms kot.icāpa and kot.ijyā

1 The significance of this is explained in detail in Appendix F. The equivalent of this correction in
modern astronomy is the equation of centre.
2 For details refer to Sections 2.26–28 and Appendix F.
3 The literal meaning of bāhu is hand. Similarly, kot.i means side. In this context, the term kot.i
refers to the side which is perpendicular to bāhu.
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or Rcosine refer to the arc PB and the segment OQ (perpendicular to the chord PL),
respectively.

O Q
A

P

L

B

θ

α

Fig. 2.1a Bāhu and cāpa.

Relation between the jyās and the sine and cosine function

Let R be the radius of the circle shown in Fig. 2.1a. Now, the quantities which are
designated by the terms bāhucāpa, bāhujyā, kot.icāpa and kot.ijyā are listed below:

bāhucāpa = Rθ = the length of the arc AP corresponding to the angle
θ .

bāhujyā = Rsinθ = R× the sine of the angle θ .
kot.icāpa = R(90 − θ ) = the length of the arc corresponding to the

angle (90−θ).
kot.ijyā = Rcosθ = R× the cosine of the angle θ .

In the following, we give the relationship between sine of an angle, θ , and the
jyā of the corresponding arc, α = Rθ , normally expressed in minutes. In Fig. 2.1a,
let the length of the arc AP be α . Then we have the following relation between the
jyās and the modern sine and cosine functions:

bāhujyā α = Rsinθ
kot.ijyā α = Rcosθ . (2.3)

Normally the circumference of the circle is taken to be 21600 units (the number of
minutes in 360◦), so that an angle of 1′ corresponds to an arc length of 1 unit. Hence
the radius R = 21600

2π ≈ 3437.7468, which is approximately 3438 minutes. In Indian
astronomical and mathematical texts, the radius of the circle R is referred to as the
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trijyā. This is because R is the jyā corresponding to the arc whose length is equal
to three rāśis (5400′). In other words, tri-rāśi-jyā is shortened to trijyā.

Finding the bāhu and kot.ijyās in different quadrants

The sine or cosine of an angle greater than 90◦ can always be determined in terms
of an angle less than 90◦. This is the essence of the second half of the verse wherein
it is stated that:

• if the kendra is in the odd quadrant, i.e. its value lies in the range 0◦− 90◦ or
180◦−270◦, then the bāhu and kot.i are to be determined from the angles already
covered and to be covered in that quadrant, respectively.

• if the kendra is in the even quadrant, i.e. its value lies in the range 90◦−180◦ or
270◦− 360◦, then the bāhu and kot.i are to be determined from the angles to be
covered and already covered in that quadrant, respectively.
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D
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Fig. 2.1b Bāhu and kot.i when the kendra is in different quadrants.

We explain this concept further with the help of Fig. 2.1b. In the following we
use K to denote the kendra. Then,

1. If K is in the first quadrant, i.e. K = AÔA1, RsinAÔA1 = AA1, RcosAÔA1 =
RsinAÔA2 = AA2.

2. If K is in the third quadrant, i.e. K = CÔA1, |RsinCÔA1| = RsinCÔC1 = CC1

and |RcosCÔA1| = RsinCÔC2 = CC2.
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Hence, in the above cases, the bāhu and kot.i are determined from the angles
covered and to be covered respectively in the odd quadrant.

3. If K is in the second quadrant, i.e. K = BÔA1, |RsinBÔA1|= RsinBÔB1 = BB1,
and |RcosBÔA1| = RsinBÔB2 = BB2.

4. If K is in the fourth quadrant, |RsinDÔA1|= RsinDÔD1 = DD1 and |RcosDÔA1|=
RsinDÔD2 = DD2.

Thus the bāhu and the kot.i are determined from the angles to be covered and
covered respectively in the even quadrants. Here, only the procedure to find the
magnitudes of the Rsines and Rcosines is given. Their signs (whether they have
to be applied positively or negatively) will be stated separately in each context in
which they are being employed.

The concepts of the manda-kendra and ś̄ıghra-kendra are explained in Laghu-
vivr. ti as follows:ta:�a :pra;Ta;ma;a;Dya;a;ya;ea;�+:pra;k+:a:=e +Na :�Ea:=+a;a;Za;k+:a;n�a;a;ta;a Ba;ga;Na;a;
a;d;k+:a yea g{a;h;ma;Dya;ma;aH .tea;Bya;eaBa;ga;Na;a;na;pa;a;~ya ;a;Za;�e ;Bya;ea .=+a;Zya;a;
a;d;Bya;ea Ba;a;ga;a;tma;k+:mua;pa;
a;d;�M .~vMa .~vMa ma;nd;ea;�Ma ;
a;va;Za;ea;Dyaya;�/////�a;.C+.Sya;tea, ta;
a;d;h ma;nd;ke +:ndÒ +Æa;ma;tya;Æa;Ba;D�a;a;ya;tea Á ya;d;a :pua;naH ma;nd;P+.le +.na .~å.Pu +.f� ;a;kx +:ta;a;t,aku +.ja;a;d� ;a;na;Ma ma;Dya;ma;a;t,a Z�a;a;Gra;ea;�a;BUa;tMa .=+
a;va;ma;Dya;mMa ;
a;va;Za;ea;Dya;tea, ta;d;a ta:�a A;va;a;Za;�M Z�a;a;Gra;ke +:ndÒ MBa;va;�a;ta Á

From the mean positions of the planets (madhyama-grahas), obtained using the rule of
three described in Chapter 1, which includes an integral number of revolutions, rāśis, etc.
[the fractional part], subtract the integral number of revolutions. From the remaining rāśis
etc. [which represents the mean longitude of the planet] when its own mandocca is sub-
tracted, the remainder obtained is said to be the manda-kendra. When the mean Sun,
which is the ś̄ıghrocca, is subtracted from the manda corrected longitudes of Mars etc.,
the remainder obtained is the ś̄ıghra-kendra.

Note: Here it is specifically mentioned that the ś̄ıghrocca is the mean Sun for all
the five planets while defining ś̄ıghra-kendra. The significance of this is explained
later in sections 2.26–28 and also in Appendix F, during the discussion of ś̄ıghra-
sam. skāra for the inner planets.

The complementarity between the sine and the cosine functions is also succinctly
put forth in the commentary Laghu-vivr. ti:ba;a;hu ;Da;nua;
a;vRa;h� ;a;nMa .=+a;a;Za:�a;yMa k+:ea;�a;f;Da;nuaH Á ta;
a;dõ ;h� ;a;nMa .=+a;a;Za:�a;yMa ba;a;hu ;Da;nuaH Á Á

The arc of the bāhu subtracted from 90◦ is the arc of the kot.i. That (arc of the kot.i) sub-
tracted from 90◦ is the arc of the bāhu.2.2 .$ya;a;g{a;h;NMa ..a;a;p�a;a;k+.=+Na:úãÁ*.a

2.2 Computation of the Rsines and the arcs;�a;l+.�a;a;Bya;~ta:�va;nea:�a;a;�a;aH ga;ta;a .$ya;aH Zea;Sa;taH :pua;naH Ága;ta;ga;}ya;a;nta:=:Èåî ÁÁ*+;a;�a &+.ta;a;~ta:�va;ya;mEaH ;Æa;[a;pea;t,a Á Á 2 Á Ád;eaHk+:ea;�a;f:$yea na;yea;de ;vMa .$ya;a;Bya;(ãÉa;a;pMa ;
a;va;pa;yRa;ya;a;t,a Á
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liptābhyastattvanetrāptāh. gatā jyāh. śes.atah. punah. |
gatagamyāntaraghnācca hr. tāstattvayamaih. ks. ipet || 2 ||
doh. kot.ijye nayedevam. jyābhyaścāpam. viparyayāt |
By dividing the minutes [of arc] by 225, the number of jyās that have elapsed is obtained.
Multiply the remainder by the difference between the (tabular) Rsine values of the elapsed
and the next, divide by 225 and add the result to the elapsed jyā, to obtain the bāhu and
kot.i. From the jyās the arcs can be obtained by the reverse process.

As already explained, in Indian astronomical and mathematical works the cir-
cumference of a circle is taken to be 360◦ = 21600′. Therefore the length of the
arc corresponding to each quadrant will be 5400′. This length is divided into 24
equal segments, each segment corresponding to 225′. In Fig. 2.2, the points Pi (i =
1,2, . . . ,24) represent the end points of the 24 segments represented by the arcs
Pi−1Pi. The set of jyās, Ji = PiNi, (i = 1,2, . . . ,24) corresponding to the 24 cāpas
P0Pi, are explicitly stated in many texts such as Āryabhat.ı̄ya and Sūryasiddhānta.4

A method for obtaining more accurate values of these tabulated jyās will be pre-
sented in the next verse.

Let Si represent the length of the 24 segments P0Pi, in minutes of arc and Ji, the
jyā corresponding to it. That is,

Si = P0Pi = i×225,

and Ji = PiNi. (i = 1,2, . . . ,24) (2.4)

The above verse gives an interpolation formula to find out the jyā corresponding to
any length of arc between 0 and 5400′ from the set of 24 jyās listed in Table 2.1
(page 64). Suppose S is the length of an arc in minutes that lies between Si and Si+1.
That is,

S = Si + r, O ≤ r < 225, (2.5)

where Si = i× 225. Since the jyā corresponding to the nearest arc lengths Si and
Si+1 on either side of S are known, the jyā corresponding to S is obtained by the rule
of three. It is given by

jyā S = Ji +
r× (Ji+1 − Ji)

225
. (2.6)

4 The following verses in Sūryasiddhānta (II. 17–22) give the values of the 24 jyās:ta:�va;a;��a:(õ;a;na;ea;ñÍö�ÅÅ*:+.a;�///�a;b.Da;kx +:ta;a .�+.pa;BUa;Æa;ma;Da:=;�Ra;vaH Á Ka;a;ñÍö�ÅÅ*:+.a;�;Ea :pa:úãÁ*.a;ZUa;nyea;Za;a ba;a;Na:�+.pa;gua;Nea;nd;vaH Á ÁZUa;nya;l+.ea;.a;na;pa:úãÁ*.aE ;k+:a;�//////�a;ZC+.dÒ ;�+.pa;mua;n�a;a;nd;vaH Á ;
a;va;ya;�a;ndÒ +a;�a;ta;Dxa;ta;ya;ea gua;Na:=+nDra;a;}ba:=+a;��a:(õ;a;naH Á Ámua;�a;na;Sa;q:�a;ma;nea:�a;a;a;Na ..a;ndÒ +a;�a;çÉîå+;a;kx +:ta;d;~åò:a;k+:aH Á :pa:úãÁ*.a;a;�;
a;va;Sa;ya;a;[�a;a;a;Na ku +.úêÁÁ*+:=+a;��a:(õ;a;na;ga;a;��a:(õ;a;naH Á Á.=+nDra;pa:úãÁ*.a;a;�;k+:ya;ma;aH va;~va;dùÅò ;a;ñÍö�ÅÅ*:+.ya;ma;a;~ta;Ta;a Á kx +:ta;a;�;ZUa;nya:$va;l+.na;aH na;a;ga;a;
a;dÒ +Za;a;Za;va;�îå+:yaH Á Á:Sa;f, :pa:úãÁ*.a;l+.ea;.a;na;gua;Na;aH ..a;ndÒ +nea:�a;a;�a;çÉîå+;a;va;�îå+:yaH Á ya;ma;a;
a;dÒ +va;
a;�îå+.$va;l+.na;aH .=+nDra;ZUa;nya;a;NRa;va;a;çÉîå+;a;yaH Á Á.�+.pa;a;�a;çÉîå+;a;sa;a;ga:=+gua;Na;aH va;~va;�a;çÉîå+;a;kx +:ta;va;�îå+:yaH Á :pra;ea;Ja�a;ea;tkÒ +:mea;Na v.ya;a;sa;a;Da;Ra;t,a
. o+.tkÒ +:ma:$ya;a;DRa;
a;pa;Nq+.k+:aH Á Á

The 24 jyā values in the above verses have been given using the Bhūtasaṅkhyā system of repre-
senting numbers (see Appendix A).
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Fig. 2.2 Determination of the jyā corresponding to the arc lengths which are multiples of 225′.

Illustrative example

Suppose the arc length S = 1947. Find the jyā corresponding to it.
The given arc length S = 1947 lies between S8 and S9, as S8 = 8× 225 = 1800

and S9 = 2025. Hence, S can be written as S = S8 +147. The jyā corresponding to
arc length S is given by:

jyā S = J8 +
147× (J9− J8)

225
.

For instance, we may use the values of Mādhava, quoted in Laghu-vivr. ti, J8 =
1718′52′′24′′′ and J9 = 1909′54′′35′′′. Then,

jyā 1947 = 1718′52′′24′′′ +
147× (1909′54′′35′′′− 1718′52′′34′′′)

225
= 1843′41′′02′′′.

This is the value of jyā (1947) obtained by the first-order interpolation, while the
actual value is 1844′34′′09′′′.
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a;F+.ta:$ya;a;na;ya;na;m,a
2.3 Computation of the tabular Rsines;
a;va;�a;l+.�a;a;d;Za;k+:ea;na;a .$ya;a .=+a;Zya;�;Ma;Za;Da;nuaHk+:l+.aH Á Á 3 Á ÁA;a;dùÅ;a:$ya;a;Da;Ra;t,a ta;ta;ea Ba;�e .sa;a;DRa;de ;va;a;��a:(õ;a;Æa;Ba;~ta;taH Átya;�e ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya;a .$ya;a ..a ta;dùÅ;au ;�a;taH Á Á 4 Á Áta;ta;~tea;nEa;va h;a:=e +Na l+.b.DMa Za;ea;DyMa ;
a;dõ ;t�a;a;ya;taH ÁKa;Nq+.a;t,a txa;t�a;a;ya;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya;~ta;dùÅ;au ;ta;ea gua;NaH Á Á 5 Á Átxa;t�a;a;yaH .~ya;a;t,a ta;ta;(ãÉEa;vMa ..a;tua;Ta;Ra;dùÅ;a;aH kÒ +:ma;a;d, gua;Na;aH Á

viliptādaśakonā jyā rāśyas.t.ām. śadhanuh. kalāh. || 3 ||
ādyajyārdhāt tato bhakte sārdhadevāśvibhistatah. |
tyakte dvit̄ıyakhan. d. ajyā dvit̄ıyā jyā ca tadyutih. || 4 ||
tatastenaiva hāren. a labdham. śodhyam. dvit̄ıyatah. |
khan. d. āt tr. t̄ıyakhan. d. ajyā dvit̄ıyastadyuto gun. ah. || 5 ||
tr. t̄ıyah. syāt tataścaivam. caturthādyāh. kramād gun. āh. |
The jyā of one-eighth of the arc, corresponding to a rāśi (expressed) in minutes, is 10′′

short of that (length of the arc in minutes). The quantity obtained by dividing the first
jyārdha by 233 1

2 , and subtracting it from the same, is the dvit̄ıyakhan. d. ajyā. This added
to it (the first jyā) is the second jyā. The result obtained by dividing that (the second jyā)
by the same divisor (233 1

2 ) is to be subtracted from the second khan. d. ajyā. This is the
tr. t̄ıyakhan. d. ajyā. This added to the second is the third gun. a.5 From that, the fourth gun. a
etc. have to be obtained in order.

As mentioned earlier, some texts like Āryabhat. ı̄ya and Sūryasiddhānta give the
table of 24 jyās from which the jyā of any length of arc can be found, as illustrated
through an example in the previous section. In the verses above, a procedure for
finding more accurate values of the 24 jyās is described.6 For this, two new terms,
namely the khan. d. ajyā (Rsine difference) and the pin. d. ajyā (whole Rsine) are intro-
duced.

With reference to Fig. 2.2, they are defined as follows:

pin. d. ajyā = PiNi = Ji i = 1,2, . . . ,24,

khan. d. ajyā = Pi+1Ni+1 −PiNi = ∆i i = 1,2, . . . ,23. (2.7)

The term pin. d. ajyā essentially refers to the whole or the tabulated jyā. They are
24 in number, represented by J1,J2, . . . ,J24 and are expressed in minutes of arc. The
last pin. d. ajyā, namely P24N24 = P24O, is referred to as trijyā, and its length is equal
to the radius of the circle. The difference between the successive pin. d. ajyās are
referred to as the khan. d. ajyās. In these verses the first pin. d. ajyā and the procedure
for generating the successive pin. d. ajyās from that are given.

5 The term gun. a has various meanings. In this verse and in verse 5a, it could be assigned the
meaning rope, in which case it is the same as the word jyā. But in verses 6, 8 etc. of this chapter it
is used to mean a multiplier (i.e. numerator).
6 In fact, the procedure is the same as in Āryabat.ı̄ya, but for the values of the first jyā (which is
taken to be 224′50′′ instead of 225′) and the divisor (which is taken to be 233 1

2 instead of 225′).
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The length of the first pin. d. ajyā is stated to be one-eighth of a rāśi expressed in
minutes minus 10 seconds; thus P1N1 (in Fig. 2.2) is equal to 224′ 50′′. This is also
equal to the first khan. d. ajyā. Thus we have

jyā P0P1 = P1N1 = J1 = 224′ 50′′ = ∆1. (2.8)

This can be understood as follows. In Fig. 2.2,

P0ÔP1 =
90
24

= 3.75◦ = 225′ = 0.65949846 radian. (2.9)

The first pin. d. ajyā is often taken to be 225′ in some earlier Indian texts like
Āryabhat. ı̄ya and Sūryasiddhānta based on the approximation,

Rsinα ≈ Rα = 225′. (2.10)

In contrast to the above approximation, which of course is reasonably good for small
α, the above set of verses present the value of the first pin. d. ajyā based on a better
approximation,

sinα ≈ α − α3

3!
. (2.11)

In fact, it is later stated explicitly in the text (see verse 17 of this chapter) that this
is the approximation that has been employed in arriving at the value of 224′ 50′′ for
the first pin. d. ajyā. Thus,

P1N1 = Rsinα ≈ 21600
2π

(
α − α3

6

)
= 224.8389′ ≈ 224′50′′. (2.12)

In the following, we give the procedure outlined in the text for obtaining the suc-
cessive khan. d. ajyās and pin. d. ajyās, along with the rationale behind it. The second
khan. d. ajyā ∆2 is defined as

∆2 = J2 − J1

= R(sin2α − sinα), (2.13)

where PÔP2 = 2α . Now, sin2α = 2sinα cosα . Hence,

∆2 = Rsinα(2cosα −1). (2.14)

Rewriting the above expression we have,

∆2 = Rsinα[1−2(1− cosα)]. (2.15)

For α = 225′, we have

2(1− cosα) ≈ 0.004282153. (2.16)
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This is approximated in the text by

1

233 1
2

≈ 0.004282655. (2.17)

Hence

∆2 = Rsinα

(
1− 1

233 1
2

)
,

or ∆2 = J1 −
J1

233 1
2

= ∆1 −
J1

233 1
2

≈ 224′50′′− 57.77′′

≈ 223′52′′. (2.18)

The second pin. d. ajyā is given by

J2 = J1 +∆2

= 224′50′′ +223′52′′

= 448′42′′. (2.19)

The third khan. d. ajyā ∆3 is defined as

∆3 = J3 − J2 = R(sin3α − sin2α). (2.20)

Rewriting the above expression we get

∆3 = R [sin(2α +α)− sin2α]

= R [(sin 2α cosα + cos2α sinα)− sin2α]

= R [(sin 2α cosα +(2cos2 α − 1)sinα)− sin2α]

= R [2sin2α cosα − sinα − sin2α]

= R [sin2α − sinα −2sin2α(1− cosα)]

= ∆2 − J2 2(1− cosα). (2.21)

We have already noted that

2(1− cosα) ≈ 1

233 1
2

. (2.22)

Hence the third khan. d. ajyā is given by

∆3 = ∆2 −
J2

233 1
2
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≈ 223′52′′−1′55′′

= 221′57′′. (2.23)

Thus the third pin. d. ajyā becomes

J3 = J2 +∆3

= 448′42′′ +221′57′′

= 670′39′′, (2.24)

and so on. In general, the ith khan. d. ajyā is given by

∆i = ∆i−1 −
Ji−1

233 1
2

, (2.25)

and the ith pin. d. ajyā by
Ji = Ji−1 +∆i. (2.26)

The iterative relation (2.25) follows from the easily verifiable relation for ∆i+1 given
by

∆i+1 = Rsin(i+1)α −Rsin iα
= R [sin iα − sin(i−1)α −2sin iα(1− cosα)],

= ∆i − 2(1− cosα)Rsin iα, (2.27)

and the above approximation (2.22) for 2(1− cosα). In fact, a recursion relation
amounting to the above is stated a few verses later. The above iterative procedure is
described in Laghu-vivr. ti as follows:ta;ta;ea ;
a;va;�a;l+.�a;a;d;Za;ke +:na ;
a;va:=+
a;h;ta;a;t,a ta:�va;nea:�a;a;t,a A;a;dùÅ;a:$ya;a;DRa;tua;�ya;a;t,a, .sa;a;DRa;de ;va;a;��a:(õ;a;Æa;BaH;
a;va;Ba:$ya ya;
a;�+:�a;a;
a;d;P+.lM l+.Bya;tea, ta;d;a;dùÅ;a;
a;dõ ;t�a;a;ya;ya;eaH Ka;Nq+$ya;ya;ea:=+nta:=M .~ya;a;t,a Á ta;d;a;dùÅ;a:$ya;a-Ka;Nq+.ta;ea ;
a;va;Za;ea;Dya ;a;Za;�M ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a .~ya;a;t,a Á ta;ta;~ta;dùÅ;au ;�+:a :pra;Ta;ma;Ka;Nq+$ya;a ;
a;dõ ;t�a;a;ya-;
a;pa;Nq+$ya;a .~ya;a;t,a Á ta;ta;ea ;
a;dõ ;t�a;a;ya;
a;pa;Nq+$ya;a;taH :pUa;vRa;h;a:=e +NEa;va ;
a;va;Ba;�M :P+.lM ;
a;dõ ;t�a;a;ya;txa;t�a;a;ya;ya;eaHKa;Nq+$ya;ya;ea:=+nta:=M .~ya;a;t,a Á ta;taH :pua;naH ;
a;dõ ;t�a;a;ya;Ka;Nq+$ya;a;taH ;
a;va;Za;ea;Dya ;a;Za;�M txa;t�a;a;ya;Ka;Nq+$ya;a.~ya;a;t,a Á ta;~ya;aH ;
a;dõ ;t�a;a;ya;
a;pa;Nq+$ya;a;ya;a;(ãÉa ya;ea;gaH txa;t�a;a;ya;
a;pa;Nq+$ya;a .~ya;a;t,a Á A;Ta ta;ta;ea;pyua;�+:pra;k+:a-:=e +Na ..a;tua;Ta;Ra;dùÅ;a;aH gua;Na;aH kÒ +:mea;Na .sa;a;Dya;aH Á

Then, whatever is obtained in minutes etc. (liptādi) as the result when 225 diminished
by 10 seconds, which is equal to the first Rsine, is divided by 233.5, will be the differ-
ence between the first and second khan. d. ajyās. This [result] when subtracted from the first
khan. d. ajyā will be the second khan. d. ajyā. The first khan. d. ajyā added to this will then
be the second pin. d. ajyā. Then the result obtained by dividing the second pin. d. ajyā by the
above-mentioned divisor will be the difference between the second and third khan. d. ajyās.
Again when this [result] is subtracted from the second khan. d. ajyā, [the quantity obtained]
will be the third khan. d. ajyā. The sum of this and the second pin. d. ajyā will be the third
pin. d. ajyā. From there on, the fourth Rsine etc. have to be obtained by the method stated
above.
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Laghu-vivr. ti also prescribes more accurate values of the first Rsine (J1), as well
as the divisor.A:�a ;
a;va;�a;l+.�a;a:�+.pa;mea;va .$ya;a;.a;a;pa;a;nta:=+ma;Æa;Ba;prea;tya ;
a;va;�a;l+.�a;a;d;Za;k+:mua;�+:m,a Á va;~tua;taH :pua;naHA;�;
a:�Ma;Za;t,a ta;tpa:=+a;�a;Da;kM ;
a;va;�a;l+.�a;a;na;va;k+:mea;vEa;ta;t,a Á A;ta O;;va Ba;a;ga;h;a:=+eaY;
a;pa na ta:�a .sa;a;DRa;de ;va;a;��a:(õ;a-tua;�yaH Á A;
a;pa tua dõ ;a;
a:�Ma;Za;
a;dõ ;�a;l+.�a;a;�a;Da;k+:de ;va;a;��a:(õ;a;tua;�ya I+.�a;ta Á

Here with the intention of specifying the difference between the Rsine and the arc in terms
of viliptās only, it was stated to be 10 viliptās. Actually it is 38 tatparās in excess of
9 viliptās. It is for this reason, the divisor is also not 233 1

2 . But 233 (minutes) and 32
viliptās.

What is stated above is that the first Rsine (J1) should be taken to be 225′ −
0′9′′38′′′ = 224′50′′22′′′. Similarly the divisor should be taken to be 233 + 32

60 in-
stead of 233 1

2 . The values of tabular Rsines as calculated with these more accurate
values of J1 and the divisor are more or less the same as the tabular Rsines given by
Mādhava, as we show below in Table 2.1.2.4 :pra;k+:a:=+a;nta:=e +Na .$ya;a;na;ya;na;m,a
2.4 Another method for obtaining the Rsinesv.ya;a;sa;a;D a :pra;Ta;mMa n�a;a;tva;a ta;ta;ea va;a;nya;a;n,a gua;Na;a;n,a na;yea;t,a Á Á 6 Á Á��a;a;Za.Èåî ÁÁ*+;.a;kÒ +:�a;l+.�a;a;ByaH v.ya;a;sa;eaY;TeRa;Sva;�a;çÉîå+;a;Æa;Ba;&R +.taH Áta;�+l+.a;dùÅ;a:$ya;ya;eaH kx +:tya;eaH Bea;d;a;n}å.Ua;l+.mua;pa;a;�////�a;nta;ma;a Á Á 7 Á ÁA;ntya;ea;pa;a;ntya;a;nta:=M ;
a;dõ .Èåî ÁÁ*+M gua;Na;ea v.ya;a;sa;d;lM h:=H ÁA;a;dùÅ;a:$ya;a;ya;a;~ta;Ta;a;
a;pa .~ya;a;t,a Ka;Nq+$ya;a;nta:=+ma;a;
a;d;taH Á Á 8 Á Áta;a;Bya;Ma tua gua;Na;h;a:=+a;Bya;Ma ;
a;dõ ;t�a;a;ya;a;de :=+
a;pa kÒ +:ma;a;t,a Áo+�a:=+ea:�a:=+Ka;Nq+$ya;a;Bea;d;aH ;
a;pa;Nq+.gua;Na;a;DRa;taH Á Á 9 Á ÁO;;vMa .sa;a;va;ya;va;a .j�a;a;va;aH .sa;}ya;ñÍîå Å*:� +.a;tva;a :pa;Fe +.t,a kÒ +:ma;a;t,a Á

vyāsārdham. prathamam. n̄ıtvā tato vānyān gun. ān nayet || 6 ||
tr̄ı́saghnacakraliptābhyah. vyāso ′rthes.vagnibhirhr. tah. |
taddalādyajyayoh. kr. tyoh. bhedānmūlamupāntimā || 7 ||
antyopāntyāntaram. dvighnam. gun. o vyāsadalam. harah. |
ādyajyāyāstathāpi syāt khan. d. ajyāntaramāditah. || 8 ||
tābhyām. tu gun. ahārābhyām. dvit̄ıyāderapi kramāt |
uttarottarakhan. d. ajyābhedāh. pin. d. agun. ārdhatah. || 9 ||
evam. sāvayavā j̄ı vāh. samyaṅn̄ıtvā pat.het kramāt |
Or else, the gun. ās [the values of the jyās] may be obtained by first obtaining the vyāsārdha
(radius). The number of seconds of arc in a circle multiplied by 113 and divided by 355 is
the diameter.7

The square root of the difference between the squares of half of that (diameter) and the
first jyā is the penultimate jyā. The difference between the last jyā and the penultimate

7 Here, a clarifying note regarding the number 355 represented using the Bhūtasaṅkhyā system
may be useful. In the string arthes.vagni employed to refer to this number, the word artha should
not be taken to refer to purus.ārtha, in which case it would be referring to the number 4. On the
other hand, it should be taken to be referring to 5 sense organs—through the derivation “arthyate
anenetyartha.h” (through which things are sought after).
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one multiplied by two is the gun. a (multiplier) and the radius is the hāra (divisor). From
the ādyajyā [multiplying it with the multiplier and dividing by the divisor], the difference
between the first two khan. d. ajyās is obtained. With the same multiplier and divisor, and
multiplying the multiplier by the second pin. d. ajyā, the third pin. d. ajyā etc., the difference
between the successive khan. d. ajyās are obtained. Having thus obtained the jyās with their
parts (seconds etc.) they may be tabulated in a sequence.

Here a procedure for generating the jyā table (table of Rsines) by finding the
differences of the successive khan. d. ajyās is described. As will be seen below, this
procedure merely involves the knowledge of the first jyā (J1) and trijyā. It may be
recalled that the method described in the previous section (verses 4–6a) essentially
made use of the following equations for generating the successive pin. d. ajyā values
given in Table 2.1.

Ji+1 = Ji + ∆i+1 (0 ≤ i ≤ 23) (2.28)

∆i+1 = ∆i −
Ji

233 1
2

(1 ≤ i ≤ 23), (2.29)

where ∆i and Ji i = 1,2, . . . ,24, refer to the khan. d. ajyās and pin. d. ajyās respectively.
Since ∆1 = J1, is known, all the jyās can be generated using the above equations
recursively. Equation (2.29) can be rewritten as

∆i −∆i+1 =
Ji

233 1
2

. (2.30)

In the above verses (6–9) the recursion relation which is the basis of (2.30) is stated.
Here the value of the last jyā (J24 = trijyā), which is the same as the radius of the
circle, is first stated. Since J1 is already known, with these two jyās (the first and the
last), the value of the penultimate jyā (J23) is found. Then the text defines a gun. a
or multiplier and a hāra or divisor, using which a recursion relation is formulated;
making use of this, all the tabular differences of the khan. d. ajyās and hence the values
of the 24 jyās can be obtained. This method is quite instructive and may be described
as follows. It has already been noted that the circumference of the circle is taken to
be 21600. The diameter of this circle is stated to be:

D =
21600× 113

355
. (2.31)

So, essentially, 355
113 = 3.14159 is taken to be the approximate value of π . Using (2.3),

and the notation α = 225′ = 3.75◦, we have
√

J24
2 − J1

2 = R
√

sin2 24α − sin2 α

=
√

(Rsin90)2 − (Rsin3.75)2

= R
√

1− sin2 α
= Rcosα
= Rsin(24α −α) (24α = 90◦)
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= Rsin23α
= J23, (2.32)

where R is trijyā. Having obtained the penultimate jyā from the first and the last
jyās, the multiplier and divisor are defined. Laghu-vivr. ti puts them in very clear
terms as follows:ta;~ya;aH o+.pa;a;�////�a;nta;ma:$ya;a;ya;aH A;ntya:$ya;a;ya;a;(ãÉa v.ya;a;sa;a;DRa;tua;�ya;a;ya;aH ya;d;nta:=M , ta;	a;�ë +gua;a;Na;tMa gua;NaH;v.ya;a;sa;a;DRa;tua;�ya;ea h;a:=H Á

The difference between the penultimate jyā and the ultimate jyā, which is equal to the
radius, multiplied by two is the multiplier. The radius is the divisor.

That is,

gun. a = 2(R−Rsin23α),

hāra = R. (2.33)

Now the recursion relation to obtain the sine differences or the khan. d. ajyās can be
written as follows:

∆i −∆i+1 =
gun. a

hāra
Rsin i α

=
2(R−Rsin23α)

R
Rsin i α. (2.34)

For instance, with i = 1, the above equation becomes

∆1 −∆2 =
2(R−Rsin23α)

R
Rsinα

= R[2sinα − 2sin23α sinα]

= R[2sinα − (cos22α − cos24α)]

= R[2sinα − cos(24α −2α)+ 0]

= R[2sinα − sin2α]. (2.35)

From the definition of khan. d. ajyā, we have

∆1 −∆2 = (J1 − J0)− (J2 − J1)

= 2J1 − J2. (2.36)

Clearly (2.36) is the same as (2.35). In general,

∆i −∆i+1 = (Ji − Ji−1)− (Ji+1 − Ji)

= 2Ji − Ji+1 − Ji−1

= R [2sin iα − sin(i+1)α − sin(i−1)α]. (2.37)

Using cos(90−θ) = sinθ , cos(90 + θ) = −sinθ , we get
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∆i −∆i+1 = R [2sin iα − cos(24α − (i+1)α)+ cos(24α +(i− 1)α)]

= R [2sin iα − cos(23− i)α − cos(23 + i)α]

= R [2sin iα − 2sin23α sin iα]

=
2(R−Rsin23α)

R
Rsin iα, (2.38)

which is the recursion relation (2.34) for the khan. d. ajyās given in the text.
Commenting on the first line of the tenth verse, evam. sāvayavā j̄ıvāh. samyaṅ-

n̄ıtvā pat.het kramāt, Śaṅkara Vāriyar describes the accurate values of the 24
Rsines—which he attributes to Mādhava—in the following verses:(rea;�M na;a;ma va;�a:=+�+a;na;Ma ;
a;h;ma;a;
a;dÒ +veRa;d;Ba;a;va;naH Áta;pa;na;ea Ba;a;nua;sUa;�+.:℄a;ea ma;Dya;mMa ;
a;va;�a:;dÄâ d;ea;h;na;m,a Á Á 1 Á Á;�a;Da;ga;a:$ya;ea na;a;Za;nMa k+:�M C+.�a;Ba;ea;ga;a;Za;ya;a;�////�a;}ba;k+:a Ámxa;ga;a;h;a:=+ea na:=e +Za;eaY;yMa v�a;a:=+ea .=+Na:ja;ya;ea;tsua;kH Á Á 2 Á ÁmUa;lM ;
a;va;Zua:;dÄâ M na;a;l+.~ya ga;a;nea;Sua ;
a;va:=+l+.a na:=+aH ÁA;Zua;�a:;dÄâ ;gua;�a;a ..a;ea:=+(r�a;aH Za;ñÍö�ÅÅ*:u +.k+:Na;eRa na;gea:(õ;a:=H Á Á 3 Á Áta;nua:ja;ea ga;BRa:ja;ea ;Æa;ma:�Ma (r�a;a;ma;a;na:�a .sua;K�a;a .sa;Kea ÁZa;Z�a;a .=+a:�a;Ea ;
a;h;ma;a;h;a:=+ea :vea;ga::℄aH :pa;�a;Ta ;Æa;sa;nDua:=H Á Á 4 Á ÁC+.a;ya;a;l+.ya;ea ga:ja;ea n�a;a;l+.ea ;�a;na;mRa;l+.ea na;a;�/////�a;~ta .sa;tku +:le Á.=+a:�a;Ea d;pRa;Na;ma;Bra;a;ñÍç ÅÅ*:M na;a;ga;~tua;ñÍç ÅÅ*:+.na;Ka;ea va;l� +.a Á Á 5 Á Á;D�a;a:=+ea yua;va;a k+:Ta;a;l+.ea;lH :pUa:$ya;ea na;a:=� +a:ja;nEa;BRa;gaH Ák+:nya;a;ga;a:=e na;a;ga;va;�� +:a :de ;va;ea ;
a;va:(õ;a;~Ta;l� +.a Bxa;guaH Á Á 6 Á Áta;tpa:=+a;
a;d;k+:l+.a;nta;a;~tua ma;h;a:$ya;a ma;a;Da;va;ea;
a;d;ta;aH Á.~va;~va;pUa;vRa;
a;va;Zua:;dÄâ e tua ;a;Za;�;a;~ta;tKa;Nq+.ma;Ea;
a;vRa;k+:aH Á Á 7 Á Á I+.�a;ta Á Á

Here the values of the 24 Rsines are given up to the thirds in the Kat.apayādi no-
tation. For instance, consider the first Rsine given by ‘́sres.t.ham. nāma varis. t.hānām. ’.
The three words here stand for 22, 50 and 224 respectively. Hence the value of the
first Rsine is: 224′ 50′′ 22′′′. The values of the other Rsines are deciphered in a sim-
ilar manner. These have been arrived at by considering terms up to θ 11 in the series
expansion of sinθ which was also derived by Mādhava:

sinθ = θ − θ 3

3!
+

θ 5

5!
− θ 7

7!
+

θ 9

9!
− θ 11

11!
+ . . . .

Table of jyās

In Table 2.1, we reproduce the values of jyās corresponding to arc lengths which
are multiples of 225′, given in Āryabhat. ı̄ya/Sūryasiddhānta, Tantrasaṅgraha and
Laghu-vivr. ti (considering more accurate values for the first jyā as well as the divi-
sor). The values of jyās enunciated by Mādhava are also listed based on the verses
‘́sres.t.ham. nāma varis. t.hānām. . . . ’ cited in Laghu-vivr. ti. In fact, the modern values
presented in the last column show that the Mādhava’s values are accurate up to the
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thirds. In Yuktibhās. ā it is noted that the jyā for any arc can be obtained without
using the tabular values, by using the infinite series expansion for it.

Dhanu or Cāpa Notation Value of the jyā (in minutes, seconds and thirds)
Symbol Length used As in From From Given by Modern

used (min) AR/SS TS LV Mādhava

S1 225 J1 225 224 50 224 50 21 224 50 22 224 50 21
S2 450 J2 449 448 42 448 42 58 448 42 58 448 42 57
S3 675 J3 671 670 39 670 40 16 670 40 16 670 40 16
S4 900 J4 890 889 44 887 45 17 889 45 15 889 45 15
S5 1125 J5 1105 1105 00 1105 01 41 1105 01 39 1105 01 38
S6 1350 J6 1315 1315 32 1315 34 11 1315 34 07 1315 34 07
S7 1575 J7 1520 1520 26 1520 28 41 1520 28 35 1520 28 35
S8 1800 J8 1719 1718 49 1718 52 32 1718 52 24 1718 52 24
S9 2025 J9 1910 1909 51 1909 54 46 1909 54 35 1909 54 35
S10 2250 J10 2093 2092 42 2092 46 19 2092 46 03 2092 46 03
S11 2475 J11 2267 2266 35 2266 40 10 2266 39 50 2266 39 50
S12 2700 J12 2431 2430 45 2430 51 40 2430 51 15 2430 51 14
S13 2925 J13 2585 2584 32 2585 38 37 2584 38 06 2584 38 05
S14 3150 J14 2728 2727 14 2727 21 31 2727 20 52 2727 20 52
S15 3375 J15 2859 2858 15 2858 23 42 2858 22 55 2858 22 55
S16 3600 J16 2978 2977 02 2977 11 30 2977 10 34 2977 10 33
S17 3825 J17 3084 3083 03 3083 14 23 3083 13 17 3083 13 16
S18 4050 J18 3177 3175 53 3176 05 07 3176 03 50 3176 03 49
S19 4275 J19 3256 3255 06 3255 19 50 3255 18 22 3255 18 21
S20 4500 J20 3321 3320 24 3320 38 11 3320 36 30 3320 36 30
S21 4725 J21 3372 3371 27 3371 43 24 3371 41 29 3371 41 29
S22 4950 J22 3409 3408 05 3408 22 20 3408 20 11 3408 20 10
S23 5175 J23 3431 3430 07 3430 25 35 3430 23 11 3430 23 10
S24 5400 J24 3438 3437 27 3437 47 29 3437 44 48 3437 44 48

Table 2.1 Jyā values corresponding to arc lengths which are multiples of 225′. Āryabhat.ı̄ya,
Sūryasiddhānta, Tantrasaṅgraha, Laghu-vivr. ti (with a more accurate first sine as well as the
divisor) and Mādhava’s values.2.5 I+.�;d;eaHk+:ea;�a;f:$ya;a;na;ya;na;m,a
2.5 Obtaining the desired Rsines and RcosinesI+.�;d;eaHk+:ea;�a;f;Da;nua;Sa;eaH .~va;sa;m�a;a;pa;sa;m�a;a;�a:=+tea Á Á 10 Á Á.$yea :dõe .sa;a;va;ya;vea nya;~ya ku +:ya;Ra;dU ;na;a;�a;Da;kM ;Da;nuaH Á;
a;dõ .Èåî ÁÁ*+;ta;
a;�+:�a;�a;k+:a;�Ea;k+:Za:=+ZEa;l+.a;Za;K�a;a;nd;vaH Á Á 11 Á Ánya;~ya;a;.Ce +.d;a;ya ..a ;Æa;ma;TaH ta;tsMa;~k+:a:=+
a;va;�a;Da;tsa;ya;a Á;�a;C+.tvEa;k+:Ma :pra;a;k, ;Æa;[a;pea:êêÁ*.a;hùÅ:a;a;t,a ta:;dÄâ ;nua;Sya;�a;Da;k+:ea;na;ke Á Á 12 Á ÁA;nya;~ya;a;ma;Ta ta;Ma ;
a;dõ .Èåî ÁÁ*+;Ma ta;Ta;a .~ya;a;Æa;ma;�a;ta .sMa;~kx +:�a;taH Á



2.5 Obtaining the desired Rsines and Rcosines 65I+.�a;ta .tea kx +:ta;sMa;~k+:a:=e .~va;gua;Na;Ea ;Da;nua;Sa;ea;~ta;ya;eaH Á Á 13 Á Áta:�a;a;�p�a;a;yaHkx +:�a;tMa 8 tya;�+:a :pa;dM ;
a:�a:$ya;a;kx +:teaH :pa:=H Á
is. t.adoh. kot.idhanus.oh. svasamı̄pasamı̄rite || 10 ||
jye dve sāvayave nyasya kuryādūnādhikam. dhanuh. |
dvighnatalliptikāptaikaśaraśailaśikh̄ındavah. || 11 ||
nyasyācchedāya ca mithah. tatsam. skāravidhitsayā |
chitvaikām. prāk ks. ipejjahyāt taddhanus.yadhikonake || 12 ||
anyasyāmatha tām. dvighnām. tathā syāmiti sam. skr. tih. |
iti te kr. tasam. skāre svagun. au dhanus.ostayoh. || 13 ||
tatrālp̄ıyah. kr. tim. tyaktvā padam. trijyākr. teh. parah. |
Having noted down the listed/tabulated values (samı̄rita) of the dorjyās (Rsines) and
kot.ijyās (Rcosines) corresponding to the two points which are on either side of the arc
whose dorjyā and kot.ijyā are desired, find the difference in the arc which may be in excess
of or short of it. [The number] 13751 divided by twice this difference has to be stored [as
divisor D] for dividing. This is done for mutual correction (i.e. for correcting the dorjyā
in determining kot.ijyā and vice versa). First divide one of them (the dorjyā or kot.ijyā by
D) and add or subtract this from the other (if the dorjyā is divided, apply it to the kot.ijyā
and if the kot.ijyā is divided, apply it to the dorjyā) depending upon whether the difference
is in excess or short. This result multiplied by two and operated as before (divided by D
and applied to the dorjyā or kot.ijyā) forms the process of correction. The correction thus
carried out gives the exact value of the dorjyā or the kot.ijyā of the desired arc. Of the two
(dorjyā or kot.ijyā) find the square of the jyā of the smaller one and subtract it from the
square of the trijyā. The square root of the result gives the other (the kot.ijyā or dorjyā).

O E

R

θ

δθ

φ
A

C
B

G

Fig. 2.3 Finding the jyā value corresponding to a desired arc.

In Fig. 2.3, AB is the arc whose jyā and kotijyā are desired to be found. The
length of the arc AB = Rθ , where R is the trijyā and θ is the angle subtended by
the arc at the centre O, expressed in radians. The jyās corresponding to the known
arc lengths AC and AG are known from the jyā table (Table 2.1). The procedure for

8 The reading in both the printed editions is: ta:�a;a;�p�a;a;yaH kx +:�a;tMa Á This however is grammatically
incorrect. Hence we have provided the right compound form of the word above.
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finding the jyā corresponding to the desired arc length AB from either of the two
known jyās is described in the above verses.

It may be noted from the figure that the desired arc length AB = Rθ is such that
iα ≤ Rθ ≤ (i + 1)α, for some integer 0 < i < 24, where α = 225′. Assume that
point B is closer to C than G, i.e. BC < BG. Let BC = Rδθ . The problem is to find
the dorjyā and kot.ijyā corresponding to the arc AB, where AB = iα + Rδθ .

The formulae for the two jyās involve an intermediate quantity (called the
hāraka, or divisor (D) by the commentator), which is defined as:

D =
13751
2R δθ

. (2.39)

The number 13751 appearing in the numerator is essentially four times the radius
R of the circle measured in minutes. In fact it is a good approximation too, as 2×
21600/π ≈ 13750.98708. Hence the above equation can be written as

D =
4R

2R δθ
=

2
δθ

. (2.40)

While the dorjyā of an arc increases with the arc length, the kot.ijyā decreases.
Considering this, the text presents the following relations.

dorjyā(iα + Rδθ ) = dorjyā iα +
2
D

(
kot.ijyā iα − dorjyā iα

D

)

= dorjyā iα − (dorjyā iα)δθ 2

2
+(kot.ijyā iα)δθ

= dorjyā iα
(

1− δθ 2

2

)
+(kot.ijyā iα)δθ , (2.41)

dorjyā (iα −Rδθ ) = dorjyā iα − 2
D

(
kot.ijyā iα +

dorjyā iα
D

)

= dorjyā iα − (dorjyā iα)δθ 2

2
− (kot.ijyā iα)δθ

= dorjyā iα
(

1− Rδθ 2

2

)
− (kot.ijyā iα)δθ , (2.42)

kot.ijyā (iα + Rδθ ) = kot.ijyā iα − 2
D

(
dorjyā iα +

kot.ijyā iα
D

)

= kot.ijyā iα − (kot.ijyā iα)δθ 2

2
− (dorjyā iα)δθ

= kot.ijyā iα
(

1− Rδθ 2

2

)
− (dorjyā iα)δθ , (2.43)

kot.ijyā (iα −Rδθ ) = kot.ijyā iα +
2
D

(
dorjyā iα − kot.ijyā iα

D

)

= kot.ijyā iα − (kot.ijyā iα)δθ 2

2
+(dorjyā iα)δθ
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= kot.ijyā iα
(

1− Rδθ 2

2

)
+(dorjyā iα)δθ . (2.44)

In Laghu-vivr. ti the procedure for finding the dorjyā and kot.ijyā of any arc length
is explained clearly as follows:ta;ta;~tea;na h;a:=+ke +:Na Bua:ja;a:$ya;Ma k+:ea;�a;f:$ya;Ma va;a O;;k+:Ma k+:tRua;Æa;ma;�;Ma :pra;Ta;ma;taH ;
a;va;Ba:$ya l+.b.DMak+:l+.a;
a;d;kM :P+.lM A;nya;~ya;Ma, Bua:ja;a;ya;aH .sa;a;Dya;tvea k+:ea;�a;f:$ya;a;ya;Ma ta;~ya;aH .sa;a;Dya;tvea Bua:ja;a:$ya;a;ya;Ma..a .sa;a;Dyea;ta:=;$ya;a;ya;Ma ta;tsa;}ba;�////�a;nDa;na;ea ;Da;nua;SaH �+:na;a;�a;Da;k+:tva;va;Za;a;t,a �+.NMa ;Da;nMa va;a ku +:ya;Ra;t,a ÁA;TEa;vMa kx +:ta;Ma ta;Ma ;
a;dõ ;gua;a;Na;ta;Ma kx +:tva;a :pUa;va;eRa;�e +:nEa;va h;a:=+ke +:Na ;
a;va;Ba:$ya l+.b.DMa ya;t,a :P+.lMta;tpua;na:=+nya;~ya;Ma .sa;a;Dya:$ya;a;ya;a;mea;va tMa ;Da;nua;SaH �+:na;a;�a;Da;k+:va;Za;a;dx ;NMa ;Da;nMa va;a ku +:ya;Ra;t,a Á O;;vMakx +:ta;a Bua:ja;a:$ya;a k+:ea;�a;f:$ya;a ..a :pa:=+~å.pa:=+l+.b.Da;P+.l+.sMa;~kx +:tea .~å.Pu +.fe Ba;va;taH Á

By that divisor divide the dorjyā or kot.ijyā, whichever is desired to be found, and this may
be added to or subtracted from the other one. That is, if the dorjyā is desired to be found,
it may be applied to the kot.ijyā and if the kot.ijyā is to be found it may be applied to the
dorjyā, the application being positive or negative depending upon whether the arc Rδ θ is
added to or subtracted from [iα].

Then this quantity may be multiplied by two and divided by the same divisor. The result has
to be applied to the desired jyā [i.e.,] if the kot.ijyā is to be found it has to be applied to the
kot.ijyā, and if the dorjyā is to be found it has to be applied to the dorjyā, the application
being positive or negative depending upon whether the arc Rδ θ is added to or subtracted
from [iα]. The dorjyā and kot.ijyā thus applied to each other give the correct jyā of the
desired arc.

If the arc length iα ± Rδθ corresponds to an angle φ ± δθ (in radians), then
equations (2.41) to (2.44) are equivalent to the following relations:

Rsin(φ + δθ) = Rsinφ
(

1− δθ 2

2

)
+(Rcosφ)δθ , (2.45)

Rsin(φ − δθ) = Rsinφ
(

1− δθ 2

2

)
− (Rcosφ)δθ , (2.46)

Rcos(φ + δθ) = Rcosφ
(

1− δθ 2

2

)
− (Rsinφ)δθ , (2.47)

Rcos(φ − δθ) = Rcosφ
(

1− δθ 2

2

)
+(Rsinφ)δθ . (2.48)

It is obvious that (2.45) to (2.48) are approximations of the standard trigonometric
relations

Rsin(φ + δθ) = R(sinφ cosδθ + cosφ sinδθ ), (2.49)

Rsin(φ − δθ) = R(sinφ cosδθ − cosφ sinδθ ), (2.50)

Rcos(φ + δθ) = R(cosφ cosδθ − sinφ sinδθ ), (2.51)

Rcos(φ − δθ) = R(cosφ cosδθ + sinφ sinδθ ), (2.52)

when the approximations, cosδθ =
(

1− δθ2

2

)
and sinδθ = δθ , for small δθ are

used. These also happen to be the first two terms in the Taylor series expansion of
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sin(φ ± δθ ) and cos(φ ± δθ). Śaṅkara Vāriyar, however, has given an incorrect
generalisation of these to higher orders in his Laghu-vivr. ti.

If either the dorjyā or the kot.ijyā of an arc is known, the other can be determined
using the following relation. Let α be the length of the arc AB (in minutes) as shown
in Fig. 2.4; then,

dorjyā2α + kot.ijyā
2α = R2, (2.53)

which is the same as
sin2 θ + cos2 θ = 1. (2.54)

α

A

B

O

R

θ

Fig. 2.4 Relation between the dorjyā, the kot.ijyā and the trijyā.2.6 I+.�:$ya;a;ya;a;(ãÉa;a;p�a;a;k+.=+Na;m,a
2.6 Determining the length of the arc from the corresponding

Rsine.$ya;ya;ea:=+a;sa;�a;ya;ea;BeRa;d;Ba;�+:~ta;tk+:ea;�a;f;ya;ea;ga;taH Á Á 14 Á ÁCe +.d;~tea;na &+.ta;a ;
a;dõ .Èåî ÁÁ*+;a ;
a:�a:$ya;a ta:;dÄâ ;nua:=+nta:=+m,a Á Á
jyayorāsannayorbhedabhaktastatkot.iyogatah. || 14 ||
chedastena hr. tā dvighnā trijyā taddhanurantaram ||
The sum of the cosines divided by the difference of those two sines, which are close to each
other, forms the cheda (divisor). Twice the trijyā divided by this is the difference between
the corresponding arcs.

Consider Fig. 2.5a. P and Q are points along the circle whose distance from the
point A are multiples of α = 225′, that is AP = iα , and AQ = (i + 1)α , where i is
an integer. The jyās corresponding to the arcs AP and AQ are known from the table.
The idea is to find the arc length (AB in minutes) corresponding to the given jyā
(BN). Since the arc length AP is known, to determine AB we just need to find the
length of the arc PB.

Let AÔP = θ0, AÔB = θ and PÔB = θ − θ0 = δθ . Then, according to the text
the arc length PB is given by the following approximate formula:
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N

R

A

Q

θθ0

δθ

B
P

O

Fig. 2.5a Determination of the arc length corresponding to a given jyā.

PB = R δθ ≈ 2R[
(cosθ+cosθ0)
(sinθ−sinθ0)

] . (2.55)

The rationale behind the above formula can be understood as follows. When δθ is
small, sinδθ ≈ δθ and cosδθ ≈ 1. Hence, we have

sinθ = sin(θ0 + δθ )≈ sinθ0 + cosθ0 δθ (2.56a)

sinθ0 = sin(θ −δθ ) ≈ sinθ − cosθ δθ . (2.56b)

The above equations may be rewritten as

sinθ − sinθ0 ≈ cosθ0 δθ (2.56c)

sinθ − sinθ0 ≈ cosθ δθ , (2.56d)

from which we have

2(sinθ − sinθ0) ≈ (cosθ + cosθ0) δθ , (2.57)

or,

δθ ≈ 2(sinθ − sinθ0)

(cosθ + cosθ0)
. (2.58)

The above equation is the same as (2.55). We now proceed to explain another
method—one that is most likely to have been employed by Indian astronomers—of
arriving at the above expression for δθ with the help of a geometrical construction
(see Fig. 2.5b). Here J is the midpoint of the arc PB and BN, JK and PM are per-
pendicular to OM. As the arc PB is small, it can be approximated by a straight line
and K can be taken to be the midpoint of NM.

Then it can be easily seen from the figure that

BD = R(sinθ − sinθ0)

and OK =
R(cosθ + cosθ0)

2
. (2.59)
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P

O

θ 0

J
B

θ

δθ

R

MKN

D

Fig. 2.5b Geometrical construction to determine the arc length corresponding to a given jyā.

Considering the similar triangles PBD and JOK, we have the relation

PB
JO

=
BD
OK

or PB = JO× BD
OK

. (2.60)

Using (2.59) in the above, we get

PB =
2R[

(cosθ+cosθ0)
(sinθ−sinθ0)

] , (2.61)

which is the same as (2.55) given in the text.
The above verse is explained in Laghu-vivr. ti as follows.ta:�a ..a;a;pa;sa;�////�a;nDa;pa;
a;F+.ta;ya;eaH ;�a;na:=+nta:=+ya;ea:j�a;Ra;va;ya;eaH ya;~ya;aH (.j�a;a;va;a;ya;aH) I+.�:$ya;Ma :pra;tya;a;sa;�a-ta:=+tvMa ta;~ya;aH I+.�:$ya;a;ya;a;(ãÉa ya;ea Bea;dH .tea;na ta;ya;eaH k+:ea;�a;f:$ya;ya;eaH ya;ea;gMa ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DaHCe +.d;ea na;a;ma Á ta;ta;~tea;na Ce +.de ;na ;
a;dõ ;gua;a;Na;ta;Ma ;
a:�a:$ya;Ma ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa I+.�:$ya;a-ta;d;a;sa;�a-..a;a;pa;sa;�////�a;nDa:$ya;ya;ea;DRa;nua;Sa;eaH A;nta:=+m,a; I+.�:$ya;a-ta;d;a;sa;�a-..a;a;pa;sa;�////�a;nDa:$ya;ya;ea:=+nta:=+ea;tTa;~ya .$ya;a-Ba;a;ga;~ya ;Da;nua;�a:=+tya;TRaH Á
Of the two points whose jyā values are listed in the table, find the one which is closer to the
desired jyā [whose arc value is to be found]. Then find the difference between these two
jyās (dorjyās), and divide the sum of the kot.ijyās by this difference. The result is called
the cheda. Divide twice the trijyā by this cheda. The result obtained is the difference
between the arcs lying between the desired jyā, and the jyā closest to it (as found from the
table); that is, it gives the length of the arc corresponding to the difference in the dorjyās.2.7 .sUa;[ma:$ya;a;na;ya;na;m,a

2.7 Finding more accurate values of the desired RsineI+.�a;ta .$ya;a;.a;a;pa;ya;eaH k+:a;y a g{a;h;NMa ma;a;Da;va;ea;
a;d;ta;m,a Á;
a;va;Da;a;nta:=M ..a .tea;na;ea;�M ta;ya;eaH .sUa;[ma;tva;Æa;ma;.C+.ta;a;m,a Á Á 15 Á Á.j�a;a;vea :pa:=+~å.pa:=+�a;na:jea;ta:=+ma;Ea;
a;vRa;k+:a;Bya;Ma A;Bya;~ya;
a;va;~txa;�a;ta;d;le +.na ;
a;va;Ba:$ya;ma;a;nea ÁA;nya;ea;nya;ya;ea;ga;
a;va:=+h;a;nua;gua;Nea Ba;vea;ta;Ma ya;dõ ;a .~va;l+.}ba;kx +:�a;ta;Bea;d;pa;d� ;a;kx +:tea :dõe Á Á 16 Á Á
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iti jyācāpayoh. kāryam. grahan. am. mādhavoditam |
vidhāntaram. ca tenoktam. tayoh. sūks.matvamicchatām || 15 ||
j̄ıve parasparanijetaramaurvikābhyām. abhyasyavistr. tidalena vibhajyamāne |
anyonyayogavirahānugun.e bhavetām. yadvā svalambakr. tibhedapad̄ıkr. te dve ||16 ||
The [above] procedure for obtaining the jyā and cāpa has thus been explained by Mādhava.
He has also given another method for those desirous of obtaining accurate values. Multiply
each jyā (dorjyā of an arc length) by the other jyā (of another arc length) and divide them
by the trijyā. Their sum or difference becomes (the jyā) of the sum or difference of the
arcs. Or else, the square root of the difference of their own squares and that of the lamba
[may be added and subtracted for getting the jyā of the sum or difference of the arcs].

The procedures for obtaining the Rsine and the arc described in the previous
verses are attributed to Mādhava. Verse 16 essentially gives the sin(A+B) formula.
This formula too is attributed to Mādhava and is explained in the commentary as
follows:. . . ya;ea;ga;
a;va;ya;ea;ga;ya;ea;gyea :dõe A;
a;pa A;DRa:$yea :pa:=+~å.pa:=+~ya ;�a;na:jea;ta:=;$ya;a;Bya;Ma .~va;Bua:ja;a:$ya;Ma A;nya;~ya;aHk+:ea;f�a;a A;nya;Bua:ja;a:$ya;Ma .~va;k+:ea;f�a;a ..a gua;Na;yea;t,a Á ya;
a;d .~va;yMa k+:ea;�a;f:$ya;a, ta;
a;hR ta;Ma A;nya;~yaBua:ja;a:$ya;ya;a A;nya;k+:ea;�a;f:$ya;Ma ..a .~va;Bua:ja;ya;a gua;Na;yea;t,a Á O;;vMa kx +:ta;ya;eaH dõ ;ya;ea;ya;eRa;ga;ea ;
a;va;ya;ea;ga;ea va;aA;B�a;a;�H k+:a;yRaH Á ta;ta;ea ;
a;va;~txa;�a;ta;d;le +.na ;
a;va;Ba:jea;t,a Á ;
a;va;Ba:$ya;ma;a;nea I+.�a;ta Za;a;na;.a;a ;
a;va;Ba:ja;na;a;t,a:pra;a;gea;va ya;ea;ga;
a;va;ya;ea;ga;Ea k+:tRa;v.ya;Ea I+.�a;ta d;ZRa;ya;�a;ta Á O;;vMa kx +:ta;ya;eaH ya;ea;ga;ea ;
a;va;ya;ea;ga;ea va;a .~å.Pu +.f;ea Ba;va;�a;ta ÁA;Ta;va;a dõ ;ya;ea;vRa;gRa;taH :pxa;Ta;gea;k+:~yEa;va ta;ya;eaH .sa;a;Da;a:=+Na;~ya l+.}ba;~ya va;gRa;ma;pa;n�a;a;ya mUa;l� +.a;kx +:tea o+.Beaya;ea;ga;
a;va:=+h;a;nua;gua;Nea Ba;vea;ta;a;m,a Á l+.}ba;a;na;ya;nMa :pua;naH o+.Ba;ya;ea:j�a;Ra;va;ya;eaH .sMa;va;gRa;taH ;
a:�a:$ya;ya;a h:=+Nea;nak+:tRa;v.ya;m,a Á

. . . The dorjyās (Rsines) [of the arcs α and β ] whose sum or difference is desired to be
found have to be multiplied mutually with the other jyā. That is, the dorjyā of one (α ) has
to be multiplied by the kot.ijyā of the other (β ) and the kot.ijyā of the one (α) has to be
multiplied by the dorjyā of the other (β ). The sum or difference of these two quantities has
to be found as desired. Then it has to be divided by the trijyā. Here by using the suffix,
‘́sānac’ in the word vibhajyamane [the author] indicates that the addition or subtraction
has to be done before division [by the trijyā]. This gives the correct value of the dorjyā of
the sum or difference of the two arcs.

Alternatively, after subtracting the square of the lamba/lambana separately from the
squares of the two dorjyās and taking the square root, the two quantities (thus obtained)
become suitable for addition or subtraction. The lamba has to be obtained by multiplying
the two dorjyās and dividing by the trijyā.

AO

R

ϕ θ

C

B

Fig. 2.6a Determination of the jyā corresponding to the sum or difference of two arcs.
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Let α and β be the two arc lengths corresponding to the two angles θ and φ as
shown in Fig. 2.6a. That is, AB = α and AC = β respectively. Nı̄lakan.t.ha gives
the following two formulae for finding the jyā of the sum or difference of these arc
lengths.

dorjyā (α ±β ) =
dorjyā α kot.ijyā β ± kot.ijyā α dorjyā β

trijyā
(2.62a)

dorjyā (α ±β ) =

√
dorjyā2α − lamba2 ±

√
dorjyā2β − lamba2, (2.62b)

where lamba in the above equation is defined by

lamba =
dorjyā α dorjyā β

trijyā
. (2.63)

In terms of the angles θ and φ , lamba can be expressed as

lamba =
Rsinθ Rsin φ

R
. (2.64)

The term lamba generally means a vertical line or a plumb-line. The expression for
the lamba given above can be understood using a geometrical construction. For this
consider two angles θ and φ such that θ > φ , as shown in Fig. 2.6b. Find sinθ and
sinφ . Draw lines XY and OZ perpendicular to each other as indicated in the figure.
Now we consider a segment of length Rsinφ and place it inclined to OZ such that
the segment BN makes an angle θ with BO.

Then draw a line NC such that OĈN = φ . By construction, BN̂C = θ −φ . Draw
a perpendicular from B which meets the line NC at D. From the triangle NBD,

sin(θ −φ) =
BD

Rsinφ
(2.65a)

Also in the triangle BCD,

sinφ =
BD
BC

. (2.65b)

From (2.65a) and (2.65b)
BC = Rsin(θ −φ). (2.65c)

Now, applying the sine rule to the triangle NBC, we get the following relation

NB
sinφ

=
BC

sin(θ −φ)
=

NC
sin(180−θ)

(2.66)

Since NB = Rsinφ (by construction) and BC = Rsin(θ −φ) (see (2.65c)), from the
above equation, the third side NC of the triangle must be equal to Rsin(180−θ ).
That is NC = Rsin(180−θ)= Rsinθ . Now it can be easily seen that NO in Fig. 2.6b
represents the expression for the lamba given above.
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Rsin ϕ

ϕ θ

C O

N

Z

XY

D

B

Fig. 2.6b Geometrical construction to understand the expression for the lamba given in Chapter
2, verse 16.

Using (2.3), and the above expression for the lamba, (2.62a) and (2.62b) reduce
to the following equations respectively,

R sin(θ ±φ) =
Rsinθ Rcosφ ±Rcosθ Rsinφ

R
(2.67a)

R sin(θ ±φ) = Rsinθ cosφ ±Rcosθ sinφ , (2.67b)

which are the same as the standard formula used in planar trigonometry,

sin(θ ±φ) = sinθ cosφ ± cosθ sinφ . (2.68)2.8 A;�pa;.a;a;pa:$ya;a;na;ya;na;m,a
2.8 Computation of the Rsine value of a small arc;a;Za;�;.a;a;pa;Ga;na;Sa;�+Ba;a;ga;ta;ea ;
a;va;~ta:=+a;DRa;kx +:�a;ta;Ba;�+:va;Æa:jRa;ta;m,a Á;a;Za;�;.a;a;pa;Æa;ma;h ;a;Za;�a:úêÁÁ*+;n�a;a Ba;vea;t,a .~å.pa;�;ta;a Ba;va;�a;ta ..a;a;�pa;ta;a;va;Za;a;t,a Á Á 17 Á Á

śis. t.acāpaghanas.as. t.habhāgato vistarārdhakr. tibhaktavarjitam |
śis. t.acāpamiha śiñjin̄ı bhavet spas.t.atā bhavati cālpatāvaśāt || 17 ||
Divide one-sixth of the cube of the remaining arc by the square of the trijyā. This quantity
when subtracted from the remaining arc becomes the śiñjin̄ı (the dorjyā corresponding to
the remaining arc). The value is accurate because of the smallness [of the arc].

In the above verse, Nı̄lakan. t.ha gives the approximation for the sine of an angle
when it is small. If α = Rδθ is the length of a small arc along the circle, corre-
sponding to an angle δθ , then the above verse gives the following expression for its
dorjyā:

dorjyā α = α − α3

6 trijyā2 . (2.69)

The above expression is equivalent to

Rsinδθ = R δθ − (R δθ )3

6 R2



74 .~å.Pu +.f;pra;k+.=+Na;m,a True longitudes of planets

or sinδθ = δθ − (δθ )3

6
. (2.70)

Thus we find that sinδθ is approximated by the first two terms in the series ex-
pansion for it. This gives fairly accurate results when δθ is small. That (2.70) is
valid and yields accurate results only when the arc is small is clearly emphasised in
Laghu-vivr. ti as follows:O;;vMa kx +:ta;a;ya;a;~ta;~ya;aH ..a;a;pa;a;�pa;ta;a;va;Za;a;de ;va .~å.pa;�;ta;a Ba;va;�a;ta Á

The accuracy of this operation is due solely to the smallness of the arc.2.9 I+.�:$ya;a;na;ya;na;m,a
2.9 Computation of the desired Rsine�+:na;a;�a;Da;k+:Da;nua:$ya; a ..a n�a;a;tvEa;vMa :pa;
a;F+.ta;Ma nya;sea;t,a Á�+:na;a;�a;Da;k+:Da;nuaHk+:ea;�a;f:j�a;a;va;ya;a ta;Ma .sa;m�a;a;pa:ja;a;m,a Á Á 18 Á Á;�a;na;h;tya :pa;
a;F+.ta;Ma ta;~ya;aH k+:ea;f�a;a ;a;Za;�;gua;Na;a:úãÁ*.a ta;m,a Áta;dùÅ;a;ea;gMa va;a;Ta ;
a;va:(ìÉÅ;e +SMa h:=e +d, v.ya;a;sa;d;le +.na tua Á Á 19 Á ÁI+.�:$ya;a Ba;va;�a;ta .~å.pa;�;a ta;tP+.lM .~ya;a;t,a k+:l+.a;
a;d;k+:m,a Ánya;a;yea;na;a;nea;na k+:ea;f�a;a;(ãÉa ma;Ea;v.ya;RaH k+:a;ya;Ra .sua;sUa;[ma;ta;a Á Á 20 Á Á

ūnādhikadhanurjyām. ca n̄ıtvaivam. pat.hitām. nyaset |
ūnādhikadhanuh.kot.ij̄ıvayā tām. samı̄pajām || 18 ||
nihatya pat.hitām. tasyāh. kot.yā śis. t.agun. añca tam |
tadyogam. vātha vísles.am. hared vyāsadalena tu || 19 ||
is. t.ajyā bhavati spas.t.ā tatphalam. syāt kalādikam |
nyāyenānena kot.yāśca maurvyāh. kāryā susūks.matā || 20 ||
Having also obtained the dorjyā of the arc which is in excess or deficit [from a multiple of
225 minutes], as described above (in the previous verse), keep it separately.

Multiply the nearest dorjyā [obtained from the tabulated Rsines] by the kot.ijyā of the arc
which is in excess or deficit. Also multiply the kot.ijyā by the dorjyā of the arc which is in
excess or deficit. The sum or difference of these two has to be divided by the radius (trijyā).

The desired jyā (dorjyā) can thus be found accurately. By the same procedure, the kot.ijyā
of any desired arc may be found accurately.

The above verses give the formulae for finding the dorjyā and kot.ijyā of an arc
of any desired length. To find this using the procedure given in Indian astronomical
texts, the desired arc length is expressed as a sum of two arcs, say α + δα where α
is an integral multiple of 225 and 0 < δα < 225. The formulae given in the above
verses are:

dorjyā (α ± δα) =
dorjyā α kot.ijyā δα ± kot.ijyā α dorjyā δα

trijyā
(2.71)

kot.ijyā (α ± δα) =
kot.ijyā α kot.ijyā δα ∓dorjyā α dorjyā δα

trijyā
, (2.72)
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which have already been commented upon. Since δα is always small (less than
225′ or 3.75◦), here it is suggested that the approximation (2.70) given in previ-
ous verse—which gives sinδα correct to O(δα3)—may be used for determining
the dorjyā δα in the above relation. Once the dorjyā is known, the corresponding
kot.ijyā may be found from the former using (2.53).2.10 .=+
a;va;~å.Pu +.fH
2.10 True longitude of the Sun�ya;Bya;~ta;ba;a;hu ;k+:ea;�a;f;Bya;Ma A;Z�a;a;tya;a;�ea :P+.le o+.Bea Á..a;a;
a;pa;tMa d;eaHP+.lM k+:a;y a .~va;N a .sUa;yRa;~ya ma;Dya;mea Á Á 21 Á Á:ke +:ndÒ +ea;Dva;Ra;DeRa ..a :pUa;va;Ra;DeRa ta;tk+:a;l+.a;kR H .~å.Pu +.fH .sa ..a Áma;Dya;sa;a;va;na;Æa;sa:;dÄâ ;eaY;taH k+:a;yRaH .~ya;a;du ;d;yea :pua;naH Á Á 22 Á Á

tryabhyastabāhukot.ibhyām. aś̄ıtyāpte phale ubhe |
cāpitam. doh.phalam. kāryam. svarn. am. sūryasya madhyame || 21 ||
kendrordhvārdhe ca pūrvārdhe tatkālārkah. sphut.ah. sa ca |
madhyasāvanasiddho ′tah. kāryah. syādudaye punah. || 22 ||
The dorjyā and kot.ijyā [of the manda-kendra of the Sun] multiplied by 3 and divided
by 80 form the doh. phala and kot.iphala. The arc corresponding to the doh. phala has to be
applied to the longitude of the mean Sun positively or negatively depending upon whether
the manda-kendra is within the six signs beginning with Tulā (Libra) or within the six
signs beginning with Mes.a (Aries). The longitude thus obtained is the true longitude. Since
this longitude corresponds to the true longitude at the mean sunrise, it has to be further
corrected for the true sunrise.

These verses present an explicit expression for the manda-phala of the Sun.
Manda-phala is a correction that needs to be applied to the mean longitude of
the planet, called the madhyama/madhyama-graha, to obtain the manda-sphut.a-
graha. The significance of the manda-phala, whose equivalent in modern astron-
omy is known as the equation of centre, is explained in Appendix F.

If θ0 be the mean longitude of the planet (here the Sun) at the mean sunrise, then
the true longitude θ of the Sun at the mean sunrise is given by θ = θ0 ±∆θ . The
correction to the madhyama known as the manda-phala, ∆θ , (referred to as the arc
of the doh. phala in verse 21) is given by

manda-phala = cāpa

(
3

80
manda-kendrajyā

)
. (2.73)

The term manda-kendrajyā in the above expression stands for the Rsine of the
manda-kendra or mean anomaly which refers to the difference between the longi-
tude of the mean planet and the mandocca (apogee). We denote it as θ0 −θm, where
θ0 is the longitude of the mean planet and θm that of the mandocca. Now, the above
equation translates to
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∆θ = sin−1
(

3
80

|sin(θ0 −θm)|
)

. (2.74)

Here 3
80 represents the ratio of the radii of the epicycle and the manda-karn. a-

vr. tta, or ‘manda-hypotenuse circle’, whose significance is explained in Appendix
F. When the manda-kendra is within the six signs beginning with Mes.a, that is,
0 ≤ (θ0 −θm) ≤ 180◦, it is stated that the manda correction has to be applied neg-
atively. On the other hand, when it is within the six signs beginning with Tulā, that
is 180◦ ≤ (θ0 −θm) ≤ 360◦, the correction is to be applied positively. Thus, the true
longitude of the Sun is given by

θ = θ0 − sin−1
(

3
80

sin(θ0 −θm)

)
. (2.75)2.11 ..a:=+pra;a;Na;aH

2.11 Prān. ās of the ascensional difference.sMa;~kx +:ta;a;ya;na;Ba;a;ga;a;de H d;ea:$ya;Ra k+:a;ya;Ra .=+vea;~ta;taH Á..a;tua;
a;v a;Za;�a;ta;Ba;a;ga:$ya;a;h;ta;a;ya;a;�///�a;~:�a:$ya;ya;a &+.taH Á Á 23 Á ÁA;pa;kÒ +:ma;gua;Na;eaY;kR +:~ya ta;a;tk+:a;�a;l+.k I+.h .~å.Pu +.fH Áta;a:�áâ+;�a:$ya;a;kx +:�a;ta;
a;va:(ìÉÅ;e +Sa;a;t,a mUa;lM dùÅ;au :$ya;a;Ta k+:ea;�a;f;k+:a Á Á 24 Á Ád;ea:$ya;Ra;pa;kÒ +:ma;kx +:tya;ea;(ãÉa Bea;d;a;n}å.Ua;l+.ma;Ta;a;
a;pa va;a ÁA;ntya;dùÅ;au :$ya;a;h;ta;a d;ea:$ya;Ra ;
a:�a:$ya;a;Ba;�e +:�;k+:ea;�a;f;k+:a Á Á 25 Á Á;
a:�a:$ya;a.Èåî ÁÁ*+e ;�;dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a;kR +:Bua:ja;a;sa;vaH Ád;eaH pra;a;Na;�a;l+.�a;�a;k+:a;Bea;d;ma;
a;va;na;�M tua :pa;a;l+.yea;t,a Á Á 26 Á Á;
a;va;Sua;va;;�ÂåÅ +a;h;ta;a kÒ +:a;�////�a;ntaH .sUa;ya;Ra;�a;a ;Æa;[a;�a;ta;ma;Ea;
a;vRa;k+:a Á;
a:�a:$ya;a.Èåî ÁÁ*+e ;�;dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a .~yua;(ãÉa:=+a;sa;vaH Á Á 27 Á Á
sam. skr. tāyanabhāgādeh. dorjyā kāryā ravestatah. |
caturvim. śatibhāgajyāhatāyāstrijyayā hr. tah. || 23 ||
apakramagun. o

′rkasya tātkālika iha sphut.ah. |
tattrijyākr. tivísles. āt mūlam. dyujyātha kot.ikā || 24 ||
dorjyāpakramakr. tyośca bhedānmūlamathāpi vā |
antyadyujyāhatā dorjyā trijyābhaktes.t.akot.ikā || 25 ||
trijyāghnes.t.adyuj̄ıvāptā cāpitārkabhujāsavah. |
doh. prān. aliptikābhedamavinas.t.am. tu pālayet || 26 ||
vis.uvadbhāhatā krāntih. sūryāptā ks. itimaurvikā |
trijyāghnes.t.adyuj̄ıvāptā cāpitā syuścarāsavah. || 27 ||
The Rsine of the longitude of the Sun (dorjyā) corrected for the precession of the equinox
(the sam. skr. tāyana) has to be determined. This, when multiplied by R sin24◦ and divided
by the trijyā, gives the Rsine of the true declination of the Sun (the apakramajyā) at that
instant of time. The square root of the difference of the squares of that and the trijyā is the
dyujyā.

Then the kot.ikā is obtained by finding the square root of the difference between the squares
of the dorjyā and the apakramajyā. The kot.ikā is also given by the product of the
antyadyujyā (Rcos24) and the dorjyā divided by the trijyā. This (the kot.ikā) is mul-
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tiplied by the trijyā and divided by the dyujyā. The arc of this is the right ascension of the
Sun (the arkabhujāsava). The difference between the longitude and the right ascension in
minutes is to be preserved such that it is not lost.

The equinoctial midday shadow (the vis.uvadbhā) multiplied by the Rsine of the declination
(krānti) and divided by 12 is the ks.itimaurvikā. This is to be multiplied by the trijyā and
divided by the desired dyujyā. The arc of that gives the ascensional difference in prān. as
(the carāsava).

While most of the quantities related to the diurnal motion of the Sun are discussed
in the third chapter, some of those that are related to the determination of the true
longitude of the Sun at true or actual sunrise for a given location are described here.
Before explaining the above verses, it would be convenient to list the quantities
defined here as follows:

Quantity Its physical significance Notation
apakramajyā the Rsine of declination of the Sun R sinδ
dyujyā the radius of the diurnal circle of the Sun Rcosδ
arkabhujāsava the right ascension of the Sun α
carāsus the ascensional difference ∆α
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Fig. 2.7 Determination of the declination and right ascension of the Sun on any particular day.

In Indian astronomy texts, it is the nirayan. a longitude or the longitude measured
from a fixed star which is calculated. Ayanām. śa, which is the amount of preces-
sion, has to be added to the nirayan. a longitude to obtain the sāyana or tropical
longitude λ . In Fig. 2.7, the celestial sphere is depicted for an observer at latitude
φ , on a day when the Sun’s declination is δ . Let λ and α be the Sun’s (tropical)
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longitude and right ascension on that day.9 The Rsine of the declination of the Sun,
the apakramajyā, is given by

apakramajyā =
dorjyā× caturvim. śatibhāgajyā

trijyā

or Rsinδ =
Rsinλ ×Rsin24◦

R
. (2.76)

This is the formula for declination,

sinδ = sinλ sinε, (2.77)

which can be easily verified by considering the spherical triangle Γ SB in Fig. 2.7
and applying the sine formula. Here ε represents obliquity of the ecliptic whose
value is taken to be 24◦ in most of the Indian astronomy texts. The dyujyā is the
radius of the diurnal circle of the Sun, Rcosδ , and it is given as

dyujyā =

√
trijyā2 − apakramajyā2

or Rcosδ =
√

R2 −R2 sin2 δ . (2.78)

Now a quantity, the kot.ikā, is defined by the following two equivalent expressions:

kot.ikā =
√

R2 sin2 λ −R2 sin2 δ

kot.ikā =
Rcosε Rsinλ

R
. (2.79)

The second of these follows from the first by substituting the expression for Rsinδ
given in (2.77). The arkabhujāsava is the right ascension of the Sun and is the arc
Γ B, which is given as:

arkabhujāsava = α = cāpa

(
kot.ikā× trijyā

dyujyā

)
. (2.80)

Substituting the expressions for the kot.ikā and the dyujyā in the above, we have

α = Rsin−1
(

Rcosε Rsinλ
Rcosδ

)
(2.81)

or

Rsinα =

(
Rcosε Rsinλ

Rcosδ

)
. (2.82)

This relation follows from the sine formula applied to the spherical triangle PΓ S,
where the spherical angle PΓ̂ S = 90− ε , the spherical angle Γ P̂S = α , arc Γ S = λ
and arc PS = 90− δ . Then

9 The reader is referred to Appendix C on coordinate systems for details of these quantities.
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sinλ
sinα

=
sin(90−δ )

sin(90− ε)
=

cosδ
cosε

, (2.83)

which is the same as the above.
As the axis of rotation of the Earth is perpendicular to the equator, the rotation

angle measured along the equator is related to time and can be expressed in prān. as.
One prān. a corresponds to one minute of arc along the equator. Since the right as-
cension is an arc measured along the equator, α is expressed in prān. as.

The difference between the longitude of the Sun ⊙ and its right ascension α
figures in the equation of time described in the next set of verses (see also Ap-
pendix C). Hence α −⊙, which is called the prān. aliptā or prān. akalāntara10 is to
be stored. This is the correction due to the obliquity of the ecliptic. This is explained
in Laghu-vivr. ti as follows:

. . . ta:�a l+.b.Da;a .sEa;va I+.�;k+:ea;�a;f:$ya;a Á ta;Ma I+.�;k+:ea;�a;f:$ya;Ma ;
a:�a:$ya;ya;a ;�a;na;h;tya I+.�;dùÅ;au :$ya;ya;a;
a;va;Ba:$ya l+.b.DMa :P+.lM ..a;a;p�a;a;ku +:ya;Ra;t,a Á ta;�a A;kR +:Bua:ja;a;sa;va;ea Ba;va;�////�a;nta Á .tea;Sa;Ma A;kR +:Bua:ja;a;sUa;na;Mata;tk+:l+.a;na;Ma ..a ya;d;nta:=M ta;t,a :pra;a;Na;k+:l+.a;nta:=M na;a;ma Á ta;
a;dõ ;�a;na;ya;ea;ga;mua:�a:=;�a va;[ya;a;maH Á A;ta o+.�MA;
a;va;na;�M tua :pa;a;l+.yea;t,a I+.�a;ta Á Á
What is obtained thus is the is. t.akot.ijyā. That has to be multiplied by the trijyā and divided
by the is. t.adyujyā. The arc of the result obtained has to be found and that is known as
the arkabhujāsava. The difference between the arkabhujāsava and the Sun’s longitude
measured in minutes is known as the prān. akalāntara.11 The utility of this will be stated
later (verse 31). Hence it is stated that this has to be preserved such that it is not lost.

The great circle passing through EPW is known as the 6 o’clock circle, as the
hour angle of any object lying on that circle corresponds to six hours. For an equa-
torial observer, whose latitude is zero, the horizon itself is the 6 o’clock circle and
the Sun always rises on it. When the latitude of a place is not zero, the Sun does not
rise on the 6 o’clock circle. In Fig. 2.7,

Ht = ZP̂St = ZP̂W +WP̂St = 90◦ + ∆α (2.84a)

is the hour angle at sunset. It is greater than 90◦ when the Sun’s declination is north
and would be less than 90◦ when the declination is south. From the spherical triangle
PZSt , using the cosine formula it can be shown that

cosHt = − tanφ tanδ
or sin∆α = tanφ tanδ . (2.84b)

Ht expressed in minutes is the time interval in prān. ās between the meridian
transit of the Sun and sunset. When δ = 0, Ht = 90◦ = 5400 prān. as (6 hours). ∆α

10 The terms prān. a and kalā here refer to the right ascension and Sun’s longitude expressed in
minutes respectively. Hence the prān. akalāntara is α −⊙.
11 It must be noted that Śaṅkara Vāriyar uses the term prān. akalāntara instead of
prān. aliptikā. Nı̄lakan. t.ha himself has used the term prān. akalāntara later in verse 31, where
he discusses the application of the prān. akalāntara.
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is difference between Ht and 6 hours or 5400 prān. as, and is termed the carāsava
or the ascensional difference. It is clear that it is also the difference between sunrise
and transit of the Sun across the 6 o’clock circle.

Expression for the carāsus

For giving the expression for the carāsus (ascensional difference), an intermediate
quantity called the ks. iti-maurvikā (ks.itijyā, earth-sine) is defined as follows:

ks.itimaurvikā =
vis.uvadbhā× krānti

12
. (2.85)

The vis.uvadbhā refers to the equinoctial shadow of a stick of length 12 units. It will
be shown in the next chapter that the equinoctial shadow for an observer at latitude
φ is 12 tanφ . The term krānti is the same as apakramajyā given earlier in (2.76).
The expression for the carāsus is given by

carāsus = cāpa

(
ks. itimaurvikā× trijyā

dyujyā

)
. (2.86)

Substituting for ks. itimaurvikā and dyujyā in the above expression we have

∆α = (Rsin)−1
(

R tanφ Rsinδ
Rcosδ

)
, (2.87)

which is the same as (2.84b). At the equator, where φ = 0, ∆α = 0. Hence, the
sunrise or sunset is exactly 6 hours before or after meridian transit. Since the carāsus
(∆α) is the interval between the sunrise at a given latitude and that at the equator,
the knowledge of it is essential for finding the exact sunrise and sunset times at the
observer’s location. It is also needed for finding the longitude of planets at sunrise
at any non-zero latitude.2.12 .~va;de ;Za;sUa;ya;eRa;d;ya;k+:a;le g{a;h;aH
2.12 Longitude of the planets at sunrise at the observer’s location;�a;l+.�a;a;pra;a;Na;a;nta:=M Ba;a;na;eaH d;eaHP+.lM ..a ..a:=+a;sa;vaH Á.~va;NRa;sa;a;}yea;na .sMa;ya;ea:$ya;a ;Æa;Ba;�ea;na tua ;
a;va;ya;ea:ja;yea;t,a Á Á 28 Á ÁBa;a;nua;ma;Dya;ma;Bua;�a;�+Èåî ÁÁ*+M ..a;kÒ +:�a;l+.�a;a;&+.tMa :P+.l+.m,a ÁBa;a;nua;ma;Dyea tua .sMa;~k+:a;y a .~å.Pu +.f;Bua;��+.a;a;h;tMa .~å.Pu +.fe Á Á 29 Á Áo+.d;#~TeaY;keR ..a:=+pra;a;Na;aH Za;ea;Dya;aH .~vMa ya;a;}ya;ga;ea;l+.ke Áv.ya;~ta;ma;~tea tua .sMa;~k+:a;ya;Ra na ma;Dya;a;�îå+:a;DRa:=+a:�a;ya;eaH Á Á 30 Á Áyua;gma;Ea:ja;pa;d;ya;eaH .~va;N a .=+va;Ea :pra;a;Na;k+:l+.a;nta:=+m,a Ád;eaHP+.lM :pUa;vRa;va;t,a k+:a;y a .=+vea;=e +Æa;Ba;dùÅ;aRu ;.a;a;�a:=+Na;a;m,a Á Á 31 Á Á
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a;pa h;tva;a ..a;kÒ +:k+:l+.a;&+.ta;m,a Á.~va;N a k+:a;y a ya;Ta;ea;�M ta;t,a v.ya;~tMa va;kÒ +:ga;ta;Ea .~å.Pu +.fe Á Á 32 Á Á
liptāprān. āntaram. bhānoh. doh. phalam. ca carāsavah. |
svarn. asāmyena sam. yojyā bhinnena tu viyojayet || 28 ||
bhānumadhyamabhuktighnam. cakraliptāhr. tam. phalam |
bhānumadhye tu sam. skāryam. sphut.abhuktyāhatam. sphut.e || 29 ||
udaksthe ′rke caraprān. āh. śodhyāh. svam. yāmyagolake |
vyastamaste tu sam. skāryā na madhyāhnārdharātrayoh. || 30 ||
yugmaujapadayoh. svarn. am. ravau prān. akalāntaram |
doh. phalam. pūrvavat kāryam. raverebhirdyucārin. ām || 31 ||
madhyabhuktim. sphut.ām. vāpi hatvā cakrakalāhr. tam |
svarn. am. kāryam. yathoktam. tat vyastam. vakragatau sphut.e || 32 ||
The prān. akalāntara, doh. phala (equation of centre) and carāsus, all in minutes, have
each to be added or subtracted depending upon their signs. This quantity multiplied by the
mean daily motion of the Sun and divided by 21600 has to be applied to the mean Sun, and
the same has to be multiplied by the true daily motion of the Sun and applied to the true
Sun [to get the longitudes of the mean and the true Sun respectively at the true sunrise at
any given location].

When the Sun is to the north (has northern declination), then the carāsus have to be applied
negatively and when it is to the south they have to be applied positively [this sign convention
is to be adopted when the longitude is to be determined at sunrise]. The carāsus have to
be applied in the reverse order at the sunset. They need not be applied [for determining the
longitude] at midday or midnight.

The prān. akalāntara has to be applied positively and negatively in the even and odd quad-
rants respectively. The doh. phala has to be applied as discussed earlier. With these quanti-
ties (namely prān. akalāntara, doh. phala and carāsus), which are related to the Sun, the
mean or true daily motions of the planets are to be multiplied and divided by 21600. These
have to be applied positively or negatively as mentioned earlier [when the planet is in di-
rect motion] and the application has to be done in the reverse order when the planet is in
retrograde motion [to get the mean and true planets at true sunrise].

In the above verses, Nı̄lakan.t.ha gives the procedure for obtaining the mean or
true longitudes of the planets at the true sunrise at the observer’s location. The longi-
tudes obtained from the Ahargan. a give the mean and true positions of the planets at
the mean sunrise, i.e. when the mean Sun is on the 6 o’clock circle, at the observer’s
location. To get the positions of the planets at the true sunrise, i.e. when the true Sun
is on the observer’s horizon, corrections have to be applied.

Of the two corrections that need to be applied, one is due to the fact that at
sunrise the Sun is on the horizon and not on the 6 o’clock circle. The time difference
between the sunrise and the instant when it is on the 6 o’clock circle (the carāsus)
has been discussed earlier. Now, when the Sun has a northerly declination, sunrise
is earlier than its transit across the 6 o’clock circle and carāsavas have to be applied
negatively. Similarly, when the Sun has a southerly declination, sunrise is after its
transit across the 6 o’clock circle and the carāsus have to be applied positively. The
other two corrections are due to the fact that there is a time difference between the
transits of the mean Sun and the true Sun across the meridian or the 6 o’clock circle.
In fact, we shall see below that the expression for the sum of these two corrections
given in the text is the same as the equation of time in modern astronomy (for more
details refer to Appendix C).
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Equation of time

The ‘mean Sun’ is a fictitious body which is moving along the equator uniformly
with the average angular velocity of the true Sun. In other words, the right ascension
of the mean Sun (denoted by R.A.M.S.) increases by 360◦ in the same time period
as the longitude of the true Sun increases by 360◦. As the R.A.M.S. increases uni-
formly, the time interval between the successive transits of the mean Sun across the
meridian or the 6 o’clock circle is constant. This is the mean civil day. All the civil
time measurements are with reference to the mean Sun. The time interval between
the transits of the mean Sun and the true Sun across the meridian or the 6 o’clock
circle is known as the equation of time and is given by

E = H.A.M.S.−H.A.⊙
= R.A.⊙−R.A.M.S.

= α −αM.S, (2.88)

where ⊙ stands for the true Sun. It will also be used to refer to the longitude of the
true Sun later. Since the dynamical mean Sun moves along the ecliptic uniformly
with the average angular velocity of the true Sun—and both of them are assumed
to meet each other at the equinox Γ —the longitude of the dynamical mean Sun or
the mean longitude of the Sun (l) is the same as the R.A.M.S. Hence the equation
of time will be E = α − l. This can be rewritten as

E = (α −⊙)+ (⊙− l). (2.89)

The first term in the equation of time is the prān. akalāntara = α −⊙. Now sinα =
cosε sin⊙

cosδ . As δ < ε, |sinα| < |sin⊙|. This implies that α < ⊙ when α and ⊙ are
in the odd quadrants and α > ⊙ when α and ⊙ are in the even quadrants. Hence
the prān. akalāntara has to be applied positively and negatively in the even and odd
quadrants respectively. The sign of the doh. phala (⊙− l) has already been discussed
earlier. It is negative in the first and second quadrants and positive in the third and
fourth quadrants.

Application of corrections

The three corrections, namely the prān. akalāntara, doh. phala and carāsus, have to
be applied to the mean or true longitude of planets at mean sunrise at the equator
(or the 6 o’clock circle) to obtain the mean or true longitude at true sunrise on the
observer’s horizon. The motion of a planet in one prān. a is equal to its daily motion
divided by 21600. The net correction would be the sum of the three quantities (tak-
ing appropriate signs into account) multiplied by the above ratio. When the planet
is in retrograde motion, the longitude decreases with time. Hence, all the signs dis-
cussed above have to be reversed in such a situation.
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Śaṅkara Vāriyar in his Yukti-d̄ıpikā gives a graphic description of what is
meant by cara, and how it is to be used in the determination of the duration of
day and night at the observer’s location (having non-zero latitude)..~va;a;[ea .~va;Æa;[a;�a;ta:jea :℄ea;ya;a;vua;d;ya;a;~ta;ma;ya;Ea .=+veaH Áo+.n}å.a;Nq+.l+.Æa;[a;�a;ta:ja;ya;eaH A;nta:=+a;l+.Da;nua;(ãÉa:=+m,a Á Á.sa;Ea;}yea :pUa;vRa;mua;de ;tya;kR H :pa;(ãÉa;a:�ea;na;a;~ta;mea;�a;ta ..a ÁA;ta;(ãÉa:=e +Na ;
a;dõ .Èåî ÁÁ*+e ;na ;
a;d;nMa ta:�a tua va;DRa;tea Á Á[�a;a;ya;tea ..a ;�a;na;Za;a ya;sma;a;t,a ;Æa;ma;Ta;ea;Æa;Ba;�ea ;
a;d;na;[a;yea Áya;a;}yea :pa;(ãÉa;a;du ;de ;tya;kR H .tea;na :pra;a;ga;~ta;mea;�a;ta ..a Á ÁA;ta;(ãÉa:=e +Na ;
a;dõ .Èåî ÁÁ*+e ;na ta:�a tua [�a;a;ya;tea ;
a;d;na;m,a Áva;DRa;tea ..a ;�a;na;Za;a ya;sma;a;t,a v.ya;~ta;tvMa ga;ea;l+.ya;ea;Æa;mRa;TaH Á Á..a:=+pra;a;Na;ga;�a;taH .~va;N a ya;a;}ya;ea;d;gga;ea;l+.ya;ea;~ta;taH Áo+.d;yeaY;~ta;ma;yea v.ya;~tMa g{a;he .=+v.yua;d;ya;a;va;Da;Ea Á Áma;Dya;a;kR +:pra;Æa;ma;tMa tua;�ya:�+.pa;mea;va .sa;d;a ;
a;d;na;m,a Átua;�ya;tva;a;t,a ta;�çÅ +tea;Æa;BRa;�Ma .~å.Pu +.f;a;kR +:pra;Æa;ma;tMa ;
a;d;na;m,a Á Á 12

The rising and setting of the Sun has to be determined with respect to the horizon corre-
sponding to the observer’s own latitude. The length of the arc [of the diurnal circle] lying
between the unman. dala (6 o’clock circle) and the ks. itija (horizon) is referred to as the
cara.

When the Sun has northern declination it rises earlier and sets later. Hence the duration
of the day increases by twice the cara. Naturally the duration of the night decreases, and
hence day and night have different durations. When the Sun has southern declination it rises
later and sets earlier. Therefore the duration of the day decreases by twice the cara and that
of the night increases. [While this is true for an observer in the northern hemisphere] the
reverse happens in the southern hemisphere.

The caraprān. as have to be applied negatively and positively when the Sun has northern
and the southern declination respectively. This is true at sunrise and during sunset they have
to be applied in the reverse order. Since the mean Sun moves with uniform velocity, the
duration of the day will always be uniform when measured with respect to the mean Sun.
But the duration will vary when measured with respect to the true Sun.2.13 ;
a;d;na;[a;pa;ya;ea;ma;Ra;na;m,a

2.13 Durations of the day and the nightA;h;ea:=+a:�a;.a;tua;Ba;Ra;gea ..a:=+pra;a;Na;a;n,a ;Æa;[a;pea;du ;d;k, Á Á 33 Á Áya;a;}yea Za;ea;Dya;a ;
a;d;na;a;D a ta;t,a .=+a:�ya;D a v.ya;tya;ya;a;;�ÂåÅ +vea;t,a Á;
a;d;na;[a;pea ;
a;dõ ;�a;na.Èåî ÁÁ*+e .tea ..a;ndÒ +a;de H .~vEa;(ãÉa:=+a;sua;Æa;BaH Á Á 34 Á Á
ahorātracaturbhāge caraprān. ān ks.ipedudak || 33 ||
yāmye śodhyā dinārdham. tat rātryardham. vyatyayādbhavet |
dinaks.ape dvinighne te candrādeh. svaíscarāsubhih. || 34 ||
In the north (when the declination of the Sun is towards north), the caraprān. ā has to be
added to one-fourth of the ahorātra and in the south it has to be subtracted. This gives the

12 {TS 1977}, p. 154.
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half-duration of the day. The half-duration of the night is obtained by applying the cara in
the reverse order. By multiplying these durations by two, the durations of the day and night
are obtained respectively. For the Moon and others, the half-durations [of their own days
and nights] have to be obtained from their own caraprān. as.

While the time unit, namely a day, can be considered with respect to different
planets, we first consider the Sun and the solar day. By definition, on an average,
one-fourth of an ahorātra or mean solar day or civil day is 6 hours. To this, cor-
rection due to the cara has to be added or subtracted in order to find the ‘actual’
half-duration of the day, i.e. the time interval between sunrise and the meridian tran-
sit of the Sun. Recalling that one hour corresponds to 15◦, the half-duration of the
day (in hours) for an observer with latitude φ is given by

6 +
(Rsin−1)(R tanφ tanδ ) [in deg]

15
, (2.90)

where the second term is positive or negative depending upon the sign of δ , i.e. de-
pending on whether the Sun is in the northern or southern hemisphere. δ is obtained
using the relation

Rsinδ = Rsinε sinλ . (2.91)

As pointed out later, it is noted in Laghu-vivr. ti that λ at true sunrise should be
used in the calculation to obtain the first half-duration of the day. Similarly λ at true
sunset should be used to obtain the second half-duration of the day. This is explained
in Laghu-vivr. ti as follows:A;h;ea:=+a:�a;~ya :Sa;
a;�;Ga;�a;f;k+:a;tma;k+:~ya ya;(ãÉa;tua;Ba;Ra;gaH :pa:úãÁ*.a;d;Za;Ga;�a;f;k+:a:�+.paH ta;�/////////�a;sma;n,ata;a;tk+:a;�a;l+.k+:a;t,a .sa;a;ya;na;a;k+:Ra;d;a;n�a;a;ta;a;n,a ..a:=+pra;a;Na;a;n,a na;a;q� +.a;kx +:tya ;Æa;[a;pea;t,a ya;dùÅ;au ;d;gga;ea;l+.ga;taH.sa;a;ya;na;~å.Pu +.f;a;kR H Á ya;a;}ya;ga;ea;l+.ga;tea :pua;na;~ta;�/////////�a;sma;n,a ta;ta;eaY;h;ea:=+a:�a;.a;tua;Ba;Ra;ga;a;d, ;
a;va;Za;ea;Da;yea;t,a Á O;;vMakx +:ta;eaY;h;ea:=+a:�a;.a;tua;Ba;Ra;gaH ta;�/////////�a;sma;n,a ;
a;d;nea ;
a;d;na;a;D a Ba;va;�a;ta Á .=+a:�ya;D a :pua;naH ta;ta;ea v.ya;tya;ya;a;d,Ba;va;�a;ta Á o+.d;gga;ea;le ..a:=+pra;a;Na;
a;va:=+
a;h;taH A;h;ea:=+a:�a;.a;tua;Ba;Ra;gaH .=+a:�ya;D a, ya;a;}ya;ga;ea;le tua ta;tsa;
a;h;taHI+.�a;ta Á O;;vMa kx +:tMa ;
a;d;na;a;D a .=+a:�ya;D a ..a ;
a;dõ ;gua;a;Na;tMa kx +:t=+:ïîåé Ma ;
a;d;na;ma;a;nMa [a;pa;a;ma;a;nMa ..a Ba;va;�a;ta Á

The caraprān. as obtained from the sāyana longitude λ of the Sun, when it is in the north-
ern hemisphere (0 < λ < 180), converted into nād. ı̄s, have to be applied positively to one-
fourth of the duration of the ahorātra, which is 15 ghat.ikās, the duration of the ahorātra
itself being 60 ghat.ikās. If the Sun is in the southern hemisphere (180 < λ < 360), then the
caraprān. as, converted into nād. ı̄s have to be applied negatively to one-fourth of the dura-
tion of the ahorātra. Thus one-fourth of the ahorātra being corrected by the caraprān. a
gives the half-duration of the day. The half-duration of the night is obtained by carrying
out the reverse process. The half-duration of the night, which was obtained by subtracting
the caraprān. a in the northern hemisphere, is to be obtained by its addition in the south-
ern hemisphere. The half-durations of the day and night when multiplied by two give the
durations of day and night.

To get the half-durations of the day and night more accurately, a better procedure is
suggested.A:�a :pua;naH A;Ea;d;�a;ya;k+:a;t,a .sa;a;ya;na;a;k+:Ra;t,a A;a;n�a;a;ta;mea;va ..a:=M ;
a;d;na;pUa;va;Ra;DeRa k+:a;yRa;m,a; A;a;~ta;Æa;ma;k+:a-d;a;n�a;a;tMa ..a A;pa:=+a;DeRa Á .=+a;
a:�a;pUa;va;Ra;DeRaY;
a;pa A;a;~ta;Æa;ma;k+:a;d;a;n�a;a;tMa; A;pa:=+a;DeRaY;
a;pa A;Ea;d;�a;ya;k+:a;d;a;n�a;a;ta-
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a;d;na;a;DRa;ya;eaH [a;pa;a;DRa;ya;ea;(ãÉa ya;ea;gaH ;
a;d;na;[a;pa;ya;eaH .~å.Pu +.f;ta:=M ma;a;na;Æa;ma;�a;ta ÁA;Ta :pra;a;Na;k+:l+.a;nta:=+ma;
a;pa ;
a;d;na;ma;a;na;a;T a k+:tRa;v.ya;m,a Á .tea;na ;
a;d;na:=+a:�ya;eaH o+.Ba;ya;taH .sa;a;ya;na;a;kR +:taHya;t,a :pra;a;Na;k+:l+.a;nta:=+
a;dõ ;ta;ya;ma;a;n�a;a;tMa ta;ya;ea;
a;vRa;va:=+ma;
a;pa ;
a;d;na;[a;pa;a;ma;a;na;ya;eaH k+:tRa;v.ya;mea;va, yea;na;
a;d;na;[a;pa;ya;ea;ma;Ra;nea .~å.Pu +.f;ta;mea .~ya;a;ta;a;Æa;ma;�a;ta Á
The cara obtained from the sāyana Sun at sunrise (instead of mean sunrise at the equator)
has to be applied in the forenoon and the one obtained from the sāyana Sun at sunset in the
afternoon. Similarly, the cara obtained from the sāyana Sun at the sunset and sunrise have
to be applied for obtaining the duration of the first and second half of the night respectively.
The duration of the day and night obtained thus (rather than those obtained from the earlier
method) would be more accurate.

The prān. akalāntara correction should also be implemented in finding the duration of the
day. The difference in the prān. akalāntaras obtained from the sāyana Sun at sunrise and
sunset has to be applied to obtain more accurate durations of day and night.

Duration of the day of the planets

The stars are considered to be fixed objects in the sky. The sidereal day is defined
as the time interval between two successive rises of the star across the horizon
and is equal to the time taken by the Earth to complete one revolution around its
axis. A ‘planet-day’ is defined in a similar manner. The time interval between two
successive sunrises is the ‘sun-day’ or a solar day. The time interval between two
successive moonrises is the ‘moon-day’ or lunar day.13. Similarly the time interval
between two successive rises of any particular planet is defined to be the duration of
that ‘planet-day’.

This concept of the day of planets may be understood with the help of Fig. 2.8.
In Fig. 2.8a, we have depicted a situation where a star X , the Sun S and the Moon M
are all in conjunction and are just about to rise above the horizon. After exactly one
sidereal day (≈ 23 h 56 m) the star X will be back on the horizon. However, the Sun
and Moon, due to their orbital motion eastwards, will not be back on the horizon.
They would have moved in their respective orbits through distances, given by their
daily motions which are approximately 1◦ and 13◦ respectively. This situation is
depicted in Fig. 2.8b where X , S′ and M′ represent the star, the Sun and the Moon
respectively.

It may be noted here that the Moon is shown to be on the ecliptic. Though the
orbit of the Moon is slightly inclined to the ecliptic, since its orbital inclination is
very small (approximately 5◦), the angular distance covered by the Moon in its orbit
can be taken to be roughly the angular distance covered by it on the ecliptic. After
one sidereal day the star X will be again on the horizon. Only when the earth rotates
through an angle equal to the difference between the right ascensions of X and S′

will the Sun be on the horizon. This is taken to be the arc XS′ on the ecliptic itself.
(This can only be approximate.) Similarly only when it rotates through an angle XM′

will the Moon be on the horizon (in the same approximation). Hence the duration
of a solar day is given by

13 This definition of lunar day should not be confused with that of a tithi defined earlier.
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Fig. 2.8a The star X , Sun S and the Moon M at sunrise on a particular day.
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Fig. 2.8b The star X , Sun S′ and the Moon M′ exactly after one sidereal day.

Solar day = Sidereal day + Time taken by the earth to

rotate through XS′

= 21600 +XS′ (in minutes of arc)

= 21600 +Sun’s daily motion (in prān. as).

In the above expression, the number 21600 represents the number of prān. as (≈4
seconds) in a sidereal day, and XS′ is expressed in minutes. Similarly the duration
of the lunar day is given by
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Lunar day = Sidereal day + Time taken by the earth to

rotate through XM′

= 21600 +XM′

= 21600 +Moon’s daily motion (in prān. as). (2.92)

Similarly a ‘planet day’ can be defined for other planets also.
For finding half of the duration for which a planet is above the horizon, its own

caraprān. a has to be added to or subtracted from one-fourth of its own ‘planet-day’.
In Laghu-vivr. ti there is a discussion on this:..a;ndÒ +a;de H :pua;naH .~vEaH .~vEaH ..a:=+a;sua;Æa;BaH o+.�+:va;t,a .sMa;~kx +:ta;a;t,a ;�a;na:ja;a;h;ea:=+a:�a;.a;tua;Ba;Ra;ga;taH ;
a;d;na;a;D a.=+a:�ya;D a ..a A;va;ga;nta;v.ya;m,a Á A;h;ea:=+a:�a;(ãÉa ta;~ya ;�a;na:ja;
a;d;na;~å.Pu +.f;Ba;ea;ga;pra;a;Na;a;�a;Da;k+:.a;kÒ +:k+:l+.a;tua;�ya-:pra;ma;a;NaH Á na;nvea;vMa kx +:ta;~ya;a;
a;pa I+.nd;eaH ;
a;d;na;[a;pa;ya;ea;ma;Ra;na;~ya na .~å.Pu +.f;tva;m,a Á ;�a;na:ja;d;eaHP+.l+.k+:l+.a-;
a;d;na;a A;�a;Da;k+:ea;na;tva;sMa;Ba;va;a;t,a, .sa;tya;m,a ; A;ta O;;va ;
a;h ta:�a .~va;
a;d;na;a;nta;�a:=+ta;ya;eaH .~å.Pu +.f;ya;ea;
a;vRa;�a;Da-va;t,a kx +:ta;~va;.a:=+pra;a;Na;k+:l+.a;nta:=+ya;eaH A;nta:=e +Na ..a;kÒ +:k+:l+.a .sa;
a;h;tea;na ;
a;d;na;a;sa;vaH ;
a;kÒ +:ya;ntea Á

For the Moon and others (planets) their own durations of day and night have to be obtained
from the quarter of their true ahorātra corrected for their own carāsus. The duration of
their day is [nearly] equal to the sum of the their daily motion in prān. as plus the number
of minutes in 360 degrees. Even after applying this, the duration of the day or night of
the Moon [and other planets] would not be correct as it may differ [from the actual value]
by its own doh. phala. True; it is only to take this discrepancy into account that the [true]
duration of a lunar day in minutes is obtained from the difference in the true positions of
the Moon [and other planets], at intervals separated by the durations of their days corrected
by caraprān. a etc., added to the number of minutes in 360 degrees.

Ascensional difference in the case of the Moon and other planets:

It may be recalled that (2.67) gives the expression for finding the caraprān. a in the
case of the Sun. For the Moon and other planets the procedure to be adopted is stated
in Laghu-vivr. ti as follows:.~va;.a:=+pra;a;Na;a;na;ya;na;ma;
a;pa A;mua;nEa;va I+.�;kÒ +:a;ntya;a ;
a;va;[ea;pa;sMa;~kx +:ta;ya;a C+.a;ya;a;ga;a;Na;tea :pra;d;a;ZRa;ta;m,a-kÒ +:a;�////�a;nta:$ya;a ;
a;va;Sua;va;;�ÂåÅ +a.Èåî ÁÁ*+;a ;Æa;[a;�a;ta:$ya;a dõ ;a;d;Za;ea:;dÄâx ;ta;a Áv.ya;a;sa;a;DRa.Èåî ÁÁ*+;a dùÅ;au :j�a;a;va;a;�a;a ..a;a;
a;pa;ta;a;~yua;~.a:=+a;sa;vaH Á Á 14

For planets other than Sun the procedure for obtaining their own caraprān. a from the dec-
lination corrected for the latitude of the planet has been shown by [the author] himself in
[his] Chāyāgan. ita:

The sine of the declination multiplied by the vis.uvadbhā and divided by twelve is the
ks.itijyā. This has to be multiplied by the trijyā and divided by the dyujyā. The arc of this
is the carāsava.

In Fig. 2.9, S represents the position of the Sun on the observer’s meridian on
an equinoctial day. Since the motion of the sun takes place along the equator on

14 {CCG 1976}, p. 16.
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Fig. 2.9 Shadow of śaṅku on an equinoctial day.

an equinoctial day, the equator itself serves as the diurnal circle. The length of the
shadow of a stick of length 12 units, when the Sun is on the observer’s meridian on
the equinoctial day, is termed the vis.uvadbhā. In the figure, OA represents the stick
of length 12 units, referred to as a śaṅku. Since ZS = φ , the latitude of the observer,
OÂB = φ . Hence,

vis.uvadbhā = 12tanφ . (2.93)

From (2.85), ks. itijyā is given by 12 tanφ×R sinδ
12 . Also the ascensional difference

carāsava of the planet is given by

carāsus = (Rsin)−1R tanφ tanδ , (2.94)

where δ is the declination of the planet. The declination δ of a planet with longitude
λ and latitude β as depicted in Fig. 2.10 is given by

sinδ = cosε sinβ + sinε cosβ sinλ
= cosε sinβ + cosβ sinδE , (2.95)

where δE is the declination of an object on the ecliptic with the same longitude as
the planet. That is, sinδE = sinε sinλ . Thus, in the case of planet having a latitude,
a correction has to be applied to δE to obtain the actual declination δ . From the
‘planet-day’ and the carāsava of the planet, the time interval between the rising and
setting of the planet which is the duration of the ‘day’ for the planet can be obtained.
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Fig. 2.10 Determination of caraprān. a for planets.2.14 ..a;ndÒ +~å.Pu +.f� ;a;k+.=+Na;m,a
2.14 Obtaining the true MoonI+.ndU ;�a;ya;eaH .~va;de ;Za;ea;tTa:=+v.ya;a;n�a;a;ta;.a:=+a;
a;d:ja;m,a Á.sMa;~k+:a:=M ma;Dya;mea kx +:tva;a .~å.Pu +.f� ;a;k+:a;ya;eRa ;�a;na;Za;a;k+.=H Á Á 35 Á Ád;eaHk+:ea;�a;f:$yea tua .sa;�a.Èåî ÁÁ*+e A;Z�a;a;tya;a;�ea :P+.le o+.Bea Á..a;a;
a;pa;tMa d;eaHP+.lM k+:a;y a .~va;ma;Dyea .~å.Pu +.f;Æa;sa:;dÄâ ;yea Á Á 36 Á Á

indūccayoh. svadeśottharavyān̄ıtacarādijam |
sam. skāram. madhyame kr. tvā sphut.̄ıkāryo nísākarah. || 35 ||
doh. kot.ijye tu saptaghne aś̄ıtyāpte phale ubhe |
cāpitam. doh.phalam. kāryam. svamadhye sphut.asiddhaye || 36 ||
The mean position of the Moon and its apogee have to be corrected by the caraprān. a etc.
obtained from the Sun, and then the sphut.a-karma (procedure for the true longitude) has
to be carried out.

The dorjyā and the kot.ijyā multiplied by 7 and divided by 80 form the doh. phala and
kot.iphala. The arc of the doh. phala has to be applied to the mean position to get the true
position.

The mean positions of the planets obtained from the Ahargan. a (count of days)
correspond to their mean positions at the mean sunrise for an observer at Ujjayin̄ı.
To get their mean positions for other observers, corrections such as deśāntara, cara
etc. have to be applied (see the previous section as well as Section 1.14). These are
corrections to be carried out to get the mean position of the planet at the true sunrise
at the observer’s location. Verse 35 reemphasizes these corrections.
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To get the true position of the planet at true sunrise, the equation of centre has to
be applied to the mean planet at true sunrise. Verse 36 describes how this correction
has to be implemented in the case of the Moon. The ratio of the mean radius of the
epicycle and the radius of the deferent circle (the trijyā) is taken to be 7

80 for the
Moon. Hence according to the text the true longitude of the Moon, θ , is

θ = θ0 − sin−1
(

7
80

sin(θ0 −θm)

)
,

where θ0 is the mean longitude of the Moon and θm the longitude of the mandocca.
The procedure for obtaining the true longitude of the Moon is explained in the

commentary as follows:..a;ndÒ +ta;du ;�a;ya;ea:=+
a;pa I+.�;dùÅ;au ;ga;Na;taH :�Ea:=+a;a;Za;k+:Æa;sa:;dÄâ e ma;Dya;mea :de ;Za;a;nta:=+~ya .=+
a;va;d;eaHP+.l+.a;d� ;a;na;Ma�a;ya;a;Na;Ma ..a ga;�a;tMa ;
a;va;�a;Da;va;t,a kx +:tva;a ..a;ndÒ +~ya ma;Dya;taH ta;n}å.a;nd;ea;�Ma ;
a;va;Za;ea;Dya ;a;Za;�e ta;tke +:ndÒ eBa;ga;Na;pUa;va;eRa;Dva;Ra;DRa;ga;ta;tvMa ..a A;va;Da;a;yRa d;eaHk+:ea;f�a;ea:�+:Ba;ya;ea:=+
a;pa .j�a;a;vea .=+
a;va;ke +:ndÒ +ea;�+:va;�ç Åx +�ÎÉ É� +:a;ya;a;t,a Áta;Ta;a gxa;h� ;a;tea d;eaHk+:ea;�a;f:$yea o+.Bea A;
a;pa .sa;�a;Æa;Ba;�a;nRa;h;tya A;Z�a;a;tya;a ;
a;va;Ba:$ya l+.b.Dea d;eaHk+:ea;�a;f;P+.le.~ya;a;ta;a;m,a Á ta:�a k+:ea;�a;f;P+.l+.~ya o+.pa;ya;ea;gMa va;[ya;a;maH Á d;eaHP+.lM :pua;na;(ãÉa;a;p�a;a;kx +:tya ta;n}å.a;Dya;mea.~va;ke +:ndÒ +Ba;ga;Na;pUa;va;eRa;Dva;Ra;DRa;ga;ta;tva;va;Za;a;t,a �+.NMa ;Da;nMa va;a ku +:ya;Ra;t,a Á O;;vMa kx +:ta;(ãÉa;ndÒ +ma;Dya;maH.~va;de ;Za;~å.Pu +.f;a;k+:eRa;d;ya;a;va;�a;Da;kH .~å.Pu +.f;ea Ba;va;�a;ta Á
From the deśāntara, as well as the three corrections manda-phala etc. related to the Sun
[obtaining the true sunrise time], the mean positions of the Moon and its apogee [at true
sunrise time], are obtained from the Ahargan. a by the rule of three. Then subtracting the
apogee from the mean longitude, the manda-kendra of the Moon is determined. Depend-
ing upon the quadrant in which the manda-kendra lies, the dorjyā and kot.ijyā have to
be found following the procedure that was given for the Sun.

The dorjyā and kot.ijyā obtained thus have to be multiplied by 7 and divided by 80 to get
the doh. phala and kot.iphala respectively. The use of the kot.iphala will be stated later.
The arc corresponding to the doh. phala is applied to the mean planet either positively or
negatively depending upon the quadrant in which the kendra lies. These corrections applied
to the mean Moon give its true position at the true sunrise at the observer’s location.2.15 ..a:=;$ya;a;d� ;a;na;Ma ..a;a;p�a;a;k+.=+Na;m,a

2.15 Finding the arc corresponding to cara etc..$ya;a;.a;a;pa;a;nta:=+ma;a;n�a;a;ya ;a;Za;�;.a;a;pa;Ga;na;a;
a;d;na;a Áyua;�+:a .$ya;a;ya;Ma ;Da;nuaH k+:a;y a :pa;
a;F+.ta:$ya;a;Æa;Ba;=e +va va;a Á Á 37 Á Á;
a:�a;Ka:�+.pa;a;�;BUa;na;a;ga:�+:dÒ E H ;
a:�a:$ya;a;kx +:�a;taH .sa;ma;a ÁO;;k+:a;
a;d.Èåî ÁÁ*+�a;a d;Za;a;�a;a ya;a ;Ga;na;mUa;lM ta;ta;eaY;
a;pa ya;t,a Á Á 38 Á Áta;�///////�a;n}å.a;ta:$ya;a;sua ya;ea:$ya;aH .~yuaH O;;k+:dõùÅ;a;a;dùÅ;a;a ;
a;va;�a;l+.�a;�a;k+:aH Á..a:=+d;eaHP+.l+j�a;a;va;a;de H O;;va;ma;�pa;Da;nua;nRa;yea;t,a Á Á 39 Á Á
jyācāpāntaramān̄ıya śis. t.acāpaghanādinā |
yuktvā jyāyām. dhanuh. kāryam. pat.hitajyābhireva vā || 37 ||
trikharūpās.t.abhūnāgarudraih. trijyākr. tih. samā |
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ekādighnyā daśāptā yā ghanamūlam. tato ′pi yat || 38 ||
tanmitajyāsu yojyāh. syuh. ekadvyādyā viliptikāh. |
caradoh.phalaj̄ıvādeh. evamalpadhanurnayet || 39 ||
The arc corresponding to a jyā may be obtained either by finding the difference between
the jyā and the arc as given in the verse [beginning] śis. t.acāpaghana etc., and adding that
(difference) to the jyā, or from the table of jyās listed earlier.

The square of the trijyā is 11818103 (in minutes). Multiply this by 1, 2 etc., divide by 10
and find the cube roots of these results. If the jyā (whose arc is to be found) has a measure
equal to these (the above cube roots), then 1, 2, etc. seconds have to be added to them. Thus
the arc of the R sine of small angles involved in the caradoh. phala may be obtained.

In Fig. 2.11, let PN represent the jyā whose corresponding arc length AP is to be
determined. If R is the radius of the circle and AÔP = α, then the length of the jyā
corresponding to this angle is given by

jyā = PN = l = Rsinα. (2.96)

When α is small we know that

sinα ≈ α − α3

3!
.

Hence, Rsinα ≈ Rα − (Rα)3

6R2 . (2.97)

Or, the difference (D) between the cāpa (arc) and its jyā (Rsine) is given by

D ≈ Rα − l =
(Rα)3

6R2 . (2.98)
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Fig. 2.11 Finding the arc length of a given jyā when it is very small.

An iterative procedure for obtaining the arc length corresponding to a given jyā
is described in the above verses. This procedure is simple and also yields fairly
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accurate results for small angles. We may explain the procedure outlined here as
follows.

As a first approximation, we take the arc length (which itself is very small) to be
the jyā itself, i.e. Rα ≈ l. Hence from (2.98) the difference between the arc length
and its jyā becomes

D1 =
l3

6R2 . (2.99)

As a second approximation, we take the arc length to be Rα = l +D1. Hence in the
next approximation the difference (D2) between the arc length and its jyā becomes

D2 =
(l +D1)

3

6R2 . (2.100)

As a third approximation, when we take Rα = l +D2, we have

D3 =
(l +D2)

3

6R2 . (2.101)

In general,

Di =
(l +Di−1)

3

6R2 . (2.102)

The above iteration process is continued till Di = Di−1, to a given level of accu-
racy. When this condition is satisfied, we have arrived at the required arc length
corresponding to the given jyā, given by

Rα = l +Di. (2.103)

Aviśes.akarma

The iterative procedure, known as avíses.akarma, to be employed is described in
Laghu-vivr. ti as follows:..a;a;p�a;a;�a;.a;k
 +:a;
a;SRa;ta;Ma .$ya;Ma k+:a;t=+:ïîåéyeRa;na ;Ga;n�a;a;kx +:tya :Sa;
a:ñÂ ÅÅå*.+:
a;vRa;Ba:$ya l+.b.DMa :pua;naH ;
a:�a:$ya;a;kx +:tya;a..a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa ;�a;l+.�a;a;
a;d;kM .$ya;a;.a;a;pa;a;nta:=+m,a Á A;h;a;yRa;tvea :pua;naH :Sa;��a;a ;�a;na;h;tya;
a:�a:$ya;a;kx +:tya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa ;
a;va;�a;l+.�a;a;
a;d;kM .$ya;a;.a;a;pa;nta:=+Æa;ma;�a;ta Ána;nva:�a ;a;Za;�;.a;a;pa;Ga;nea;tya;a;
a;d;na;a I+.�;.a;a;pa;taH ta:êêÁ*.a�a;a;.a;a;pa;a;nta:=M ;
a;kÒ +:ya;tea Á na :pua;naH I+.�:$ya;a;taHta;�a;a;pa;a;nta:=+m,a Á .sa;tya;m,a ; A;ta O;;va A:�a A;
a;va;Zea;Sa;k+:mRa ;
a;kÒ +:ya;tea Á ta;dùÅ;a;Ta;a - o+.�+:va;d;a;n�a;a;ta;m,aI+.�:$ya;a;.a;a;pa;a;nta:=+m,a I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya :pua;na:=+
a;pa ta:.�ÈÅ +na;taH :pUa;vRa;va;d;a;n�a;a;tMa .$ya;a;.a;a;pa;a;nta:=Mmua;hu :=+a;dùÅ;a:$ya;a;ya;a;mea;va :pra;Æa;[a;pea;t,a ya;a;va;d;
a;va;Zea;SaH Á A;
a;va;a;Za;�e ;na .$ya;a;.a;a;pa;a;nta:=e +Na yua;�+:a I+.�:$ya;a..a;a;p�a;a;kx +:ta;a .~ya;a;
a;d;�a;ta Á

Find the cube of the given jyā and divide it by six. This may further be divided by the
square of the trijyā. The result is the difference between the jyā and cāpa in minutes. If
it is not divisible [if there is a fraction], then it has to be multiplied by 60 and then divided
by the square of the trijyā. The result thus obtained will be the difference between the jyā
and the cāpa in seconds.
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Is it not true that, as per the procedure described in [the verse] śis. t.acāpaghana . . . ,
we find the difference between the jyā and cāpa from the given (known) cāpa and not
from the given jyā? Yes, it is true. It is only because of this, that an iterative procedure
(avíses.akarma) is followed here where the difference between the jyā and cāpa is to be
found from the given jyā. It is as follows: The difference between the jyā and cāpa ob-
tained as described earlier must be applied to the given jyā and from the cube of that the
[next approximation to the] difference between the jyā and cāpa must be determined. This
again has to be applied to the given jyā, and the process has to be repeated till the result
becomes avísis.t.a (not different from the earlier). This difference added to the given jyā
will be the required cāpa.

Finding the arc length corresponding to a given jyā from a look-up table

Apart from the iterative procedure described above, Nı̄lakan.t.ha also gives an inge-
nious way by which one can find out the arc length corresponding to a given jyā,
when the jyā is small. Here the idea is to make use of a table of jyās and the differ-
ences D′

is, in order to obtain the required arc length and thereby avoid the iterative
process. The procedure is as follows:

The difference between the cāpa and its jyā is given by

D = Rα − l ≈ (Rα)3

6R2 =
(l)3

6R2 . (2.104)

In the above equation all the quantities are expressed in minutes. When the differ-
ence D = 1′′, which is one-sixtieth of a minute, we obtain

(l)3

6R2 =
1

60
. (2.105)

This implies that when D = 1′′ the corresponding jyā is given by

l1 =

(
1.R2

10

) 1
3

. (2.106a)

Similarly when D = 2′′, the corresponding jyā is given by

l2 =

(
2.R2

10

) 1
3

, (2.106b)

and so on. In general, when D = i′′, the corresponding jyā is given by

li =

(
i.R2

10

) 1
3

. (2.107)

Here, l′is correspond to the jyās, when the difference between the jyā and the cāpa
(D) is i′′. Hence, the lengths of the cāpas, Ais, corresponding to the jyās, li, are
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given by
Ai = li + i. (2.108)

In Table 2.2, the jyā values are listed corresponding to the integral values of the
difference between the jyā and the arc length, as given in Laghu-vivr. ti. These are

Difference Given Textual Computed
D = cāpa–jyā value of jyā value of cāpa value of cāpa

in seconds min sec min sec min sec
1 105 43 105 44 105 43.56
2 133 11 133 13 133 12.42
3 152 26 152 29 152 29.04
4 167 46 167 50 167 49.80
5 180 43 180 48 180 47.34
6 192 02 192 08 192 07.02
7 202 08 202 15 202 14.82
8 211 20 211 28 211 27.12
9 219 47 219 56 219 55.14
10 227 38 227 48 227 46.80
11 234 58 235 09 235 07.98
12 241 52 242 04 242 03.18
13 248 24 248 37 248 35.88
14 254 36 254 50 254 48.90
15 260 31 260 46 260 44.58
16 266 10 266 26 266 24.78
17 271 36 271 53 271 51.12
18 276 48 277 06 277 04.86
19 281 50 282 09 282 07.20
20 286 40 286 60 286 59.10
21 291 22 291 43 291 41.46
22 295 55 296 17 296 14.94
23 300 18 300 41 300 40.26
24 304 36 304 60 304 58.02

Table 2.2 Look-up table from which the values of arc lengths of small jyās can be directly written
down without performing any iteration, when the difference between the jyā and the cāpa is equal
to integral number of seconds.

the lis, i = 1 . . .24 in (2.107), which are listed in the second column. The third
column gives the sum of columns 1 and 2. The fourth column gives the values of the
arc length as computed by us using (2.108), which in turn involves the computation
of the cube root of (2.107), for different values of i (i = 1 . . .24). In doing so, we
have also used the exact value of the trijyā (in minutes), that is, R = 21600

2π . Given the
fact that some approximation in the trijyā value and the extraction of the cube root
is involved in the computation of arc length, it is remarkable that the value given in
the text differs at the most by 2′′ from the exactly computed value of the arc length.
The idea behind listing these 24 jyā values is to avoid the iterative process outlined
earlier, when the jyā value is small.
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Finding the arc length from the look-up table

The procedure is explained in the commentary as follows:A;Ta;va;a O;;k+:dõùÅ;a;a;
a;d;
a;va;�a;l+.�a;a:�+.pMa ya:êêÁ*.a�a;a;.a;a;pa;a;nta:=M ta;
a;dõ ;Da;a;�a;ya;n�a;aH ba;�ë� +:aH .j�a;a;va;aH :pa;
a;F+.tva;ata:�ua;�ya;a;sua A;B�a;a;�:$ya;a;sua O;;k+:dõùÅ;a;a;
a;d ;
a;va;�a;l+.�a;a:�+.pMa .$ya;a;.a;a;pa;a;nta:=M I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya ta;�a;a;pMak+:tRa;v.ya;Æa;ma;�a;ta Á ta;t,a k+:Ta;Æa;ma;�a;ta ..ea;t,a -ta:�a ;
a:�a:$ya;a;ya;aH kx +:�a;taH ;
a:�a;Ka:�+.pa;a;�;BUa;na;a;ga:�+:dÒ E +~tua;�ya;sa;*ñÍËÉ ùÁ+;a;a :pra;Æa;sa:;dÄâ ;a Á ta:�a ;
a:�a:$ya;a;kx +:teaHO;;k+:dõùÅ;a;a;
a;d;�a;na;h;ta;a;ya;aH d;Za;Æa;Ba;
a;vRa;Ba:$ya l+.b.Da;a;t,a :P+.l+.a;t,a ;Ga;na;mUa;l+.ma;a;na;yea;t,a Á ta:�a:�ua;�ya;a;suaI+.�:$ya;a;sua kÒ +:ma;a;de ;k+:dõùÅ;a;a;
a;d;
a;va;�a;l+.�a;�a;k+:aH .$ya;a;.a;a;pa;a;nta:=+tvea;na g{a;a;hùÅ:a;a I+.�a;ta Á ta;Ta;a;n�a;a;ta:$ya;a;.a;a;pa;a-nta:=+m,a I+.�:$ya;a;ya;Ma :pra;Æa;[a;pya ..a;a;p�a;a;k+.=+NMa k+:a;yRa;Æa;ma;�a;ta Á ta;dùÅ;a;Ta;a -l+.va;NMa ;�a;na;ndùÅ;aM k+:
a;pa;l+.a ga;ea;p�a;a ..a:=;=+a;Za;ya;~ta;va;a;�a;TRa;ta;ya;a Ál+.Gua;na;ea;	a;�+�;ea .=+a::℄aH :pra;L+:ya;ea ;Da;a;}îå:a;Ma ;
a:�a;nea:�a na:=+k+:pua:=+m,a Á Á.sa;va;DUa;f� ;a;ndÒ +ea .ja;l+.sUa:=+dÒ � +a;
a;h;ma;va;a;n,a gua:�+:�///�a;~:�a;Za;ñÍö�ÅÅ*:u +.va:=H Áva:=+d;ea va:j"�a;a ;�a;ta;l+.BUa;meRa:�H k+:a;le +.na ta:�a nxa;pa;�a;ta;.a:=H Á Á;�a;ta;l+.kM .sa;a;ndÒ M ;Da;a;va;�a;ta;sa;�a:=+t,a na mea ku +.úêÁÁ*+:=+ea ;�a;na;vxa:�a:ja:=H Á(rea;�+k+:L+.�a;ma;ma;a;Za;a;Da;a:��a;a ;DUa;pa;eaY;çÉîå+;a� ;a;na;a;}bua;�a;ta;l+.va;na;gaH Á ÁO;;va;ma;a;ya;Ra:�a;yea;Na;ea;�+:a ma;Ea;
a;vRa;k+:a;
a;va;k+:l+.a;d;yaH Á..a;a;p�a;a;k+.=+Na;mea;ta;a;Æa;BaH .sua;k+.=M d;eaHP+.le Y;�pa;ke Á Ál+.va;Na;a;
a;d;Sua .j�a;a;va;a;sua ya;ya;a tua;�yMa Bua:ja;a;P+.l+.m,a Áta;tsa;*ñÍËÉ ùÁ+;a;a ;
a;va;k+:l+.a [ea;pya;aH ta:�a ..a;a;pa;pra;Æa;sa:;dÄâ ;yea Á Á I+.�a;ta Á Á
Or if the difference between the jyā and the arc length is equal to 1′′, 2′′, 3′′ etc. then
construct the table listing the jyās corresponding to these differences. If the jyā whose
cāpa is to be determined happens to be (very close to) one of the values listed in the table,
then add this difference between jyā and cāpa (1′′ , 2′′, 3′′ etc.) to the jyā to get the required
cāpa. How should this be implemented?

It is well known that the square of the trijyā = 11818103. Multiply this by 1, 2, 3, etc.,
divide by 10, and take the cube roots of the resulting quantities [in minutes etc]. If the jyā
whose cāpa is desired to be found happens to be one of the values [listed in the table], then
it is to be understood that the corresponding difference between the jyā and cāpa is going
to be only 1′′, 2′′, 3′′, etc. The difference between the jyā and cāpa, obtained thus, may thus
be added to the given jyā to get the desired cāpa. This may be done as follows.15

Thus the jyās in seconds and minutes are given in three āryā verses. For instance,
the lavan. am. nindyam and the kapilā gop̄ı stand for 105′43′′ and 133′11′′, respec-
tively. Finding the arc lengths from the jyās, when they are small, is quite simple
making use of these values. If the doh. phala (whose arc length is to be calculated) is
equal to one of the values listed, beginning with the lavan. a, then the corresponding
number of seconds have to be added to the jyās to get the corresponding cāpa.

In the commentary it is also stated that using the table and determining the arc
lengths may not be as accurate as the result obtained by using the iterative procedure:

15 The values of the jyās given in the succeeding verses lavan. am. . . . , are listed in second column
of Table 2.2.



96 .~å.Pu +.f;pra;k+.=+Na;m,a True longitudes of planetsya;dùÅ;a;
a;pa .sua;sUa;[ma;.a;a;p�a;a;k+.=+Na;ea;pa;a;yaH :pUa;vRa;mea;va :pra;d;a;ZRa;taH ta;Ta;a;
a;pa A;�p�a;a;ya;~ya;aH .j�a;a;va;a;ya;aH..a;a;p�a;a;k+.=+Na;mea;vMa k+:tRa;v.ya;m,a, I+.�a;ta I+.h;a;
a;pa :pra;d;a;ZRa;ta;m,a Á A;ta o+.�+:m,a - ..a:=+d;eaHP+.l+j�a;a;va;a;de HO;;va;ma;�pa;Da;nua;nRa;yea;t,a - I+.�a;ta Á
Though the procedure for obtaining more accurate values of the arc length has already been
stated, for smaller jyās the arc lengths may be obtained by this method (from the look-up
tables). That is why it is stated: The small arc length of the cara-doh. phala etc. should be
obtained by this method.

The same idea is conveyed in Yukti-d̄ıpikā in the following manner:o+.�M ..a;a;pa;Ga;nea :Sa:ñÈÅÅ*+:
a:�a:$ya;a;va;geRa k+:l+.a;sa;ma;m,a Á Ád;Za;Ma;Zea ta;tkx +:teaH ..a;a;pa:$ya;a;nta:=M ;
a;va;k+:l+.a;sa;ma;m,a ÁO;;k+:a;
a;d.Èåî ÁÁ*+;a:�a;ta;�///�a;~:�a:$ya;a;va;gRa;ta;ea d;Za;Æa;Ba;&R +.ta;a;t,a Á Á;Ga;na;mUa;lM tua ya;�+:b.DMa ta:�ua;�yea ;Da;nua;
a;Sa ;�//////�a;~Ta;tea ÁO;;k+:dõùÅ;a;a;dùÅ;a;a ;
a;va;�a;l+.�a;aH .~yuaH ..a;a;pa:$ya;a;
a;va;va:=+ea;;�ÂåÅ +va;aH Á Áta;dU ;nMa ..a;a;pa;ma;DRa:$ya;a ta;dùÅ;au ;ta;a .$ya;a ..a ta:;dÄâ ;nuaH Ák+:a;ya;eRaY;
a;va;Zea;Sa;(ãÉa;a;pa;a;�a;Ea ..a;a;pa;a;�pa;tvea dx ;QM ..a ta;t,a Á Á 16

It has been stated implicitly (in verse 17 of the text) that the difference between the jyā and
cāpa will be equal to 1′ (one kalā), when the cube of the arc length is equal to six multiplied
by square of the trijyā. The same will be equal to 1′′ (one vikalā) when the cube of the arc
length is equal to one-tenth of the square of trijyā.

Now, the square of the trijyā divided by 10 is multiplied by 1,2,3, etc. Then the cube roots
of the results are taken [and stored separately]. These correspond to the arc lengths, when
the difference between the jyā and cāpa is equal to 1′′ , 2′′, 3′′, etc., respectively. When
differences are subtracted from the arc length we get the jyā and when they are added to
the jyā we get the arc length. Avíses.akarma must be done in order to get accurate results
for the cāpa from the jyā whose values are small.

In fact the accuracy of the tabulated results is of the order of 0.003%. For instance
for a cāpa of 105′44′′, the listed jyā value is 105′43′′, whereas the exact Rsine value
is 105′43.02′′. The percentage error is 0.0003%. This is not surprising considering
the fact that for a small α the fractional error in retaining terms only up to α3 in
sinα is α5

5! .2.16 ma;nd;Z�a;a;Gra;k+:Na;Ra;na;ya;na;m,a
2.16 Obtaining the manda and ś̄ıghra hypotenusesA;a;dùÅ;ae :pa;de ..a;tua;TeRa ..a v.ya;a;sa;a;DeRa k+:ea;�a;f:jMa :P+.l+.m,a Áyua;�+:a tya;�+:a;nya;ya;eaH ta;�+eaHP+.l+.va;gERa;k�+.a:jMa :pa;d;m,a Á Á 40 Á Ák+:NRaH .~ya;a;d;
a;va;Zea;Sa;eaY;~ya k+:a;ya;eRa ma;nde ..a;le na tua Á

ādye pade caturthe ca vyāsārdhe kot.ijam. phalam |
yuktvā tyaktvānyayoh. taddoh. phalavargaikyajam. padam || 40 ||
karn. ah. syādavíses.o

′sya kāryo mande cale na tu |

16 {TS 1977}, p. 158.
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Having added the kot.iphala to the radius (vyāsārdha) in the first and the fourth quadrants
and having subtracted [the kot.iphala] from it (the radius) in the other two [quadrants] let
the square root of the sum of the squares of this and the doh. phala be obtained. This is the
karn. a and in the manda process this has to be further iterated upon, but not in the ś̄ıghra
(cala).

The method given in the above verse for finding the karn. a can be explained with
the help of an epicycle model represented in Fig. 2.12a. Here the mean planet P0 is
assumed to be moving on the deferent circle centred around O, and the true planet
P is located on the epicycle such that PP0 is parallel to OU (the direction of the
mandocca). OΓ represents the direction of Aśvini naks.atra (Mes. ādi or first point
of Aries).

In Fig. 2.12a let R and r be the radii of the deferent circle and the epicycle
respectively. OU represents the direction of the mandocca whose longitude is given
by Γ ÔU = θm. The longitude of the mean planet P0 is given by Γ ÔP0 = θ0. θms

represents the longitude of the manda-sphut.a-graha. It is easily seen that

UÔP0 = PP̂0N = θ0 −θm, (2.109)

where (θ0 −θm) is the manda-kendra. The doh. phala and the kot.iphala are given
by

doh. phala = PN = |r sin(θ0 −θm)| (2.110)

and
kot.iphala = P0N = |r cos(θ0 −θm)|. (2.111)

Now, the manda-karn. a K is the distance between the planet and the centre of the
deferent circle. Clearly,

K = OP

=
[
(ON)2 +(PN)2] 1

2

=
[
(R + r cos(θ0 −θm))2 +(r sin(θ0 −θm))2] 1

2 . (2.112)

Here, r cos(θ0 − θm) = ±|rcos(θ0 − θm)| is positive in the first and fourth quad-
rants and negative in the second and third quadrants. That is why it is stated that
the kot.iphala has to be added to the trijyā in the first and fourth quadrants and
subtracted from it in the second and third quadrants.

It is also stated that the karn. a K has to be determined iteratively in the manda-
sam. skāra to obtain the avíses.a-karn. a (iterated hypotenuse). This is because r in
(2.112) is not a constant but is itself proportional to K. That is,

r =
r0

R
K, (2.113)

where r0 is the radius of the epicycle whose value is specified in the text. The itera-
tive procedure to determine K and r is discussed in the next section. In the ś̄ıghra-
sam. skāra, r is fixed for each planet, and no iterative procedure is necessary to find
K.
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Fig. 2.12a Obtaining the manda-karn. a in the epicycle model.

In Fig. 2.12a, the longitude of the planet is given by Γ ÔP = θms = θ . Then
PÔP0 = θm −θ is the difference between the mean and true planets. Now,

PN = OPsin(PÔP0) = K sin(θm −θ ). (2.114)

PN is also given by

PN = PP0 sin(PP̂0N) = r sin(θ0 −θm). (2.115)

Equating the above two expressions for PN,

K sin(θm −θ) = r sin(θ0 −θm)

or sin(θm −θ) =
r
K

sin(θ0 −θm)

=
r0

R
sin(θ0 −θm). (2.116)

Thus the true planet θ can be obtained from the mean planet θ0 from the above
equation. It may be noted that (2.116) does not involve the manda-karn. a K.

While commenting on these verses, the eccentric and epicyclic models are de-
scribed in Yukti-d̄ıpikā. First, we give the verses explaining the eccentric model.
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a;va::℄ea;yaH :pra;�a;ta;vxa:�a;k+:l+.a;Æa;ma;taH Á 17

The distance of separation between the planet and the uccasūtra is the dorjyā measured
with respect to the grahavr. tta (the circle in which the planet moves). The kot.ijyā is equal
to the distance of separation between the centre of the grahavr. tta and the foot of the
dorjyā on the uccasūtra.

The distance of separation between the centres of the grahavr. tta and the kaks.yāvr. tta is
the antyaphala. The sphut.akot.ikā is obtained by adding or subtracting the antyaphala
to or from the kot.ijyā depending upon whether the foot of the dorjyā is outside or in-
side the kaks.yāvr. tta. The square root of the sum of the squares of the two [dorjyā and
sphut.akot.ikā] is the distance of separation between the centre of kaks.yāvr. tta and the
planet. This has to be understood as the karn. a measured in terms of the prativr. tta.

In Fig. 2.12b, the circle centred around O′ is called the grahavr. tta, or prativr. tta
or pratiman. d. ala (the eccentric circle), and the one centred around O is the kaks.yā-
vr. tta (the deferent circle). OU represents the direction of the mandocca. These
two circles, namely the grahavr. tta and the kaks.yavr. tta, have the same radius and
their centres are displaced along the direction of the mandocca U . The dotted circle
with its centre at the centre of the kaks.yāvr. tta is known as the karn. aman. d. ala or
karn. avrtta (hypotenuse circle). The distance of separation between the centres of
the grahavr. tta and the kaks.yāvr. tta is referred to as the antyaphala. If R is the
radius of the grahavr. tta and (θ0 − θm) the manda-kendra, then the dorjyā and
kot.ijyā are given by

dorjyā = PN = |Rsin(θ0 −θm)| (2.117)

and
kot.ijyā = O′N = |Rcos(θ0 −θm)|. (2.118)

The sphut.akot.ikā is defined by

sphut.akot.ikā = ON = kot.ijyā
+∼ antyaphala

= |Rcos(θ0 −θm)| +∼ r. (2.119)

It is stated that the ‘∼’ sign should be taken when both the edges of the dorjyā
(points P and N in Fig. 2.12b) lie within the kaks.yāvr. tta, and ‘+’ when at least one
or both the edges of the dorjyā lie outside the kaks.yāvr. tta.

Actually, whether the ‘+’ or the ‘∼’ sign has to be taken depends on whether P
lies above or below the straight line perpendicular to OU passing through O′, that
is, when (θ0 − θm) is in the first/fourth quadrants or in the second/third quadrants
respectively. If K represents the karn. a OP, then it is given by

17 {TS 1977}, pp. 161–2.



100 .~å.Pu +.f;pra;k+.=+Na;m,a True longitudes of planets

U

O

O’

P

P

N

Γ

Γ

or

o

prativr. tta
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karn. avr. tta

kaks.yāvr. tta

Fig. 2.12b Obtaining the manda-karn. a in the eccentric model.

K = OP

= (PN2 +ON2)
1
2

=
[
dorjyā2 + sphut.akot.ikā

2] 1
2

=
[
(Rsin(θ0 −θm))2 +(|Rcos(θ0 −θm)| +∼ r)2] 1

2

=
[
(Rsin(θ0 −θm))2 +(Rcos(θ0 −θm)+ r)2] 1

2 . (2.120)

K can be determined using the above formula, or by using equation (2.112), which
are equivalent. This is explained in the following verses of Yukti-d̄ıpikā:k+:[ya;a;vxa:�a;~ya ta;�ea;Æa;ma;~Ta;ea;�a;n�a;a;.a;~ya ..a dõ ;ya;eaH Á:ke +:ndÒ +dõ ;ya;a;va;Bea;d� ;a ya;ea ma;a;gRa;~ta;sma;a;d, g{a;h;a;nta:=+m,a Á Ád;eaHP+.lM ya:�ua ta;n}å.Ua;l+.a;nta:=M n�a;a;.a;ea;�a;ke +:ndÒ +taH Ák+:ea;f� ;a;P+.lM ta;dùÅ;au ;ta;ea;na;a ;
a:�a:$ya;a k+:[ya;a;K.ya;vxa;a:�a;taH Á ÁkÒ +:ma;a;d, d;eaHP+.l+.mUa;le tua ba;
a;h:=+nta;gRa;tea .sa;�a;ta Á.sa;a tua d;eaHP+.l+.mUa;l+.~ya k+:[ya;a;ke +:ndÒ +~ya ..a;a;nta:=+m,a Á Áta;tkx +:ta;Ea d;eaHP+.l+.kx +:�a;tMa yua;�+:a k+:NRaH :pa;d� ;a;kx +:taH ÁO;;vMa k+:Na;eRa ;
a;dõ ;Da;a .sa;a;DyaH .sa tua ma;a;nd;ea ;
a;va;a;Za;Sya;tea Á Á 18

18 {TS 1977}, p. 162.
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The distance of separation between the planet, and the line passing through the centre of the
kaks.yāvr. tta and the centre of the uccan̄ıcavr. tta (epicycle) which moves on the circum-
ference of the kaks.yāvr. tta, is the doh.phala. The distance of separation between the foot
of the perpendicular [of the dorjyā] and the centre of the uccan̄ıcavr. tta is the kot.iphala.
Depending upon whether the foot of the doh. phala lies outside the kaks.yāvr. tta or inside,
the kot.iphala has to be added to or subtracted from the trijyā. This gives the distance
of separation between the centre of kaks.yāvr. tta and the foot of the doh. phala. The square
root of the sum of the square of this (distance of separation) and the square of the doh. phala
is the karn. a. In this way the karn. a can be obtained in two ways and it has to be iterated in
the case of the manda-sam. skāra.2.17 A;
a;va;Zea;Sa;k+:Na;Ra;na;ya;na;m,a

2.17 Obtaining the iterated hypotenused;eaHk+:ea;�a;f;P+.l+.�a;na.Èåî ÁÁ*+;a;dùÅ;ae k+:Na;Ra;t,a ;
a:�a:$ya;a;&+.tea :P+.le Á Á 41 Á Áta;a;Bya;Ma k+:NRaH :pua;na;ssa;a;DyaH BUa;yaH :pUa;vRa;P+.l+.a;h;ta;a;t,a Áta:�a;tk+:Na;Ra;t,a ;
a:�a;Ba:$ya;a;�a;P+.l+.a;Bya;a;ma;
a;va;Zea;Sa;yea;t,a Á Á 42 Á Á
doh. kot.iphalanighnādye karn. āt trijyāhr. te phale || 41 ||
tābhyām. karn. ah. punassādhyah. bhūyah. pūrvaphalāhatāt |
tattatkarn. āt tribhajyāptaphalābhyāmavíses.ayet || 42 ||
The doh. phala and the kot.iphala [initially obtained] are multiplied by the karn. a [obtained
from them] and divided by trijyā. From these resulting phalas, the karn. a has to be ob-
tained again. Further, the previous phalas must be multiplied by the corresponding karn. as
and divided by the trijyā, and the process has to be repeated to get the avíses.a-karn. a (the
hypotenuse which does not change on iteration).

It was shown earlier (2.112) that

K =
[
(R + r cos(θ0 −θm))2 +(r sin(θ0 −θm))2] 1

2 . (2.121)

Here the radius of the epicycle r itself is proportional to karn. a K (2.113) and there-
fore needs to be determined along with K iteratively.

Procedure for finding the iterated hypotenuse

We explain the procedure for finding the iterated hypotenuse or avíses.a-karn. a with
the help of Fig. 2.12a. Let R, r be the radii of the deferent circle and the epicycle
respectively. UÔP0 is the manda-kendra (θ0 −θm). The quantities r sin(θ0 −θm) =
PN and rcos(θ0 −θm) = P0N are referred to as the doh. phala and kot.iphala respec-
tively. Thus, in the first approximation, r is set equal to r0 and the doh. phala and
kot.iphala are taken to be r0 sin(θ0 −θm) and r0 cos(θ0 −θm) respectively. Let them
be denoted d1 and k1. The karn. a OP which represents the distance of the planet
from the centre of the kaks.yāvr. tta is given by

K1 =
[
(R + k1)

2 + d2
1

] 1
2 . (2.122)
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Here K1 is the first approximation to the manda-karn. a. Then, the doh. phala (d2)
and kot.iphala (k2) are obtained as follows:

d2 =
K1 ×d1

R
k2 =

K1 × k1

R
. (2.123)

The second approximation to the manda-karn. a, K2, is given by

K2 =
[
(R + k2)

2 + d2
2

] 1
2 . (2.124)

Then, the doh. phala (d3) and kot.iphala (k3) are obtained as follows:

d3 =
K2 ×d1

R
k3 =

K2 × k1

R
. (2.125)

The third approximation to the manda-karn. a, K3, is obtained by

K3 =
[
(R + k3)

2 + d2
3

] 1
2 . (2.126)

The above process is carried out until Ki ≈ Ki−1, to the desired accuracy. When this
happens, Ki is referred to as the avíses.a-karn. a. This avíses.a-karn. a is to be used in
manda-sam. skāra to obtain the manda-phala.

The rationale behind the iterative process used in obtaining the avíses.a-karn. a is
explained in Yukti-d̄ıpikā as follows:ma;a;ndM n�a;a;.a;ea;�a;vxa:�Ma ta;tk+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Áya;ta;~ta;tk+:NRa;vxa;�a:;dÄâ ;[a;ya;a;nua;sa;a:=� +a;d;mua;.ya;tea Á Áma;nd;k+:NeRa .~va;�a;l+.�a;a;Æa;BaH :pra;Æa;ma;tea ;
a:�a:$ya;ya;a .sa;mea Á:pa;
a;F+.taH :pa;�a:=+�a;Da;ma;Ra;ndH k+:NRa;vxa:�a;k+:l+.a;Æa;ma;taH Á Á�+:na;a;�a;Da;ke ta;taH k+:NeRa :pra;�a;ta;vxa:�a;k+:l+.a;Æa;ma;tea Á.tea;na k+:NeRa;na d;eaHk+:ea;�a;f;P+.le ta;a;Bya;Ma tua ta;�a;yea;t,a Á ÁA;nya;ea;nya;a;(ra;ya;ta;a ..Ea;Sa;Ma A;
a;va;Zea;Sa;a;a;�a:=+~ya;tea Áta:�a;tk+:Na;Ra;dùÅ;a;d;eaHk+:ea;�a;f;Ga;a;ta;a;Bya;Ma ;
a:�a:$ya;ya;a;&+.tea Á Áta;a;Bya;Ma ;
a:�a;Ba:$ya;ya;a ..a;a;
a;pa :pra;a;gva;t,a k+:N a mua;hu ;nRa;yea;t,a Á 19

The manda-n̄ıcocca-vr. tta (manda epicycle) is measured in terms of karn. avr. tta
(hypotenuse circle) because it is said to increase or decrease in accordance with the
karn. avr. tta. The tabulated value of the circumference of the manda circle is in the mea-
sure of the karn. avr. tta, when the manda-karn. a is taken to be the trijyā. When the karn. a
increases and decreases and this value is measured in terms of prativr. tta, then the doh. and
kot.iphala have to be obtained from that karn. a. It is from them (doh. and kot.iphala) that
(the measure of manda-n̄ıcocca-vr. tta) has to be obtained. This interdependence is elimi-
nated by doing an iteration, the avíses.akarma. Multiplying the doh.phala and kot.iphala
by karn. a and dividing it by the trijyā [the new doh.phala and kot.iphala are determined].
With the trijyā and these, once again the karn. a has to be obtained as explained earlier.

Now, √
d2

1 + k2
1 = r0. (2.127)

19 {TS 1977}, pp. 162–3.
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From Fig. 2.12a and the equivalent of (2.125) it can be seen that for any i,

√
d2

i + k2
i =

Ki−1

R

√
d2

1 + k2
1 (2.128)

=
Ki−1

R
r0. (2.129)

After a few iterations, the successive values of the radius and the karn. a start con-
verging. That is,

√
d2

i−1 + k2
i−1 ≈

√
d2

i + k2
i → r

and Ki−1 ≈ Ki → K.

Hence r
K

=
r0

R
. (2.130)

P
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0

P (true planet)

Q

T

O"

O

r
r

0

P
1

r
0

S

kaks.yā-man. d. ala

Fig. 2.12c Variation of the epicycle with the karn. a in the manda process and the avísis.t.a-
manda-karn. a.
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In Fig. 2.12c, P0 is the mean planet moving in the kaks.yāman. d. ala with O as the
centre, and OU is the direction of the mandocca. Draw a circle of radius r0 with P0

as centre. Let P1 be the point on this circle such that P0P1 is in the direction of the
mandocca (parallel to OU). Let O′′ be a point on the line OU , such that OO′′ = r0.
Join P1O′′ and let that line meet the kaks.yāman. d. ala at Q. Extend OQ and P0P1 so
as to meet at P. The true planet is located at P. Then it can be shown that OP = K
and P0P = r are the actual manda-karn. a and the corresponding (true) radius of the
epicycle as will result by the process of successive iteration.20 Since P1O′′ is parallel
to P0O, the triangles OP0P and QO′′O are similar and we have

r
K

=
P0P
OP

=
O′′O
QO

=
r0

R
. (2.131)

The process of successive iteration to obtain K is essentially the following. In trian-
gle OP1P0, with the angle P1P̂0O = 180◦− (θ0 −θm), the first approximation to the
karn. a (sakr. t-karn. a) K1 = OP1 and the mean epicycle radius r0 = P1P0 are related
by

K1 =
√

R2 + r2
0 +2r0Rcos(θ0 −θm). (2.132)

In the RHS of (2.132), we replace r0 by the next approximation to the radius of the
epicycle

r1 =
r0

R
K1, (2.133)

and obtain the next approximation to the karn. a,

K2 =
√

R2 + r2
1 +2r1Rcos(θ0 −θm), (2.134)

and so on. This process is iterated till Ki and Ki+1 become indistinguishable, and
that will be the avísis. t.a-karn. a (iterated hypotenuse) K,21 which is related to the
corresponding epicycle radius r as in (2.133) by

r =
r0

R
K. (2.135)2.18 A;
a;va;Zea;Sa;k+:Na;Ra;na;ya;nea :pra;k+:a:=+a;nta:=+m,a

2.18 Another method of obtaining the iterated hypotenuse;
a;va;~txa;�a;ta;d;l+.d;eaHP+.l+.kx +:�a;ta;
a;va;yua;�a;ta;pa;dM k+:ea;�a;f;P+.l+.
a;va;h� ;a;na;yua;ta;m,a Á:ke +:ndÒ e mxa;ga;k+:
a;kR +:ga;tea .sa Ka;lu ;
a;va;pa;yRa;ya;kx +:ta;ea Ba;vea;t,a k+:NRaH Á Á 43 Á Á
20 {MB 1960}, pp. 111–19.
21 The term víses.a means ‘distinction’. Hence, avíses.a is ‘without distinction’. Therefore the
term avísis.t.a-karn. a refers to that karn. a obtained after doing a series of iterations such that the
successive values of the karn. a do not differ from each other.
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a:�a:$ya;a;kx +:�a;taH A;ya;�a;
a;va;
a;h;ta;eaY;
a;va;Zea;Sa;k+:NRaH .~ya;a;t,a ÁI+.�a;ta va;a k+:NRaH .sa;a;DyaH ma;a;nde .sa;kx +:de ;va ma;a;Da;va;pra;ea;�H Á Á 44 Á Á
vistr. tidaladoh. phalakr. tiviyutipadam. kot.iphalavih̄ınayutam |
kendre mr. gakarkigate sa khalu viparyayakr. to bhavet karn. ah. || 43 ||
tena hr. tā trijyākr. tih. ayatnavihito ′víses.akarn. ah. syāt |
iti vā karn. ah. sādhyah. mānde sakr. deva mādhavaproktah. || 44 ||

The square of the doh. phala is subtracted from the square of the trijyā and its square root
is taken. The kot.iphala is added to or subtracted from this depending upon whether the
kendra (anomaly) is within 6 signs beginning from Karki (Cancer) or Mr. ga (Capricorn).
This gives the viparyaya-karn. a. The square of the trijyā divided by this viparyaya-
karn. a is the avíses.a-karn. a (iterated hypotenuse) obtained without any effort [of itera-
tion]. This is another way by which the [avíses.a]-karn. a in the manda process can be
obtained as enunciated by Mādhava.

A method to determine the manda-karn. a without an iterative process is dis-
cussed here. This method is attributed to Mādhava of Saṅgamagrāma, the
renowned mathematician and astronomer of the 14th century. A new quantity
called the viparyaya-karn. a or vipar̄ıta-karn. a is introduced for this purpose. This
vipar̄ıta-karn. a (‘inverse’ hypotenuse) is nothing but the radius of the kaks.yāvr. tta
when the manda-karn. a is taken to be the trijyā, R.

P

P

U

N

 0

O

Γ

kaks.yāvr. tta

ucca-n̄ıca-vr.tta karn. avr. tta

Fig. 2.13a Determination of the vipar̄ıta-karn. a when the kendra is in the first quadrant.

The rationale behind the formula given for vipar̄ıta-karn. a is outlined in the
Malayalam text Yuktibhās. ā, and can be understood with the help of Figs. 2.13a
and b. In these figures P0 and P represent the mean and the true planet respectively.
N denotes the foot of the perpendicular drawn from the true planet P to the line
joining the centre of the circle and the mean planet. NP is equal to doh. phala. Let
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the radius of the karn. avr. tta OP be set equal to the trijyā R. Then the radius of
the uccan̄ıcavr. tta P0P is r0, as it is in the measurement of the karn. avr. tta. In this
measurement, the radius of the kaks.yāvr. tta OP0 = Rv, the vipar̄ıta-karn. a, and is
given by

Rv = ON ±P0N

=
√

R2 − (r0 sin(θ0 −θm))2 ±|r0 cos(θ0 −θm)|. (2.136)

O

P 0

Γ

P

U

N

kaks.yāvr. tta

karn. avr. tta

ucca-n̄ıca-vr. tta

Fig. 2.13b Determination of the vipar̄ıta-karn. a when the kendra is in the third quadrant.

Here we should take the ‘−’ sign when the manda-kendra is in the first and
fourth quadrants 270≤ (θ0−θm) < 90 and the ‘+’ sign when it is in the second and
third quadrants 90 ≤ (θ0 −θm) < 270. When the radius of the kaks.yāvr. tta is the
trijyā R, the value of manda-karn. a is K, and when the radius of the manda-karn. a
is R, the radius of the kaks.yāvr. tta is Rv. Hence

K
R

=
R
Rv

or K =
R2

Rv
. (2.137)

Thus the avísis. t.a-manda-karn. a, also referred to as the avíses.a-karn. a, is given by

avíses.a-karn. a =
trijyā 2

viparyaya-karn. a
. (2.138)

Since r0 is a known quantity, for any given value of (θ0 −θm) Rv can be determined
from (2.136). Once Rv is known, using (2.137) the avísis. t.a-manda-karn. a, K, can
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be found in one step without resorting to the tedious iterative process described in
the previous section for its computation.

The formula for the vipar̄ıta-karn. a in (2.136) can also be understood from the
geometrical construction in Fig. 2.12c. As the triangles OP0P and OTQ are similar,

OT
OQ

=
OP0

OP

or OT =
R2

K
, (2.139)

as OQ = OP0 = R. Hence the viparyaya-karn. a Rv = OT . Also,

QT̂S = UÔP0 = θ0 −θm. (2.140)

Hence, QS = r0 sin(θ0 −θm) and ST = r0 cos(θ0 −θm). Now

OT = OS−ST

=
√

OQ2 −SQ2 −ST

=
√

R2 − r2
0 sin2(θ0 −θm)− r0 cos(θ0 −θm), (2.141)

which is the same as (2.136).2.19 A;
a;va;Zea;Sa;k+:NeRa;na A;kR +:~å.Pu +.f� ;a;k+.=+Na;m,a
2.19 Correcting the Sun using the iterated hypotenuse;
a:�a:$ya;a.Èåî ÁÁ*+;ea d;ea;gRua;NaH k+:NRa;Ba;�H .~å.Pu +.f;Bua:ja;a;gua;NaH Áta:;dÄâ ;nuaH .sMa;~kx +:tMa .~va;ea;�Ma n�a;a;.Ma va;a yua;�a;�+:taH .~å.Pu +.f;m,a Á Á 45 Á Á

trijyāghno dorgun. ah. karn. abhaktah. sphut.abhujāgun. ah. |
taddhanuh. sam. skr. tam. svoccam. n̄ıcam. vā yuktitah. sphut.am || 45 ||
The true dorjyā is [equal to] the dorjyā multiplied by the trijyā and divided by the karn. a.
The arc of this appropriately applied to the ucca or n̄ıca gives the true position [of the
planet].

This can be explained from Fig. 2.14a. Let φ = PÔU be the difference (θ −θm)
between the manda-sphut.a and the ucca. Now

PN = P0N0,

or K sinφ = Rsin(θ0 −θm). (2.142a)

Hence

Rsinφ = Rsin(θ0 −θm)
R
K

,

or φ = (Rsin−1)

[
Rsin(θ0 −θm)

R
K

]
. (2.142b)
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kaks.yāvr. tta

ucca-n̄ıca-vr.tta

Fig. 2.14a The true position of the planet from the ucca and n̄ıca.

Then the true planet (Γ ÔP) is obtained as

Γ ÔP = Γ ÔU + φ
= ucca+ φ . (2.143)2.20 .=+
a;va;~å.Pu +.f;a;t,a ta;n}å.a;Dya;ma;a;na;ya;na;m,a

2.20 Obtaining the mean Sun from the true SunA;kR +:~å.Pu +.fe ;na;a;na;ya;nMa :pra;ku +:ya;Ra;t,a .~va;ma;Dya;ma;~ya;a:�a ;
a;va;tua;ñÍç ÅÅ*:+.Ba;a;na;eaH ÁBua:ja;a;gua;NMa k+:ea;�a;f;gua;NMa ..a kx +:tva;a mxa;ga;a;
a;d;ke +:ndÒ e Y;ntya;P+.l+.a;K.ya;k+:ea;f�a;eaH Á Á 46 Á ÁBea;dH ku +:l� +.a:=+a;
a;d;ga;tea tua ya;ea;gaH ta;dõ ;gRa;yua;�+:a;t,a Bua:ja;va;gRa;ta;ea ya;t,a Á:pa;dM ;
a;va;pa;ya;Ra;sa;kx +:taH .sa k+:NRaH ;
a:�a:$ya;a;kx +:tea;~ta;
a;dõ ;&+.ta;~tua k+:NRaH Á Á 47 Á Á.tea;na;a;h;ta;a;mua;�a;
a;va;h� ;a;na;Ba;a;na;eaH .j�a;a;va;Ma Ba:jea;d, v.ya;a;sa;d;le +.na l+.b.Da;m,a Á.~va;ea;�ea ;Æa;[a;pea;�a;a;
a;pa;ta;ma;a;dùÅ;a;pa;a;de ..a;kÒ +:a;DRa;taH Zua:;dÄâ ;ma;
a;pa ;
a;dõ ;t�a;a;yea Á Á 48 Á Á..a;kÒ +:a;DRa;yua;�M tua txa;t�a;a;ya;pa;a;de .sMa;Za;ea;�a;Da;tMa ma;Nq+.l+.ta;(ãÉa;tua;TeRa ÁO;;vMa kx +:tMa .sUa;[ma;ta:=M ;
a;h ma;DyMa :pUa;v a :pa;dM ya;a;va;
a;d;h;a;�a;Da;kM .~ya;a;t,a Á Á 49 Á ÁA;ntya;a;t,a :P+.l+.a;t,a k+:ea;�a;f;gua;NMa ..a;tua;T a tva;a:=+Bya;tea ya;dùÅ;a;�a;Da;k+:a:�a k+:ea;�a;fH Á.sa;vRa:�a ;
a;va;Sk+:}Ba;d;lM (rua;ta;Ea va;a v.ya;a;sa;a;DRa;ke .~ya;a;
a;dõ ;pa:=� +a;ta;k+:NRaH Á Á 50 Á Á
arkasphut.enānayanam. prakuryāt svamadhyamasyātra vituṅgabhānoh. |
bhujāgun. am. kot.igun. am. ca kr. tvā mr. gādikendre ′ntyaphalākhyakot.yoh. || 46 ||
bhedah. kul̄ırādigate tu yogah. tadvargayuktāt bhujavargato yat |
padam. viparyāsakr. tah. sa karn. ah. trijyākr. testadvihr. tastu karn. ah. || 47 ||
tenāhatāmuccavih̄ınabhānoh. j̄ıvām. bhajed vyāsadalena labdham |
svocce ks. ipeccāpitamādyapāde cakrārdhatah. śuddhamapi dvit̄ıye || 48 ||
cakrārdhayuktam. tu tr. t̄ıyapāde sam. śodhitam. man. d. alataścaturthe |
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evam. kr. tam. sūks.mataram. hi madhyam. pūrvam. padam. yāvadihādhikam.
syāt || 49 ||
antyāt phalāt kot.igun. am. caturtham. tvārabhyate yadyadhikātra kot.ih. |
sarvatra vis.kambhadalam. śrutau vā vyāsārdhake syādvipar̄ıtakarn. ah. || 50 ||
The mean position of the Sun has to be obtained from the true position [as follows]. Hav-
ing subtracted the longitude of the apogee from the true Sun, the dorjyā and kot.ijyā are
obtained. When the manda-kendra lies within the six signs beginning from Mr. ga, the
difference between the antyaphala and the kot.ijyā has to be taken, and when it is within
the six signs beginning from Karka, their sum has to be taken. The square root of the sum
of the square of this and the square of the dorjyā is the vipar̄ıta-karn. a. The square of the
trijyā divided by this vipar̄ıta-karn. a is the karn. a.

This (karn. a) is multiplied by the dorjyā obtained by subtracting the longitude of the
apogee from the Sun, and divided by the trijyā. The arc of the result has to be applied
positively to the longitude of the mandocca when the manda-kendra is in the first quad-
rant. 180 minus the arc, 180 (cakrārdha) plus the arc and 360 minus the arc have to be
applied to the mandocca when the manda-kendra lies in the second, third and fourth
quadrants respectively. The mean longitude obtained thus is accurate. In the first quadrant
the kot.ijyā is greater than the antyaphala. [Similarly] the fourth quadrant is said to com-
mence when the kot.iphala becomes greater than the antyaphala. Always the karn. a bears
the same relation to the trijyā as the trijyā to the vipar̄ıta-karn. a (inverse hypotenuse).

Normally the texts present the procedure for determining the true position of
a planet from its mean position. The above set of verses present a procedure for
solving the inverse problem, namely finding the mean Sun from its true position.
We explain this procedure with the help of Fig. 2.14b. Here, the longitudes of the
mean Sun, the true Sun and the ucca (apogee) are given by

θ0 = Γ ÔP0 = PÔ′P

θ = Γ ÔP

and θm = Γ ÔU = Γ Ô′U, (2.144)

respectively. Further,

θ −θm = NÔP

θ0 −θm = NÔ′P = NÔP0. (2.145)

Also, the avísis. t.a-manda-karn. a (iterated manda hypotenuse) K = OP and the
vyāsārdha R = OP0 = O′P. The true epicycle radius r = OO′.

The word antyaphala used in the above verse has a special significance whose
relation with the manda-karn. a may precisely be expressed as follows:

antyaphala = r0 =
r0

r
.r =

R
K

.r =
R
K

.OO′. (2.146)

Now,

dorjyā = RsinNÔP =
R
K

.K sinNÔP

=
R

K
.K sin(θ −θm) =

R

K
.PN
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Fig. 2.14b Obtaining the madhyama (mean position) from the sphut.a (true position).

kot.ijyā = RcosNÔP =
R

K
.K cosNÔP

=
R
K

.K cos(θ −θm) =
R
K

.ON. (2.147)

Hence the difference between the kot.ijyā and the antyaphala is given by

kot.ijyā − antyaphala = Rcos(θ −θm)− r0

=
R
K

(ON −OO′)

=
R
K

.O′N. (2.148)

Therefore,
√

(kot.ijyā − antyaphala)2 +(dorjyā)2 =
R
K

√
O′N2 +PN2

=
R
K

.O′P

=
R2

K
. (2.149)
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The expression obtained above is the same as the vipar̄ıta-karn. a Rv appearing
in (2.136). Now, using (2.147) and (2.148), this may be expressed as

Rv =

√
(Rcos(θ −θm)− r0)2 + R2 sin2(θ −θm). (2.150)

Since the positions of the ucca and the true planet are known, Rv can be determined.
Also, the manda-karn. a K = R2

Rv
can be determined from θ −θm. Now

PN = K sin(θ −θm)

= O′Psin(NÔ′P)

= Rsin(θ0 −θm). (2.151)

Hence

madhyama−ucca = θ0 −θm

= Rsin−1
[

Rsin(θ −θm)
K
R

]
. (2.152)

From this madhyama−ucca is obtained. When this is added to the ucca, the mad-
hyama is obtained. When sphut.a−ucca is positive, O′N = kot.ijyā − antyaphala.
In the above, it is Rsin (madhyama − ucca) which is found first in terms of
Rsin(sphut.a− ucca). The quadrant in which (madhyama− ucca) lies can be de-
termined without any ambiguity from the geometry.

When it is in the second or third quadrants, Rcos(sphut.a − ucca) is negative
and O′N = kot.ijyā+ antyaphala. Of course, in all cases, the formula for Rv given
above is valid. Now, when the true planet is to be found from the mean planet, it is
not necessary to calculate the manda-karn. a K. However in the reverse case, when
the mean planet is to be found from the true planet, it becomes necessary to first
calculate K.

An elaborate explanation for the above verses is to be found in in Yukti-d̄ıpikā.k+:NRa;vxa:�ea .~å.Pu +.f;ea;�a;a;nta:=+a;l+$ya;a .~va;k+:l+.a;Æa;ma;ta;a Áta;du ;�a;sUa:�a;sMa;pa;a;ta;a;t,a k+:ea;�a;f;~ta;tke +:ndÒ +ga;a;Æa;ma;n�a;a Á Áta;d;ntya;P+.l+.ya;ea;ya;eRa;ga;ea ;
a;va:(ìÉÅ;e +Sa;ea va;a ya;Ta;ea;�a;.a;ta;m,a Á:pra;�a;ta;ma;Nq+.l+.ke +:ndÒ +~ya d;ea:$ya;Ra;mUa;l+.~ya ..a;a;nta:=+m,a Á Áta;�+ea;vRa;gRa;yua;tea;mRUa;lM :pra;�a;ta;ma;Nq+.l+.ke +:ndÒ +taH Ág{a;h;a;va;�a;Da;v.ya;a;sa;d;lM k+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Á Áv.ya;a;sa;a;D a :pra;�a;ta;vxa:�a;~ya ;
a:�a:$yEa;va .~va;k+:l+.a;Æa;ma;ta;a Áta;de ;va v.ya;~ta;k+:NRaH .~ya;a;t,a k+:NRa;vxa:�a;k+:l+.a;Æa;ma;ta;m,a Á Á;
a:�a:$ya;a;tua;�yea v.ya;~ta;k+:NeRa k+:Na;eRa nyUa;na;a;�a;Da;k+:~ta;taH Áta;ta;~:�Ea:=+a;a;Za;ke +:na;a:�a ma;nd;k+:NRaH .~å.Pu +.f;ea Ba;vea;t,a Á Áo+.�a;ea;na;~å.Pu +.f;ta;ea d;ea:$ya; a ma;nd;k+:NRa;h;ta;Ma h:=e +t,a Á;
a:�a:$ya;ya;a ta;�çÅu +Na;Ma d;ea:$ya; a v.ya;~ta;k+:NeRa;na va;a h:=e +t,a Á Ál+.b.Da;.a;a;pMa ;Da;na;N a .~ya;a;t,a .~va;ea;�ea ma;Dya;ma;Æa;sa:;dÄâ ;yea Á
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a:�a:j�a;a;va;ya;eaH Á Áta;a;dx ;Za;ea ;�a;na;ya;ma;ea :vea;dùÅ;aH ;
a:�a:j�a;a;va;a;ma;nd;k+:NRa;ya;eaH Ák+:NRa;~:�Ea:=+a;a;Za;ke +:na;a;taH v.ya;~ta;k+:Na;Ra;
a;dõ ;D�a;a;ya;tea Á Áma;Dya;ma;a;t,a .~å.Pu +.f;sMa;Æa;sa;�a:;dÄâ H d;eaHP+.l+.a;dùÅ;a;
a;d :ke +:va;l+.a;t,a Áma;Dya;Æa;sa;�a:;dÄâ H .~å.Pu +.f;a;t,a ta;sma;a;t,a k+:NRa.Èåî ÁÁ*+;a;t,a ;
a:�a:$ya;ya;a &+.ta;a;t,a Á ÁA;Ta .~å.Pu +.f;ea;�a;a;nta:=+d;ea;gRua;NMa (rua;�a;ta;h;tMa h:=e +t,a Á;
a:�a:$ya;ya;a l+.b.Da;.a;a;pea;na kx +:tea .~va;ea;�ea .~va;ma;Dya;maH Á Áta;de ;va ..a;a;
a;pa;tMa .~va;ea;�ea ..a;kÒ +:a;D a .tea;na va;Æa:jRa;ta;m,a Á..a;kÒ +:a;DRa;yua;�M ..a;kÒ +:a;�a tya;�M :pa;d;va;Za;a;t,a ;Æa;[a;pea;t,a Á Á 22

In the karn. avr. tta the jyā of the difference between the longitude of the true planet and
its mandocca corresponds to the dorjyā in its own measure. The distance of separation
between the point of intersection (N in the Fig. 2.14b) of the jyā with the uccasūtra (the
apsis line) and the centre of the karn. avr. tta (O) corresponds to the kot.ijyā (ON). The
sum or difference of the antyaphala (OO′) with this kot.ijyā, as the case may be, gives
the distance of separation between the centre of the pratiman. d. ala and the foot of the
dorjyā (N). The square root of the sum of the squares of this (O′N) and the dorjyā (PN)
gives the distance between the centre of pratiman. d. ala and the planet. This is the radius
of the pratiman. dala in the measure of the karn. avr. tta. The radius of the prativr. tta with
respect to its own measure is the trijyā. This (trijyā) will be the vyasta-karn. a (inverse-
hypotenuse) in the measure of the karn. avr. tta. When the vyasta-karn. a is set equal to the
trijyā, then the actual karn. a will be smaller or larger than that. Thus by the rule of three
the true manda-karn. a is obtained.

The dorjyā obtained by subtracting the mandocca from the true Sun is multiplied by the
manda-karn. a and divided by the trijyā. Or the trijyā multiplied by the dorjyā is divided
by vyasta-karn. a. The arc of this is applied positively or negatively to the mandocca to
get the mean Sun. It is to be understood that whatever is the relation between the vyasta-
karn. a and the trijyā, the same relation is valid between the trijyā and the manda-karn. a.
This is the reason why the manda-karn. a is obtained from the vyasta-karn. a by the rule
of three.

As the true position of the planet is obtained from the mean position just by finding the
doh. phala, the mean position is obtained from the true position by multiplying [the dorjyā]
by the manda-karn. a and dividing by the trijyā. Then the dorjyā obtained by subtracting
the mandocca from the true Sun is multiplied by the manda-karn. a and divided by the
trijyā. The arc applied to the mandocca of the Sun will give the position of the mean
Sun. Depending upon the quadrant, the same arc has to be applied to the mandocca after
subtracting it from 180◦, or adding 180◦ to it or subtracting it from 360◦.

The procedure stated here is a slight variant of the one described earlier. Here,
PN, ON and OO′ are the dorjyā, the kot.ijyā and the antyaphala respectively in
the measure of the karn. avr. tta and are equal to Rsin(θ −θm), Rcos(θ −θm) and r0

in the same measure. In this measure, the radius of the pratiman. d. ala, O′P, is the
vyasta-karn. a or viparita-karn. a, Rv, given in (2.136). Then the manda-karn. a, K,
in the measure of the pratiman. d. ala (when the radius is R, as usual) is determined
from

K
R

=
R
Rv

, (2.153)

and madhyama − ucca is obtained as earlier.

22 {TS 1977}, pp. 165–6.



2.21 Another method for getting the mean planet 1132.21 .~å.Pu +.f;a;n}å.a;Dya;ma;a;na;ya;nea :pra;k+:a:=+a;nta:=+m,a
2.21 Another method for getting the mean planet from the true

planetA;keR +:ndõ ;eaH .~å.Pu +.f;ta;ea mxa;dU ;�a:=+
a;h;ta;a;t,a d;eaHk+:ea;�a;f:ja;a;tea :P+.len�a;a;tva;a k+:
a;kR +:mxa;ga;a;
a;d;ta;ea ;
a;va;�a;na;ma;yea;na;a;n�a;a;ya k+:N a .sa;kx +:t,a Á;
a:�a:$ya;a d;eaHP+.l+.Ga;a;ta;taH (rua;�a;ta;&+.tMa ..a;a;p�a;a;kx +:tMa ta;t,a .~å.Pu +.fe:ke +:ndÒ e mea;Sa;tua;l+.a;
a;d;gea ;Da;na;mxa;NMa ta;n}å.a;Dya;sMa;Æa;sa:;dÄâ ;yea Á Á 51 Á Á
arkendvoh. sphut.ato mr. dūccarahitāt doh. kot.ijāte phale
n̄ıtvā karkimr. gādito vinimayenān̄ıya karn. am. sakr. t |
trijyā doh. phalaghātatah. śrutihr. tam. cāp̄ıkr. tam. tat sphut.e
kendre mes.atulādige dhanamr. n. am. tanmadhyasam. siddhaye || 51 ||
Subtracting the longitude of their own mandoccas from the true positions of the Sun and
the Moon, obtain their doh. phala and kot.iphala. Find the sakr. t karn. a (one-step hy-
potenuse) once by interchanging the sign [in the cosine term] depending upon whether the
kendra is within the six signs beginning with Karki or Mr. ga. Multiplying the doh. phala
and trijyā, and dividing this product by the karn. a [here referred to as śruti], the arc of
the result is applied to the true planet to obtain the mean planet. This arc has to be applied
positively and negatively depending upon whether the kendra lies within the six signs be-
ginning with Mes.a or Tulā respectively.

Now,

bāhuphala = r0 sin(θ −θm)

kot.iphala = r0 cos(θ −θm). (2.154)

Taking the one-step karn. a (sakr. tkarn. a) with the opposite sign in the kot.iphala, we
have

karn. a = [(R− r0 cos(θ −θm))2 +(r0 sin(θ −θm))2]
1
2 . (2.155)

This is the same as the vipar̄ıta-karn. a Rv given by (2.150). In Fig. 2.14b, draw O′T
perpendicular to OP. Then in triangle O′PT ,

O′T = O′Psin(O′P̂T )

= O′Psin(PÔP0)

= Rsin(θ0 −θ ). (2.156)

Also O′T = r sin(θ −θm). (2.157)

Equating the above two expressions for O′T ,

Rsin(θ0 −θ ) = r sin(θ −θ0)

or Rsin(θ0 −θ ) = r0 sin(θ −θ0)
R
Rv

, (2.158)

where we have used (2.135) and (2.153). Hence,
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θ0 −θ = (Rsin)−1
[

r0 sin(θ −θ0)
R
Rv

]
. (2.159)

Thus the mean planet θ0 can be obtained by adding the above difference to the true
planet θ . θ0 − θ is positive when the kendra (anomaly) θ − θm is within the six
signs beginning with Mes.a, i.e. 0◦ ≤ θ −θm ≤ 180◦, and negative when the kendra
is within the six signs beginning with Tulā, i.e. 180◦ ≤ θ −θm ≤ 360◦.2.22 ma;nd;k+:Na;Ra;na;ya;nea :pra;k+:a:=+a;nta:=+m,a
2.22 Another method for getting the manda-hypotenusema;Dya;taH .~å.Pu +.f;ta;(ãÉa;ea;�Ma o+.�////////////�a;jJa;tva;a ta;;�ÂåÅu ;jea o+.Bea Ágxa;h� ;a;tva;a;dùÅ;a;a ta;ya;ea;�///�a;~:�a:$ya;a h;ta;a;nya;a;�a;a (rua;�a;ta;~å.Pu +.f;a Á Á 52 Á Á

madhyatah. sphut.ataścoccam. ujjhitvā tadbhuje ubhe |
gr. h̄ıtvādyā tayostrijyā hatānyāptā śrutisphut.ā || 52 ||
Subtracting the mandocca from the mean and the true positions separately, obtain the two
dorjyās. Of these, the former multiplied by the trijyā and divided by the latter gives the
exact value of śrutisphutā (avísis.t.a-manda-karn. a).

In Fig. 2.14b, Rsin(θ0 −θm) and Rsin(θ −θm) are the dorjyās corresponding to
the manda-kendras of the mean and true planet respectively. It is noted from the
figure that

PN = K sin(θ −θm)

= Rsin(θ0 −θm). (2.160)

Hence,

K = R× Rsin(θ0 −θm)

Rsin(θ −θm)

or śruti =
trijyā× ādyā

anyā
. (2.161)

where ādyā and anyā refer to Rsin(θ0−θm) and Rsin(θ −θm) respectively, and the
avísis. t.a-manda-karn. a is termed the śrutisphut.ā here.2.23 g{a;h;ta;a;tk+:a;�a;l+.k+:ga;�a;taH
2.23 Instantaneous velocity of a planet..a;ndÒ +ba;a;hu ;P+.l+.va;gRa;Za;ea;�a;Da;ta;
a:�a:$ya;k+:a;kx +:�a;ta;pa;de ;na .sMa;h:=e +t,a Áta:�a k+:ea;�a;f;P+.l+.�a;l+.�a;�a;k+:a;h;ta;Ma :ke +:ndÒ +Bua;�a;�+:�a:=+h ya;�a l+.Bya;tea Á Á 53 Á Á
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a;dõ ;Za;ea;Dya mxa;ga;a;
a;d;ke ga;teaH ;Æa;[a;pya;ta;a;Æa;ma;h tua k+:kR +:f;a;
a;d;ke Áta;;�ÂåÅ +vea;t~å.Pu +.f;ta:=+a ga;�a;ta;
a;vRa;Da;ea:=+~ya ta;tsa;ma;ya:ja;a .=+vea:=+
a;pa Á Á 54 Á Á
candrabāhuphalavargaśodhitatrijyakākr. tipadena sam. haret |
tatra kot.iphalaliptikāhatām. kendrabhuktirihayacca labhyate || 53 ||
tadvísodhya mr. gādike gateh. ks. ipyatāmiha tu karkat.ādike |
tadbhavetsphut.atarā gatirvidhorasya tatsamayajā raverapi || 54 ||
Let the product of the kot.iphala (in minutes) and the daily motion of the kendra be di-
vided by the square root of the square of the bāhuphala of the Moon subtracted from the
square root of the trijyā. The quantity thus obtained has to be subtracted from the daily
motion [of the Moon] if [the kendra lies within the six signs] beginning from Makara and
is to be added to the daily motion if [the kendra lies within the six signs] beginning from
Karkat.aka. This will be a far more accurate (sphut.atarā) value of the instantaneous ve-
locity (tatsamayajā gati) of the Moon. For the Sun also [the instantaneous velocity can
be obtained similarly].

The bāhuphala (or doh. phala) and kot.iphala are given by

bāhuphala = r0 sin(θ0 −θm)

and kot.iphala = r0 cos(θ0 −θm), (2.162)

where θ0 −θm is the manda-kendra; θ0 and θm represent the longitude of the Moon
and its mandocca respectively (see Fig. 2.12a). The term kendrabhukti refers to the
daily motion of the kendra given by

kendrabhukti =
∆(θ0 −θm)

∆t
, (2.163)

where ∆ t refers to the time interval of one day and ∆(θ0 −θm) represents the dif-
ference in the daily motion of the Moon and its mandocca. As the mean longitude
and mandocca increase uniformly with time,

d
dt

(θ0 −θm) =
∆
∆ t

(θ0 −θm), (2.164)

is a constant. It is stated here that a correction term has to be added to the above
kendrabhukti to obtain a more accurate value of the rate of motion of the kendra.
The correction factor is stated to be

kot.iphala× kendrabhukti√
(trijyā2 − bāhuphala2)

= − r0 cos(θ0 −θm)∆ (θ0−θm)
∆ t√

R2 − r2
0 sin2(θ0 −θm)

. (2.165)

Further, it is mentioned that the correction term is to be subtracted from the
kendrabhukti when θ0 − θm is in the first and fourth quadrants (Mr. gādi) and it
is to be added when it is in the second and third quadrants (Karkādi). This accounts
for the negative sign in the RHS of the above equation (2.165).

Now the manda-kendra of the Moon’s true longitude is given by
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θ −θm = (θ0 −∆θ)−θm,

where the manda correction ∆θ is given by

∆θ = sin−1
( r0

R
sin(θ0 −θm)

)
, (2.166)

as explained earlier. Hence,

θ = θ0 − sin−1
( r0

R
sin(θ0 −θm)

)
. (2.167)

Therefore,

d

dt
θ =

dθ0

dt
− d

dt
sin−1

(r0

R
sin(θ0 −θm)

)

=
dθ0

dt
− r0 cos(θ0 −θm) d(θ0−θm)

dt√
R2 − r2

0 sin2(θ0 −θm)
. (2.168a)

It may be mentioned here that in the case of all the planets, except the Moon, the
rate of change of the mandocca is extremely small and can be neglected. That is,
dθm
dt ≈ 0. Then the above equation reduces to

d
dt

θ =
dθ0

dt


1− r0 cos(θ0 −θm)√

R2 − r2
0 sin2(θ0 −θm)


 . (2.168b)

Note:

1. It is remarkable that the author in this verse gives the correct form for the deriva-
tive of the inverse sine function. In his Jyotirmı̄mām. sa, Nı̄lakan.t.ha mentions
that this verse is due to his teacher Dāmodara.

2. The differentials of the sine and cosine functions were used in Indian astron-
omy at least from the time of Mañjulācārya in his Laghu-mānasā. Bhāskara II
clearly makes use of them in his Siddhāntaśiroman. i.

3. The significance of this verse lies in the fact that it is for the first time that the
derivative of the arcsine function is being considered here in the context of dis-
cussing the tātkālika-gati or instantaneous rate of motion of the planet.2.24 na;[a:�a;�a;ta;Tya;a;na;ya;na;m,a

2.24 Finding naks.atra and tithi;�a;l+.��a;a;kx +:ta;ea ;�a;na;Za;a;na;a;TaH Za;tEa;Ba;Ra:$ya;ea;�;Æa;BaH :P+.l+.m,a ÁA;��a:(õ;a;nya;a;d� ;a;�a;na Ba;a;�a;na .~yuaH :Sa;��a;a h;tva;a ga;ta;a;ga;tea Á Á 55 Á Ága;ta;ga;nta;v.ya;na;a;q:�aH .~yuaH .~å.Pu +.f;Bua;��+.a;ea;d;ya;a;va;DeaH Á



2.24 Finding naks.atra and tithi 117A;kR +:h� ;a;na;ea ;�a;na;Za;a;na;a;TaH ;�a;l+.��a;a;kx +:tya ;
a;va;Ba:$ya;tea Á Á 56 Á ÁZUa;nya;a;��a:(õ;a;pa;vRa;tEa;lR +.b.Da;aH ;�a;ta;Ta;ya;ea ya;a ga;ta;aH kÒ +:ma;a;t,a ÁBua;��+.a;nta:=e +Na na;a;q:�aH .~yuaH :Sa;��a;a h;tva;a ga;ta;a;ga;tea Á Á 57 Á Á;�a;ta;Tya;DRa;h;a:=+l+.b.Da;a;�a;na k+.=+Na;a;�a;na ba;ba;a;
a;d;taH Á;
a;va:�+.pa;a;a;Na ;Æa;sa;tea :pa;[ea .sa:�+.pa;a;Nya;Æa;sa;tea ;
a;va;du H Á Á 58 Á Á;
a;va;Sk+:}Ba;a;dùÅ;a;a .=+v�a;a;ndõE ;k�+.a;a;t,a ya;ea;ga;a;(ãÉa;a;�;Za;t�a;a;&+.ta;aH ÁBua;�a;�+:yua;��+.a;a ga;tEa;Sya;a;Bya;Ma :Sa;
a;�.Èåî ÁÁ*+;a;Bya;Ma ..a na;a;
a;q+.k+:aH Á Á 59 Á Á
lipt̄ıkr. to nísānāthah. śatairbhājyos.t.abhih. phalam |
aśvinyād̄ıni bhāni syuh. s.as.t.yā hatvā gatāgate || 55 ||
gatagantavyanād.yah. syuh. sphut.abhuktyodayāvadheh. |
arkah̄ıno nísānāthah. lipt̄ıkr. tya vibhajyate || 56 ||
śūnyāśviparvatairlabdhāh. tithayo yā gatāh. kramāt |
bhuktyantaren. a nād. yah. syuh. s.as.t.yā hatvā gatāgate || 57 ||
tithyardhahāralabdhāni karan. āni babāditah. |
virūpān. i site paks.e sarūpān. yasite viduh. || 58 ||
vis.kambhādyā rav̄ındvaikyāt yogāścās.t.aśat̄ıhr. tāh. |
bhuktiyuktyā gatais.yābhyām. s.as.t.ighnābhyām. ca nād. ikāh. || 59 ||
The longitude of the lord of the night (the Moon) in minutes is divided by 800. The quotient
gives the number of naks.atras that have elapsed beginning from the Aśvini naks.atra.
The remainder [which corresponds to the minutes covered by the Moon in the present
naks.atra] and the one which has to be covered multiplied by 60 and divided by the daily
motion of the Moon [in minutes] at sunrise gives the nād. ikās that have elapsed and are
yet to elapse in the present naks.atra. The longitude of the Sun subtracted from that of the
Moon, in minutes, is divided by 720′ . The quotient gives the number of tithis elapsed. The
remainder and the quantity obtained by subtracting the remainder from 720′, multiplied by
60 and divided by the difference in the daily motion of the Sun and the Moon, gives the
number of ghat.ikās that have elapsed and are yet to elapse in the present tithi.

The same (difference in longitude between the Sun and the Moon) divided by half the
divisor used in the tithi calculation gives the number of karan. as elapsed, starting with
bava. In the bright fortnight the karan. as are without form and in the dark fortnight with
form. The sum of the longitudes of the Sun and the Moon [in minutes] divided by 800
gives the yogas, starting with the vis.kambha. The remainder and the quantity obtained by
subtracting the remainder from 800, multiplied by 60 and divided by the sum of the daily
motion of the Sun and the Moon, gives the number of ghat.ikās that have elapsed and are
yet to elapse in the present yoga.

The ecliptic is divided in to 27 equal parts called naks.atras beginning with
Aśvin̄ı and ending with Revat̄ı. Hence each naks.atra corresponds to 21600

27 =
800 minutes, along the ecliptic. The naks.atra at any instant refers to the particular
portion of the ecliptic in which the Moon is situated. Clearly, when the longitude of
the Moon in minutes is divided by 800 the quotient gives the number of naks.atras
which have elapsed and the remainder corresponds to the minutes covered by the
Moon in the present naks.atra. When this is divided by the daily motion of the
Moon in minutes at that time (taken to be the value at sunrise) and multiplied by 60,
the result gives the ghat.ikas that have elapsed in the present naks.atra. Similarly the
ghat.ikās yet to elapse in the present naks.atra can be calculated.

A tithi is the (variable) unit of time during which the difference between the
longitudes of the Moon and the Sun increases by 12◦ or 720′. Hence there are 30
tithis during a lunar month. Hence, when the difference in longitudes of Moon and
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the Sun in minutes is divided by 720′, the quotient gives the number of tithis elapsed
in that month. The number of ghat.ikās (nād. ikās) which have elapsed and are yet to
elapse in the present tithi are calculated in the manner indicated.

A karan. a is half a tithi by definition and there are 60 karan. as in a lunar month.
The number of karan. as that have elapsed can be calculated in the same manner as
the number of tithis, except that the divisor is 360′ instead of 720′.

There are two types of karan. as, namely cala (movable) and sthira (fixed). In
this context these terms are used to mean repeating and non-repeating karan. as. Of
the 11 karan. as, 7 are repeating and 4 are non-repeating. The 7 cala-karan. as (mov-
ing karan. as) have 8 cycles, thus forming 56 karan. as. The 4 sthira-karan. as (fixed
karan. as) occur just once each in a lunar month. The moving and fixed karan. as
together make up 60 karan. as in a lunar month.

The names of the karan. as and the pattern in which the cala and sthirakaran. as
occur are given in the following verses, quoted in Laghu-vivr. ti:ba;ba;ba;a;l+.va;k+:Ea;l+.va;tEa;�a;ta;l+.ga:ja;va;a;Na:ja;a;K.ya;
a;va;
a;�;na;a;ma;a;�a;na Á;Æa;sa;ta;pa;[a;~ya;a;pa:=+a;Da;Ra;t,a 23 :pa;�a:=+va;tRa;nteaY;� kx +:tva;eaY;taH Á Ákx +:SNa;.a;tua;dR ;Zya;ntea Za;ku +:�a;naH :pa;vRa;a;Na ..a;tua;Spa;dH Á:pra;Ta;mea ;�a;ta;Tya;DeRaY;ntyea na;a;gaH ;
a;kM +:~tua.Èåî ÁÁ*+H :pra;�a;ta;pa;d;a;dùÅ;a;DeRa Á Á

The karan. as named baba, bālava, kaulava, taitila, gaja, van. ija and vis.t.i repeat them-
selves eight times from the later half of the first tithi, prathama, of the bright fortnight.
Śakuni occurs in the later half of the caturdaś̄ı of the dark fortnight, catus.pada and nāga
in the first and second halves of [the following] amavāsya and kim. stughna in the first half
of the prathamā of the bright fortnight.

Śaṅkara Vāriyar also quotes the following verses which give the different names
of both moving and fixed karan. as. The moving karan. as are: sim. ha, vyāghra,
varāha, khara, ibha, paśu and vis. t.i. The fixed karan. as are: paks. ı̄, catus.pāt, nāga
and kim. stughna.ta;Ta;a Zua;ë�ÅÉì*:+:pra;�a;ta;pa;d;a;dùÅ;a;ntya;a;Da;Ra;t,a k+.=+Na;a;�a;na mua;hu ;mRua;hu H Á;Æa;sMa;h;ea v.ya;a;Gra;ea va:=+a;h;(ãÉa Ka:=e +Ba;pa;Zua;
a;va;�;yaH Á Á:pa;[�a;a ..a;tua;Spa;a;�a;a;ga;(ãÉa ;
a;kM +:~tua.Èåî ÁÁ*+;(ãÉa;a;nta;taH ;�//////�a;~Ta:=+aH Á

The yogas involve the sum of the longitudes of the Sun and the Moon. There are
27 yogās in a 360◦ (21600’) cycle, each yoga corresponding to 800′. The number
of yogās that have elapsed and the minutes or ghatikās that have elapsed and are
yet to elapse in the present yoga are calculated in the same manner as in the case of
the tithis, except that the sum of the longitudes of the Sun and Moon and the sum
of their daily motion are involved here. In Laghu-vivr. ti, the names of the yogas are
listed in the following verses:..a;ndÒ +a;kR +:~å.Pu +.f;sMa;ya;ea;gea dx ;�;a d;~åò:a;a;
a;d;k+:a:=+k+:aH Á;
a;va;Sk+:}BaH :pr�a;a;�a;ta:=+a;yua;Sma;a;n,a .sa;Ea;Ba;a;gyaH Za;ea;Ba;na;~ta;Ta;a Á Á
23 The incorrect reading ;Æa;sa;ta;pa;[a;tya;pa:=+a;Da;Ra;t,a in the printed edition ({TS 1958}, p. 40) has been
modified as above.



2.26 The correction for Mars, Jupiter and Saturn 119A;�a;ta;ga;NqH .sua;k+:ma;Ra ..a ;Dxa;�a;taH ZUa;lM ta;TEa;va ..a Ága;Nq+.ea vxa;�a:;dÄâ ;DrRua;va;(ãÉEa;va v.ya;a;Ga;a;ta;ea h;SRa;Na;~ta;Ta;a Á Áva:j"a;�/////////�a;ssa;�a:;dÄâ ;v.yRa;t�a;a;pa;a;ta;ea va:=� +a;ya;a;n,a :pa;�a:=+GaH ;a;Za;vaH Á;Æa;sa:;dÄâ H .sa;a;DyaH Zua;BaH Zua;BraH b.ra;a;Ǒ;ea ma;a;he ;ndÒ +vEa;Dxa;ta;Ea Á Á
When the longitude of the Sun and the Moon are added the dasrādikārakās are seen.
They are: vis.kambha, pr̄ıti, ayus.mān, saubhāgya, śobhana, atigan. d. a, sukarmā,
dhr. ti, śūla, gan. d. a, vr. ddhi, dhruva, vyāghāta, hars.an. a, vajra, siddhi, vyat̄ıpāta,
var̄ıyān, parigha, śiva, siddha, sādhya, śubha, śubhra, brāhma, māhendra and
vaidhr. ti.2.25 g{a;h;sMa;~k+:a:=+pra;k+:a:=H

2.25 The scheme of correction for the planetsma;a;ndM ZEa;GrMa :pua;na;ma;Ra;ndM ZEa;GrMa ..a;tva;a;yRa;nua;kÒ +:ma;a;t,a Áku +.ja;gua;vRa;kR +.ja;a;na;Ma ;
a;h k+:ma;Ra;Nyua;�+:a;�a;na .sUa;�a:=+Æa;BaH Á Á 60 Á Á
māndam. śaighram. punarmāndam. śaighram. catvāryanukramāt |
kujagurvarkajānām. hi karmān. yuktāni sūribhih. || 60 ||
The earlier ācaryās have stated that manda, ś̄ıghra, and again manda and ś̄ıghra are
the four corrections which have to be applied in sequence to the planets Mars, Jupiter and
Saturn [to obtain the true longitudes of the planets from their mean longitudes].

Though there are essentially only two corrections, namely manda and ś̄ıghra
for the actual planets, that is Mercury, Venus, Mars, Jupiter and Saturn, the actual
computation of their longitude involves a four-step procedure in most Indian texts.
Nı̄lakan. t.ha, as we shall see below, prescribes this four-step process only in the case
of the exterior planets, Mars, Jupiter and Saturn. The actual procedure prescribed in
Tantrasaṅgraha is described in the next few verses.2.26 ku +.ja;gua:�+:ma;nd;~å.Pu +.f� ;a;k+.=+Na;m,a
2.26 The correction for Mars, Jupiter and Saturnd;eaHk+:ea;�a;f:$ya;a;�;ma;Ma;Za;Ea .~va;Ka;a;b.DyMa;Za;ea;na;Ea Za;neaH :P+.le Ád;ea:$ya;Ra ;
a:�a:$ya;a;�a;sa;�Ea;k�+.aM gua;Na;ea ma;a;nde ku +.jea;q:�a;ya;eaH Á Á 61 Á Ána;va;a;çÉîå+;a;ya;ea dõùÅ;a;Z�a;a;�a;ta;(ãÉa h;a:=+Ea d;eaHk+:ea;�a;f:j�a;a;va;ya;eaH Á:pxa;Ta;#~Tea ma;Dya;mea k+:a;y a d;eaHP+.l+.~ya ;Da;nua;dR ;l+.m,a Á Á 62 Á Á.=+
a;va;ma;DyMa ;
a;va;Za;ea;Dya;a;sma;a;t,a :pxa;Ta;#~Ta;a;t,a ba;a;hu ;k+:ea;�a;f;ke ÁA;a;n�a;a;ya ba;a;hu :j�a;a;va;a;ya;aH ;
a:�a:$ya;a;�Ma gua:�+:ma;nd;ya;eaH Á Á 63 Á Á:Sa;ea;q+.Za;Bya;ea na;va;Bya;(ãÉa ku +.ja;~ya;a;
a;pa .~va;d;ea;gRua;Na;a;t,a Á;
a:�a:$ya;a;�Ma ;
a;dõ ;gua;NMa Za;ea;DyMa ��a;a;Sua;ByaH ;a;Za;Sya;tea gua;NaH Á Á 64 Á ÁA;Z�a;a;�a;ta;=e +va .tea;Sa;Ma ;
a;h h;a:=+~ta;a;Bya;Ma :P+.le o+.Bea ÁA;a;n�a;a;ya :pUa;vRa;va;t,a k+:N a .sa;kx +:tkx +:tva;a;Ta d;eaHP+.l+.m,a Á Á 65 Á Á
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a:�a:$ya;a.Èåî ÁÁ*+M k+:NRa;Ba;�M ya;t,a ta:;dÄâ ;nua;dR ;l+.mea;va ..a Áma;Dya;mea kx +:ta;ma;a;nde tua .sMa;~kx +:tya;a;ta;ea ;
a;va;Za;ea;Da;yea;t,a Á Á 66 Á Áma;nd;ea;�Ma ta;tP+.lM kx +:t=+:ïîåé Ma ku +:ya;Ra;t,a :ke +:va;l+.ma;Dya;mea Áta;sma;a;t,a :pxa;Ta;ë�Åë�Á*:x +:ta;a;.CE +.GrMa :pra;a;gva;d;a;n�a;a;ya ..a;a;
a;pa;ta;m,a Á Á 67 Á Ákx +:ta;ma;a;nde tua k+:tRa;v.yMa .sa;k+:lM .~ya;a;t,a .~å.Pu +.fH .sa ..a Á
doh. kot.ijyās.t.amām. śau khakhābdhyam. śonau śaneh. phale |
dorjyā trijyāptasaptaikyam. gun. o mānde kujed. yayoh. || 61 ||
navāgnayo dvyaś̄ıtísca hārau doh. kot.ij̄ıvayoh. |
pr. thaksthe madhyame kāryam. doh. phalasya dhanurdalam || 62 ||
ravimadhyam. vísodhyāsmāt pr. thaksthāt bāhukot.ike |
ān̄ıya bāhuj̄ıvāyāh. trijyāptam. gurumandayoh. || 63 ||
s.od. aśabhyo navabhyaśca kujasyāpi svadorgun. āt |
trijyāptam. dvigun. am. śodhyam. tr̄ıs.ubhyah. śis.yate gun. ah. || 64 ||
aś̄ıtireva tes. ām. hi hārastābhyām. phale ubhe |
ān̄ıya pūrvavat karn. am. sakr. tkr. tvātha doh. phalam || 65 ||
trijyāghnam. karn. abhaktam. yat taddhanurdalameva ca |
madhyame kr. tamānde tu sam. skr. tyāto vísodhayet || 66 ||
mandoccam. tatphalam. kr. tsnam. kuryāt kevalamadhyame |
tasmāt pr. thakkr. tācchaighram. prāgvadān̄ıya cāpitam || 67 ||
kr. tamānde tu kartavyam. sakalam. syāt sphut.ah. sa ca |
One-eighth of the dorjyā and kot.ijyā (sine and cosine of the manda-kendra), diminished
by one-fortieth of the same, form the doh.phala and kot.iphala in the case of Saturn. The
dorjyā divided by the trijyā and added to 7, forms the gun. a (multiplier) for Mars and
Jupiter. 39 and 82 are the hāra (divisor) for Mars and Jupiter respectively. Half of the arc
of the doh. phala has to be applied to the mean longitude of the planet (P0) to get the first
corrected longitude (P1).

Subtracting the longitude of the Sun (the ś̄ıghrocca) from this (P1), the dorjyā and kot.ijyā
are obtained. Dividing the dorjyā by the trijyā and subtracting from 16 and 9, we get
the multipliers for Jupiter and Mars respectively. The same (dorjyā) multiplied by 2 and
subtracted from 53 forms the multiplier for Mars.

80 is the divisor for all of them (in the ś̄ıghra-sam. skāra). From them (the multiplier
and divisor of all the three planets) after obtaining the doh. phala and kot.iphala, and the
sakr. tkarn. a (once calculated hypotenuse), half of the doh. phala multiplied by the trijyā
and divided by the karn. a is applied to the first corrected longitude (P1). (The longitude thus
obtained is, say, P2.) From this (P2), let the mandocca be subtracted and the full manda-
phala be obtained; let that be applied to the original mean planet (P0 to get say P3). From
that (P3) let ś̄ıghra-phala be obtained as before, and let this be applied fully to the manda-
corrected planet (P3). The longitude obtained thus is the sphut.a (the true longitude of the
planet).

A detailed and comprehensive discussion of the planetary model, and the geo-
metrical picture implied by it in the traditional scheme, as well as the modification
introduced by Nı̄lakan. t.ha, can be found in Appendix F. Here and in the following
sections we confine our explanation mainly to the computational scheme described
in the verses of the text.

The computation of the manda-sphut.a has already been described in the earlier
verses in this chapter. Let θ0, θm, θms be the mean longitude and the longitudes of
the mandocca and the manda-sphut.a respectively. Also let R, r and K be radii of
the deferent circle (trijyā), the epicycle and the manda-karn. a-vr. tta respectively. r
is proportional to K and r

K = r0
R where, r0 is the tabulated value of the radius of the
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epicycle. Then θms −θ0 is found from

K sin(θms −θ0) = −r sin(θ0 −θm)

or Rsin(θms −θ0) = − r
K

Rsin(θ0 −θm)

= − r0

R
Rsin(θ0 −θm). (2.169)

Rsin(θ0−θm) is the dorjyā, r0 sin(θ0−θm) is the doh. phala and θ0 ∼ θms is the ‘arc’
of the dophala. In the above verses r0

R for Saturn, Mars and Jupiter are specified to
be

r0

R
(Saturn) =

1
8
− 1

320
=

39
320

(2.170)

r0

R
(Mars) =

7 + |sin(θ0 −θm)|
39

(2.171)

and
r0

R
(Jupiter) =

7 + |sin(θ0 −θm)|
82

. (2.172)

Note that r0 is not constant for Mars and Jupiter, but varies with the manda-kendra,
θ0−θm. When θms−θ0, found from the above equation, is added to θ0, we obtain the
manda-sphut.a-graha (manda-corrected planet) θms. The true geocentric longitude
of the exterior planets is obtained from the manda-sphut.a θms as follows.

B

T

O

S

K

Ks

P

rs

C

Γ

Γ

Fig. 2.15 Obtaining the sphut.a-graha (geocentric longitude) from the manda-sphut.a-graha
(true heliocentric longitude) in the case of exterior planets .
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In Fig. 2.15 the ś̄ıghra-n̄ıcocca-vr. tta or ś̄ıghra-vr. tta or ś̄ıghra-circle is a circle
with the bhagolamadhya (the centre of the Earth) as the centre at O. The radius
of this circle is the ś̄ıgrāntyaphala rs. The ś̄ıghrocca S, which is the mean Sun, is
located on this circle. The planet P is located on the manda-karn. a-vr. tta of radius
K with S as the centre, such that θms = Γ ŜP is the manda-sphut.a-graha. Then
the ś̄ıghra-sphut.a (ś̄ıghra-corrected planet) is found in the same manner from the
manda-sphut.a as the manda-sphut.a is found for the mean planet, the madhyama-
graha.

Let θs be the longitude of the ś̄ıghrocca. That is, θs = Γ ÔS. Also from the figure,

ś̄ıghrocca θs = Γ ŜB

manda-sphut.a θms = Γ ŜP

ś̄ıghra-sphut.a θ = Γ ÔP. (2.173)

Therefore
OŜC = PŜB = θms −θs. (2.174)

Further,

ś̄ıghrābhujaphala OC = rs sin(OŜC)

= rs sin(θms −θs)

ś̄ıghrakot. iphala SC = rs cos(θms −θs). (2.175)

Hence the ś̄ıghra-karn. a (ś̄ıghra-hypotenuse)

Ks = OP =

√
(K + rs cos(θms −θs))2 + r2

s sin2(θms −θs). (2.176)

It can be easily seen that
OP̂C = θms −θ . (2.177)

Also from the triangle POC,

OPsinOP̂C = OC. (2.178)

Now using (2.175) to (2.177) in the above equation we have

Ks sin(θms −θ ) = rs sin(θms −θs)

or Rsin(θms −θ ) =
R
Ks

rs sin(θms −θs). (2.179)

The arc corresponding to θms − θ is found from this. Subtracting θms − θ from the
manda-sphut.a θms, we obtain the ś̄ıghra-sphut.a θ . Here θms is the true longitude
of the planet with respect to S, which is taken to be the mean Sun. Hence θms is
essentially the true heliocentric longitude of the planet. So the true geocentric lon-
gitude θ is obtained from the true heliocentric longitude θms using the above proce-
dure. Now,
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ś̄ıghra-kendradorjyā = Rsin(θms −θs) (2.180)

s̄ıghrabhujāphala, rs sin(θms −θs) =
rs

R
Rsin(θms −θs), (2.181)

where ś̄ıghra-kendradorjyā is the Rsine of the ś̄ıghra-anomaly (anomaly of con-
junction). In the ś̄ıghra-sam. skāra, the value of rs is given in the text. Unlike in the
calculation of the manda-sphut.a, where the manda-karn. a K does not appear, here
the ś̄ıghra-karn. a does appear in the computation of the ś̄ıghra-sphut.a.

The values of rs
R for Mars, Jupiter and Saturn are given in the above verses as

follows:

rs

R
(Mars) =

53−2|sin(θms −θs)|
80

, (2.182)

rs

R
(Jupiter) =

16−|sin(θms −θs)|
80

, (2.183)

rs

R
(Saturn) =

9−|sin(θms −θs)|
80

. (2.184)

Planet Range of ratio rs
R Average value

(modern)
Mars 0.637–0.662 0.656

Jupiter 0.187–0.200 0.192
Saturn 0.100–0.115 0.105

Table 2.3 The range of variation in the ratio of the Earth–Sun to the planet–Sun distances for the
exterior planets.

The range of variation of rs
R as obtained from the above equations along with the

average value of the ratio of the Earth–Sun and planet–Sun distances as per modern
astronomy are listed in Table 2.3. In Fig. 2.15,

Earth–mean Sun distance
planet–mean Sun distance

=
rs

K
, (2.185)

where K varies depending upon the manda-sphut.a-graha or the true heliocentric
longitude. Taking the mean value of K to be R, the ratio would be rs

R , which still
depends upon (θms − θs). Even then, rs

R is always close to the average value of the
ratio of the Earth–Sun and planet–Sun distances for each planet according to modern
astronomy.

Āryabhat. ı̄ya-bhās. ya and Yuktibhās. ā discuss the geometrical picture in detail.
However they do not mention that rs

R is the ratio of the physical Earth–Sun to
planet–Sun distances. There is an important later work of Nı̄lakan. t.ha, namely
Grahasphut.ānayane viks.epavāsanā, which indeed mentions this explicitly. This
is discussed in detail in Appendix F.

The procedure for obtaining the ś̄ıghra-sphut.a of these three planets, given in the
above verses, is not a straightforward, two step process of (i) obtaining the manda-
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sphut.a first from the mean planet and then (ii) obtaining the ś̄ıghra-sphut.a from the
manda-sphut.a. Instead, the following four-step procedure is prescribed:

1. Obtain the manda-phala from the mean planet θ0. Apply half of this manda-
phala to θ0 to obtain the first corrected planet P1.

2. Find the ś̄ıghra-sphut.a taking P1 as the manda-sphut.a, using (2.179). Here it
is understood that in the calculation of the ś̄ıghra-karn. a, the manda-karn. a is
replaced by the trijyā R, so only the ś̄ıghra-kendra (θms − θs) and the value
of rs (which depends upon the ś̄ıghra-kendra) figure in the calculation of this
ś̄ıghra-sphut.a. This is the second corrected planet P2.

3. Treating P2 as the mean planet, the manda-phala is calculated with P2 −θm as
the anomaly. Apply the full manda-phala to θ0. The resulting quantity is the
third corrected planet P3.

4. Treating P3 as the manda-sphut.a, the ś̄ıghra-sphut.a P is calculated again using
R instead of K in the calculation of the ś̄ıghra-karn. a Ks.

In fact, this four-step procedure to compute the true geocentric longitude is the
standard one prescribed in many Indian texts. Yuktibhās. ā attempts to provide the
rationale for this, though the arguments given there are not entirely clear. However
the motivation for this procedure is clear enough and is as follows.

Now, the manda correction can be read off from a table, given the mean epicycle
radius and the manda-kendra. But this is not so in the case of the ś̄ıghra correction,
for the ś̄ıghra-phala depends not only on the ś̄ıghra-kendra but also on the ś̄ıghra-
karn. a, which depends on the manda-karn. a (the distance SP in Fig. 2.15), which in
turn is dependant on the manda-kendra. Hence, given the radius of the ś̄ıghra-vr. tta,
the ś̄ıghra-phala cannot be read off from a table as a function of the ś̄ıghra-kendra
alone, as it depends also on the manda-karn. a and hence on the manda-kendra.
Yuktibhās. ā seems to argue that the four-step process is an attempt to stimulate,
to some extent, the effect of the manda-karn. a in the ś̄ıghra-phala. Thus, in steps
two and four above, the ś̄ıghra-phala is calculated using the trijyā instead of the
avis. is.t.a-manda-karn. a.2.27 bua;Da;~å.Pu +.f� ;a;k+.=+Na;m,a
2.27 The correction for Mercurybua;Da;ma;Dya;a;t,a .~va;ma;nd;ea;�Ma tya;�+:a d;eaHk+:ea;�a;f:j�a;a;va;ya;eaH Á Á 68 Á Á:Sa;qM +.Za;a;Bya;Ma :P+.l+.a;Bya;Ma tua k+:NRaH k+:a;ya;eRaY;
a;va;Zea;Sa;taH Ád;eaHP+.lM :ke +:va;lM .~va;N a :ke +:ndÒ e .jUa;k+:
a;kÒ +:ya;a;
a;d;gea Á Á 69 Á ÁO;;vMa kx +:tMa ;
a;h ta;n}å.a;DyMa .~å.Pu +.f;ma;DyMa bua;Da;~ya tua Á.=+
a;va;ma;DyMa ta;taH Za;ea;DyMa d;eaHk+:ea;�a;f:$yea ta;ta;ea na;yea;t,a Á Á 70 Á Ád;ea:$ya;Ra ;
a;dõ .Èåî ÁÁ*+;a ;
a:�a;Ba:$ya;a;�a;a Za;ea;DyEa;k+:
a:�Ma;Za;ta;ea gua;NaH Áma;nd;k+:NRa;h;taH .sa;eaY;
a;pa ;
a:�a:$ya;a;�aH .~ya;a;t,a .~å.Pu +.f;ea gua;NaH Á Á 71 Á Áta:;dÄâ ;tea ba;a;hu ;k+:ea;�a;f:$yea Ka;a;
a;h;Ba;�e :P+.le o+.Bea Á



2.27 The correction for Mercury 125ta;a;Bya;Ma k+:N a .sa;kx +:��a;a;tva;a ;
a:�a:$ya;a.Èåî ÁÁ*+M d;eaHP+.lM h:=e +t,a Á Á 72 Á Ák+:NeRa;na;a;�a;~ya ya;�a;a;pMa kx +:t=+:ïîåé Ma ta;;�ÂåÅ +a;nua;ma;Dya;mea ÁkÒ +:mea;Na :pra;Æa;[a;pea:êêÁ*.a;hùÅ:a;a;t,a :ke +:ndÒ e mea;Sa;tua;l+.a;
a;d;gea Á Á 73 Á ÁO;;vMa Z�a;a;Gra;P+.le +.nEa;va .sMa;~kx +:tMa .=+
a;va;ma;Dya;ma;m,a Ábua;DaH .~ya;a;t,a .sa .~å.Pu +.fH Zua;kÒ +:eaY;pyea;va;mea;va .~å.Pu +.f;ea Ba;vea;t,a Á Á 74 Á Á
budhamadhyāt svamandoccam. tyaktvā doh. kot.ij̄ıvayoh. || 68 ||
s.ad. am. śābhyām. phalābhyām. tu karn. ah. kāryo ′víses.atah. |
doh. phalam. kevalam. svarn. am. kendre jūkakriyādige || 69 ||
evam. kr. tam. hi tanmadhyam. sphut.amadhyam. budhasya tu |
ravimadhyam. tatah. śodhyam. doh. kot.ijye tato nayet || 70 ||
dorjyā dvighnā tribhajyāptā śodhyaikatrim. śato gun. ah. |
mandakarn. ahatah. so ′pi trijyāptah. syāt sphut.o gun. ah. || 71 ||
taddhate bāhukot.ijye khāhibhakte phale ubhe |
tābhyām. karn. am. sakr. nn̄ıtvā trijyāghnam. doh. phalam. haret || 72 ||
karn. enāptasya yaccāpam. kr. tsnam. tadbhānumadhyame |
kramen. a praks.ipejjahyāt kendre mes.atulādige || 73 ||
evam. ś̄ıghraphalenaiva sam. skr. tam. ravimadhyamam |
budhah. syāt sa sphut.ah. śukro ′pyevameva sphut.o bhavet || 74 ||

From the madhyamagraha of Mercury, subtracting the mandocca, the dorjyā and
kot.ijyā are obtained. From one-sixth of these values, the avis. is. t.a-manda-karn. a is found
iteratively. The doh. phala has to be added to or subtracted from the madhyamagraha,
depending on whether the manda-kendra lies within 6 signs of Mes.a or Tulā. The value
thus obtained is the manda-sphut.a-graha of Mercury (say P1).

Then subtracting the mean Sun (which is the ś̄ıghrocca) from this (P1), obtain the dorjyā
and kot.ijyā (corresponding to the ś̄ıghra-kendra). The dorjyā multiplied by 2, divided
by trijyā and subtracted from 31 forms the multiplier. This multiplier multiplied by the
avis.is. t.a-manda-karn. a and divided by the trijyā forms the sphut.agun. a (true multiplier).

The dorjyā and kot.ijyā, multiplied by the sphut.agun. a and divided by 80, form the
doh. phala and kot.iphala respectively. From these two (the doh.phala and kot.iphala),
obtain the ś̄ıghra-karn. a once (not iteratively) and divide the product of the trijyā and
doh. phala by this ś̄ıghra-karn. a. The arc of this result is fully applied to the mean Sun.
It is either added or subtracted depending upon whether the ś̄ıghra-kendra lies within 6
signs of Mes.a or Tulā. The mean Sun corrected by this ś̄ıghra-phala gives the true geo-
centric longitude of Mercury. The true geocentric longitude of Venus is obtained in a similar
manner.

Unlike a four-step procedure employed for the exterior planets to obtain the
sphut.a-graha (true planet), in the case of interior planets only a two-step procedure
is prescribed. First the manda-sphut.a-graha (manda-corrected planet) is obtained
from the madhyama-graha (mean planet) through manda-sam. skāra (manda-
correction), that is, the equation of centre, and then the sphut.a-graha is obtained
through the ś̄ıghra-sam. skāra (ś̄ıghra correction).

The manda-sphut.agraha of Mercury is obtained from the mean heliocentric
planet following the same procedure as for the exterior planets. Here r0

R is speci-
fied as 1

6 , where r0 is the mean radius of the epicycle. The avísis. t.a-manda-karn. a
K is also calculated as described earlier. The procedure for obtaining the true geo-
centric longitude of Mercury from the manda-sphut.a-graha as described in these
verses can be understood from Fig. 2.16 (see also Appendix F).
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Fig. 2.16 Obtaining the sphut.a-graha (the geocentric longitude) from the manda-sphut.a-
graha (the true heliocentric longitude) in the case of interior planets.

The mean Sun S is located on a circle of radius R with the centre of the Earth as
the centre. Its longitude θs = Γ ÔS. Draw a circle of radius rs around S. Mercury is
located on this point such that its longitude is the manda-sphut.a-graha θms = Γ ŜP
with respect to S. Then θ = Γ ÔP is the true geocentric longitude of Mercury called
the sphut.a-graha or simply the sphut.a. Now,

ś̄ıghra-kendra = θms −θs

= Γ ŜP−Γ ÔS

= Γ ŜP−Γ ŜS′

= S′ŜP. (2.186)

The radius of the epicycle rs is given by

rs

R
=

31−2|sinθms −θs|
80

× K
R

, (2.187)

and the ś̄ıghra-karn. a Ks is obtained from

Ks = OP =
√

ON2 +PN2

=
√

(R+ rs cos(θms −θs))2 +(rs sin(θms −θs))2. (2.188)

The ś̄ıghra correction S′OP = δθ is found from the relation
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OPsinδθ = PN

= rs sin(θms −θs)

or Ks sinδθ = rs sin(θms −θs)

or Rsinδθ = rs sin(θms −θs)
R
Ks

, (2.189)

where

doh. phala = rs sin(θms −θs)

=
rs

R
Rsin(θms −θs)

= Rsin(θms −θs)×
[
(31−2|sin(θms −θs)|)×

K
R

]
× 1

80

= dorjya× sphut.agun. a×
1

80
. (2.190)

Similarly,

kot.iphala = rs cos(θms −θs)

= kot.ijyā× sphut.agun. a×
1
80

. (2.191)

Adding the arc δθ obtained thus to the longitude of the mean Sun θs, we obtain the
true geocentric longitude of Mercury, θ = Γ ÔP = θs + δθ .

In the earlier Indian texts, as was the case also in the Greco-European tradition
up to Kepler, the equation of centre of the interior planet used to be applied wrongly
to the mean Sun, which was taken as the mean planet in the case of interior planets.
It is in Tantrasaṅgraha that the equation of centre is correctly applied to the mean
heliocentric planet to obtain the true heliocentric planet, for the first time in the
history of astronomy. We have already commented on this major modification that
has been introduced for the interior planets in Tantrasaṅgraha, wherein the mean
heliocentric planet is taken as the mean planet and the specified revolution number
is noted as its own (svaparyayāh. ), and the mean Sun is taken as the ś̄ıghrocca for
all the planets.

Now, ignoring the correction due to the eccentricity, the ratio of the Mercury–Sun
to the Earth–Sun distance may be compared with the ratio rs

R given in (2.187):

Mercury–Sun distance
Earth–Sun distance

=
31−2|sin(θms −θs)|

80
. (2.192)

It may be noted that this ratio varies between 29
80 = 0.362 and 31

80 = 0.387, as com-
pared with the average modern value of 0.387. The factor K

R in rs
R in (2.187) takes

into account the eccentricity of the planetary orbit.
Finally it may be mentioned that here, in calculating the true position of Mer-

cury, only a two-step procedure is prescribed. The ś̄ıghra-phala, however, depends
on the manda-karn. a and hence the manda-kendra also. Further, it is the iterated
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manda-karn. a that is involved in this calculation. A similar procedure is advocated
for obtaining the true position of Venus.2.28 Zua;kÒ +:~å.Pu +.f� ;a;k+.=+Na;m,a
2.28 The correction for Venusma;nd;ke +:ndÒ +Bua:ja;a .j�a;a;va;a Ka;Æa:ja;na;Ma;Zea;na .sMa;yua;ta;a Áma;na;va;~ta;~ya h;a:=H .~ya;a;t,a ta;;�ÂåÅ +�e ba;a;hu ;k+:ea;�a;f;ke Á Á 75 Á Á.~ya;a;ta;Ma ma;nd;P+.le ta;~ya d;eaHP+.lM ..a .~va;ma;Dya;mea Ákx +:tva;aY;
a;va;Zea;Sa;k+:N a ..a ;
a;kÒ +:ya;ta;Ma Z�a;a;Gra;k+:mRa ..a Á Á 76 Á Á;
a;dõ .Èåî ÁÁ*+;a d;ea:$ya;Ra ;
a:�a;Ba:$ya;a;�a;a Za;ea;Dya;a;~yEa;k+:ea;na;Sa;
a;�;taH Água;NaH .sa;eaY;
a;pa .~å.Pu +.f� ;a;k+:a;yRaH ma;nd;k+:NeRa;na :pUa;vRa;va;t,a Á Á 77 Á Água;NaH .sa ma;nd;k+:NRa.Èåî ÁÁ*+H ;
a:�a:$ya;a;�a;~ta;~ya ..a .~å.Pu +.fH ÁA;Z�a;a;tya;a;�ea Bua:ja;a;k+:ea;f� ;a ta:.�ÈÅ, ;nea Z�a;a;Gra;P+.le Bxa;ga;eaH Á Á 78 Á Ád;eaHP+.lM ;
a:�a:$ya;ya;a h;tva;a Z�a;a;Gra;k+:NRa;&+.tMa Bxa;ga;eaH Á..a;a;
a;pa;tMa Ba;a;~va;ta;ea ma;Dyea .sMa;~ku +:ya;Ra;t,a .sa .~å.Pu +.fH ;Æa;sa;taH Á Á 79 Á Á

mandakendrabhujā j̄ıvā khajinām. śena sam. yutā |
manavastasya hārah. syāt tadbhakte bāhukot.ike || 75 ||
syātām. mandaphale tasya doh. phalam. ca svamadhyame |
kr. tvā

′víses.akarn. am. ca kriyatām. ś̄ıghrakarma ca || 76 ||
dvighnā dorjyā tribhajyāptā śodhyāsyaikonas.as.t.itah. |
gun. ah. so ′pi sphut.̄ıkāryah. mandakarn. ena pūrvavat || 77 ||
gun. ah. sa mandakarn. aghnah. trijyāptastasya ca sphut.ah. |
aś̄ıtyāpte bhujākot.̄ı tadghne ś̄ıghraphale bhr. goh. || 78 ||
doh. phalam. trijyayā hatvā ś̄ıghrakarn. ahr. tam. bhr. goh. |
cāpitam. bhāsvato madhye sam. skuryāt sa sphut.ah. sitah. || 79 ||

The 240th part of the Rsine of the manda-kendra added to 14 (forms the divisor). The
dorjyā and the kot.ijyā divided by this divisor form the doh. phala and kot.iphala in the
manda-sam. skāra. After adding the arc of the doh. phala to the madhyama-graha, let the
avis.is. t.a-manda-karn. a be found and ś̄ıghra-sam. skāra be carried out as set forth below.

The dorjyā (corresponding to the ś̄ıghra-kendra) multiplied by two, divided by the trijyā,
and subtracted from 59, forms the multiplier. This multiplied by the avis. is. t.a-manda-
karn. a and divided by trijyā forms the sphut.agun. a. The dorjyā and kot.ijyā multiplied
by the sphut.agun. a and divided by 80 are the doh. phala and kot.iphala. The arc of the
doh. phala multiplied by the trijyā and divided by the ś̄ıghra-karn. a should be applied to
the mean Sun. This gives the true longitude of the Venus.

The procedure for calculating the geocentric longitude of Venus is the same as
for that of Mercury. The manda-sphut.agraha is calculated taking the ratio of the
epicycle to the deferent24 to be

24 It is interesting to note that the expression for the denominator given here, namely 14 +
R| sin(θ0−θm)|

240 , is such that the second term can be as large as the first one.
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r0

R
=

1

14 + R|sin(θ0−θm)|
240

. (2.193)

The ś̄ıghra-sam. skāra is identical with that for Mercury, as shown in Fig. 2.16. In
the same way as in (2.192), here we can set

Venus–Sun distance
Earth–Sun distance

=
rs

R

=
59−2|sin(θms −θs)|

80
× K

R
. (2.194)

Ignoring the correction for eccentricity (taking K = R), we find that rs
R varies be-

tween 57
80 = .712 and 59

80 = .737, as compared with the average modern value of .723.2.29 g{a;h;a;Na;Ma ;
a;d;na;Bua;�a;�H
2.29 The daily motion of the planets(õ;a;~ta;neaY;dùÅ;a;ta;na;a;.Cu +;dÄâ e va;kÒ +:Ba;ea;ga;eaY;va;a;Za;Sya;tea Á;
a;va;pa:=� +a;ta;
a;va;Zea;Sa;ea;tTa;.a;a:=+Ba;ea;ga;~ta;ya;eaH .~å.Pu +.fH Á Á 80 Á Á

śvastane ′dyatanācchuddhe vakrabhogo ′vaśis.yate |
vipar̄ıtavíses.otthacārabhogastayoh. sphut.ah. || 80 ||
The longitude of the planet found for tomorrow is subtracted from the longitude of the planet
today. The result [if positive] is the retrograde daily motion of the planet; if otherwise, the
result gives the direct daily motion of the planet.

In this verse, essentially, the definition of direct/retrograde motion is given. By
bhoga is meant daily motion, the angular distance travelled by the planet in one day
as observed by an observer on the surface of the Earth.





Chapter 3C+.a;ya;a;pra;k+.=+Na;m,a
Gnomonic shadow

3.1 Za;ñÍö�ÅÅ*:u +.~Ta;a;pa;na;m,a
3.1 Positioning the gnomon;a;Za;l+.a;ta;le Y;
a;pa va;a BUa;ma;Ea .sa;ma;a;ya;Ma ma;Nq+.lM ;�a;l+.Kea;t,a Áta;n}å.a;Dyea .~Ta;a;pa;yea;.C+.ñÍö�ÅÅ*:Mu k+:�//////�a;�pa;tMa dõ ;a;d;Za;a;ñÍç ÅÅ*:u +.l+.m,a Á Á 1 Á Á

śilātale ′pi vā bhūmau samāyām. man. d. alam. likhet |
tanmadhye sthāpayecchaṅkum. kalpitam. dvādaśāṅgulam ||1 ||
On the surface of a rock or a flat Earth surface, draw a circle, and place a gnomon (́saṅku)
at the centre of it, whose length is taken to be twelve aṅgulas.

Preparation of a flat surface and a gnomon

The primary requirement for all measurements related to the shadow of a gnomon
or śaṅku1 is a flat surface. The following quote from Laghu-vivr. ti explains how
carefully the plane surface needs to be prepared for positioning the śaṅku on this
surface. It also furnishes certain other details that are to be considered, before mak-
ing the necessary markings on the surface, for various measurements—related to
place, time and direction (tripraśna)—that will be discussed later.ta:�a ta;a;va;�+:}ba;k+:a;
a;d;na;a :pa:=� +a;[ya .sa;m�a;a;kx +:tea ;a;Za;l+.a;ta;le BUa;ta;le va;a Za;ñÍö�ÅÅ*:u +.
a;dõ ;gua;Na;ma;a;nea;naA;nya;a;dx ;Zea;na va;a v.ya;a;sa;a;DRa;sUa:�ea;Na ta;a;dx ;ZMa ma;Nq+.l+.ma;a;�a;l+.Kea;t,a, ya;�/////////�a;sma;n,a ;
a;d;na;ma;Dya;Ba;a;ga;sa;}ba;�////�a;nDa;n�a;a.=+veaH C+.a;ya;a kx +:t=+:ïîåéa;a;pya;nta;Ba;Ra;va;�a;ya;ta;v.ya;a .~ya;a;t,a Á ta;dùÅ;a;Ta;a -O;;kM v.ya;a;sa;a;DRa;sUa:�a;a;g{a;ma;va;�;Bya ë�ÅëÁ*:+:�a;.a;t,a :pa:=+m,a Á:pa;�a:=+ta;ea Bra;a;ma;yea;t,a BUa;ma;Ea .sa;ma;vxa:�Ma ya;ta;ea Ba;vea;t,a Á Á:ke +:ndÒ +ta;ea ;
a;va;pra;k+:SRa;~ya :pa;�a:=+ta;~tua;�ya;ta;a;kx +:ta;m,a Á Á – I+.�a;ta Á Á
1 By convention, the length of the śaṅku is taken to be 12 aṅgulas (a unit of measurement).
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132 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadowO;;va;ma;a;�a;l+.��a;Ka;ta;~ya ma;Nq+.l+.~ya :ke +:ndÒ +a;va;�//////�a;~Ta;ta;~va;ke +:ndÒ M ;�a;na:ja;dõ ;a;d;Za;Ma;Za;pra;Æa;ma;ta;a;ñÍç ÅÅ*:u +.l+.sa;ma-;
a;va;Ba;�+:a;ya;Ma ta;d;DRa;pa;�a:=+Na;a;hM ..a;a;B�a;a;�;Za;ñÍö�ÅÅ*:Mu .~Ta;a;pa;yea;t,a Á Za;ñÍö�ÅÅ*:u +.l+.[a;Na;mua;�M (r�a;a;pa;�a;ta;na;a –Bra;ma;
a;va:=+�a;.a;ta;vxa:�aH tua;�ya;mUa;l+.a;g{a;Ba;a;gaH;
a;dõ :=+d;d;Za;na:ja;n}å.a;a .sa;a:=+d;a:�+.;�ÂåÅ +va;ea va;a Á.sa;ma;mxa:jua:=+va;l+.}ba;a;t,a A;v.ra;NaH :Sa:æö�ÅÅ*:+.vxa:�aH.sa;ma;ta;l I+.h Za;~taH Za;ñÍö�ÅÅ*:u +=+k+:Ra;ñÍç ÅÅ*:u +.l+.ea;�aH Á Á – I+.�a;ta Á Á
On a surface of a stone or Earth that has been prepared to be flat (samı̄kr. te) by means of
[a contrivance] such as a plumb-line, draw a circle whose radius is twice that of the height
of the śaṅku or any other [appropriate] measure, so that the entire midday shadow [of the
śaṅku] cast by the Sun falls within [the circumference of the circle]. This can be done as
follows:

Firmly fixing (avas.t.abhya) one end of a rope whose length is the radius of the
circle [desired to be drawn] at some point on the Earth [having a flat surface], rotate
the other end so that a circle is obtained. [It must be verified that] the distance of
separation (viprakars.a) from the centre to the circumference is the same all around.

Place the desired gnomon (abh̄ıs.t.aśaṅku)—whose length is equal to 12 aṅgulas in its
own measure, with equally spaced divisions [marked along it], and is also equal to half the
circumference of the circle—at the centre of the circle thus drawn. The characteristics of a
śaṅku have been stated by Śr̄ıpati thus:

A stick which is 12 aṅgulas in length, prepared from elephant’s tusk (dviradadaśana2)
or else some good-quality wood (sāra-dāru), made perfectly circular by rotating
[tools] so that it is uniform [in thickness] without any injury/dent (avran. a),3 with
six circular markings and placed erect like a plumb-line on a flat surface is called a
śaṅku.

Some important circles in the celestial sphere

In this context, Yukti-d̄ıpikā presents a graphic description of how the celestial
equator, prime vertical, ecliptic and other important great circles are situated with
respect to each other in the celestial sphere for an equatorial observer4 (see Fig. 3.1).
We present the description here, as it will be quite useful for understanding the later
verses in this chapter and elsewhere..sa;ma;ea;pa;�a:= ;�a;na:=+[ea;Sua ;Ga;�a;f;k+:a;ma;Nq+.lM Ba;vea;t,a Á.sa;ma;�a;ta;yRa;gga;tMa ta;sma;a;t,a d;Æa;[a;Na;ea:�a:=+ma;Nq+.l+.m,a Á Á
2 The word ;
a;dõ :=+d literally means that which has two teeth, and hence an elephant; d;Za;na is gener-
ally used to refer to teeth, and in this context the tusk of an elephant.
3 The word avran. a, which literally means without injuries, is used as an adjective to indicate that
there should not be any imperfections – which are likely to happen during the process of rendering
it into cylindrical shape – in the śaṅku prepared.
4 An observer whose latitude is zero.



3.1 Positioning the gnomon 133;�a;na:=+[ea ;Ga;na;BUa;ma;Dya;pa;a:(õ;Ra;~TMa ;Æa;[a;�a;ta:jMa Ba;vea;t,a Ád;Æa;[a;Na;ea:�a:=+sa;}å.pa;a;ta;dõ ;yea ya;~ya ;Drua;va;Ea ;�//////�a;~Ta:=+Ea Á Á�+:DvRa;~Ta;a;t,a .~va;�/////�a;~ta;k+:a;d, ya;a;}yea .sa;Ea;}yea ..a;a;Da;ea;ga;ta;a;d;
a;pa Á..a;tua;
a;v a;Za;�a;ta;Ba;a;ga;a;ntea Ba;va;�a;ta kÒ +:a;�////�a;nta;ma;Nq+.l+.m,a Á Á;Ga;�a;f;k+:a;vxa:�a;ma;a;geRa;Na Bra;a;}ya;�a;ta :pra;va;h;eaY;nva;h;m,a Á:pa;(ãÉa;a;n}å.ua;KaH .sa;ma:ja;vaH g{a;h;[a;Ra;a;Na .sa;m�a;a:=+ya;n,a Á Á 5
In places having zero latitude, the equator (ghat.ikāman. d. ala) will be right above [passing
through the zenith of the observer]. The one which is exactly perpendicular [to that] is the
prime meridian (daks.in. ottara-man. d. ala). The [horizontal plane] around the centre of the
solid Earth would be the horizon for places with zero latitude. The intersection of the north–
south circle and this (horizon) will always be the north and south celestial poles (dhruvas).

The ecliptic (krāntiman. d. ala) is situated 24◦ towards the south from the zenith which is
right above the observer, and [similarly] to the north from the nadir which is right below
the observer.6 The wind called pravaha flows continuously along the equator, making the
planets and stars move westwards at equal speed.
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Fig. 3.1 Celestial sphere for an equatorial observer.

5 {TS 1977}, pp. 187–8.
6 This would be the case when the equinoxes are on the horizon coincident with the east and west
points of the horizon.
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a;ba;ndõ ;a;na;ya;na;m,a
3.2 Finding the east–west pointsta;.C+.a;ya;a;g{Ma .~å.pxa;Zea;dùÅ;a:�a vxa:�ea :pUa;va;Ra;pa:=+a;�ÎÉ É +:ya;eaH Áta:�a ;
a;ba;ndU ;�a;na;Da;a;ta;v.ya;Ea vxa:�ea :pUa;va;Ra;pa:=+a;Æa;Ba;Da;Ea Á Á 2 Á Á

tacchāyāgram. spr. śedyatra vr. tte pūrvāparāhn.ayoh. |
tatra bindū nidhātavyau vr. tte pūrvāparābhidhau || 2 ||
The marks on the circle [drawn with the gnomon as the centre], known as the east and the
west points, have to be made wherever the tip of the shadow of that (gnomon) grazes the
circumference of the circle in the forenoon and the afternoon.

During the forenoon, the tip of the shadow will be entering into the circle from
outside, and the point where it intersects the circumference is to be marked as the
west point. Similarly, during the afternoon, as the tip moves out of the circle, it
again intersects the circumference, and this point is to be noted as the east point.
The line joining these two points will represent the exact east–west direction at that
location, if it is assumed that the declination of the Sun remains constant during
the day. But since the declination actually varies continuously, there is a need for a
small correction, which is discussed in the following verse.3.3 :pUa;va;Ra;pa:=+
a;ba;ndu ;Za;ea;Da;na;m,a
3.3 Correcting the east–west pointsBea;d;a;t,a :pUa;va;Ra;pa:=+kÒ +:a;ntya;eaH C+.a;ya;a;k+:Na;Ra;ñÍç ÅÅ*:u +.l+.a;h;ta;a;t,a Ál+.}ba;k+:a;�Ma :pUa;vRa;
a;ba;nd;eaH n�a;a;tva;a k+:a;ya;eRaY:�a .sa;eaY;ya;na;a;t,a Á Á 3 Á Á

bhedāt pūrvāparakrāntyoh. chāyākarn. āṅgulāhatāt |
lambakāptam. pūrvabindoh. n̄ıtvā kāryo ′tra so ′yanāt ||3 ||
The difference in the [Rsine of the] declinations determined in the forenoon and the after-
noon7 multiplied by the shadow-hypotenuse and divided by the Rcosine of the latitude of
the place (lambaka) has to be applied to the east point and this [the sign of application, ±]
depends upon the ayana.

Consider Fig. 3.2a. The points W ′ and E ′′ on the circle represent the points of
intersection of the tip of the shadow with the circumference in the forenoon and
afternoon respectively. If the declination of the Sun were to be constant during the
course of the day, then W ′E ′′ would be the west–east line. However, owing to the
northward or southward motion of the Sun, the declination (δ ) changes. Conse-
quently, the tip of the eastern shadow point would have been shifted towards the
south if the Sun has northward motion (δ increases) or north if the Sun has south-
ward motion (δ decreases). So a correction ∆ (see (ii) in Fig. 3.2a) has to be applied
to E ′′ in order to obtain the actual east point E ′. If the change in the declination from
δ1 to δ2, then the magnitude of the correction ∆ is stated to be

7 At those instances when the tip of the shadow grazes the circumference.
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Fig. 3.2a Fixing the directions through shadow measurements.

∆ =
K(Rsinδ2 −Rsinδ1)

Rcosφ
, (3.1)

where K is the hypotenuse of the shadow in aṅgulas8 and Rcosφ is the lambaka, φ
being the latitude of the place. The expression for ∆ given here is the same as the
one given earlier by Bhāskarācārya (c. 1150) in Siddhāntaśiroman. i,

9 and may be
understood as follows.

Consider the situation when the Sun has declination δ , zenith distance z and az-
imuth A (see Fig. 3.2b). OX is the gnomon, whose height is taken to be 12 aṅgulas.
The length L of its chāyā (shadow) OY is given by

L = OY = XY sinz = K sinz, (3.2)

where K = XY is the chāyā-karn. a (shadow-hypotenuse). For future purposes we
also note that

12 = K cosz or K =
12

cosz
. (3.3)

Using (3.3) in (3.2) we have

L = 12
sinz
cosz

. (3.4)

Chāyābhujā Y Q is the perpendicular distance of the tip of the shadow from the
east–west line and is given by

Y Q = Lsin(A−90) = −LcosA. (3.5)

8 The gnomon is taken to be 12 aṅgulas.
9 {SSI 2000}, pp. 25–6.
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Fig. 3.2b Relation between the zenith distance of the Sun and the length of the shadow cast by a
śaṅku.

In the spherical triangle PZS, ZS = z, PS = 90◦− δ , PZ = 90◦−φ and PẐS = A,
where A is the azimuth (west). Now, using the cosine formula we have

sinδ = coszsinφ + sinzcosφ cosA. (3.6)

Since the length of the shadow corresponding to the pointsW ′ and E ′′ are the same—
both being exactly equal to the radius of the circle—the corresponding zenith dis-
tances of the Sun in the forenoon and the afternoon must be equal. However, the
declination of the Sun changes from δ1 to δ2. If A1 and A2 are the azimuths corre-
sponding to these positions of the Sun, then

sinδ1 = coszsin φ + sinzcosφ cosA1 (3.7)

sinδ2 = coszsin φ + sinzcosφ cosA2. (3.8)

Subtracting one from the other and doing some algebraic manipulations,

sinδ2 − sinδ1 = sinzcosφ (cosA2 − cosA1)

K (sinδ2 − sinδ1)

cosφ
= K sinz(cosA2 − cosA1)

= L(cosA2 − cosA1) . (3.9)

We have used (3.2) in arriving at the RHS of the above equation. Further, it may be
noted that RHS is nothing but the difference in ‘chayābhujās’ corresponding to δ1

and δ2. Hence, the LHS of the above equation represents the distance ∆ by which
the east point has to be displaced. Thus
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∆ =
K (sinδ2 − sinδ1)

cosφ
. (3.10)

In other words, the true east point E ′ is the point on the circle which is at a distance
∆ from the line E ′′W ′ (see to (ii) in Fig. 3.2a). The true east–west line is E ′W ′. The
point E ′ would be to the north (south) of E ′′, depending upon whether the Sun has
northward (southward) motion.

Now we present the detailed discussion on the necessity for this correction and
how it is to be implemented as given in Yukti-d̄ıpikā:ta:�a;a;ya;na;va;Za;a;t,a .sa;Ea;}ya;ya;a;}ya;ya;ea;gRa;.C+.ta;ea .=+veaH Á.sa;ma;pUa;va;Ra;pa:=e .~ya;a;ta;Ma C+.a;ya;a;g{ea nea;�;ma;Nq+.le Á Á:pra;vea;Za;�a;na;yRa;tsa;ma;ya;kÒ +:a;�////�a;nta;Bea;de ;na Bea;d;taH Á;Æa;Ba;�a;k+:a;l+=+
a;va;kÒ +:a;�////�a;nta;
a;va;va:=+ea;tTea :P+.le kx +:tea Á ÁZa;k�+.a;a k+:�pa;�a;ya;tMua ta:�a .sa;ma;pUa;va;Ra;pa:=+�//////�a;~Ta;�a;taH ÁI+.�;ma;Nq+.l+.nea;Æa;ma;~Ta;C+.a;ya;a;g{a;a;ñÍç ÅÅ*:u +.l+.va;gRa;taH Á Áta;.C+.ñÍö�ÅöÅ*:+.ñÍç ÅÅ*:u +.l+.va;ga;Ra;Q.�a;a C+.a;ya;a;k+:NRa;pa;dM Ba;vea;t,a ÁC+.a;ya;a;k+:NRa;h;tMa k+:a;l+.
a;dõ ;ta;ya;a;pa;kÒ +:ma;a;nta:=+m,a Á Ál+.}ba;ke +:na h:=e +�+:b.DMa ta;dõx :�ea kÒ +:a;�////�a;nta:jMa :P+.l+.m,a Á.tea;na;a;ya;na;va;Za;a;�ea;yMa :pra;a;.ya;Ma C+.a;ya;a;g{a;ma:�a tua Á ÁA;ya;na;v.ya;tya;ya;a;t,a :pa;(ãÉa;a;t,a C+.a;ya;a;g{Ma va;a;Ta;ma;Nq+.le Á.sa;ma;pUa;va;Ra;pa:=M yea;na C+.a;ya;a;g{a;
a;dõ ;ta;yMa Ba;vea;t,a Á ÁC+.a;ya;a;g{a;
a;dõ ;ta;ya;~å.pxa;�M .sUa:�Ma :pra;a;ga;pa:=M ta;taH Á.sa;ma;�a;ta;yRa;gga;tMa .sUa:�Ma ta;taH .~ya;a;t,a d;Æa;[a;Na;ea:�a:=+m,a Á Á 10

Because of the northward and southward movement (ayana) [of the Sun], the tips of the
shadow of the Sun on the desired circle may not be exactly along the east–west [direction].

Since the difference [from the exact east–west] is due to the difference in the declinations of
the Sun at the times of entry and exit, once this difference (vivarotthaphala) is calculated,
it would then be possible to determine the exact east–west direction.

The square of the tip of the shadow on the circumference of the desired circle [measured]
in aṅgulas, added to the square of the śaṅku in aṅgulas, is stated to be the [square of] the
chāyākarn. a (shadow-hypotenuse).

Let the chāyākarn. a (shadow-hypotenuse), multiplied by the difference in declinations cal-
culated at the two different instants, be divided by the lambaka. The result obtained is due
to [the change in] declination (krāntijaphala)11 [to be applied] in that circle.

With that [result] depending upon the ayana, the tip of the shadow has to be shifted towards
the east. If the ayana happens to be otherwise (vyatyayāt), then the tip of the shadow has
to be shifted to the west. It is only then (atha) that the two tips of the shadows on the circle
represent the exact east-west direction.

Then the line passing through the two tips of the shadows [obtained after the corrections]
will represent the east–west direction. The line that is exactly perpendicular to this will then
represent the north–south direction.

10 {TS 1977}, pp. 188–9.
11 The word kÒ +:a;�////�a;nta:ja;P+.l should be considered as an example of ma;Dya;ma;pa;d;l+.ea;
a;pa;sa;ma;a;sa, the

vigraha of which should perhaps be done as follows – kÒ +:a;�////�a;nta;Bea;d;a;t,a .ja;a;ya;ma;a;nMa :P+.l+.m,a; which
means the result that is obtained because of the change in the declination.
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a;d;ga;a;na;ya;na;m,a
3.4 Fixing the directions in one’s own placema;DyMa kx +:tva;a ta;ya;ea;
a;bRa;ndõ ;eaH tua;�yea vxa:�ea .sa;ma;a;�a;l+.Kea;t,a Áta;tsMa:(ìÉÅ;e +Sa;ea;tTa;ma;t~yea;na :℄ea;yea ya;a;}ya;ea:�a:=e ;
a;d;Za;Ea Á Á 4 Á Áta;dõx :�a;ma;Dya;ma;t~yea;na :pUa;va;Ra;pa:=+
a;d;Za;a;va;
a;pa Á;
a;d:ñÍíéÁÁ*+;;Dya;ma;t~ya;sMa;sa;a;Dya;aH ..a;ta;~åò:a;ea ;
a;va;
a;d;Za;eaY;
a;pa ..a Á Á 5 Á ÁA;Da�+:DvRa;
a;d;Za;Ea :℄ea;yea l+.}ba;ke +:nEa;va na;a;nya;Ta;a Á

madhyam. kr. tvā tayorbindvoh. tulye vr. tte samālikhet |
tatsam. śles.otthamatsyena jñeye yāmyottare dísau ||4 ||
tadvr. ttamadhyamatsyena pūrvāparadísāvapi |
diṅmadhyamatsyasam. sādhyāh. catasro vidíso ′pi ca ||5 ||
adhaūrdhvadísau jñeye lambakenaiva nānyathā |

Draw two identical circles with these two points as centres. With the matsya (fish [figure])
that is formed by the intersection of these [two circles], the north and the south directions
have to be determined.

[Again] with the matsya that is formed at the centre of that circle [at the centre of which
śaṅku is placed], the east and the west directions [have to be determined]. And the four
subordinate directions have to be determined by [drawing] matsyas in between [these]
cardinal directions. The directions vertically above and below [i.e., zenith and nadir] can be
determined only through the plumb-line (lambaka) and not by any other means.
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Fig. 3.3a Construction of matsyas for the determination of the cardinal directions.



3.4 Fixing the directions in one’s own place 139

In Fig. 3.3a, the śaṅku is placed at the centre of the circle marked O. The points
where the tip of its shadow grazes the circumference of the circle in the forenoon
and the afternoon are marked as W ′ and E ′12 respectively. With these two points
as centres and radius greater than half of E ′W ′, arcs are to be drawn. The resulting
figure appears like a fish and hence is referred to as a matsya (fish). A straight line
is drawn through the points of intersection A and B of these two arcs. This line meets
the circle at N and S and this represents the north–south direction.

With N and S as centres along north and south directions equidistant from O
and radius greater than half the distance between them, two more arcs are again
drawn. They intersect at points C and D, forming a matsya. With these two points
a straight line is drawn that intersects the circle at E and W . This line represents the
exact east–west direction. By constructing similar matsyas with N and E as centres,
the north–east and south–west directions are determined. Similarly, by constructing
a matsya with S and E as centres, the south–east and north–west directions get
determined.

Thus the four cardinal and the four subordinate directions are determined by
making shadow measurements and drawing matsyas. The direction vertically above
the observer and the one below, denoted by the zenith and nadir, are to be deter-
mined only with the help of a plumb-line, referred to as a lambaka. A lambaka is a
thread with a heavy object, made of wood or iron, having a fine tip—as indicated in
Fig. 3.3b—tied to one of its ends.

a square block whose 
side is same as the dia−
meter of the cylindrical 
block hanging below

a cylindrical block  
with a conical tip
on one side connec−
ted to the thread

thread that slides
through the block

Fig. 3.3b Contrivance used as a plumb-line to determine the perpendicular to the horizon at the
observer’s location.

12 E ′ in Fig. 3.3a represents the actual east point obtained after making the necessary correction
prescribed in verse 3 of this chapter.



140 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadow3.5 ;
a;va;Sua;va;.C+.a;ya;a
3.5 Equinoctial shadowO;;k+:sUa:�a;ga;ta;a C+.a;ya;a ya;�/////////�a;sma;�a;�îå�ua;d;ya;a;~ta;ya;eaH Á Á 6 Á Áma;Dya;a;�îåe ;
a;va;Sua;va;a;K.yaH .~ya;a;t,a k+:a;l+.~ta;�/////////�a;sma;n,a ;
a;d;nea ya;taH Áta;sma;a;t,a ta;	a;�+na;ma;Dya;a;�îå+:C+.a;ya;a ;vEa;Sua;va;t�a;a ma;ta;a Á Á 7 Á Á

ekasūtragatā chāyā yasminnahnyudayāstayoh. ||6 ||
madhyāhne vis.uvākhyah. syāt kālastasmin dine yatah. |
tasmāt taddinamadhyāhnachāyā vais.uvat̄ı matā ||7 ||
Since the noon-time on a day in which the tips of the shadows at sunrise and sunset fall on
a straight line (ekasūtragatā) is called vis.uvat, the shadow of the śaṅku at the noon-time
on that day is called the vis.uvacchāyā (equinoctial shadow).

On an equinoctial day, the Sun is at one of the equinoxes and its declination is
zero. On that day, the tip of the shadow traces a straight line parallel to the east–west
line. The noon-time of the equinoctial day is called the vis.uvat and the noon-shadow
on that day is called the vis.uvacchāyā.

It was shown in the previous section that the declination of the Sun at any time
during the day is given by

sinδ = coszsinφ + sinzcosφ cosA. (3.11)

On the equinoctial day, δ = 0. Hence the above equation reduces to

sinzcosφ cosA = −coszsinφ . (3.12)

Rewriting this we have

tanzcosA = − tanφ
or 12 tanzcosA = −12tanφ . (3.13)

From (3.4) and (3.5) we have

chāyābhujā = −LcosA = −12tanzcosA. (3.14)

Hence from (3.13)
chāyābhujā = 12tanφ . (3.15)

Since the RHS in the above equation is a constant for a given latitude, the chāyābhujā
will be a constant on the equinoctial day and would be equal to vísuvacchāyā. This
means that the tip of the shadow is at a constant distance from the east-west line. In
other words, the tip of the shadow traces a straight line on the equinoctial day which
is at a distance equal to 12tanφ from the east–west line passing through the base of
the śaṅku.
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Criterion for the noon-shadow to be declared equinoctial

The condition that must be satisfied for the noon-time shadow to be called the
vísuvacchāyā is clearly spelt out in Yukti-d̄ıpikā.kÒ +:a;ntya;eaH ;Æa;Ba;�a;
a;d;Za;eaH .sa;a;}yMa .sa;a;ya;na;a;~ta;ea;d;ya;a;kR +:ya;eaH Áya;�/////////�a;sma;�a;h;�a;na ta:�a;a;k+:eRa ma;Dya;a;�îåe ;
a;va;Sua;vMa v.ra:jea;t,a Á Ána;a;nya;d;a;~ta;ea;d;ya;kÒ +:a;ntya;eaH ;
a;va;
a;d;Za;eaH Bea;d;sMa;Ba;va;a;t,a ÁO;;k+:sUa:�a;ga;ta;a;.C+.a;ya;a ta:�a .~ya;a;du ;d;ya;a;~ta;ya;eaH Á Á

The Sun would reach the equinox at noon on that day on which the declinations obtained at
the sunrise and sunset from its sāyan. a longitude have opposite directions and are equal [in
magnitude].

On no other day [can the Sun be at equinox at noon]. This is because the declinations having
different directions will vary [in magnitude]. Only there [on that day] will the shadow at
rising and setting lie on the same [straight] line.

Let δr and δs be the declinations of the Sun at sunrise and sunset. It is stated
that the Sun is at the equinox at noon on that day on which these two declinations
have opposite directions (one southern and the other northern) but equal magnitudes.
In other words, the conditions to be satisfied for the noon-shadow to be declared
equinoctial are

δr = −δs and |δr| = |δs|.3.6 C+.a;ya;a;Za;ñ Íö�ÅÅ*:u +.k+:Na;Ra;na;Ma .sa;}ba;nDaH
3.6 Relation between the gnomon, its shadow and the hypotenuseta;.C+.ñÍö�ÅÅ*:u +.va;gRa;sMa;ya;ea;ga;mUa;lM k+:Na;eRaY;~ya va;gRa;taH Átya;�+:a Za;ñÍö�ÅÅ*:u +.kx +:�a;tMa mUa;lM C+.a;ya;a;Za;ñÍö�ÅÅ*:u +.
a;vRa;pa;yRa;ya;a;t,a Á Á 8 Á Á:℄ea;ya;ea d;eaHk+:ea;�a;f;k+:NeRa;Sua dõ ;a;Bya;a;ma;nya;eaY;��a;Ka;le +.Sva;
a;pa Á

tacchaṅkuvargasam. yogamūlam. karn. o
′sya vargatah. |

tyaktvā śaṅkukr. tim. mūlam. chāyāśaṅkurviparyayāt ||8 ||
jñeyo doh. kot.ikarn. es.u dvābhyāmanyo ′khiles.vapi |
The square root of the sum of the squares of that (shadow) and the śaṅku is the karn. a
(hypotenuse). Subtracting the square of the śaṅku from the square of this (karn. a), and
taking the square root the shadow is obtained. By [doing] the reverse process [subtracting
the square of the shadow from the square of the karn. a], the śaṅku is obtained. It must be
understood that among the doh. (sine), kot.i (cosine) and karn. a, if any two are known then
the other [third] can be determined in all the instances.

It can be easily seen from Fig. 3.2b or 3.4 that the triangle formed by the śaṅku
(gnomon), the chāyā (shadow) and the karn. a (hypotenuse) is a right-angled trian-
gle. In these figures OX represents the śaṅku, OY the chāyā and XY the karn. a:

√
(XY)2 − (OY)2 = OX
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√
(XY)2 − (OX)2 = OY

karn. a
2 = XY 2

= OY 2 +OX2

= chāyā2 + śaṅku2. (3.16)

Thus, if any two quantities among śaṅku, chāyā and karn. a are known, the third
can be determined using the above relation.3.7 A;[a;l+.}ba;k+:Ea
3.7 Rsine and Rcosine of the latitudeC+.a;ya;Ma ta;Ma ;
a:�a:$ya;ya;a h;tva;a .~va;k+:NeRa;na h:=e +t,a :P+.l+.m,a Á Á 9 Á ÁA;[a:j�a;a;va;a ta;Ta;a Za;ñÍö�ÅÅ*:Mu kx +:tva;a l+.}ba;k+:ma;a;na;yea;t,a Á Á

chāyām. tām. trijyayā hatvā svakarn. ena haret phalam ||9 ||
aks.aj̄ıvā tathā śaṅkum. kr. tvā lambakamānayet ||
The [length of] that (equinoctial) shadow should be multiplied by trijyā and divided by its
karn. a. The result is Rsine of latitude (aks.aj̄ıvā). By doing the same with śaṅku [instead
of the shadow] the Rcosine of latitude (lambaka) may be obtained.

The procedure for obtaining the Rsine and Rcosine of the latitude of the observer
is explained in the above verse. Consider Fig. 3.4. Here OX represents the śaṅku.
On the equinoctial day, since the Sun is almost on the equator throughout the day,
the zenith distance of the Sun as it crosses the prime meridian (at noon) will be equal
to the latitude of the place.
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Fig. 3.4 Determination of the latitude from the equinoctial shadow of the śaṅku.

Considering the triangle OXY formed by the śaṅku OX , the chāyā OY and the
karn. a XY , it can be easily seen that OX̂Y = φ . Hence,
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sinφ =
OY
XY

, cosφ =
OX
XY

. (3.17)

Now aks.ajyā is Rsinφ and lambaka is Rcosφ . Hence, multiplying the above equa-
tion by the trijyā we have

aks.ajyā =
trijyā× chāyā

karn. a
, (3.18a)

lambaka =
trijyā× śaṅku

karn. a
. (3.18b)

In Yukti-d̄ıpikā, there is also a very interesting discussion on how the determination
of latitude and the directions are mutually interdependent.na;nua l+.}bea;na ;Æa;sa:;dÄâ e ;na k+:tRa;v.yMa kÒ +:a;�////�a;nta:jMa :P+.l+.m,a Á;
a;va;Sua;va;	a;�+na;ma;Dya;a;�îå+:.C+.a;ya;a;ta;eaY;pya;[a;l+.}ba;k+:Ea Á Áta;ya;ea;lR +.}ba;k+:a;[a;ya;eaH ;Æa;sa;�a:;dÄâ ;
a;dR ;#pa;�a:=+.Ce +.d;pUa;
a;vRa;k+:a Á.sa :pua;na;lR +.}ba;k+:a;D�a;a;na;�a;na:ja;kÒ +:a;�////�a;nta;P+.l+.a;nta:=+a;t,a Á ÁI+.�a;ta ya:�a;du ;pa;a;yeaY;�/////////�a;smMa;(ãÉa;kÒ +:g{a;~ta;ta;ya;a Ba;vea;t,a Áta;ta;eaY;ya;na;a;ntea ma;Dya;a;�îåe ;
a;d;na;pUa;va;Ra;pa:=+a;�ÎÉ É +:ya;eaH Á Átua;�ya;k+:a;l+.a;nta;�a:=+ta;ya;eaH .sa;ma;pUa;va;Ra;pa:=M Ba;vea;t,a ÁC+.a;ya;a;g{a;
a;dõ ;ta;yMa kÒ +:a;�////�a;nta;P+.le +.nEa;va;a;nya;d;a .sa;d;a Á ÁBa;a;na;a;ma;~ta;ea;d;ya;a;Bya;Ma va;a .sa;ma;pUa;va;Ra;pa:=e ;
a;d;Za;Ea Á

The krāntijaphala13 is to be determined from the Rsine of colatitude (lambaka) already
known. And the Rsines of latitude and colatitude are [to be found] from the noon-shadow
on the equinoctial day. [However] for the determination of the latitude and co-latitude a
clear demarcation (pariccheda) of the directions is a prerequisite. This [demarcation of
directions] in turn depends upon the correction due to the difference in declinations, which
[in turn] is dependent on the lambaka. Thus, the entire procedure [seems to be faulty as it]
suffers from ‘circularity’ (cakragrasta).

Therefore [to circumvent this problem] at the solstices (ayanānta), obtain the two tips of
the shadow (chāyāgra-dvitayam. ) corresponding to two instants at forenoon and after-
noon, equally separated from noon, which gives the exact east–west line [without making
any correction for the change in declination]. Otherwise, at all other instances, the tips of
the shadows [need to be determined] only after considering the correction due to difference
in declinations. The exact east and west directions may also be determined from the rising
and setting of the stars.

Here it is pointed out that the procedure for determining the latitude suffers from
circularity. The determination of the latitude from the equinoctial noon–shadow is
dependent on the knowledge of the exact east–west direction, which in turn requires
the knowledge of the latitude.14 However, at solstices the change in declination over

13 This term refers to the magnitude of correction to be applied to the east/west point, due to the
variation in the declination of the Sun between the forenoon and the afternoon, to obtain the correct
east–west direction.
14 From (3.10), it may be noted that φ appears in the denominator of the correction term to be
used in the determination of the direction. On the other hand, OY in (3.17) is measured along the
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a day is negligible. This is because the declination of the Sun at any instant is given
by

sinδ = sinε sinλ , (3.19)

and the rate of change of declination is

d

dt
sinδ = sinε

d

dt
sinλ

= sinε cosλ
dλ
dt

. (3.20)

Since cosλ = 0 at solstices (as λ = 90◦ or 270◦), d
dt sinδ = 0 at these points. Hence,

to first order in ∆ t, the declination does not vary. Thus, when the Sun is close to the
solstices, the exact east–west direction can be determined without considering the
correction term given by (3.9), and thus the problem of circularity can be overcome.3.8 .~å.Pu +.f;a;[a;l+.}ba;k+:Ea
3.8 More accurate values of the Rsine and Rcosine of the latitudeA;[a:$ya;a;kR +:ga;�a;ta.Èåî ÁÁ*+;a;�a;a Ka;~va:=e +Svea;k+:sa;a;ya;kE H 15 Á Á 10 Á Á:P+.l+.ea;na;ma;[a;.a;a;pEaH .~ya;a;t,a A;kR +:
a;ba;}ba;a;DRa;sMa;yua;ta;m,a Á.~å.Pu +.fM ta:êêÁ*.a�a;a;[a:j�a;a;va;a;
a;pa ta;~ya;aH k+:ea;�a;f;(ãÉa l+.}ba;kH Á Á 11 Á Á

aks.jyārkagatighnāptā khasvares.vekasāyakaih. ||10 ||
phalonamaks.acāpaih. syāt arkabimbārdhasam. yutam |
sphut.am. tajjyāks.aj̄ıvāpi tasyāh. kot.ísca lambakah. ||11 ||
The aks.ajyā is multiplied by the true daily motion of the Sun and divided by 51570. The
result has to be subtracted from the latitude of the place (aks.acāpa) [and to this] the semi-
diameter of the Sun has to be added. This is the true value [of the latitude]. The Rsine of
this is the aks.aj̄ıvā and its complement is the lambaka.

The above verse gives the procedure for correcting the observed value of the
latitude taking into account the effects of parallax and the finite diameter of the Sun.
The effect of parallax is to increase the apparent zenith distance of the object, as
may be seen from Fig. 3.5a.

Here, C represents the centre of the Earth, S the Sun and O the observer. Re and
d refer to the radius of the Earth and the distance of the Sun from the centre of the
Earth respectively. Z represents the geocentric zenith of the observer. If z′ and z are
the apparent and the actual zenith distances of the Sun, then it is easily seen that

east–west direction. Thus we need to know φ for finding the exact east–west direction, and the
east–west direction to know φ—hence the circularity.
15 The word in both the printed editions is: Ka;~va:=+a;dùÅò ;ae ;k+:sa;a;ya;kE H Á The number represented by
this code word (in Bhūtasaṅkhyā system) is 51770, whereas the number that fits into the present
context is 51570, and we have indicated this correct reading here. In a similar context in Chapter 5,
verse 10, we find the number (51570) occurring again. This indicates that our correction is justified.
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Fig. 3.5a The effect of parallax on the measurement of the latitude of the observer.

z = z′− p, (3.21)

where p =CŜO is the parallax of the Sun for an observer on the surface of the Earth.
It is the angle subtended by the radius of the Earth at the centre of the Sun. In other
words, it is the angle between the direction of the object as seen by the observer O
and the direction of the object as seen from the Earth’s centre (bhūgola-madhya,
which is the standard reference point).

From the planar triangle COS we have

sin p =
Re

d
sin z′. (3.22)

Since Re ≪ d, p is small and the above equation can be written as

p =
Re

d
sinz′. (3.23)

When z′ = 90◦, i.e. the celestial object is on the observer’s horizon—which is the
tangential plane passing through the observer, and not the centre of the Earth—it is
easily seen that the correction due to parallax is maximum. It is called the horizontal
parallax and is given by

P =
Re

d
. (3.24)

Using this in (3.23) we have
p = Psinz′. (3.25)

In Indian astronomical texts, the mean value of the horizontal parallax is taken to
be one-fifteenth of the mean daily motion of the celestial object. This assumption
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is based on the fact that the mean value of the moon’s horizontal parallax (which is
found to be ≈ 52.5′) in Tantrasaṅgraha is close to one-fifteenth of its mean daily
motion, which is 790.6′. As the linear velocities of all the planets are assumed to be
the same in Indian texts, the mean parallax of any other object is also taken to be
one-fifteenth of its daily motion.16

If Dms represents the mean daily motion of the Sun, then the mean value of the
parallax due to the Sun is given by

p0 =
Dms

15
sin z′. (3.26)

Multiplying and dividing the above equation by the trijyā, and substituting its ap-
proximate value 3438 (in minutes) in the denominator we have

p0 =
Dms

51570
Rsin z′. (3.27)

As the distance of the Sun from the Earth keeps varying continuously, the value of
the parallax also keeps varying. Hence, the true value of the parallax p at a particular
instant can be obtained only by considering the actual distance of the Earth from the
Sun at that instant. This is often achieved by multiplying the mean value of the
parallax by the true daily motion and dividing by the mean daily motion:

p = p0 ×
true daily motion (Dts)

mean daily motion (Dms)
. (3.28)

Substituting for p0 from (3.27), we have

p =
Dts

51570
Rsin z′. (3.29)

The above equation is the same as the expression given in the verse above for the
correction to the observed latitude due to effect of parallax. When the Sun is on the
prime meridian on an equinoctial day, then the zenith distance of the Sun is the same
as the latitude of the place. Hence to obtain the correct latitude of the place, one has
to subtract the parallax from the observed zenith distance.

The correction which arises owing to the finite size of the Sun is illustrated in
Fig. 3.5b. Here OA is the śaṅku. PSQ represents the sectional view of the Sun, S

16 A more detailed discussion on parallax and its application may be found in Chapters 4 and 5
on lunar and solar eclipses. According to Tantrasaṅgraha, the diameter of the Earth is 1050.4
yojanas. Hence its radius Re = 1050.4

2 = 525.2 yojanas. Also the distance of the Moon is given
to be 34380 yojanas. Therefore the horizontal parallax of the Moon is

Re

d
=

525.2
34380

(in radians)

=
525.2
34380

× 180
π

×60 ≈ 790.6
15

(in minutes).
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being its centre. If the Sun were a point source of light, then the tip of the shadow
of the śaṅku would fall at S′ and OS′ would be the length of the shadow.

However, the rays that emerge from P and graze the tip of the śaṅku would fall at
P′. All the rays that emerge from the section SP would be mapped to S′P′. Similarly
the rays that emerge from SQ would be mapped to S′Q′. Since the rays emerging
from the bottommost portion of the Sun Q, grazing the śaṅku, fall at Q′, one would
tend to think that OQ′ should be the length of the shadow. Observationally, only OP′

is the length of the shadow as it is only this region which does not receive any light
from any part of the Sun, whereas the region P′Q′ would be partially illuminated.
Hence, the apparent length of the shadow is determined by the rays emerging from
the upper end of the Sun. If the Sun were a point object and located at S, then OS′

O

A

observer’s horizon

of the Sun’s disc
ray from the upper edge of 

Q’ S’ P’

P

S

Q

cross section of 
the Sun’s disc

śaṅku

Fig. 3.5b Sectional view of the Sun and the shadow of the śaṅku generated by it.

would have been length of the shadow and S′ÂO would be the latitude of the place,
after taking into account the correction due to parallax. Since the Sun is an extended
object, and the length of the shadow observed is OP′, it is easily seen that the angle
by which the observed latitude must be corrected is P′ÂS′. This angle is the same as
PÂS, which is the semi-diameter of the Sun. Hence the correct latitude of a place is
obtained by adding the semi-diameter of the Sun to the observed value.

In Yukti-d̄ıpikā the formula for the correction due to parallax is explained. The
physical reasoning offered is quite interesting and novel. The explanation for the
correction due to the finite diameter of the Sun is also unusual, though it is convinc-
ing nevertheless.
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Formula for the correction due to parallaxBUa;v.ya;a;sa;a;D a ;
a;h dx ;giya;a;ya;Ma ;
a:�a:$ya;a;ya;Ma l+.}ba;ya;ea:ja;na;m,a Á;
a;k+:ya;t,a ta;
a;d;�;dx ;giya;a;ya;Ma .~va;k+:[ya;a;ya;Ma Ba;vea;t,a ta;d;a Á ÁI+.tTMa :�Ea:=+a;a;Za;k+:a;t,a k+:�pyMa dx ;giya;a;l+.}ba;na;ya;ea:ja;na;m,a Áma;Dya;ya;ea:ja;na;k+:NeRa;na ;
a:�a:$ya;a;tua;�ya;aH k+:l+.a ya;
a;d Á ÁI+.�;ya;ea:ja;na;l+.}bea;na ;
a;k+:ya;tya;~ta;tk+:l+.a;~ta;d;a Á.~å.Pu +.f;Bua;��+.a;a h;ta;a;~ta;a;(ãÉa ma;Dya;Bua;��+.a;a ;
a;va;Ba;a;Æa:ja;ta;aH Á Á.~å.Pu +.f;l+.}ba;na;�a;l+.�a;aH .~yuaH I+.�a;ta :�Ea:=+a;a;Za;k+.�a;ya;a;t,a Áh;a:=+ea gua;Na;(ãÉa ;
a:�a:$yEa;k+:a ta;ya;ea:=+a;dùÅ;a;
a;dõ ;t�a;a;ya;ya;eaH Á Áma;Dya;ya;ea:ja;na;k+:NRa;(ãÉa ma;Dya;Bua;�a;�+:(ãÉa h;a:=+k+:Ea ÁA;nya;ya;ea;gRua;Na;k+:~tva;a;dùÅ;ae ta;;�ÂåÅU +v.ya;a;sa;a;DRa;ya;ea:ja;na;m,a Á Água;Na;k+:a:=+h;tea h;a:=e h;a:= O;;va;a:�a na;ea gua;NaH Áma;Dya;ya;ea:ja;na;k+:NRa.Èåî ÁÁ*+;ma;Dya;Bua;�e +:~ta;ta;ea h;taH Á Á;�a;na;ya;tEa;=e +va l+.}ba;a;T a BUa;v.ya;a;sa;a;DRa;~ya ya;ea:ja;nEaH Á.sa O;;va h;a:=+kH Ka;~va:=e +Svea;ke +:Sua;Æa;ma;ta;ea 17 ma;taH Á Á.~å.Pu +.f;Bua;�a;�+:gRua;Na;ea ya;a;Bya;Ma dx ;giya;a;taH .~å.Pu +.f;l+.}ba;na;m,a Á18

When the dr. gjyā
19 is [equal to] the trijyā, then the parallax in latitude (the lamba/lambana)

in yojanas is equal to the semi-diameter of the Earth. Then for a desired dr. gjyā what will
be the parallax in latitude in its own orbit? Thus the parallax in latitude in yojanas has to
be obtained by using the rule of three.

If the madhyayojanakarn. a is equated to the minutes of the trijyā (3438), then what
will be the desired parallax in latitude in minutes corresponding to the [above] parallax in
yojanas. Those [minutes] are multiplied by the true daily motion and divided by the mean
daily motion. Thus we get the true value of the parallax in latitude, measured in minutes, by
[applying] the rule of three, three times [successively].

The trijyā alone is the divisor (hāra) and multiplier (gun. a), respectively, in the first and
the second rule of three. The madhyayojana-karn.a and the mean daily motion are the di-
visors in the others [second and the third rules of three]. The radius of the Earth in yojanas
is the multiplier in the first [rule of three].

If the divisor is multiplied by the multiplier, then only the divisor [remains] and not the
multiplier. Therefore, the product of the madhyayojana-karn.a and the mean daily motion
is divided by the fixed radius in yojanas of the Earth. That alone becomes the divisor [in
obtaining the parallax in latitude], whose value is known to be equal to 51570. The true
daily motion is the multiplier for them (i.e. the second and third rule of three). From these
and the dr. gjyā, the true value of the parallax in latitude can be obtained.

The three rules of proportion given in the verses above may be written down as:

trijyā : Re :: is. t.adr. gjyā : p0 (in yojanas)?
d : R (= 3438) :: p0 (in yojanas) : p0 (in minutes) ?
Dms : p0 (in minutes) :: Dts : p (in minutes) ?

17 This corresponds to the numeral 51570. The reading in both the printed editions isKa;~va:=+a;dùÅò ;ae ;ke +:Sua;Æa;ma;ta;ea, corresponding to 51770, which seems to be wrong. Refer also to footnote
13 above.
18 {TS 1977}, pp. 191–2.
19 The term dr. gjyā or is. t.adr. gjyā refers to the Rsine of the apparent zenith distance (Rsinz′).
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Combining these three we have

p =

(
Re ×

Rsinz′

R

)(
R
d

)(
Dts

Dms

)

= Dts

[
Re

d ×Dms

]
Rsin z′. (3.30)

It is given that
d ×Dms

Re
= 51570.20 (3.31)

Hence the true parallax is given by

p =
Dts

51570
×Rsinz′, (3.32)

which is the same as (3.29).

Rationale behind the correction for the parallax;Ga;na;BUa;ma;Dya;pa;a:(õ;Ra;~TMa .sa;vRa:�a ;Æa;[a;�a;ta:jMa Ba;vea;t,a Á Áo+.�a;ta:$ya;a ta;taH Za;ñÍö�ÅÅ*:u H ta;;�ÂåÅu ;ja;a ma;h;t�a;a :pra;Ba;a ÁBUa;pxa;�+ga;a;Æa;ma;naH Za;ñÍö�ÅÅ*:+.eaH C+.a;ya;a .~ya;a;�+:�////�a;}ba;ta;a ta;taH Á ÁBUa;v.ya;a;sa;a;DRa;
a;va;h� ;a;na;eaY;sa;Ea Za;ñÍö�ÅÅ*:u +.BRUa;pxa;�+ga;eaY;nya;taH 21 ÁC+.a;ya;a ..a va;DRa;tea ;
a:�a:$ya;a;k+:NeRa k+:ea;�a;f;Bua:ja;tva;taH Á Áta;�+:}ba;na;va;Za;a;t,a ta;~ya;aH ya;d;a;�a;Da;k�+.aM Ba;vea;
a;d;h Ádx ;�///////////�a;#sa:;dÄâ ;a;ya;a;~tya:jea;t,a ta:�ua;.C+.a;ya;a yea;na Ba;ga;ea;l+.ga;a Á Áta;a:�áâ+;�a:$ya;a;va;gRa;
a;va:(ìÉÅ;e +Sa;mUa;lM Za;ñÍö�ÅÅ*:u +.(ãÉa k+:ea;�a;f;k+:a Á 22

Everywhere [in all the computations], the plane which lies to either side of the centre of the
solid Earth23 is taken to be the horizon. The cosine of the zenith distance is the śaṅku. The
Rsine of it is the large shadow (mahat̄ı prabhā).

The shadow of the śaṅku located on the surface of the Earth will be an elongated one.
Hence [the length of] this śaṅku which is reduced by the measure of the radius of the Earth
[becomes] the same as the one on the Earth’s surface. Otherwise, [were this correction not
to be done, then] there would be an increase in the shadow [as calculated]. The hypotenuse
taken to be the trijyā is obtained from the kot.i and bhujā. The increase in it (the shadow)
that occurs here due to the lambana has to be subtracted from the observed value of the
shadow. Thus the shadow corresponding to the bhagola [the celestial sphere with the centre
of the Earth as its centre] is obtained. The square root of the square of it (shadow) subtracted
from the square of the trijyā is the śaṅku, and it is the cosine of the latitude.

20 This is because the horizontal parallax in minutes is Re
d ×R = 1

15 ×Dms, where R = 3438.
21 The reading in both the printed editions is: Za;ñÍö�ÅÅ*:u +.BRUa;pxa;�+ta;eaY;nya;taH Á
22 {TS 1977}, p. 192.
23 That is, the one passing through the centre of the Earth and parallel to the observer’s horizon,
which is the tangential plane at the location of the observer.
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Fig. 3.6 The shadow of the two śaṅkus, one imagined to be from the centre to the surface of the
Earth and the other at its centre.

We explain the content of the above verses with the help of Fig. 3.6. Here, O
refers to the observer. OB is the actual śaṅku and OF will be the observed shadow.
z′ is the observed latitude and will be equal to φ , on the equinoctial day. CB and
CA represent two hypothetical śaṅkus located at the centre of the Earth. Since all
the measurements are made with respect to the centre of the Earth C as the standard
reference point, the observed value of the latitude of the place must also be reduced
to this reference point. The shadows cast by the two hypothetical śaṅkus are CE
and CD respectively. The angle CÂD on an equinoctial day gives the measure of the
true latitude of the place. This angle is obtained by subtracting the parallax from the
observed zenith distance. Thus the exact latitude of the place is φ = z = z′− p.

Correction due to semi-diameter;
a;ba;}ba;ea;DvRa;nea;}ya;aH :pra;sxa;ta;aH .=+Zma;yaH kÒ +:Za;ya;�////�a;nta 24 Ba;a;m,a Á Á;
a;ba;}ba;v.ya;a;sa;a;DRa;�a;na;Spa;�a;Za;ñÍö�ÅÅ*:u +.Ka;Nqe +.na Ba;a;~va;taH Áva;DRa;ya;�////�a;nta ..a d;eaHKa;Nq+.aH Za;ñÍö�ÅÅ*:Mu BUa;pxa;�+va;�a;tRa;na;m,a Á Á;
a;ba;}ba;~ya ;Ga;na;ma;Dya;a;nta;ea Ba;vea;.C+.ñÍö�ÅÅ*:u +.yRa;ta;eaY;pa:=H Á:P+.l+.ya;ea:=+nta:=M Za;ñÍö�ÅÅ*:u +..C+.a;ya;ya;ea;~ta;dx ;NMa ;Da;na;m,a Á Á:pra;tya;[a;Æa;sa:;dÄâ ;ya;ea;
a;bRa;}ba;Ga;na;ma;Dya;ga;ta;Ea ya;taH Á Á 25

24 The reading in both the printed editions is: kÒ +:Za;ya;�////�a;nta Á We feel that as this term does not convey

any meaning; the correct reading should perhaps be kx +:Za;ya;�////�a;nta Á
25 {TS 1977}, p. 192–3.
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The rays that emerge from the upper part of the circumference [of the Sun] reduce the
shadow (make it shorter). The rays emerging from the centre of the Sun increase the length
of the śaṅku on the surface of the Earth by a measure determined by the semi-diameter
of the Sun. This is because the śaṅku obtained by the rays emerging from the centre is
different [from the actual śaṅku].

The difference in the śaṅku/shadow should be subtracted/added to obtain the correct value
[of the śaṅku/shadow] since only those values corresponding to the centre of the disc
(bimbaghana-madhya) [are to be considered].

O

A

observer’s horizon

C    D

B

ray from the upper edge of 
of the Sun’s disc

ray from the centre

P

S

Fig. 3.7 The two śaṅkus, OA (actual) and OB (imaginary), drawn to explain the effect of an
extended source of light on the shadow generated by the śaṅku.

If the Sun were a point object, then the length of the śaṅku would be OB, corre-
sponding to the observed length of the shadow, OC (see Fig. 3.7). Since it is not so,
the effect of the finite size of the Sun can be viewed as if the rays emerging from the
centre of the Sun have increased the length of the śaṅku by a measure AB, which is
determined by the semi-diameter of the Sun.

The value of the solar parallax given in Tantrasaṅgraha is far too large compared
with the actual value. This is because Nı̄lakan.t.ha too has adopted the traditional
viewpoint that the maximum value of parallax is one-fifteenth of the daily motion
of the Sun. However, apart from this erroneous estimate, it is indeed remarkable
that the problem has been correctly formulated and that the explanations given are
quite sound and convincing. Also, the explanations provided by the above verses
in Yukti-d̄ıpikā are quite novel and give an idea of the methodology of the Kerala
school of astronomers.



152 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadow3.9 .sa;ma;ma;Nq+.lM o+.n}å.a;Nq+.lM A;g{a;a ..a
3.9 The prime vertical, the celestial equator and the amplitude at

rising:pUa;va;Ra;pa:=+a;ya;ta;a :=e +Ka;a :pra;ea;.ya;tea .sa;ma;ma;Nq+.l+.m,a Á:=e +Ka;a :pra;a;.ya;pa:=+a .sa;a;Dya;a ;
a;va;Sua;va;;�ÂåÅ +a;g{a;ga;a ta;Ta;a Á Á 12 Á Áo+.n}å.a;Nq+.lM ..a ;
a;va;Sua;va;n}å.a;Nq+.lM .sa;a;Æa;Ba;D�a;a;ya;tea ÁI+.�;.C+.a;ya;a;g{a;ta;dÒ e +Ka;a;
a;va;va:=M tva;g{a;sMa;�a::℄a;ta;m,a Á Á 13 Á Á
pūrvāparāyatā rekhā procyate samaman. d. alam |
rekhā prācyaparā sādhyā vis.uvadbhāgragā tathā ||12 ||
unman. d. alam. ca vis.uvanman. d. alam. sābhidh̄ıyate |
is. t.acchāyāgratadrekhāvivaram. tvagrasam. jñitam ||13 ||
The line stretching from east to west is called the samaman. d. ala. Another line along the
east–west direction has to be drawn, which will be same as the path traced by the tip of the
shadow on the equinoctial day. This line is called the unman. d. ala or vis.uvanman. d. ala.
The [perpendicular] distance of separation between the desired tip of the shadow [at any
instant] and this line is called the agrā.

The term samaman. d. ala refers to the great circle passing through the zenith and
the east and the west points on the horizon. In modern spherical astronomy it is
referred to as the prime vertical. Here, samaman. d. ala refers to the east–west line.
The terms unman. d. ala and vis.uvanman. d. ala are generally used to refer to the 6
o’clock circle and the celestial equator respectively. However, in the above verses,
Nı̄lakan. t.ha has employed them synonymously to refer to the path traced by the tip
of the shadow on an equinoctial day, which is a line parallel to the east–west line.
We explain this with the help of Fig. 3.8.
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Fig. 3.8 Schematic representation of the saṅku, the unman. d. ala and the agrā.
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In this figure, the line UV which runs parallel to the east–west line is referred
as the unman. d. ala or vis.uvanman. d. ala. This line is the locus traced by the shadow
of the tip of the śaṅku on the equinoctial day. The distance of separation—along
the north–south direction—of the tip of the shadow from the unman. d. ala is defined
as the agrā YR in the figure. These are explained in Yukti-d̄ıpikā in the following
verses. It is also mentioned that the agrā and other quantities defined here will be
used in the chāyā-bhraman. a-karma (the process of movement of shadows), which
will be dealt with later.dÒ +�u H :pUa;va;Ra;pa:=+a:=e +Ka;a :pra;ea;.ya;tea .sa;ma;ma;Nq+.l+.m,a Áta;~ya;a;~tua ;
a;va;Sua;va;;�ÂåÅ +a;g{ea :=e +Ka;a :pUa;va;Ra;pa:=+a;pa:=+a Á Áo+.n}å.a;Nq+.lM ..a ;
a;va;Sua;va;n}å.a;Nq+.lM .sa;a;Æa;Ba;D�a;a;ya;tea ÁI+.�;.C+.a;ya;a;g{a;
a;va;Sua;va;dÒ e +Ka;a;Bea;d;eaY;g{a;sMa;�a::℄a;taH ÁO;;ta:�áâ+;�a;ya;ea;pa;ya;ea;ga;~tua C+.a;ya;a;Bra;ma;Na;k+:mRa;a;Na Á Á 26

The east–west line of the observer is stated to be the samaman. d. ala. Another east–
west line, which is [drawn] at a distance of separation equal to the equinoctial shadow
(vis.uvadbhā), is called the unman. d. ala or the vis.uvanman. d. ala. The distance of separa-
tion between the tip of the shadow and the vis.uvanman. d. ala is known as the agrā. These
three quantities will be used in the study of the motion of the [tip of] the shadow.3.10 .=+a;Z�a;a;na;Ma l+.ñÍö�ÅÅ*:+.ea;d;ya;pra;a;Na;aH .~va;de ;Za;ea;d;ya;pra;a;Na;a;(ãÉa

3.10 The rising time of rāśis at Laṅkā and one’s own place.=+a;Zya;nta;a;pa;kÒ +:mEaH k+:ea;�a;fH :pra;a;Na;aH :pra;a;gva;�a:=+a;sa;vaH Á:pra;a;Na;a;n,a l+.ñÍö�ÅÅ*:+.ea;d;ya;a;n,a :pra;a;hu H .~va;ea;d;ya;a;(ãÉa:=+sMa;~kx +:ta;aH Á Á 14 Á Á..a:=+ma;a;dùÅ;a;ntya;ya;eaH Za;ea;DyMa :pa;d;ya;ea;ya;eRa:$ya;ma;nya;ya;eaH ÁO;;vMa kx +:ta;a;~tua ;
a;va;�a:(ìÉÅ;+�;a .=+a;Z�a;a;na;a;mua;d;ya;a;sa;vaH Á Á 15 Á ÁA;ea:ja;ya;ea;~tua kÒ +:mea;NEa;va yua;gma;ya;ea:�+:tkÒ +:mea;Na ..a Á
rāśyantāpakramaih. kot.ih. prān. āh. prāgvaccarāsavah. |
prān. ān laṅkodayān prāhuh. svodayāścarasam. skr. tāh. ||14 ||
caramādyantyayoh. śodhyam. padayoryojyamanyayoh. |
evam. kr. tāstu víslis. t.ā rāś̄ınāmudayāsavah. ||15 ||
ojayostu kramen. aiva yugmayorutkramen. a ca |
From the [Rsines of the] declinations (apakrama27) at the end of the rāśis, [their]
Rcosines, the corresponding right ascensions (prān. as) and the ascensional differences [are
obtained] as earlier. These prān. as [computed from the difference in the right ascensions]
are said to be the durations of risings of the rāśis at Laṅkā. These [durations] corrected
for the ascensional difference (cara) give the durations of risings at one’s own place.

In the first and the last quadrants [i.e. for the first three and last three rāśis], the ascensional
difference has to be subtracted. In the other quadrants, it has to be added. The durations
thus obtained after corrections are the actual durations of risings of the rāśis [at one’s own

26 {TS 1977}, p. 193.
27 The word apakrama/krānti generally refers to declination. It is also frequently used to refer
to the Rsine of declination as in Chapter 2, verse 3.
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place] and [they] are taken in order, in the odd quadrants and in the reverse order in the even
quadrants.

The problem of finding the time required for the rising of different raśis for an
observer on the equator amounts essentially to finding the right ascensions (R.A.s)
corresponding to the end points of the first three rāśis. Then by making use of sym-
metry, the rising time of other rāśis can be easily determined. In Chapter 2, verses
23–27, the expression for right ascension (α) has already been given. An alternative
expression of the same is given in the commentary Laghu-vivr. ti as follows:ya;du ;�M :pra;a;k, , ‘;
a;va;Sua;va;;�ÂåÅ +a;h;ta;a kÒ +:a;�////�a;ntaH’ I+.tya;a;
a;d, ta;taH .sa;a;ya;na;~å.Pu +.f;a;k :pra;Ta;ma;
a;dõ ;t�a;a;ya;txa;t�a;a;ya-.=+a;Zya;nta;gRa;tMa :pa;�a:=+k+:�pya ta;�+ea:$ya; a ..a;tua;
a;v a;Za;�a;ta;Ba;a;ga:$ya;ya;a ;�a;na;h;tya ;
a:�a:$ya;ya;a ;
a;va;Ba:$yal+.b.DMa I+.�;a;pa;kÒ +:mMa :pxa;Ta;gva;g�a;Ra;kx +:tya ;
a:�a:$ya;a;va;gRa;ta;ea ;
a;va;Za;ea;Dya ta;tk+:ea;�a;f;ma;
a;pa ..a;a;na;yea;t,a Á A;Tad;ea:$yeRa;�;a;pa;kÒ +:ma;ya;eaH va;ga;Ra;nta:=+mUa;lM I+.�;k+:ea;�a;f:$ya;a ..a .~ya;a;t,a Á ta;taH ta;Ma k+:ea;�a;f:$ya;Ma ;
a:�a:$ya;ya;a;�a;na;h;tya I+.�;dùÅ;au :$ya;ya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.Da;~ya ya;�a;a;pMa ta;de ;va mea;Sa;a;d� ;a;na;Ma .=+a;Z�a;a;na;Ma kÒ +:mea;Nal+.ñÍö�ÅÅ*:+.ea;d;ya;pra;a;Na;aH .~yuaH Á

Obtaining the sāyan. a longitudes of the Sun corresponding to the end points of the first,
second and the third rāśis, as explained in the verses beginning with ‘vis.uvadbhāhatā
krāntih. ’, multiply their Rsines by the jyā corresponding to 24◦ and divide by the trijyā
to obtain the is. t.āpakrama (Rsinδ ). The kot.i of this [known as the is. t.adyujyā = Rcosδ ]
should be obtained by subtracting its square from the square of the trijyā [and taking the
square root of the difference]. The is. t.akot.ijyā is the square root of the difference between
the squares of dorjyā (Rsinλ ) and is. t.āpakrama. This is. t.akot.ijyā should be multiplied
by the trijyā and divided by the is. t.adyujyā. The arc corresponding to the result obtained
will be the rising time of the Mes. ādi rāśis (Aries and other signs), in order, for an observer
at Laṅkā.

This essentially gives the right ascension α (R.A.) as:

Rsinα =

√
R2 sin2 λ −R2 sin2 δ

Rcosδ
R. (3.33)

Derivation of the alternative expression for right ascension

In Fig. 3.9, S represents the Sun, O the centre of the celestial sphere and P the
celestial north pole. ASB refers to the ecliptic and AN ′C the equator. Let λ (the arc
AS) be the longitude of the Sun and δ (SN′) its declination. PSN′ is the vertical
passing through the Sun. The angle SÂN′ = ε is the obliquity of the ecliptic, and
SÔN′ = δ the declination of the Sun. The arc AN′ is the right ascension, α . Draw SN
perpendicular to ON′. Let NM and N′M′ be perpendiculars to OA. Then, SM is also
perpendicular to OA. Let R be the radius of the celestial sphere. Now, considering
the triangle SON, we have

SN = OS sinδ = Rsinδ ,

and ON = OS cosδ = Rcosδ . (3.34)

From the triangle SOM,
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Fig. 3.9 Obtaining the right ascension α in terms of the declination δ and the longitude λ .

SM = OS sinλ = Rsinλ . (3.35)

In the triangle SMN,

MN =
√

SM2 − SN2. (3.36a)

Using (3.34) and (3.35) in the above,

MN = R
√

sin2 λ − sin2 δ . (3.36b)

We are actually interested in arriving at an expression for the right ascension of
the Sun which is the arc corresponding to M′N′, which is AN′. Since the triangles
OM′N′ and OMN are similar, we have

M′N′

ON′ =
MN
ON

or M′N′ = MN × ON′

ON

= MN × R
Rcosδ

. (3.37a)

In fact, M′N′ = RsinAN′, where AN ′ is the right ascension (α) of the Sun. Using
this and (3.37a), the above relation reduces to

Rsinα = R
√

sin2 λ − sin2 δ × R
Rcosδ

. (3.37b)

Thus we have arrived at an expression for right ascension of the Sun in terms of its
longitude and declination as given above in Laghu-vivr. ti. Usually, the longitude of
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the Sun is found from the ahargan. a. Once the longitude is known, its declination
can be found using the relation

sinδ = sinε sinλ , (3.38)

where ε refers to the obliquity of the ecliptic. Substituting (3.38) in (3.37b) we have

sinα =
cosε sinλ

cosδ
. (3.39)

Duration of risings of rāśis at the equator

Let δ1,δ2 and δ3 be the declinations of the Sun, when λ = 30◦, 60◦ and 90◦ re-
spectively. The corresponding right ascensions α1,α2 and α3 can be obtained using
(3.39). This expression, which gives the right ascension in angular measure, may
be conveniently expressed in other measures too. The relation between the different
measures is given by

90◦ = 6 hours = 15 ghat.ikās = 5400 prān. as. (3.40)

Since the right ascensions are known at the end of each of the first three rāśis, the
durations of rising for the first three rāśis, T1,T2 and T3, for an observer on the
equator, are obtained using the relations

T1 = α1; T2 = α2 −α1; T3 = α3 −α2. (3.41)

The symmetry of the problem clearly suggests that it would be enough to compute
the rising time of the first three rāśis to know the rising time of other rāśis too. Thus
the rising times of other sets of three rāśis have necessarily to be equal to those of
the first set in either the direct order or in reversed order. If T4,T5 and T6 represent
the rising times of the second set of three rāśis, then they are given by,

T4 = T3; T5 = T2; T6 = T1. (3.42)

The relation between the rising times of the second set of 6 rāśis and those of the
first set is given by

T6+i = Ti; (i = 1,2, . . . ,6). (3.43)

Duration of risings of rāśis at one’s own place

The rising times of rāśis at one’s own place (ti), having non-zero latitude, differ
from the rising times at the equator (Ti). The former can be obtained from the latter
using the relation

ti = Ti −∆βi (i = 1,2,3), (3.44)
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where ∆βi are the ‘ascensional differences’ (differences between caraprān. as). This
can be understood with the help of Fig. 3.10a. Here Z, K and P represent the zenith,
the pole of the ecliptic and the north celestial pole respectively. S1,S2 and S3 are the
positions of the Sun on the ecliptic, when its longitude is equal to 30, 60 and 90
degrees (the ends of the first three raśis). S′1,S

′
2 and S′3 are the points of intersection

of the horizon and the diurnal circles of the Sun.
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Fig. 3.10a Duration of rising of the first three rāśis for observers with non-zero latitude.

When the Sun is at the end points of the first, second and the third rāśis respec-
tively, the great circles passing through PS′i meet the celestial equator at S′′i . Then
∆α1 = ES′′1 , ∆α2 = ES′′2 and ∆α3 = ES′′3 are the caraprān. as corresponding to the
first three rāśis. ∆βi are their differences.

∆β1 = ∆α1 (3.45)

∆β2 = ∆α2 −∆α1 (3.46)

∆β3 = ∆α3 −∆α2. (3.47)
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Fig. 3.10b Duration of rising of the three rāśis in the second set.

Rationale behind the difference in the duration of risings of rāśis at the
equator and other locations

Yukti-d̄ıpikā presents a detailed discussion as to why the duration of the risings of
the rāśis for observers situated on the equator and elsewhere differ. We reproduce
excerpts from it along with a free translation.

Definition of tiryagvr. ttaya;a;}ya;a;ya;na;a;nta28 ;Æa;[a;�a;ta:ja;sa;}å.pa;a;ta;a;kÒ +:a;nta;nea;Æa;ma;k+:m,a Á;Ga;f� ;a;vxa:�a;�a;ta:=+(ãÉ�a;a;nMa ta;d, ;Drua;va;dõ ;ya;sa;ñÍç ÅÅ*:+.ta;m,a Á Á;�a;ta;yRa;gvxa:�Ma tua ta;t,a ta;~ya ;Æa;[a;�a;ta:jea;na tua .sMa;yua;ta;Ea Á 29.sa;Ea;}ya;a;ya;na;a;dùÅ;a;Ba;a;dùÅ;aM ;ZaH yua;ga;pa;t,a ta;�ë +yMa .~å.pxa;Zea;t,a Á Á 30

The circle which runs perpendicular to the equator (ghat.ı̄vr. tta) and passes through
its poles, and which also passes through the point of intersection of the midpoint of
yāmyāyana and the horizon, is the tiryagvr. tta (this is actually the 6 o’clock circle). The

28 A;nta;Za;b.dH A:�a ma;Dya;va;a;.�a;a;�a;ta Ba;a;�a;ta Á (The word ‘anta’ here seems to have been employed in
the sense of ‘madhya’.)
29 ;
a;va;dùÅ;a;ma;a;na;Æa;ma;�a;ta ya;ea:ja;n�a;a;ya;m,a Á
30 {TS 1977}, p. 194.
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beginning point of the first rāśi in the saumyāyana would also coincide with the point of
intersection of that (6 o’clock circle) and the horizon at the same instant.

Laṅkodayāsava and svodayāsava:pra;va;h;prea:=+Na;a;t,a .=+a;ZeaH ;�a;na;tyaH 31 :pra;tya:ñÍíéÁÁ*+;u ;KMa ya;taH Á.=+a;Zea:=+ntya;eMa;Za;k+:ea .nEa;va yua;ga;pa;t,a ta;�ë +yMa .~å.pxa;Zea;t,a Á Á;�a;ta;yRa;gvxa:�a;~ya .sMa;~å.pa;Za;Ra;t,a :pra;a;gya;taH ;Æa;[a;�a;ta:jMa .~å.pxa;Zea;t,a Á;Æa;[a;�a;ta:ja;~ya na;ta;tvea;na ;�a;ta;yRa;gvxa:�a;a;du ;d:ñÍíéÁÁ*+;u ;Ka;m,a Á Á;�a;ta;yRa;gvxa:�ea tua Ba;a;dùÅ;a;ntea .~å.pa;ZRa;k+:a;l+.ea;tTa;ma;nta:=+m,a Ál+.ñÍö�ÅÅ*:+.ea;d;ya;a;sa;va;~tea .~yuaH ;Æa;[a;�a;ta:jea .~va;ea;d;ya;a;sa;vaH Á Á;�a;ta;yRa;gvxa:�a;~Ta;sMa;~å.pa;Za;Ra;t,a :pra;a;gea;va ;Æa;[a;�a;ta:ja;~å.pxa;ZaH ÁBa;a;nta;~ya ta;�ë +ya;~å.pa;Za;Ra;nta:=M .~va;.a:=+Ka;Nq+.taH Á ÁA;ta;eaY;ya;na;a;dùÅ;a:=+a;Zea;~tua yeaY;m�a;a l+.ñÍö�ÅÅ*:+.ea;d;ya;a;sa;vaH Áh� ;a;na;aH .~va;.a:=+Ka;Nqe +.na .tea .~va;de ;Za;ea;d;ya;a;sa;vaH Á Á 32

Since the rāśis have continuous westward motion due to the pravaha wind, the end point
of the [first] rāśi will not intersect the two circles [namely, the horizon and the 6 o’clock
circle]33 at the same time.

[Further,] since the horizon is [more] inclined towards the north than the tiryagvr. tta, [the
end point of the rāśi] will intersect the horizon before it intersects the tiryagvr. tta. The
time interval between [two successive] end points [of the rāśis] intersecting the 6 o’clock
circle is the duration of rising at Laṅkā, called the Laṅkodayāsava, and the time interval
corresponding to the intersections of the end points [of the rāśis] with the horizon is the
duration of rising at one’s own place, called the Svodayāsava.

The difference between the two time intervals is due to the cara-khan. d. a (ascensional dif-
ference). Hence the carakhan. d.a of the first rāśi subtracted from its duration of rising at
Laṅka gives its duration of rising at the observer’s location.

Application of cara.sa;Ea;}ya;ya;a;}ya;a;ya;na;ga;ta:=+a;Z�a;a;na;Ma v.ya;tya;ya;a;t,a ;�//////�a;~Ta;teaH Á..a:=+Ka;NqE H .~va;kE H Zua;�a:;dÄâ ;[ea;pa;Ea k+:a;ya;ERa ;
a;va;pa;yRa;ya;a;t,a Á Á;�a;ta;yRa;gvxa:�a;Æa;[a;�a;ta:ja;ya;eaH Ba;a;nta;~å.pa;Za;Ra;nta:=M ..a:=+m,a Áya;d;a ta:êêÁ*.a�a;a dùÅ;au ;vxa:�a;~Ta;a ;Ga;f� ;a;vxa:�a;Æa;ma;ta;a Ba;vea;t,a Á ÁdùÅ;au :$ya;a ta;d;a ..a:=;$ya;a tua dùÅ;au ;vxa:�a;pra;Æa;ma;ta;a Ba;vea;t,a Á 34

31 ;�a;na;tya;m,a I+.�a;ta :pa;a;Fe +.na Ba;
a;va;ta;v.ya;m,a I+.�a;ta Ba;a;�a;ta Á Bra;ma;Na;m,a I+.�a;ta tua A;Dya;a;h;a;yRa;m,a Á
32 {TS 1977}, p. 194.
33 For an equatorial observer, the horizon and the 6 o’clock circle coincide with each other as the
north celestial pole P coincides with the north point on the horizon. However, for a non-equatorial
observer, P lies above the horizon and the two circles are inclined at an angle equal to the latitude
of the observer φ .
34 {TS 1977}, pp. 194–5.
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Since the rāśis in the northern and the southern hemispheres are positioned differently (viz.,
have declinations with opposite signs) the carakhan. d. as have to be applied inversely, that
is, they have to be subtracted in the north and added in the south.

The time interval between the end point [of the rāśi] intersecting the horizon and the
6 o’clock circle is the ascensional difference, the cara. The Rsine of it, measured in terms
of the dimensions of the diurnal circle, when converted in terms of the dimensions of the
equator [by dividing it by Rcosine of the declination] becomes the carajyā.

Rationale behind the application of the cara.sa;Ea;}ya;a;ya;nea tua .sa;Ea;}ya;a;g{Ma .=+a;Z�a;a;na;Ma ;Æa;[a;�a;ta:jea .~va;ke Á Á;�a;na:=+[a;ea;d;ya;taH :pra;a;gea;va;ea;de ;�a;ta .~va;.a:=+a;sua;Æa;BaH Áo+.n}å.a;Nq+.l+.Æa;[a;�a;ta:ja;ya;eaH ta:�a ta;a;va;�///////�a;n}å.a;teaY;nta:=e Á Á:pra;va;h;prea:=+Na;a;t,a :pra;a;.ya;Ma o+.�ç Å +.C+.tkÒ +:a;�////�a;nta;ma;Nq+.l+.m,a ÁA;a;Da;~tya;vxa:�a;sa;}å.pa;a;tMa :pra;a;gea;va ku +.�+:tea ta;taH Á Á:pa;(ãÉa;a;de ;va;ea;DvRa;vxa:�ea;na ..a:=+pra;a;Na;a ya;d;nta:=+m,a Áya;a;}ya;a;ya;nea tua ya;a;}ya;a;g{Ma .=+a;Z�a;a;na;Ma .~vEa;(ãÉa:=+a;sua;Æa;BaH Á Á;�a;na:=+[a;ea;d;ya;taH :pa;(ãÉa;a;t,a o+.de ;�a;ta ;Æa;[a;�a;ta:jea .~va;ke ÁA;ta;ea l+.ñÍö�ÅÅ*:+.ea;d;ya;a;sua;ByaH tya:$ya;ntea .~va;.a:=+a;sa;vaH Á Á.sa;Ea;}yeaY;ya;neaY;nya;Ta;a ya;a;}yea .~va;ea;d;ya;pra;a;Na;Æa;sa:;dÄâ ;yea Áta;ta A;a;dùÅ;a;nta;pa;d;ya;eaH ;�a;na:=+[a;ea;d;ya;ma;a;na;taH Á ÁZa;ea;Da;nMa .~va;.a:=+a;sUa;na;Ma :pa;d;ya;ea;mRa;Dya;ya;ea;yRua;�a;taH Á 35

In the saumyāyana [when the Sun has a northerly motion], the northern tips of the rāśis
rise earlier at the observer’s horizon than at the horizon for an equatorial observer. This
difference in the time of rising measured between the observer’s horizon and the 6 o’clock
circle is given by the ascensional difference.

By the impulse provided by the pravaha wind, the ecliptic which is set into motion, first
comes into contact with the circle which is below [that is, the horizon]. Thereafter it comes
into contact with the circle which is above [that is, the equatorial horizon], and the time
interval between them is the ascensional difference.

In the yāmyāyana [when the Sun has southerly motion], the southern tips of the rāśis
rise later at the observer’s horizon than at the horizon for an equatorial observer, with the
difference in times being equal to the ascensional difference.

Hence, for obtaining the duration of rising [of the rāśis] at one’s own place, the ascensional
difference is subtracted from the duration of rising at Laṅkā for rāśis in the saumyāyana
and otherwise (is added) for those in the yāmyāyana. Thus it is seen that, [for the rāśis]
in the first and the last quadrants, the ascensional difference has to be subtracted from the
duration of rising at the equator, whereas in the second and the third it has to be added.

Let αi be the right ascension at the end of the i-th rāśi. Then the time of rising of
the i-th rāśi at the equator would be

Ti = (αi −αi−1) (i = 1,2, . . . ,12). (3.48)

35 {TS 1977}, p. 196.
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The end point of the i-th rāśi intersects the local horizon ∆αi prān. as earlier than
the instant at which it intersects the 6 o’clock circle (the equatorial horizon), where

∆αi = sin−1(tanφ tanδi) (i = 1,2, . . . ,12), (3.49)

δi being the declination corresponding to the end point of the ith rāśi. Since ∆αi is
positive for i = 1, . . . ,6, and negative when i = 7, . . . ,12, it may be noted that the
sign is incorporated in the above expression for ∆αi.

Thus, if ti is the duration of the rising of the i-th rāśi at the desired location, then
it is given by

ti = Ti −∆βi, (3.50)

where ∆βi are given by (3.45) to (3.47)
Taking the sign also into account, δi keeps increasing in the first and the fourth

quadrants, whereas it keeps decreasing in the second and third quadrants. Hence ∆βi

is positive when i = 1,2,3,10,11,12, and negative when i = 4,5, . . . ,9. Hence the
ascensional difference [magnitude of ∆βi] has to be subtracted from the duration of
rising at the equator for the first and fourth quadrants, whereas it has to be added in
the second and third.3.11 I+.�;Za;ñÍö�ÅÅ*:u H C+.a;ya;a ..a
3.11 Big gnomon and the gnomonic shadow at a desired time:pra;a;ë�Åë�Á*:+:pa;a;le ga;ta;a;n,a :pra;a;Na;a;n,a ga;}ya;a;n,a ma;Dya;�///�a;nd;na;a;t,a :pa:=+m,a Á Á 16 Á Á;
a;va;nya;~ya;a;kR +:.a:=+pra;a;Na;aH Za;ea;Dya;a Ba;a;na;a;vua;d;gga;tea Áya;ea:$ya;a d;Æa;[a;Na;gea .tea;Bya;ea .j�a;a;va;a g{a;a;hùÅ:a;a ya;Ta;ea;
a;d;ta;m,a Á Á 17 Á Áv.ya;~tMa kx +:tva;a ..a:=;$ya;Ma ..a dùÅ;au :$ya;a.Èåî ÁÁ*+;Ma ;
a:�a:$ya;ya;a h:=e +t,a Ál+.}ba;k+Èåî ÁÁ*+;a;t,a :P+.l+.a;t,a ;
a:�a:$ya;a;&+.taH Za;ñÍö�ÅÅ*:u +.
a;vRa;va;~va;taH Á Á 18 Á Áta;a:�áâ+;�a:$ya;a;kx +:�a;ta;
a;va:(ìÉÅ;e +Sa;a;t,a mUa;lM C+.a;ya;a ma;h;tya;
a;pa Á

prākkapale gatān prān. ān gamyān madhyandināt param ||16 ||
vinyasyārkacaraprān. āh. śodhyā bhānāvudaggate |
yojyā daks.in. age tebhyo j̄ıvā grāhyā yathoditam || 17 ||
vyastam. kr. tvā carajyām. ca dyujyāghnām. trijyayā haret |
lambakaghnāt phalāt trijyāhr. tah. śaṅkurvivasvatah. || 18 ||
tattrijyākr. tivísles. āt mūlam. chāyā mahatyapi |
In the eastern part of the hemisphere [i.e. in the forenoon] the prān. as that have elapsed
[since sunrise], and in the afternoon [i.e. when the Sun has crossed the meridian] the prān. as
that are yet to elapse [till sunset], are found, and the results are stored [separately]. [From
them] the ascensional differences (caraprān. ā) are subtracted when the Sun is to the north
[of the ecliptic] and added when it is to the south [of the ecliptic]. The Rsine of the result
has to be obtained as described [earlier].

To this the Rsine of the cara is applied in the reverse order and [the sum] is multiplied by
the dyujyā and divided by the trijyā. The result multiplied by the lambaka and divided by
the trijyā is the [mahā]́saṅku of the Sun. The square root of the difference between the
squares of the trijyā and this (the mahāśaṅku) gives the mahācchāyā.
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In the above verses, the procedure for the determination of the zenith distance
of the Sun at a desired time is given. The terms mahāśaṅku and mahācchāyā used
in the verses refer to the Rcosine and Rsine of the zenith distances of the Sun re-
spectively. The prefix mahā is to distinguish them from the gnomon (śaṅku) and its
shadow (chāyā). If z is the zenith distance of the Sun and R the trijyā, then

mahāśaṅku = Rcosz and mahācchāyā = Rsinz.

These are also simply referred to at times as the śaṅku and the chāyā. We will
see that the expression for the cosine of the zenith distance implied here is the same
as the one obtained using modern spherical trigonometry, in terms of the latitude of
the place (φ ), the declination of the Sun (δ ) and its hour angle (H).
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Fig. 3.11 The diurnal path of the Sun with a northern declination δ .

In Fig. 3.11, P and Z are the celestial north pole and the zenith of the observer.
S and S′ refer to the positions of the Sun at some instant in the afternoon and at the
sunset. θ = SP̂W is the angle covered by the Sun in reaching the 6 o’clock circle
from S. Considering the spherical triangle PZS and applying the cosine formula

cosz = sinφ sinδ + cosφ cosδ cosH, (3.51)

as PZ = 90◦−φ and PS = 90◦− δ . It can be easily seen from the figure that H =
90−θ , since ZP̂W = 90◦. Hence, the above equation becomes
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cosz = sinφ sinδ + cosφ cosδ sinθ . (3.52)

In the following we show that the expression given by Nı̄lakan.t.ha is exactly the
same as the above equation.

For this, we initially need to find out θ as per the procedure in the text. If d
represents the half-duration of the day, ∆α the ascensional difference, tr the time
elapsed since sunrise, and ts the time that is yet to elapse till sunset, then

θ = tr −∆α (forenoon) (3.53)

θ = ts −∆α (afternoon). (3.54)

∆α is positive when the Sun has a northern declination and negative otherwise.
Hence the magnitude of ∆α has to be subtracted from tr or ts for northern declina-
tions, and added for southern declinations.

Having determined θ , it is stated that the zenith distance can be found using the
relation

Rcosz = (Rsin θ + Rsin∆α)

(
Rcosφ

R

)(
Rcosδ

R

)
, (3.55)

which reduces to
cosz = (sinθ + sin∆α)cosφ cosδ . (3.56)

Considering the spherical triangle, PZS′, where PZ = 90◦−φ , ZS′ = 90◦ and ZP̂S′ =
Ht (the hour angle of the Sun at the sunset), it follows from the cosine formula that

cosHt = − tanφ tanδ . (3.57)

Using the fact that Ht = 90 +∆α , the above equation reduces to

sin∆α = tanφ tanδ . (3.58)

Substituting for sin∆α in (3.56), we see that it reduces to (3.52), showing that the
expression given by Nı̄lakan. t.ha for mahāśaṅku is nothing but the standard spheri-
cal astronomical result for the Rcosine of the zenith distance of the Sun at any time
during the day.

The mahācchāyā is defined as the square root of the difference between the
squares of the trijyā and the mahāśaṅku. Since the mahāśaṅku is Rcosz, it is
obvious that the mahācchāyā is Rsinz. The value of the zenith distance obtained
using (3.55) is for an observer situated at the centre of the Earth. Here it is also
assumed that the Sun is a point object. To obtain the apparent value of the zenith
distance (z′) for an observer on the surface of the Earth from the theoretical value
(z), corrections have to be implemented which take into account the effect of solar
parallax and finite diameter of the Sun. It is precisely these corrections that are
prescribed in the following verses.



164 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadow3.12 kÒ +:ma;.C+.a;ya;a;na;ya;nea .sMa;~k+:a:=H
3.12 Correction to be implemented in the direct process of

finding the shadowC+.a;ya;a;ya;a;~:�ya;ga;na;a;ga;a;�Ma36 ;�a;l+.�a;a;v.ya;a;sa;a;DRa;ta;~tya:jea;t,a Á Á 19 Á Á;a;Za;�e ;na Za;ñÍö�ÅÅ*:u +.ma;a;h;tya ;
a:�a:$ya;a;�Ma tya:$ya;ta;a;Æa;ma;h ÁC+.a;ya;a;ya;a;ZC+.a;ya;ya;aY;h;tya ;
a:�a:$ya;a;�Ma Zea;Sa;ta;eaY;
a;pa ..a37 Á Á 20 Á Á;Æa;[a;pea;.C+.ñÍö�ÅÅ*:+.Ea .sua;sUa;[ma;eaY;yMa Za;ñÍö�ÅÅ*:u +.(ãÉa ma;h;t�a;a :pra;Ba;a ÁC+.a;ya;Ma dõ ;a;d;Za;Æa;Ba;hR ;tva;a Za;ñÍö�ÅÅ*:u +.Ba;�e +:�;Za;ñÍö�ÅÅ*:u +.Ba;a Á Á 21 Á Á
chāyāyāstryaganāgāptam. liptāvyāsārdhatastyajet ||19 ||
śis. t.ena śaṅkumāhatya trijyāptam. tyajyatāmiha |
chāyāyāśchāyayā ′hatya trijyāptam. śes.ato

′pi ca ||20 ||
ks.ipecchaṅkau susūks.mo ′yam. śaṅkuśca mahat̄ı prabhā |
chāyām. dvādaśabhirhatvā śaṅkubhaktes.t.aśaṅkubhā ||21 ||
The result obtained by dividing the shadow by 873 is to be subtracted from the semi-
diameter [of the Sun] expressed in minutes. Multiplying the śaṅku by the remainder (say
∆θ ) and dividing by the trijyā, the result should be subtracted from the [mahā]chāyā.
The same (∆θ ) multiplied by [mahā]chāyā and divided by the trijyā should be applied
positively to the [mahā]́saṅku. These are far more accurate [values] of [mahā]-́saṅku and
mahācchāya. By multiplying the [mahā]chāyā by 12 and dividing by [mahā]́saṅku, the
shadow of the is. t.aśaṅku (the usual 12 aṅgula) is obtained.

What are referred to repeatedly in the above verses as the chāyā and the śaṅku are
actually the mahācchāyā (great ‘shadow’) and the mahāśaṅku (great ‘gnomon’)—
to be precisely defined a little later in this section. Finding the prabhā,38 which in
the present context means shadow = Rsin z, essentially means finding the zenith
distance of the Sun. The effect due to the solar parallax and the finite diameter of
the Sun cannot be neglected in an accurate measurement of the zenith distance. The
procedure to obtain the theoretical value of the zenith distance (with reference to
the centre of the Earth) was described in the previous section. A correction has to
be applied to obtain the observed value from the theoretical value. If z′ and z are the
observed and the theoretical zenith distances of the Sun, then the relation between
the two given in the text may be expressed as:

36 The reading in the published text edited by K. V. Sarma is �ya;ñÍç ÅÅ*:+.na;a;ga;a;�a;m,a Á The number repre-
sented by this word is 863. Sarma has also given �ya;ga;na;a;ga;a;�a;m,a as another reading in the footnote,
which corresponds to the number 873. The footnote reading seems to be the correct one as it agrees
closely with the actual computed value of 872. This is confirmed from the commentary Laghu-

vivr. ti, where it is stated: O;;va;ma;a;n�a;a;ta;a;ya;aH C+.a;ya;a;ya;aH �ya;ga;na;a;gEa;
a;vRa;Ba:$ya l+.b.Da;m,a :P+.lM . . . Á
37 The phrase śes.ato

′pi ca can perhaps be integrated with the rest of the verse as follows:;�a;l+.�a;a;v.ya;a;sa;a;DRa;taH tya;�+:a ya;t,a :P+.lM l+.b.DMa ta;t,a .~Ta;l+.dõ ;yea ;
a;va;nya;sea;t,a Á O;;k+.�a ma;h;a;Za;ñÍö�ÅÅ*:u +.na;a ;�a;na;h;tya;
a:�a:$ya;ya;a ;
a;va;Ba:$ya l+.b.Da;m,a :P+.lM ma;h;a;.C+.a;ya;a;ta;ea ;
a;va;Za;ea;Da;yea;t,a Á Zea;Sa;ta;eaY;
a;pa ..a, A;Ta;Ra;t,a A;nya:�a;
a;va;nya;~ta;a;t,a :P+.l+.a;t,a . . .
38 Though the word prabhā actually means rays, it has been used in verse 21 as a synonym
for chāyā, shadow. Occasionally, in Sanskrit literature, one finds ‘kāran. avācakaśabda’ (here,
prabhā), being used in the place of kāryavācakaśabda (here chāyā).
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Rcosz′ = Rcosz+ ∆θ
(

Rsinz
R

)
, (3.59)

Rsinz′ = Rsin z−∆θ
(

Rcosz
R

)
. (3.60)

The second terms in the RHSs of the above equations are the correction factors. The
quantity ∆θ occurring here is given by

∆θ = ds − p, (3.61)

where ds and p are the semi-diameter of the Sun’s disc (expressed in minutes) and
its parallax respectively. The parallax of the Sun is given as

p =
Rsinz
873

. (3.62)

It is easily seen that (3.59) and (3.60) are nothing but the expressions for cos(z−
∆θ) and sin(z−∆θ ) when ∆θ is small. Hence these equations imply that

z′ = z−∆θ = z−ds + p. (3.63)

The rationale behind the above expression has been discussed earlier (see section
3.8) in the context of explaining the procedure for obtaining more accurate values
of the latitude. The same argument applies here. Owing to the finite size of the Sun,
the apparent zenith distance gets reduced by the semi-diameter of the Sun. Also,
there is an increase due to parallax. It has already been shown that

p = P
Rsinz

R
, (3.64)

where P is the horizontal parallax. Further, it has been mentioned that

P =
Daily motion of Sun

15
. (3.65)

The mean daily motion, according to Tantrasaṅgraha, is found39 to be 59′8′′. This
divided by 15 gives the horizontal parallax, which amounts to nearly 3′57′′. Substi-
tuting this value of P in (3.64), and taking R = 3438, we get

p =
Rsinz
872

. (3.66)

39 It is computed as follows. The number of civil days in a Mahāyuga is given by 1577917500.
This when divided by the total number of sidereal years (= 4320000) gives the number of civil days
per sidereal year, which turns out to be 365.25868056. Since the Sun covers an angle of 360◦ in
this period, the mean angle covered per day is given by

Mean daily motion =
360

365.25868056
≈ 0.98560285947 ≈ 59′8′′.
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It may be noted that the above expression for parallax differs from the expression
given in the text (3.62) by only one unit in the denominator.

Some of the concepts related to the mahāśaṅku and the mahācchāyā are elabo-
rated in Yukti-d̄ıpikā. We reproduce a few important ones among them in the fol-
lowing:

Definition of mahāśaṅku and mahācchāyādÒ +�x ;ma;DyMa g{a;h;~å.pxa;�M ya;dõx :�Ma :pa;�a:=+k+:�pya;tea Áta:�a g{a;h;Æa;[a;�a;ta:ja;ya;eaH A;nta:=M Za;ñÍö�ÅÅ*:u +.�a:=+Sya;tea Áta;tk+:ea;�a;f;(ãÉa ma;h;a;.C+.a;ya;a na;Ba;ea;ma;Dya;g{a;h;a;nta:=+m,a Á Á 40

Conceiving of a circle centred around the observer (dras.t.r. -madhyam. ) and passing through
the planet (grahaspr. s.t.am. ), [the Rsine of the angle of] the separation between the planet
on that [circle] and the horizon is the [mahā]́saṅku. The Rcosine of it is the mahācchāyā,
which is the [Rsine of the angle of] separation between the planet and the zenith.
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Fig. 3.12 Concept of the mahāśaṅku and the mahācchāyā.

We explain the concept of mahāśaṅku and mahācchāyā with the help of Fig. 3.12.
Here, S is the Sun and F is the foot of perpendicular drawn from the Sun to the
horizon. The angle OX̂Y = FŜO = z is the zenith distance of the Sun and OŶX =
FÔS = a = 90−z is the altitude of the Sun. The triangles OXY and FSO are similar.
In the triangle OXY , OX represents the usual śaṅku of 12 units in height and OY is its
shadow, referred to as the chāyā. Since OXY and FSO are similar, SF (= Rcosz) and
FO(= Rsinz) are referred to as the mahāśaṅku and the mahācchāyā respectively.

40 {TS 1977}, p. 198.
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Correction due to the finite size of the object.~va;
a;ba;}ba;Ga;na;ma;Dya;a;nta;a;t,a na;ta:$ya;a .~ya;a;t,a Ka;ma;Dya;taH Áma;h;a;.C+.a;ya;a ta;d;a;sa;�a;
a;ba;}ba;nea;}ya;va;�a;Da;~ta;taH Á Á;
a;ba;}ba;v.ya;a;sa;a;DRa;Da;nua;SaH ta;tKa;Nq+$ya;a;ta;d;nta:=+m,a Ákx +:t=+:ïîåéa:$ya;a;k+:ea;�a;f;sMa;va;ga;Ra;t,a Ka;Nq+$ya;a ;
a:�a:$ya;ya;ea:;dÄâx ;ta;a Á ÁC+.a;ya;a;Za;ñÍö�ÅöÅ*:+.ea;(ãÉa d;eaHk+:ea;�a;f:�+.pa;tvMa .sa;mma;tMa ;Æa;ma;TaH ÁA;ta;eaY:�a ;
a;ba;}ba;v.ya;a;sa;a;Da;Ra;t,a C+.a;ya;a;Za;ñÍö�ÅÅ*:u +.h;ta;a;t,a :pxa;Ta;k, Á ÁZa;ñÍö�ÅÅ*:u +.ta;.C+.a;ya;ya;eaH .~va;N a ;
a:�a:$ya;ya;a;�Ma :P+.l+.dõ ;ya;m,a ÁO;;vMa dx ;�//�a;gva;Sa;yea Za;ñÍö�ÅÅ*:u +..C+.a;ya;ya;ea;�a:=+Sya;tea ;
a;va;�a;DaH Á Á 41

The [Rsine of the angle of] separation between the zenith and the centre of the object
that is observed (the svabimbaghanamadhya) is the nata-jyā and is [the same as] the
mahācchāyā. [However], the [apparent value of the] mahācchāyā would correspond to
the edge of the disc [which is closer to the zenith]. Therefore, the difference between the
two is equal to the khan. d. ajyā corresponding to the arc subtended by the semi-diameter of
the object.

The khan. d. ajyā is multiplied by the sine and cosine (of the zenith distances) and divided
by the trijyā. [The two results are stored separately]. The chāyā and śaṅku can be thought
of as the sine and cosine of each other. Therefore, the product of the semi-diameter and the
chāyā and that of the semi-diameter and the śaṅku, found separately and divided by the
trijyā, are applied to the śaṅku and the chāyā positively and negatively respectively to get
the desired result. This is the procedure to obtain the observed values (the dr. gvis.aye) of
the chāyā and śaṅku.

If ds be the semi-diameter of the Sun (expressed in minutes), then the procedure to
obtain the observed value of the zenith distance (z′) from the theoretical value (z) as
described in the above verses is given by

Rcosz′ = Rcosz+ ds

(
Rsinz

R

)
, (3.67)

Rsinz′ = Rsin z−ds

(
Rcosz

R

)
. (3.68)3.13 ma;h;a;Za;ñÍö�ÅÅ*:+.eaH ga;ta;ga;nta;v.ya;pra;a;Na;aH

3.13 Time elapsed or to be elapsed from the mahāśaṅkuZa;ñÍö�ÅÅ*:u +..C+.a;yea ;
a:�a:j�a;a;va;a.Èåî ÁÁ*+e ma;h;tya;Ea k+:NRa;sMa;&+.tea Ál+.}ba;k+:a;[a:$ya;ya;eaH .~va;NRa;ma;nya;ea;nya;ea;tTa;P+.lM ya;Ta;a Á Á 22 Á Áta;Ta;a nxa;.C+.a;ya;ya;eaH k+:a;y a ;
a;va;pa:=� +a;ta;pra;Ba;a;
a;va;Da;Ea Áv.ya;a;sa;a;DRa.Èåî ÁÁ*+;a;t,a ta;taH Za;ñÍö�ÅÅ*:+.eaH l+.}ba;k+:a;�Ma ;
a:�a:j�a;a;va;ya;a Á Á 23 Á Áh;tva;a dùÅ;au :$ya;a;
a;va;Ba;�e ta;t,a ..a:=;$ya;a .~va;NRa;mea;va ..a Á
41 {TS 1977}, p. 199.



168 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadowya;a;}ya;ea;d;gga;ea;l+.ya;ea;~ta;~ya ..a;a;pea v.ya;~tMa ..a:=+a;sa;vaH Á Á 24 Á Á.sMa;~k+:a;ya;Ra ga;ta;ga;}ya;a;~tea :pUa;va;Ra;pa:=+k+:pa;a;l+.ya;eaH Á
śankucchāye trij̄ıvāghne mahatyau karn. asam. hr. te |
lambakāks.ajyayoh. svarn. amanyonyotthaphalam. yathā ||22 ||
tathā nr. cchāyayoh. kāryam. vipar̄ıtaprabhāvidhau |
vyāsārdhaghnāt tatah. śaṅkoh. lambakāptam. trij̄ıvayā ||23 ||
hatvā dyujyāvibhakte tat carajyā svarn. ameva ca |
yāmyodaggolayostasya cāpe vyastam. carāsavah. ||24 ||
sam. skāryā gatagamyāste pūrvāparakapālayoh. |
The śaṅku and chāyā multiplied by the trijyā and divided by the karn. a become the
greater ones [the mahāśaṅku and mahācchāyā respectively]. As the addition and sub-
traction was done in the case of the lambaka and aks.a, with the quantities obtained from
each other, so too the results have to be applied in finding the śaṅku (referred to by the
word nr. above) and its shadow in the reverse process (the vipar̄ıta-prabhā).

The śaṅku is multiplied by the radius (the trijyā) and divided by the lambaka. This is
further multiplied by the trijyā and divided by the dyujyā. To this quantity, the carajyā is
applied positively or negatively depending upon whether the Sun is in the southern or the
northern hemisphere. To the arc of the result, the arc of the ascensional difference has to be
applied in the reverse order. This gives the time that has elapsed or is yet to elapse in the
eastern or in the western half of the hemisphere.

These verses give the procedure for finding the time that has elapsed since sunrise,
or that is yet to elapse till sunset, from a knowledge of the zenith distance of the
Sun and its ascensional difference. Essentially it is the reverse process of what is
described in the earlier verses 17 and 18 and is termed the vipar̄ıta-prabhā-vidhi.42

For that the mahāśaṅku and mahācchāyā are found first.
It was shown earlier (see (3.2) and (3.3)) that

śaṅku = 12 = K cosz (3.69a)

and chāyā = L = K sinz, (3.69b)

where K is the karn. a. Hence,

mahāśaṅku = Rcosz =
saṅku

karn. a
trijyā (3.70a)

and mahācchāyā = Rsinz =
chāyā

karn. a
trijyā. (3.70b)

The procedure for obtaining the observed value of the zenith distance from the the-
oretical value was described in the previous section. Here the reverse process is
described. This reverse process of obtaining the theoretical value from the observed
value is then carried out.

If z′ and z are the observed and the theoretical zenith distances of the Sun, then
the prescription given above may be expressed using the modern notation as

Rcosz = Rcosz′−∆θ
(

Rsinz
R

)
, (3.71)

42 The term refers to the reverse process of determining the time from the observed shadow.



3.13 Time elapsed or to be elapsed from the mahāśaṅku 169

Rsinz = Rsinz′ + ∆θ
(

Rcosz
R

)
. (3.72)

These relations are essentially the same as (3.67) and (3.68) except for the reversal
of the signs of the correction terms. Both the pairs of relations amount to

z = z′ +∆θ = z′ +ds− p. (3.73)

This correction is essentially the same as the one employed in the determination of
latitude. In fact, this is remarked in Laghu-vivr. ti:;
a;va;Sua;va;.C+.a;ya;ya;a A;[a;l+.}ba;k+:a;na;ya;nMa I+.�;.C+.a;ya;ya;a ma;h;a;.C+.a;ya;a;Za;ñÍö�ÅöÅ*:+.ea:=+a;na;ya;nMa ..Ea;k+.�+.pa;mea;vea;�a;ta Á

The methods to find the aks.a (Rsinφ ) and lambaka (Rcos φ ) from the equinoctial shadow,
and the mahācchāyā (R sinz) and mahā-́saṅku (Rcosz) from the shadow at the desired
(arbitrary) time are identical.

Now an intermediate quantity x is defined as

x =
śaṅku× trijyā

lambaka
× trijyā

dyujyā
,

=
Rcosz×R

Rcosφ
× R

Rcosδ
. (3.74)

Then another quantity y (= Rsinθ) is defined as

y = x± carajyā, (3.75)

or Rsinθ =
Rcosz

cosφ cosδ
±|Rsin∆α|, (3.76)

where the sign ‘+’ has to be used when the Sun has southern declination and ‘−’
when it has northern declination.

We have already pointed out in Section 3.11 that the above expression for Rsinθ
follows from the cosine formula in spherical trigonometry.

Rsinθ =
Rcosz

cosφ cosδ
−Rsin∆α, (3.77)

where sin∆α = tanφ tanδ is the carajyā. To θ , the arc of the ascensional differ-
ence, ∆α , has to be applied in the reverse order.43 That is, negatively when the Sun
has southern declination and positively when it has northern declination. This gives
the time that has elapsed since sunrise (tr) or that is yet to elapse till sunset (ts) de-
pending upon whether the Sun is in the eastern or the western part of the horizon.
Thus we have

tr,s = θ + ∆α. (3.78)

Substituting for θ from (3.77) we have,

43 Here reverse refers to the reverse order of application of the sine of the ascensional difference
as given in the previous equation.
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tr,s = (Rsin)−1
(

Rcosz
cosφ cosδ

−Rsin∆α
)

+∆α. (3.79)

It can be seen from Fig. 3.11 that the time that is yet to elapse till sunset, when the
Sun is in the northern hemisphere, is given by the sum of the arc lengths θ and ∆α .
Using the expression for θ obtained from (3.52), we get

tr,s = (sin)−1
(

cosz
cosφ cosδ

− sin∆α
)

+∆α. (3.80)

Thus we see that the expression given in the text for determining the time during
any part of the day is exact.3.14 Za;ñÍö�ÅÅ*:u +..C+.a;ya;a;taH .~å.Pu +.f;sUa;ya;Ra;va;ga;ma;na;m,a
3.14 Determination of the true Sun from the shadow of the

gnomonkÒ +:a;ntya;[a;.a;a;pa;ya;ea;ga;a;�a Bea;d;a;dõ ;a ya;a;}ya;sa;Ea;}ya;ya;eaH Á Á 25 Á Á.j�a;a;va;a ma;Dya;�///�a;nd;na;.C+.a;ya;a ta;ta;ea va;a;kR +:~å.Pu +.fM na;yea;t,a Áma;Dya;a;kR +:na;ta;Ba;a;gea;ByaH .~va;a;[a;Ba;a;ga;a;n,a ;
a;va;Za;ea;Da;yea;t,a Á Á 26 Á ÁZa;ñÍö�ÅÅ*:+.ea:�+:d;gga;ta;a Ba;a ..ea;t,a ya;a;}ya;kÒ +:a;�////�a;nta;
a;hR ;a;Za;Sya;tea Á.~va;a;[a;Ba;a;ga;a;�a;ta;a;(ãÉa;ea;na;a na;ta;Ma;~ta;
a;hR ;
a;va;Za;ea;Da;yea;t,a Á Á 27 Á Áo+.d;ë�Åë�Á*:" +:a;�////�a;nta;~ta;d;a ;a;Za;�;a na;tya;[a;yua;�a;ta:=+nya;d;a Áta:êêÁ*.a�a;a ;
a:�a:$ya;a;h;ta;a Ba;�+:a kÒ +:a;ntya;a :pa:=+ma;ya;a .=+veaH Á Á 28 Á Ád;ea:$ya;Ra ta;�a;a;pa;mea;va .~ya;a;t,a .sa;Ea;}yea ga;ea;le Y;ya;neaY;
a;pa ..a Á.=+
a;va;~ta:�a;a;ya;nea ;Æa;Ba;�ea .=+a;a;Za;Sa:æö�ÅÅ*:M ta;dU ;�a;na;ta;m,a Á Á 29 Á Áya;a;}yea ga;ea;le Y;ya;nea ..a;a;
a;pa .=+a;a;Za;Sa:æö�ÅÅ*:+.yua;tMa .=+
a;vaH Áta;dU ;nMa ma;Nq+.lM Ba;a;nuaH ya;a;}ya;~Tea ..a;ea:�a:=+a;ya;Nea Á Á 30 Á Á
krāntyaks.acāpayogācca bhedādvā yāmyasaumyayoh. ||25 ||
j̄ıvā madhyandinacchāyā tato vārkasphut.am. nayet |
madhyārkanatabhāgebhyah. svāks.abhāgān vísodhayet ||26 ||
śaṅkorudaggatā bhā cet yāmyakrāntirhi śis.yate |
svāks.abhāgānnatāśconā natām. starhi vísodhayet ||27 ||
udakkrāntistadā śis. t.ā natyaks.ayutiranyadā |
tajjyā trijyāhatā bhaktā krāntyā paramayā raveh. ||28 ||
dorjyā taccāpameva syāt saumye gole ′yane ′pi ca |
ravistatrāyane bhinne raśis.at.kam. tadūnitam ||29 ||
yāmye gole ′yane cāpi raśis.at.kayutam. ravih. |
tadūnam. man. d. alam. bhānuh. yāmyasthe cottarāyan. e ||30 ||
Depending upon whether the Sun is in the southern or the northern hemisphere, the sum
of, or the difference between, the latitude [of the place] and the declination [of the Sun]
is found. The Rsine of this angle is a measure of the length of the midday shadow. The
position of the true Sun can be obtained from this also.

Subtract the latitude of the place from the zenith distance of the Sun at the noon. If the
shadow [at noon] lies to the north of the śaṅku, then the remainder gives the southern
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declination of the Sun. If the zenith distance is smaller than the latitude of the place [and
the shadow at the noon lies to the north of the śaṅku], then the zenith distance has to be
subtracted from the latitude. The remainder gives the northern declination of the Sun. Or
else the sum of the latitude and the zenith distance gives the northern declination.

The Rsine of it multiplied by the trijyā and divided by the Rsine of the maximum declina-
tion gives the Rsine of the longitude of the Sun. The arc of this gives the longitude of the
Sun if both the ayana and the gola are north [Sun has northerly motion and also lies in the
northern hemisphere]. If the ayana is different the arc subtracted from six rāśis [gives the
longitude of the Sun]. When both the gola and the ayana are south, then six rāśis added
to the arc gives the longitude of the Sun. If the Sun is in the southern hemisphere and the
ayana is north, then the arc subtracted from a full circle (360 degrees) is [the longitude of]
the Sun.

δS

S1

S

S2

Y O

X

φ

SN

Z celestial equator

Nδ

śaṅku

Fig. 3.13 The zenith distance of the Sun during meridian transit.

In the above verses it is explained how the true sāyana longitude of the Sun
is obtained by a simple method which essentially involves measuring the midday
shadow of the śaṅku. This method makes use of the relation

sinδ = sinε sinλ , (3.81)

where ε is the obliquity of the ecliptic, λ the sāyana (tropical) longitude of the Sun
and δ its declination. ε is a fixed quantity and is taken to be 24◦. Hence the true
longitude can be obtained using the above relation if the declination of the Sun is
determined.

For determining the declination of the Sun, we use the relationship between the
latitude of the place, the midday zenith distance (z) of the Sun and its declination.
This relationship may be explained with the help of Fig. 3.13. In this figure Z rep-
resents the zenith of the observer, OX the śaṅku and the line Y XS the equator. S,
S1 and S2 represent the positions of the Sun at the local noon as it passes across the
prime meridian on different days. The angles subtended by the arc lengths SS1 and
SS2 at X , δN and δS in the figure, represent the northern and southern declination
respectively. If φ represents the latitude of the observer ZS, then it can be easily seen
from the figure that the following relations are satisfied.
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When the Sun is on the equator (δ = 0),

z = φ . (3.82)

When the Sun is in the southern hemisphere (δ south),

z = φ +δs. (3.83)

When the Sun is in the northern hemisphere (δ north),

z = φ − δN (φ > δ ), (3.84)

z = δN −φ (φ < δ ). (3.85)

When φ < δ , then the Sun would be to the north of the zenith at the meridian transit,
which is not shown in the figure above.3.15 A;ya;na;.a;l+.na;m,a
3.15 Motion of equinoxesk+.=+Na;a;ga;ta;sUa;yRa;~ya C+.a;ya;a;n�a;a;ta;~ya ..a;a;nta:=+m,a ÁA;a;ya;nMa ..a;l+.nMa :℄ea;yMa ta;a;tk+:a;�a;l+.k+:Æa;ma;dM .~å.Pu +.f;m,a Á Á 31 Á ÁC+.a;ya;a;k+:Ra;d;�a;Da;ke Y;nya;�/////////�a;sma;n,a Za;ea;DyMa ya;ea:$yMa ;
a;va;pa;yRa;yea Áo+.d;�//�a;gva;Sua;va;d;a;
a;d;tva;Æa;sa:;dÄâ ;yea k+.=+Na;a;ga;tea Á Á 32 Á Ámea;Sa;a;
a;d;ke g{a;he k+:a;y a AM ;Za;a;
a;d;k+:Æa;ma;dM Ka;lu Ávxa;�a:;dÄâ H [a;ya;(ãÉa ;
a;d;v.ya;a;b.dE H :pa:úãÁ*.a;Æa;BaH .~ya;a;t,a ;Da;na;NRa;ya;eaH Á Á 33 Á Ád;Za;Ma;Za;ea;na;a;b.d;tua;�ya;a .~ya;a;t,a ga;�a;ta;~ta;~ya k+:l+.a;�//////�a;tma;k+:a Á.sa;�a;
a;vMa;Za;�a;ta;Ba;a;ga;a;ntMa ..a;l+.nMa ..a;a;pa;na;kÒ +:ya;eaH Á Á 34 Á Á;Æa;sa:;dÄâ ;a;ntea;SUa;
a;d;tMa ta;~ya C+.a;ya;ya;a;
a;pa ;
a;va;�a;na;NRa;yaH Á

karan. āgatasūryasya chāyān̄ıtasya cāntaram |
āyanam. calanam. jñeyam. tātkālikamidam. sphut.am || 31 ||
chāyārkādadhike ′nyasmin śodhyam. yojyam. viparyaye |
udagvis.uvadāditvasiddhaye karan. āgate || 32 ||
mes.ādike grahe kāryam. am. śādikamidam. khalu |
vr. ddhih. ks.ayaśca divyābdaih. pañcabhih. syāt dhanarn. ayoh. ||33 ||
daśām. śonābdatulyā syāt gatistasya kalātmikā |
saptavim. śatibhāgāntam. calanam. cāpanakrayoh. || 34 ||
siddhāntes.ūditam. tasya chāyayāpi vinirn. ayah. |
The difference between true longitudes of the Sun determined by the procedures given in
the text and the one determined from the shadow [as described in the previous verse] is
equal to the actual motion of the ayana at that instant of time.

If the other longitude [determined through the textual procedure] is greater than the longi-
tude determined from the shadow, the difference has to be subtracted, otherwise added.

When the planet is in Mes. ādi, it is this (ayanām. śa) which needs to be applied in minutes
etc. The increase and decrease will be there in five divine years (divyābdas) in both the
positive and negative directions. The motion of it will be one-tenth reduced from the number
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of years44 in kalās. It has been mentioned in siddhāntas that the motion of the Dhanus
and Makara (Sagittarius and Capricorn) is up to 27◦ . This can be verified using the shadow
techniques.

In Fig. 3.14, the celestial equator, the ecliptic and their poles (P and K respec-
tively) are shown. Here V is the vernal equinox and A is the autumnal equinox. M
is the Mes. ādi, which is the beginning point of the rāśi division. This point is fixed
with respect to the stars. The equinoxes V and A are in motion with respect to the
stars, and hence with reference to M also.

According to Tantrasaṅgraha, this motion can be westward or eastward. This is
known as the ‘trepidation of the equinoxes’, where the equinoxes execute an oscil-
latory motion with respect to Mes. ādi (the first point of Aries) M. If S represents the
Sun, the longitude measured with M as the reference point is the ‘nirayan. a longi-
tude’, lt = MS. This is what is calculated by following the procedure given in the
texts. The longitude with V as the reference point is the ‘sāyana (tropical) longi-
tude,’ ls = VS. In the figure below, we have shown V to the west of M, and hence
ls = lt + ∆ , where ∆ = V M is the motion of the equinoxes. According to the text,
it is possible that V would be east of M at some time. Then ls = lt −∆ , where ∆ is
the eastward motion of the equinoxes. It is stated that the motion of the equinoxes is
54′′ per year. It will move westwards to the maximum extent of 27◦. This will take
place in 27× 3600

54 = 1800 years, which is 5 divine years as a divine year is made up
of 360 solar years. Then it will move eastwards by 27◦ in 1800 years. Hence the
period of oscillations or trepidation of the equinoxes is 3600 years.
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Fig. 3.14 The equinoctial and the solsticial points (ayanāntas).

44 The number of years is taken to be 60 (a 60-year cycle). Hence the motion of the ayana in this
period will be 54 minutes (kalās).
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According to modern astronomy, V has a continuous westward motion (or ‘retro-
gade motion’) with respect to M at the rate of nearly 50.2′′ per year. This is referred
to as the ‘precession of the equinoxes’. Just by observations over even thousands
of years it would not be possible to conclude whether the equinoxes precess west-
wards continuously or oscillate. Hence it is not surprising that ‘trepidation of the
equinoxes’ is advocated here. The verses in Yukti-d̄ıpikā that clearly define the
ayana, its motion and how it can be inferred by observations are presented below.

Definition of ayanaA;ya;nMa na;a;ma ;Ga;�a;f;k+:a;kÒ +:a;�////�a;nta;vxa:�a;a;nta:=M :pa:=+m,a Á
The [point of] maximum [angle of] separation between the equator and the ecliptic is the
ayana.

In the above definition, the term ayana refers to the two solstices on the ecliptic.
These are the points where the Sun has the maximum north and south declinations
during the course of a year. In Fig. 3.14 they are marked as U and D. The points V
and A represent the vernal and the autumnal equinoxes. In Indian astronomy, the two
halves of the ecliptic, namely the paths DVU and UAD as indicated in the figure,
are called the saumyāyana and the yāmyāyana respectively. The terms saumya
and yāmya mean the north and the south directions. Since the Sun moves towards
the north pole P as it moves along DVU , and towards the south pole Q as it moves
along UAD, these two paths are called the saumyāyana and the yāmyāyana.

Thus the point U refers to the end of the saumyāyana and the beginning of
the yāmyāyana. Similarly the point D refers to the end of yāmyāyana and the
beginning of the saumyāyana. These are the points on the ecliptic, where the Sun
changes its direction of motion.

Oscillatory motion of ayanaya;�/////////�a;sma;n,a :pra;de ;Zea ;Ga;�a;f;k+:a;kÒ +:a;�////�a;nta;ma;Nq+.l+.ya;ea;yRa;d;a Á Á;
a;va;pra;k+:SRaH :pa:=+ea dx ;�H .sa tua k+:a;l+.a;nta:=e ta;taH Á:pua:=+~ta;a;�a :pa:=+~ta;a;�a ..a;l+.�a;ta :pra;a;#pra;de ;Za;taH Á Á..a;a;pa;a;ntea ;Æa;ma;Tua;na;a;ntea ..a ;
a;va;pra;k+:SRaH :pa:=+eaY:�a yaH Á.sa ;�a;.a;=e +Na ta;ya;eaH .sa;�a;
a;vMa;Za;tyMa;Za;a;nta:=e ta;taH Á Á:pra;de ;Za;a;nta:=+sa;}ba;nDaH na yua;�H ..a;l+.nMa ;
a;va;na;a ÁA;ta;eaY;ya;na;~ya ..a;l+.nMa vxa:�a;ya;ea:=+nua;m�a;a;ya;tea Á Á 45

The point of maximum separation [between the equator and the ecliptic], observed along
a particular direction, shifts its positions either forward or backward. The maximum sep-
aration which occurs at the end of the Dhanus and Mithuna rāśis [and observed along
a particular direction, after a long period of time] is at 27◦ from the earlier position. The
association of the ayana with a different direction is not possible without motion. Hence
the motion of the ayana on the circles is inferred.

45 {TS 1977}, p. 205.



3.17 Directions from the shadow of the gnomon 1753.16 na;tya;pa;kÒ +:ma;a;Bya;a;m,a A;[aH
3.16 Latitude of the place from the zenith distance and

declinationkÒ +:a;ntya;kR +:na;�a;ta;Bea;d;eaY;[a;ea ya;a;}yea ga;ea;le yua;�a;taH :pua;naH Á Á 35 Á ÁC+.a;ya;a;ya;a;ma;
a;pa .sa;Ea;}yeaY;keR Y;pya;nya;Ta;a .~ya;a;t,a ta;d;nta:=+m,a Á
krāntyarkanatibhedo ′ks.o yāmye gole yutih. punah. ||35 ||
chāyāyāmapi saumye ′rke ′pyanyathā syāt tadantaram |
The latitude is the difference between the midday zenith distance and declination when the
Sun is in the southern hemisphere. It is the sum [of the two] when the shadow and the Sun
are in the northern hemisphere. Otherwise [when the Sun is in the northern hemisphere and
the shadow is towards the south], it is the difference between them.

From (3.83) to (3.85), we get φ = z−δS (Sun in south), φ = z+δN (Sun in north
and φ > δN), and φ = δN − z (Sun in north φ < δN) where z is the midday zenith
distance.3.17 Za;ñÍö�ÅÅ*:u +..C+.a;ya;a;taH ;
a;d;ga;va;ga;ma;na;m,a
3.17 Determination of the directions from the shadow of the

gnomon.sa;a;ya;na;a;kR +:Bua:ja;a:j�a;a;va;a :pa:=+ma;kÒ +:a;�////�a;nta;ta;a;
a;q+.ta;a Á Á 36 Á Ál+.}ba;k+:a;�a;a;g{a:j�a;a;va;a .~ya;a;t,a C+.a;ya;a;k+:NRa;h;ta;a &+.ta;a Á;
a:�a:$ya;ya;a;g{a;a;ñÍç ÅÅ*:u +.lM ya;a;}yea ;
a;va;Sua;va;;�ÂåÅ +a;yua;tMa Bua:ja;a Á Á 37 Á Á.sa;Ea;}ya;a;Ta .sa;Ea;}ya;ga;ea;le Y;
a;pa nyUa;na;ma;g{a;a;ñÍç ÅÅ*:u +.lM ya;
a;d ÁZa;ea;Da;yea;
a;dõ ;Sua;va;;�ÂåÅ +a;ya;aH .sa;Ea;}ya;ea ba;a;hu ;~ta;d;a;
a;pa ..a Á Á 38 Á Á;
a;va;Sua;va;;�ÂåÅ +Ma tya:jea;t,a ta;sma;a;t,a .=+va;a;vua:�a:=+geaY;�a;Da;k+:a;t,a Áya;a;}ya O;;va ta;d;a ba;a;hu H ta;.C+.a;ya;a;kx +:�a;ta;Bea;d;taH Á Á 39 Á ÁmUa;lM k+:ea;�a;fH (rua;�a;taH C+.a;ya;a ;
a:�a;Æa;Ba;~:�ya;(rMa Ba;vea;
a;d;d;m,a ÁBra;a;ma;�a;ya;tva;a;Ta ta;t,a �ya;(rMa ya;a;va;.C+.a;ya;a;nua;ga;a (rua;�a;taH Á Á 40 Á Ák+:ea;f�a;a :pUa;va;Ra;pa:=e :℄ea;yea, ba;a;hu ;na;a d;Æa;[a;Na;ea:�a:=e Á
sāyanārkabhujāj̄ıvā paramakrāntitād. itā || 36 ||
lambakāptāgraj̄ıvā syāt chāyākarn. ahatā hr. tā |
trijyayāgrāṅgulam. yāmye vis.uvadbhāyutam. bhujā || 37 ||
saumyātha saumyagole ′pi nyūnamagrāṅgulam. yadi |
śodhayedvis.uvadbhāyāh. saumyo bāhustadāpi ca || 38 ||
vis.uvadbhām. tyajet tasmāt ravāvuttarage ′dhikāt |
yāmya eva tadā bāhuh. tacchāyākr. tibhedatah. || 39 ||
mūlam. kot.ih. śrutih. chāyā tribhistryaśram. bhavedidam |
bhrāmayitvātha tat tryaśram. yāvacchāyānugā śrutih. || 40 ||
kot.yā pūrvāpare jñeye, bāhunā daks.in. ottare |
The Rsine of the sāyana longitude of the Sun multiplied by the maximum declination and
divided by the cosine of the latitude of the place is the agraj̄ıvā. [This] multiplied by the
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hypotenuse of the shadow and divided by the trijyā is the agraj̄ıvā in aṅgulas. The result
added to the equinoctial shadow gives the bhujā [Rsine of the shadow] when the Sun is in
the southern hemisphere.

And [when the Sun is] in the northern hemisphere, (a) if the agraj̄ıvā in aṅgulas is less
than the vis.uvadbhā, it has to be subtracted from the vis.uvadbhā to get the bhujā corre-
sponding to the shadow of the śaṅku which lies to the north [of the east–west line]; (b) if
the northern declination is sufficiently large, the vis.uvadbhā has to be subtracted from it
(the agraj̄ıvā in aṅgulas). Then the bhujā corresponding to the shadow of the śaṅku will
be to the south [of the east–west line].

The square root of the difference between the chāyā and the bāhu is the [chāyā]kot.i.
The three form a [right] triangle. The triangle is rotated [around the śaṅku] such that the
hypotenuse (chāyā) is in the direction of the chāyā. Then the kot.i is understood to be
along the east–west line, and the bāhu along the north–south [line].

The term agraj̄ıvā (arkāgrā) refers to the perpendicular distance of the Sun from
the east/west line in the plane of the horizon at the time of the rising/setting of the
Sun. In Fig. 3.15(b), StB represents the arkāgrā. The expression for the arkāgrā
(RcosAt) can be obtained in terms of other quantities as follows.
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Fig. 3.15 Arkāgrā at sunset when the Sun has northerly declination: (a) as seen on the celestial
sphere, (b) as seen in the plane of the horizon.

Consider the spherical triangle PZSt . Here

PSt = 90−δ ; PZ = 90−φ ; ZSt = 90; PẐSt = At . (3.86)

Using the cosine formula we have

cos(90−δ ) = cos(90−φ)cos90 + sin(90−φ)sin90cosAt . (3.87)

Rewriting the above equation we get an expression for the arkaj̄ıvā,
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RcosAt =
Rsinδ
cosφ

. (3.88)

From the above equation it is seen that the arkāgrā is known, once the declination
of the Sun is known. The latitude of the place is already known by the measurement
of shadow on the equinoctial day. Expressing the declination in terms of the true
longitude of the Sun (3.88) reduces to

arkāgrā = |RcosAt | =
Rsinε sinλ

cosφ
. (3.89)

Thus we see that the arkāgrā is known, if the sāyana longitude of the Sun is known
at the time of rising or setting. The above expression for the arkāgrā is in terms of
minutes of arc. It may be expressed in aṅgulas by multiplying it by the hypotenuse
of the shadow K, which is measured in aṅgulas, and dividing it by the trijyā:

agrajyā = |K cosAt | = K

∣∣∣∣
sinδ
cosφ

∣∣∣∣

=
K
R

∣∣∣∣
Rsinε sinλ

cosφ

∣∣∣∣ . (3.90)
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Fig. 3.16 Determination of the chāyābhujā from the śaṅkucchāyā.

Let the zenith distance and azimuth of the Sun be z and A respectively, as indi-
cated in Fig. 3.16. Then considering the spherical triangle PZS,

cos(90−δ ) = cos(90−φ)cosz+ sin(90−φ)sinzcosA

or sinδ = sinφ cosz+ cosφ sinzcosA. (3.91)

Multiplying this by the karn. a, K, and dividing by cosφ ,
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K
sinδ
cosφ

= K tanφ cosz+ K sin zcosA. (3.92)

From (3.90), it is clear that the magnitude of the LHS of the above equation is
nothing but the agraj̄ıvā or the agrajyā.

Consider Fig. 3.16(b), where the śaṅku, chāyā etc. are more clearly depicted.
Here, Y Q is the distance between the tip of the shadow and the east–west line and
is known as the chāyābhujā. In other words, chāyābhujā is the projection of the
shadow along the north–south direction. In this figure,

chāyā = OY = K sin z, (3.93)

hence, chāyābhujā = Y Q = −K sinzcosA. (3.94)

Also for the situation depicted in the Fig. 3.16(b), the azimuth A > 90◦, and hence
−cosA is positive. Also, the śaṅku = 12 = K cosz; and the equinoctial midday
shadow, the vis.uvadbhā, = 12tanφ . Hence (3.92) can be rewritten as

−K sinzcosA = 12 tanφ −K
sinδ
cosφ

. (3.95)

It was already shown that the arkāgrā (in aṅgulas) is |K sinδ
cosφ |. It may further be noted

that the second term in the RHS of the above equation is positive when δ is negative
(i.e. the Sun is in the southern hemisphere) and it is negative when δ is positive.
Hence the chāyābhujā is the sum of the arkāgrāṅgula and the visuvadbhā, when the
Sun is in the southern hemisphere. When δ is positive (i.e. the Sun is in the northern
hemisphere) and the arkāgrāṅgula is less than the vis.uvadbhā, the chāyābhujā is
obtained by subtracting the former from the latter. In both these cases, the shadow
is to the north of the east–west line, as indicated in Fig. 3.16.

Again, when the declination of the Sun is to the north, and the arkāgrāṅgula is
greater than the vis.uvadbhā, then in this case A < 90◦, and K sin zcosA is positive.
Then

chāyābhujā = arkāgrāṅgula− vis.uvadbhā. (3.96)

In this case, the shadow is to the south of the east–west line. The kot.i of the chāyā
is defined by kot.i = OQ = K sinzsinA.

The chāyābhujā, kot.i and chāyā form a right-angled triangle with the chāyā as
the hypotenuse. From the physical shadow chāyā, the chāyābhujā can be deter-
mined from (3.95) as K =

√
122 +OY 2, δ and φ are known. Then, from the chāyā

and chāyābhujā the kot.i can be found.
Construct a triangle with these as the sides, such that the intersection point of

chāyā and the kot.i is at the base of the śaṅku. Rotate it such that the hypotenuse,
OY , is actually along the physical shadow. Then the kot.i, OQ, is along the east–
west line. Thus the east–west direction can be determined with the aid of the cal-
culation described above. Similarly, the north–south direction would be along the
chāyābhujā, Y Q.
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3.18 Drawing the locus of the tip of shadow of the gnomonC+.a;ya;a;Bra;ma;Na;ma;pyea;vMa :℄ea;ya;Æa;ma;�;
a;d;na;ea;;�ÂåÅ +va;m,a Á Á 41 Á ÁI+.�;k+:a;l+.ea;;�ÂåÅ +va;Ma C+.a;ya;Ma ba;a;hMu k+:ea;�a;fM ..a :pUa;vRa;va;t,a Áta:�ua;�ya;a;Æa;BaH Za;l+.a;k+:a;Æa;BaH ;�a;ta;sxa;Æa;BaH ;
a:�a;Bua:jMa ta;Ta;a Á Á 42 Á Ákx +:tva;a :pUa;va;Ra;pa:=+Ma k+:ea;�a;fM vxa:�a;ma;Dya;a;dùÅ;a;Ta;a;
a;d;Za;m,a Ákx +:tva;a ba;a;hMu ..a ba;a;h;ea;(ãÉa C+.a;ya;a;ya;a;(ãÉa;a;g{a;ya;ea;yRua;ta;Ea Á Á 43 Á Á;
a;ba;ndMu kx +:tva;a;pa:=+a;�ÎÉ Ée Y;
a;pa ;
a;ba;ndMu ta:�a :pra;k+:�pa;yea;t,a Áma;Dya;.C+.a;ya;a;a;Za:=+~ya;nyaH txa;t�a;a;ya;ea ;
a;ba;ndu ;�a:=+Sya;tea Á Á 44 Á Á;�a;l+.Kea;dõx :�a:�a;yMa .tea;na ya;Ta;a ma;t~ya;dõ ;yMa Ba;vea;t,a Áta;n}å.a;t~ya;ma;Dya;gea .sUa:�ea :pra;sa;a;yERa;va ta;ya;ea;yRua;�a;taH Á Á 45 Á Ádx ;Zya;tea ya:�a ta;n}å.a;DyMa vxa:�Ma ;
a;ba;ndu ;~å.pxa;ga;a;�a;l+.Kea;t,a ÁC+.a;ya;a ta;�ea;Æa;ma;ga;a ta;�/////////�a;sma;n,a ;
a;d;nea .~ya;a;t,a .sa;vRa;d;a;
a;pa ..a Á Á 46 Á Á

chāyābhraman. amapyevam. jñeyamis.t.adinodbhavam || 41 ||
is. t.akālodbhavām. chāyām. bāhum. kot.im. ca pūrvavat |
tattulyābhih. śalākābhih. tisr. bhih. tribhujam. tathā || 42 ||
kr. tvā pūrvāparām. kot.im. vr. ttamadhyādyathādísam |
kr. tvā bāhum. ca bāhośca chāyāyāścāgrayoryutau || 43 ||
bindum. kr. tvāparāhn. e

′pi bindum. tatra prakalpayet |
madhyacchāyāśirasyanyah. tr. t̄ıyo binduris.yate || 44 ||
likhedvr. ttatrayam. tena yathā matsyadvayam. bhavet |
tanmatsyamadhyage sūtre prasāryaiva tayoryutih. || 45 ||
dr. śyate yatra tanmadhyam. vr. ttam. binduspr. gālikhet |
chāyā tannemigā tasmin dine syāt sarvadāpi ca || 46 ||
The motion of the [tip of the] shadow on a desired day is to be determined as follows:

The bāhu, the kot.i and the chāyā are obtained at a desired instant as described earlier. With
three sticks whose lengths are equal to the bāhu, the kot.i and the chāyā at some instant,
a triangle is formed and it is placed such that the kot.i is along the east–west line with one
tip of it at the centre of the circle. The bāhu also gets aligned in the appropriate direction
(north–south direction). A point is marked at the intersection of the bāhu and the chāyā. A
similar point is marked in the afternoon also. The tip of the midday shadow is taken to be
the third point.

With these three points, three circles are drawn such that two fish figures are formed. The
lines passing through the fish figures are extended and their point of intersection is found.
With this point as the centre, draw a circle passing through the above three points. The [tip
of the] shadow on that day will always be along the circle drawn.

In Fig. 3.17, EW and NS represent the east–west and the north–south lines on
the horizon. The point O is the foot of the śaṅku. OAP2 and OBP1 are identical
triangles46 formed out of three sticks whose dimensions are the bāhu, the kot.i and
the chāyā of the usual śaṅku of 12 aṅgulas at some instant. OA refers to the kot.i,
AP2 the bāhu of the shadow, and OP2 the chāyā, which is the hypotenuse of the
triangle whose sides are the kot.i and its bāhu at some instant during the day. If OP2

46 It is implicit that the variation in declination discussed in Section 3.3 is ignored.
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is taken to be of unit length, then OA and AP2 are the sine and the cosine of the
azimuth of the Sun. Here, the length of the chāyā L is given by

chāyā = L = OP2 = K sinz = 12tanz. (3.97)

The corresponding bhujā and kot.i are given by

bhujā = AP2 = |LcosA| = |K sinzcosA| (3.98)

kot.i = OA = |LsinA| = |K sin zsinA|. (3.99)

Similar considerations apply for the sides of the triangle OBP1 also.

O

A

B

3
SN

E

W

F

I

J

K

P
2

P1

P

path traced by the tip of the shadow

HC

G

(foot of the śaṅku)

Fig. 3.17 The path traced by the tip of the shadow of the śaṅku on any day.

The point P3 in Fig. 3.17 represents the tip of the midday shadow. With P1, P2 and
P3 as centres, three circles are drawn. The points of intersection of the circles with
P1 and P3 as centres intersect at G and I and form a matsya (fish [figure]). Similarly,
the points of intersection of the circles with P2 and P3 as centres intersect at F and
H and form another matsya. We draw straight lines passing through the matsyas
which intersect at point C (represented by solid lines FHC and GIC in the figure).
These lines intersect at a point C. With C as the centre and with CP3 as the radius we
draw a circle. It can be shown that this circle will necessarily pass through points P1
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and P2. According to the text, the path traced by the tip of the shadow of the śaṅku
on that day is given by this circle represented by JP2P3P1K. However, as we will
show below, the path traced is a hyperbola and not a circle.

The circle described in the text

We illustrate the construction of the circle implicit in the verses by taking the dec-
lination of the Sun to be southerly, i.e. when δ is negative and the chāyābhujā (the
distance between the tip of the shadow and the east–west line) is greater than the
vis.uvadbhā (the equinoctial midday shadow).

M PCN
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W

S3

1

P
2

P

O

Fig. 3.18 The locus traced by the tip of the shadow.

As mentioned earlier (see Fig. 3.17), the point P3 corresponds to the midday
shadow and P1,P2 correspond to some common value of the zenith distance, z. Then

midday shadow = OP3 = 12tan(φ − δ )

chāyābhujā = OM = |x| = 12tanφ −K
sin δ
cosφ

= 12tanφ − 12sinδ
coszcosφ

=
12

cosφ

(
sinφ − sinδ

cosz

)
. (3.100)

By construction, the lengths of the shadow (the chāyā) at P1 and P2 are equal and
are given by

OP1 = OP2 = 12tanz. (3.101)

Hence the magnitude of the cosine of the shadow is
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chāyākot. i = MP1 = MP2

or |y| =

√
chāyā2 − bhujā2

=
√

122 tan2 z−OM2. (3.102)

Let C be the centre of the circle which passes through P1,P2 and P3. Let CP3 = R.
Now

CM = OC−OM

= CP3 +OP3 −OM

= R+ 12tan(φ − δ )−|x|. (3.103)

Then, considering the right-angled triangles CMP1 and CMP2, we have

CP2
1 = CP2

2

= (R +12tan(φ −δ )−|x|)2 + |y|2. (3.104)

Using the fact that |x|2 + |y|2 = 122 tan2 z,

CP2
1 = CP2

2 = R2 +2R(12tan(φ − δ )−|x|)+ 122 tan2(φ −δ )

−2 |x| 12tan(φ − δ )+ 122 tan2 z. (3.105)

As P1, P2, P3 lie on a circle of radius R with C as centre,

CP2
1 = CP2

2 = R2. (3.106)

Equating the two expressions for CP2
1 , from (3.105) and (3.106) we have

R =
122 tan2 z−24 |x| tan(φ − δ )

2(|x|−12tan(φ − δ ))
, (3.107)

where |x| is given by (3.100) and R is the radius of the circle passing through the
tip of the shadow at midday and the pair of shadow tips, corresponding to a given
zenith distance.

The very fact that R is dependent on the zenith distance z implies that the tip
of the shadow does not trace a circle over the day. Now we arrive at an expression
which describes the locus traced by the tip of the shadow.

The actual curve traced by the tip of the shadow

In order to arrive at the locus of the shadow, we consider the north–south and east–
west lines as the X and Y axes, and the base of the śaṅku as the origin as indicated
in Fig. 3.19. Let the coordinates of the tip of the shadow of a 12-unit śaṅku at P be
(x,y). Here these coordinates incorporate the sign also. For instance, in the figure
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M
N

P(x,y)

O

W

S

E

chāyā

Fig. 3.19 To show that the curve traced by the tip of the shadow is a hyperbola.

x is negative whereas y is positive. |x| and |y| are the chāyābhujā and chāyākot. i,
whereas

OP =
√

x2 + y2, (3.108)

is the chāyā (shadow). Now, the coordinates of the tip of the shadow, x and y, are
given by

x = K sinzcosA = 12tanzcosA

and y = K sinzsin A = 12tanzsinA. (3.109)

Earlier we showed that

−K sinzcosA = 12tanφ −K
sinδ
cosφ

= 12tanφ − 12sinδ
coszcosφ

. (3.110)

Therefore,

−x = 12tanφ − 12sinδ
coszcosφ

or x + 12tanφ =
12sinδ
cosφ

secz

or 12secz = (x+ 12tanφ)
cosφ
sinδ

. (3.111)

From (3.109),
√

x2 + y2 = 12tanz. Also,
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122 sec2 z = 122 tan2 z+122

= x2 + y2 +122. (3.112)

Now from (3.111) and (3.112), we find

(x+ 12tanφ)2 cos2 φ
sin2 δ

= x2 + y2 + 122. (3.113)

After some straightforward manipulations, we find

(
x +

12sinφ cosφ
cos2 φ − sin2 δ

)2

− y2 sin2 δ
cos2 φ − sin2 δ

= 122 sin2 δ cos2 δ
(cos2 φ − sin2 δ )2

. (3.114)

This is the equation for a hyperbola, as cos2 φ − sin2 δ > 0 mostly except when
|δ | > 90− φ , which is possible only for latitudes φ > 66 1

2
◦
. Even for such high

latitudes, this will be only for certain periods when the Sun becomes circumpolar,
in which case the tip of the shadow traces an ellipse.

1. When δ = 0, we have
x = −12tanφ .

This implies that the tip of the shadow traces a straight line parallel to the east–
west line at a constant distance of 12 tanφ (the vis.uvadbhā) from it, towards
north for an observer in the northern hemisphere.47 This is as expected.

2. The midday shadow is along the north–south line when y = 0. Then

x +
12sinφ cosφ

cos2 φ − sin2 δ
=

12sinδ cosδ
cos2 φ − sin2 δ

or x = −12

(
sinφ cosφ − sinδ cosδ

cos2 φ − sin2 δ

)

= −12tan(φ − δ ). (3.115)

This is also as expected, since the zenith distance, z, at midday is φ − δ and the
length of the shadow is 12 tanz.

Only one arm of the hyperbola would be relevant for a particular day as

x+ 12tanφ = 12
sinδ
cosφ

secz

and the sign of RHS is determined by δ . We depict the relevant arm of the hyperbola
when

• δ is negative (southern declination),
• when δ is positive (northern) with δ < φ ,
• when δ is positive (northern) with δ > φ .

47 The same will be towards the south for an observer in the southern hemisphere.
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in Figs. (3.20)(a), (b) and (c) respectively.
It is important to note that Śaṅkara Vāriyar clearly states in Yukti-d̄ıpikā that

the path traced by the tip of the shadow is not actually a circle; and that in stating
that it is a circle, Nı̄lakan.t.ha is merely following the tradition. In his own words:C+.a;ya;a;Bra;ma;Na;vxa:�Ma ya;du ;�M :pra;a;�a;ya;k+:mea;va ta;t,a Ávxa:�a;ma;a;geRa;Na Ba;a;g{a;~ya Bra;ma;Na;a;nua;pa;pa;a:�a;taH Á:pUa;va;Ra;.a;a;ya;Ra;nua:=+ea;Dea;na :ke +:va;lM ta;
a;d;h;ea;
a;d;ta;m,a Á Á 48

The statement made here that it is a circle is only approximate, since it has not been proved
that the tip of the shadow of the śaṅku [throughout the course of the day] traces the path of
a circle. It is stated here simply to maintain concordance with what has been stated by the
earlier teachers.
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Fig. 3.20 The different hyperbolas obtained with the change in the declination of the Sun.3.19 :pra;k+:a:=+a;nta:=e +Na C+.a;ya;a;Bua:ja;a;na;ya;na;m,a
3.19 Another method for finding the Rsine of the shadowA;[a:$ya;a.Èåî ÁÁ*+;a;n}å.a;h;a;Za;ñÍö�ÅÅ*:+.eaH Za;ñÍö�ÅöÅ*:+.g{Ma l+.}ba;k+:a;&+.ta;m,a Á.sa;vRa;d;a d;Æa;[a;NMa ta;�a:;dÄâ ya;ea:$ya;ma;k+:Ra;g{a;ya;a;
a;pa ta;t,a Á Á 47 Á Áya;a;}yea ga;ea;le ma;h;a;ba;a;hu H .sa;Ea;}yea ..a;a;g{a;dõ ;ya;a;nta:=+m,a ÁA;�a;Da;ke Y:�a;a;
a;pa Za;ñÍö�ÅöÅ*:+.g{ea ya;a;}yaH .~ya;a;d;nya;Ta;ea:�a:=H Á Á 48 Á ÁC+.a;ya;a;k+:NRa;h;taH .sa;eaY;
a;pa ;
a:�a:$ya;a;Ba;�+:eaY;ñÍç ÅÅ*:u +.l+.a;tma;kH Á;
a;va;pa:=� +a;ta;
a;d;ga;pyea;Sa :pUa;va;Ra;n�a;a;ta;sa;ma;eaY;
a;pa ..a Á Á 49 Á Á
48 {TS 1977}, p. 214.
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aks.ajyāghnānmahāśaṅkoh. śaṅkvagram. lambakāhr. tam |
sarvadā daks.in. am. taddhi yojyamarkāgrayāpi tat || 47 ||
yāmye gole mahābāhuh. saumye cāgradvayāntaram |
adhike ′trāpi śaṅkvagre yāmyah. syādanyathottarah. || 48 ||
chāyākarn. ahatah. so ′pi trijyābhakto ′ṅgulātmakah. |
vipar̄ıtadigapyes.a pūrvān̄ıtasamo ′pi ca || 49 ||
dvādaśaghno ′thavā bāhuh. śaṅkunā mahatā hr. tah. |
aṅgulātmakamevam. vā chāyābhyāmathavā nayet || 50 ||
The aks.ajyā multiplied by the mahāśaṅku and divided by the lambaka is the śaṅkvagrā
and always lies to the south. [If the Sun is] in the southern hemisphere, the arkāgrā has
to be added to that (́saṅkvagrā) to get the mahābāhu [and] in the northern the difference
between the two agrās [gives the mahābāhu]. Here again, if the śaṅkvagrā is greater than
the arkāgrā, then [the mahābāhu] will be to the south, otherwise to the north.

This multiplied by the chāyākarn. a and divided by the trijyā gives the mahābāhu
in aṅgulas. Though this (the mahābāhu) obtained is in the opposite direction (the
vipar̄ıtadigapi), it is the same [in magnitude] as the one that was obtained earlier. Oth-
erwise, this may be obtained by multiplying the mahābāhu by twelve and dividing by the
mahāśaṅku. Thus, this can also be obtained from the shadows measured in aṅgulas.
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Fig. 3.21a Śaṅkvagrā when the declination is north (+ve) and A > 90◦.

In Fig. 3.21a, the Sun rises at Sr, moves along the diurnal circle and sets at St .
If we assume that Sun’s declination δ is constant through the day, SrSt would be
parallel to the east–west line. From St , draw StG perpendicular to the east–west line
meeting it at G. StG is the arkāgrā or arkaj̄ıvā.

Now the plane of the diurnal circle is inclined at an angle 90−φ with the horizon.
From G draw GD perpendicular to the plane of the diurnal circle meeting it at D. Join
StD, which would be perpendicular to GD. Clearly, DŜtG = 90−φ and DĜSt = φ .
StDG is a latitudinal triangle (a right-angled triangle with the latitude as one of the
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angles). Now GD = |Rsinδ |. Hence

arkāgrā = StG =

∣∣∣∣R
sin δ
cosφ

∣∣∣∣ . (3.116)

Let S be the position of the Sun at some instant, when its zenith distance is z and the
azimuth is A, as shown in the figure. Draw SF perpendicular to the horizon meeting
it at F . Draw FSh perpendicular to StSr meeting it at Sh and the east–west line at R.
SShF is also a latitudinal triangle with ShŜF = φ . Now

mahāśaṅku = SF = Rcosz (3.117)

and mahācchāyā = OF = Rsinz. (3.118)

The distance between the base of the śaṅku F and the east–west line EW , denoted
by RF , is known as the mahābāhu or the chāyābāhu.

mahābāhu = RF = OF sin(A− 90)

= −RsinzcosA

= |Rsin zcosA|. (3.119)

The perpendicular distance of the foot of the gnomon F from the line SrSt , denoted
by ShF , is known as the śaṅkvagrā. It is so named because it gives the distance of
the foot of the śaṅku at any given time from the line passing through the rising and
setting points of the Sun.

Now, in the right-angled triangle SShF , ShŜF = φ and ShF = SF sinφ
cosφ . Hence

śaṅkvagrā = mahāśaṅku× aks.ajyā

lambaka
= Rcosz× Rsinφ

Rcosφ
, (3.120)

as stated. The śaṅkvargā is always to the south of SrSt . Now

śaṅkvagrā = ShF

= ShR +RF

= StG +RF

= arkāgrā+mahābāhu

or mahābāhu = śaṅkvagrā−arkāgrā. (3.121)

This is so when the declination is north and A > 90◦. In Figs 3.21b and 3.21c,
we depict the cases when declination δ is north (+ve) and A < 90◦ and when the
declination δ is south (−ve).

When δ > 0 and A < 90◦, we see that

arkāgrā = ShR

= ShF +RF

= śaṅkvagrā+mahābāhu
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Fig. 3.21b Śaṅkvagrā when the declination is north (+ve) and A < 90◦.
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Fig. 3.21c Śaṅkvagrā when the declination is south (−ve).

or mahābāhu = arkāgrā− śaṅkvagrā. (3.122)

When the declination is south (δ < 0), as shown in Fig. 3.21c,

mahābāhu = RF = ShF +ShR (3.123)

= śaṅkvagrā+ arkāgrā. (3.124)

All the cases can be combined in a single formula. Consider the spherical triangle
ZPS in Fig. 3.21a. In this triangle,

cos(90−δ ) = cos(90−φ)cosz+ sin(90−φ)sinzcosA
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or −RsinzcosA = Rcosz
sinφ
cosφ

−R
sinδ
cosφ

, (3.125)

where the arkāgrā is
∣∣∣R sinδ

cosφ

∣∣∣, the śaṅkvagrā is
∣∣∣Rcoszsinφ

cosφ

∣∣∣ and the mahābāhu or

chāyā-bāhu is |RsinzcosA|.
When the declination is north, it can be seen that the chāyābāhu RF is to the

south when the śaṅkvagrā ShF is greater than the arkāgrā, as in Fig. 3.21a, but it
is to the north when the śaṅkvagrā is less than the arkāgrā, as in Fig. 3.21b. When
the declination is south, the śaṅkvagrā, arkāgrā and chāyābāhu are all to the south
as in Fig. 3.21c.

The chāyābāhu or chāyābhujā in aṅgulas is given by

chāyābāhu = |K sin zcosA|

=

∣∣∣∣
12sinz
cosz

cosA

∣∣∣∣ . (3.126)

Dividing the relation between the mahābhāhu (chāyābāhu), arkāgrā and śaṅkvagrā
in (3.125) by Rcosz and multiplying by 12, we have

∣∣∣∣12
sinz
cosz

cosA

∣∣∣∣ =

∣∣∣∣12tanφ −K
sinδ
cosφ

∣∣∣∣ (3.127)

or chāyābāhu (aṅgulas) = |vis.uvadbhā±agraj̄ıvā (aṅgulas)| . (3.128)

This has been stated earlier.3.20 .sa;ma;ma;Nq+.l+.Za;ñÍö�ÅÅ*:u H
3.20 Gnomon when the Sun is on the prime verticalA;[a:$ya;ea;na;a ya;d;a kÒ +:a;�////�a;ntaH .sa;Ea;}ya;a ta;Ma ;
a:�a:$ya;ya;a h;ta;a;m,a ÁA;[a:$ya;ya;a ;
a;va;Ba:$ya;a;�aH Za;ñÍö�ÅÅ*:u H .~ya;a;t,a .sa;ma;ma;Nq+.le Á Á 51 Á Á

aks.ajyonā yadā krāntih. saumyā tām. trijyayā hatām |
aks.ajyayā vibhajyāptah. śaṅkuh. syāt samaman. d. ale || 51 ||
When the declination of the Sun is to the north and it is less than the latitude of the place,
then the Rsine of declination multiplied by the trijyā and divided by Rsine of the latitude
gives the śaṅku in samaman. d. ala [when the Sun is on the prime vertical].

The term samaman. d. ala refers to prime vertical, ZEZ′ in Fig. 3.22. Let z0 be the
zenith distance of the Sun with declination δ , when it is on the prime vertical. Then
the expression for the śaṅku is given to be

śaṅku =
krāntijyā× trijyā

aks.ajyā

or Rcosz0 =
Rsinδ ×R

Rsinφ
. (3.129)
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In the spherical triangle PZS, ZS = z0, PZ = 90−φ , PS = 90− δ and PẐS = 90.
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Fig. 3.22 Computation of the samaman. d. ala-́saṅku.

Applying the cosine formula, we have

sinδ = cosz0 sinφ ,

which is the same as (3.129).

Significance of the condition that δ < φ and it must be north

1. If the condition δ < φ is not satisfied, then the Sun will never cross the prime ver-
tical during its diurnal motion, and hence the expression for the samaman. d. ala-
śaṅku (3.129) does not have any significance.

2. If the Sun does not have a northern declination, then it will not be above the
horizon when it crosses the prime vertical.

The rule of three which is implicit in arriving at the formula given by (3.129) is
explained in Yukti-d̄ıpikā as follows.o+.d;ga;k+:Ra;g{a;ya;a tua;�yea Za;ñÍö�ÅöÅ*:+.g{ea ;�a;na;tya;d;Æa;[a;Nea Á:pra;�a;ta;[a;NMa ;Æa;Ba;�a:�+:pea ya;a;tya;kR H .sa;ma;ma;Nq+.l+.m,a Á Á 49

49 {TS 1977}, p. 214. The prose order for this verse is: :pra;�a;ta;[a;NMa ;Æa;Ba;�a:�+.pea ;�a;na;tya;d;Æa;[a;Nea Za;ñÍö�ÅöÅ*:+.g{eao+.d;ga;k+:Ra;g{a;ya;a tua;�yea (.sa;�a;ta) A;kR H .sa;ma;ma;Nq+.lM ya;a;�a;ta Á
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When the śaṅkvagrā, which changes continuously, becomes equal to the udagarkāgrā,
then the Sun reaches the prime vertical.

When the Sun is on the prime vertical, its azimuth is 90◦ and the mahābāhu is
zero. Then the śaṅkvagrā is equal to the arkāgrā, as given by (3.125). That is

Rcosz0
sinφ
cosφ

= R
sinδ
cosφ

or Rcosz0 = R
sinδ
sinφ

. (3.130)ta;d;T a nyUa;na;ta;a kÒ +:a;nteaH .sa;Ea;}ya;ta;a k+:Tya;teaY;[a;taH 50 ÁkÒ +:a;ntya;[a;�a;na;ya;ma;ea :vea;dùÅ;aH Za;ñÍö�ÅöÅ*:+.g{a;a;k+:Ra;g{a;ya;ea:=+
a;pa 51 Á Á
It is only for this to happen [that is, for the Sun to be on prime vertical] that it is stated that
the declination has to be north and has to be less than the latitude of the place. [Further,] the
condition on the declination and latitude is the same as that on the śaṅkvagrā and arkāgrā.

While the first half of the above verse is straightforward, the second half needs
explanation. For this, let us consider the spherical triangle PZS′ in Fig. 3.22. When
the Sun is not on the prime vertical—as shown at S′ in the figure—the angle PẐS′ 6=
90. Let us denote this angle by ψ and the zenith distance by z. That is, PẐS′ = ψ
and ZS′ = z. Now using the cosine formula we have

sinδ = coszsin φ + sinzcosφ cosψ

or
sinδ
cosφ

= cosz tan φ + sinzcosψ . (3.131)

This can be written as
arkāgrā = śaṅkvagrā+X . (3.132)

In the above expression, since sin z is always positive, the quantity X is positive only
when ψ < 90◦. In otherwords, the śaṅkvagrā is less than the arkāgrā only till the
time when the Sun reaches the prime vertical from its rising..sa;Ea;}ya;kÒ +:a;ntea;yRa;d;a;[ea;Na tua;�ya;ta;a .ja;a;ya;tea kÒ +:ma;a;t,a ÁdÒ +�u H .sa;ma;ea;pa;�a:= ta;d;a ya;a;tya;kR H .sa;ma;ma;Nq+.l+.m,a Á Áo+.d;ë�Åë�Á*:" +:a;ntya;�pa;ta;a;ya:�a;a .sa;ma;Za;ñÍö�ÅöÅ*:+.�pa;ta;a ta;taH ÁkÒ +:a;�////�a;ntaH .sa;Ea;}ya;a;[a;tua;�ya;a ..ea;t,a .sa;ma;Za;ñÍö�ÅÅ*:u +.�///�a;~:�a;ma;Ea;
a;vRa;k+:a Á Á.sa;ma;ea;pa;�a:=+�;a;d;kR +:~ya ;
a;d;na;ma;Dyea :pra;vxa;a:�a;taH ÁA;[a;ta;ea nyUa;na;sa;*ñÍËÉ ùÁ+;a;a;ya;aH ta;~ya;aH Za;ñÍö�ÅÅ*:Mu ta;ta;ea na;yea;t,a Á Á
50 The prose order for this half of the verse is: kÒ +:a;nteaH .sa;Ea;}ya;ta;a, A;[a;taH nyUa;na;ta;a (..a) ta;d;T ak+:Tya;tea Á
51 The reading in the printed edition is: Za;ñÍö�ÅöÅ*:+.k+:Ra;g{a;a;g{a;ya;ea:=+
a;pa Á
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a:�a:$ya;a;sa;mea .sa;Ea;}ya;kÒ +:a;�////�a;ntaH A;[a;sa;ma;a ya;
a;d Á.sa;ma;Za;ñÍö�ÅÅ*:+.Ea ta;ta;ea nyUa;nea ta;tkÒ +:a;�////�a;nta;ma;
a;pa ..a;a;na;yea;t,a Á Á 52

As the northern declination [of the Sun] gradually increases and becomes equal to the lati-
tude the Sun crosses the prime vertical right above the observer.

The measure of smallness of the samaman. d. ala-́saṅku depends upon the measure of the
declination. When the declination is equal to the latitude, then the samaman. d. ala-́saṅku
becomes equal to the trijyā. This is because the Sun crosses [the prime vertical] right
above the observer at midday. From this [information], let the samaman. d. ala-́saṅku be
ascertained [by the rule of three] when the declination is less than the latitude. When the
saumyakrānti is equal to the aks.a, then the [samaman. d. ala] śaṅku is the trijyā. When
the samaśaṅku is less than that (the trijyā), the corresponding krānti may be obtained.

The underlying mathematical equation, based on which the different cases have been
described in the above verses, is given by the rule of three, and may be expressed as

Rcosz0 =
Rsinδ
Rsinφ

R. (3.133)3.21 .sa;ma;Za;ñÍö�ÅÅ*:u +.na;a A;kR +:~å.Pu +.fH
3.21 True longitude of the Sun from the samaśaṅkuA;[a:$ya;a.Èåî ÁÁ*+H :pa:=+kÒ +:a;ntya;a &+.taH Za;ñÍö�ÅÅ*:u H .sa d;ea;gRua;NaH Áta;�a;a;pa;mea;va Ba;a;nuaH .~ya;a;t,a ..a;kÒ +:a;D a va;a ta;dU ;�a;na;ta;m,a Á Á 52 Á Á

aks.ajyāghnah. parakrāntyā hr. tah. śaṅkuh. sa dorgun. ah. |
taccāpameva bhānuh. syāt cakrārdham. vā tadūnitam || 52 ||
The [sama]́saṅku [as defined in the previous verse] multiplied by Rsine of the latitude and
divided by the Rsine of the maximum declination gives the dorjyā. The corresponding arc
or that reduced from 180 degrees is the [longitude of] the Sun.

Here the term dorjyā refers to the Rsine of the longitude of the Sun. It is given by

dorjyā =
śaṅku×aks.ajyā

parakrānti

or Rsinλ =
Rcosz0 ×Rsinφ

Rsinε
, (3.134)

where λ is the sāyana (tropical) longitude of the Sun, z0 its zenith distance when it
is on the prime vertical and ε the maximum declination, which is taken to be 24◦.
As Rsinδ = Rsinλ sinε , the above relation is equivalent to Rsinδ = Rcosz0 sin φ ,
which is the same as (3.130) derived earlier.

In (3.134) when Rsinλ is known, the corresponding arc is not determined
uniquely as sin(180◦−λ ) = sinλ . This fact is expressed thus in Yukti-d̄ıpikā.

52 {TS 1977}, pp. 214–5.



3.22 Hypotenuse of the shadow from samaśaṅku 193d;ea:$ya;Ra;.a;a;pa;sa;ma;ea Ba;a;nuaH ta;tk+:a;le :pra;Ta;mea :pa;de Á;
a;dõ ;t�a;a;yea tua :pa;de :vea;dùÅ;aM ..a;kÒ +:a;D a .~ya;a;t,a ta;dU ;�a;na;ta;m,a Á Á 53

When the Sun is in the first quadrant, the longitude of it is equal to the arc of the dorjyā; if
it is in the second quadrant, then the longitude is equal to 180 degrees minus the arc.3.22 .sa;ma;Za;ñÍö�ÅÅ*:+.eaH A;ñÍç ÅÅ*:u +.l+.a;tma;kH k+:NRaH

3.22 Hypotenuse of the shadow from the samaśaṅku in
aṅgulasl+.}ba;a;[a:$yea ;
a;va;Sua;va;;�ÂåÅ +a;kR +Èåî ÁÁ*+e kÒ +:a;�////�a;nta:j�a;a;va;ya;a Ba;�e Á.sa;ma;ma;Nq+.l+.gea Ba;a;na;Ea k+:Na;ERa ta;a;va;ñÍç ÅÅ*:u +.l+.a;tma;k+:Ea .~å.pa;�;Ea Á Á 53 Á Á

lambāks.ajye vis.uvadbhārkaghne krāntij̄ıvayā bhakte |
samaman. d. alage bhānau karn. au tāvaṅgulātmakau spas.t.au ||53 ||
The Rcosine and the Rsine of latitude multiplied separately by the vis.uvadbhā and twelve
[respectively], when divided by the Rsine of the declination of the Sun give the true hy-
potenuse [of the śaṅku] in aṅgulas when the Sun is on the prime vertical.

In Fig. 3.23, S is the Sun on the prime vertical and N is the foot of perpendic-
ular drawn from the Sun on to the horizon. Z is the zenith and OX the usual
dvādaśāṅgula-́saṅku (the gnomon described earlier in this chapter, verses 1–3).
Here ZSE represents the prime vertical.

The two expressions for the hypotenuse (CX) prescribed in the verse are:

karn. a =
lambajyā× vis.uvadbhā

krāntij̄ıvā

and karn. a =
aks.ajyā× arka

krāntij̄ıvā
. (3.135)

The term arka literally means the Sun. In this context it refers however to the num-
ber 12. Therefore the above expressions for the karn. a reduce to

CX =
Rcosφ ×12tanφ

Rsinδ

and CX =
Rsinφ × 12

Rsinδ
, (3.136)

which are the same. Using the expression for the samaman. d. ala-śaṅku given by
(3.130), the above equations reduce to

CX =
12×R
Rcosz0

. (3.137)

53 {TS 1977}, p. 15.
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Fig. 3.23 Length of the hypotenuse in terms of the samaman. d. ala-́saṅku.

This is the chāyākarn. a, K, when the Sun is on the prime vertical. The rationale
behind it can be understood with the help of Fig. 3.23. The two triangles COX and
ONS are similar. Hence

CX
OS

=
OX
NS

or CX =
OX ×OS

NS

=
12×R
Rcosz0

. (3.138)3.23 :pra;k+:a:=+a;nta:=e +Na k+:Na;Ra;na;ya;na;m,a
3.23 Obtaining the hypotenuse of the shadow by a different

methodma;Dya;.C+.a;ya;a ya;d;a ma;Dyea ;
a;va;Sua;va;tsa;ma:=e +Ka;ya;eaH Áta;n}å.a;Dya;a;�îå+:Ba;vaH k+:NRaH ;
a;va;Sua;va;.C+.a;ya;ya;a h;taH Á Á 54 Á Áma;Dya;a;�îå+:a;g{a;a;ñÍç ÅÅ*:u +.lE +.BRa;�H k+:NRaH .~ya;a;t,a .sa;ma;ma;Nq+.le Á
madhyacchāyā yadā madhye vis.uvatsamarekhayoh. |
tanmadhyāhnabhavah. karn. ah. vis.uvacchāyayā hatah. || 54 ||
madhyāhnāgrāṅgulairbhaktah. karn. ah. syāt samaman. d. ale |

When the [tip of the] midday shadow lies between the vis.uvadrekhā and the samarekhā,
then the hypotenuse of the shadow is multiplied by the equinoctial shadow and divided by
the agrā in aṅgulas corresponding to noon that day. This gives the karn. a in aṅgulas
(when the Sun is) on the prime vertical.
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The terms vis.uvadrekhā and samarekhā refer to the equinoctial line (UV ) and the
east–west line (EW ) in Fig. 3.8 respectively. The condition that the midday shadow
should lie between these two lines implies that 0 < δ < φ , whose significance is
explained in Section 3.18. As the zenith distance at noon is (φ −δ ), the chāyākarn. a
K at midday is given by

K =
12

cos(φ −δ )
. (3.139)

It has already been noted that the equinoctial midday shadow, the vis.uvacchāyā, is
12 tanφ . Also, the arkāgrā or agraj̄ıvā in aṅgulas on any day is

arkāgrā = K
sinδ
cosφ

. (3.140)

Using (3.139) in the above equation, we have

arkāgrā =
12

cos(φ −δ )

sinδ
cosφ

. (3.141)

The karn. a (in aṅgulas) when the Sun is on the prime vertical is stated to be

samaman. d. ala-karn. a = chāyākarn. a×
vis.uvacchāyā

agraj̄ıvā

=
12

cos(φ − δ )
× 12tanφ(

12sinδ
cos(φ−δ )cosφ

)

= 12
sinφ
sinδ

. (3.142)

As the samaman. d. ala-karn. a (in aṅgulas) is 12
cosz0

, the above relation is equivalent
to

cosz0 =
sinδ
sinφ

, (3.143)

which was obtained earlier (3.130).3.24 .sa;ma;Za;ñÍö�ÅÅ*:u +.na;a ga;tEa;Sya;pra;a;Na;aH
3.24 The duration elapsed and yet to elapse from the

samaman. d. ala-śaṅku.sa;ma;ma;Nq+.l+.Za;ñÍö�ÅÅ*:u H l+.}ba.Èåî ÁÁ*+H ;
a:�a:$ya;ya;a &+.taH Á Á 55 Á Áo+.n}å.a;Nq+.l+.a;t,a 54 dùÅ;au ;vxa:�a:$ya;a, ;
a:�a:$ya;a.Èåî ÁÁ*+;a dùÅ;au :$ya;ya;a &+.ta;a Áta;�a;a;pMa ..a:=+.a;a;pa;a;Q.�aM ga;tEa;Sya;a;sa;va O;;va ;
a;h Á Á 56 Á Á
54 The reading in both the printed editions is: o+.n}å.a;Nq+.l+.a Á
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samaman. d. alaśaṅkuh. lambaghnah. trijyayā hr. tah. ||55 ||
unman. d. alāt dyuvr. ttajyā, trijyāghnā dyujyayā hr. tā |
taccāpam. caracāpād. hyam. gatais.yāsava eva hi ||56 ||
The samaman. d. ala-́saṅku multiplied by the lambaka and divided by the trijyā is the
dyuvr. ttajyā from the unman. d. ala. This multiplied by the trijyā and divided by the
dyujyā gives the arc corresponding to it, and that added to the cara gives the prān. as
elapsed and yet to elapse.

In the above verse the procedure is given for determining the time elapsed since the
sunrise till the Sun reaches the prime vertical. Consider Fig. 3.24. Here S is the Sun
on the prime vertical and Sr is the sunrise point. SB is the part of the diurnal circle
between the 6 o’clock circle and the prime vertical. The desired duration is obtained
in two steps.

1. The duration corresponding to the diurnal motion of the Sun between the 6 o’clock
circle and the prime vertical, the segment ES′ corresponding to h, and

2. The duration corresponding to interval between the sunrise point and the 6 o’clock
circle, which is the cara (S′rP̂E).

Let BS be the segment on the diurnal circle corresponding to ES′. The dyuvr. ttajyā
is the Rsine of h reduced to the diurnal circle, and is thus given by Rcosδ sinh.
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Fig. 3.24 Determination of the time taken by the Sun to reach the prime vertical from its rise at
the observer’s location.

The expression given for the dyuvr. ttajyā is:
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dyuvr. ttajyā =
samaman. d. ala-śaṅku× lambaka

trijyā

or Rcosδ sinh =
Rcosz0 ×Rcosφ

R
. (3.144)

In Fig. 3.24, considering the spherical triangle PSE, we have SE = 90− z0, PS =
90−δ , PÊS = 90−φ and SP̂E = h. Applying the sine formula we get

sinh
sinSE

=
sinPÊS
sinPS

or sinh =
cosz0 cosφ

cosδ
, (3.145)

which is the same as (3.144). The arc of this (h), converted into prān. as, is added
to the cara in prān. as represented by the arc ES′r, to obtain the time elapsed since
sunrise till the Sun reaches the prime vertical.3.25 .sa;ma;Za;ñÍö�ÅÅ*:u +.na;a na;ta;pra;a;Na;aH
3.25 Hour angle from the samaman. d. ala-śaṅkul+.}ba.Èåî ÁÁ*+H .sa;ma;Za;ñÍö�ÅÅ*:u H .saH dùÅ;au :$ya;a;Ba;�+:eaY;Ta ta;tkx +:�a;ta;m,a Átya;�+:a ;
a:�a:$ya;a;kx +:tea;mRUa;lM ..a;a;
a;pa;tMa ;
a;h na;ta;a;sa;vaH Á Á 57 Á Á

lambaghnah. samaśaṅkuh. sah. dyujyābhakto ′tha tatkr. tim |
tyaktvā trijyākr. termūlam. cāpitam. hi natāsavah. || 57 ||
The square of the product of the samaman. d. ala-́saṅku and the lambaka divided by the
dyujyā is subtracted from the square of the trijyā. The arc of the square root of this is the
natāsavah. .

The term natāsavah. refers to the hour angle of a celestial object, H , and the nata-
jyā is RsinH. In the above verse, Nı̄lakan. t.ha gives the expression for the Rsine of
the hour angle (H) of the Sun when it is on the prime vertical:

nata-jyā =

[
trijyā2 −

(
samaman. d. ala-śaṅku× lambaka

dyujyā

)2
] 1

2

or RsinH =

[
R2 −

(
Rcosz0 ×Rcosφ

Rcosδ

)2
] 1

2

. (3.146)

We have already shown in (3.145) that

sinh =
cosz0 cosφ

cosδ
. (3.147)

Since H = 90◦−h (see Fig. 3.24), we have
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cosH =
cosz0 × cosφ

cosδ

or sinH =

[
1−
(

cosz0 × cosφ
cosδ

)2
] 1

2

, (3.148)

which is the same as (3.146).3.26 :pra;k+:a:=+a;nta:=e +Na na;ta;pra;a;Na;aH
3.26 Hour angle by another method.sa;ma;ma;Nq+.l+.ga;a C+.a;ya;a ;
a:�a:$ya;a.Èåî ÁÁ*+;a dùÅ;au :$ya;ya;a &+.ta;a Á..a;a;
a;pa;ta;a va;a na;ta;pra;a;Na;aH k+:ea;f�a;a va;a .sa;vRa;d;a ta;Ta;a Á Á 58 Á Á

samaman. d. alagā chāyā trijyāghnā dyujyayā hr. tā |
cāpitā vā nataprān. āh. kot.yā vā sarvadā tathā || 58 ||
The arc of the product of the samaman. d. ala-chāya and the trijyā divided by the dyujyā
is always the hour angle. This could also be obtained from the kot.i.

Here is another formula for the hour angle of the Sun when it is on the prime vertical.
The term samaman. d. ala-chāyā refers to the mahācchāyā when the Sun is on the
prime vertical. This is given by ON in Fig. 3.23. Since ZS = ZÔS = OŜN = z0, the
chāyā of the samaman. d. ala-́saṅku, SN, is given by ON = OS sinz0 = Rsinz0. The
expression for the nata-jyā given in the above verse is:

nata-jyā =
samaman. d. ala-chāyā× trijyā

dyujyā

or RsinH =
Rsinz0 ×R

Rcosδ
. (3.149)

We arrive at the same result using the spherical triangle PZS in Fig. 3.24 and apply-
ing the sine formula. We have

sinZPS
sinZS

=
sinPZS
sinPS

. (3.150)

Since ZS = z0, ZP̂S = H, PẐS = 90 and PS = 90−δ the above equation reduces to

sinH =
sin z0

cosδ
, (3.151)

which is the same as (3.149). In the fourth quarter of the above verse, it is stated
that the hour angle can also be obtained from the kot.i. The term kot.i here refers
to Rcosz0. Hence, it is suggested that the samaman. d. ala-chāyā (Rsinz0) can be
obtained from the samaman. d. ala-śaṅku (Rcosz0) using the relation

Rsinz0 =
√

R2 − (Rcosz0)2. (3.152)
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3.27 Ks.itijyā from the samaman. d. ala-śaṅkuA;[a:$ya;a.Èåî ÁÁ*+;Ea .sa;ma;Ea Za;ñÍö�ÅÅ*:U ;
a:�a:$ya;a;l+.}ba;k+:Ba;a;Æa:ja;ta;Ea ÁkÒ +:a;ntya;k+:Ra;g{ea ta;ya;eaH kx +:tya;eaH Bea;d;mUa;lM ;Æa;[a;tea;gRua;NaH Á Á 59 Á Á

aks.ajyāghnau samau śaṅkū trijyālambakabhājitau |
krāntyarkāgre tayoh. kr. tyoh. bhedamūlam. ks. itergun. ah. || 59 ||
The product of the aks.ajyā and samaman. d. ala-́saṅku [kept at two different places] di-
vided by the trijyā and the lambaka are the krānti and the arkāgrā respectively. The
square root of the difference of their squares is the ks.itijyā.
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Fig. 3.25 Determination of the ks.itijyā from the samaman. d. ala-́saṅku.

In Fig. 3.25, X and Y represent the Sun when it is on the horizon, and on the
6 o’clock circle respectively. The Rsine of the arc length XY along the diurnal circle
is the ks. itijyā or kujyā (earth-sine). In other words, the ks.itijyā is the Rsine of
ascensional difference reduced to the diurnal circle. The arc WV =W P̂X is the cara
or the ascensional difference. Hence

ks.itijyā =
Rcosδ ×RsinWV

R
. (3.153)

The expressions for the krānti and the arkāgrā as given in the above verse are:

krānti =
aks.ajyā× samaman. d. ala-śaṅku

trijyā
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and arkāgrā =
aks.ajyā× samaman. d. ala-śaṅku

lambaka
. (3.154)

Or,

krānti =
Rsinφ ×Rcosz0

R
, arkāgrā =

Rsinφ ×Rcosz0

Rcosφ
. (3.155)

Substituting for Rcosz0 from (3.133), the above equations reduce to

krānti = Rsinδ , arkāgrā =
Rsinδ
Rcosφ

, (3.156)

as expected. The ks. itijyā is said to be given by

ks. itijyā =

√
arkāgrā2 − krānti2. (3.157)

Substituting for the arkāgrā and the krānti from (3.156), we find

ks. itijyā =
Rsinδ Rsinφ

Rcosφ
. (3.158)

Now, WV is the ascensional difference ∆α , which is given by

RsinWV = Rsin∆α = R
sinφ sinδ
cosφ cosδ

. (3.159)

Hence the ks. itijyā given by (3.157) reduces to the standard form, cosδ ×Rsin∆α.3.28 d;Za;pra:(îéa;aH
3.28 The ten problemsI+.h Za;ñÍö�ÅÅ*:u +.na;ta;kÒ +:a;�////�a;nta;
a;d;ga;g{a;aY;[ea;Sua :pa:úãÁ*.a;sua Ádõ ;ya;ea;dõR ;ya;ea:=+a;na;ya;nMa d;Za;Da;a .~ya;a;t,a :pa;=E +�///�a;~:�a;Æa;BaH Á Á 60 Á Á.sa;Za;ñÍö�ÅÅ*:+.va;ea na;ta;kÒ +:a;�////�a;nta;
a;d;ga;[a;aH .sa;na;ta;a;~ta;Ta;a ÁA;pa;kÒ +:ma;
a;d;ga;g{a;a;[a;a ;
a;d;ga;[a;Ea kÒ +:a;�////�a;nta;sMa;yua;ta;Ea Á Á 61 Á Á;
a;d;ga;[a;a;
a;va;�a;ta n�a;a;ya;ntea dõ ;ndõ� ;a;BUa;yea;ta;=E +�///�a;~:�a;Æa;BaH Á

iha śaṅkunatakrāntidigagrā ′ks.es.u pañcasu |
dvayordvayorānayanam. daśadhā syāt paraistribhih. || 60 ||
saśaṅkavo natakrāntidigaks.āh. sanatāstathā |
apakramadigagrāks.ā digaks.au krāntisam. yutau || 61 ||
digaks.āviti n̄ıyante dvandv̄ıbhūyetaraistribhih. |
Out of the five quantities śaṅku, nata, krānti, digagrā and aks.a, any two of them can
be determined from the other three and this happens in ten different ways. Pairs from the
sequences (i) śaṅku, nata, krānti, digagrā and aks.a; (ii) nata, krānti, digagrā and
aks.a; (iii) krānti, digagrā and aks.a; (iv) digagrā and aks.a; are [formed and] determined
with the other three.
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The modern equivalents of the five quantities listed in the above verses and the
notation used to represent them are given in Table 3.1.

Sanskrit name Modern equivalent Notation
Rsine of

śaṅku zenith distance Rsin z
nata hour angle R sinH
krānti declination Rsinδ
digagrā amplitude R sina
aks.a latitude Rsinφ

Table 3.1 The five quantities associated with the problem of the daśapraśna.

Out of these five quantities, four (the exception being the latitude of the observer)
keep continuously changing with the diurnal motion of the Sun. Further, it is noted
that if any three of them are given the other two can be determined. The next 26
verses (up to verse 87 of this chapter) describe how this can be done in each of
the ten different ways, which forms the subject matter of the daśapraśnāh. (the ten
problems).

Both the krānti and the apakrama refer to the Rsine of the declination of the Sun.
Similarly, the amplitude, digagrā is referred to by other names such as the āśāgrā
or the arkāgrā. The terms āśā and dik have the same meaning, namely direction. In
this context, the term āśāgrā refers to the angle between the vertical circle passing
through the Sun and the prime vertical passing through the zenith and the east–west
points on the horizon. All these quantities are indicated in Fig. 3.26.

The order in which the ten pairs are selected, as given in verse 61 and the first
half of verse 62, is shown in Table 3.2.

Set Pairs formed from this set
{z,H,δ ,a,φ} (z,H), (z,δ ), (z,a), (z,φ )
{H,δ ,a,φ} (H,δ ), (H,a), (H,φ )
{δ ,a,φ} (δ ,a), (δ ,φ )
{a,φ} (a,φ )

Table 3.2 The ten pairs that can be formed out of the five quantities associated with the
daśapraśnāh. .

Verses 62–87 describe the explicit procedure for the solution of these ‘ten prob-
lems’. In the explanatory notes for the same, we derive the stated procedures from
modern spherical trigonometry. However, Nı̄lakan. t.ha would have used a different
methodology to arrive at these results. In fact, the detailed demonstration of the
solution of each of these problems is presented in Jyes.t.hadeva’s Yuktibhās. ā. In
Appendix D we present the Yuktibhās. ā method of solving the ten problems by
giving the full derivation for two of them.
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Fig. 3.26 Celestial sphere with markings of the five quantities, namely śaṅku, nata, krānti, di-
gagrā and aks.a, associated with the daśapraśnāh. .3.29 kÒ +:a;�////�a;nta-;
a;d;ga;g{a;a;[EaH Za;ñÍö�ÅÅ*:u -na;tya;Ea
3.29 Determination of the zenith distance and hour angle from

the declination, amplitude and latitude (Problem 1)A;a;Za;a;g{a;a l+.}ba;k+:a;Bya;~ta;a ;
a:�a:$ya;a;Ba;�+:a ..a k+:ea;�a;f;k+:a Á Á 62 Á ÁBua:ja;a;[a:$ya;a ta;ya;ea;vRa;gRa;ya;ea;ga;mUa;lM (rua;�a;ta;hR :=H ÁkÒ +:a;ntya;[a;va;ga;ERa ta;dõ ;ga;Ra;t,a tya;�+:a k+:ea;f�a;Ea ta;ya;eaH :pa;de 55 Á Á 63 Á Áku +:ya;Ra;t,a kÒ +:a;ntya;[a;ya;ea;Ga;Ra;tMa k+:ea;f�a;ea;Ga;Ra;tMa ta;Ta;a :pa:=+m,a Á.sa;Ea;}yea ga;ea;le ta;ya;ea;ya;eRa;ga;a;t,a Bea;d;a;t,a ya;a;}yea tua ;Ga;a;ta;ya;eaH 56 Á Á 64 Á ÁA;a;dùÅ;a;Ga;a;teaY;�a;Da;ke .sa;Ea;}yea ya;ea;ga;Bea;d;dõ ;ya;a;d;
a;pa Á;
a:�a:$ya;a.Èåî ÁÁ*+;a;t,a h;a:=+va;ga;Ra;�aH Za;ñÍö�ÅÅ*:u +.�a:=+�;
a;d;gua;;�ÂåÅ +vaH Á Á 65 Á Á
55 The prose order: ta;ya;eaH :pa;de ku +:ya;Ra;t,a; (.tea) k+:ea;f�a;Ea (.~ya;a;ta;a;m,a) Á
56 The prose order: :pa:=+m,a (A;na;nta:=M ) ta;ya;eaH ;Ga;a;ta;ya;eaH ya;ea;ga;a;t,a .sa;Ea;}yea ga;ea;le , ya;a;}yea tua Bea;d;a;t,a,;
a:�a:$ya;a.Èåî ÁÁ*+;a h;a:=+va;ga;Ra;�aH I+.�;
a;d;gua;;�ÂåÅ +vaH Za;ñÍö�ÅÅ*:u H (Ba;va;�a;ta) Á (:pua;naH) .sa;Ea;}yea ga;ea;le A;a;dùÅ;a;Ga;a;teaY;�a;Da;ke , (.sa;�a;ta)ya;ea;ga;Bea;d;dõ ;ya;a;d;
a;pa (ya;ea;ga;a;t,a Bea;d;a;�a ;
a:�a:$ya;ya;a ;�a;na;h;tya, h;a:=+k+:va;geRa;Na ;
a;va;Ba:$ya, Za;ñÍö�ÅÅ*:U A;a;nea;ta;v.ya;Ea) Á
Here the commentator observes in Yukti-d̄ıpikā: ta:�a A;a;dùÅ;aH :pUa;va;Ra;pa:=+sUa:�a;taH .sa;Ea;}ya;
a;d;gga;taH;
a;dõ ;t�a;a;ya;ea ya;a;}ya;
a;d;gga;taH Á
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a;d;ga;g{a;a;Æa;Ba;BRa;vea;
a;d;�a;ta Á Á 66 Á ÁkÒ +:a;ntya;[a;Ga;a;tea ta;tk+:ea;f�a;eaH ;Ga;a;ta;a;t,a ya;a;}yeaY;�a;Da;ke .sa;�a;ta Ánea;�H Za;ñÍö�ÅÅ*:u +.BRa;vea;t,a .sa;Ea;}yea h;a:=+a;�a;a;pa;kÒ +:meaY;�a;Da;ke Á Á 67 Á Á
āśāgrā lambakābhyastā trijyābhaktā ca kot.ikā ||62 ||
bhujāks.ajyā, tayorvargayogamūlam. śrutirharah. |
krāntyaks.avargau tadvargāt tyaktvā kot.yau tayoh. pade ||63 ||
kuryāt, krāntyaks.ayorghātam. kot.yorghātam. tathā param |
saumye gole tayoryogāt bhedāt yāmye tu ghātayoh. ||64 ||
ādyaghāte ′dhike saumye yogabhedadvayādapi |
trijyāghnāt hāravargāptah. śaṅkuris.t.adigudbhavah. ||65 ||
chāyā tatkot.irāśāgrākot.ighnā sā dyuj̄ıvayā |
bhaktā natajyā krāntyaks.adigagrābhirbhavediti ||66 ||
krāntyaks.aghāte tatkot.yoh. ghātāt yāmye ′dhike sati |
nes.t.ah. śaṅkurbhavet saumye hārāccāpakrame ′dhike ||67 ||
The āśāgrā multiplied by the lambaka and divided by the trijyā is the kot.i. The bhujā
is the aks.ajyā. The square root of the sum of their squares is the hypotenuse and it is the
hara [or hāra, the divisor, which will be used later].

Then find the square roots of the squares of the krānti and the aks.a subtracted from it.
They form the kot.is. Similarly find the products of the krānti and the aks.a and also their
kot.is.

The sum and the differences of the products are multiplied by the trijyā and divided by the
square of the divisor [when the Sun is] in the northern and southern hemispheres respec-
tively. This gives the śaṅku that is formed in the desired direction. If the first product is
greater than the second one, in the northern hemisphere, then the śaṅku is obtained from
both the sum and the difference.

Its (the śaṅku’s) kot.i (compliment) is the chāyā (the shadow). When that is multiplied
by the kot.i (compliment) of the āśāgrā and divided by the dyujyā, the resultant is the
natajyā. Thus the śaṅku and the nata can be obtained from the krānti, the aks.a and the
āśāgrā.

In the southern hemisphere, when the product of the krānti and the aks.a is greater than the
product of the kot.is, there is no śaṅku [ i.e. no solution for z with z < 90◦]. Similarly, in
the nothern hemisphere, when the apakrama is greater than the divisor, there is no śaṅku.

Here, the problem is to obtain the zenith distance (śaṅku) and hour angle (nata)
in terms of declination (krānti), latitude (aks.a) and amplitude (āśāgrā), that is, z
and H are to be determined in terms of δ , φ and a. It is to be understood that the
amplitude in Indian astronomy is always less than 90◦ and is measured towards
either the north or the south from the prime vertical.

Formula for śaṅku

For convenience, we arrive at the required expression in three stages. In the pro-
cess of arriving at the expression for the śaṅku (Rcosz) a number of intermediate
quantities are defined, and these are taken up first.

57 The prose order: ta;tk+:ea;�a;fH C+.a;ya;a Á .sa;a (C+.a;ya;a) A;a;Za;a;g{a;a;k+:ea;�a;f.Èåî ÁÁ*+;a dùÅ;au :j�a;a;va;ya;a Ba;�+:a na;ta:$ya;a
(.~ya;a;t,a) Á
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Stage 1: Definition of hāra

Nı̄lakan. t.ha defines the divisor (hara or hāra) to be the hypotenuse of a triangle
ABC shown in Fig. 3.27(a). The sides AB and BC are defined to be the bhujā and
the kot.i respectively. The expressions for the bhujā and the kot.i are given by

bhujā = aks.ajyā kot.i =
āśāgrā× lambaka

trijyā

or AB = Rsinφ BC =
Rsina×Rcosφ

R
. (3.160)

The divisor, denoted by K in the following, is the hypotenuse AC of this triangle and
is given by

K = AC =
√

AB2 +BC2. (3.161)

Hence the square of the divisor which will be used later is given by

K2 = R2(sin2 φ + cos2 φ sin2 a). (3.162)

Note:

Often the aks.ajyā is simply referred to as the aks.a, the krāntijyā as the krānti and
so on in the above verses and the verses to follow, including the examples discussed
below. That is, the Rsine of a coordinate is simply referred to by the coordinate
itself.

Stage 2: Definition of the kot.is in terms of hāra and their products

The kot.is (k1 and k2) are defined by

k1 =
√

K2 − (Rsinδ )2, (3.163)

k2 =
√

K2 − (Rsinφ)2. (3.164)

Substituting for K2 in the above expressions we have

k1 = R
√

sin2 φ + cos2 φ sin2 a− sin2 δ , (3.165)

and k2 = R
√

sin2 φ + cos2 φ sin2 a− sin2 φ . (3.166)

Hence k2 = Rcosφ sina is the same as BC defined earlier. Further, the following two
products (denoted by the symbols X and Y ) are defined thus:

X = R(|sinδ |)Rsinφ (3.167)
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Fig. 3.27 Triangles used for arriving at the formula for the śaṅku (Rcosz) and the nata (RsinH)
in terms of the krānti (δ ), digagrā (a) and aks.a (φ ).

Y = k1k2. (3.168)

Substituting for k1 and k2, we find

Y = R2 cosφ sina
√

sin2 φ + cos2 φ sin2 a− sin2 δ . (3.169)

Stage 3: Expression for the śaṅku

The following results for the śaṅku are stated:
Case A: When the declination is north (δ > 0)

Rcosz =
X ±Y

K2 R

=
R2(sinφ |sinδ |± cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ )

R2(sin2 φ + cosφ sin2 a)
R.

(3.170)
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This is valid when the first term in the numerator is greater than the magnitude of the
second term (X > Y ). When the first term is less than the magnitude of the second
term (X < Y ), only the +ve sign is to be considered.

Moreover, there is no solution for the śaṅku when

Rsinδ > K =

√
R2 sin2 φ +R2 cos2 φ sin2 a, (3.171)

since the term inside the square root in the discriminant becomes negative, and con-
sequently the solution becomes complex.

Case B: When the declination is south (δ < 0)

Rcosz =
R2(−sinφ |sinδ |)+ cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ

R2(sin2 φ + cos2 φ sin2 a)
R.

(3.172)
In this case, the magnitude of the first term is less than the second term. If it were to
be otherwise, there would be no shadow.

Proof:

Though the expressions for śaṅku given by (3.170) and (3.172) seem to be involved,
they can be derived in a straightforward manner by applying the cosine formula to
the spherical triangle PZS shown in Fig. 3.27(b). Using the formula we have

sinδ = coszsin φ ± sinzcosφ sin a, (3.173)

when S is north or south of the prime vertical, corresponding to A = 90∓ a. Now,
making the substitution cosz = x, we have

sin δ = xsin φ ±
√

1− x2 cosφ sina. (3.174)

Therefore,
±
√

1− x2 cosφ sina = sinδ − xsinφ . (3.175)

Squaring the equation and rearranging the terms, we obtain the following quadratic
equation in x:

(sin2 φ + cos2 φ sin2 a) x2 − (2sinφ sinδ ) x+(sin2 δ − cos2 φ sin2 a) = 0. (3.176)

The roots of the above equation are:

x =
sinφ sinδ ±

√
sin2 φ sin2 δ − (sin2 φ + cos2 φ sin2 a)(sin2 δ − cos2 φ sin2 a)

(sin2 φ + cos2 φ sin2 a)
. (3.177)

Simplifying the expression within the square root sign in the above equation, we
find
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x = cosz =
(sinφ sinδ ± cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ )

(sin2 φ + cos2 φ sin2 a)
. (3.178)

It can be seen that (3.178) is equivalent to (3.170) and (3.172). When the declination
is north (δ positive), |sinδ | = sinδ . In that case, when X > Y , both the solutions
for cosz in (3.178) are positive and z < 90◦. These correspond to the situation with
the Sun S to the north or south of the prime vertical with the same value of the
āśāgrā, Rsina, but with different values of the azimuth A = 90◦± a. When X < Y ,
the second solution for cosz is negative or z > 90◦, and there is no śaṅku as the Sun
is below the horizon. Also, when Rsinδ > K, the solutions for cosz are complex
and there is no śaṅku.

When the declination is south (δ negative), |sinδ | = −sinδ , the first term in
(3.178) becomes negative, and a physical solution for cosz (positive value) is possi-
ble only when the +ve sign is taken in the second term and Y > X .

Formula for the nata

The expression given for the natajyā (RsinH) may be written as:

natajyā =
chāyā× āśāgrākot.i

dyujyā
, (3.179)

where the chāyā and the āśāgrākot.i (the Rsine of amplitude) are defined to be
compliments of the śaṅku and the āśāgrā respectively. That is,

chāyā =

√
trijyā2 − śaṅku2

=
√

R2 − (Rcosz)2 = Rsinz, (3.180)

and āśāgrākot. i =

√
trijyā2 − āśāgrā2

=
√

R2 − (Rsina)2 = Rcosa. (3.181)

Substituting for the chāyā, āśāgrākot.i and dyujyā (= Rcosδ ), the expression for
the natajyā becomes

RsinH =
Rsinz Rcosa

Rcosδ
. (3.182)

Using the spherical triangle PZS and applying the sine formula, we have

sinA
sin(90−δ )

=
sinH
sin z

. (3.183)

Since A = (90±a), the above equation reduces to
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sinH =
sinzcosa

cosδ
, (3.184)

which is the same as (3.182).o+.d;a;h:=+Na;m,a (An example)

In Laghu-vivr. ti, an example of the above procedure for finding z and H from δ , a
and φ is discussed. First, the values of δ , a and φ are stated in the form of a verse.kÒ +:a;�////�a;ntaH Za:=+dõùÅ;a;��a:(õ;a;Æa;ma;ta;a ;
a;d;ga;g{a;a ya;a;}ya;a Ba;vea;d, BUa;gua;Na;vea;d;d;~åò:a;aH Áma;h� ;a;Da:=+a;}Ba;ea;�a;Da:=+sEa;Æa;mRa;ta;eaY;[aH ta:�a;a;Zua Za;ñÍö�ÅÅ*:Mu va;d ta;�a;tMa ..a Á Á

The krānti is 225′, the digagrā which is to the south is 2431′ (and) the aks.a is 647′. Now
tell me quickly what are the śaṅku and the nata.

In the above verse, the values given of the krānti, digagrā and aks.a given are
those of the Rsines of the quantities. That is,

Rsinδ = 225′ Rsina = 2431′ Rsinφ = 647′.

The procedure to be adopted in determining the śaṅku and the nata from the above
values is described. The numerical values obtained in the intermediate stages of
the calculation are also explicitly given. In the following we give the passage from
Laghu-vivr. ti:ta:�a ta;a;va;t,a ma;h� ;a;Da:=+a;}Ba;ea;�a;Da:=+sa;pra;Æa;ma;ta;~ya A;[a;~ya k+:ea;�a;f:$ya;a:�+.pa;ea l+.}ba;kH ;
a:�a:$ya;a;vxa:�a;ga;taH.sa;�a;pa;vRa;ta;gua;Na;va;
a;�îå+:sa;*ñÍËÉ ùÁ+;aH Á A;a;Za;a;g{a;a ..a ya;a;}ya;a A;Dya;DRa:=+a;a;Za:$ya;a BUa;gua;Na;vea;d;d;~åò:a;sa;*ñÍËÉ ùÁ+;a;a Á 58ta;a;ma;a;Za;a;g{a;Ma l+.}ba;ke +:na ;�a;na;h;tya ;
a:�a:$ya;ya;a ;
a;va;Ba:$ya l+.b.Da;a ta;tk+:ea;�a;f;vxa:�a;ga;ta;a k+:ea;�a;f:$ya;ava;~va;�;va;
a;�îå+:d;~åò:a;sa;*ñÍËÉ ùÁ+;a;a Á A;[a:$ya;a ..a ta;;�ÂåÅu ;ja;a ta;ta;~ta;ya;ea;vRa;gRa;ya;ea;ga;mUa;l+.tua;�ya;~ta;tk+:Na;eRa:vea;d;a:(õ;a;yua;ga;d;~åò:a;sa;*ñÍËÉ ùÁ+;aH Á A;ya;mea;va h;a:=+k+:tvea;na :pa;(ãÉa;a;du ;pa;a;d� ;a;ya;tea Á ta;ta;~ta;~yEa;k+:~yEa;vah;a:=+k+:sMa;�a::℄a;ta;~ya k+:NRa;~ya va;gRa;taH :pxa;Ta;k, kÒ +:a;�////�a;nta;va;g a A;[a;va;g a ..a ;
a;va;Za;ea;Dya ;a;Za;�;mUa;l+.tua;�yeakÒ +:a;ntya;[a;k+:ea;f�a;Ea kÒ +:mea;Na .~ya;a;ta;a;m,a Á ta:�a;a;[a;k+:ea;�a;f;~ta;a;va;t,a :pUa;va;Ra;n�a;a;ta;a;[a;k+:ea;�a;f:$yEa;vava;~va;�;va;
a;�îå+:d;~åò:a;tua;�ya;a Á kÒ +:a;�////�a;nta;k+:ea;�a;f;~tua :vea;d;a;ñÍç ÅÅ*:+.yua;ga;d;~åò:a;tua;�ya;a Á A;Ta kÒ +:a;ntya;[a;ya;ea;Ga;Ra;ta;eaba;a;Na;a;
a;dÒ +BUa;ta;Za:=+ma;nua;sa;*ñÍËÉ ùÁ+;aH Á ta;t,a k+:ea;f�a;ea;Ga;Ra;ta;(ãÉa d;nta;a;Bra;kx +:ta;a;�;va;sua;BUa;ta;sa;*ñÍËÉ ùÁ+;a I+.t�a;a;ya;tpa;yRa;ntMak+:mRa ya;a;}ya;sa;Ea;}ya;ya;ea:�+:Ba;ya;ea:=+a;Za;a;g{a;ya;eaH .sa;ma;a;na;mea;va Á A;taH pa:=M ya;a;}ya;a;ya;a;ma;a;Za;a;g{a;a;ya;Mata;ya;ea;Ga;Ra;ta;ya;ea;
a;vRa:(ìÉÅ;e +SaH Á .sa;Ea;}ya;a;Za;a;g{a;a :pua;na;ya;Ra;}ya;ga;ea;Le na .sa;}Ba;va;�a;ta Á ta;ya;ea;ya;Ra;}ya;a;Za;a;g{a;a;ya;Mata;ya;ea;Ga;Ra;ta;ya;ea:=+nta:=M .sa;�ea;Sua;vea;d;a;�;gua;Na;a;
a;dÒ +Za:=+sa;*ñÍËÉ ùÁ+;aH Á ta;sma;a;t,a ;
a:�a:$ya;ya;a ;�a;na;h;ta;a;t,a h;a:=+k+:~ya:pUa;va;eRa;
a;d;ta;~ya va;geRa;Na;a;va;a;�a I+.�;Za;ñÍö�ÅÅ*:u +.gRua;Na;d;~åò:a;ya;ma;L+:a;�a;çÉîå+;a;sa;*ñÍËÉ ùÁ+;aH Á ta;t,a ;
a:�a:$ya;a;va;gRa;
a;va:(ìÉÅ;e +Sa;mUa;lMta;tk+:ea;�a;f:�+.pea;�;.C+.a;ya;a :Sa;NNa;va:�+:dÒ +sa;*ñÍËÉ ùÁ+;a;a, ta;Ma :pua;na:=+a;Za;a;g{a;a;k+:ea;f�a;a;Dya;DRa:=+a;a;Za:$ya;a;tua;�ya;ya;a;�a;na;h;tya dùÅ;au :$ya;ya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.Da;a na;ta:$ya;a va;sua;vea;d;a;�;sa;*ñÍËÉ ùÁ+;a;a .~ya;a;t,a Á ta;~ya;ana;ta:$ya;a;ya;a;(ãÉa;a;pMa na;ta;a;sa;va I+.�a;ta Á A:�a ..a na;ta;a;sUa;n,a ;
a;d;na;a;Da;Ra;
a;dõ ;Za;ea;Dya ;a;Za;�;a;sua;Bya;ea .j�a;a;va;Ma
58 The reading found in the printed edition {TS 1958} is: ‘A;a;Za;a;g{a;a ..a ya;a;}ya;a;dùÅ;a;DRa:=+a;a;Za:$ya;a ÁBUa;gua;Na;vea;d;d;~åò:a;sa;*ñÍËÉ ùÁ+;a;a’ Á We have presented a corrected version above.



3.29 Determination of z and H from δ , a and φ 209gxa;h� ;a;tva;a ta:�a ..a:=;$ya;Ma ..a ya;a;}ya;ea;d;gga;ea;L+:ya;eaH �+.Na;Da;nea kx +:tva;a ;Æa;[a;�a;ta:ja;a;du ;�a;ta;Ba;a;ga:$ya;a;ma;a;n�a;a;yadùÅ;au :$ya;a;l+.}ba;k+:Ga;a;tea;na ;�a;na;h;tya ;
a:�a:$ya;a;va;geRa;Na ;
a;va;Ba:$ya l+.b.Da;eaY;pya;ya;mea;va Za;ñÍö�ÅÅ*:u H Á ta:�aC+.a;ya;a;k+:ea;�a;f:�+.pa;a;ya;a dùÅ;au ;vxa:�a;ga;ta;a;ya;a na;ta:$ya;a;ya;a;(ãÉa C+.a;ya;a;ba;a;h;ea;(ãÉa ;Æa;ma;Ta;~tua;�ya;tva;a;d, A;yMaZa;ñÍö�ÅÅ*:u +.vRa;
a;�îåR +:k+:ea;Na;ga;ta I+.�a;ta ba;ea:;dÄâ ;v.ya;m,a Á Á
In the measure of a circle whose radius is the trijyā, the value of the lambaka, which is in
the form of the Rcosine corresponding to [the Rsine of] the aks.a whose measure is 647, is
3377. The āśāgrā is south. [And is equal to] the Rsine of one and a half rāśis (adhyardha-
rāśis), whose numerical value is 2431. The kot.ijyā that is obtained by multiplying that
āśāgrā by the lambaka and dividing by the trijyā, along the kot.ivr. tta is numerically
equal to 2388. Since the aks.ajyā is its bhujā, the karn. a given by the square root of the
sum of the squares of those two is equal to 2474.

It is only this that will be considered as the divisor later. Then, having subtracted the squares
of the krānti and the aks.a separately from the square of the karn. a, that was just described
as the divisor [above], the square root of the remaining results will be equal to the krānti-
kot.i and the aks.a-kot.i, respectively. There the aks.a-kot.i will be the same as the aks.a-
kot.ijyā 2388 obtained earlier. But the krānti-kot.i will be equal to 2464. Now the product
of the krānti and the aks.a is 145575. The product of their kot.is is 5884032. Thus till
now the process is the same for both the north and the south āśāgrās. From now on, if
the āśāgrā is south, the difference of their [i.e. krānti, aks.a and krānti-kot.i, aks.a-kot.i]
products [has to be taken]. The case of the āśāgrā being north does not arise in the southern
hemisphere.

If the āśāgrā is south, the difference of those [two] products is 5738457. This [difference]
multiplied by the trijyā and divided by the square of the divisor obtained earlier, is the
desired śaṅku, whose value is 3223. The square root of the difference of the squares of
that [́saṅku] and trijyā is the desired chāyā [shadow], which is the kot.i of that [́saṅku,
and] whose value is 1196. This again has to be multiplied by the āśāgrā-kot.i, which is
equal to 45◦, and divided by the dyujyā. The natajyā thus obtained will be numerically
equal to 848. The arc corresponding to that natajyā [in prān. as] is called the natāsus. The
same śaṅku is also obtained, by subtracting these natāsus from half the day, and taking
the Rsine of that, and applying this carajyā either negatively or positively depending upon
the southern or northern hemispheres [respectively], and taking the Rsine of the arc which
is above the horizon, and multiplying [it] with the product of the dyujyā and the lambaka
and dividing by the square of the trijyā. As the value of the natajyā in the measure of the
dyuvr. tta, which is in the form of the Rcosine of the shadow, and the value of the Rsine of
the shadow are same as each other, it is to be understood that this śaṅku is in the direction
of the south–east.

The passage above explains the procedure involved in problem 1 with a numerical
example. Here the Rsine values of the declination, the āśāgrā and the latitude are
given to be

Rsinδ = 225′ Rsina = 2431′ Rsinφ = 647′.

From these we have to find out the values of Rcosz and RsinH. This is done in
several steps. First we obtain lambaka (Rcosφ ) from the given value of the aks.ajyā
(Rsinφ ).

lambaka =
√

(trijyā)2 − (aks.ajyā)2

=
√

R2 − (Rsinφ)2
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=
√

(3438)2 − (647)2

≈ 3377.

Now a quantity, the kot.i, is defined in terms of the lambaka as follows.

kot.i =
āśāgrā× lambaka

trijyā

=
Rsina×Rcosφ

R

=
2431× 3377

3438
≈ 2388.

Here one may conceive of a right-angled triangle (ABC) with one side AB (the
bhujā) representing the given aks.ajyā (Rsinφ ) and the other side BC represent-
ing the (kot.i) obtained above. Evidently, the square root of the sum of the squares of
the two sides AB and BC gives the hypotenuse AC (the karn. a) denoted by K. That
is

karn. a =
√

(bhujā)2 +(kot.i)
2

=
√

(2388)2 +( 647)2

≈ 2474.

As the above value of karn. a will be used as the denominator in further calculations
(see (3.170) or (3.172)), it is also called the divisor. Now the text prescribes that
the squares of the Rsinφ (the aks.a) and Rsinδ (the krānti) be subtracted from
the square of the divisor separately, and the square roots taken in order to get the
aks.akot.i and the krāntikot.i respectively:

aks.akot.i =
√

(karn. a)2 − (aks.a)2

=
√

(2474)2 − (647)2

≈ 2388

and krāntikot.i =
√

(karn. a)2 − (krānti)2

=
√

(2474)2 − (225)2

≈ 2464.

Now the products of the krānti and the aks.a and their corresponding kot.is as given
above are to be obtained for further calculations:

krānti× aks.a = 647× 225 = 145575

krāntikot.i× aks.akot.i = 2388×2464 = 5884032.
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As per the prescription given, if the amplitude (the āśāgrā) is towards the south
(which happens to be the case in the present example), then the difference of the
two products has to be obtained. That is 5884032− 145575 = 5738457. Now this
value multiplied by the trijyā and divided by the square of the divisor gives the
desired śaṅku.

śaṅku (or) Rcosz =
5738457×3438

(2474)2

=
19728815166

6120676
≈ 3223.

The square root of the difference of the squares of the trijyā and the śaṅku gives
the shadow or chāyā.

chāyā (or) Rsin z =
√

(3438)2 − (3223)2

≈ 1196.

In order to obtain the nata-jyā as defined in (3.179), the chāyā has to be multiplied
by the āśāgrākot.i (Rcosa), and divided by the dyujyā (Rcosδ ). The values of the
latter two quantities are obtained from the given values of the āśāgrā and krānti
simply by subtracting their squares from the square of the trijyā and taking the
square root. That is,

āśāgrākot. i (or) Rcosa =
√

(trijyā)2 − (āśāgrā)2

=
√

(3438)2− (2431)2

≈ 2431

and dyujyā (or) Rcosδ =
√

(trijyā)2 − (krānti)2

=
√

(3438)2− (225)2

≈ 3430.

Therefore

nata-jyā (or) RsinH =
chāyā× āśāgrākot.i

dyujyā

=
Rsin z×RcosA

Rcosδ
.

=
1196× 2431

3430
≈ 848.

This completes the illustrative examples presented in the commentary Laghu-vivr. ti.
Now we proceed with Problem 2 given in the text.



212 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadow3.30 na;ta;a;Za;a;g{a;a;[EaH Za;ñÍö�ÅöÅ*:+.pa;kÒ +:ma;Ea
3.30 Determination of the zenith distance and declination from

the hour angle, amplitude and latitude (Problem 2)na;ta;l+.}ba;k+:ya;ea;Ga;Ra;ta;a;t,a ;
a:�a:$ya;a;�Ma ta;t,a .~va;de ;Za:ja;m,a Á.~va;de ;Za;na;ta;k+:ea;f�a;a;�Ma na;ta;a;[a:$ya;a;va;Da;a:�ua ya;t,a Á Á 68 Á Áta;d;a;Za;a;g{a;a;va;Dea k+:ea;f�a;ea;~ta;ya;ea;Ga;Ra;tMa ;Æa;[a;pea;d;Ta 59 ÁZa;ea;Da;yea;�+Æa;[a;Na;a;g{a;a;ya;Ma ;
a:�a:$ya;ya;a ..a ta;ta;ea h:=e +t,a Á Á 69 Á Ál+.b.Da;a;t,a .~va;na;ta;k+:ea;�a;f.Èåî ÁÁ*+;a;t,a :pxa;Ta;k, ;
a:�a:$ya;a;�a;va;�a;gRa;ta;m,a Áyua;�M .~va;na;ta;va;geRa;Na ta;n}å.Ua;le +.na &+.tMa :P+.l+.m,a 60 Á Á 70 Á Á:pxa;Ta;ë�Åë�Á*:x +:ta;a;t,a Ba;vea;.C+.ñÍö�ÅÅ*:u H C+.a;ya;a;ta;tk+:ea;�a;f;k+:a Ba;vea;t,a ÁC+.a;ya;a;g{a;a;k+:ea;�a;f;sMa;va;ga;Ra;t,a dùÅ;au :$ya;a l+.b.Da;a na;ta:$ya;ya;a Á Á 71 Á Ána;ta:$ya;a;dùÅ;au :$ya;ya;ea;~ta;dõ ;t,a C+.a;ya;a;k+:ea;�a;f;
a:�a:j�a;a;va;ya;eaH ÁC+.a;ya;a;
a;d;ga;g{a;a;k+:ea;f�a;ea;(ãÉa ;Ga;a;ta O;;k+:ea Ba;vea;t,a ta;taH Á Á 72 Á Ádõ ;ya;ea;=e +ke +:na ;
a;va;&+.taH ta;tsa;}ba;nD�a;a;ta:=+ea Ba;vea;t,a ÁdùÅ;au :$ya;a;
a:�a:j�a;a;va;ya;ea;vRa;gRa;Bea;d;mUa;l+.ma;pa;kÒ +:maH Á Á 73 Á Á
natalambakayorghātāt trijyāptam. tat svadeśajam |
svadeśanatakot.yāptam. natāks.ajyāvadhāttu yat || 68 ||
tadāśāgrāvadhe kot.yostayorghātam. ks.ipedatha |
śodhayeddaks.in. āgrāyām. trijyayā ca tato haret || 69 ||
labdhāt svanatakot.ighnāt pr. thak trijyāptavargitam |
yuktam. svanatavargen. a tanmūlena hr. tam. phalam || 70 ||
pr. thakkr. tāt bhavecchaṅkuh. chāyātatkot.ikā bhavet |
chāyāgrākot.isam. vargāt dyujyā labdhā natajyayā || 71 ||
natajyādyujyayostadvat chāyākot.itrij̄ıvayoh. |
chāyādigagrākot.yośca ghāta eko bhavet tatah. || 72 ||
dvayorekena vihr. tah. tatsambandh̄ıtaro bhavet |
dyujyātrij̄ıvayorvargabhedamūlamapakramah. || 73 ||
The product of the nata and the lambaka divided by the trijyā is [the nata] at one’s own
place (svadeśajam). The product of the nata and the aks.ajyā divided by the kot.i [of the
svadeśanata is preserved]. The product of this and the āśāgrā, and the product of their
kot.is, are found. Their sum or difference is taken, depending upon whether the āśāgrā is
to the north or south, and this is divided by the trijyā.
The result is multiplied by the kot.i of the svadeśanata and kept separately [and is pre-
served at two places]. [At one place] it is divided by the trijyā and the square of it is added
to the square of the svadeśanata. By the square root of the result, the product stored at the
other place is divided. The result is the śaṅku and the chāyā is the kot.i of it. The result
obtained by dividing the product of the chāyā and the kot.i of the āśāgrā, by the natajyā
is the dyujyā.
The product of the natajyā and the dyujyā, and similarly that of the chāyā-kot.i and the
trijyā, and in the same way that of the chāyā and the āśāgrā, are the same. Hence, of the
two elements involved in the product, dividing by one gives the other related element. The
apakrama is the square root of the difference between the trijyā and the dyujyā.

59 Prose order: ta;~ya A;a;Za;a;g{a;a;ya;a;(ãÉa va;Dea, ta;tk+:ea;f�a;aH A;a;Za;a;g{a;a;k+:ea;f�a;a;(ãÉa ;Ga;a;tMa ;Æa;[a;pea;t,a Á A;TaA;g{a;a;ya;Ma d;Æa;[a;Na;a;ya;Ma Za;ea;Da;yea;t,a Á
60 Prose order: :pxa;Ta;ë�Åë�Á*:x +:ta;a;t,a (= :pxa;Ta;k, .~Ta;a;
a;pa;ta;a;t,a), ta;n}å.Ua;le +.na &+.tMa :P+.lM Za;ñÍö�ÅÅ*:u H Ba;vea;t,a Á
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In these verses, the second problem, of finding the zenith distance (śaṅku) and
the declination (krānti), in terms of the hour angle (nata), the latitude (aks.a) and
the amplitude (āśāgrā), is considered. That is, z and δ are determined in terms of
H, φ and a.

As in the earlier problem, before stating the formula for the śaṅku (Rcosz) a
few intermediate quantities are defined here also. First, the svadeśanata and the
svadeśanata-kot.i, which are compliments of each other, are defined as

svadeśanata =
natajyā× lambaka

trijyā
,

or Rsinh =
RsinH ×Rcosφ

R
. (3.185)

Hence,

svadeśanata-kot.i = Rcosh =
√

R2 − (Rsinh)2. (3.186)

Two more quantities which depend on the svadeśanata-kot.i, which we denote by x
and y, are defined thus

x =
RsinH ×Rsinφ

Rcosh
, (3.187)

and

y =

√
R2 − x2 ×Rcosa ± x×Rsina

R
, (3.188)

‘+’ when the āśāgrā is north and ‘−’ when it is south.
Suppose we choose āśāgrā to be north as shown in Fig. 3.28. Then substituting

for x in the above equation and simplifying we have

y =
R[sinH sinφ sina+ cosH cosa]

cosh
. (3.189)

For convenience, we further define two quantities ρ and ξ as follows:

ρ =

(
y×Rcosh

R

)2

(3.190)

ξ =

√
ρ +R2 sin2 h. (3.191)

Now the śaṅku is given by

Rcosz =
y×Rcosh

ξ
. (3.192)

Substituting for y and ξ we have

Rcosz =
R[sinH sinφ sina + cosH cosa]√

[sinφ sina + cotH cosa]2 sin2 H + sin2 H cos2 φ
. (3.193)
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Simplifying further we have

Rcosz =
R[sinφ sina + cotH cosa]√

[sinφ sina + cotH cosa]2 + cos2 φ
(āśāgrā: north). (3.194a)

When the āśāgrā is south,

y = R
[cosH cosa− sinH sinφ sina]

cosh
.

Following an identical procedure as above, we find

Rcosz =
R[cotH cosa− sinφ sina]√

[sinφ sina− cotH cosa]2 + cos2 φ
(āśāgrā: south). (3.194b)
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Fig. 3.28 Spherical triangle used for arriving at the formula for the śaṅku (Rcos z) and the
apakrama (Rsinδ ), in terms of the nata (H), āśāgrā (a) and aks.a (φ ).

Proof:

The expressions for the śaṅku given in (3.194) can be arrived at by applying the
cotangent formula or the four-parts formula in spherical trigonometry to the spher-
ical triangle PZS shown in Fig. 3.28. Taking H , PZ = 90−φ , A and z as the four
parts,
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sinφ cosA = cosφ cotz− sinAcotH. (3.195)

In arriving at the above equation we have used the fact that A = 90− a. Rewriting
the above equation,

cotz =
1

cosφ
[sinφ cosA + sinAcotH]. (3.196)

Or,

1 + cot2 z =
1

cos2 φ
(cos2 φ +[sinφ cosA+ sinAcotH]2). (3.197)

Since cosz = cotz√
1+cot2 z

, we have

cosz =
[sinφ cosA+ sinAcotH]√

[sinφ cosA + sinAcotH]2 + cos2 φ
. (3.198)

When the āśāgrā is north, A = 90−a and cosA = sina, sinA = cosa. Then (3.198)
reduces to (3.194a). Similarly when the āśāgrā is south, A = 90 + a, and cosA =
−sina, sinA = cosa. Then (3.198) reduces to (3.194b).

Having obtained the formula for the śaṅku, the declination is determined using
the relation

dyujyā =
chāyā× āśāgrākot.i

natajyā
, (3.199)

where the chāyā and the āśāgrākot.i are the same as defined in Problem 1 in (3.180)
and (3.181). Substituting for the chāyā, āśāgrākot. i and natajyā, the mathematical
expression for the dyujyā is

Rcosδ =
Rsinz Rcosa

RsinH
. (3.200)

The above expression can be easily obtained by using the spherical triangle PZS
and applying the sine formula. It can be seen that the above equation is the same as
(3.182). Further, it is stated that

natajyā× dyujyā = chāyākot. i× trijyā = chāyā× āśāgrākot.i. (3.201)

That is,

RsinH ×Rcosδ = Rsinzcosa×R = Rsinz×Rcosa. (3.202)

In the above equation the middle term Rsinzcosa refers to the projection of the
chāyā along the east–west line (EW ) as shown in Fig. 3.29. Here the point D repre-
sents the foot of the perpendicular drawn from the Sun to the plane of the horizon.
SD is the śaṅku (Rcosz) and the chāyā, its complement, is OD (Rsinz). In the pla-
nar right-angled triangle COD, CÔD = a, which is the spherical angle between the
prime vertical and the vertical passing through the Sun. The projection of chāyā
along the east–west line is the chāyākot.i or bhākot.i given by Rsinzcosa.
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Fig. 3.29 Celestial sphere, and a sectional view of it to define the chāyākot.i or bhākot.i.3.31 na;ta;a;pa;kÒ +:ma;a;[EaH Za;ñÍö�ÅöÅ*:+.a;Za;a;g{ea
3.31 Determination of the zenith distance and amplitude from

the hour angle, declination and latitude (Problem 3)na;ta;k+:ea;f�a;a h;ta;a dùÅ;au :$ya;a ;
a;va;Ba;�+:a ;
a:�a;Ba:j�a;a;va;ya;a Á.sa;Ea;}ya;ya;a;}ya;
a;d;Za;ea;BRUa:$ya;a;yua;ta;ea;na;a l+.}ba;k+:a;h;ta;a Á Á 74 Á Á;
a:�a:$ya;a;�a;a Za;ñÍö�ÅÅ*:u +=+a;Za;a;g{a;a;k+:ea;�a;fH dùÅ;au :$ya;a ..a :pUa;vRa;va;t,a Á
natakot.yā hatā dyujyā vibhaktātribhaj̄ıvayā |
saumyayāmyadísorbhūjyāyutonā lambakāhatā ||74 ||
trijyāptā śaṅkurāśāgrākot.ih. , dyujyā ca pūrvavat |
The kot.i of the natajyā is multiplied by the dyujyā and divided by the trijyā. Depending
upon whether the Sun is to the north or south, the bhūjyā is added to or subtracted from this
and the result, multiplied by the lambaka and divided by the trijyā, becomes the śaṅku.
The kot.is of the āśāgrā and the dyujyā [are to be obtained] as before.

Here, the zenith distance (śaṅku) and amplitude (āśāgrā) are obtained in terms of
the hour angle (nata), the latitude (aks.a) and the declination (krānti). That is, z and
a are obtained in terms of H, φ and δ .

In this problem, the expression for the śaṅku is not as complicated as in the
earlier problems. Even then an intermediate quantity, denoted by the symbol x, is
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defined thus:

x =
natajyākot.i×dyujyā

trijyā

or x =
RcosH ×Rcosδ

R
. (3.203)

It is then stated that the bhūjyā has to be added to or subtracted from this quantity.
The result has to be multiplied by the lambaka and divided by the trijyā to get the
expression for the śaṅku. That is,

śaṅku =
(x± bhūjyā)Rcosφ

R
. (3.204)

Since the bhūjyā or ks. itijyā is given by R tanφ |sinδ | (see Chapter 2, verse 27), the
above expression reduces to

Rcosz =
R(cosH cosδ ± tanφ |sinδ |)Rcosφ

R
= R(±sinφ |sin δ |+ cosφ cosδ cosH). (3.205)

As the +/− sign corresponds to a northerly/southerly declination, (3.205) is the
same as

Rcosz = R(sinφ sinδ + cosφ cosδ cosH). (3.206)

Equation (3.206) follows by applying the cosine formula to the side ZS in the spher-
ical triangle PZS in Fig. 3.27. The āśāgrākot. i (Rcosa) is obtained using (3.200).3.32 na;ta;a;pa;kÒ +:ma;a;Za;a;g{a;a;Æa;BaH Za;ñÍö�ÅöÅ*:+.[a;Ea
3.32 Determination of the zenith distance and latitude from the

hour angle, declination and amplitude (Problem 4)C+.a;ya;Ma n�a;a;tva;a;Ta ta;tk+:ea;�a;f;dùÅ;au :$ya;a;va;ga;Ra;nta:=+a;t,a :pa;d;m,a Á Á 75 Á Áta;.C+.a;ya;a;ba;a;hu ;Ga;a;ta;ea yaH Za;ñÍö�ÅÅ*:u +.kÒ +:a;ntya;ea;vRa;Da;ea;
a;pa yaH ÁkÒ +:a;ntya;g{a;ya;ea;~tua tua;�ya;
a;d;Za;ea;~ta;ya;ea;BeRa;d;eaY;nya;Ta;a yua;�a;taH Á Á 76 Á Áo+.n}å.a;Nq+.l+.Æa;[a;�a;ta:ja;ya;eaH A;nta:=e Y;keR ..a ta;dùÅ;au ;�a;taH Áta:;dÄâ ;ta;Ma ;
a;va;Ba:jea;t,a ;
a:�a:$ya;Ma ta;.C+.a;ya;a;k+:ea;�a;f;va;gRa;ya;eaH Á Á 77 Á ÁA;nta:=e +Na Ba;vea;d;[aH na;ta;a;dùÅ;aE ;
a;vRa;
a;d;tEa;�///�a;~:�a;Æa;BaH Á
chāyām. n̄ıtvātha tatkot.idyujyāvargāntarāt padam || 75 ||
tacchāyābāhughāto yah. śaṅkukrāntyorvadhopi yah. |
krāntyagrayostu tulyadísostayorbhedo ′nyathā yutih. || 76 ||
unman. d. alaks.itijayoh. antare ′rke ca tadyutih. |
taddhatām. vibhajet trijyām. tacchāyākot.ivargayoh. || 77 ||
antaren. a bhavedaks.ah. natādyairviditaistribhih. |
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Having found the chāyā, the square root of the difference of the squares of the chāyākot.i
and the dyujyā is multiplied by the chāyā-bāhu. The sum/difference of the product of
the śaṅku and the krānti and the (aforementioned) product is taken when the krānti and
the āśāgrā have the different/same direction. If the Sun lies between the unman. d. ala (6’0
clock circle) and the ks.itija (horizon), then it must always be added. The result is multiplied
by the trijyā and divided by the difference of the squares of the trijyā and the chāyākot.i.
This gives the latitude in terms of the other three known quantities, the nata etc.

The fourth problem is devoted to the determination of the zenith distance (śaṅku)
and the latitude (aks.a), in terms of the hour angle (nata), the amplitude (āśāgrā)
and the declination (krānti). That is, z and φ are to be obtained in terms of H, a and
δ . It has already been emphasized earlier (see (3.202)) that the nata-jyā, the dyujyā
and the chāyākot. i are related as follows:

nata-jyā×dyujyā = chāyākot. i× trijyā

or RsinH cosδ = Rsinzcosa. (3.207)

Hence the chāyā (Rsinz) and therefore the śaṅku are determined in terms H , a and
δ . Now we only need to determine the latitude in terms of H, a and δ .

As in the earlier problems, a few intermediate quantities are defined. First an
intermediate quantity (say u) is defined as follows:

u =

√
dyujyā2 − chāyākot.i

2

=
√

(Rcosδ )2 − (RsinH cosδ )2

= RcosH cosδ . (3.208)

This u has to be multiplied by the chāyābāhu, which is given by

chāyābāhu =

√
chāyā2 − chāyākot.i

2

=
√

(Rsin z)2 − (RsinH cosδ )2

=
√

(Rsin z)2 − (Rsinzcosa)2 [by (3.203)]

= Rsin zsina. (3.209)

It may be noted that the chāyābāhu is nothing but the projection of the shadow
perpendicular to the east–west line (CD in Fig. 3.29). Further, another intermediate
quantity, y, is defined as follows:

y = u× chāyābāhu± śaṅkukrāntisam. varga

= RcosH cosδ ×Rsinzsina±Rcosz R|sinδ |. (3.210)

Then the aks.ajyā is given by the following expression:

aks.ajyā =
y× trijyā

(trijyā2 − chāyākot.i
2)
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or Rsinφ =
y×R

R2 − (Rsinzcosa)2 . (3.211)

Substituting for y, we have the following explicit expression for sinφ :

sinφ =
cosH cosδ sinzsina +∼ |sinδ |cosz

1− (sinzcosa)2 . (3.212)

Proof:

Here the above relation for sinφ is derived by using standard spherical trigonometri-
cal results. By applying the cosine formula for the spherical triangle PZS, as shown
in Fig. 3.27, we have

cosz = sinφ sinδ + cosφ cosδ cosH. (3.213)

This has to be solved for sinφ . Setting x = sinφ (and cosφ =
√

1− x2), we have

cosz− xsinδ =
√

1− x2 cosδ cosH

=
√

1− x2
√

cos2 δ − sin2 zcos2 a, (3.214a)

where we have used the relation

cosδ cosH =
√

cos2 δ − sin2 zcos2 a, (3.214b)

which is a consequence of (3.207). Squaring the equation and rearranging terms, we
obtain the following quadratic equation in x:

x2(1− sin2 zcos2 a)− 2xsinδ cosz− sin2 zsin2 a + sin2 δ = 0. (3.215)

Solving the equation, we have

x =
2sinδ cosz±

√
4sin2 δ cos2 z−4(sin2 δ − sin2 zsin2 a)(1− sin2 zcos2 a)

2(1− sin2 zcos2 a)
(3.216)

x =
sinδ cosz±

√
sin2 δ cos2 z− sin2 δ +X +Y −Z

1− sin2 zcos2 a
, (3.217a)

where

X = sin2 δ sin2 zcos2 a, (3.217b)

Y = sin2 zsin2 a, (3.217c)

and Z = sin4 zsin2 acos2 a. (3.217d)
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The first pair of terms in the discriminant in (3.217a) reduces to −sin2 δ sin2 z.
This with X reduces to −sin2 δ sin2 zsin2 a. It further reduces to sin2 zsin2 acos2 δ ,
when combined with Y . Combining this with Z and using (3.214b), the discrimi-
nant simply reduces to cosH cosδ sin zsina. Thus we have

x = sinφ =
sinδ cosz± cosH cosδ sinzsina

1− sin2 zcos2 a
, (3.218)

which is the same as (3.212).
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Fig. 3.30 The positions of the Sun towards the north and south of the prime vertical.

Now we discuss the signs as enunciated in the text. Consider the situation when
the declination is northerly (δ positive), as shown in Fig. 3.30(a). Then the first term
in the numerator is equal to |sin δ |cosz and is positive. For a northerly declination,
the Sun can be south or north of the prime vertical. Then we have to take the ‘−’
sign in (3.218), when the āśāgrā is north (Sun at S′) and the ‘+’ sign when the
āśāgrā is south (Sun at S).

In the latter case, H < 90◦ and cosH is positive, and we have to take the sum
of the magnitudes of the two terms. In the former case, the second term is negative
when H < 90◦, so that x will be the difference of the magnitudes of the two terms.
However, the second term is positive when H > 90◦, and we have to add the mag-
nitudes of the two terms. This corresponds to the situation when the Sun is between
the unman. d. ala and the horizon, as at S′′.

When the declination is south (δ negative), the first term in x in (3.218) is nega-
tive. Also, cosH is positive as H < 90◦. Then we have to take the ‘+’ sign in front
of the second term, as x = sinφ has to be positive. In this, the krānti and the āśāgrā
are both southerly and difference of the magnitudes of the two terms is to be taken.
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3.33 Determination of the hour angle and declination from the

zenith distance, amplitude and latitude (Problem 5)A;[a;Za;ñÍö�ÅöÅ*:+.ea;vRa;Da;ea ya;(ãÉa ya;(ãÉa Ba;a;ba;a;hu ;l+.}ba;ya;eaH Á Á 78 Á Á.sa;Ea;}ya;ya;a;}ya;�//////�a;~Ta;tea Ba;a;na;Ea ta;ya;ea;ya;eRa;ga;a;nta:=+a;t,a ta;taH ÁkÒ +:a;�////�a;nta;�///�a;~:�a:$ya;a;&+.ta;a :pra;a;gva;t,a na;ta:$ya;Ma ..a .sa;ma;a;na;yea;t,a Á Á 79 Á Á
aks.aśaṅkvorvadho yaśca yaśca bhābāhulambayoh. || 78 ||
saumyāyāmyasthite bhānau tayoryogāntarāt tatah. |
krāntistrijyāhr. tā prāgvat natajyām. ca samānayet || 79 ||
The sum or difference of the product of aks.a and śaṅku and the product of chāyābāhu
and lambaka is taken depending upon whether the Sun is to the north or south. The result
divided by the trijyā is the krānti. The natajyā may be obtained as before.

In this problem, the hour angle (nata) and declination (krānti) are obtained in
terms of the zenith distance (śaṅku), amplitude (āśāgrā) and the latitude (aks.a) are
given. That is, H and δ are obtained in terms of z, a and φ .

The expression for the krānti is given as

krānti =
aks.a× śaṅku± chāyābāhu× lambaka

trijyā
(3.219)

Rsinδ =
Rsinφ ×Rcosz±Rsinzsina×Rcosφ

R
, (3.220)

where ‘+’ must be chosen when the Sun is to the north (of the prime vertical) and
‘−’ otherwise. The above relation can be verified by applying the cosine formula to
the side PS in the spherical triangle PZS shown in Fig. 3.27. We have

sinδ = sinφ cosz+ cosφ sinzcosA. (3.221)

Now A = 90◦±a and cosA = ∓sina, depending on whether the Sun is to the south
or north of the prime vertical. The expression for the natajyā has already been given
in Problem 1, in terms of z, a and δ . Hence the natajyā can be obtained, as z and a
are already known and δ has been determined.3.34 Za;ñÍö�ÅöÅ*:+.pa;kÒ +:ma;a;[EaH na;ta;a;Za;a;g{ea
3.34 Determination of the hour angle and amplitude from the

zenith distance, declination and latitude (Problem 6);
a:�a:$ya;a;pa;kÒ +:ma;Ga;a;ta;ea yaH ya;(ãÉa Za;ñÍö�ÅöÅ*:+.[a;ya;ea;vRa;DaH Áta;ya;ea;ya;eRa;ga;a;nta:=M ya:�ua ga;ea;l+.ya;ea;ya;Ra;}ya;sa;Ea;}ya;ya;eaH Á Á 80 Á ÁBa;a;ba;a;hu ;lR +.}ba;k+:a;�a;eaY;sma;a;t,a ;
a:�a:$ya;a.Èåî ÁÁ*+;a;;�ÂåÅ +a;&+.tea;�;
a;d;k, Á
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trijyāpakramaghāto yah. yaśca śaṅkvaks.ayorvadhah. |
tayoryogāntaram. yattu golayoryāmyasaumyayoh. ||80 ||
bhābāhurlambakāpto ′smāt trijyāghnādbhāhr. tes.t.adik |
The sum or difference of the product of the trijyā and the apakrama and that of the śaṅku
and the aks.a is found, depending upon whether the Sun is in the northern or the southern
hemisphere. The result divided by the lambaka is the bhābāhu. This multiplied by the
trijyā and divided by the bhā (chāyā) is the is. t.adik (āśāgrā).

In the sixth problem the hour angle (nata) and amplitude (āśāgrā) are obtained
in terms of the zenith distance (śaṅku), declination (apakrama or krānti) and the
latitude (aks.a). That is, H and a are obtained in terms of z, δ and φ .

The expression for the krānti is given in two steps. Initially a term called the
bhābāhu is defined thus:

bhābāhu =
trijyā× krānti +∼ śaṅku×aks.a

lambaka

=
R×R|sinδ | +∼ Rcosz×Rsinφ

Rcosφ
, (3.222)

where the sum/difference is considered when the declination is south/north. Then
the āśāgrā is given by

āśāgrā =
bhābāhu× trijyā

chāyā

Rsina =
[R×R|sinδ | +∼ Rcosz×Rsinφ ]

Rcosφ ×Rsinz
×R. (3.223)

Here ‘+’ or ‘∼’ is to be taken when δ is negative or positive respectively.

Proof:

From (3.220),
sinzcosφ sina = ± (coszsin φ − sinδ ), (3.224)

when the āśāgrā is south/north. When the declination is south, −sinδ = |sinδ |, the
āśāgrā is necessarily south and we have

sina =
|sinδ |+ coszsinφ

cosφ sinz
. (3.225)

When the declination is north,

sinδ = |sinδ | (3.226)

and sina =
|sinδ |− coszsin φ

cosφ sinz
. (3.227)

These coincide with the stated expression (3.223) for the āśāgrā.
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3.35 Determination of the hour angle and latitude from the

zenith distance, declination and amplitude (Problem 7)va;ga;Ra;nta:=+pa;dM ya;t,a .~ya;a;t,a C+.a;ya;a;k+:ea;�a;f;dùÅ;au :j�a;a;va;ya;eaH Á Á 81 Á Áta;.C+.a;ya;a;ba;a;hu ;ya;ea;ga;ea yaH Za;ñÍö�ÅÅ*:u +.kÒ +:a;ntyEa;k�+.a;va;gRa;taH Á.tea;na;a;�Ma ya;t,a :P+.lM ta;�/////////�a;sma;�ea;va ta;t,a .~va;mxa;NMa :pxa;Ta;k, Á Á 82 Á Áta;ya;ea:=+�pa;h;ta;a ;
a:�a:$ya;a ma;h;ta;a;�a;a;[a;ma;Ea;
a;vRa;k+:a Á
vargāntarapadam. yat syāt chāyākot.idyuj̄ıvayoh. || 81 ||
tacchāyābāhuyogo yah. śaṅkukrāntyaikyavargatah. |
tenāptam. yat phalam. tasminneva tat svamr. n. am. pr. thak ||82 ||
tayoralpahatā trijyā mahatāptāks.amaurvikā |
The square root of the difference of the squares of the dyujyā and the chāyākot.i is found
and it is added to the chāyābāhu [to get D]. The square of the sum of the śaṅku and the
krānti is divided by this, (D) [to obtain say, C]. To the result (C), kept separately, D is
added and subtracted. The smaller one multiplied by the trijyā and divided by the larger
one gives the aks.ajyā.

In Problem 7, the hour angle (nata) and latitude (aks.a) are obtained in terms
of the zenith distance (́saṅku), the declination (krānti) and the amplitude (āśāgrā).
That is, H and φ are obtained in terms of z, δ and a.

The expression for the hour angle has already been found in the earlier problems.
Hence, in the above verses the expression for the aks.a alone is considered. As usual,
it is convenient to define a few intermediate quantities. Initially a term, say x, is
defined as:

x =

√
dyujyā2 − chāyākot.i

2

=
√

(Rcosδ )2 − (RsinH cosδ )2

= RcosH cosδ . (3.228)

The chāyābāhu, Rsinzsina, must be added to x. The result (D) is given by

D = RcosH cosδ + Rsinzsina. (3.229)

In the next step, another quantity (say C) is defined as

C =
(Rcosz+Rsinδ )2

D
. (3.230)

Then the sum and difference of C and D are found. Of these two, obviously the
difference (C−D) will be smaller than the sum (C + D). Then the aks.a is the ratio
of the product of the smaller one and the trijyā to that of the larger one. That is,

aks.a = R× (C−D)

(C +D)
. (3.231)
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Substituting for C and D we have

Rsinφ = R× (Rcosz+ Rsinδ )2 − (RcosH cosδ +Rsinzsin a)2

(Rcosz+ Rsinδ )2 +(RcosH cosδ +Rsinzsin a)2 . (3.232)

Proof:

The above expression may be obtained by applying the cosine formula to the spher-
ical triangle PZS, shown in Fig. (3.28), for the sides ZS and PS. We then have

cosz = sinφ sinδ + cosφ cosδ cosH (3.233)

sinδ = sinφ cosz+ cosφ sinzcosA. (3.234)

Therefore

cosz+ sinδ = sinφ(cos z+ sinδ )+

cosφ(cosH cosδ + sinzsina).

or (cosz+ sinδ )(1− sinφ) = cosφ(cosH cosδ + sinzsina).

(3.235)

As D = R(cosH cosδ + sinzsina), squaring both sides and rewriting cos2 φ as (1−
sin2 φ) in the RHS, we have

(cosz+ sinδ )2(1− sinφ)2 = (1− sin2 φ)
D2

R2 . (3.236)

Therefore

(1− sin2 φ)

(1− sinφ)2 =
(cosz+ sinδ )2

D2 R2

or
(1− sin2 φ)− (1− sinφ)2

(1− sin2 φ)+ (1− sinφ)2
=

(cosz+ sinδ )2 − D2

R2

(cosz+ sinδ )2 + D2

R2

. (3.237)

It may be easily verified that the LHS of the above equation reduces to sinφ , and
hence

sin φ =
(cosz+ sinδ )2 − (cosH cosδ + sinzsina)2

(cosz+ sinδ )2 +(cosH cosδ + sinzsina)2 , (3.238)

which is the same as (3.232).



3.36 Determination of δ and a from z, H and φ 2253.36 Za;ñÍö�ÅÅ*:u +.na;ta;a;[EaH A;pa;kÒ +:ma;a;Za;a;g{ea
3.36 Determination of the declination and amplitude from the

zenith distance, hour angle and latitude (Problem 8);
a:�a:$ya;a;h;ta;a;[a;Za;ñÍö�ÅÅ*:U .~va;na;ta;k+:ea;f�a;ea:;dÄâx ;ta;Ea :pxa;Ta;k, Á Á 83 Á Áyea ta;tk+:ea;f�a;Ea ..a ta;a:�áâ+;�a:$ya;a;va;gRa;Bea;d;pa;d� ;a;kx +:tea 61 Á;Æa;ma;TaH k+:ea;�a;f.Èåî ÁÁ*+;ya;ea;ya;eRa;ga;a;t,a ya;a;}yea .sa;Ea;}yeaY;nta:=+a;t,a ta;ya;eaH Á Á 84 Á Á;
a:�a:$ya;ya;a ;
a;va;&+.ta;a dùÅ;au :$ya;a kÒ +:a;ntya;a;Za;a;g{ea tua :pUa;vRa;va;t,a Ána;ta;ma;Nq+.l+.dx ;Zya;a;DRa;ma;Dya;taH .sa;Ea;}ya;ya;a;}ya;ta;a Á Á 85 Á Á
trijyāhatāks.aśaṅkū svanatakot.yoddhr. tau pr. thak ||83 ||
ye tatkot.yau ca tattrijyāvargabhedapad̄ıkr. te |
mithah. kot.ighnayoryogāt yāmye saumye ′ntarāt tayoh. ||84 ||
trijyayā vihr. tā dyujyā krāntyāśāgre tu pūrvavat |
nataman. d. aladr. śyārdhamadhyatah. saumyayāmyatā ||85 ||
The aks.a and śaṅku are multiplied by the trijyā and divided by the svadeśa-natakot.i,
and kept separately.

The square roots of the squares of these subtracted from the square of the trijyā become
their kot.is. By finding the sum or difference of the cross products, depending upon whether
[the position of the Sun is] to the south or north, and dividing by the trijyā, the dyujyā is
obtained. The krānti and āśāgrā [are to be obtained] as stated earlier.

Here the north and south is with respect to the visible half of the 6 o’clock circle (nataman. d. ala).

In Problem 2, the svadeśanatakot. i has been defined to be

svadeśanatakot. i = Rcosh = R
√

1− sin2 H cos2 φ . (3.239)

With this svadeśanatakot.i as the divisor, two intermediate quantities x and y are
defined as

x =
R×Rsinφ

Rcosh
(3.240)

y =
R×Rcosz

Rcosh
. (3.241)

The kot.is of x and y, denoted by ρ and ξ , are given by

ρ =
√

R2 − x2

=

√

R2 − R2 sin2 φ
cos2 h

=
Rcosφ |cosH|

cosh
, (3.242)

and ξ =
√

R2 − y2

61 ta;ya;eaH va;gRa;ya;eaH , ;
a:�a:$ya;a;va;gRa;ya;ea;(ãÉa Bea;dM .sMa;pa;a;dùÅ;a :pa;d� ;a;kx +:tea ya;�+:Byea;tea .tea ta;tk+:ea;f�a;Ea Á
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=

√
R2 − R2 cos2 z

cos2 h

=
R
√

sin2 z− sin2 H cos2 φ
cosh

. (3.243)

Now the dyujyā is stated to be

dyujyā =
xξ +∼ yρ
trijyā

. (3.244)

Substituting for ρ , ξ , x and y, we have

Rcosδ =
Rsinφ

√
sin2 z− sin2 H cos2 φ +∼ coszRcosφ |cosH|

(1− sin2 H cos2 φ)
, (3.245)

where it has been specifically mentioned that the sum or difference have to be taken
depending upon whether we are dealing with the southern or the northern direction.

Usually, the terms southern and northern refer to declination of the Sun. But,
here the terms southern and northern have to be understood in a different way, as
is explicitly mentioned in the text. The directions north and south mentioned here
are with reference to the nataman. d. ala or the 6 o’clock circle. The Sun is taken
to be in the southern direction when it is above the 6 o’clock circle in the visible
hemisphere. Then the positive sign must be chosen. The moment the Sun crosses
the 6 o’clock circle, H > 90, and it is taken to be in the northern hemisphere and
negative sign is prescribed. The +∼ prescription is understandable since we have
cosH in the expression.

Proof:

From the cosine formula applied to the spherical triangle PZS, shown in Fig. 3.27,
we have,

cosz = sinφ sinδ + cosφ cosδ cosH. (3.246)

Putting cosδ = x, we get the following quadratic equation in x

x2(cos2 H cos2 φ + sin2 φ)− 2xcoszcosφ cosH +(cos2 z− sin2 φ) = 0. (3.247)

Hence,

x =
2coszcosφ cosH ±

√
4cos2 zcos2 φ cos2 H −4AC

2(1− sin2 H cos2 φ)
, (3.248a)

where

A = (1− sin2 H cos2 φ) and C = (cos2 z− sin2 φ). (3.248b)
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On simplification, the discriminant reduces to

2sinφ
√

sin2 z− sin2 H cos2 φ . (3.248c)

Therefore

cosδ =
coszcosφ cosH ± sinφ

√
sin2 z− sin2 H cos2 φ

(1− sin2 H cos2 φ)
, (3.249)

which is the same as (3.245).

Note on the relative sign difference:

When the Sun is ‘north’ of the nataman. d. ala, in the sense of the text, H > 90◦

and the first term in the numerator of cosδ is negative as cosH is negative. Hence
the positive sign has to be taken in the second term, as cosδ is positive. Hence the
difference in magnitude between the two terms is to be taken when the Sun is ‘north’
of the nataman. d. ala. When cosH changes sign, then also the second term should be
taken with the positive sign by continuity. But, as the first term is also positive now,
the sum of the magnitude of the two terms is to be taken when the Sun is ‘south’ of
the nataman. d. ala. These are in conformity with the prescription in the text.3.37 A;pa;=E +�///�a;~:�a;Æa;BaH kÒ +:a;ntya;[a;Ea A;a;Za;a;g{a;a;[a;Ea ..a
3.37 Determination of the declination and latitude, and the

amplitude and latitude, from the rest of the three (Problems
9, 10);
a;d;ga;g{a;a;ya;a;~tua ta;tk+:ea;�a;fH 62 ta;.C+.a;ya;a;Ga;a;ta;ta;ea &+.ta;a Ána;ta:$ya;ya;a Ba;vea;�ùÅ+au :$ya;a ta;;�ÂåÅu ;ja;a kÒ +:a;�////�a;nta;=e +va ;
a;h Á Á 86 Á ÁdùÅ;au :$ya;a;na;ta:$ya;ya;ea;Ga;Ra;ta;a;t,a A;g{a;a;k+:ea;�a;fH :pra;Ba;a;&+.ta;a ÁA;[aH :pra;a;gva;
a;d;�a;ta :pra:(îéa;d;Za;k+:ea:�a:=+m�a;a;�a:=+ta;m,a Á Á 87 Á Á

digagrāyāstu tatkot.ih. tacchāyāghātato hr. tā |
natajyayā bhaveddyujyā tadbhujā krāntireva hi || 86 ||
dyujyānatajyayorghātāt agrākot.ih. prabhāhr. tā |
aks.ah. prāgvaditi praśnadaśakottaramı̄ritam || 87 ||
From the āśāgrā, its kot.i [is to be obtained]. The product of this and the chāyā when
divided by the natajyā gives the dyujyā. Its bhujā is indeed the krānti.

62 A:�a ta;tk+:ea;�a;fH I+.tya;na;nta:=+m,a A;a;nea;ta;v.ya;a I+.�a;ta A;Dya;a;h;yRa;m,a Á A;
a;pa ..a, ta;tk+:ea;�a;fH I+.tya:�a,ta;.C+.b.de ;na ;
a;d;ga;g{a;a gxa;hùÅ:a;tea Á o+�a:=;�a ;
a;va;dùÅ;a;ma;a;na;ta;.C+.b.de ;na ;
a;d;ga;g{a;a;k+:ea;�a;fH g{a;a;hùÅ:a;a Á
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The product of the dyujyā and the natajyā divided by the prabhā [chāyā] becomes the
kot.i of āśāgrā. The aks.a is found as stated earlier. Thus we have given the answers to the
ten problems.

These two problems are concerned with finding δ and φ in terms of H , z and a,
and a and φ in terms of H, z and δ respectively. According to the verses, δ can be
found in terms of z, a and H, and a can be found in terms of z, H and δ through the
relation

Rcosδ =
Rsinz Rcosa

RsinH
, (3.250)

which can also be written as

Rcosa =
RsinH Rcosδ

Rsinz
. (3.251)

Using the spherical triangle PZS (Fig. 3.27), and applying the sine formula, we have

sinA
sin(90−δ )

=
sinH
sin z

. (3.252)

Since A = (90 +a), the above equation reduces to

sinH

sinz
=

cosa

cosδ
, (3.253)

which is nothing but the ratio of equations (3.250) and (3.251). φ is determined from
z, δ , H and a through (3.238). As δ has been solved in terms of z, H and a, and a
has been solved in terms of z, H and δ , φ can be found, in each of the problems, in
terms of the three given quantities.3.38 I+.�;
a;d;#C+.a;ya;a
3.38 Shadow along any direction;
a;d;ga;g{a;a ;
a;va;&+.ta;a ya;dõ ;a ta;tk+:ea;�a;f.Èåî ÁÁ*+;a :pa;l+.pra;Ba;a 63 Áta;tk+:ea;�a;f;k+:a ta;ya;eaH kx +:tya;eaH ya;ea;ga;mUa;lM .~va;dx ;ggua;NaH Á Á 88 Á ÁZa;ñÍö�ÅÅ*:u +.dx ;ggua;Na;ya;eaH kx +:tya;eaH C+.a;ya;a;k+:Na;eRa yua;teaH :pa;d;m,a 64 ÁZa;ñÍö�ÅÅ*:u +..C+.a;yea ;
a:�a:j�a;a;va;a.Èåî ÁÁ*+e C+.a;ya;a;k+:NRa;&+.tea .~å.Pu +.fe Á Á 89 Á Ádx ;ggua;Na;a;Æa;Ba;h;ta;kÒ +:a;nteaH A;[a:$ya;a;�a;ea hùÅ:a;pa;kÒ +:maH ÁkÒ +:a;�////�a;nta;dx ;ggua;Na;ya;eaH k+:ea;�a;fH ;
a:�a:$ya;a;va;ga;Ra;nta:=+a;t,a :pa;d;m,a Á Á 90 Á Á
63 A:�a ta;tk+:ea;�a;f.Èåî ÁÁ*+;a, I+.tya:�a ta;.C+.b.de ;na ;
a;d;ga;g{a;a g{a;a;hùÅ:a;a Á :pa:=+ntua o+�a:=;�a ta;tk+:ea;�a;f;k+:a I+.tya:�a ta;.C+.b.de ;na:pa;l+.pra;Ba;a g{a;a;hùÅ:a;a Á A;nva;ya;~tua I+.tTMa - :pa;l+.pra;Ba;a, ;
a;d;ga;g{a;a ;
a;va;&+.ta;a ta;tk+:ea;�a;f.Èåî ÁÁ*+;a (..a), ta;tk+:ea;�a;f;k+:a
(:pa;l+.pra;Ba;a-k+:ea;�a;f;k+:a) Á Ba;va;t�a;a;tya;Dya;a;h;yRa;m,a Á
64 Prose order: Za;ñÍö�ÅÅ*:u +.dx ;ggua;Na;ya;eaH kx +:tya;eaH yua;teaH :pa;dM C+.a;ya;a;k+:NRaH Á
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a:�a:$ya;a;Ba;�+:ya;eaH kÒ +:a;�////�a;nta;dx ;giya;ya;eaH Áta;ya;ea;ya;eRa;ga;a;nta:=M C+.a;ya;a;ga;ea;l+.ya;eaH ya;a;}ya;sa;Ea;}ya;ya;eaH Á Á 91 Á Á
digagrā vihr. tā yadvā tatkot.ighnā palaprabhā |
tatkot.ikā tayoh. kr. tyoh. yogamūlam. svadr. ggun. ah. ||88 ||
śaṅkudr. ggun. ayoh. kr. tyoh. chāyākarn. o yuteh. padam |
śaṅkucchāye trij̄ıvāghne chāyākarn. ahr. te sphut.e ||89 ||
dr. ggun. ābhihatakrānteh. aks.ajyāpto hyapakramah. |
krāntidr. ggun. ayoh. kot.ih. trijyāvargāntarāt padam ||90 ||
mithah. kot.ihatatrijyābhaktayoh. krāntidr. gjyayoh. |
tayoryogāntaram. chāyāgolayoh. yāmyasaumyayoh. ||91 ||
The product of the palaprabhā and the kot.i of the āśāgrā divided by the āśāgrā is
the kot.ikā of the palaprabhā. The square root of the sum of the squares of these is the
svadr. ggun. a.

The square root of the sum of the squares of the śaṅku and the svadr. ggun. a is the
chāyākarn. a. The śaṅku and the chāyā are multiplied by the trijyā and divided by the
chāyākarn. a to get their sphut.a values.

The dr. ggun. a multiplied by the krānti and divided by the aks.ajyā gives the apakrama.65

The kot.is of the krānti and the sphut.adr. ggun. a are obtained [by subtracting their squares]
from the square of the trijyā and taking the square root.

By cross-multiplying the krānti and sphut.adr. ggun. a with the kot.is of each other, and
finding their sum or difference, depending upon whether the Sun is in the southern or the
northern hemisphere, the chāyā is obtained.

In the above verses an alternate expression for the chāyā (Rsinz) is given. This
involves several steps and a number of intermediate terms are introduced. The term
palaprabhā or palabhā refers to the shadow of the śaṅku on the equinoctial day at
noon. It is given by

palabhā = 12tanφ . (3.254)

For convenience, we denote the palabhā by x and its kot.ikā by y. The expression for
the palabhā-kot. ikā given by Nı̄lakan. t.ha is

y =
palabhā× āśāgrākot.i

āśāgrā
=

12tanφ ×Rcosa

Rsina
. (3.255)

It may be noted that here both x and y are in the measure of aṅgulas. Two more
quantities, namely the svadr. ggun. a, and chāyākarn. a are defined as follows:

svadr. ggun. a =
√

x2 + y2

= 12tanφ csca (3.256)

chāyākarn. a =

√
śaṅku2 + svadr. ggun. a

2

K =
√

122 +(x2 + y2)

= 12

√
sin2 φ + cos2 φ sin2 a

cosφ sina
. (3.257)

65 Here the word apakrama does not refer to declination, but to a quantity related to that.
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The term chāyākarn. a means the hypotenuse of the shadow. In the above expression
for the chāyākarn. a, 12 being the height of the śaṅku, the svadr. ggun. a must rep-
resent the length of the shadow. We find that the length of the shadow is given as
12 tanφ csca. We know that the length of the shadow on any day at any given time
is given by 12tanz, z being the zenith distance of the Sun at that instant. Now we try
to get the condition under which

12tanz =
12tanφ

sina
. (3.258)

Rewriting the above equation we have

coszsin φ − sinzsinφ sina = 0.

or coszsin φ + sinzsinφ cos(90 + a) = 0. (3.259)

Now, from the spherical triangle PZS shown in Fig. 3.27b, applying the cosine for-
mula for the side PS we have

sinδ = coszsinφ + sinzcosφ cos(90 +a)

= coszsinφ − sinzcosφ sina. (3.260)

Thus from (3.256) and (3.258) we see that the expression for the chāyā given as
12 tanφ csca is valid on the equinoctial day, when δ = 0. Then the sphut.aśaṅku
and the sphut.acchāyā or sphut.adr. ggun. a are defined as follows.

sphut.aśaṅku =
śaṅku× trijyā

chāyākarn. a

=
12×R

K
(3.261)

sphut.adr. ggun. a =
svadr. ggun. a× trijyā

chāyākarn. a

Rsin θ =
12tanφ ×R

sina×K
. (3.262)

Of these two quantities, the latter and its kot.i are used in further calculations. Hence,
for convenience, we have denoted it by Rsinθ . Substituting for K, we have

Rsinθ =
Rsinφ√

sin2 φ + cos2 φ sin2 a
. (3.263)

Another quantity related to the sphut.adr. ggun. a is defined as

apakrama =
sphut.adr. ggun. a× krānti

aks.ajyā

Rsinψ =
Rsinθ ×Rsinδ

Rsinφ
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=
Rsinδ√

sin2 φ + cos2 φ sin2 a
. (3.264)

Here we may note the following:

1. The term apakrama is usually used to refer to the declination or the Rsine of
the declination of the celestial object. But in this context it refers to an entirely
different quantity. In order to avoid misconception, the following observation is
made in Laghu-vivr. ti:A;Tea;�;kÒ +:a;�////�a;ntMa dx ;giya;ya;a ;�a;na;h;tya;a;[a:$ya;ya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DaH A;pa;kÒ +:ma;a;D�a;a;naHC+.a;ya;a;Ka;NqH Á

The desired krānti (Rsinδ ) may be multiplied by the dr. gjyā (sphut.a-dr. ggun. a) and
divided by the aks.ajyā. The result obtained is the chāyākhan. d. a, which is dependent
on the apakrama.

2. As we will be using the chāyākhan. d. a and its kot.i later in the calculations, for
convenience we denote this by Rsinψ .

The kot.is of the chāyākhan. d. a (k1) and the sphut.acchāyā (k2) are given by

k1 =
√

R2 − (Rsinψ)2 = Rcosψ (3.265)

and k2 =
√

R2 − (Rsinθ )2 = Rcosθ . (3.266)

Then it is stated that the chāyā (Rsinz) is given by

chāyā =
k1 × sphut.adr. ggun. a

+∼ k2 × chāyākhan. d. a

trijyā
(3.267)

Rsin z =
Rcosψ ×Rsinθ +∼ Rcosθ ×Rsinψ

R
. (3.268)

Substituting the appropriate expressions for Rsinθ and Rsinψ , and after some
straightforward manipulations, we find

Rsin z =
R(sinφ

√
sin2 φ − sin2 δ + cos2 φ sin2 a +∼ cosφ sinasinδ )

(sin2 φ + cos2 φ sin2 a)
. (3.269)

Proof:

Considering the spherical triangle PZS shown in Fig. 3.27, and applying the cosine
formula, we get

sinδ = sinφ cosz+ cosφ sinzcosA. (3.270)

Making the substitution sinz = y, rearranging the terms, and squaring both sides, we
get
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(1− y2)sin2 φ = (sinδ − ycosφ cosA)2

= sin2 δ + y2 cos2 φ cos2 A−2y sinδ cosφ cosA. (3.271)

This leads to the quadratic equation

y2(sin2 φ + cos2 φ cos2 A)−2y sinδ cosφ cosA+(sin2 δ − sin2 φ) = 0. (3.272)

Solving the above quadratic and noting that cosA =±sina we get

y = sinz =
(sinδ cosφ cosA± sinφ

√
sin2 φ − sin2 δ + cos2 φ cos2 A)

(sin2 φ + cos2 φ cos2 A)
, (3.273)

which is the same as the expression given in the text (see (3.269)), as cosA =±sina.
In the above expression we need to take only the positive sign of the discriminant, as
that is what corresponds to the physical situation. Otherwise, sin z would be negative
when δ < φ , which is not possible when the Sun is above the horizon.

As per the prescription given in the text, in (3.269), ‘+’ must be chosen when the
Sun is in the southern hemisphere and ‘∼’ when it is in the northern. When the Sun
is in the southern hemisphere, δ < 0 and A > 90. Hence the product of sinδ and
cosA = cos(90 + a)—both individually being negative—is positive. When the Sun
is in the northern hemisphere, δ > 0. But A can be > 90, = 90 or < 90, depending
upon whether the Sun has crossed the prime vertical, is on the prime vertical, or
has yet to cross the prime vertical, when it is on the eastern part of the hemisphere.
Hence the product of sinδ and cosA can be both positive or negative. Hence it
appears that the sum of two magnitudes should be taken when the declination and
the āśāgrā are in the same direction (both north or both south), and the difference
when the declination and the āśāgrā are in opposite directions.3.39 k+:ea;Na;Za;ñÍö�ÅÅ*:u +..C+.a;ya;a
3.39 Shadow when the amplitude is 45 degreesBua:ja;a;[a;ea l+.}ba;va;ga;Ra;DRa;mUa;lM k+:ea;�a;fH (rua;�a;ta;~ta;ya;eaH66 Áh;a:=H , kÒ +:a;�////�a;nta.Èåî ÁÁ*+;k+:ea;f�a;a;(ãÉa 67 d;eaH(rua;tya;eaH kÒ +:a;�////�a;nta;h;a:=+ya;eaH Á Á 92 Á Á
66 ta;ya;eaH = Bua:ja;a;k+:ea;f�a;eaH = A;[a;~ya l+.}ba;va;ga;Ra;DRa;mUa;l+.~ya ..ea;�a;ta ya;a;va;t,a Á ta;ya;eaH (rua;�a;taH h;a:=H Á k+:~ya h;a:=H? d;eaH (rua;tya;eaH
(.sa;}ba;�////�a;nDa) kÒ +:a;�////�a;nta.Èåî ÁÁ*+;k+:ea;f�a;aH , (O;;vMa) kÒ +:a;�////�a;nta;h;a:=+ya;eaH (l+.b.Da) k+:ea;�a;f.Èåî ÁÁ*+;a;[a;~ya ..a ÁA:�a ..a d;eaH I+.�a;ta Za;b.de ;na A;[a:$ya;a g{a;a;hùÅ:a;a Á A;
a;pa ..a :pxa;Ta;k, :pxa;Ta;k, d;eaH (= A;[a:$ya;a;ya;aH), A;[a:$ya;a;(rua;�a;ta;sa;}ba;�////�a;nDakÒ +:a;�////�a;nta.Èåî ÁÁ*+;k+:ea;f�a;a;(ãÉa (rua;tya;a (= :pUa;va;eRa;�+:h;a:=e +Na) h:=+NMa I+.Sya;tea Á O;;vMa kÒ +:a;�////�a;nta;h;a:=+ya;ea;lR +.b.Da;a ya;a k+:ea;�a;fH ta;~ya;aHta;tk+:ea;�a;f.Èåî ÁÁ*+;a;[a;~ya ..a :pUa;va;eRa;�+:h;a:=e +Na h:=+NMa I+.Sya;tea Á ya;ta;ea ;
a;h, va;~tua;taH h;a:=+va;geRa;Na h:=+NMa k+:a;y a I+.�a;ta ga;a;Na;ta;a;d;va;ga;}ya;tea Áta;�a O;;vMa :pxa;Ta;k, :pxa;Ta;k, h:=+Nea;nEa;va l+.Bya;tea Á O;;ta;�a g{a;nTea k+:NF+.taH na ;�a;na;
a;dR ;�;Æa;ma;�a;ta Ba;a;�a;ta Á yua;�a;�+:d� ;a;
a;pa;k+:a;ya;Ma, l+.Gua;
a;va;vxa;ta;Ea..a A;ya;mMa;ZaH na .~å.pa;�� ;a;kx +:ta I+.tyea;ta;t,a ;�a;.a;ntya;m,a Á A;taH A;sma;a;Æa;BaH :pUa;va;eRa;�+.=� +a;tya;a ;
a;k+:�a:úãÁ*.a;t,a ;
a;ë�ÅÉì*:+:�;k+:�pa;na;ya;a A;Ta;eRava;a;NRa;taH Á .sa;a;Dua;tvMa .sua;D�a;a;Æa;Ba;a;(ãÉa;ntya;m,a ÁO;;va;m,a A;a;�a;ya;eaH ya;a;}ya;
a;d;a;Za Oe;;k�+.a;m,a o+.d;�//�a;gd;a;Za Bea;dH Á ta:�a l+.b.DMa :P+.lM :pra;Ba;a Á
67 The reading in both the printed editions is kÒ +:a;�////�a;nta.Èåî ÁÁ*+;k+:ea;f�a;ea;(ãÉa Á



3.39 Shadow when the amplitude is 45 degrees 233k+:ea;�a;f.Èåî ÁÁ*+;a;[a;~ya ..a;a;�Ea;k�+.aM ya;a;}yea Bea;d o+.d;#pra;Ba;a ÁA;[a;k+:ea;f�a;�a;Da;k+:a;ya;Ma tua kÒ +:a;ntya;Ma ya;ea;ga;eaY;pyua;d;k, :pra;Ba;a Á Á 93 Á ÁkÒ +:a;ntya;[a;ya;ea;(ãÉa ta;tk+:ea;f�a;eaH va;Da;a;t,a Bea;d;yua;t�a;a na:=H Áta;dõ ;d, ;
a;dõ :�+:d;ga;nya:�a;a;pya;Ba;a;vaH k+:ea;Na;ya;ea;dõR ;ya;eaH Á Á 94 Á ÁA;kR +Èåî ÁÁ*+e Ba;a;(rua;t�a;a Za;ñÍö�ÅÅ*:u +.Ba;�e .tea A;ñÍç ÅÅ*:u +.l+.a;�//////�a;tma;ke Á
bhujāks.o lambavargārdhamūlam. kot.ih. śrutistayoh. |
hārah. , krāntighnakot.yāśca doh. śrutyoh. krāntihārayoh. || 92 ||
kot.ighnāks.asya cāptaikyam. yāmye bheda udakprabhā |
aks.akot.yadhikāyām. tu krāntyām. yogo ′pyudak prabhā || 93 ||
krāntyaks.ayośca tatkot.yoh. vadhāt bhedayut̄ı narah. |
tadvad dvirudaganyatrāpyabhāvah. kon. ayordvayoh. || 94 ||
arkaghne bhāśrut̄ı śaṅkubhakte te aṅgulātmike |
The bhujā is the aks.a. The kot.i is the square root of half the square of the lambaka. The
hypotenuse formed by them is the divisor for [each factor in] the product of the krānti,
and the kot.i which is obtained from the doh. (sine) and the śruti (hypotenuse), and also
for [each factor in] the product of the aks.a and the kot.i, obtained from the krānti and
the divisor [individually]. The sum of the products gives the shadow in the south, and their
difference that in the north.

If the krānti is greater than the kot.i of the aks.a, then the shadow is obtained even by taking
the sum of the products [in the north].

The nara (or śaṅku = Rcosz) is the sum or the difference of the products of the krānti
and aks.a and their kot.is. As in the earlier case, here again two naras are possible in the
two kon. as of the northern hemisphere but not in the other (the southern). The shadow and
hypotenuse are obtained in aṅgulas by multiplying by 12 and dividing by the śaṅku.

The term kon. aśaṅku refers to the Rsine of the zenith distance of the Sun when
the āśāgrā is equal to 45◦, that is, when the azimuth of the Sun is 45◦. In the above
verses, the expression for the kon. aśaṅku is given. To arrive at the expression for
the kon. aśaṅku, two right-angled triangles as shown in Fig. 3.31 are considered. In
the first triangle, the bhujā is defined to be the aks.a and the kot.i (denoted by k1) is
defined to be the square root of half the square of the lambaka. That is,

k1 =

√
cos2 φ

2
=

cosφ√
2

. (3.274a)

Hence the hypotenuse (h), termed the śruti, is given by

h = R

√
sin2 φ +

cos2 φ
2

. (3.274b)

Even for the other triangle, whose bhujā is stated to be the krānti, the hypotenuse
is taken to be the same. Hence the kot.i, (marked as k2) of the krānti in the second
figure, is given by

k2 = R

√
sin2 φ +

cos2 φ
2

− sin2 δ . (3.275)
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Fig. 3.31 Two triangles having the same hypotenuse defined while giving the expression for the
prabhā/chāyā corresponding to the kon. aśaṅku.

The hypotenuse (h) defined above is used as the divisor for both the bhujā and the
kot.i in later computations. Now, the sum or difference of the cross-products of the
bhujā and the kot.i of the two triangles (with each term divided by the hypotenuse
h) is stated to be the required prabhā (shadow). That is

prabhā =
aks.a× k2

+∼ krānti× k1

h2 . (3.276)

Substituting for k1, k2 and h from (3.274) and (3.275), we have

Rsinz =
R(sinφ

√
sin2 φ + cos2 φ

2 − sin2 δ +∼ |sinδ | cosφ√
2

)

(sin2 φ + cos2 φ
2 )

. (3.277)

It may be noted that we obtain the above equation right away by substituting a = 45◦

in (3.269).
When the Sun’s declination is north, it is possible to have two kon. acchāyās.

This is discussed in verse 94. We explain this with the help of Fig. 3.32. Here S1

and S2 refer to the positions of the Sun before and after it crosses the prime vertical
and when the āśāgrā is 45◦. The angle A is measured from the prime meridian
eastwards. But the āśāgrā (a) is measured from the prime vertical either to the north
or to the south.

sinz =
(sinδ cosφ cosA +∼ sinφ

√
sin2 φ − sin2 δ + cos2 φ cos2 A)

(sin2 φ + cos2 φ cos2 A)
. (3.278)

It may be noted that the above equation is the same as (3.277), when

|cosa| = 1√
2
. (3.279)

Incidentally, the above equation also clearly brings out the signs as set forth in the
previous set of verses. Now we consider two different cases depending upon whether
the Sun is in the northern (δ > 0) or the southern (δ < 0) hemisphere.
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Fig. 3.32 Two different positions of the Sun (when δ > 0), corresponding to which there is a
possibility of a second kon. aśaṅku and kon. acchāyā.

Case 1: δ < 0

When δ < 0, sinδ is negative. And when the Sun is above the horizon, correspond-
ing to the position S0 in Fig. 3.32, A > 90◦, and therefore cosA < 0. So, the first term
(3.278) is always positive. We show shortly that the second term has to be positive.
Hence, sinz is the sum of two positive terms.

Case 2: δ > 0

When δ > 0, corresponding to the position S1 or S2 in Fig. 3.32, sinδ is positive.
But, depending upon whether Sun is to the north or to the south of the prime vertical,
two distinct cases are possible:

1. When the Sun is to the south A > 90◦. Hence, cosA < 0. So the first term in
the above equation is negative. So, the second term has to be positive, as sin z
should be positive when the Sun is above the horizon. In this case, sin z is clearly
a difference of two positive quantities.

2. When the Sun is to the north, A < 90◦. Hence cosA > 0. So the first term in the
above equation is positive. Hence sinz is the sum of two positive terms in this
case.

Condition for the possibility of a kon. acchāyā: (when the Sun is to the north)

Due to the diurnal motion of the Sun, the aśāgrā, a, keeps on decreasing from the
sunrise and becomes zero when the Sun is on the prime vertical. It can be shown
that at sunrise

sina|sunrise =
sinδ
cosφ

. (3.280a)
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So, a kon. acchāyā is possible only when

sin a|sunrise ≥ 1√
2
. (3.280b)

Therefore, the condition for a kon. acchāyā reduces to

sinδ ≥ cosφ√
2

. (3.281)

In this case, corresponding to the Sun’s position S2 in Fig. 3.32,

cosA = cos(90−a) =
1√
2
, (3.282)

and sinδ cosφ cosA is positive, as δ is positive. Hence the word yogo ′pi (sum also),
for northern declinations is used in verse 93b when the kon. aśaṅku is to the north.

For the other kon. acchāyā, corresponding to the Sun’s position S1 in Fig. (3.32),
the first term in (3.278) is negative as cosA is negative, and hence we have to find
the difference of the terms and not the sum.

In verse 94, the expression for the nara (Rcosz) is given. The text states:

nara =
aks.a× krānti± k1 × k2

h2 . (3.283)

Substituting for k1, k2 and h from (3.274) and (3.275), we have

Rcosz =
R(sinφ sinδ +∼ cosφ√

2

√
sin2 φ + cos2 φ

2 − sin2 δ )

(sin2 φ + cos2 φ
2 )

. (3.284)

Using straightforward algebraic manipulations it can be shown that the above ex-
pression follows from (3.278) for the chāyā (Rsinz).

Condition for the occurrence of a second kon. aśaṅku/(nara):

Here again, as in the case of a kon. acchāyā (Rsinz), two naras are possible, when
the product of the aks.a and the krānti is greater than that of their kot.is, and when the
Sun is in the northern hemisphere. This is easily understood from the necessary and
sufficient condition for the occurrence of a second kon. acchāyā, which is given in
(3.281). In this case, the magnitude of the first term is greater than that of the second
term in (3.284) and both ‘+’ and ‘∼’ can be taken in (3.284), and there are two
solutions for cosz corresponding to two kon. aśaṅkus. However, when the product
of the aks.a and the krānti is greater than that of their kot.is, and the declination is
south, the first term is negative and its magnitude is greater than that of the second.
In this case, cosz is negative. This implies that the kon. aśaṅku is not possible.
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The shadow prabhā/bhā/chāyā and the hypotenuse śrutiare obtained in aṅgulas
by multiplying by 12 and dividing by the śaṅku. It was already shown [see (3.4)]
that the shadow at any time is 12 tanz, where z is the zenith distance of the Sun at
that instant. Now,

prabhā = 12tanz =
12×Rsinz

Rcosz
=

12×prabhā

śaṅku
. (3.285)

Similarly,

śruti =
12× śruti

śaṅku
. (3.286)

That the āśāgrā must be equal to 45◦ for the kon. aśaṅku measurements is clearly
stated by Śaṅkara Vāriyar in his Yukti-d̄ıpikā as follows:A;a;Za;a;g{a;a;Dya;DRa:=+a;a;Za:$ya;a k+:ea;Na;Za;ñÍö�ÅÅ*:u +.pra;Ba;a;
a;va;Da;Ea Á 68

In measurements related to the kon. aśaṅku, the āśāgrā is equal to 45◦ (the adhyard-
harāśi).69

Further, the procedure is clarified thus in Yukti-d̄ıpikā:l+.}ba;va;ga;Ra;DRa;mUa;lM tua .sa;a :pua;naH k+:ea;�a;f;vxa:�a;ga;a Á Ák+:ea;�a;fH .sa;a;[a;ea Bua:ja;a, k+:Na;eRa va;gRa;ya;ea;ga;pa;dM dõ ;ya;eaH Áh;a:=+kH .sa :pua;naH kÒ +:a;ntya;[a;ya;eaH k+:ea;�a;f.Èåî ÁÁ*+;ya;ea;Æa;mRa;TaH 70 Á ÁkÒ +:a;ntya;[a;k+:ea;f�a;Ea ta;tk+:NRa;va;gRa;Bea;d;pa;d;ea;;�ÂåÅ +vea Áta:�a l+.b.Da;P+.lE +.k�+.aM ya;t,a .~ya;a;t,a C+.a;ya;a ya;a;}ya;ga;ea;l+.ga;a Á Á 71

The square root of half the square or lambaka which is on the kot.ivr. tta is the kot.i. The
bhujā is the aks.a. The square root of the squares of the two is the karn. a hypotenuse. [That
is also] the divisor for the mutual product of the krānti, aks.a and their kot.is.72

The kot.is of the krānti and aks.a are themselves obtained by subtracting their squares from
the squares of the karn. a and taking the square root. The sum of the result obtained is the
shadow in the southern hemisphere.3.40 :pra;a;gl+.çÉîå+;a;a;na;ya;na;m,a

3.40 Obtaining the orient ecliptic point.sMa;~kx +:ta;a;ya;na;Ba;a;nUa;tTa:=+a;a;Za;ga;nta;v.ya;�a;l+.�a;�a;k+:aH Á Á 95 Á Áta;dÒ +a;a;Za;~va;ea;d;ya;pra;a;Na;h;ta;a .=+a;a;Za;k+:l+.a &+.ta;aH Á
68 {TS 1977}, p. 239.
69 The term adhyardharāśi literally means: ‘a rāśi increased by half [of it]’, and it is equal to
45◦, since a rāśi equals 30◦.
70 The prose order: dõ ;ya;eaH va;gRa;ya;ea;ga;pa;dM (yaH) .sa :pua;naH h;a:=+kH Á k+:~ya? I+.tya;a;Za;ñÍö�ÅÅ*:+.a;ya;a;ma;a;h -kÒ +:a;ntya;[a;ya;eaH ;Æa;ma;TaH (= :pa:=+~å.pa:=M ) k+:ea;�a;f.Èåî ÁÁ*+;ya;eaH (ya;t,a :P+.lM l+.Bya;tea ta;~yea;�a;ta) Á
71 {TS 1977}, p. 239.
72 The karn. a is the divisor for each of the factors krānti, aks.a and their kot.is in the expression
for cosz in (3.284).



238 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadowA;sa;va;ea .=+a;a;Za;Zea;Sa;~ya ga;ta;a;sua;Bya;~tya:jea;�a ta;a;n,a Á Á 96 Á Áo+�a:=+ea:�a:=;=+a;Z�a;a;na;Ma :pra;a;Na;aH Za;ea;Dya;a;(ãÉa Zea;Sa;taH Á:pUa:=+�a;ya;tva;a .=+vea .=+a;a;ZMa ;Æa;[a;pea;dÒ +a;Z�a;Ma;(ãÉa ta;a;va;taH Á Á 97 Á Á;
a;va;Zua:;dÄâ ;a ya;a;va;ta;Ma :pra;a;Na;aH , Zea;Sa;a;�///�a;~:�Ma;Za;�çÅu +Na;a;t,a :pua;naH Áta;dU ;DvRa:=+a;a;Za;ma;a;na;a;�a;a;n,a Ba;a;ga;a;n,a ;Æa;[a;�va;a .=+va;Ea ta;Ta;a Á Á 98 Á Á:Sa;
a;�.Èåî ÁÁ*+;a;�a :pua;naH Zea;Sa;a;t,a ta;n}å.a;a;na;a;�a;k+:l+.a A;
a;pa ÁO;;vMa :pra;a;gl+.çÉîå+;a;ma;a;nea;ya;m,a A;~ta;l+.çÉîå+;aM tua :Sa:ñÂÅÅå*.+:yua;k, Á Á 99 Á Áv.ya;tya;yea;na;a;ya;nMa k+:a;y a mea;Sa;a;
a;d;tva;pra;Æa;sa:;dÄâ ;yea Á
sam. skr. tāyanabhānūttharāśigantavyaliptikāh. ||95 ||
tadrāśisvodayaprān. ahatā rāśikalā hr. tāh. |
asavo rāśíses.asya gatāsubhyastyajecca tān ||96 ||
uttarottararāś̄ınām. prān. āh. śodhyāśca śes.atah. |
pūrayitvā rave rāśim. ks. ipedrāś̄ım. śca tāvatah. ||97 ||
vísuddhā yāvatām. prān. āh. śes. āstrim. śadgun. āt punah. |
tadūrdhvarāśimānāptān bhāgān ks.iptvā ravau tathā ||98 ||
s.as.t.ighnācca punah. śes. āt tanmānāptakalā api |
evam. prāglagnamāneyam astalagnam. tu s.ad. bhayuk ||99 ||
vyatyayenāyanam. kāryam. mes. āditvaprasiddhaye |
From the longitude of the Sun corrected for ayana, the number of minutes to be elapsed
in that rāśi [are calculated]. That is multiplied by the duration of the rising of that rāśi
and is divided by the number of minutes in a rāśi. These are prān. as corresponding to the
remaining rāśi and they have to be subtracted from the prān. as elapsed [since the sunrise].

From the remainder, the durations of the risings of the rāśis that follow have to be sub-
tracted. Having added (pūrayitvā) the degrees remaining in that rāśi to the Sun, [the de-
grees corresponding to] that number of rāśis, whose rising times were subtracted, are to be
added. The remaining prān. as are multiplied by 30 and divided by the duration of rising of
that rāśi. The result obtained is once again added to the Sun.

The remainder when multiplied by 60 gives the result in minutes. Thus the prāglagna,
the orient ecliptic point, should be obtained. The astalagna, the setting ecliptic point, is
obtained by adding six signs to that. To know the longitude of the ecliptic points from the
Mes.ādi, the ayana correction has to be applied reversely.

These verses give the procedure for finding the prāglagna, which is also referred
to simply as the lagna at times. The term lagna (orient ecliptic point) means ‘coin-
ciding’ or ‘associated’ with. In this context it refers to the longitude of the point of
the ecliptic that is coinciding with the horizon at any point time during the day. The
point on the eastern part of the horizon is called the prāglagna and the point on the
western part is called the astalagna.

The procedure given here may be understood with the help of Fig. 3.33. Here S
represents the Sun in the eastern part of the hemisphere, Γ the vernal equinox and
R1, R2 etc. the ending points of the first rāśi, second rāśi and so on. h refers to the
time elapsed after sunrise and H the hour angle of the Sun.

Let λs be the sāyana longitude of the Sun. Suppose the Sun is in the i-th rāśi
(in Fig. 3.33, it is in the first rāśi), whose rising time at the observer’s location is
given by Ti. If θRi is the angle remaining to be covered by the Sun in that rāśi (in
minutes), then the time required for that segment of the rāśi to come above the
horizon is given by
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Fig. 3.33 Determination of the prāglagna (orient ecliptic point): approximate method.

tRi =
θRi ×Ti

30×60
. (3.287)

Subtracting this time tRi from the time elapsed since sunrise h, we have

h′ = h− tRi. (3.288)

From h′ the times required for the subsequent rāśis to rise, Ti+1, Ti+2, etc. are sub-
tracted till the remainder r stays positive. That is,

r = h′−Ti+1 −Ti+2 . . .−Tj−1 (r + ve). (3.289)

Suppose we are in the j-th rāśi whose rising time is Tj . Then, the portion of R j that
would have come above the horizon in the remaining time r is given by

θE j =
r×30

Tj
(in degrees). (3.290)

Now, the longitude of the prāglagna (L) is

L = λs +θRi +30 + 30 + . . .+θE j . (3.291)

By definition the astalagna is

astalagna = prāglagna+180◦. (3.292)

This is because the horizon divides the ecliptic exactly into two parts. For the same
reason, this may also be obtained by subtracting 180 degrees. The lagnas obtained
by the above procedure are sāyana-lagnas. To obtain the nirayan. a ones, one needs
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to subtract the ayanām. śa. This is what is stated in the text as ‘vyatyayenāyanam.
kāryam. mes. āditvaprasiddhaye’.3.41 :pra;a;gl+.çÉîå+;a;a;na;ya;nea .~TUa;l+.ta;a
3.41 Inaccuracy in determining the prāglagnaO;;k+:�/////////�a;sma;�a;
a;pa .=+a;Za;Ea tua kÒ +:ma;a;t,a k+:a;l+.ea ;
a;h ;Æa;Ba;dùÅ;a;tea Á Á 100 Á Á.tea;na :�Ea:=+a;a;Za;kM na;a:�a k+:t ua yua;�M ya;ta;~ta;taH ÁO;;va;ma;a;n�a;a;ta;l+.çÉîå+;a;~ya .~TUa;l+.tEa;va na .sUa;[ma;ta;a Á Á 101 Á Á

ekasminnapi rāśau tu kramāt kālo hi bhidyate || 100 ||
tena trairāśikam. nātra kartum. yuktam. yatastatah. |
evamān̄ıtalagnasya sthūlataiva na sūks.matā || 101 ||
The [rising] time differs systematically even in the same rāśi. Hence, it is not appropriate
to apply the rule of three here. Therefore the lagna obtained by the above procedure will
be only approximate, and not exact.

In getting the longitude of the prāglagna by the procedure described in the previous
section, we have made use of the rule of three at two stages: (i) in obtaining the
time corresponding to a certain angle, and (ii) in obtaining the angle corresponding
to a certain time, as noted from (3.287) and (3.290) respectively. It is known that
the rising times of different rāśis are not the same. Here it is pointed out that the
different segments of even the same rāśi take different times for rising above the
horizon.73

In fact, an exact procedure for determining the value of the prāglagna is de-
scribed a little later in the text. This is done by introducing two quantities, namely
the kālalagna and the madhyalagna, which are defined in the following two sec-
tions.3.42 k+:a;l+.l+.çÉîå+;a;a;na;ya;na;m,a
3.42 Determination of the kālalagna.sa;a;ya;na;a;kR +:Bua:ja;a;pra;a;Na;aH :pra;a;gva;t,a .~va;.a:=+sMa;~kx +:ta;aH Ák+:a;l+.l+.çÉîå+;aM ta;de ;va;a;dùÅ;ae , ;
a;dõ ;t�a;a;yea tua ta;dU ;�a;na;ta;m,a Á Á 102 Á Á.=+a;a;Za;Sa:æö�ÅÅ*:M , :pa;de Y;nya;�/////////�a;sma;n,a ta;dùÅ;au ;tMa ..a:=+mea :pua;naH Áta;dU ;nMa ma;Nq+.lM l+.çÉîå+;a;k+:a;lH .~ya;a;du ;d;yea .=+veaH Á Á 103 Á ÁdùÅ;au ;ga;ta;pra;a;Na;sMa;yua;�H k+:a;l+.ea74 ;
a;va;Sua;va;d;a;
a;d;kH Á

sāyanārkabhujāprān. āh. prāgvat svacarasam. skr. tāh. |
kālalagnam. tadevādye, dvit̄ıye tu tadūnitam || 102 ||

73 This is due to the fact that the declination varies continuously as the longitude changes.
74 A:�a k+:a;l+.Za;b.dH k+:a;l+.l+.çÉîå+;a;va;a;.a;kH I+.�a;ta Ba;a;�a;ta Á ta;Ta;a ..a, dùÅ;au ;ga;ta;pra;a;Na;sMa;yua;�H .~va;.a:=+sMa;~kx +:taH.sa;a;ya;na;a;kR +:Bua:ja;a;pra;a;Na;aH , I+.�;k+:a;l+.sa;mua;tpa;�aH ;
a;va;Sua;va;d;a;
a;d;kH k+:a;l+.l+.çÉîå+;a;ea Ba;va;t�a;a;tya;TRaH Á Á
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rāśis.at.kam. pade ′nyasmin tadyutam. carame punah. |
tadūnam. man. d. alam. lagnakālah. syādudaye raveh. || 103 ||
dyugataprān. asam. yuktah. kālo vis.uvadādikah. |
The right ascension of the sāyana Sun corrected by the ascensional difference is the
kālalagna in the first quadrant. In the second it is six signs minus that. In the other [third]
quadrant, this added to six signs [is the kālalagna] and in the last [quadrant] the difference
of it from one circle (360 degrees) is the kālalagna when the Sun rises.

[The above] added to the prān. as elapsed gives the kāla (kālalagna) measured from the
vernal equinox [at any desired time].

The time difference between the rising of the Sun and the vernal equinox is called
the kālalagna, in the first instance. We denote it by the symbol L′. The procedure
for computing the kālalagna when the Sun is in the first and the second quadrants
can be understood with the help of Figs 3.34(a) and 3.34(b).
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Fig. 3.34 Determination of the kālalagna when the Sun lies in the I and the II quadrants.

In these figures, Γ and Γ ′ represent the vernal and the autumnal equinoxes re-
spectively which are rising at E. S, P and E denote the Sun, the celestial pole and
the east point of the horizon. X is the point at which the Sun rises. Suppose the Sun
is in the first quadrant. Then EP̂S = α is the R.A. of the Sun, and EP̂X = ∆α is the
ascensional difference. Then the time taken by the Sun to rise after the rise of Γ is
given by

XP̂S = L′ = α −∆α. (3.293)

This is the expression for the kālalagna when the Sun is in the first quadrant. When
the Sun is in the other quadrants, let θ be the angle between the secondary to the
equator through S and the 6 o’clock circle passing through E. The R.A.s of the
Sun in the second, third and fourth quadrants are: α = (180− θ ), (180 + θ) and
(360−θ ) respectively.

In Fig. 3.34(b), the Sun is in the second quadrant. The angle θ + ∆α clearly
represents the time taken by Γ ′ to rise, after the sunrise. As Γ would be coinciding
with the west point on the horizon, the kālalagna is given by

L′ = 180− (θ +∆α). (3.294)
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Fig. 3.35 Determination of the kālalagna when the Sun lies in the third and the fourth quadrants.

When the Sun is in the third quadrant, as shown in the Fig. 3.35(a), it is clear that
the time taken by it to rise after Γ ′ is θ +∆α . Therefore the time taken by S to rise
after Γ is

L′ = 180 +(θ +∆α). (3.295a)

When the Sun is in the fourth quadrant, the time taken by Γ to rise after the Sun is
= θ −∆α (refer Fig. 3.35(b)). Hence, the time taken by S to rise after Γ is

L′ = 360− (θ −∆α). (3.295b)

In the above, the kālalagna is the time difference between the sunrise and the rise
of Γ . From now onwards, the kālalagna or kāla is used to denote the time interval
between the desired instant and the rise of Γ . Then, the kāla at any time

L′′ = L′ + prān. as elapsed after sunrise, (3.296)

which is the time after the rising of Γ , or the time measured from Γ .3.43 dx ;k, [ea;pa;a;na;ya;na;m,a
3.43 Determination of the zenith distance of the vitribhalagnaA;ntya;dùÅ;au :$ya;a;h;ta;a;[a;a;dùÅ;a;t,a ;
a:�a:$ya;a;�Ma ya;(ãÉa l+.}ba;kH Á Á 104 Á Ák+:a;l+.l+.çÉîå+;a;ea;tTa;k+:ea;�a;f.Èåî ÁÁ*+H k+.=+a;Ta;Ra;b.Dyua:=+gEa;&R +.taH Ádx ;k, [ea;pa;~ta;a;;�ÂåÅ +dE ;k�+.aM ..a k+:a;le k+:
a;kR +:mxa;ga;a;
a;d;ke Á Á 105 Á Á;
a;va:(ìÉÅ;e +Sea l+.}ba:ja;a;�a;Da;k�+.ae .sa;Ea;}ya;ea ya;a;}ya;eaY;nya;d;a .sa;d;a Áta;a:�áâ+;�a:$ya;a;kx +:�a;ta;
a;va:(ìÉÅ;e +Sa;a;t,a mUa;lM dx ;k, [ea;pa;k+:ea;�a;f;k+:a Á Á 106 Á Á

antyadyujyāhatāks.ādyat trijyāptam. yaśca lambakah. || 104 ||
kālalagnotthakot.ighnah. karārthābdhyuragairhr. tah. |
dr. kks.epastadbhidaikyam. ca kāle karkimr. gādike || 105 ||
vísles.e lambajādhikye saumyo yāmyo ′nyadā sadā |
tattrijyākr. tivísles. āt mūlam. dr. kks.epakot.ikā || 106 ||
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The aks.a multiplied by the antyadyujyā (the Rcosine of the obliquity of the ecliptic)
and divided by the trijyā, and the lambaka multiplied by the kot.i of the kālalagna and
divided by 8452, [are kept separately]. The dr. kks.epa is the difference between or the sum
of the two, depending upon whether the kālalagna is within the 6 signs beginning from
Karkat.aka or from Mr. ga.

Where the difference is greater than the one which is obtained from the lambaka [or lam-
baja],75 the dr. kks.epa is north. Otherwise it is always in the south. The square root of the
square of the difference between it and the square of the trijyā is the kot.i of the dr. kks.epa.

In the above verses, the expression for the dr. kks.epa or the Rsine of the zenith dis-
tance of the vitribhalagna is given. The term vitribhalagna76 (nonagesimal) refers
to the point on the ecliptic which is exactly 90 degrees from the lagna, in the vis-
ible part of the hemisphere. The need for the expression for the zenith distance of
the vitribhalagna arises from the fact that it is used in the computation of the exact
expression for the lagna, which will be presented in a later section. This also plays
an important role in the calculation of eclipses.

Here, two intermediate quantities x and y are defined whose sum or difference
gives the expression for the Rsine of the zenith distance of the vitribhalagna. These
quantities are defined as:

x =
antyadyujyā× aks.a

trijyā
=

Rcosε ×Rsinφ
R

, (3.297)

and y =
lambaka× kālalagnakot. i

8452
=

Rcosφ ×R|cosL′′|× sinε
R

.(3.298)

Here R
sinε = R2

R sin24 is taken to be 8452.

The expression for the dr. kks.epa (= RsinZV in Fig. 3.36) is given to be

dr. kks.epa = x± y. (3.299)

Substituting for x and y and using the notation ZV = zv, we have

Rsinzv = Rcosε sinφ ±Rcosφ |cosL′′|sinε, (3.300)

where the sign chosen is ‘+’ when L′′ is in the first or the fourth quadrant, and ‘−’
when L′′ is in the second or the third quadrant.

Proof:

In Fig. 3.36, Z, K and P represent the zenith, the pole of the ecliptic and the pole
of the equator respectively. Γ is the vernal equinox and V the vitribhalagna. When
Γ is on the horizon, both K and V are on the prime meridian. This situation is
depicted in Fig. 3.36(a). At a later time during the day, as Γ keeps rising above the

75 l+.}ba;a;t,a A;Ta;va;a l+.}ba;k+:a;t,a .ja;a;ya;tea I+.�a;ta l+.}ba:jaH Á
76 ;
a;va;ga;tMa ;
a:�a;BMa ya;sma;a;t,a l+.çÉîå+;a;a;t,a, ta;t,a ;
a;va;
a:�a;Ba;l+.çÉîå+;a;m,a Á
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Fig. 3.36 Determination of the zenith distance of the vitribhalagna.

horizon and keeps moving towards the prime meridian along the equator as shown
in Fig. 3.36(b), the point K also traces a small circle, of radius ε, around the pole of
the equator P.

Consider an instant of time L′′ units after the rise of Γ . At this time, the hour
angle of K would also be L′′. That is, KP̂Z = L′′. Considering the spherical triangle
KPZ, and applying the cosine formula,

cosKZ = cosε sinφ + cosφ sinε cosL′′. (3.301)

Since KV = 90, KZ = 90± zv.77 Therefore |cosKZ| = sinzv, and we have

sinzv = |cosε sinφ + cosφ sinε cosL′′| (3.302)

where L′′ = L′+ prān. as elapsed after sunrise as defined in the previous section.
It may be seen that the above equation is the same as (3.300) prescribed in the

verses. Comparing (3.302) and (3.300), it is clear that the ‘+’ sign should be taken
when cosL′′ is positive, i.e. when L′′ is in the first or the fourth quadrants (within 6
signs beginning from Mr. ga, as stated in the text). Similarly the ‘−’ sign should be
taken when cosL′′ is negative, or when L′′ is within 6 signs beginning from Karka
or Capricorn.

When we take the ‘+’ sign, L′′ is within the first or the fourth quadrant and
KZ < 90◦. Then V is south of the prime vertical, that is, the dr. kks.epa is south.
Even when we take the ‘−’ sign, when the lambajyā |cosφ sinε cosL′′|< cosε sin φ ,
cosKZ is positive and KZ < 90◦. In this case also, the dr. kks.epa is south.

However when we take the ‘−’ sign and |cosφ sinε cosL′′| > cosε sinφ , then
cosKZ is negative and KZ > 90◦. In this case if we draw a figure as in Fig. 3.36,
K would be below the horizon and V would be north of the prime vertical, or the
dr. ks.epa is north. Finally, it is mentioned that

77 In Fig. 3.36, the pole of the ecliptic K is indicated above the horizon and hence KZ = 90− zv.
However, it is possible that K is below the horizon, in which case the ‘+’ sign should be taken.
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dr. kks.epakot.ikā = Rcoszv =
√

R2 − (Rsinzv)2. (3.303)

This is elaborated in Laghu-vivr. ti as follows:ta:�a ta;ya;ea;
a;vRa:(ìÉÅ;e +Sea tua kx +:tea .sa;�a;ta ya;d;a A;[a:$ya;ya;ea;lR +.çÉîå+;a;P+.l+.taH l+.}ba:$ya;ea;tpa;�a;~ya A;a;�a;Da;k�+.aMta;d;a .sa;Ea;}ya;
a;d;gga;ta;a dx ;k, [ea;pa:$ya;a, A;nya;d;a .sa;d;a ya;a;}yEa;va Á
There, when we find the difference between the two [x and y] if it is noted that the product
involving the Rcosine of the latitude (the lambajyotpannasya) is greater than the product
involving the Rsine of the latitude (the aks.ajyayorlagnaphalatah. ), then the dr. kks.epa is
towards the north (saumyadiggatā), otherwise it is always towards the south.3.44 .~å.Pu +.f;ea;d;ya;a;~ta;l+.çÉîå+;a;a;na;ya;na;m,a

3.44 Exact determination of the ecliptic point that is rising or
settingma;Dya;a;�îå+:a;dõ ;a na;ta;pra;a;Na;aH ;�a;na;Z�a;a;Ta;a;dõ ;ea;�a;ta;a;sa;vaH ÁO;;ta;dõâ â ;a;Na;ea;�a;na;ta;a ;
a:�a:$ya;a ..a:=;$ya;a;Q.�a;a na;ta;a ya;
a;d Á Á 107 Á Áo+.�a;ta;a;(ãÉea;�a:=;$ya;ea;na;a ga;ea;le ya;a;}yea ;
a;va;pa;yRa;ya;a;t,a ÁdùÅ;au :$ya;a l+.}ba;k+:Ga;a;ta.Èåî ÁÁ*+;a ;
a:�a:$ya;a;�a;a ..a :pua;na;&R +.ta;a Á Á 108 Á Ák+:ea;f�a;a dx ;k, [ea;pa:j�a;a;va;a;ya;a l+.b.Da;.a;a;pMa .=+va;Ea ;Æa;[a;pea;t,a Áta;�+:çÉîå+;aM :pra;a;ë�Åë�Á*:+:pa;a;le .~ya;a;t,a ;�a;na;a;Za ..ea;t,a ta;
a;dõ ;va;Æa:jRa;ta;m,a Á Á 109 Á Á:pra;tya;gga;teaY;~ta;l+.çÉîå+;aM .~ya;a;t,a v.ya;~ta;mea;va ;
a;d;va;a;�a;na;Za;eaH Á:pra;a;#pa;(ãÉa;a;�+:çÉîå+;a;ya;ea;mRa;DyMa l+.çÉîå+;aM dx ;k, [ea;pa;sMa;�a::℄a;ta;m,a Á Á 110 Á Á

madhyāhnādvā nataprān. āh. nís̄ıthādvonnatāsavah. |
etadbān. onitā trijyā carajyād. hyā natā yadi || 107 ||
unnatāśceccarajyonā gole yāmye viparyayāt |
dyujyā lambakaghātaghnā trijyāptā ca punarhr. tā || 108 ||
kot.yā dr. kks.epaj̄ıvāyā labdhacāpam. ravau ks.ipet |
tallagnam. prākkapāle syāt nísi cet tadvivarjitam || 109 ||
pratyaggate ′stalagnam. syāt vyastameva divānísoh. |
prākpaścāllagnayormadhyam. lagnam. dr. kks.epasam. jñitam ||110 ||
The prān. as corresponding to the nata (hour angle) or those corresponding to the un-
nata may be obtained from either midday or midnight. If the nata is obtained, then the
bān. a (versed sine, utkramajyā) of it is to be subtracted from the trijyā, and the result
is added to the carajyā [to obtain x]. If the unnata [is obtained], then the carajyā is to
be subtracted from the result. [This is the procedure for the northern hemisphere]. For the
southern hemisphere the set of operations are to be reversed.

[This x] is multiplied by the product of the dyujyā and the lambaka and is divided by the
trijyā and the kot.i of the dr. kks.epa. The arc of the result is to be applied positively to the
Sun. This gives the lagna in the eastern part. For [the computations with mid-] night, the
arc has to be subtracted from the Sun.

Since the processes have to be reversed for the day and night, if it (the Sun) is in the western
part, the result gives the setting point of the ecliptic. The midpoint of the rising and setting
lagnas is the lagna called the dr. kks.epa.
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A procedure for obtaining the prāglagna at any point in time during the day was
described earlier in verses 95–99 of this chapter. In the subsequent verses however
it was stated that the procedure described then was only approximate. In verses 102–
6, the method to find two new quantities, namely the kālalagna and the dr. kks.epa
were given. The concept of the kālalagna is introduced as a prerequisite to arrive
at the expression for the dr. kks.epa, which in turn is introduced as a prerequisite to
arrive at the exact expression for the lagna. The procedure for arriving at the exact
lagna value is now described in verses 107–10. The procedure is as follows.

Initially, the hour angle of the Sun (east or west) is found from the half-duration
of the day. If td is the half-duration of day, then the nata (hour angle) of the Sun is
given by

H = td − time elapsed since sunrise

or = td − time yet to elapse till sunset. (3.304)

An intermediate quantity x is defined as

x = trijyā− bān. a of nata+ carajyā

= R− (R−RcosH)+ Rsin∆α
= RcosH + Rsin∆α. (3.305)

Then, the jyā of ∆θ whose arc has to be applied to the Sun to get the lagna is defined
to be

jyā ∆θ =
x×dyujyā× lambaka

trijyā×dr. kks.epakot.i
. (3.306)

Substituting for x in the above expression we have

Rsin∆θ =
(RcosH + Rsin∆α)×Rcosδ Rcosφ

R×RcosZV
, (3.307)

where RcosZV is the dr. kks.epakot.i at the desired instant. From Chapter 2 ([see
(2.84) in Section 2.11) we know that sin∆α = tanφ tanδ . Substituting for sin∆α
in the above equation and simplifying, we have

Rsin∆θ =
R(cosφ cosδ cosH + sinφ sinδ )

cosZV
. (3.308)

From the above equation the arc ∆θ is to be obtained and applied to the Sun to
get the prāglagna. If λs is the longitude of the Sun, then the prāglagna, which is
generally referred to as the lagna, is given by

lagna = λs +∆θ (at udaya) (3.309)

= λs −∆θ (at asta). (3.310)

On the other hand, if we are interested in arriving at the ecliptic points, from unnata
(the hour angle of the Sun with reference to the midnight), then we need to do the
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reverse process. That is

lagna = λs −∆θ (at udaya)

= λs +∆θ (at asta). (3.311)
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Fig. 3.37 Determination of the prāglagna (orient ecliptic point)–exact method.

Proof:

In Fig. 3.37, K and V represent the pole of the ecliptic and the vitribhalagna re-
spectively. Let φ be the latitude of the observer and δ the declination of the Sun. In
the triangle PZS, PS = 90− δ (with δ −ve) and ZP = 90−φ . Now, applying the
cosine formula to this triangle, we get

cosZS = sinφ sinδ + cosφ cosδ cosH. (3.312)

Now, in the spherical triangle VZS, VZ is the part of the vertical drawn form the
pole of the ecliptic. Hence ZV̂ S = 90. Applying the cosine formula to this triangle,
we have

cosZS = cosVScosZV. (3.313)

Therefore

cosV S =
cosZS
cosZV

. (3.314)

By definition, the point V is at 90◦ from the prāglagna L. Hence

cosVS = sinSL = sin(λl −λs), (3.315)
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where λl and λs are the longitudes of the prāglagna and the Sun respectively. Using
(3.312) and (3.315) in (3.314), we have

sin(λl −λs) =
cosφ cosδ cosH + sinφ sinδ

cosZV
, (3.316)

which is the same as (3.308) given in the text, when we identify λl −λs with ∆θ .
Moreover, to get the longitude of the prāglagna, we see that we need to add ∆θ to
the longitude of the Sun. That is,

λl = λs + ∆θ . (3.317)

This is exactly the prescription given for finding the prāglagna from the hour an-
gle (nata), determined for the eastern part of the hemisphere. The astalagna point
would be to the west of the Sun in the western part of the hemisphere. Clearly,
the corresponding arc ∆θ has to be subtracted from Sun’s longitude to obtain the
astalagna. Thus we see that the procedure described in the text for determining
prāglagna or astalagna is exact.

When the Sun is in the eastern part of the celestial sphere and below the horizon,
it would be east of the udaya-lagna and H would be measured with respect to
midnight. Then

lagna = λs −∆θ (at udaya)

lagna = λs +∆θ (at asta). (3.318)

The point V is the midpoint of the portion of the ecliptic above the horizon. Its
longitude will be the average of the prāglagna and astalagna. This is also equal to
the prāglagna −90◦, or the astalagna +90◦. The longitude of V , which is usually
referred to as the vitribhalagna, is also called dr. kks.epalagna.3.45 ma;Dya;l+.çÉîå+;a;a;na;ya;na;m,a
3.45 Determination of the madhyalagnak+:a;l+.l+.çÉîå+;aM ;
a:�a:=+a;ZyUa;nMa ma;Dya;k+:a;l+.~ta;taH :pua;naH Á;�a;l+.�a;a;pra;a;Na;a;nta:=M n�a;a;tva;a ta;d, d;ea;(ãÉa;a;pea tua ya;ea:ja;yea;t,a Á Á 111 Á Áta;ta;(ãÉa;a;sUa;n,a na;yea;t,a :pra;a;gva;t,a ta;
a;�+:�a;a;nta:=+mua:;dÄâ :=e +t,a Ák+:a;l+.d;ea;DRa;nua;
a;Sa [ea;pyMa ta;taH :pra;a;Na;k+:l+.a;nta:=+m,a Á Á 112 Á Ák+:a;l+.d;ea;DRa;nua;
a;Sa ;Æa;[a;�va;a ta;�a;a;pa;ma;
a;va;Zea;Sa;yea;t,a Áma;Dya;l+.çÉîå+;aM ta;de ;va .~ya;a;t,a ta;tk+:a;le :pra;Ta;mea :pa;de Á Á 113 Á Á;
a;dõ ;t�a;a;ya;a;
a;d;Sua ..a :pra;a;gva;t,a ma;Dya;l+.çÉîå+;a;Æa;ma;h;a;na;yea;t,a Á

kālalagnam. trirāśyūnam. madhyakālastatah. punah. |
liptāprān. āntaram. n̄ıtvā tad doścāpe tu yojayet || 111 ||
tataścāsūn nayet prāgvat talliptāntaramuddharet |
kāladordhanus.i ks.epyam. tatah. prān. akalāntaram || 112 ||
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kāladordhanus.i ks. iptvā taccāpamavíses.ayet |
madhyalagnam. tadeva syāt tatkāle prathame pade || 113 ||
dvit̄ıyādis.u ca prāgvat madhyalagnamihānayet |
The kālalagna deficient by three rāśis (90 degrees) is the madhyakāla. Having obtained
the prān. akalāntara in minutes (liptās) from this, it may be added to the arc of the sine of
that (the madhyakāla).

Once again obtain the asus as before and find the difference in minutes (liptās). This has
to be added to the arc of the madhyakāla. From that the prān. akalāntara [has to be
determined].

Having applied this to the arc of the madhyakāla, the arc may be found iteratively. This is
the madhyalagna at that instant, in the first quadrant. For the second and other quadrants,
the madhyalagna may be obtained as earlier.

The term madhyakāla refers to the right ascension (R.A.) of the point on the
equator which is situated on the prime meridian. In Fig. 3.38 this point is denoted
by T . M represents the meridian ecliptic point and Γ the vernal equinox. The mad-
hyalagna is the longitude of the meridian ecliptic point. Here the vernal equinox is
shown to lie in the western part of the hemisphere.

Let αT be the R.A. of the meridian equatorial point T , and H be the hour angle
(H.A.) of Γ . By convention, the R.A. is measured along the equator eastward from
Γ and the H.A. westwards from the prime meridian. From the figure, it is obvious
that the R.A. of T is equal to the H.A. of Γ . That is, αT = H. By definition, the term
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Fig. 3.38 Determination of the madhyalagna (meridian ecliptic point)—iterative method.

kālalagna (L′′) refers to the difference in the time interval between the rise of Γ and
the desired time. This is equal to 90 + αT . Thus, we have the prescription given in
the text to subtract 90◦ from the L′′ (in angular measure), in order to obtain the R.A.
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of the meridian equatorial point T . That is,

αT = L′′− 90. (3.319)

Now, the problem is to find the madhyalagna, the longitude λ of the meridian eclip-
tic point M with the knowledge of αT . Since the longitude is measured along the
ecliptic and the R.A. along the equator, obviously λ 6= αT . Here an iterative proce-
dure is described by which λ can be obtained from αT . Earlier in the chapter (see
(3.38)), a relation between the R.A. and the longitude was given in the form

sinα =
cosε sinλ

cosδ
. (3.320)

Taking the inverse, we have

α = sin−1
(

cosε sinλ
cosδ

)
= f (λ ). (3.321)

The iteration procedure given in the text may be described as follows: Let λ be the
correct value of the longitude to be found by successive approximations. As a first
approximation we take the value of λ to be the R.A. of T itself. That is,

λ1 = αT . (3.322)

The corresponding R.A. is α1 = f (λ1). Next, we find the prān. akalāntara (δα1),
which is to be added to αT to get the second approximation of λ .

δα1 = λ1 −α1 = λ1 − f (λ1) = αT − f (αT ). (3.323)

Now, in the second step,

λ2 = αT +δα1

= αT +(αT − f (αT ))

= αT +(λ1 − f (λ1)). (3.324)

With the second approximate value of longitude (λ2), we again calculate the prān. akalā-
ntara (δα2) which is to be added to the original value αT to get the third approxi-
mation λ3. We find

α2 = f (λ2). (3.325)

Therefore

δα2 = λ2 −α2

= λ2 − f (λ2). (3.326)

Now, in the third step,

λ3 = αT +δα2
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= αT +(λ2 − f (λ2)). (3.327)

The process is carried out until λn−1 ≈ λn = λ .

Justification of the procedure

From (3.320), we note that α is essentially a function of the longitude λ , since δ
itself is function of λ (see (3.37)). Hence, the R.A. of the meridian ecliptic point αT

may be expressed as
αT = f (λ ). (3.328)

In the first approximation, λ = λ1 = αT . In the next approximation, let λ = λ2 =
λ1 +δα1 = αT + δα1. Hence

αT = f (αT +δα1) = f (αT )+ δα1 × f ′, (3.329)

where f ′ = d f
dαT

. Therefore

δα1 =
αT − f (αT )

f ′
. (3.330)

But f ′ = d f (αT )
dαT

≈ 1, as f (αT ) ≈ αT . This is all right as δα1 is the first-order cor-
rection and it is natural that f ′ is taken to the zeroth order.

Hence δα1 = αT − f (αT ), which leads to

λ2 ≈ αT +(λ1 − f (λ1)) ≈ αm +(αT − f (αT )). (3.331)

This coincides with the expression in (3.324). In the next approximation, let λ =
λ3 = λ2 + δα2. Hence

αT = f (λ3)

= f (λ2 +δα2)

= f (λ2)+ δα2 × f ′. (3.332)

Therefore

δα2 =
[αT − f (λ2)]

f ′
. (3.333)

If we assume again that f ′ = 1, then

δα2 = αT − f (λ2) (3.334)

and λ3 = λ2 +(αT − f (λ2))

or λ3 = αT +(λ2 − f (λ2)), (3.335)
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as stated. The next stages of iteration can also be understood in this manner. How-
ever, we are unable to fully justify the procedure as the approximation f ′ = 1 is not
justified in the higher orders.3.46 A;
a;va;Zea;SMa ;
a;va;na;a ma;Dya;l+.çÉîå+;a;a;na;ya;na;m,a
3.46 Determining the madhyalagna without iterationA;
a;va;Zea;SMa ;
a;va;na;a ma;Dya;l+.çÉîå+;a;ma;a;n�a;a;ya;tea ya;Ta;a Á Á 114 Á Áma;Dya;k+:a;l+.~ya k+:ea;�a;f:$ya;a :pa:=+ma;a;pa;kÒ +:ma;a;h;ta;a Á;
a:�a:$ya;a;l+.b.Da;kx +:�a;tMa tya;�+:a k+:a;l+.k+:ea;�a;f;
a:�a:j�a;a;va;ya;eaH Á Á 115 Á Áva;ga;Ra;Bya;Ma ;a;Za;�;mUa;le :dõe k+:ea;�a;f:$ya;a .~ya;a;t,a ;
a;dõ ;ma;Ea;v.yRa;
a;pa Ák+:ea;�a;f:$ya;a ;
a:�a:$ya;ya;ea;Ga;Ra;ta;a;t,a78 dùÅ;au :$ya;a;va;a;�Ma tua ..a;a;
a;pa;ta;m,a Á Á 116 Á Ák+:a;l+.a;sa;va;ea ma;Dya;l+.çÉîå+;a;Bua:ja;a ta:;dÄâ � ;a;na;Ba:�a;ya;m,a Á:pa;d;v.ya;va;~Ta;a .sua;ga;mEa;va;a;dùÅ;a;ma;Dya;
a;va;l+.çÉîå+;a;va;t,a Á Á 117 Á Á

avíses.am. vinā madhyalagnamān̄ıyate yathā || 114 ||
madhyakālasya kot.ijyā paramāpakramāhatā |
trijyālabdhakr. tim. tyaktvā kālakot.itrij̄ıvayoh. || 115 ||
vargābhyām. śis. t.amūle dve kot.ijyā syāt dvimaurvyapi |
kot.ijyā dvijyayorghātāt dyujyāvāptam. tu cāpitam || 116 ||
kālāsavo madhyalagnabhujā taddh̄ınabhatrayam |
padavyavasthā sugamaivādyamadhyavilagnavat || 117 ||
[Here we describe a procedure] by which the madhyalagna can be arrived at without
doing iteration. The kot.i of the madhyakāla is multiplied by the Rsine of the maximum
declination and divided by the trijyā. The square of this is subtracted from the squares of
the kālakot.i and the trijyā. The square roots of the two resulting quantities are the kot.ijyā
and the dvimaurv̄ı [respectively].

The arc of the product of the kot.ijyā and the trijyā divided by the dyujyā is the kālāsavah. .
This subtracted from three signs (90 degrees) is the madhyalagna. [The value of this] in
different quadrants can be easily found as in the case of the madhyalagna [explained
earlier].

The term avíses.akarma79 refers to the process of obtaining a stable result by em-
ploying an iterative procedure. Hence the phrase ‘avíses.am. vinā’ means ‘without
using an iterative process’. What is described in verses 114–7 is a procedure by
which the madhyalagna can be obtained without doing any iteration. For this, an
intermediate quantity, x, is defined by the relation

78 The reading in both the printed editions is: dùÅ;au :$ya;ya;ea;Ga;Ra;ta;a;t,a Á From the commentary Laghu-

vivr. ti, it is clear that the multiplier for the kot.ijyā is the trijyā and not the dyujyā.
79 The word víses.a means ‘distinction’. Hence avíses.a is ‘without distinction’. Though the mean-
ings of the words víses.a and avíses.a are opposed to each other, the latter should not be taken to
mean tulya or ‘completely identical’. In the context of mathematical calculations, it only means
‘without distinction to a desired degree of accuracy’. In other words, in the avíses.akarma, the
iterative process needs to be carried out only up to a point wherein the two successive values of the
results are ‘without distinction’ for a desired degree of accuracy. Once this accuracy is reached, the
process may be terminated.
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x =
RcosαT ×Rsinε

R
. (3.336)

With x, two more quantities, namely the kot.ijyā (p) and the dvimaurv̄ı (q) are de-
fined.

p =
√

(RcosαT )2 − x2

and q =
√

R2 − x2. (3.337)

Now, the kālāsava is defined to be the arc of the product of the kot.ijyā and the
trijyā divided by the dvimaurv̄ı or the dyujyā. For convenience we write

Rsinθ =
R× p

q
, (3.338)

where θ is kālāsava. The madhyalagna is then given by 90−θ . Substituting for p,
q and x in the above expression and simplifying, we have

RcosM =
RcosαT cosε√

1− cos2 αT sin2 ε
. (3.339)

Proof:

The relation between the R.A. α , the longitude λ and the declination δ of the Sun
given by (3.39) may be written as

sinλ =
sinα cosδ

cosε
. (3.340)

Using the relation sinδ = sinε sinλ to replace δ in terms of λ , the above equation
reduces to

sinλ =
sinα
cosε

√
1− sin2 ε sin2 λ . (3.341)

Squaring both sides and simplifying, we have

sinλ =
sinα√

1− cos2 α sin2 ε
. (3.342)

With some algebraic manipulation it can be shown that

cosλ =
cosα cosε√

1− cos2 α sin2 ε
, (3.343)

which is the same as (3.339), once we identify λ → M and α → αT . Also, using the
4-parts formula, the relation between α and λ can be shown to be



254 C+.a;ya;a;pra;k+.=+Na;m,a Gnomonic shadow

tanλ = tanα secε. (3.344)

It is straightforward to see that (3.344) is the ratio of (3.342) and (3.343) and hence
(3.339) can be obtained by using the above relation also.



Chapter 4..a;ndÒ +g{a;h;Na;pra;k+.=+Na;m,a
Lunar eclipse

4.1 ..a;ndÒ +BUa;.C+.a;ya;ya;eaH ya;ea;ga;k+:a;lH
4.1 Time of conjunction of the Moon and the Earth’s shadowA;kR +:~å.Pu +.fM .sa;.a;kÒ +:a;D a BUa;.C+.a;ya;a;~å.Pu +.f;mua;.ya;tea Á.sUa;ya;Ra;~ta;ma;ya;k+:a;l+.ea;tTa;Ea C+.a;ya;a;.a;ndÒ +Ea .sa;m�a;a;pa;ga;Ea Á Á 1 Á Áo+.d;yea va;a;Ta ;
a;va;nya;~ya ta;dùÅ;a;ea;ga;eaY:�a;�a;na:�+.pya;ta;a;m,a Á..a;ndÒ e Y;�a;Da;ke ga;ta;ea ya;ea;gaH nyUa;nea ..Ea;Sya I+.�a;ta ;�//////�a;~Ta;�a;taH Á Á 2 Á Áta;d;nta:=M tua :Sa;
a;�.Èåî ÁÁ*+M ga;tya;nta:=+&+.tMa ta;ya;eaH Áya;ea;ga;k+:a;l+.ea 1 ;Ga;f� ;a;pUa;va;eRa ga;ta;ea ga;}ya;eaY;
a;pa va;a kÒ +:ma;a;t,a Á Á 3 Á Á

arkasphut.am. sacakrārdham. bhūcchāyāsphut.amucyate |
sūryāstamayakālotthau chāyācandrau samı̄pagau || 1 ||
udaye vātha vinyasya tadyogo ′tranirūpyatām |
candre ′dhike gato yogah. nyūne cais.ya iti sthitih. || 2 ||
tadantaram. tu s.as.t.ighnam. gatyantarahr. tam. tayoh. |
yogakālo ghat.̄ıpūrvo gato gamyo ′pi vā kramāt || 3 ||
The true position of the Earth’s shadow is said to be the sum of the true position of the
Sun and a half-circle (180 degrees). Having determined the position of the Moon and the
[Earth’s] shadow either at sunrise or at sunset, whichever is closer [to the conjunction],
the time of their conjunction may be determined. If [the longitude of] the Moon is greater
then the conjunction is over, and if it is less then it is yet to occur. Their difference [in
longitude] multiplied by 60 and divided by their difference in daily motion [gives] the time
for conjunction (the yogakāla) expressed in ghat.ı̄s etc. that has already elapsed or is yet to
elapse respectively.

1 The compound word ya;ea;ga;k+:a;l can be derived in two ways: (i) (C+.a;ya;a;.a;ndÒ +ma;sa;eaH ) ya;ea;ga;~ya k+:a;lH
(the time of conjunction of the Moon and the shadow) or (ii) (C+.a;ya;a;.a;ndÒ +ma;sa;eaH) ya;ea;ga;a;T a k+:a;lH
(the time for conjunction, either in the forward direction or reverse direction). In other words,ya;ea;ga;a;T a k+:a;lH can connote ya;ea;ga;a;tpUa;v a ga;}yaH k+:a;lH (the time that is yet to elapse till conjunction)

or ya;ea;ga;a;na;nta:=M ga;taH k+:a;lH (the time that has elapsed after conjunction). From a careful analysis
of the content of verse 3 and again of verse 7 (in the next section)—where the word yogakāla has
been employed once more—it becomes evident that the author has employed the word in the latter
sense and not in the former. That is, by yogakāla he means the quantity ∆ t given by equation (4.3).
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Fig. 4.1a Schematic representation of the situation of the Moon’s orbit with respect to the ecliptic.

The Moon’s orbit is inclined to the ecliptic as shown in Fig. 4.1a. The angle of
inclination, denoted by i, is taken to be 270′(4 1

2
◦
) in most of the Indian astronomical

texts including Tantrasaṅgraha.2

Moon’s nodes and their retrograde motion

The points of intersection of the ecliptic and the Moon’s orbit, N1 and N2 (see
Fig. 4.1a), are the nodes of the orbit. As the Moon crosses node N1 along the direc-
tion indicated in figure, it is ascending towards the north celestial pole, and hence
node N1 is called the ascending node. As it crosses N2, it is descending towards the
south pole and hence N2 is called the descending node.

In fact, it is these two nodes that are called Rāhu and Ketu in Indian astronomy.
The nodes themselves are in motion3 and their motion is retrograde. That is, the
direction of motion of the nodes is the opposite of that of the motion of the Moon,
Sun and other planets. The time taken by the nodes to complete one full revolution
is about 6793 days, or 18.6 years.

Possibility of a lunar eclipse

The Earth’s shadow always moves along the ecliptic and its longitude will be exactly
180◦ plus that of the longitude of the Sun. When the Moon is close to the shadow
and both of them are near a node, then there is a possibility of a lunar eclipse. This
situation is depicted in Fig. 4.1b, where C represents the chāyā (shadow), and A and
B are the positions of the Moon before and after the lunar eclipse.

2 It is known today that the inclination of the Moon’s orbit varies slightly with time, and that its
average value is around 5.1◦.
3 This motion is mainly due to the variation in the gravitational force on the Moon exerted by the
Earth, due to its equatorial bulge.
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Fig. 4.1b Determination of the instant of conjunction.

Computation of the instant of conjunction

In verses 1–3, the procedure for the determination of the instant of conjunction of the
shadow and the Moon is given. Usually, the longitudes of the planets are calculated
at sunrise on a particular day. Let λs, λm and λc be the longitudes of the Sun, the
Moon and the chāyā respectively. Then, obviously,

λc = λs +180. (4.1)

When the longitudes of the Moon and the Earth’s shadow are the same, the Sun will
be exactly at 180 degrees from the Moon. Since the Sun and the Moon are diamet-
rically opposite each other at this instant, they are said to be in opposition. In order
to determine this instant, the true longitudes of the Sun (λs) and the Moon (λm), are
first calculated at sunrise on a full Moon day. Then, the difference in longitudes of
the Moon and the chāyā, given by

∆λ = λm −λc, (4.2)

is computed. The sign of ∆λ indicates if the instant of opposition is over or is yet to
occur.

1. If ∆λ < 0, it means that the instant of opposition is yet to occur as the Moon
moves eastward with respect to the Sun.4

2. If ∆λ > 0, it means that the instant of opposition is already over.

The positions of the Moon corresponding to these two situations are indicated by A
and B in Fig. 4.1b. ∆t, the time interval between sunrise and the instant of opposi-
tion, is computed using the relation

∆ t =
|∆λ |

dm −ds
× 60, (4.3)

where dm and ds are the daily motions of the Sun and the Moon respectively. The
above expression for ∆ t (in ghat.ikās) is obviously based upon the rule of three given

4 It may be recalled that the shadow also moves eastward owing to the motion of the Sun, but at a
rate much slower than that of the Moon.
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by

dm −ds : 60 (ghat.ikās)

|∆λ | = |λm−λc| : ∆ t (in ghat.ikās).

Having determined ∆ t, the time of opposition of the Sun and the Moon or equiv-
alently the conjunction of the Moon and the Earth’s shadow—the end of the full
Moon day, which is the same as the middle of the eclipse denoted by tm—is ob-
tained using the relation

tm = sunrise time±∆ t. (4.4)

We have to use ‘+’ if the instant of opposition is yet to occur and ‘−’ otherwise.
The time given by (4.4) is only approximate, and the reason for the same has been
stated in Yukti-d̄ıpikā to be the continuous variation in the speed with which the
Sun and the Moon move.5 In order to obtain the exact instant of opposition, the text
prescribes an iterative procedure which is explained in the following verses.4.2 A;
a;va;Zea;Sea;Na .~å.Pu +.f;ya;ea;ga;k+:a;l+.a;na;ya;na;m,a
4.2 Determination of the exact moment of conjunction by

iterationta;a;tk+:a;�a;l+.k+:Ea :pua;na;n�a;Ra;tva;a ma;Dya;a;keR +:ndu ;~å.Pu +.f;a;va;
a;pa Áo+.d;ya;a;dùÅ;a;ea;ga;k+:a;le +.na n�a;a;ya;tea ..ea:�a;du ;�+:va;t,a Á Á 4 Á Áta;a;tk+:a;�a;l+.k+:a;kR +:�a;na;Spa;�a;.a:=+sMa;~k+:a:= I+.Sya;tea ÁA;~ta;k+:a;l+.ea;�+:va;t,a ta;sma;a;t,a ..a;a;�ya;tea ..ea;t,a ..a:=+ea;;�ÂåÅ +vaH Á Á 5 Á ÁI+.�;k+:a;l+.a;kR +:ta;(ãÉEa;vMa k+:a;y a :pra;a;Na;k+:l+.a;nta:=+a;t,a Ád;ea;BeRa;d;a;�a;a;
a;pa .sMa;~k+:a:=H .=+v�a;a;ndU ta;Ea .~å.Pu +.f;Ea ta;d;a Á Á 6 Á Áya;ea;ga;k+:a;l+.~ta;ta;ea nea;yaH ta;a;�a.Èåî ÁÁ*+;a .~va;a .~å.Pu +.f;a ga;�a;taH Á:Sa;��a;a;�a;a .~va;~å.Pu +.fe ya;ea:$ya;a ga;}yea ya;ea;geaY;nya;Ta;a;nya;Ta;a Á Á 7 Á Á.sa;ma;�a;l+.�a;Ea Ba;vea;ta;Ma ta;Ea :pa;va;Ra;nta;sa;ma;ya;ea;;�ÂåÅ +va;Ea Á
tātkālikau punarn̄ıtvā madhyārkendusphut.āvapi |
udayādyogakālena n̄ıyate cettaduktavat || 4 ||
tātkālikārkanis.pannacarasam. skāra is.yate |
astakāloktavat tasmāt cālyate cet carodbhavah. || 5 ||
is. t.akālārkataścaivam. kāryam. prān. akalāntarāt |
dorbhedāccāpi sam. skārah. rav̄ındū tau sphut.au tadā || 6 ||
yogakālastato neyah. tannighnā svā sphut.ā gatih. |
s.as.t.yāptā svasphut.e yojyā gamye yoge ′nyathānyathā || 7 ||
samaliptau bhavetām. tau parvāntasamayodbhavau |
The mean and the true [longitudes of the] Sun and the Moon are once again obtained at the
instant of conjunction. If the instant of conjunction is determined from [the position of the
Sun and the Moon at] sunrise, then as described [earlier] it is desired that the value of the

5 :pra;�a;ta;[a;NMa :pra;Æa;Ba;�Ea;va .~å.Pu +.f;Bua;�a;�+:dùÅ;aRu ;.a;a;�a:=+Na;a;m,a Ák+:a;l+.Bua;��+.a;eaH ;Æa;ma;Ta;~ta;sma;a;t,a na;a;nua;pa;a;taH :pra;va;tRa;tea Á Á ({TS 1977}, p. 252)
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cara be determined at that instant [of conjunction], and applied [to obtain the true sunrise
time]. If otherwise [the instant of conjunction is determined from the position of the Sun
and the Moon at sunset], and the value of the cara obtained at sunset is applied as per the
procedure described for [application at] sunset. From the prān. akalāntara and the desired
sine (dorbheda6), determined at the instant of conjunction, the corrections have to be done.
Then the true positions of the Sun and the Moon are obtained. The time of conjunction is
once again calculated from that. This (yogakāla) is multiplied by the true daily motion and
divided by 60. The results are added or subtracted, according to whether the conjunction
is yet to occur or has already occurred. Thus [by using an iterative procedure] the true
longitudes of them (the Earth’s shadow and the Moon7) will be rendered equal [even] in
minutes at the end of the full Moon day (parva8).

The instant of conjunction calculated using (4.4) is only approximate, as ∆t used
in the expression is found using a simple rule of three that presumes a uniform
motion of the Sun and the Moon, which is not true. In order to consider this non-
uniform motion into account, an iterative procedure to determine the true instant of
conjunction is described here.

As per the computational scheme followed by Indian astronomers, the instant of
sunrise or sunset is the reference point for finding the time of any event. Hence, the
instant of true sunrise is first to be determined accurately. It was noted in Chapter 2
that this involves the application of the cara (ascensional difference), and the equa-
tion of time, where the latter has two parts, namely the correction due to the equation
of centre and the correction due to the prān. akalāntara. Here it is prescribed that
the cara and the equation of time are to be determined at the instant of conjunction,
in order to find the instant of true sunrise or sunset as the case may be.

Next, the approximate value of the instant of conjunction is found and also the
true longitudes of the Sun and Moon, while their true daily motions are also deter-
mined at this instant. The second approximate value of the instant of conjunction is
determined using (4.3). The true longitudes and the daily motions are again com-
puted at this instant, to obtain the third approximate value. The iteration process is
carried till two successive values of the instant of conjunction are the same to the
desired accuracy.

That the difference in the motion of the Sun and the Moon is a continuously
varying quantity has been explicitly mentioned in Laghu-vivr. ti, while giving an
avatārikā9 to these verses:A;Ta ;
a;d;na;ga;tya;nta:=+k+:l+.a;na;Ma :Sa;
a;�;Ga;�a;f;k+:a;Æa;BaH .sa;h yaH .sa;}ba;nDa;�a;na;ya;maH .saH ta;d;va;ya;vea;SuaA;nya;a;dx ;ZaH .~ya;a;t,a ta;~ya :pra;�a;ta;[a;NMa na;a;na;a:�+.pa;tva;a;t,a Á I+.tyea;va;ma;a;n�a;a;ta;~ya ya;ea;ga;k+:a;l+.~yaA;~å.Pu +.f;tva;ma;a;Za;*ñÍö÷ÅÉ ÙùÅ+;a ;
a;va;Zea;Sea;NEa;va .~å.Pu +.f� ;a;k+:tRua;ma;a;h Á

However, the relation that exists between the difference in the daily motion [of the Sun
and the Moon] with 60 ghat.ikās will be quite different from the one that holds for its

6 The term bheda is sometimes used as an equivalent to víses.a (a particular). In the present context,
the particular doh. = bhujā that is referred to is the equation of centre, which is generally referred
to as the doh.phala or bhujāphala.
7 The Sun and the Moon in the case of a solar eclipse.
8 New Moon day in the case of a solar eclipse.
9 This refers to the succinct note or observation made by the commentator before introducing a
chapter or section or successive set of verses dealing with a topic.
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parts, since that (velocity of the Sun and the Moon) varies at every instant (pratiks.an. am
nānārūpatvāt). So much is this so, that there are grounds to doubt the accuracy of the time
of conjunction thus determined, and hence a special [iterative] procedure is prescribed.4.3 .=+v�a;a;ndõ ;eaH k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;na;m,a

4.3 Radii of the orbits of the Sun and the Moon in yojanasd;Za;a;Bya;~ta;a ;
a:�a:j�a;a;vea;nd;eaH k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;na;m,a Á Á 8 Á Áta;�a;ndÒ +Ba;ga;Na;a;Bya;~tMa Ba;a;na;eaH .~va;Ba;ga;Na;ea:;dÄâx ;ta;m,a Á
daśābhyastā trij̄ıvendoh. kaks.yāvyāsārdhayojanam || 8 ||
taccandrabhagan. ābhyastam. bhānoh. svabhagan. oddhr. tam |
The trijyā (the radius measured in minutes) multiplied by 10 is the [mean] radius of the
orbit of the Moon in yojanas. This multiplied by the number of revolutions of the Moon
and divided by the revolutions of the Sun is the Sun’s [mean] orbital radius.

Let rm and rs be the (mean) radii of the orbits of the Moon and the Sun and nm

and ns represent the number of revolutions made by them in a Mahāyuga. Then rm,
rs in yojanas are given by

rm = trijyā× 10 = 3438× 10 = 34380, (4.5)

rs = 34380× nm

ns
= 34380× 57753320

4320000
≈ 459620. (4.6)

The mean radius of the Sun’s orbit has been obtained above by assuming that the
linear velocities of the Sun and the Moon are the same.104.4 .=+v�a;a;ndu ;Bua;va;Ma ;
a;ba;}ba;v.ya;a;sa;a;DRa;ya;ea:ja;na;m,a
4.4 Radii of the Sun, Moon and the Earth in yojanasBUa;vxa:�a;a;du ;
a;d;ta;a;t,a :pra;a;gva;t,a v.ya;a;sa;~ta;~ya;a;
a;pa n�a;a;ya;ta;a;m,a Á Á 9 Á Á;
a;d;gvea;d;a;�///�a;b.Da;Æa;ma;ta;ea Ba;a;na;eaH v.ya;a;sa;�/////�a;~ta;Tya;çÉîå+;a;ya;ea ;
a;va;Da;eaH Á

bhūvr. ttāduditāt prāgvat vyāsastasyāpi n̄ıyatām || 9 ||
digvedābdhimito bhānoh. vyāsastithyagnayo vidhoh. |
Let the diameter of the Earth be obtained from the value of its circumference as [stated]
earlier. The diameter of the Sun is 4410 [yojanas] and that of the Moon is 315.

In Chapter 1, verse 29, the value of the circumference of the Earth was stated to
be 3300 yojanas. Hence the diameter of the Earth De is

De =
3300

π
≃ 1050.42 yojanas. (4.7)

10 It is indeed one of the fundamental assumptions of Indian astronomy that the mean linear veloc-
ities of all the planets are the same.
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In the above equation we have taken the value of π to be the ratio of 355 and 113
as suggested by Śaṅkara Vāriyar in his Laghu-vivr. ti.

11 The diameters of the Sun
and Moon are specified to be 4410 and 315 yojanas respectively.4.5 .=+v�a;a;ndõ ;eaH .~å.Pu +.f;ya;ea:ja;na;k+:NRaH
4.5 Actual distances of the Sun and the Moon in yojanask+:a;l+.k+:NRa;h;tMa .~va;~va;k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;na;m,a Á Á 10 Á Á;
a:�a:$ya;a;�Ma .~ya;a;t,a Ba;ga;ea;l+.~ya ma;Nq+.l+.~ya ..a ma;Dya;ya;eaH Áya;ea:ja;nEa:=+nta:=+a;lM .~ya;a;t,a ta:�a;tk+:a;l+.ea;;�ÂåÅ +vMa .~å.Pu +.f;m,a Á Á 11 Á Á

kālakarn. ahatam. svasvakaks.yāvyāsārdhayojanam || 10 ||
trijyāptam. syāt bhagolasya man. d. alasya ca madhyayoh. |
yojanairantarālam. syāt tattatkālodbhavam. sphut.am || 11 ||
The radii of their own orbits multiplied by the kālakarn. a and divided by the trijyā are
the actual distances of separation between the centres of their discs and the centre of the
bhagola, in yojanas, [as] the correct values (sphut.a) are the ones determined from time
to time (tattatkālodbhavam. ).

The radii of the orbits of the Sun and Moon given earlier are only their mean
values. The actual distances keep varying owing to the eccentricities of their or-
bits, and are actually proportional to the manda-karn. a, or the kālakarn. a as it is
called here. The term kālakarn. a is defined in the commentary Laghu-vivr. ti to be
the avíses.akarn. a, the hypotenuse determined by iterative procedure.12A;keR +:ndõ ;eaH k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;nMa .sa;ma;na;nta:=+ea;�M k+:l+.a:�+.pea;Na A;
a;va;a;Za;�;ma;nd;k+:NeRa;na ;�a;na;h;tya;
a:�a:$ya;ya;a ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DMa Ba;ga;ea;l+.Ga;na;ma;Dya;~ya .~va;
a;ba;}ba;Ga;na;ma;Dya;~ya ..a A;nta:=+a;lMya;ea:ja;na;a;tma;kM .~å.Pu +.fM Ba;va;�a;ta; .~å.Pu +.f;ya;ea:ja;na;k+:NRaH I+.tya;TRaH Á ta:�a;tk+:a;l+.ea;;�ÂåÅ +va;Æa;ma;tya;nea;na ta;~ya:pra;�a;ta;[a;NMa na;a;na;a:�+.pa;tva;mua;�+:m,a Á

The radii of the orbits of the Sun and Moon in yojanas, just mentioned, is multiplied by
the avísis.t.a-manda-karn. a (iterated manda-hypotenuse) and divided by the trijyā. The
result is the true distance in yojanas between the centres of the celestial sphere and the
centre of the body (Sun or Moon); that is, it is the sphut.a-yojana-karn. a. By stating that it
has to be obtained for the particular time, it is indicated that it varies from instant to instant.

The word avísis. t.a-manda-karn. a, used in the commentary, refers to the word
kāla-karn. a K in the text and is given by

11 Śaṅkara Vāriyar observes:ya;ta;ea vxa:�a;pa;�a:=+DeaH ��a;a;ZEa;�a;nRa;h;ta;a;t,a A;TeRa;Sva;�a;çÉîå+;a;Æa;Ba;
a;vRa;Ba:$ya l+.b.DaH ta;dõùÅ;a;a;sa I+.�a;ta :pra;a;gea;va;ea;�M . . . Á
The diameter is what is obtained by multiplying the circumference of the circle by 113 and
dividing by 355 as stated earlier.

12 This procedure is described in verses 41 and 42 of Chapter 2. A shortcut to the iterative method—
due to Mādhava—is also presented there in verses 43 and 44.
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avísis. t.a-manda-karn. a =
trijyā2

vipar̄ıta-karn. a
. (4.8)

Using the expression for the vipar̄ıtakarn. a (inverse hypotenuse) given earlier
(Chapter 2, verse 44) we have

K =
R2

√
R2 − r2

0 sin2 θmk − r0 cosθmk

, (4.9)

where θmk is the manda-kendra.13 If rm and rs represent the mean radii of the
orbits of the Moon and the Sun (kaks.yāvyāsārdha), then their actual distances of
separation d1m and d1s from the centre of the bhagola (celestial sphere) in yojanas
are given by

d1m =
rm ×K

R
and d1s =

rs ×K
R

. (4.10)

The suffix ‘1’ employed in the above expressions indicates that these values corre-
spond to what are known as the ‘first’ sphut.a-yojana-karn. as, which have to be
distinguished from the ‘second’ sphut.a-yojana-karn. as defined in the following
section. In fact, d1m and d1s represent the distances of the Moon and the Sun in
their eccentric orbits, from which the ‘second’ sphut.a-yojana-karn. as are obtained.4.6 .=+v�a;a;ndõ ;eaH ;
a;dõ ;t�a;a;ya;~å.Pu +.f;ya;ea:ja;na;k+:NRaH
4.6 Second approximation to the radii of the orbits of the Sun

and the Moon in yojanaso+.�a;ea;na;Za;a;Za;k+:ea;�a;f:$ya;a;d;lM :pa;va;Ra;nta:jMa .~å.Pu +.f;m,a Á.~å.Pu +.f;ya;ea:ja;na;k+:NeRa .~vMa .ja;hùÅ:a;a;t,a k+:k�+.a;Ra;
a;d:jMa ta;taH Á Á 12 Á Á.sa BUa;}ya;nta:=+k+:NRaH .~ya;a;t,a .tea;na ;
a;ba;}ba;k+:l+.Ma na;yea;t,a Á.~å.Pu +.f;ya;ea:ja;na;k+:NeRa .~vea ma;a;sa;a;ntea Za;a;Za;va;dÒ +veaH Á Á 13 Á Áv.ya;~tMa :pa;[a;a;nta:jMa k+:a;y a .=+
a;va;BUa;}ya;nta:=+a;�a;yea Á
ucconaśaśikot.ijyādalam. parvāntajam. sphut.am |
sphut.ayojanakarn. e svam. jahyāt karkyādijam. tatah. || 12 ||
sa bhūmyantarakarn.ah. syāt tena bimbakalām. nayet |
sphut.ayojanakarn. e sve māsānte śaśivadraveh. || 13 ||
vyastam. paks.āntajam. kāryam. ravibhūmyantarāptaye |
Half of the kot.ijyā of the difference of the longitude of the Moon and its apogee, calcu-
lated at the moment of opposition, has to be added to or subtracted from the value of the
(first) sphut.a-yojana-karn. a depending upon whether the manda-kendra is Mr. gādi or
Karkyādi. This is the actual distance of separation between the Earth and the Moon. From
this the diameter of the Moon’s disc must be obtained.

13 θmk is the same as θ0 −θm used in Sections 2.17 and 2.18 of Chapter 2.
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In the case of the Sun, to obtain its distance of separation from the Earth, the same process
as was adopted for the Moon may be followed at the end of the [lunar] month (that is, at
new Moon) and the reverse process may be followed at the end of the bright fortnight.

The first correction to be applied for obtaining the actual distance of separation
between the centres of the Sun and the Moon—from the centre of the Earth during
an eclipse—was described in the previous section. Here the second correction is
given as

d2m = d1m +
Rcosθmk

2
, (4.11)

where θmk is the manda-kendra, determined at the instant of conjunction or opposi-
tion. The above expression is used for determining the actual distance of separation
between the Earth and the Moon, for both solar and lunar eclipses.

In the case of the Sun, the actual distance of separation between the centres of
the Earth and the Sun, d2s, is given as:

d2s = d1s +
Rcosθmk

2
(solar eclipse)

d2s = d1s −
Rcosθmk

2
(lunar eclipse). (4.12)

The yojana-karn. a including the second correction is the dvit̄ıya-sphut.a-yojana-
karn. a or simply the dvit̄ıya-sphut.a-karn. a. This arises because of the so-called
dvit̄ıya-sphut. ı̄karan. a or the second correction for the longitude of the Moon (simi-
lar to the ‘evection’ correction), which is discussed further in Chapter 8. In the case
of the Moon, this corresponds to a new correction to the longitude (besides the equa-
tion of centre) which also affects the distance. In the case of the Sun, it alters the
distance by a relatively smaller factor, without affecting the longitude.

As explained in Yuktibhās. ā (chapter 15), this correction arises from the fact that
the centre of the celestial sphere (the bhagola-madhya) does not coincide with the
centre of the Earth. It is at a distance of Rcos(λs−U)

2 (in yojanas) from the centre of
the Earth in the direction of the Sun, where λs represents the longitude of the Sun
and U the longitude of the apogee (ucca) of the Moon.14 The true longitudes of the
Sun and the Moon hitherto considered are actually with reference to the bhagola-
madhya. The dvit̄ıya-sphut. ı̄karan. a transforms them into longitudes (see section
8.1 below) with respect to the centre of the Earth. Here, we confine our attention
only to the change in distance due to the above factor as is relevant in the discussion
of eclipses.

In the case of a lunar eclipse, λs = λm +180◦ at the instant of opposition. Hence,

Rcos(λm −U) = Rcosθmk = −Rcos(λs −U). (4.13a)

But for a solar eclipse, at the instant of conjunction, λs = λm.

14 This is actually true only when cos(λs −U) is positive. When it is negative, the centre of the

celestial sphere is at a distance of |Rcos(λs−U)|
2 , in a direction opposite to the direction of the Sun.
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Rcos(λm −U) = Rcosθmk = Rcos(λs −U). (4.13b)

First, let us consider the case when cos(λs −U) is positive.

Sun

S E

Moon

M

Sun

O

Moon

madhya)
(bhagola-
madhya)

(bhūgola-

Fig. 4.2a Computation of the dvit̄ıya-sphut.a-karn. a in a lunar eclipse.

In Fig. 4.2a, E is the centre of the Earth (the bhūgola-madhya) and O the centre
of the celestial sphere (the bhagola-madhya). M represents the Moon, and S the
Sun. OM = d1m and OS = d1s. Now, the distance of separation between the bhagola-
madhya and the bhūgola-madhya is given by

OE =
Rcos(λs −U)

2
= − Rcosθmk

2
. (4.14)

Then, the dvit̄ıya-sphut.a-karn. a d2m of the Moon, which is the true distance of the
Moon from the centre of the Earth, is

d2m = EM = OM−OE

= d1m +
Rcosθmk

2
. (4.15)

Similarly, the dvit̄ıya-sphut.a-karn. a d2s of the Sun, which represents the true dis-
tance of the Sun from the centre of the Earth, is given by

d2s = ES = OS + OE

= d1s −
Rcosθmk

2
. (4.16)

As mentioned earlier, during a solar eclipse the Sun and the Moon are in the same
direction (λm = λs). Therefore (4.14) becomes

OE =
Rcos(λs −U)

2
= +

Rcosθmk

2
. (4.17)
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Fig. 4.2b Computation of the dvit̄ıya-sphut.a-karn. a in a solar eclipse.



4.7 Angular diameters of the Sun and the Moon 265

In the case of solar eclipse, equations (4.15) and (4.16) take the form

d2m = EM = OM + OE

= d1m +
Rcosθmk

2
, (4.18)

and

d2s = ES = OS + OE

= d1s +
Rcosθmk

2
. (4.19)

It is straightforward to show that these relations are valid even when cos(λs −U) is

negative, when O is at a distance |Rcos(λs−U)|
2 from E, in a direction opposite to the

direction of the Sun.
The nomenclature dvit̄ıya-sphuta-yojana-karn. a is introduced in Laghu-vivr. ti

thus:O;;vMa kx +:ta;ea .=+veaH ;
a;ba;}ba;Ga;na;ma;Dya;~ya ;Ga;na;BUa;ma;Dya;~ya ..a A;nta:=+a;lM ya;ea:ja;na;a;tma;kM Ba;va;�a;ta;;
a;dõ ;t�a;a;ya;~å.Pu +.f;ya;ea:ja;na;k+:NRa I+.�a;ta ya;a;va;t,a Á
Doing so gives the distance of separation between the centres of the solar disc and the Earth
in yojanas; in fact, [this is] the dvit̄ıya-sphut.a-yojana-karn. a.4.7 A;keR +:ndõ ;eaH ;
a;ba;}ba;k+:l+.a;v.ya;a;saH

4.7 Angular diameters of the orbs of the Sun and the Moon in
minutes;
a;ba;}ba;~ya ya;ea:ja;na;v.ya;a;sMa ;
a;va;Sk+:}Ba;a;DRa;h;tMa h:=e +t,a Á Á 14 Á Á.~va;BUa;}ya;nta:=+k+:NeRa;na ;�a;l+.�a;a;v.ya;a;saH Za;Z�a;a;na;ya;eaH Á

bimbasya yojanavyāsam. vis.kambhārdhahatam. haret || 14 ||
svabhūmyantarakarn. ena liptāvyāsah. śaś̄ınayoh. |
Let the [linear] diameters of the discs of the Sun and the Moon in yojanas multiplied by the
trijyā be divided by their own distances of separation [to obtain] their angular diameters,
in minutes.

Let Ds and Dm be the linear diameters of the Sun and the Moon. The formulae
for obtaining the angular diameters αs and αm of the Sun and the Moon, from their
linear diameters, are given to be

αs =
Ds ×R

d2s
and αm =

Dm ×R
d2m

, (4.20)

where the denominators refer to the dvit̄ıya-sphut.a-yojana-karn. a of the Sun and
the Moon whose computation has been described in the previous section.

Since the angular diameters αs(αm) in minutes correspond to a distance R from
the centre of the Earth, where R is trijyā, whereas the linear diameters Ds(Dm)
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correspond to a distance of d2s(d2m), the above relations follow straightaway from
the rule of three.

The commentary Laghu-vivr. ti reminds us that the values of the linear diameters
are mentioned in verse 10 of this chapter. This fact is recalled in the commentary
Laghu-vivr. ti as follows:

‘;
a;d;gvea;d;a;�///�a;b.Da;Æa;ma;ta;ea Ba;a;na;eaH v.ya;a;sa;�/////�a;~ta;Tya;çÉîå+;a;ya;ea ;
a;va;Da;eaH’ I+.tyua;�+.�+.pa;Ea . . . Á
As stated earlier, the diameter of the Sun is 4410 yojanas and that of the Moon is 315 . . . .4.8 BUa;.C+.a;ya;a;ya;aH ;dE ;GyRa;m,a

4.8 Length of the Earth’s shadow.=+
a;va;BUa;}ya;nta:=M Kea;Sua :pa;	a:ñÍ�å ÅÅ*:;Èåî ÁÁ*+M Ka;tRua;�a;na:jRa+:=E H Á Á 15 Á Á&+.tMa Ba;ga;ea;l+.
a;va;Sk+:}Ba;a;t,a BUa;.C+.a;ya;a;dE ;GyRa;ya;ea:ja;na;m,a Á
ravibhūmyantaram. khes.u paṅtighnam. khartunirjaraih. || 15 ||
hr. tam. bhagolavis.kambhāt bhūcchāyādairghyayojanam |
The distance of separation between the Earth and the Sun multiplied by 1050 and divided
by 3360 is the length of the chāyā, the Earth’s shadow, in yojanas.

In Fig. 4.3, S and E refer to the centres of the Sun and the Earth respectively. C
represents the tip of the Earth’s shadow in the shape of a cone. The length of the
shadow from the centre of the Earth is nothing but the height of the cone denoted by
lc in the figure. It is given to be

lc =
d2s × 1050

3360
. (4.21)

C
E

A

lc

S
θ

B

Fig. 4.3 Determination of the length of the Earth’s shadow.

This may be understood as follows. Considering the similar triangles AEC and
BSC, we have

tanθ =
AE
EC

=
AE
lc

(4.22)
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=
BS
SC

=
BS

SE + lc
. (4.23)

Hence
AE
lc

=
BS

SE + lc
. (4.24)

Solving for lc, we have

lc =
SE ×AE
BS−AE

, (4.25)

where SE refers to the actual distance of the Sun from the Earth. This is taken to
be the dvit̄ıya-sphut.a-karn. a d2s. From Fig. 4.3 it is obvious that BS and AE are the
semi-diameters of the Sun and the Earth, whose diameters in yojanas are given as
4410 and 1050. Substituting these values in (4.25), we obtain (4.21).4.9 BUa;.C+.a;ya;a;ya;aH ;
a;ba;}ba;k+:l+.a;v.ya;a;saH
4.9 Angular diameter of the Earth’s shadow in minutes..a;ndÒ +BUa;}ya;nta:=M tya;�+:a Zea;Sea BUa;v.ya;a;sa;ta;a;
a;q+.tea Á Á 16 Á ÁC+.a;ya;a;dE ;GyRa;&+.tea v.ya;a;saH ..a;ndÒ +va;t,a ta;ma;saH k+:l+.aH Á

candrabhūmyantaram. tyaktvā śes.e bhūvyāsatād. ite || 16 ||
chāyādairghyahr. te vyāsah. candravat tamasah. kalāh. |
Subtracting the distance of separation between the Earth and the Moon (dvit̄ıya-sphut.a-
karn. a) [from the length of the chāyā], and multiplying the reminder by the diameter of the
Earth and dividing it by the length of the shadow, gives the [diameter of the] shadow as in
the case of the Moon in minutes [at the distance of the Moon’s orbit].

If lc be the length of the chāyā (the Earth’s shadow), and Dc and De are the linear
diameters of the shadow and the Earth respectively, then the formula given for the
diameter of the shadow at the distance of the Moon’s orbit may be written as

Dc =
(lc −d2m)×De

lc
. (4.26)

The above result may be understood with the help of Fig. 4.4. Here E represents
the centre of the Earth, M the centre of the Moon and C the tip of the shadow.
EC represents the length of the shadow, lc, and EM the sphut.a-yojana-karn. a, d2m.
From the triangle AEC,

tanθ =
AE
EC

=
AE
lc

. (4.27)

Similarly from the triangle BMC,

tanθ =
BM
MC

=
BM

lc −d2m
. (4.28)

Therefore
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Fig. 4.4 Determination of the angular diameter of the Earth’s shadow.

BM
lc − d2m

=
AE
lc

or 2×BM =
(lc − d2m) 2×AE

lc
. (4.29)

This is the same as (4.26), since BM represents the radius of the chāyā (shadow) at
the distance of the Moon’s orbit and AE is the radius of the Earth.

In this context, a graphic description of the shadow is given in Yukti-d̄ıpikā as
follows:.$ya;ea;�a;ta;ga;eRa;l+.ea ma;h;a;v.ya;a;saH Ba;a;sa;ya;tya;��a;Ka;lM .=+
a;vaH ÁA;a;tma;a;Æa;Ba;mua;Ka;m,a A;nya;a;DeRa;.C+.a;ya;Ma ku +:vRa;n,a kÒ +:ma;a;t,a kx +:Za;a;m,a Á ÁA;ta;eaY;k+:Ra;Æa;Ba;mua;KMa d� ;a;�Ma BUa;}ya;D a ma;�a;l+.nMa :pa:=+m,a ÁC+.a;ya;a ..a ta;~ya;a BUa;v.ya;a;sa;sa;ma;a;d;Ea kÒ +:ma;ZaH kx +:Za;a Á Á 15

The Sun, being a ball of effulgence, with a large diameter (mahā-vyāsa), illuminates one
half of all the objects facing towards him, [thereby] generating a shadow on the other half
which thins out gradually.

Hence that half of the Earth facing the Sun is bright and the other half is dark. The shadow
of that (the Earth’s disc) has a diameter equal to the diameter of the Earth at the beginning
and gradually becomes thin.4.10 ..a;ndÒ +
a;va;[ea;paH .~å.Pu +.f;Bua;�a;�+:(ãÉa

4.10 Moon’s latitude and true daily motion:pa;a;ta;ea;nea;nd;ea;BRua:ja;a:j�a;a;va;a v.ya;ea;ma;ta;a:=+a;h;ta;a &+.ta;a Á Á 17 Á Á;
a:�a:$ya;ya;a .sa;Ea;}ya;ya;a;}yea;nd;eaH ;Æa;[a;�a;�aH .sa;a16 ..a .~å.Pu +.f;a ga;�a;taH ÁBa;ga;ea;l+..a;ndÒ +k+:NRa.Èåî ÁÁ*+e BUa;.a;ndÒ +a;nta:=+ya;ea:ja;nEaH Á Á 18 Á Á&+.tea .~å.Pu +.fe I+.h g{a;a;hùÅ:ae ;Æa;[a;�a;�a;Bua;�	 +:a ;�//////�a;~Ta;tea;dR ;le Á
15 {TS 1977}, p. 258.
16 Here there is a possibility of confusion as the word ‘.sa;a’ could be associated either with ks. iptih.
(occurring before), or with gati (occurring later). However, according to the context, it is to be
associated with ks.iptih. , the latitude of the Moon, and not gati, the true daily motion.
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pātonendorbhujāj̄ıvā vyomatārāhatā hr. tā || 17 ||
trijyayā saumyayāmyendoh. ks. iptih. sā ca sphut.ā gatih. |
bhagolacandrakarn.aghne bhūcandrāntarayojanaih. || 18 ||
hr. te sphut.e iha grāhye ks. iptibhukt̄ı sthiterdale |
The Rsine of the longitude of the node subtracted from the Moon is multiplied by 270 and
divided by the trijyā. This gives the latitude of the Moon lying to the north or south [of the
ecliptic]. This and the true daily motion, multiplied by the bhagola-candra-karn. a, and
divided by the actual distance of separation between the Earth and the Moon in yojanas
(d2m), are the true values of the latitude and the daily motion at the middle of the eclipse,
which are to be considered [for computational purposes].

The formula given for the latitude β of the Moon is,

β =
270×Rsin(λm −λn)

R
, (4.30)

where λm and λn are the longitudes of the Moon and its node respectively. R is the
trijyā, whose value is taken to be 3438 minutes. 270 is the inclination of the Moon’s
orbit in minutes.

It is mentioned here that the values of the latitude and the true daily motion
obtained at the middle of the eclipse must be corrected to get more accurate values,
which are to be used for the computations of half durations etc. If β ′ and λ̇ ′

m are the
corrected values of the latitude and true daily motion, then they are given by

β ′ = β × d1m

d2m
and λ̇ ′

m = λ̇m × d1m

d2m
. (4.31)

In the above relation d1m represents the prathama-sphut.a-karn. a or bhagola-candra-
karn. a, which is the distance of the Moon from the centre of the bhagola, and d2m

the dvit̄ıya-sphut.a-karn. a or the bhūgola-candra-karn. a, which is the distance of
the Moon from the centre of the Earth.
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Fig. 4.5 Correction to the latitude and daily motion of the Moon.
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The rationale behind (4.31) may be understood with the help of Fig. 4.5. Here O
and E refer to the centres of the bhagola (the celestial sphere) and the bhūgola (the
Earth) respectively. β ′ and β are the latitudes of the Moon as measured from these
points. The expression for β given above in (4.30) is with reference to the centre of
the bhagola, O. It is easily seen from the figure that

AM = EM sinβ ′ = OM sinβ

or sinβ ′ = sinβ
OM
EM

. (4.32)

As β and β ′ are small, the sines may be replaced by the arcs and the above equation
reduces to

β ′ = β
OM

EM
= β

d1m

d2m
. (4.33)

Similarly, if λ̇m and λ̇ ′
m are the (angular) daily motions with reference to O and E

respectively, then

λ̇ ′
m = λ̇m

d1m

d2m
, (4.34)

which is based on the assumption that the planets have a common linear velocity
irrespective of their distances.4.11 g{a;h;Na;~ya .sa;d;sa;;�ÂåÅ +a;vaH
4.11 The occurrence and non-occurrence of an eclipse;Æa;[a;�a;�aH .sa;a ..a;ndÒ +BUa;.C+.a;ya;a;
a;ba;}bEa;k�+.a;a;Da;Ra;�a;Da;k+:a ya;
a;d Á Á 19 Á Ág{a;h;NMa .nEa;va ..a;ndÒ +~ya h� ;a;na;a ..ea;d;~ya .sa;}Ba;vaH Á

ks.iptih. sā candrabhūcchāyābimbaikyārdhādhikā yadi || 19 ||
grahan. am. naiva candrasya h̄ınā cedasya sambhavah. |
If that latitude [i.e., the latitude of the Moon as determined earlier] is greater than the sum
of the semi-diameters of the Moon and the Earth’s shadow, then there is no lunar eclipse; if
it is less, then there is a possibility [of an eclipse].

In Fig. 4.6(a), A and X refer to the centres of the shadow and the Moon’s disc
respectively. AM′ is the semi-diameter of the shadow and MX that of the Moon. AX
is the latitude of the Moon at the instant of opposition. If the latitude of the Moon at
this instant is exactly equal to or greater than the sum of the semi-diameters of the
shadow and the Moon then there will be no eclipse. That is, if

AX ≥ (AM′ +MX) (4.35)

at the instant of opposition, then there will be no eclipse, as no portion of the Moon
ever enters the shadow.
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Fig. 4.6 The Earth’s shadow and the Moon when there is (a) no lunar eclipse, (b) a total lunar
eclipse and (c) a partial lunar eclipse.4.12 :pUa;NRa;g{a;h;Na;�a;na;ya;maH
4.12 The condition for the occurrence of a total eclipse..a;ndÒ +
a;ba;}ba;ea;na;BUa;.C+.a;ya;a ;
a;ba;}ba;a;Da;Ra;d;�a;Da;k+:a ya;
a;d Á Á 20 Á Á.sa;vRa;g{a;a;sa;ea na ..Ea;va .~ya;a;t,a h� ;a;na;a ..ea;d, g{a;~ya;teaY;��a;Ka;l+.m,a Á

candrabimbonabhūcchāyā bimbārdhādadhikā yadi || 20 ||
sarvagrāso na caiva syāt h̄ınā ced grasyate ′khilam |
(If the latitude) [at parvānta] is greater than half the angular diameter of the shadow di-
minished by the Moon’s disc, then total eclipse will not occur. If it is less, then the Moon
will be eclipsed totally.

The condition on the latitude of the Moon for the occurrence of a total lunar
eclipse may be explained with the help of Fig. 4.6(b). Here, AM′ and MX represent
the angular semi-diameters of the shadow and the Moon respectively. If the latitude
is less than or equal to the difference between the respective semi-diameters of the
shadow and the Moon then the eclipse will be total. That is, if

AX ≤ (AM′−MX) (4.36)

at the instant of opposition then it will be a total lunar eclipse. Obviously, if

(AM′−MX) < AX < (AM′ +MX) (4.37)

then there will be a partial eclipse. This situation is depicted in Fig. 4.6(c). The
different cases discussed are summarized in Table 4.1.
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Case Condition to be satisfied at instant of opposition
(parvānta)

Possibility/nature of
eclipse

(a) Latitude ≥ Sum of the semi-diameters, or AX ≥ (AM′ +
MX)

(no eclipse)

(b) Latitude ≤ Diff. between the semi-diameters, or AX ≤
(AM′−MX)

(total eclipse)

(c) Latitude in between the sum and diff., or (AM′−MX) <
AX < (AM′ +MX)

(partial eclipse)

Table 4.1 Three distinct possibilities that arise at the instant of opposition.

It is pointed out in Laghu-vivr. ti that the string ‘ks. iptih. sā’, referring to latitude,
occurring at the beginning of the earlier verse, is to be related or carried on into this
verse too.17

‘;Æa;[a;�a;�aH .sa;a’ I+.tya:�a;a;
a;pa .sa;}ba;Dya;tea Á
Here (in this verse) also [the words] ‘ks. iptih. sā’ are related or connected.4.13 ;�//////�a;~Ta;tya;DRa;~å.pa;ZRa;ma;ea;[a;ya;eaH k+:a;lH

4.13 The time of half-duration, the first and the last contact.sa;}å.pa;k+:Ra;DRa;kx +:tea;~tya;�+:a [ea;pa;va;g a :pa;d� ;a;kx +:ta;m,a Á Á 21 Á Á:Sa;
a;�.Èåî ÁÁ*+M Ba;a;nua;Z�a;a;ta;Ma:(õ;a;eaH &+.tMa ga;tya;nta:=e +Na ya;t,a Á;�//////�a;~Ta;tya;DRa;na;a;
a;q+.k+:a;dùÅ;aM ta;t,a, :pa;va;Ra;ntea ta;dùÅ;au ;ta;ea;�a;na;tea Á Á 22 Á Áma;ea;[aH .~å.pa;ZRa;(ãÉa ..a;ndÒ +~ya;a;pya;
a;va;a;Za;�;Ea .~å.Pu +.f;Ea tua ta;Ea Á
samparkārdhakr. testyaktvā ks.epavargam. pad̄ıkr. tam || 21 ||
s.as.t.ighnam. bhānuś̄ıtām. śvoh. hr. tam. gatyantaren. a yat |
sthiyardhanād. ikādyam. tat, parvānte tadyutonite || 22 ||
moks.ah. sparśaśca candrasyāpyavísis.t.au sphut.au tu tau |
Having subtracted the square of the latitude from the square of the sum of the semi-
diameters [of the shadow and the Moon], the square root is found. This is multiplied by
60 and divided by the difference in the daily motion of the Sun and the Moon. The result
is the half duration [of the eclipse] in nād. ikās, etc. This added to the instant of opposition
and subtracted from it gives the time of end of the eclipse and the time of commencement
[respectively]. These values of the half-durations, when iterated by the avíses.a-karma,
lead to more accurate values.

The expression for the half-duration of the eclipse and the procedure to determine
the instants of the beginning and the end of the eclipse are explained in the above
verses. These may be understood with the help of Fig. 4.7. Here O represents the
centre of the shadow, and X the centre of the Moon’s disc as it is about to enter into
the shadow.

17 This process of carrying a word or a string of words on to the later verses is common in Sanskrit
literature and is technically called “anuvr. tti.”
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M

Moon being in
contact with the shadow

A

Earth’s shadow

Moon’s orbit

O

X

β

ecliptic direction of motion

Node (Rāhu)

Fig. 4.7 First and the second half-durations of a lunar eclipse.

The total duration of the eclipse may be conceived as made up of two parts:

1. the time interval between the instant at which the Moon enters the shadow and
the instant of opposition (∆ t1) and,

2. the time interval between the instants of opposition and complete release (∆ t2).

The suffixes 1 and 2 refer to the first and the second half-durations of the eclipse
respectively. Though one may think naively that these two durations must be equal,
this is not so because of the continuous change in the angular velocities of the Sun
and the Moon and its nodes.

In Fig. 4.7, AX and OX represent the latitude (β ) of the Moon and the sum of the
semi-diameters (S) of the shadow and the Moon respectively. If λ̇s and λ̇m refer to
the angular velocities of the Sun and the Moon per day, then the difference in their
daily motion called the gatyantara or the bhuktyantara is given by

gatyantara = λ̇m − λ̇s. (4.38)

The approximate value of the first half-duration of the eclipse in nād. ikās is found
using the relation

∆ t0 =
OA× 60

Diff. in daily motion
=

√
OX2 −AX2

λ̇m − λ̇s
×60

=

√
S2 −β 2

λ̇m − λ̇s
× 60. (4.39)

Here the factor 60 represents the number of nād. ikās in a day. In the above ex-
pression, β is the latitude of the Moon at the middle of the eclipse. As the instant
of opposition is known, the latitude of the Moon at the instant of opposition can
be easily calculated. However, the instant of the beginning of the eclipse is yet to
be determined, and hence the latitude of the Moon at the beginning is not known.
Moreover, the latitude of the Moon is a continuously varying quantity. This being
the case, it is quite clear that the result given by (4.39) is only approximate and



274 ..a;ndÒ +g{a;h;Na;pra;k+.=+Na;m,a Lunar eclipse

clearly there is a necessity for an improvised technique. What is prescribed in the
text is an iterative procedure for finding the half-duration. As a first approximation,
the latitude known at the instant of opposition is taken to be β and ∆t0 is determined.
The iterative procedure to be adopted is described in the following verses.4.14 ;�//////�a;~Ta;tya;DRa-.~å.pa;ZRa;ma;ea;[a;a;Na;a;ma;
a;va;Zea;SaH
4.14 Iteration for obtaining the half-duration, and the time of the

first and the last contact;�//////�a;~Ta;tya;DRa.Èåî ÁÁ*+e .~å.Pu +.fe Bua;�	 +:a :Sa;��a;a;�ea Ba;a;nua;.a;ndÒ +ya;eaH Á Á 23 Á ÁZa;ea;Da;yea;t,a .sa;ma;�a;l+.�ea;nd;Ea .sUa;ya;Ra;�a .~å.pa;a;a;ZRa;k+:a;vua;Ba;Ea Á.~va;Bua;�a;�+:ma;nya;Ta;a :pa;a;tea ta;d;a ta;a;tk+:a;�a;l+.k
 +:a;kx +:ta;aH 18 Á Á 24 Á Á.~å.pa;ZeRa;nd;ea;(ãÉa :pua;naH [ea;pa;�//////�a;~Ta;tya;D a ta;�ç Å +�a;taH Za;Z�a;a Á:pra;a;gva;de ;va;a;sa;kx +:t,a k+:a;ya;Ra ;�a;na;(ãÉa;l+.tva;
a;d;dx ;[ua;Na;a Á Á 25 Á Á;�//////�a;~Ta;tya;DRa;ga;�a;ta;ma;keR +:ndõ ;eaH ;Æa;[a;�va;a ta;Ea ma;Ea;Æa;[a;k+:Ea na;yea;t,a ÁA;nya;t,a .sa;v a .sa;mMa ma;ea;[ea ;�//////�a;~Ta;tya;DRa;~ya;a;
a;va;Zea;Sa;Nea Á Á 26 Á Á
sthityardhaghne sphut.e bhukt̄ı s.as.t.yāpte bhānucandrayoh. || 23 ||
śodhayet samaliptendau sūryācca spārśikāvubhau |
svabhuktimanyathā pāte tadā tātkālik̄ıkr. tāh. || 24 ||
sparśendośca punah. ks.epasthityardham. tadgatih. śaś̄ı |
prāgvadevāsakr. t kāryā níscalatvadidr. ks.un. ā || 25 ||
sthityardhagatimarkendvoh. ks.iptvā tau mauks.ikau nayet |
anyat sarvam. samam. moks.e sthityardhasyāvíses.an. e || 26 ||
The true daily motions of the Sun and the Moon (the bhuktis) multiplied by the half-
duration and divided by 60 and subtracted from the positions of the Sun and the Moon [at
the parvānta] give their positions at the time of contact (the spārśika). In the case of the
node, its daily motion [has to be applied] in the reverse manner. Then [are obtained] the
values at that time (of contact).

From the position of the Moon [and the node and shadow] obtained at the time of contact,
again the latitude, the half-duration and the [daily] motions [are computed]. The Moon
[and others] are to be obtained iteratively by one who is interested in their steady values
(níscalatva-didr. ks.un. ā). By adding the distance traversed by the Sun and the Moon in
half-duration [to their longitudes at the parvānta], their longitudes at the time of release
are to be obtained. For finding the half-duration of release iteratively, everything else is the
same.

The positions of the Sun and the Moon at the time of contact are obtained by
subtracting their motions during the first-half duration from their values at the in-
stant of opposition. The motion of the Sun/Moon is obtained by multiplying their
true daily motion (λ̇s, λ̇m) by the half duration—the first approximation of which
has been found as given by (4.39)—and dividing by 60 (the number of nād. ikās in

18 The reading in the published text ({TS 1958}, p. 105) is: .sa;d;a ta;a;tk+:a;�a;l+.k
 +:a kx +:ta;Ea Á This
reading seems to be incorrect, and hence it has been corrected. The commentary Laghu-vivr. ti—

which runs as: O;;vMa kx +:ta;aH �a;ya;eaY;
a;pa .tea ta;a;tk+:a;�a;l+.k+:a Ba;va;�////�a;nta—is also in consonance with the
correction implemented above.
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a day). This is done for the node also (but applied in reverse, as its motion is retro-
grade), whose longitude is required for the computation of Moon’s latitude. From
the relative positions of O, X and A freshly determined, the first half-duration is
again calculated. This is the second approximation to it. The iteration procedure is
carried on till the successive approximations to the half-durations are not different
from each other to a desired level of accuracy.

The procedure is the same for computing the second half-duration (moks.akāla),
except that the positions of the Sun and Moon at the time of the moks.a (release) are
obtained by adding their motions during the second half-duration to their values at
the instant of opposition.4.15 ;�//////�a;~Ta;tya;Da;Ra;Bya;Ma .~å.pa;ZRa;ma;ea;[a;Ea
4.15 The time of the first and the last contact from the

half-duration.~å.pa;ZRa;�//////�a;~Ta;�a;ta;d;lM Za;ea;DyMa :pa;va;Ra;nta;a;
a;d;ta:=+t,a ;Æa;[a;pea;t,a Á.~å.pa;ZRa;ma;ea;[a;Ea tua ta;Ea .~ya;a;ta;Ma ma;Dyea .~ya;a;t,a :pa:=+ma;g{a;hH Á Á 27 Á Á
sparśasthitidalam. śodhyam. parvāntāditarat ks. ipet |
sparśamoks.au tu tau syātām. madhye syāt paramagrahah. || 27 ||
The half-duration of contact (sparśasthitidala) has to be subtracted from the instant of
opposition and the other one [the half-duration of release] must be added. The two [values
obtained] are the times of contact and release of the eclipse. The maximum obscuration
(paramagraha19) is at the middle [of the eclipse].

If tm be the instant of opposition, then the beginning and ending moments of the
eclipse, which are referred to as the sparśakāla (instant of first contact) (tb) and the
moks.akāla (instant of release) (te) respectively, are given by

tb = tm −∆ t1
and te = tm +∆ t2, (4.40)

where ∆ t1 and ∆ t2 are the first and the second half-durations of the eclipse deter-
mined by iteration. It was mentioned earlier (section 4.13) that in general these two
durations will not be equal.

It is further stated here that the instant of maximum obscuration the parama-
grāsakāla, tp, is exactly in between the sparśakāla and the moks.akāla. That is,

tp = tb +
∆t1 + ∆t2

2

= te −
∆ t1 +∆ t2

2
. (4.41)

19 More commonly referred to as the paramagrāsa.
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Since ∆t1 6= ∆ t2 in general, tp 6= tm. Let the difference between these two instants
be given by

δ tp = tp − tm.

An alternate procedure for determining δ tp is discussed in both the commentaries,
Laghu-vivr. ti and Yukti-d̄ıpikā. Here we explain the procedure given in Laghu-
vivr. ti.. . . A:�a :pa:=+ma;g{a;a;sa;k+:a;l O;;va .~å.Pu +.f;pa;va;Ra;nta I+.�a;ta Á ta;d;a;na;ya;na;a;T a :pa;a;ta;ea;na;a;kR +:~ya d;ea:$ya; a:pa:=+ma;[ea;pa;k+:ea;f�a;a ;�a;na;h;tya I+.�;
a;va;[ea;pa;k+:ea;f�a;a ;
a;va;Ba:$ya l+.b.DMa ya;t,a :P+.lM ta;~ya I+.�;
a;va;[ea;pa;~ya..a va;gRa;ya;ea;ga;ta;ea ya;t,a :pa;dM ta;�a;a;pMa 20 :pa;a;ta;ea;na;a;kR +:Bua:ja;a;.a;a;pea;na .sa;h ;
a;va;�a:(ìÉÅ;+Sya ;a;Za;�;a;t,a :Sa;
a;�.Èåî ÁÁ*+;a;t,aA;kR +:.a;ndÒ +ya;eaH ga;tya;nta:=+k+:l+.a;Æa;Ba;
a;vRa;Ba:$ya l+.b.DMa k+:l+.a;
a;d;kM yua;gma;pa;d;ga;tea .sa;�a;ta I+.�;
a;va;[ea;pea:pUa;va;Ra;n�a;a;tea .~å.Pu +.f;pa;va;Ra;ntea :pra;Æa;[a;pea;t,a Á A;ea:ja;pa;d;ga;tea .sa;�a;ta ta;ta;ea ;
a;va;Za;ea;Da;yea;t,a Á O;;vMa kx +:ta O;;va:pa;va;Ra;ntaH .sUa;yeRa;ndõ ;ea;g{Ra;h;Nea .~å.Pu +.f;ea Ba;va;t�a;a;�a;ta :pra;Æa;sa:;dÄâ ;a;t,a :pa;va;Ra;nta;a;t,a :pra;de ;Za;a;nta:=+�//////�a;~Ta;ta O;;va;a;sa;Ea.~å.Pu +.fH :pa;va;Ra;ntaH Á A;ta O;;va va;[ya;�a;ta ‘A;�pa;(ãÉea;t,a :pa:=+ma;g{a;a;saH ..a;le +.t,a ;�//////�a;~Ta;�a;ta;d;le Y;�a;Da;ke ’ -I+.�a;ta Á

Here [it is to be understood] that the instant of maximum obscuration (paramagrāsakāla)
is the true instant of opposition (sphut.a-parvānta). To obtain that, the Rsine of the longi-
tude of the Sun minus the node must be multiplied by the Rcosine of the maximum latitude
of the Moon and divided by Rcosine of the instantaneous latitude of the Moon. The result
and the instantaneous latitude are squared and the square root [of the sum] is found. The arc
corresponding to this is found and it is subtracted from the arc corresponding to the Rsine of
the longitude of the Sun minus the node. The remainder is multiplied by 60 and divided by
the difference in the daily motions [of the Sun and the Moon]. This quantity is added to the
instant of opposition determined earlier, if the latitude of the Moon is in the even quadrant.
It has to be subtracted if the latitude is in the odd quadrant. The instant of opposition thus
determined is the exact instant of opposition in both solar and lunar eclipses. This will be
different from the instant of opposition usually determined. It is therefore mentioned [later
in the same chapter, verse 43]: ‘If the maximum obscuration paramagrāsa is small, then
it (paramagrāsa) will be shifted to [i.e, will happen in] the greater half-duration.’

The same procedure is described in Yukti-d̄ıpikā and in fact Śaṅkara Vāriyar
attributes this to Nı̄lakan. t.ha. The following verses are cited by Śaṅkara Vāriyar
in his Laghu-vivr. ti and are attributed by him to Grahan. anirn. aya of Nı̄lakan. t.ha:21:pa:=+ma;[ea;pa;k+:ea;�a;f.Èåî ÁÁ*+H :pa;a;ta;ea;na;a;kR +:Bua:ja;a;gua;NaH Á.~vea;�;
a;va;[ea;pa;k+:ea;f�a;a;�aH ta;t[ea;pa;kx +:�a;ta;ya;ea;ga;taH 22 Á Á:pa;dM ya;�a;a;
a;pa;tMa ya;�a :pa;a;ta;ea;na;a;kR +:Bua:ja;a;Da;nuaH Áta;
a;dõ :(ìÉÅ;e +SMa h;tMa :Sa;��a;a ga;tya;nta:=+&+.tMa ;Æa;[a;pea;t,a Á Á:pa;va;Ra;ntea yua;#pa;de [ea;pea Za;ea;Da;yea;
a;dõ ;Sa;mea :pa;de ÁO;;vMa kx +:ta;ea ;
a;h :pa;va;Ra;ntaH .sUa;yeRa;ndõ ;ea;g{Ra;h;Nea .~å.Pu +.fH Á Á
20 The reading in the printed text is: ta;�a;a;pa;pa;a;ta;ea;na;a;kR +:Bua:ja;a;.a;a;pea;na Á
21 Though this text Grahan. anirn. aya has been listed among the works of Nı̄lakan. t.ha by
Prof. K. V. Sarma, no manuscript of it has been traced to date.
22 The term ‘tat’ here refers to the quantity obtained earlier. Hence the vigraha of this compound

has to be done as follows: ta;�a [ea;pa;(ãÉa = ta;t[ea;pa;Ea, ta;ya;eaH kx +:tya;eaH ya;ea;gaH = ta;tkx +:�a;ta;ya;ea;gaH , ta;sma;a;t,a Á
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The content of the above verses can be explained as follows. First, an intermedi-
ate angle θ is defined thus:

sin θ =

√

β 2
t +

cos2 βmax × sin2(λs −λn)

cos2 βt
, (4.42)

where βt and βmax are the instantaneous and maximum latitudes of the Moon, and λs,
λm and λn are the longitudes of the Sun, the Moon and the node respectively. Having
found the arc θ corresponding to this, the quantity δ tp, which is to be applied to the
instant of opposition (tm), is defined to be

δ tp =
((λm −λn)−θ)

λ̇m − λ̇s
×60 (in ghat.ikās). (4.43)

As λm = λs + 180◦, |Rsin(λm − λn)| = |Rsin(λs − λn)|. δ tp is to be added to the
instant of opposition if the latitude is in the even quadrant, and subtracted from it if
the latitude is in the odd quadrant.

Here we give a geometrical representation of the expression for θ appearing in
(4.42). In this equation, we can replace λs by λm, since λm = λs or λs +180◦ at the
instant of opposition for an eclipse.

λ λm n
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M’
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θp
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βmaxR

R’
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ecliptic

β t

Moon’s orbit

1
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Fig. 4.8a Determination of the paramagrāsakāla from the instant of opposition obtained through
an iterative process.

In Fig. 4.8a, O is the centre of the celestial sphere and N the ascending node
of the Moon’s orbit, whose inclination to the ecliptic is indicated as βmax. M is the
position of the Moon at conjunction or opposition and its latitude at that instant is
denoted by βt . MR and MF are perpendiculars to the line of nodes and the plane of
the ecliptic respectively. It is easily seen from the figure that
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MR = Rsin(λm −λn)

MF = Rsinβt

and OF = Rcosβt . (4.44)

The angle between MR and RF is the same as the angle between the planes of the
Moon’s orbit and the ecliptic, βmax. Now we extend OF to meet the ecliptic at F ′,
and draw F ′R′ parallel to FR. Then

RF = MRcosβmax

= Rcosβmax sin(λm −λn). (4.45)

Also,
R′F ′

RF
=

OF ′

OF
=

1
cosβt

. (4.46)

Using (4.45) in (4.46), we have

R′F ′ =
Rcosβmax sin(λm −λn)

cosβt
. (4.47)

We now draw F ′M′ = Rsin βt perpendicular to the plane of the ecliptic at F ′. R′M′

is the hypotenuse in the right-angled triangle M′R′F ′ and is given by

M′R′ = [M′F ′2 + R′F ′2]
1
2

=

[
R2 sin2 βt +

R2 cos2 βmax sin2(λm −λn)

cos2 βt

] 1
2

. (4.48)

Again, we draw R1M1 perpendicular to ON from a point M1 in the Moon’s orbit,
such that R1M1 = Rsinθ = M′R′, as shown in the figure. Thus we have

Rsinθ =

[
R2 sin2 βt +

R2 cos2 βmax sin2(λm −λn)

cos2 βt

] 1
2

. (4.49)

This is the significance of the angle θ described in the text and appearing in (4.42).
Also sinβt = sinβmax sin(λm −λn). Therefore

sinθ =

√

sin2 βmax +
cos2 βmax

cos2 βt
× sin(λm −λn). (4.50)

Clearly |θ | > |λm −λn|.23 Now, as per the prescription given in the text, the maxi-
mum obscuration occurs before the instant of opposition when the latitude is in the
odd quadrant. Let us assume that the maximum obscuration occurs at Mp, corre-
sponding to NÔMp = θp, such that

23 This is because cos2 βmax
cos2 βt

≥ cos2 βmax.
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(λm −λn)−θp = θ − (λm−λn). (4.51)

Though it is not clear how the position Mp of the Moon corresponds to its maximum
obscuration during the eclipse, still we can get another rough estimate of the instant
of maximum obscuration as follows:

M p

F
β max

βmax

ecliptic

Moon’s orbit

M

Fig. 4.8b Expression for the time difference between the paramagrāsakāla and the instant of
opposition.

In Fig. 4.8b, at the instant of opposition, the Moon is at M. This position does not
necessarily correspond to the minimum distance between the centres of the Moon
and the shadow. The Moon is at the minimum distance from the ecliptic when it is
at Mp such that FMp is perpendicular to Moon’s orbit. This can be taken to be the
instant of maximum obscuration.

MF = Rsinβt ≃ Rβt . (4.52a)

Now MF̂Mp = βmax, as MF and MpF are perpendicular to the ecliptic and the
Moon’s orbit respectively. Hence

MMp = MF sinβmax

= Rsinβt sinβmax. (4.52b)

This amounts to a difference in longitude equal to sinβt sinβmax, corresponding to
the instants of conjunction and maximum obscuration. This corresponds to a time
difference δ tp given by

δ tp =
sinβt sinβmax

λ̇m − λ̇s
×60. (4.53)

The expression for δ tp, deduced from sinθ given by (4.42), as prescribed in the text,
does not seem to be related to the above in any reasonable approximation.

Consider the expression for the bimbāntara, which is the separation between the
centres of the Moon and the shadow used later in this chapter and also in Chapter 8.
By minimizing that, we can obtain the value of FMp, and consequently the following
value of MMp from that:

MMp = FMp
sinβmax

cosβmax
. (4.54)



280 ..a;ndÒ +g{a;h;Na;pra;k+.=+Na;m,a Lunar eclipse4.16 .=+v.yua;d;ya;a;~ta;ma;yea .~å.pa;ZRa;ma;ea;[a;ya;eaH dx ;Zya;a;dx ;Zya;tva;m,a
4.16 The visibility or otherwise of the the first and the last

contact at sunrise and sunseto+.d;ya;a;~ta;ma;ya;a;sa;�ea .~å.pa;ZeRa ma;ea;[ea ..a .sMa;Za;yaH Á.~å.pa;Za;eRa dx ;Zya o+.ta;a;dx ;ZyaH ..a;ndÒ +~ya;a;~ta;ma;yea;�//�a;tva;�a;ta Á Á 28 Á Á:pra;a;gva;a :pa;(ãÉa;a;�a ma;ea;[aH .~ya;a;t,a ta;tpra;de ;Za;ea;d;ya;a;
a;d;�a;ta Á
udayāstamayāsanne sparśe moks.e ca sam. śayah. |
sparśo dr. śya utādr. śyah. candrasyāstamayetviti || 28 ||
prāgvā paścācca moks.ah. syāt tatpradeśodayāditi |
When the time of contact or release happens to be close to the time of sunrise/sunset, then
there is bound to be a doubt [about the visibility of the contact or release]. The contact
may or may not be visible when the Moon is setting. [Similarly,] regarding the visibility of
release, [there will be doubt] as to whether it would occur earlier or later than the moonrise
at that location.

When the lunar eclipse is close to the instant of sunrise (or moonset) or sunset
(moonrise), the shadow disc and the lunar disc would be close to the horizon. Then,
it is possible that the release or the first contact would be below the horizon and
hence invisible. The criteria for the visibility of the first and last contact are given in
the verses which follow.4.17 .~å.pa;ZRa;ma;ea;[a;ya;eaH dx ;Zya;a;dx ;Zya;tva;�a;na;NRa;yaH
4.17 The visibility or otherwise of sparśa and moks.a.~å.pa;ZeRa .=+v.yua;d;yea k+:a;ya;eRa dx ;k, [ea;paH ;Æa;[a;�a;�a+=E +nd;v�a;a Á Á 29 Á Áv.ya;a;sa;a;DRa.Èåî ÁÁ*+H .~å.Pu +.fH [ea;paH .sa;}å.pa;k+:Ra;DRa;&+.ta;~tua yaH Áta;�x+k, [ea;pa;Da;nua;BeRa;dH ;
a;d;Za;eaH .sa;a;}yeaY;nya;Ta;a yua;�a;taH Á Á 30 Á Áta;dU ;na;Ba:�a;ya;a:êêÁ*.a� ;a;va;a ta;ma;ea;v.ya;a;sa;d;l+.a;h;ta;a Á;
a:�a:$ya;a;�a;a l+.}ba;nea ya;ea:$ya;a BUa;.C+.a;ya;a;Za;ñÍö�ÅÅ*:u +.l+.b.Da;yea Á Á 31 Á Á;
a;dõ ;t�a;a;ya;~å.Pu +.f;Ba;a;ga;~ya ;�a;ta;TyMa;Za;ea l+.}ba;nMa ;�//�a;tva;h Á.=+a;a;Za:�a;ya;a;�a;Da;ke [ea;pa;dx ;k, [ea;pa;a;n�a;a;ta;k+:a;mRua;ke Á Á 32 Á ÁA;�a;Da;k+:~ya gua;Na;a;t,a :pra;a;gva;t,a l+.b.DMa Za;ea;DyMa tua l+.}ba;na;a;t,a ÁZea;Sa;~ta;~ya ta;maHZa;ñÍö�ÅÅ*:u +.�///�a;~:�a:$ya;a;kx +:tya;a h;taH .sa ..a Á Á 33 Á Á&+.ta;ea ;Ga;a;tea;na .sUa;yRa;~ya dùÅ;au :$ya;a;ya;a l+.}ba;k+:~ya ..a Ál+.b.Da;aH :pra;a;Na;aH [a;pa;a;Zea;Sea ya;
a;d .=+v.yua;d;ya;a;t,a ta;taH Á Á 34 Á Á.~å.pa;ZRaH :pra;a;gea;va ta;hùÅ:aeR ;va dx ;ZyaH .~ya;a;�a ta;taH :pa:=+m,a ÁO;;vMa .=+v.ya;~ta;k+:a;l+.ea;tTa;[ea;pa;a;dùÅ;a;a;�ea;na Za;ñÍö�ÅÅ*:u +.na;a Á Á 35 Á Á



4.17 The visibility or otherwise of sparśa and moks.a 281;Æa;sa:;dÄâ E H :pra;a;NEa;yRa;d;a ma;ea;[a;ea .=+v.ya;~ta;ma;ya;taH :pa:=+m,a Áta;dE ;va dx ;Zya;ta;a;mea;�a;ta ta;taH :pra;a:ñÍíéÁÁ*+;;ea;[a;Nea na ..a 24 Á Á 36 Á Á
sparśe ravyudaye kāryo dr. kks.epah. ks. iptiraindav̄ı || 29 ||
vyāsārdhaghnah. sphut.ah. ks.epah. samparkārdhahr. tastu yah. |
taddr. kks.epadhanurbhedah. dísoh. sāmye ′nyathā yutih. || 30 ||
tadūnabhatrayājj̄ıvā tamovyāsadalāhatā |
trijyāptā lambane yojyā bhūcchāyāśaṅkulabdhaye || 31 ||
dvit̄ıyasphut.abhāgasya tithyam. śo lambanam. tviha |
rāśitrayādhike ks.epadr. kks.epān̄ıtakārmuke || 32 ||
adhikasya gun. āt prāgvat labdham. śodhyam. tu lambanāt |
śes.astasya tamah. śaṅkustrijyākr. tyā hatah. sa ca || 33 ||
hr. to ghātena sūryasya dyujyāyā lambakasya ca |
labdhāh. prān. āh. ks.apāśes.e yadi ravyudayāt tatah. || 34 ||
sparśah. prāgeva tarhyeva dr. śyah. syānna tatah. param |
evam. ravyastakālotthaks.epādyāptena śaṅkunā || 35 ||
siddhaih. prān. airyadā moks.o ravyastamayatah. param |
tadaiva dr. śyatāmeti tatah. prāṅmoks.an. ena ca || 36 ||
If the first contact is around the time of sunrise, then the dr. kks.epa (Rsine of the zenith
distance of the vitribhalagna) and the latitude of the Moon must be calculated.

The true latitude [of the Moon] is multiplied by the trijyā and divided by the sum of the
semi-diameters of the Sun and the Moon [the result is called the sphut.a-ks.epa]. If the
directions of this and the dr. kks.epa are the same, we find the difference, otherwise the two
are added [and the value is noted]. The Rsine of this subtracted from 90 is multiplied by the
semi-diameter of the shadow and divided by the trijyā. The result has to be added to the
parallax in longitude for obtaining the śaṅku of Earth’s shadow.

The parallax in longitude [to be] used here is one-fifteenth of the actual daily motion [of the
Moon], the dvit̄ıya-sphut.a-bhukti. If the arc (ζ ), obtained from the arcs corresponding
to the dr. kks.epa (zv) and the ks.epa (θ ),25 is greater than 90 degrees [that is ζ > 90], then
the quantity obtained as earlier from the sine of the excess has to be subtracted from the
parallax in longitude.

The remainder is the śaṅku corresponding to the shadow. This is multiplied by the square of
the trijyā and divided by the product of the dyujyā and the lambaka of the Sun. If the re-
sult ∆ ts, obtained in prān. as, is less than the time remaining in the night to be elapsed ∆ tu26

before sunrise, then the first contact will be earlier [than moonset] and visible. Otherwise
(if ∆ ts > ∆ tu), the first contact is not visible.

In the same way, from the śaṅku [which in turn is] obtained using the dr. kks.epa and
other quantities calculated at the time of sunset, the prān. as [related to the visibility of
the moks.a] ∆tm27 are calculated. If the last contact occurs later than sunset by an amount
[∆ tm] thus obtained in prān. as, then it will be [after the moonrise’s and] visible. If it hap-
pens earlier, then the last contact will not be visible.

In the above verses, quantitative criteria for the visibility of the first contact and
the last contact of the lunar eclipse are discussed. If the lunar eclipse were to com-

24 The reading in both the printed editions is :pra;a:ñÍíéÁÁ*+;;ea;[a;Nea;na ..a ; whereas it must be :pra;a:ñÍíéÁÁ*+;;ea;[a;Nea na ..a
because the idea to be conveyed is: ta;taH :pra;a;k, ma;ea;[a;Nea ma;ea;[aH dx ;Zya;ta;Ma na O;;�a;ta Á
25 Though the term ks.epa literally means deflection—and generally it is taken to refer to the
deflection from the ecliptic (β )—in the present context it refers to the arc θ . Perhaps θ is being
referred to as the arc corresponding to the ks.epa, at it is obtained from the ks.epa (β ).
26 The suffix ‘u’ refers to udaya.
27 The suffix ‘m’ refers to the last contact.
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mence close to the sunrise time, then it might not be visible at all. In case it were to
be visible, even then, only the first contact might be visible and not the last contact.
Similarly, if the lunar eclipse were to end close to the sunset time, then only the last
contact might be visible and not the first contact. Here the criteria for the visibility
of the first contact around sunrise time and the last contact around the sunset time
are clearly stated.
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Fig. 4.9 Schematic sketch of the celestial sphere, when the first contact in a lunar eclipse is close
to the sunrise time.

We explain the criteria for visibility with the help of Fig. 4.9. Here, P is the
celestial pole and K the pole of the ecliptic. NESW represents the horizon. The
centre of the shadow O lies close to the west point on the horizon and the Moon is
about to enter into the shadow. In other words, we have depicted the sparśakāla. The
secondary to the ecliptic passing through K and Z meets the ecliptic at the point V ,
called the vitribhalagna, and its zenith distance is denoted by zv. For the purposes
of discussion, in the following O is taken to be on the horizon itself, as it is very
close to it.

Vitribhalagna

When the centre of the Sun is on the horizon, then the centre of the shadow O will
also be on the horizon. Now the zenith distance of the shadow ZO = 90. Since O is
also a point on the ecliptic, it will be at 90 degrees from K, the pole of the ecliptic.
Since ZO = 90 and KO = 90, the point O is the pole of the great circle passing
through K and Z, which also passes through the vitribhalagna V . Thus, V is at 90
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degrees from the orient ecliptic point—which is a point diametrically opposite to
O—and is therefore called the vitribhalagna, the point which is at 90 degrees from
the lagna (the orient ecliptic point). The zenith distance of the vitribhalagna (zv)
will be the same as ZÔV . That is, ZV = ZÔV = zv.

Projection of the samparkārdha on the vertical

We need to find the projection of the sum of the semi-diameters of the Sun and the
Moon called the samparkārdha (Sd) along the vertical to formulate the criteria for
visibility. It is done in 3 steps: (i) finding the angle between Sd and the ecliptic;
(ii) finding the angle between Sd and the vertical passing through the shadow; and
(iii) finding the projection of Sd along the vertical. We explain these steps with
the help of Fig. 4.10a. This figure is nothing but a section of the celestial sphere
depicted in Fig. 4.9, redrawn with a different orientation. As in the previous figure,
X represents the centre of the Moon. OX is the line joining the centres of the shadow
and the Moon and is called the samparkārdha.

Step 1

Let OX make an angle θ with the ecliptic. Then from the triangle AOX we have

sinθ =
AX
OX

=
βt

Sd
, (4.55)

where βt is the true latitude of the Moon and Sd the samparkārdha. In the text this
relation is stated in the form:

Rsinθ =
sphut.a-ks.epa× trijyā

samparkārdha
=

βt ×R
Sd

. (4.56)

From (4.55), the arc θ is found, and it will be used in the succeeding steps.
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Fig. 4.10a Projection of the sum of the semi-diameters samparkārdha (OX) on the vertical circle
during the first contact in a lunar eclipse when both the vertical and the samparkārdha are in the
same direction.
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Step 2

After determining θ , the angle made by Sd with the vertical passing through the
centre of the shadow (ζ ) is calculated. Since the angle made by the vertical with the
ecliptic (zv) is known, ζ is given by

ζ = θ ± zv. (4.57)

In Fig. 4.10a, the relevant angle is BÔX = ζ , and it is equal to θ − zv. In Laghu-
vivr. ti the choice of the sign to be employed is clearly stated.ta:�a l+.b.Da;~ya ;
a;va;[ea;pa;~ya :ke +:va;l+.dx ;k, [ea;pa;~ya ..a ..a;a;pa;ya;eaH ;
a;d;#sa;a;}yea ;
a;va:(ìÉÅ;e +SMa ;
a;d;gBea;de ..a ya;ea;gMaku +:ya;Ra;t,a Á

If the directions are different, the sum of arcs of the viks.epa (Rsinθ ) and the dr. kks.epa
(Rsinzv) is to be found; if [the directions are] same, then their difference is to be calculated.

Here it is the directions of the vertical and the samparkārdha with the ecliptic which
are referred to. In Fig. 4.10a both of them are shown to have the same direction,
and hence ζ = θ − zv. Sometimes it is possible that zv is greater than θ . Hence, in
general, ζ is given by

ζ = |θ − zv|. (4.58)

A O
z v

B

ecliptic

section of the
vertical circle

Moon at 

Moon’s orbit
X

shadow

θ

sparśa

Fig. 4.10b Projection of the samparkārdha (OX) on the vertical circle during the first contact in
a lunar eclipse when the vertical and the samparkārdha have different directions.

In Fig. 4.10b we have depicted the situation in which the vertical and the sam-
parkārdha lie in opposite directions with respect to the ecliptic. Clearly, in this case,
the arcs have to be added in order to find the projection of the samparkārdha along
the vertical. That is,

ζ = θ + zv. (4.59)
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Step 3

Having determined ζ , it now remains to find the projection of the samparkārdha
along the vertical. In Figs. 4.10a and 4.10b, the projection is BO. From the triangle
BOX ,

cosζ =
BO
OX

=
BO
Sd

or BO = cosζ × Sd

=
Rsin(90−ζ )

R
×Sd. (4.60)

This is exactly the expression for the projection of the sum of semi-diameters of the
shadow and the Moon along the vertical as described in the text.

Time measure of a segment along the vertical circle

For the time being, we ignore the Moon’s parallax and find out the time measure of
this segment OB along the vertical circle. This is the time taken by this segment to
come down below the horizon.
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Fig. 4.11 Correspondence between the segment (BO) along the vertical circle and the segment
(CO) along the diurnal circle.
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In Fig. 4.11, OC is the segment of the diurnal circle, traced by the shadow, cor-
responding to the segment OB on the vertical circle. The angle between the diurnal
circle and the horizon is the same as the angle between the equator and the horizon
and it is equal to 90−φ . Hence the angle BÔC = φ .

Since the segment OB is small,28 the triangle BOC may be considered as a planar
triangle. Hence

cosφ =
OB

OC

or OC =
OB

cosφ
. (4.61)

The length of the arc in the equatorial circle, corresponding to the length of the arc
OC in the diurnal circle, is given by

OC
cosδ

, (4.62)

where δ is the declination of the Sun. The time measure δ t is precisely the segment
on the equatorial circle corresponding to the segment OB on the vertical circle and
is given by

δ t =
OB

cosφ cosδ

=
OB×R2

Rcosφ ×Rcosδ

=
OB× (trijyā)2

lambaka×dyujyā
. (4.63)

Ignoring the effect of parallax, δ t is the time that must be available before sunrise
for the first contact to be visible. This is what is stated in the text. The situation is
schematically sketched in Fig. 4.12(a).

Effect of parallax on the visibility of the sparśa

The effect of parallax is to increase the zenith distance of an object. As a result the
Moon and the shadow will suffer a downward shift along the vertical circles passing
through them. Since the Moon is almost on the horizon, the shift suffered by the
Moon may be taken to be its horizontal parallax. The same shift will be suffered
by the shadow also. In Indian astronomy, the horizontal parallax (P) is taken to be
one-fifteenth of the daily motion. Here it is specifically mentioned that this value
should be taken for determining the criterion for the visibility of the first contact.

28 At the most, OB can be one degree. This is so because OB is the projection of OX and OXmax ≈
42′ +16′ = 58′ (less than 1 degree).
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Thus we take

P =
1
15

×daily motion of the Moon. (4.64)

Converting P into time measure as we did earlier (4.63), and denoting this by δ tp,
we have

δ tp =
P×R2

Rcosφ ×Rcosδ
. (4.65)

This is the time that must be available before sunrise for the visibility of the first
contact due to the effect of Moon’s parallax alone.

Criterion for the visibility of sparśa

The criterion for the visibility of the first contact can be easily derived from (4.63)
and (4.65). Denoting the sum of these two time measures by ∆ts we have

∆ts =
P′×R2

Rcosφ ×Rcosδ
, (4.66)

where P′ = P + OB. We have already determined29 the sparśakāla (tb), the instant
of the beginning of the eclipse, by iteration. From this instant, we calculate the time
that is remaining in the night till the sunrise of the next day. We denote this time by
∆tu, which is given by

∆ tu = sunrise time− tb. (4.67)

Now, the criteria for the visibility of the first contact as shown in Fig. 4.12(b) is
clearly

∆tu ≥ ∆ ts,

or ∆ts ≤ ∆tu. (4.68)

If ∆ ts = ∆tu, the apparent position of the Moon will be on the horizon at the
sparśakalā and the first contact is visible. If ∆ts > ∆ tu, the apparent centre of the
lunar disc C will have already descended below the horizon, and the first contact
will not be visible. The duration ∆tu is referred as the ks.apāśes.a. The term ks.apā
means night and śes.a means the remainder. Hence the term ks.apāśes. a means the
time remaining in the night before sunrise. Hence the condition for the visibility of
first contact is

ks.apāśes.a≥ P′×R2

Rcosφ ×Rcosδ
. (4.69)

Note:
It may so happen that ζ = θ + zv may be greater than 90 degrees. In such a

case, the projection of the samparkārdha along the vertical (OB) will be upward
along the vertical towards OD and above the horizon, as shown in Fig. 4.13. But the

29 See Chapter 4, verse 27.
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Fig. 4.12 Criterion for the visibility of first contact: (a) ignoring the effect of parallax; (b) including
the effect of parallax.

parallactic shift is downwards along the vertical and towards OC. Since these two
are in opposite directions, we need to take P′ = P−OB in (4.66).
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Fig. 4.13 Projection of the samparkārdha along the vertical when ζ = θ + zv is greater than 90
degrees.
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Criterion for the visibility of the moks.a

The criterion for the visibility of last contact can be arrived at in a similar manner.
The only difference is that instead of considering the instant of first contact and the
sunrise time, we need to work out the details with the instant of last contact and
the sunset time (astamanakāla). The instant of last contact (te) has already been
determined by iteration. Let ∆ ta be the time interval between te and the sunset time.
That is,

∆ ta = te − sunset time. (4.70)

Now, the criterion for the visibility of the last contact, as shown in Fig. 4.14, clearly
turns out to be

∆ ta ≥ ∆ tm, (4.71)

where the expression for ∆ tm is the same as that for ∆s given by (4.66). Here also if
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Fig. 4.14 Criterion for the visibility of last contact considering the effect of parallax.

∆tm = ∆ ta, the apparent centre of the Moon will be on the horizon at the last contact
and it will be visible. If ∆ tm > ∆ta, this point will have already descended below the
horizon, and the last contact would not be visible.4.18 .~å.Pu +.f;
a;ba;}ba;a;nta:=+m,a
4.18 Accurate distance of separation between the orbsya;dõ ;a ta;tk+:a;l+.sUa;yeRa;ndu ;~å.Pu +.f;pa;a;ta;a;
a;d;kM na;yea;t,a Áta:�ea;ndu ;Da:=+a;Na;.C+.a;ya;a;~å.Pu +.f;a;nta:=+k+:l+.a;h;ta;aH Á Á 37 Á Á;
a;dõ ;t�a;a;ya;ga;�a;ta;Bea;de ;na :pUa;vRa;Bua;��+.a;nta:=+ea:;dÄâx ;ta;a Á.~å.Pu +.f;a;nta:=+Æa;ma;h g{a;a;hùÅ:aM ta;~ya ;Æa;[a;�ea;(ãÉa va;gRa;ya;eaH Á Á 38 Á Áya;ea;gea ta;.C+=+Bea;d;~ya va;g a yua;�+:a :pa;d� ;a;kx +:tea Á;
a;ba;}ba;a;nta:=M .sua;sUa;[mMa .~ya;a;t,a I+.�;g{a;a;sea ta;TEa;va ..a Á Á 39 Á Á.~å.Pu +.f;a;nta:=+~ya va;ga;Ra;t,a tua kx +:t=+:ïîåéa;v.ya;a;sa;&+.taH Za:=H Á[ea;pa;~ya;a;pyea;va;mea;va .~ya;a;t,a .~vea;Sua va;gRa;yua;ta;a;n,a mua;hu H Á Á 40 Á Á
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a:�a;Ba;a;ga;ea;na;.a;a;pa;va;ga;Ra;t,a ta;Ta;a;
a;pa va;a 30 Á.sa;}å.pa;k+:Ra;Da;Ra;t,a ;
a;va;Zua:;dÄâ e Y;�/////////�a;sma;n,a g{a;a;sa;ea ;
a;ba;}ba;a;nta:=e .sa;d;a Á Á 41 Á Á
yadvā tatkālasūryendusphut.apātādikam. nayet |
tatrendudharan. icchāyāsphut.āntarakalāhatāh. || 37 ||
dvit̄ıyagatibhedena pūrvabhuktyantaroddhr. tā |
sphut.āntaramiha grāhyam. tasya ks.ipteśca vargayoh. || 38 ||
yoge taccharabhedasya vargam. yuktvā pad̄ıkr. te |
bimbāntaram. susūks.mam. syāt is. t.agrāse tathaiva ca || 39 ||
sphut.āntarasya vargāt tu kr. tsnavyāsahr. tah. śarah. |
ks.epasyāpyevameva syāt sves.u vargayutān muhuh. || 40 ||
is. t.avargatribhāgonacāpavargāt tathāpi vā |
samparkārdhāt vísuddhe ′smin grāso bimbāntare sadā || 41 ||
Or alternately, find the longitudes of the Sun, the Moon and the node at a desired time. At
that instant the difference between the longitudes of the Moon and the shadow is multiplied
by the second difference in the daily motion (dvit̄ıya-sphut.a-bhukti) and divided by the
first difference in the daily motion (prathama-sphut.a-bhukti). The result should be taken
as the true difference between the longitudes. To the sum of the squares of this (difference
betwen longitudes) and the latitude, the square of the śarabedha is added. The square root
of the result gives a more accurate value of the distance between the two objects [i.e. the
centres of the Moon and the shadow]. This is the distance of separation at any desired
obscuration.

The śara is obtained by dividing the square of the distance of separation by the full diam-
eter. Even for the latitude, the śara is obtained in a similar manner. This is added to the
square of the arc and the process is repeated.

Alternatively, by subtracting one-third of the square of the is. t.a (́sara)31 from the square
of the arc (cāpa) [and dividing by the diameter, a better approximation to the] śara may
be obtained. The distance of separation thus obtained, when subtracted from the sum of the
semi-diameters, always gives the portion obscured.

The traditional method of finding the distance of separation between the Moon and
the shadow is approximate. This is due to the fact that the spherical triangle involved
in the computation is taken to be a planar triangle, which, of course, is reasonable as
the spherical triangle is small. In the above verses, an exact formula for the distance
of separation is given. In this process a formula for the versed sine (R(1− cosθ)) is
used, which is correct to O (θ 3). This is fairly accurate, as θ is small.

Let λs,λm and λn be the longitudes of the Sun, the Moon and the node at any
desired instant during the eclipse. The longitude of the shadow (chāyā) λc is

λc = λs +180. (4.72)

Let ∆λ be the difference in longitude between the chāyā (shadow) and the Moon at
any instant. Obviously

∆λ = λc −λm. (4.73)

Here a procedure for obtaining a more accurate value of the difference in longitude is
suggested which is also used later for computing the distance of separation between

30 The prose order is a little difficult as it needs anuvr. tti from previous lines. It may be written as:A;
a;pa (..a) I+.�;va;gRa;
a:�a;Ba;a;ga;ea;na;.a;a;pa;va;ga;Ra;t,a ta;Ta;a (:pUa;va;eRa;�+:pra;k+:a:=e +Na) kx +:t=+:ïîåéa;v.ya;a;sa;&+.ta;ea va;a Za:=H (Ba;va;�a;ta) Á
31 Here the word I+.� refers to the Za:=, as that is the desired quantity.
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the chāyā and the Moon. The new value ∆λ ′ is obtained from the old value ∆λ
using the relation

∆λ ′ = ∆λ × dvit̄ıya-sphut.a-bhukti

prathama-sphut.a-bhukti
. (4.74)

It is presumed that ∆λ ′ represents the true difference in longitudes more accurately
as it involves the true difference in daily motion or the dvit̄ıya-sphut.a-bhukti, which
incorporates the second correction to the Moon, namely the correction due to ‘evec-
tion’. In Fig. 4.15(a), OX represents the distance of separation (D), the bimbāntara,
between the chāyā and the Moon. As per the traditional method, the triangle AOX
is considered to be a planar triangle while finding OX :

OX =
√

OA2 +AX2. (4.75)

In the above relation, OA is the difference in the longitude of the chāyā and the
Moon (∆λ ′), and AX is the true latitude of the Moon (βt). Though the values of
both are known, the above relation is an approximate one because OA and AX are
segments of great circles and not parts of a planar triangle.

In the above set of verses the text presents a different approach which does not
involve such an approximation. Here we consider a different triangle OQX to deter-
mine OX . From X , XQ = Rsinβt , is drawn perpendicular to the plane of the ecliptic,
where βt is the latitude. As OQ is in the plane of ecliptic, OQX forms a right-angled
triangle with OX as the hypotenuse. Hence

OX =
√

OQ2 + QX2. (4.76)

But OQ is not yet known and is found using the triangle OPQ (see Fig. 4.15(b))
which is right-angled at P. The point P is obtained by drawing a perpendicular from
O to CA. Considering the triangle OPQ, we have

OQ2 = OP2 +PQ2. (4.77)

In the RHS of the above equation, OP = Rsin∆λ ′ is known, where ∆λ ′ is the
sphut.āntara or the difference in longitudes. PQ is termed the ‘́sarabheda’ (differ-
ence in versines) in verse 39. The śara of an angle θ is R(1−cosθ). In Fig. 4.15(b)
PA is the śara32 corresponding to the angle OĈA = ∆λ ′. Similarly AQ is the śara
corresponding to the angle AĈX = βt (see Fig. 4.15(c)). Obviously PQ = PA−AQ.
Since the angles ∆λ ′ and βt are known,

PA = R(1− cos∆λ ′)

and AQ = R(1− cosβt). (4.78)

Therefore

32 Literally, the term śara means the ‘arrow’. In the figure the section OPBAO looks like a bow,
with OB as the string. Since PA looks like an arrow, it is called the śara.
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Fig. 4.15 Formula for finding the distance of separation between the centres of the chāyā and the
Moon.

PQ = R(1− cos∆λ ′)−R(1− cosβt)

= Rcosβt −Rcos∆λ ′, (4.79)

is the śarabheda. Using (4.77) in (4.76) we have

OX =
√

OP2 +QX2 +PQ2

or D =
√

(Rsin∆λ ′)2 +(Rsinβt)2 +(Rcosβt −Rcos∆λ ′)2. (4.80)

This is exact and is the same as the expression given in the text:

bimbāntara =

√
sphut.āntara2 + viks.epa

2 + śarabheda2. (4.81)

Formula for finding the śara

Now for small θ ,

śara = R(1− cosθ) ≈ Rθ 2

2
. (4.82)
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This is correct to O(θ 3). Here the śara is taken to be (Rθ)2

2R in the first approximation.
To calculate the separation between the discs in (4.81), we need to calculate two
śaras: the śara related to the sphut.āntara and the śara related to the viks.epa. These
two are obtained by replacing θ by ∆λ ′ and βt in the above equation. In verse 40
the śara related to the sphut.āntara is stated to be

śara =
sphut.āntara2

vyāsa
, (4.83)

which is the first approximation. It is then mentioned that the same rule may be
applied to the viks.epa:[ea;pa;~ya;a;pyea;va;mea;va .~ya;a;t,a Á

Even for the ks.epa it is the same way.

This approximate expression given for the śara in (4.83) is sought to be improved
upon by employing any of the two following methods.

Method 1:

This is an iterative process. The first approximation to the śara is given by

śara0 =
(Rθ)2

2R
. (4.84)

The second approximation is given to be

śara1 =
(Rθ )2 +(śara0)

2

2R
. (4.85)

In general,

śaran+1 =
(Rθ )2 +(śaran)

2

2R
. (4.86)

The iterations have to be carried out till we get consecutive concordant values. This
is what has been indicated by the use of the word ‘muhuh. ’ in verse 40. The whole
iterative procedure has been cryptically coded in one-quarter of the verse:.~vea;Sua va;gRa;yua;ta;Ma mua;hu H Á 33

The rationale behind this iterative process is not clear to us.

33 Perhaps this has to be understood with anus.aṅgas as.~vea;Sua = Za:=e +Sua, :pUa;vRa;pUa;vRa;l+.b.Da;Za:=+a;�a;na;�a;ta ya;a;va;t,a Á va;gRa;yua;ta;Ma = ..a;a;pa;va;gRa;yua;ta;Ma kx +:tva;a, kx +:t=+:ïîåéa;v.ya;a;sea;na&+.taH Za:=+ea Ba;va;t�a;a;tya;nua;Sa:$ya;tea Á O;;vMa ya;a;va;d;
a;va;Zea;SMa k+:tRa;v.ya;m,a I+.�a;ta mua;hu H I+.�a;ta :pa;de ;na .sUa;�a;.a;tMaBa;va;�a;ta Á
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Method 2:

Here again we start with the first approximation to the śara:

śara0 =
(Rθ)2

2R
. (4.87)

A better approximation of the śara is given to be

śara =
cāpa2 − 1

3 (śara0)
2

vyāsa

=
1

2R

[
(Rθ )2 − 1

3

(
(Rθ)2

2R

)2
]

= R

(
1
2!

θ 2 − 1
4!

θ 4
)

. (4.88)

Since

(1− cosθ ) =
θ 2

2!
− θ 4

4!
+O(θ 6), (4.89)

it is obvious that this approximation is correct up to fifth-order.
There is an interesting discussion on the computation of the śara in the form of

question and answer in Yukti-d̄ıpikā. The student asks:.sUa;[mMa ;
a;ba;}ba;a;nta:=M k+:t ua gxa;hùÅ:a;tea .$ya;a;Za:=+Ea ya;taH Á Ána;nva:�a n�a;a;ya;tea ba;a;NaH k+:Ta;ñÍö�ÅÅ*:+.a:=M .~å.Pu +.f;a;nta:=+a;t,a Á.sa;ma;~ta:$ya;a;kx +:tea;ba;Ra;NaH kx +:t=+:ïîåéa;v.ya;a;sa;ea:;dÄâx ;ta;ea ya;taH Á Á 34

Since, in order to find a more accurate value of the separation between the discs, the śaras
corresponding to the two angles were calculated; now, how is it that the śara is calculated
from the sphut.āntara? Is it not true that the śara has to be obtained by dividing the square
of the Rsine (samastajyākr. ti) by the diameter?

The teacher replies:.sa;tyMa, ;
a;k+:�//////////�a;ntva;h kx +:t=+:ïîåéa:$ya;a :pra;a;yaH .~va;Da;nua;Sa;a .sa;ma;a Ág{a;a;hùÅ:a;g{a;a;h;k+:ya;ea;BeRa;d;�a;l+.�a;a;na;Ma .~va;�pa;ta;a;va;Za;a;t,a Á Á 35

True. But since the arc is small we take the Rsine of the arc to be the arc itself. The arc is
small because the distance of separation in minutes, between the eclipsed and the eclipser,
is small.

We know that (see Fig. 4.16a)

(1− cosθ ) = 2sin2 θ
2

R(1− cosθ ) = 2Rsin2 θ
2

34 {TS 1977}, p. 273.
35 {TS 1977}, p. 273.
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=
2
(
Rsin θ

2

)2

R

=

(
2Rsin θ

2

)2

2R

≃ (Rθ)2

2R
(since θ is small). (4.90)

In his reply to the student’s query the teacher essentially states that 2Rsin θ
2 ≃ Rθ

for a small θ .

θ
θ
2

A

B

samastajya

Fig. 4.16a The Rsine of an arc when the arc itself is small.
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Fig. 4.16b Finding the portion of the Moon obscured at any instant of time during the eclipse.

The portion of the Moon obscured at any instant of time during the eclipse is
called grāsa. In the second half of verse 41, it is given to be
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grāsa = samparkārdha− bimbāntara. (4.91)

The rationale behind this may be understood with the help of Fig. 4.16b. Here O is
the centre of the shadow. X and X ′ are the centres of the Moon at the beginning of
the eclipse and at a time t later. At the beginning of the eclipse,

samparkārdha = OA +AX . (4.92)

This is the separation between the discs at the first contact. Hence the grāsa = 0. At
a time t later, when the Moon’s centre is at X ′,

samparkārdha = OA′ +X ′Y. (4.93)

At this instant,
bimbāntara = OX ′ = OY +YX ′. (4.94)

Therefore

grāsa = (OA′ +X ′Y )− (OY +YX ′)

= OA′−OY

= A′Y. (4.95)

From the figure it is clear that A′Y is indeed the portion of the Moon which is
obscured, thereby showing that the expression given by (4.91) is exact.4.19 g{a;h;Na;~ya A;dx ;Zya;tva;a;va;�//////�a;~Ta;�a;taH
4.19 State of the eclipse being invisible.~va;.C+.tva;a;t,a :Sa;ea;q+.Za;Ma;Za;eaY;
a;pa g{a;~ta;~.a;ndÒ +ea na dx ;Zya;tea Á;�a;l+.�a;a:�a;ya;ma;
a;pa g{a;~tMa t�a;a;[Na;tva;a;�a ;
a;va;va;~va;taH Á Á 42 Á Á

svacchatvāt s.od. aśām. śo ′pi grastascandro na dr. śyate |
liptātrayamapi grastam. t̄ıks.n. atvānna vivasvatah. || 42 ||
Because of its brightness, even if one-sixteenth of the Moon is obscured it will not be no-
ticed. In the case of the Sun, even if the measure of obscuration is up to 3′, it may not be
noticeable because of its sharpness (brilliance).

Here it is stated that a lunar eclipse would be visible only if more than one-
sixteenth of the Moon is obscured. Similarly it is said that a solar eclipse will be
noticeable only if more than 3′ of the solar disc—which is about one-tenth of the
solar disc—is obscured. These seem to be empirical criteria.



4.20 Shift of the instant of maximum obscuration from opposition 2974.20 :pa:=+ma;g{a;a;sa;~ya .~å.Pu +.f;pa;va;Ra;nta;ta;(ãÉa;l+.na;m,a
4.20 Shift of the instant of maximum obscuration from the

instant of oppositionA;�pa;(ãÉea;t,a :pa:=+ma;g{a;a;saH ..a;le +.t,a ;�//////�a;~Ta;�a;ta;d;le Y;�a;Da;ke Áta;sma;a;
a;dõâ â ;}ba;a;nta:=e +NEa;va g{a;a;sa;eaY;nvea;Sya;ea ma;h;a;�a;na;h Á Á 43 Á Á
alpaścet paramagrāsah. calet sthitidale ′dhike |
tasmādbimbāntaren.aiva grāso ′nves.yo mahāniha || 43 ||
If the measure of obscuration is small, then the instant of maximum obscuration (para-
magrāsakāla) will occur in the larger [part of the two] half-duration[s]. Therefore, the
amount of maximum obscuration has to be calculated only from the separation between the
discs [as determined earlier at the paramagrāsakāla].

A brief mention of maximum obscuration (paramagrāsa) was made in section
4.15 while discussing the instants of the first and the last contacts. An expression
for the instant of maximum obscuration (paramagrāsakāla) is given in (4.41). Here
it is implicitly stated that the paramagrāsakāla will be different from the instant
of opposition at which the longitudes of the shadow and the Moon are equal. It is
further mentioned that this instant occurs during the larger of the two half-durations.

In Fig. 4.17,Y and X ′ represent the centre of the Moon at the instant of opposition
and a little later when the obscuration is maximum. It is evident from the figure that
OX ′ < OY . Hence, the paramagrāsakāla, which depends only upon the distance
between the centres of the shadow and the lunar disc, could be different from the
instant of opposition.

Moon’s orbit

ecliptic

YX

X’

O

Fig. 4.17 Schematic sketch to illustrate that the instant of opposition could be different from the
paramagrāsakāla.
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4.21 Deflection due to latitude and that due to declinationna;ta:$ya;a;[a:$ya;ya;ea;Ga;Ra;taH ;
a:�a:$ya;a;�a;~ta;~ya k+:a;mRua;k+:m,a Áta;dM ;Za;aH .sa;Ea;}ya;ya;a;}ya;a;~tea :pUa;va;Ra;pa:=+k+:pa;a;l+.ya;eaH Á Á 44 Á Á.=+a;a;Za:�a;ya;yua;ta;a;d, g{a;a;hùÅ:a;a;t,a kÒ +:a;ntyMa;ZEa;
a;dR ;#sa;mEa;yRua;ta;a;t,a ÁBea;de Y;nta:=+a;�çÅu +Na;~tea;na36 h;tva;a ;
a;ba;}ba;a;nta:=M h:=e +t,a Á Á 45 Á Á;
a:�a:$ya;ya;a va;l+.nMa .~å.pa;�M vxa:�ea ;
a;ba;}ba;a;nta:=+ea;;�ÂåÅ +vea Á

natajyāks.ajyayorghātah. trijyāptastasyakārmukam |
tadam. śāh. saumyayāmyāste pūrvāparakapālayoh. || 44 ||
rāśitrayayutād grāhyāt krāntyam. śairdiksamairyutāt |
bhede ′ntarādgun. astena hatvā bimbāntaram. haret || 45 ||
trijyayā valanam. spas.t.am. vr. tte bimbāntarodbhave |
The arc of the product of the Rsines of the hour angle and latitude divided by the trijyā [is
the aks.avalana]. Its value in degrees is taken to be south or north depending upon whether
it lies in the eastern or western half of the celestial sphere.

From the longitude of the eclipsed object increased by 90 degrees, and from the maximum
inclination of the ecliptic [the āyana-valana must be determined]. The Rsine is calculated
from the sum when the directions are the same, and from the difference when they are
different. Having multiplied the separation between the discs by this, divide by the trijyā.
The result is the true valana in the circle whose radius is equal to the separation between
the discs.

The term valana refers to the angle between the line joining the Moon and the
centre of the shadow, and the local vertical (small) circle, which is parallel to the
prime vertical. This is denoted by the angle ψ in Fig. 4.19. If the Moon’s latitude
is ignored, this is essentially the angle between the ecliptic and the prime verti-
cal. This consists of two parts, namely the aks.avalana and the āyanavalana. The
aks.avalana is the angle between the diurnal circle and the prime vertical which is
also the angle between the secondaries to them, whereas the āyanavalana is the
angle between the diurnal circle and the ecliptic. In Fig. 4.18, ξ is the aks.avalana
and θ the āyanavalana. Then, according to the text,

Rsinξ = Rsinφ .
RsinH

R
(4.96)

and Rsinθ = Rsin(90 +λ )sinε. (4.97)

We first consider the aks.avalana.

Expression for the aks.avalana

In Fig. 4.18, K is the pole of the ecliptic, P the north celestial pole, N the north point
and M the Moon, which is taken to be situated on the ecliptic, as the Moon’s latitude

36 The prose order is: ;
a;d;#sa;a;}yea (A;[a;a;ya;na;va;l+.na;ya;eaH) yua;ta;a;t,a, ;
a;d;gBea;de ta;ya;eaH A;nta:=+a;t,a
(ya;�+:Bya;tea), ta;~ya gua;NMa kx +:ta;a = (.$ya;a;ma;a;n�a;a;ya), .tea;na ;
a;ba;}ba;a;nta:=M h;tva;a . . . Á
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Fig. 4.18 Determination of the aks.avalana and the āyanavalana. The ecliptic and its secondary
through the centre of the chāyā (shadow) are denoted by solid lines, whereas the equator and the
meridian passing through the Moon are denoted by dashed lines.

is ignored. The arc NP = φ is the latitude of the observer and NP̂M = 180−H,
where H is the hour angle of the Moon. PM = 90−δ and KM = 90.

Consider a secondary to the prime vertical passing through the north point and the
Moon. X is the point of intersection of this secondary with the prime vertical. The
aks.avalana, which is the angle between the diurnal circle and the prime vertical, is
also the angle between the secondaries to the prime vertical and the equator, which
is denoted by ξ in the figure. Considering the spherical triangle NPM and applying
the sine formula, we have

sinξ
sinNP

=
sin(180−H)

sinNM
=

sinPN̂M
sinPM

. (4.98)

In the above equation, NP = φ , PM = 90−δ and NM = 90 + µ , where µ is a part
of the arc lying along the secondary to the prime vertical drawn from N to M. Since
N is the pole of the vertical circle ZXW , PN̂M = ZX = z is the zenith distance of X .
Hence the above equation becomes

sinξ =
sinφ sinH

cos µ
=

sinφ sinz
cosδ

. (4.99)

This differs from the expression given in the text (4.96) by a factor of cosµ in the
denominator.
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Expression for the āyanavalana

The āyanavalana, which is the angle between the ecliptic and the diurnal circle,
is also the angle between the secondaries to the equator and the ecliptic passing
through M. In Fig. 4.18, KM̂P = θ is the āyanavalana. In the spherical triangle
KPM,

KP̂M = KP̂Γ +Γ P̂M′ = 90 +α, (4.100)

where α is the R.A. of M. KP̂Γ = PK̂Γ = 90, because Γ is the pole of the great
circle passing through K and P. Also,

PK̂M = PK̂Γ −Γ K̂M = 90−λ . (4.101)

Applying sine formula to the spherical triangle KPM, we have,

sinθ
sinε

=
sinKP̂M
sinKM

=
sinPK̂M
sinPM

or
sinθ
sinε

=
sin(90 + α)

sin(90−β )
=

sin(90−λ )

sin(90− δ )
. (4.102)

Hence

sinθ =
sinε sin(90 + α)

cosβ
=

sinε sin(90−λ )

cosδ

= sinε
sin(90 + λ )

cosδ
. (4.103)

This differs from the formula given in the text (4.97) by the factor cosδ in the
denominator.

Application of the valana

Having determined the aks.avalana and the āyanavalana, we need to find the total
valana (ψ). It is given to be

ψ = ξ −θ (if K between P & N), (4.104)

ψ = ξ + θ (if P between K & N). (4.105)

In Fig. 4.18, where K is between P and N, ψ = ξ −θ is the angle between KM and
NM, which are the secondaries to the ecliptic and prime vertical passing through M.
The dashed line AB in Fig. 4.19(a) represents the line of motion of the shadow. The
line of motion of the Moon will be at a distance β from it. OF is the bimbāntara (S),
or the distance of separation between the centres of the chāyā and the Moon, which
varies during the eclipse. The total valana (ψ) obtained above is in the measure of
circle whose radius is the trijyā. We shall now transform this into the measure of a
circle whose radius is equal to the bimbāntara (the distance of separation between
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the chāyā and the Moon). The local east–west line passing through O is depicted in
the figure.

GF = S sin ψ
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Fig. 4.19 Application of the sum of or the difference between the aks.avalana and the
āyanavalana.

We draw FG perpendicular to the local east–west line OE as indicated in
Fig. 4.19(b). FG, which is the distance between F and the local east–west line,
is the true valana (inclination) in the circle whose radius is the separation between
the discs;

FG = sinψ ×OF

= Rsinψ × OF
R

= Rsinψ × bimbāntara

trijyā
. (4.106)

This is what is explained in verse 46a of the text.

Note:

In the discussion above, we have pointed out the errors in the expression for
the aks.avalana and the āyanavalana. In fact, the same errors are to be found
in Yuktibhās. ā also. Moreover, the latitude of Moon is neglected here. In Yuk-
tibhās. ā, however, the effect of latitude is included through another term called the
‘viks.epavalana’.
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4.22 Graphical representation of the eclipse;
a;ba;}ba;a;nta:=+sa;mea;na;a;d;Ea ;�a;l+.Kea;t,a .sUa:�ea;Na ma;Nq+.l+.m,a Á Á 46 Á Á;
a;ba;}ba;a;nta:=M tua .sa;}å.pa;kR +:d;lM .~ya;a;t,a .~å.pa;ZRa;ma;ea;[a;ya;eaH ÁZa;l+.a;k+:a;
a;ñÍö�ÅÅ*:+.ta;ma;Dya;a ya;a va;l+.na;
a;dõ ;gua;Na;a;ya;ta;a Á Á 47 Á Á:pra;a;g{ea;Ka;a;ga;ta;ma;Dya;a;ñÍö�ÅÅ*:+.nea;Æa;ma;~å.pxa;�;ea;Ba;ya;a;g{a;ya;a Áva;l+.nMa n�a;a;ya;ta;Ma .~å.pa;�M ya;Ta;a;
a;d;Za;ma;Ta;a;na;ya;a Á Á 48 Á Á:pra;tya;g{ea;Ka;a;~ta;ma;Dya;a;ñÍö�ÅÅ*:+.nya;~ta;ya;a v.ya;~ta;mea;va ..a Á:=e +Ka;Ma :pUa;va;Ra;pa:=+Ma ku +:ya;Ra;t,a ta;dõ ;Za;a;d;
a;pa ..ea;ta:=+a;m,a Á Á 49 Á ÁC+.a;ya;a;ma;a;ga;eRaY;na;ya;eaH :pUa;vRaH ;
a;va;[ea;pa;a;nta;�a:=+ta;a ;
a;va;Da;eaH Á:=e +Ka;a;
a;va;[ea;pa;
a;d;#~Ta;a;ta;ea ma;a;ga;ERa ta;tk+:a;l+ja;Ea tua ta;Ea Á Á 50 Á Á;�a;l+.�a;a;v.ya;a;sa;d;le +.nea;nd;eaH .~va;ma;a;geRa :pa;�a:=+�a;DMa37 ;�a;l+.Kea;t,a Á:pa;Ea;NRa;ma;a;~ya;Ma :pra;t�a;a;.ya;Ma tua :pra;a;gea;va :pra;�a;ta;pa;dùÅ;a;
a;pa Á Á 51 Á Ávxa:�a;ma;Dyea ta;ma;ea;
a;ba;}bMa .~va;ma;a;geRa .sa;vRa;d;a ;�a;l+.Kea;t,a Áta;ma;ea;
a;ba;}ba;a;d, ba;
a;h;BRUa;tMa dx ;Zya;Æa;ma;nd;Ea na ta;�çÅ +ta;m,a Áh;nua;pa;a:(õ;a;Ra;
a;d;Bea;d;a;
a;d dx ;Zya;ta;a;ma:�a .sua;~å.Pu +.f;m,a Á Á 52 Á Á

bimbāntarasamenādau likhet sūtren. aman. d. alam || 46 ||
bimbāntaram. tu samparkadalam. syāt sparśamoks.ayoh. |
śalākāṅkitamadhyā yā valanadvigun. āyatā || 47 ||
prāgrekhāgatamadhyāṅkanemispr. s.t.obhayāgrayā |
valanam. n̄ıyatām. spas.t.am. yathādísamathānayā || 48 ||
pratyagrekhāstamadhyāṅkanyastayā vyastameva ca |
rekhām. pūrvāparām. kuryāt tadvaśādapi cetarām || 49 ||
chāyāmārgo ′nayoh. pūrvah. viks.epāntaritā vidhoh. |
rekhāviks.epadiksthāto mārgau tatkālajau tu tau || 50 ||
liptāvyāsadalenendoh. svamārge paridhim. likhet |
paurn. amāsyām. prat̄ıcyām. tu prāgeva pratipadyapi || 51 ||
vr. ttamadhye tamobimbam. svamārge sarvadā likhet |
tamobimbād bahirbhūtam. dr. śyamindau na tadgatam |
hanupārśvādibhedādi dr. śyatāmatra susphut.am || 52 ||
In the first place draw a circle of radius equal to the separation between the discs with the
help of a thread. At the time of the first contact and last contact, the separation between the
discs would be equal to the sum of the semi-diameters [of the chāyā and the Moon].

With a marking at the middle take a stick (́salākā) whose length is equal to twice that of the
valana. Place the stick eastwards such that the centre of the stick lies on the east portion of
the line (OE), and its ends touch the circumference of the circle. By doing so let the valana
be brought out clearly as per the direction. Then, with the same stick placed westwards,
with its centre on the west line (OW ), let the valana be brought out clearly in the reverse
direction. Draw the east–west line and with the help of it, also the other ones parallel to it.

37 The reading in both the printed editions is: :pa;�a:=+Da;Ea Á This seems to be inappropriate in the present
context. Perhaps, the right form of usage should be :pa;�a:=+�a;Da;m,a Á Second case, because Nı̄lakan. t.ha

here asks us to draw a circle (:pa;�a:=+�a;Da Á) The word :pa;�a:=+Da;Ea is in the seventh case, which means on the
circle. No operation to be performed on a circle is described here. Hence :pa;�a:=+�a;DMa, which is in the
second case ending, is most likely to be the correct reading.
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The first one (east–west line) is the trajectory of the shadow. The one along the direction of
deflection [out of the other two] is the trajectory separated from it owing to deflection. Both
these trajectories are only instantaneous (tatkālajau).

Draw a circle whose radius is the same as that of the Moon along its trajectory [drawn ear-
lier]. This must be drawn in the west on the full Moon day and in the east on the pratipad.
The shadow must always be drawn at the centre of the circle [on the north–south line], with
its centre on its own trajectory. That portion of the Moon which lies outside the shadow is
visible. Thus here the horns (hanus) of the Moon and the portion [east or west] in which
they lie may be clearly visualized.

O

E

W

W

E

N S

shadow

Moon

BA

B’A’

Fig. 4.20 Graphical representation of a lunar eclipse based on the calculation of the difference
between theaks.avalana and the āyanavalana.

The procedure for the graphical representation of a lunar eclipse described above
is explained with the help of Fig. 4.20. ENWS is a circle centered at O whose radius
is equal to the ‘separation between the discs’. Here EW should be the east–west
line, and NS the north–south line. Take a stick of length AB, which is twice the
valana, and place it along the north–south direction such that A and B are on the
circumference. AB should be towards the east of NS, on the pratipad (just after the
instant of conjunction), and towards the west of NS on full Moon day (just before the
instant of conjunction). Draw EW through E and AA′ and BB′ parallel to this. Then
EW represents the trajectory of the shadow. AA′ or BB′ represents the trajectory of
the Moon depending upon the direction of the valana (northwards or southwards
respectively). It is significant to note that these two trajectories are considered as
instantaneous. This is because the separations between the discs, the valana etc. are
all varying continuously.
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The dark circle in the figure is the circle with the radius of the shadow whose
centre is at O. In the figure, the centre of the Moon is shown to be at A (it could be
A′ or B or B′, depending upon the valana and whether the desired instant is before
or after the eclipse). Draw a circle with a radius equal to that of the lunar disc. Then
the portion of the Moon outside the circle representing the shadow is visible, and
the portion inside is eclipsed.



Chapter 5.=+
a;va;g{a;h;Na;pra;k+.=+Na;m,a
Solar eclipse

5.1 l+.}ba;na;a;va;na;tya;eaH .sa;d;sa;;�ÂåÅ +a;vaH
5.1 The possibility or otherwise of lambana and natig{a;he dx ;Zya;a;DRa;ma;Dya;~Tea na ;
a;k+:�a:úãÁ*.a;d;
a;pa l+.}ba;na;m,a Áta;sma;a;d, dx ;k, [ea;pa;l+.çÉîå+;aM .~ya;a;t,a :pra;a;k, :pa;(ãÉa;a;dõ ;a ;�//////�a;~Ta;tea g{a;he Á Á 1 Á Á.sa;ma;ea;DvRa;ga;a;pa;vxa:�a;~Tea na;tea:=+
a;pa na .sa;}Ba;vaH Áta;t[ea;pa;k+:ea;�a;f;vxa:�ea ë�ÅëÁ*:+:a;pyUa;DvRa;sUa:�a;~å.pxa;a;Za ;�//////�a;~Ta;tea Á Á 2 Á Á.sa;ma;ma;Nq+.l+.ma;Dya;a:�a;
a;dõ ;pra;k+:SeRa na;�a;ta;BRa;vea;t,a 1 Á

grahe dr. śyārdhamadhyasthe na kiñcidapi lambanam |
tasmād dr. kks.epalagnam. syāt prāk paścādvā sthite grahe || 1 ||
samordhvagāpavr. ttasthe naterapi na sambhavah. |
tatks.epakot.ivr. tte kvāpyūrdhvasūtraspr. śi sthite || 2 ||
samaman. d. alamadhyāttadtviprakars.e natirbhavet |

When the planet lies at the mid-point of the visible half [of the ecliptic] then there will be
no parallax in longitude (lambana). [Then] it is also in the dr. kks.epa-lagna. Parallax in
longitude is possible only when the planet is to the east or west of this (dr. kks.epa-lagna).

When the planet lies on the ecliptic that also happens to be a vertical circle (samordhvaga-
apavr. tta), then there will be no parallax in latitude (nati) also. It is possible to have par-
allax in latitude only when the planet is displaced from the centre of the prime vertical
(zenith) and lies in the ks.epakot.ivr. tta which is secondary to the ecliptic.

In Fig. 5.1, S represents the Sun on the ecliptic. K is the pole of the ecliptic and ZS
is the vertical passing through S. The parallax of the Sun at S is given by

p = SS′ = Psin z, (5.1a)

1 Perhaps the prose order is: .sa;ma;ma;Nq+.l+.ma;Dya;a;t,a (.sa;ma;ma;Nq+.l+.ma;DyMa ..a Ka;ma;Dya;mea;va) ta;
a;dõ ;pra;k+:SeRa
(ta;~ya g{a;h;~ya ;
a;va;pra;k+:SeRa) ta;t[ea;pa;k+:ea;�a;f;vxa:�ea (ta;~ya = A;pa;ma;Nq+.l+.~ya, [ea;pa;k+:ea;�a;f;vxa:�ea =.sa;ma;�a;ta:=+(ãÉ�a;a;na;vxa:�ea) ë�ÅëÁ*:+:a;
a;pa �+:DvRa;sUa:�a;~å.pxa;a;Za ;�//////�a;~Ta;tea (g{a;he ) na;�a;ta;BRa;vea;t,a Á

305
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Fig. 5.1 Parallaxes in longitude and latitude.

where, P is the horizontal parallax and z = ZS is the zenith distance of the Sun. KA
is the secondary to the ecliptic passing through S. The lambana and nati are the
components of the parallax along and perpendicular to the ecliptic. They are given
by

lambana = S′A = SS′ sinξ (5.1b)

and nati = SA = SS′ cosξ , (5.1c)

where ξ is the angle between the secondary KS to the ecliptic and the vertical ZS
passing through S.

In Fig. 5.2a, P is the north celestial pole and K0 and K1 represent the positions of
the north pole of the ecliptic at different instants of time. When the ecliptic pole is
at K0, the secondary to the ecliptic passing through Z, that is ZV0SQNP, is the same
as the prime meridian. W being the pole of this vertical circle, it coincides with the
autumnal equinox Γ ′. The point V0 at the intersection of the ecliptic and the prime
meridian is the dr. kks.epa-lagna or vitribhalagna (nonagesimal), which is the point
on the visible half of the ecliptic at 90◦ from the orient ecliptic point. As mentioned
earlier, K1 is the pole of the ecliptic at a later instant when the ecliptic intersects the
horizon at B. Consider a secondary to the ecliptic passing through K1 and Z. This
intersects the ecliptic at V1 and it can be easily seen that V1 is the dr. kks.epa-lagna at
that instant.2

2 Since the point B is at the intersection of the ecliptic and the horizon, K1B = 90◦ and also ZB =
90◦. Since the two points K1 and Z are at 90◦ from B, B is the pole of the great circle passing
through K1 and Z. Then, by definition, all the points in this circle must be at 90◦ from B, and hence
BV1 = 90◦. Thus V1 is the dr. kks.epa-lagna.



5.1 The possibility or otherwise of lambana and nati 307

(secondary to the ecliptic)

V

E

W

N

P

K

K0

1

1

diurnal path of the
pole of the ecliptic

ecliptic when the 
pole is at K

B

Q

Z

V0

0

1

S

eq
ua

to
r

ecliptic when the 
pole is at K 

dr.kks.epa-vr. tta

Fig. 5.2a Condition for the absence of lambana (parallax in longitude).

Condition for zero lambana

It was explained earlier (Section 3.8) that the effect of the parallax is to increase the
zenith distance of the celestial object. If the object happens to be on the dr. kks.epa-
vr. tta (the vertical circle through the nonagesimal), the effect of the parallax is to
deflect the object further down along the dr. kks.epa-vr. tta (K1ZV1), as the dr. kks.epa-
vr. tta is a vertical circle. Since ZV1 is a secondary to the ecliptic, this deflection
does not result in any apparent change in the longitude of the celestial object. The
celestial object must be to the east or west of the dr. kks.epa-lagna for it to have non-
zero parallax in longitude. Hence, the condition for the object to have zero parallax
in longitude can be stated as when:

• the celestial object is lying at the centre of the visible part of the ecliptic
(dr. śyārdha-madhyastha); or equivalently

• the object is lying on the dr. kks.epa-vr. tta, which is a secondary to the ecliptic
passing through Z.

Condition for zero nati

Let us assume that the pole of the ecliptic K lies on the horizon at some instant of
time during the day, as shown in Fig. 5.2b. Let the ecliptic intersect the horizon at
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B. Then obviously KZ = 90◦. Since ZB is also 90◦, the point B is the pole of the
circle passing through K and Z. At this instant, Z itself is the vitribhalagna and ZB,
which is a quarter of the ecliptic, is also a vertical to the horizon.
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Fig. 5.2b Condition for the absence of parallax in latitude.

Now, if an object lies on the ecliptic which also happens to be a vertical, then—
since the effect of parallax is only to deflect the object along the ecliptic further
down towards the horizon—there will be a change only in the longitude of the object
and not in the latitude. Hence the parallax in latitude will be zero if the object lies
along the ecliptic when it is a vertical circle. Even when it (the ecliptic) is a vertical
circle, the parallax in latitude need not be zero when the object does not lie on it, but
is on a ks.epakot.i-vr. tta. When the object is at the zenith, parallax in longitude and
latitude are both zero. Taking all these into consideration, the condition for parallax
in latitude to be zero is: the celestial object must be along the ecliptic, which should
also be a vertical circle.

Condition for the absence of both lambana and nati

We saw that the parallax in longitude would be zero when the object is situated
on the dr. kks.epa-vr. tta. Later it was shown that the parallax in latitude will be zero
when the object lies along the ecliptic and the ecliptic is a vertical circle. These two
conditions will be simultaneously satisfied only at two points, namely the zenith (Z)
and the nadir (Q). Since we are interested only in the visible part of the hemisphere,
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the observer’s zenith, which is called the khamadhya in the Indian astronomical lit-
erature, is the only point where the parallax in longitude and latitude are both zero.
Thus the condition for parallax in both longitude and latitude to be zero simultane-
ously is: the celestial object must be at khamadhya (zenith).5.2 dx ;k, [ea;pa;dx ;gga;tya;ea:=+a;na;ya;na;m,a
5.2 Finding the dr. kks.epa and the dr. ggati.=+a;Zya;�;ma;Ma;Za;l+.ñÍö�ÅÅ*:+.ea;tTa;pra;a;NEa;(ãÉa;a;
a;pa na;ta;a;sua;Æa;BaH Á Á 3 Á Á.=+va;Ea [a;ya;Da;nea kx +:tva;a ma;Dya;l+.çÉîå+;aM .~å.Pu +.fM na;yea;t,a Áta;sma;a;
a;dõ ;Sua;va;d;a;de H .~va;kÒ +:a;�////�a;nta;k+:a;mRua;k+:ma;a;na;yea;t,a Á Á 4 Á Áta;d;[a;.a;a;pa;sMa;ya;ea;ga;ea ;
a;d;#sa;a;}yeaY;nta:=+ma;nya;Ta;a Áma;Dya:$ya;a;K.ya;a ;
a;h ta:êêÁ*.a�a;a .~ya;a;t,a :pra;a;gl+.çÉîå+;a;~ya;a;g{a;ma;Ea;
a;vRa;k+:a Á Á 5 Á Áo+.d;ya:$ya;a ta;ya;ea;Ga;Ra;ta;a;t,a ;
a:�a:$ya;a;�Ma ba;a;hu ;ma;Ea;
a;vRa;k+:a Áma;Dya:$ya;a;ya;a;�///�a;~:�a:j�a;a;va;a;ya;aH kx +:�a;ta;Bya;Ma ta;tkx +:�a;tMa tya:jea;t,a Á Á 6 Á Áta;n}å.Ua;l+.ya;ea;�///�a;~:�a:j�a;a;va;a.Èåî ÁÁ*+;ma;a;dùÅ;a;ma;nyea;na .sMa;h:=e +t,a Ál+.Bya;tea ta:�a dx ;k, [ea;paH ta;tk+:ea;�a;f;dR x ;gga;�a;ta;mRa;ta;a Á Á 7 Á Á

rāśyas.t.amām. śalaṅkotthaprān. aíscāpi natāsubhih. || 3 ||
ravau ks.ayaghane kr. tvā madhyalagnam. sphut.am. nayet |
tasmādvis.uvadādeh. svakrāntikārmukamānayet || 4 ||
tadaks.acāpasam. yogo diksāmye ′ntaramanyathā |
madhyajyākhyā hi tajjyā syāt prāglagnasyāgramaurvikā || 5 ||
udayajyā tayorghātā trijyāptam. bāhumaurvikā |
madhyajyāyāstrij̄ıvāyāh. kr. tibhyām. tatkr. tim. tyajet || 6 ||
tanmūlayostrij̄ıvāghnamādyamanyena sam. haret |
labhyate tatra dr. kks.epah. tatkot.irdr. ggatirmatā || 7 ||
By [making use of] the hour angle and also the ascensional difference of one-eighth of
the rāśi for an observer at Laṅka, and applying it to the Sun positively or negatively, let
the true madhyalagna be obtained. From that, may the declination of the vis.uvadādi 3

be calculated. The sum—[if the directions are same]—or difference, if the directions are
different, of this and the latitude of the place is to be found. The Rsine of this is known
as the madhyajyā [and] the agrā of the orient ecliptic point will be the udayajyā. The
product of the two divided by the trijyā is the bāhumaurvikā. From the squares of the
madhyajyā and trijyā subtract the square of this (the bāhumaurvikā). Finding the square
roots of them, multiply the former by the trijyā and divide it by the latter. The resulting
quantity will be the dr. kks.epa and the kot.i of it is considered to be the dr. ggati.

In the above verses, the dr. kks.epa and the dr. ggati are expressed in terms of the
madhyajyā and the udayajyā. These are used in the computation of parallax in
longitude and latitude. In Fig. 5.3, ZV represents the zenith distance of the vitrib-
halagna. RsinZV is called the dr. kks.epa and RcosZV is called the dr. ggati.

First, the madhyalagna or the longitude of the meridian ecliptic point (λml)—
which refers to the longitude of the point of the ecliptic which intersects with the

3 From the context, it seems that the word vis.uvadādi has been employed to refer to the meridian
ecliptic point. However, the etymological derivation of this meaning is not clear.
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Fig. 5.3 Determination of the Rcosine of the zenith distance of the vitribhalagna called the
dr. kks.epa.

prime meridian—is determined. This point is denoted by ML in Fig. 5.3. The lon-
gitude of this point has to be calculated from the hour angle of the Sun, and it is
suggested that, for better accuracy in doing so, this should be computed from the
rising time of one-eighth of a rāśi and not from that of the whole rāśi.

From the madhyalagna, the declination (δml) corresponding to that point is ob-
tained using the relation

sinδml = sinε sinλml . (5.2a)

Using this, the madhyajyā, which is the Rsine of the zenith distance of the meridian
ecliptic point, is calculated:

madhyajyā = Rsinzml = Rsin(φ ±|δml |), (5.2b)

where φ is the latitude of the observer. Now the udayajyā, which is the agrā of the
udayalagna, more often simply called the lagna, is given by

Rsinx =
Rsinδl

cosφ
, (5.3a)

where δl represents the declination of the lagna, the orient ecliptic point (90± x is
the ‘azimuth’ of the lagna). Now the text defines an intermediate quantity called the
bāhumaurvikā as follows:

bāhumaurvikā =
madhyajyā×udayajyā

trijyā
. (5.3b)

Making use of this, the dr. kks.epajyā is defined as
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dr. kks.epajyā = trijyā×

√
madhyajyā2 − (madhyajyā×udayajyā)2

√
trijyā2 − (madhyajyā×udayajyā)2

. (5.4a)

The dr. kks.epajyā is also simply called the dr. kks.epa or dr. gjyā. Using the notation
ZML = zml , and ZV = zv, the above equation reduces to:

sin zv =

√
sin2 zml − (sinzml sinx)2

√
1− (sinzml sinx)2

, (5.4b)

where sinx is known from (5.3).

Proof:

The above result for the sine of the zenith distance of the vitribhalagna can be
derived using spherical trigonometrical formulae. In Fig. 5.3, consider the spherical
triangle ZV ML. Using the sine formula we have

sinVML

sinVẐML
=

sinZML

sinZV̂ ML
, (5.5a)

where V ẐML = x and ZV̂ML = 90, as KZV is a secondary to the ecliptic. Further,
using the notation ZML = zml , the above equation reduces to

sinVML = sinzml sinx. (5.5b)

Applying the analogue to the cosine formula,

sinacosB = cosb sinC− sinbcosccosA, (5.6)

with a = ZML, b = VML, c = ZV,B = x and A = 90, we find

sinZML cosx = cosVML sinZV. (5.7)

Rewriting the above equation and using (5.5b) in it, we have

sinzv =
sinzml cosx

cosVML

=
sinzml

√
1− sin2 x√

1− sin2 VML

=

√
sin2 zml − (sinzml sinx)2

√
1− (sinzml sinx)2

, (5.8)

which is the same as (5.4). The quantity dr. ggati is stated to be
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dr. ggati =

√
trijyā2 − dr. kks.epa2

=
√

R2 − (Rsinzv)2

= Rcoszv. (5.9)

It may be mentioned here that the dr. kks.epa was found in order to calculate the
dr. ggati, which appears in the expression for the parallax in longitude, as will be
shown in the following section.5.3 l+.}ba;nMa :pa;va;Ra;nta;a;na;ya;nea ta;tsMa;~k+:a:=+(ãÉa
5.3 Parallax in longitude and its application for finding the

instant of conjunctionO;;k+.$ya;a;va;gRa;ta;ZCe +.dH l+.b.DMa dx ;gga;�a;ta:j�a;a;va;ya;a ÁCe +.d;a;�a;a;nta:=+ba;a;hu :$ya;a Ba;a;nua;dx ;k, [ea;pa;l+.çÉîå+;a;ya;eaH Á Á 8 Á Ál+.}ba;nMa na;a;
a;q+.k+:a;
a;dH .~ya;a;t,a .~va;NRa;mUa;na;a;�a;Da;ke .=+va;Ea Á:pa;va;Ra;ntea mua;hu :=+pyea;vMa :pa;va;Ra;nta;ma;
a;va;Zea;Sa;yea;t,a Á Á 9 Á Á
ekajyāvargataśchedah. labdham. dr. ggatij̄ıvayā |
chedāptāntarabāhujyā bhānudr. kks.epalagnayoh. || 8 ||
lambanam. nād. ikādih. syāt svarn. amūnādhike ravau |
parvānte muhurapyevam. parvāntamavíses.ayet || 9 ||
The quantity obtained by dividing the square of Rsine of one [rāśi] by the Rsine of the
dr. ggati is called the cheda. The Rsine of the difference between the [longitudes of] the
Sun and the dr. kks.epalagna divided by thecheda is the parallax in longitude in nād. ikās
etc. Depending on whether [the longitude of] the Sun is greater or smaller [than that of the
vitribhalagna] the result must be added to or subtracted from the instant of conjunction.
By repeating the above procedure, the instant of opposition has to be obtained iteratively.

An intermediate quantity called the cheda is defined by

cheda =
(Rsin30)2

dr. ggati
=

R
4× coszv

. (5.10)

The expression for the parallax in longitude (∆λ ) in nād. ikās is given by

lambana =
R|sin(λs −λv)|

cheda
,

or ∆λ = 4× coszv ×|sin(λs −λv)|. (5.11)

In the following we arrive at the expression for the parallax in longitude using spher-
ical trigonometrical formulae. In Fig. 5.4, S represents the Sun and S′ its deflected
position due to parallax, which is along the vertical circle ZS. ξ is the angle between
the secondary to the ecliptic and the vertical circle passing through the Sun. V is the
vitribhalagna, S′A is the parallax in longitude or the lambana, and SA is the parallax
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in latitude or the nati. They are given by

lambana = S′A = SS′ sinξ ,

and nati = SA = SS′ cosξ . (5.12)

The arc SV on the ecliptic is λv −λs. This is also the angle ZK̂S. To find sinξ we
use the spherical triangle KZS and apply the sine formula. We have

sinξ
sinKZ

=
sin(λv −λs)

sinZS
. (5.13)

In the above expression KZ = 90− zv, where zv is the zenith distance of the vitrib-
halagna, and ZS = z, the zenith distance of the Sun. Hence

sinξ =
coszv × sin(λv −λs)

sinz
. (5.14)

It was mentioned earlier (Chapter 3, verses 10–11) that the parallax of any celestial
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Fig. 5.4 Effect of parallax in longitude.

object is given by
p = P× sinz, (5.15)

where P is the horizontal parallax and z is the zenith distance of the object. It was
also noted there that the horizontal parallax P is taken to be one-fifteenth of the daily
motion of the object. Hence the parallax SS′, in Fig. 5.4, is given by

SS′ = p =
λ̇s × sinz

15
. (5.16)
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Here we are actually interested in finding the difference between the lunar and solar
parallaxes. For this, we first consider the parallax of the Sun. The factor λ̇s in (5.16)
represents the daily angular motion of the Sun. Hence the expression for the parallax
in longitude of the Sun (ls) becomes

ls =
λ̇s × sinz

15
× coszv × sin(λs −λv)

sinz
. (5.17)

Here the longitude of the Sun decreases due to the parallax when λv > λs, as is
evident from Fig. 5.4 (S′ is west of S). Hence we have λs −λv as the argument of
the sine.

Similarly, the parallax in longitude of the Moon (lm) is given by

lm =
λ̇m × sinz

15
× coszv × sin(λs −λv)

sinz
, (5.18)

where λ̇m is the daily angular motion of the Moon. Here we have taken the Moon
also to be at S as it is a solar eclipse, and λm = λs. For finding the correction to the in-
stant of conjunction, the relevant quantity is actually the difference in the parallaxes
in longitude of the Sun and the Moon, which is given by

lm − ls =
(λ̇m − λ̇s)

15
× coszv sin(λs −λv). (5.19)

When this is divided by λ̇m − λ̇s, it gives the result in time units of days. The result
when further multiplied by 60 gives the difference in lambana in nād. ikās. Thus the
difference in lambana in nād. ikās is

lm − ls = 4× coszv sin(λs −λv). (5.20)

Actually this incorporates the sign also, as

lm − ls = +ve (λs > λv), (5.21)

and should be subtracted from the instant of opposition to obtain the true parvānta;
and

lm − ls = −ve (λs < λv), (5.22)

so that the magnitude of lm − ls should be added to the instant of opposition to
obtain the true instant of conjunction. In Fig. 5.4, (lm − ls) is deflected westwards
in longitude owing to parallax. Hence, the Moon is lagging behind the Sun at the
calculated instant of conjunction and the true instant of conjunction is later. From
now onwards, l stands for lm − ls, which is the difference in lambanas of the Moon
and the Sun. In fact an iterative procedure is prescribed for obtaining tm. This is
indicated by the statementmua;hu :=+pyea;vMa :pa;va;Ra;nta;ma;
a;va;Zea;Sa;yea;t,a Á
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In Laghu-vivr. ti the iterative procedure is described thus:A:�a l+.}ba;na;sMa;~kx +:ta;~å.Pu +.f;pa;va;Ra;nta;taH O;;va ta;a;tk+:a;�a;l+.k+:a;kR +:dx ;k, [ea;pa;l+.çÉîå+;a;a;
a;d;kM k+:tRa;v.ya;m,a Á ta;taO;;va ..a l+.}ba;na;Æa;ma;tya;
a;va;Zea;Sa;k+.=+Nea;nEa;va .~å.Pu +.f;tva;a;du ;�M ‘mua;hu :=+pyea;vMa :pa;va;Ra;nta;ma;
a;va;Zea;Sa;yea;t,a’ I+.�a;ta Á
Here, the longitude of the Sun, the dr. kks.epa, the parallax in longitude etc. should be calcu-
lated only at the instant of conjunction corrected by parallax in longitude. Again from that
the parallax in longitude [should be calculated]. Thus, since the accuracy is obtained only
through an iterative process (avíses.akaran. a), it is said: the instant of conjunction should
be repeatedly obtained in the same way.

Let tm0 be the mean instant of conjunction obtained by an iterative process before
the application of the correction due to parallax in longitude. If l1, l2, l3 . . . be the
successive lambanas (the differences in parallaxes in longitude of the Moon and
the Sun in nād. ikās), l1 being the value of the parallax in longitude at tm0, then the
successive iterated values of the instant of conjunction are given by

tmi = tm0 + li (i = 1,2,3, . . .). (5.23)

The iteration must be continued till tmi − tmi−1 ≈ 0.5.4 .=+vea;nRa;�a;ta;k+:l+.aH
5.4 Parallax in latitude of the Sun in minutesA;
a;va;a;Za;�;a:�ua dx ;k, [ea;pa;a;t,a .~å.Pu +.f;Bua;��+.a;a;h;ta;a;dÒ +veaH ÁKa;~va:=e +Svea;k+:BUa;ta;a;�a;a na;�a;ta;dR x ;k, [ea;pa;va;	a;�+Za;a Á Á 10 Á Á

avísis.t.āttu dr. kks.epāt sphut.abhuktyāhatādraveh. |
khasvares.vekabhūtāptā natirdr. kks.epavaddísā || 10 ||
From the product of the iterated value of the dr. kks.epa and the true daily motion of the Sun
divided by 51570, the parallax in latitude is obtained whose direction is the same as that of
the dr. kks.epa.

It was mentioned in the previous section that the value of the parallax in longitude
is to be found iteratively. Since the expression for the parallax in longitude implicitly
involves the value of the dr. kks.epa, it is also to be found iteratively. Denoting the
successive values of dr. kks.epa by di, it is given by

di = Rsinzvi (i = 1,2,3, . . .), (5.24)

where zvi represents the zenith distance of the vitribhalagna at the i-th iteration.
If zv be the final iterated value of vitribhalagna, then the expression for the Sun’s
parallax in latitude given here is

nati =
λ̇s ×Rsinzv

51570
, (5.25)

where λ̇s is the true daily motion of the Sun.



316 .=+
a;va;g{a;h;Na;pra;k+.=+Na;m,a Solar eclipse

The rationale behind the above expression can be understood from Fig. 5.4. Con-
sidering the triangle KZS, and applying the cosine formula, we have

cosKZ = cosKScosZS + sinKS sinZScosξ
= sinZScosξ , (5.26)

since KS = 90. Further using the fact that KZ = 90 − ZV = 90 − zv and writing
ZS = z, we get

cosξ =
sinzv

sinz
. (5.27)

Using the expression for SS′ in (5.16) and substituting for cosξ and SS′ in (5.12),
we get

nati =
λ̇s sinz

15
× sinzv

sin z

=
λ̇s ×Rsinzv

15R
=

λ̇s ×Rsinzv

51570
. (5.28)

The direction of the parallax in latitude is mentioned to be the same as that of the
dr. kks.epa. In other words, if the vitribhalagna lies in the northern hemisphere, then
the parallax in latitude will also be northwards, and if the vitribhalagna lies in the
southern hemisphere, then the parallax in latitude will also be southwards. This can
be easily understood from Fig. 5.4.5.5 ..a;ndÒ +~ya na;�a;ta;k+:l+.aH
5.5 Parallax in latitude of the Moon in minutesta;tk+:a;le +.ndu ;~å.Pu +.f;a;t,a [ea;pMa :pra;a;gva;t,a kx +:tva;a .~å.Pu +.fM ta;taH Á[ea;pa;dx ;k, [ea;pa;.a;a;pEa;k�+.a;a;t,a .sa;a;}yea Bea;de Y;nta:=+a;�ç Åu +NaH Á Á 11 Á Á;
a;dõ ;t�a;a;ya;~å.Pu +.f;Bua;�a;�+Èåî ÁÁ*+H &+.taH Ka;a;dÒ � +a;Sua;BUa;Za;=E H Ána;�a;taH ta;t[ea;pa;ya;ea+=E +k�+.aM ;
a;d;#sa;a;}yeaY;nta:=+ma;nya;Ta;a Á Á 12 Á Áta;d;kR +:na;�a;ta;�a;l+.�a;a;na;Ma ;
a;d;#sa;a;}yeaY;nta:=+mea;va ..a Á;
a;d;gBea;de ..Ea;k�+.a;mea;va .~ya;a;t,a .~å.Pu +.f;a .sUa;yRa;g{a;he na;�a;taH Á Á 13 Á ÁA;kR +:~ya ..ea;�a;�a;taH ;a;Za;�;a ;
a;va:(ìÉÅ;e +Sea v.ya;tya;yea;na ;
a;d;k, Á..a;ndÒ +~yEa;va na;tea;g{a;Ra;hùÅ:a;a ;
a;d;k, ta;~ya;a;(ãÉa;a;nya;d;a .sa;d;a Á Á 14 Á Á

tatkālendusphut.āt ks.epam. prāgvat kr. tvā sphut.am. tatah. |
ks.epadr. kks.epacāpaikyāt sāmye bhede ′ntarādgun. ah. || 11 ||
dvit̄ıyasphut.abhuktighnah. hr. tah. khādr̄ıs.ubhūśaraih. |
natih. tatks.epayoraikyam. diksāmye ′ntaramanyathā || 12 ||
tadarkanatiliptānām. diksāmye ′ntarameva ca |
digbhede caikyameva syāt sphut.ā sūryagrahe natih. || 13 ||
arkasya cennatih. śis. t.ā vísles.e vyatyayena dik |
candrasyaiva natergrāhyā dik tasyāścānyadā sadā || 14 ||
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From the true longitude of the Moon at that instant (sphut.a-parvānta), let the viks.epa
([Moon’s] latitude) be determined as before and then the true [latitude] be obtained. From
the sum of or the difference between the dr. kks.epa and the viks.epa, depending upon
whether their directions are the same or different, the Rsine is found. The result, multiplied
by the second true daily motion [in minutes] and divided by 51570, is the actual parallax in
latitude [of the Moon]. Find the sum of or the difference between this (parallax in latitude)
and the viks.epa depending on whether their directions are the same or different.

The difference of this and the parallax in latitude of the Sun is found if they have the same
directions. If they have the different directions, their sum is calculated. The result is the ef-
fective nati in the solar eclipse. When finding the difference, if the nati of the Sun remains,
then the direction of the nati is to be taken reversely [i.e., opposite to that of the Moon’s
deflection]. Otherwise, the direction of the nati is the same as that of the nati of the Moon.

Till now, the word nati has been used for the parallax in latitude of a given object.
Before proceeding further, it must be clarified here that the word nati is used in
different senses from now onwards. However, all these connotations are associated
with the deflection perpendicular to the ecliptic.

In the above verses, the procedure to obtain the effective deflection of the Moon
from the Sun in the direction perpendicular to the ecliptic is given. This is used in
the determination of the half-duration of the solar eclipse. It should be noted that the
role played by the effective nati ne in a solar eclipse is the same as the role played
by the true latitude βt in a lunar eclipse. We explain the given prescription for ne

with the help of Fig. 5.5. Here M represents the Moon and M′ its position as seen
by an observer on the surface of the Earth owing to the effect of parallax. V is the
vitribhalagna (nonagesimal) and V ′ the point where the vertical circle through it
meets the parallel to the ecliptic passing through the Moon. M′A is the parallax in
longitude of the Moon called the lambana, and MA is the nati which is the parallax
in latitude; they are given by

lambana = M′A = MM′ sinξ
nati = MA = MM′ cosξ , (5.29)

where ξ is the angle between the vertical and the secondary to the ecliptic through
M, and MM′ = Psinz, P being the horizontal parallax of the Moon and z its zenith
distance. Since the horizontal parallax is taken to be one-fifteenth of the daily mo-
tion,

MM′ = p =
λ̇m× sinz

15
, (5.30)

where λ̇m is the daily angular motion of the Moon. Let nm be the parallax in latitude
of the Moon. Then the expression for it is given as

nm =
λ̇m ×Rsinz′v

51570
, (5.31)

where z′v = zv ± |βt |. The above expression is essentially the same as (5.25) except
for two replacements: (i) λ̇s, the daily motion of the Sun, is replaced by λ̇m, the daily
motion of the Moon; and (ii) zv, the zenith distance of the vitribhalagna is replaced
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Fig. 5.5 The effect of parallax in the measurement of the Moon’s latitude in a solar eclipse.

by z′v, the zenith distance of the point V ′. In arriving at the above expression an
approximation is involved which can be shown to be very reasonable. Considering
the triangle KZM in Fig. 5.5 and applying the cosine formula, we have

cosKZ = cosKM cosZM + sinKM sinZM cosξ . (5.32a)

This is approximated as
cosKZ ≈ sinZM cosξ , (5.32b)

where we have used the approximation KM ≈ 90. Actually KM = 90 + βt , where
βt is the true latitude of the Moon. But since βt is very small during an eclipse—in
fact, it must be less than around 15′ for an eclipse to occur—it is justified to take
KM = 90. The same approximation is used in finding KZ. We have

KV ′ = KV +VV ′

= 90 + βt

= KZ +ZV ′ (5.33)

Therefore KZ = (90 + βt)−ZV ′. We make the approximation KZ ≈ 90−ZV ′. As
mentioned earlier, since VV ′ = βt is very small, the approximation is quite good.
Further, using the notation ZM = z and ZV ′ = z′v = zv ±|βt |, we find

cosKZ = sinZV ′ = sin z′v = sinzcosξ

or cosξ =
sinz′v
sin z

. (5.34)

Substituting for cosξ and MM′ in (5.29), we obtain the expression for the Moon’s
parallax in latitude given by (5.31).
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The total nati of the Moon

The total nati, nt , or the deflection of the Moon from the ecliptic, is

nt = |nm + βt | (same direction)

= |nm −βt | (opposite direction). (5.35)
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Fig. 5.6 The total deflection of the Moon from the ecliptic: (a) when the viks.epa and the parallax
in latitude have the same direction; (b) when the viks.epa and the parallax in latitude have opposite
directions.

This may be understood with the help of Fig. 5.6. Here RM represents the viks.epa
of the Moon. In (a) it is to the south of the ecliptic and in (b) it is to the north. But
the deflection from the ecliptic in both the cases is to the south of the ecliptic. Hence
in (a) the total deflection from the ecliptic nt is the sum, RA = MA+MR, and in (b)
the total deflection from the ecliptic is the difference RA = MA−MR.

The effective nati

We are actually interested in ne, the effective deflection of the Moon from the Sun,
because that is what determines the duration of a solar eclipse. In all cases, ne = nt −
ns. In the determination of ne, one has to be very careful regarding the directions.
All the possible cases are discussed in the verses of the text.

Case (i): ns and nt have opposite directions
Here ns has a direction opposite to nt . The magnitude of the effective deflection

from the ecliptic is obtained by finding the sum of the magnitudes of ns and nt as
shown in Fig. 5.7(a). It is given by RA + SB. That is

|ne| = |nt |+ |ns|. (5.36)

The direction of the effective deflection from the ecliptic is the same as that of the
Moon, that is RA.
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Fig. 5.7 The effective deflection from the ecliptic: (a) ns to the south and nt to the north; (b) ns
and nt having the same direction. The dashed and the dotted lines represent the secondary to the
ecliptic through the Sun and the Moon respectively.

Case (ii): ns and nt have the same direction with nt > ns

Here the effective deflection from the ecliptic is obtained by finding the differ-
ence between the two as shown in Fig. 5.7(b). It is represented by a thick line and is
seen to be RA−SB. Here ne = nt −ns is in the ‘same direction’ as that of the Moon’s
deflection from the ecliptic, that is RA.

Case (iii): ns and nt have the same direction, but ns > nt

As before, the effective deflection from the ecliptic is obtained by finding the
difference between the two as shown in Fig. 5.8. It is represented by a thick line
and is seen to be SB−RA. Here ne = nt −ns is negative. Hence the direction of the
resultant deflection from the ecliptic is opposite to that of the Moon (and the Sun,
too). This is precisely what is meant by the statement:A;kR +:~ya ..ea;�a;�a;taH ;a;Za;�;a ;
a;va:(ìÉÅ;e +Sea v.ya;tya;yea;na ;
a;d;k, Á
This means that the effective deflection from the ecliptic is to be taken reversely, if
there is a positive remainder after nt is subtracted from ns.
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Fig. 5.8 The direction of the effective deflection from the ecliptic when ns and nt have the same
direction, but ns > nt .
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5.6 The possibility of a solar eclipse.sa;}å.pa;k+:Ra;Da;Ra;�a;Da;k+:a .sa;a ..ea;t,a g{a;h;NMa .nEa;va Ba;a;~va;taH Á.sa;}å.pa;k+:Ra;Da;Ra;t,a tya:jea;dU ;na;Ma :pa:=+ma;g{a;a;sa;Æa;sa:;dÄâ ;yea Á Á 15 Á Á

samparkārdhādhikā sā cet grahan. am. naiva bhāsvatah. |
samparkārdhāt tyajedūnām. paramagrāsasiddhaye || 15 ||

If that (effective deflection from the ecliptic) is greater than the sum of the semi-diameters,
then there will be no solar eclipse. For obtaining the maximum obscuration, that must be
subtracted from the sum of the semi-diameters.

In Fig. 5.9, A and X refer to the centres of the Sun and the Moon. AM and BX are
their semi-diameters. AX is the effective deflection from the ecliptic ne at the instant
of conjunction. If ne at this instant is exactly equal to or greater than the sum of the
semi-diameters of the Sun and the Moon, then there will be no eclipse. This can be
understood from Fig. 5.9(a). Here,

AX = (AM + BX)+ MB

ne = Sum of the semi-diameters+MB. (5.37)

Thus we see that the condition for the absence of solar eclipse is:

ne ≥ Sum of the semi-diameters (at the middle of the eclipse). (5.38)

Similarly, if ne at the instant of conjunction is less than the sum of the semi-
diameters, then there will be at least a partial eclipse. Such a situation is depicted in
Fig. 5.9(b). Partial eclipse is possible when

the obscured portion MB > 0. (5.39)

Now

MB = BX −MX

= BX − (AX −AM)

= AM +BX −AX . (5.40)

Hence the condition for (at least) a partial eclipse can be written as

AX < AM +BX . (5.41)

In other words,

ne < Sum of the semi-diameters (at the middle of the eclipse). (5.42)
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Fig. 5.9 The Sun and the Moon in the case of (a) no eclipse (b) a partial solar eclipse. While the
dotted circle represents the Sun’s disc, the shaded one represents that of the Moon.5.7 ;�//////�a;~Ta;tya;Da;Ra;na;ya;nea l+.}ba;na;sMa;~k+:a:=H
5.7 Application of lambana in finding the half-duration.=+v�a;a;ndu ;
a;ba;}ba;sa;}å.pa;kR +:d;l+.a;t,a .~å.Pu +.f;na;tea:=+
a;pa Á;�//////�a;~Ta;tya;D a :pra;a;gva;d;a;nea;yMa ta:�a ta:�a ..a l+.}ba;na;m,a Á Á 16 Á Ák+:pa;a;lE +.k�+.ae tua .sMa;ya;ea:$yMa ;�//////�a;~Ta;tya;DeRa l+.}ba;na;a;nta:=+m,a Ál+.}ba;nEa;k�+.aM 4 tua ta;;�ÂåÅe +de ta;t,a ;�//////�a;~Ta;tya;DeRa tua ya;ea:ja;yea;t,a Á Á 17 Á Á:pra;a;ë�Åë�Á*:+:pa;a;le kÒ +:ma;a;�yUa;nMa .~å.pa;ZRa;k+:a;l+.a;
a;d;l+.}ba;na;m,a ÁkÒ +:mea;Na ..a;a;�a;Da;kM :pra;tya;ë�Åë�Á*:+:pa;a;le .tea;Sua l+.}ba;na;m,a Á Á 18 Á Áya:�Ea;ta;
a;dõ ;pa:=� +a;tMa .~ya;a;t,a Za;ea;DyMa ta;�+:}ba;na;a;nta:=+m,a ÁA;a;sa;�a o+.d;ya;a;n}å.a;ea;[ea tva;�a;Da;kM ma;ea;[a;l+.}ba;na;m,a Á Á 19 Á Á;�a;na;a;Za ..ea;n}å.a;Dya;k+:a;l+.eaY:�a ;
a;va;pra;kx +:�;(ãÉa ma;Ea;Æa;[a;k+:a;t,a Áma;Ea;Æa;[a;k+:a;�+:}ba;na;a;t,a tya;a:$yMa ta;d;a .~ya;a;n}å.a;Dya;l+.}ba;na;m,a Á Á 20 Á Áma;ea;[a;�//////�a;~Ta;�a;ta;d;l+.a;t,a ta:�a Za;ea;DyMa ta;�+:}ba;na;a;nta:=+m,a ÁO;;va;ma;~ta;ma;ya;a;sa;�ea .~å.pa;ZeRa ta;�+:}ba;neaY;�a;Da;ke Á Á 21 Á Áma;Dya;l+.}ba;na;k+:a;l+.a;t,a tua tya;a:$yMa ta:�a ta;d;nta:=+m,a Á

rav̄ındubimbasamparkadalāt sphut.anaterapi |
sthityardham. prāgvadāneyam. tatra tatra ca lambanam || 16 ||
kapālaikye tu sam. yojyam. sthityardhe lambanāntaram |
lambanaikyam. tu tadbhede tat sthityardhe tu yojayet || 17 ||
prākkapāle kramānnyūnam. sparśakālādilambanam |
kramen. a cādhikam. pratyakkapāle tes.u lambanam || 18 ||
yatraitadvipar̄ıtam. syāt śodhyam. tallambanāntaram |
āsanna udayānmoks.e tvadhikam. moks.alambanam || 19 ||
nísi cenmadhyakālo ′tra viprakr. s.t.aśca mauks.ikāt |
mauks.ikāllambanāt tyājyam. tadā syānmadhyalambanam || 20 ||
moks.asthitidalāt tatra śodhyam. tallambanāntaram |
evamastamayāsanne sparśe tallambane ′dhike || 21 ||
madhyalambanakālāt tu tyājyam. tatra tadantaram |
From the sum of the semi-diameters and the effective deflection from the ecliptic, the half-
duration must be obtained as before. The parallax in longitude must also be obtained at
those instants (the first contact, the middle contact and the last contact). If the hemisphere

4 The reading in the printed text is l+.}ba;nEa;k�+.ae , whereas l+.}ba;nEa;k�+.aM seems to be the appropriate
term. Hence we have given the same here.
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is same, then the difference in parallaxes in longitude must be added to the half-duration.
If they (the hemispheres) are different, then the sum of the parallaxes in longitude must
be added to the half-duration. The parallaxes in longitude gradually decrease in the eastern
hemisphere, whereas they gradually increase in the western hemisphere.

When the reverse is the case [that is, the successive parallaxes in longitude are increasing in
the western hemisphere and decreasing in the eastern], then the difference in the parallaxes
in longitude must be subtracted. When the last contact is close to sunrise, then the parallax
in longitude at release is greater. Then the madhyakāla is in the night and the parallax in
longitude in the middle has to be subtracted from that at release.

The difference must be subtracted from the instant of last contact. Similarly when the first
contact is close to the sunset, because the parallax in longitude at first contact is greater than
that (in the middle), the difference has to be subtracted from the madhyakāla.

Here the corrections to the half-durations of the eclipse due to parallax in lon-
gitude are discussed. Let l1, l2 and l3 be the parallaxes in longitude (see Section
5.3) calculated at the first contact, the middle and the moks.akālas. The expressions
for the half-durations (see (5.47) and (5.48)) can be understood with the help of
Fig. 5.10. Here S1, S2 and S3 are the positions of the Sun on the ecliptic without
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Fig. 5.10 The first contact, the middle and the last contact of a solar eclipse occurring in the eastern
hemisphere.

parallax at the first contact, the middle and the last contact. S′1, S′2 and S′3 are the
projections of the apparent positions of the Sun along the ecliptic including the ef-
fect of parallax. We will clarify the meanings of Si and S′i shortly.

SiS
′
i = li i = 1,2 & 3, (5.43)

are the parallaxes in longitude at the first contact, the middle and the last contact. In
the absence of parallax, let ∆ t1 and ∆t2 be the first and second half-durations. They
are given by

∆ t1 = S1S2 and ∆t2 = S2S3. (5.44)
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Here we are using the symbols Si and S′i to denote the time-instants of the first con-
tact, the middle and the last contact, and the corresponding ones corrected by the
parallax in longitude. Hence, S1S2 corresponds to the true time difference between
the positions of the Sun at S1 and S2, and not the arc S1S2 along the ecliptic. Sim-
ilarly SiS′i stands for the parallax in longitude li, which is actually the difference
in lambanas between the Moon and the Sun (lmi − lsi) in nād. ikās and not the arc
SiS′i. Let ∆ t ′1 and ∆t ′2 be the first and second half-durations including the effect of
parallax. We now proceed to discuss the different cases that can arise.

Case (i): The first contact, the middle and the last contact in the eastern hemisphere
The first and second half-durations are given by

∆ t ′1 = S′1S′2
= S′1S2 − S′2S2

= S′1S1 + S1S2 − S′2S2

= S1S2 +(S′1S1 −S′2S2)

= ∆ t1 +(l1 − l2). (5.45)

Similarly,

∆ t ′2 = S′2S′3
= S′2S3 − S′3S3

= S′2S2 + S2S3 − S′3S3

= S2S3 +(S′2S2 −S′3S3)

= ∆ t2 +(l2 − l3). (5.46)

The above equations (5.45) and (5.46) are valid if the first contact, the middle and
the last contact take place in the eastern hemisphere as shown in Fig. 5.10.

Case (ii): The first contact, the middle and the last contact in the western hemisphere
This is depicted in Fig. 5.11. The expressions for the half-durations in this case

are similar to the previous case and are given by

∆ t ′1 = S′2S′1
= S′2S1 − S′1S1

= S′2S2 + S2S1 − S′1S1

= S2S1 +(S′2S2 −S′1S1)

= ∆ t1 +(l2 − l1). (5.47)

Similarly,

∆ t ′2 = S′3S′2
= S′3S2 − S′2S2
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= S′3S3 + S3S2 − S′2S2

= S3S2 +(S′3S3 −S′2S2)

= ∆ t2 +(l3 − l2). (5.48)
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Fig. 5.11 The first contact, the middle and the last contact of a solar eclipse occurring in the
western hemisphere.

Case (iii): The first contact, the middle and the last contact in different hemispheres
A typical case of the first contact and the middle happening in different hemi-

spheres is shown in Fig. 5.12. Here the expression for the half-duration is given
by

∆ t ′1 = S′1S′2
= S′1S2 + S′2S2

= S′1S1 + S1S2 + S′2S2

= S1S2 +(S′1S1 +S′2S2)

= ∆ t1 +(l1 + l2). (5.49)

Similarly it can be shown that if the middle and the last contact happen in different
hemispheres, then the expression for the half-duration will be

∆ t ′2 = S′2S′3
= S2S3 +(S′2S2 +S′3S3)

= ∆ t2 +(l2 + l3). (5.50)
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Fig. 5.12 The first contact and the middle of a solar eclipse occurring in different hemispheres.

Magnitudes of different lambanas

Now SiS′i = li, i = 1,2,3. As the effect of parallax increases with the zenith distance
of the object, it is easily seen that

li > li+1 (in eastern hemisphere)

li < li+1 (in western hemisphere). (5.51)

Hence the parallaxes in longitude keep decreasing in the eastern hemisphere and
keep increasing in the western hemisphere, over time. These inequalities are sat-
isfied in most situations. However, care has to be exercised when either the first
contact or the last contact happens to be near the time of sunset or sunrise. Such
‘border-line’ cases are discussed in the verses 19–22a.

When the instant of last contact is near the sunrise time, then the madhyakāla
(instant of conjunction) will definitely be towards the end of the night, and the
Sun/Moon will be below the horizon (z > 90◦). Then Rsinz would have a greater
value at the last contact than in the middle. Hence the parallax in longitude at release
will be larger than that in the middle. Therefore the second half-duration is given by

∆ t ′2 = S′2S′3
= S2S3 − (S′3S3 −S′2S2)

= ∆ t2 − (l3 − l2). (5.52)

This is the same as (5.46), except that l3 > l2, so that l3 − l2 must be subtracted from
∆t2.

Similarly, when the instant of first contact is near the sunset time, then the mad-
hyakāla will definitely be towards the beginning of the night. Here again the paral-
lax in longitude at first contact will be larger than that in the middle. Hence the first
half-duration is given by

∆ t ′1 = S′1S′2
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= S1S2 − (S′1S1 −S′2S2)

= ∆ t1 − (l1 − l2). (5.53)5.8 .~å.pa;ZRa;k+:a;l+.a;
a;va;Zea;SaH
5.8 Time of sparśa by an iterative process;�//////�a;~Ta;tya;DRa;mea;va;ma;a;n�a;a;tMa .~å.pa;a;a;ZRa;kM :pa;vRa;Na;~tya:jea;t,a Á Á 22 Á ÁA;
a;va;a;Za;�;a;t,a :pua;na;~ta;�/////////�a;sma;n,a .~å.pa;ZeRaY;
a;pa na;�a;ta;l+.}ba;nea Á;�//////�a;~Ta;tya;DRa;ma;
a;pa ..a;a;n�a;a;ya ta;�a;tya;a;n�a;a;ta;ya;a .sa;kx +:t,a Á Á 23 Á Á;�//////�a;~Ta;tya;D a .~å.pa;ZRa;ma;Dya;ea;tTa;l+.}ba;na;a;nta:=+sMa;~kx +:ta;m,a Ál+.}ba;nEa;k�+.a;yua;tMa va;a .~ya;a;t,a .~å.pa;ZRa;ma;Dya;k+:pa;a;l+.ya;eaH Á Á 24 Á ÁBea;de .tea;na ;
a;va;h� ;a;na;ea ya;ea ma;Dya;k+:a;l+.eaY;
a;va;Zea;
a;Sa;taH Áta:�a;a;
a;pa .sa;kx +:d;a;n�a;a;ya na;�a;ta;�//////�a;~Ta;�a;ta;d;l+.a;
a;d;k+:m,a Á Á 25 Á Ál+.}ba;na;a;nta:=+mEa;k�+.aM va;a ku +:ya;Ra;t,a ;�//////�a;~Ta;�a;ta;d;le Y:�a ..a Á.tea;na;a;
a;pa .~å.pa;ZRa;k+:a;l+.a;d� ;a;n,a :pra;a;gva;de ;va;a;na;yea;n}å.ua;hu H Á Á 26 Á Ák+:a;lM tMa ;�a;na;(ãÉa;l� +.a;kx +:tya ma;ea;[a;k+:a;lM ta;Ta;a;na;yea;t,a Á

sthityardhamevamān̄ıtam. spārśikam. parvan. astyajet || 22 ||
avísis.t.āt punastasmin sparśe ′pi natilambane |
sthityardhamapi cān̄ıya tannatyān̄ıtayā sakr. t || 23 ||
sthityardham. sparśamadhyotthalambanāntarasam. skr. tam |
lambanaikyayutam. vā syāt sparśamadhyakapālayoh. || 24 ||
bhede tena vih̄ıno yo madhyakālo ′víses. itah. |
tatrāpi sakr. dān̄ıya natisthitidalādikam || 25 ||
lambanāntaramaikyam. vā kuryāt sthitidale ′tra ca |
tenāpi sparśakālād̄ın prāgvadevānayenmuhuh. || 26 ||
kālam. tam. níscal̄ıkr. tya moks.akālam. tathānayet |
The first half-duration (spārśikam. sthityardham. ) of the eclipse may be subtracted from
the instant of conjunction obtained by iteration. At the instant of first contact which is
obtained, once again deflection from the ecliptic and parallax in longitude are obtained.
The half-duration (∆ t11) is also calculated only once (sakr. t

5) with the deflection from the
ecliptic thus obtained.

To this half-duration, the sum of or the difference between the parallaxes in longitude is
applied. The difference must be added [if the first contact and the middle of the eclipse occur
in the same hemisphere] and the sum if they occur in different hemispheres. The result must
be subtracted from the iterated value of the instant of conjunction. The deflection from the
ecliptic and half-duration etc. may be obtained without iteration once again at this instant.

To this half-duration (∆ t12) the sum of or the difference beween the parallaxes in longitude
must be applied. At the resulting time once again [the nati, half-duration etc. may be ob-
tained]. Thus the beginning moment of the eclipse may be determined iteratively till a stable
result is obtained (níscal̄ıkr. tya). The ending moment (instant of last contact) may also be
determined in the same manner.

5 The word .sa;kx +:t,a is used deliberately to emphasize that, here, one need not find the half-duration
by iteration.
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In the above verses, an iterative procedure for determining the beginning and the
ending moment of the eclipse (the first contact and the instant of last contact) is
described. Let tb, tm and te be the actual beginning, middle and ending moments of
the eclipse. Of the three, tm has already been obtained by iteration. Here the objective
is to find tb and te by an iterative process from tm which is supposed to be known
accurately.

Let l1, l2 and l3 be the parallaxes in longitude at the beginning, the middle and the
ending moment of the eclipse. Of the three l2 has already been found iteratively and
it is only l1 and l3 that need to be calculated after each iteration. We shall denote by
∆t1 and ∆ t2 the final iterated values of the first and the second half-durations of the
eclipse. The intermediate values of the half-durations and the parallaxes in longitude
are denoted with two suffixes. The first is used to keep track of which half-duration
is being calculated (the first or second), and the second to denote the iteration count.
Similarly in the case of parallax in longitude; for instance, ∆ t13 represents the third
iterated value of the first half-duration. Similarly again, l14 refers to the parallax in
longitude calculated at the beginning moment of the eclipse after four iterations.
With this background we now explain the iterative process in detail.

Iterative process

We explain this process by considering case (ii) of Section 5.7, wherein the first
contact, the middle and the last contact all occur in the western hemisphere, where
∆t ′1 and ∆ t ′2 are given by (5.47) and (5.48). The other cases can be considered simi-
larly. Let us denote the value of the half-duration of the eclipse determined with the
deflection from the ecliptic at tm as ∆ t0. This value is approximate only because de-
flection from the ecliptic is a continuously varying quantity. Nevertheless, it serves
as a starting point for the calculation. In finding the half-duration, the value of de-
flection from the ecliptic at the first contact or the last contact was taken to be the
value at the instant of conjunction, that is tm. This is obviously approximate. Hence
as the first step for beginning the iteration, we take

∆ t0 = ∆ t10 = ∆t20. (5.54)

Now, the first approximation to the instant of first contact is given by

tb1 = tm −∆t10. (5.55)

At tb1, the deflection from the ecliptic and parallax in longitude are calculated.
We denote them by ne1 and l11 respectively. With ne1 , the half-duration, sparśa-
sthityardha, without parallax in longitude correction is calculated using the formula

δ t1 =

√
S2 −n2

e1

λ̇m − λ̇s
, (5.56)
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where S in the numerator represents the sum of the semi-diameters of the Sun and
the Moon, and λ̇m − λ̇s in the denominator is the difference in their daily motions
determined at that instant. This half-duration has to be corrected for the parallax in
longitude. Thus, the first approximation to the first half-duration is given by

∆t11 = δ t1 +(l2 − l11). (5.57)

Hence, the second approximation to the beginning moment of the eclipse is

tb2 = tm −∆t11. (5.58)

At tb2, once again the deflection from the ecliptic and the parallax in longitude are
calculated. Denoting them by ne2 and l12, the half-duration (without parallax cor-
rection) is calculated using the formula

δ t2 =

√
S2 −n2

e2

λ̇m − λ̇s
. (5.59)

With this, the second approximation to the first half-duration is given by

∆t12 = δ t2 +(l2 − l12). (5.60)

And the third approximation to the beginning moment of the eclipse is given by

tb3 = tm −∆t12. (5.61)

The above iterative process must be continued till we get stable values of ∆t1i to the
desired accuracy. That is,

∆t1i ≈ ∆t1 i−1. (5.62)

When this happens, tbi ≈ tb i−1 = tb. Now, tb is the beginning moment of the eclipse,
called the instant of first contact.

Rationale behind the iterative process

To determine the instant of first contact, the first half-duration is calculated includ-
ing the effect of parallax and subtracted from the instant of conjunction. However,
the formula for the half-duration involves the deflection from the ecliptic and the
parallax in longitude at the instant of first contact, which are not known and are yet
to be determined. This explains why an iterative process is used. In the first step,
the deflection from the ecliptic and parallax in longitude are assumed to be the same
as at tm. From this, the instant of first contact is obtained. In the second step, the
deflection from the ecliptic and the parallax in longitude are calculated at this ap-
proximate value of instant of first contact, and from these the instant of first contact
in the next approximation is determined, and so on.
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5.9 Time of moks.a by an iterative processA;
a;va;a;Za;�e tua :pa;va;Ra;ntea ;�//////�a;~Ta;tya;D a ta;t,a ;Æa;[a;pea;n}å.ua;hu H Á Á 27 Á Ál+.}ba;na;a;nta:=+mEa;k�+.aM va;a ma;ea;[a;�//////�a;~Ta;�a;ta;d;le Y;
a;pa ..a Áta:�a;�a;�a;ta;kx +:tea k+:a;y a :pra;a;gva;t,a ta;�a;a;
a;va;Zea;Sa;yea;t,a 6 Á Á 28 Á Áta;dùÅ;au ;tea ma;Dya;k+:a;le Y;~ya ma;ea;[a;ea va;a;.ya;ea ;
a;va;va;~va;taH Á

avísis.t.e tu parvānte sthityardham. tat ks.ipenmuhuh. || 27 ||
lambanāntaramaikyam. vā moks.asthitidale

′pi ca |
tattannatikr. te kāryam. prāgvat taccāvíses.ayet || 28 ||
tadyute madhyakāle ′sya moks.o vācyo vivasvatah. |
That half-duration must be added to the iterated value of the instant of conjunction [and
deflection from the ecliptic etc. must be calculated at that instant]. To the half-duration that
is obtained from the deflection from the ecliptic calculated at that instant, here again the
difference of the parallaxes in longitude or their sum must be applied. That [second half-
duration] must be found iteratively. That added to the middle of the eclipse must be declared
as the ending moment of the solar eclipse.

The iterative procedure for the determination of the instant of last contact is very
similar to that of the instant of first contact. Since the procedure as well as the
rationale has been described in detail in the previous section, here we just outline
the iterative scheme in the form of equations for the sake of completeness. The first
approximation to the instant of last contact is given by

te1 = tm +∆ t20. (5.63)

At te1 , the deflection from the ecliptic and the parallax in longitude are calculated.
We denote them by ne1 and l31 respectively. With ne1 , the second half-duration the
moks.asthityardha, without parallax in longitude correction is calculated using the
formula

δ t2 =

√
S2 −n2

e1

λ̇m − λ̇s
. (5.64)

This is corrected for the parallax in longitude, and the first approximation to the
second half-duration is given by

∆t21 = δ t2 +(l31 − l2). (5.65)

Thus, the second approximation to the instant of last contact is

te2 = tm +∆ t21. (5.66)

Again at te2 , deflections from the ecliptic and parallax in longitude are calculated.
Denoting them by ne2 and l32, the half-duration is calculated using the formula

6 The prose order is: A;
a;pa ..a, ta:�a;�a;�a;ta;kx +:tea ma;ea;[a;�//////�a;~Ta;�a;ta;d;le l+.}ba;na;a;nta:=+mEa;k�+.aM va;a mua;hu H ;Æa;[a;pea;t,a Áta;�a :pra;a;gva;t,a A;
a;va;Zea;Sa;yea;t,a Á
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δ t2 =

√
S2 −n2

e2

λ̇m − λ̇s
. (5.67)

With this, the second approximation to the instant of last contact is given by

∆t22 = δ t2 +(l32 − l2). (5.68)

And the third approximation to the instant of last contact is

te3 = tm +∆ t22. (5.69)

The iteration is continued till the successive iterates converge to a stable value

∆ t2i ≈ ∆t2 i−1 = ∆ t2. (5.70)

Then the instant of last contact is given by

te = tm +∆ t2. (5.71)5.10 ;
a;va;ma;d;Ra;D a ;�a;na;m�a;a;l+.ea;n}å.�a;a;l+.nMa ..a
5.10 Half-duration of obscuration and the time of submergence

and emergence..a;ndÒ +
a;ba;}ba;a;t,a .=+vea;
a;bRa;}bea tya;�e ;a;Za;�;~ya ya;�+l+.m,a Á Á 29 Á Áta;taH .~å.Pu +.f;na;�a;ta;h� ;Ra;na;a ya;
a;d .~ya;a;t,a .sa;k+:l+.g{a;hH Á..a;ndÒ +
a;ba;}bea .=+vea;
a;bRa;}ba;a;t,a tya;�e ;a;Za;�;~ya ya;�+l+.m,a Á Á 30 Á Áta;ta;ea ya;
a;d na;�a;ta;h� ;Ra;na;a dx ;Zya;a .~ya;a;t,a :pa;�a:=+�a;Da;~ta;d;a Á;
a;ba;}ba;Bea;d;a;DRa;va;ga;Ra:�ua 7 na;�a;ta;vRa;ga;eRa;�a;na;ta;a;t,a :pa;d;m,a Á Á 31 Á Á:Sa;
a;�.Èåî ÁÁ*+M ga;�a;ta;Bea;d;a;�Ma ;
a;va;ma;d;Ra;D a .=+vea:=+
a;pa Á..a;ndÒ e Y;�peaY;nta;g{Ra;h;a;D a .~ya;a;t,a :pra;a;gva:�ea ..a;a;
a;va;Zea;Sa;yea;t,a Á Á 32 Á Áma;Dya;k+:a;l+.a;d, ;
a;va;ma;d;Ra;DeRa Zua:;dÄâ e Y:�a;a;
a;pa ;�a;na;m�a;a;l+.na;m,a Á;Æa;[a;�ea ..a;ea;n}å.�a;a;l+.nMa ta;dõ ;t,a :pUa;�a;tRa;ZCe +.d;(ãÉa nea;Æa;ma;gaH Á Á 33 Á Á
candrabimbāt raverbimbe tyakte śis. t.asya yaddalam || 29 ||
tatah. sphut.anatirh̄ınā yadi syāt sakalagrahah. |
candrabimbe raverbimbāt tyakte śis. t.asya yaddalam || 30 ||
tato yadi natirh̄ınā dr. śyā syāt paridhistadā |
bimbabhedārdhavargāttu natirvargonitāt padam || 31 ||
s.as.t.ighnam. gatibhedāptam. vimardārdham. raverapi |
candre ′lpe ′ntargrahārdham. syāt prāgvatte cāvíses.ayet || 32 ||
madhyakālād vimardārdhe śuddhe ′trāpi nimı̄lanam |
ks.ipte conmı̄lanam. tadvat pūrtíschedaśca nemigah. || 33 ||

7 In both the printed editions, the reading is: ;
a;ba;}bea Bea;d;a;DRa;va;ga;Ra:�ua, which is incorrect. It is most

likely that the correct reading is: ;
a;ba;}ba;Bea;d;a;DRa;va;ga;Ra:�ua Á
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If the Sun’s disc is subtracted from the Moon’s disc, and the sphut.a-nati (true parallax in
latitude) is less than half of the remainder thereof, then it is a total eclipse. If the Moon’s
disc is subtracted from the Sun’s disc, and the sphut.a-nati is less than half of the remainder
thereof, then the periphery (of the Sun) will be seen.

The square root of the difference of the squares of the difference in the semi-diameters of
the Sun and the Moon and the effective nati, multiplied by 60 and divided by the difference
between their daily motions [that is, of the Sun and the Moon], is the half-duration of totality
of the solar eclipse. If the Moon’s disc is small, then the above measure is equal to the half-
duration of annularity. These half-durations have to be found iteratively as described earlier.

From the middle of the eclipse, by subtracting and adding the half duration of totality, the
instants of the beginning and the end of totality are obtained. Similarly the instants of pūrti
(the instant of the beginning of annularity) and cheda (the instant of the end of annularity)
are obtained in the case of an annular eclipse.
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Fig. 5.13 The Sun and the Moon in the case of (a) a total solar eclipse and (b) an annular eclipse.

We depict the total and annular solar eclipses in Figs 5.13(a) and 5.13(b) respec-
tively. Here A and X represent the centres of the discs of the Sun and the Moon.
Now the condition for a total solar eclipse is

AM′ < AB′

or AM′ < XB′−AX

or AX < XB′−AM′, (5.72)

that is,
nati < radius of lunar disc − radius of solar disc.

Similarly in Fig. 5.13(b), the condition for an annular eclipse is

AB < AM

or AX + XB < AM

or AX < AM−XB (5.73)

that is,
nati < radius of solar disc − radius of lunar disc.

The procedures for calculating the half-duration of the total solar eclipse and the
annular solar eclipse are similar to those given in the case of the total lunar eclipse.
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They are also similar to those for a partial solar eclipse except that the sum of the
semi-diameters of the solar and lunar discs should be replaced by their difference.
The half-durations are given by

δ t =

√
D2 − n2

e

λ̇m − λ̇s
, (5.74)

where D is the difference in the semi-diameters of the lunar and solar discs, and ne

the effective deflection from the ecliptic at the beginning or end of totality.5.11 .sUa;yRa;dx ;ë�Åë�Á*:+:NRaH
5.11 The dr. kkarn. a of the SundÒ +�u ;BRUa;pxa;�+ga;~yea;ndu ;
a;ba;}ba;eaY;k+:Ra;�a ma;h;a;n,a Ba;vea;t,a Ána;a;na;a;tva;a;t,a :pra;�a;ta;de ;ZMa ta;t,a nea;yMa ;
a;ba;}bMa .~va;de ;Za:ja;m,a Á Á 34 Á Áma;Dya;k+:a;l+.Bua:ja;a:$ya;a;ya;aH :pra;a;gva;�x +k, [ea;pa;ma;a;na;yea;t,a ÁBa;a;na;ea;dR x ;k, [ea;pa;l+.çÉîå+;a;a .$ya;a 8 h;ta;a dx ;k, [ea;pa;Za;ñÍö�ÅÅ*:u +.na;a Á Á 35 Á Á;
a:�a:$ya;a;�a;a dx ;gga;�a;ta;Ba;Ra;na;eaH ya;t,a ta;�x +k, [ea;pa;va;gRa;ya;eaH Áya;ea;ga;a;t,a :pa;dM ta;dE ;k�+.a;ea;nMa ;
a:�a:$ya;a;va;ga;Ra;�a ya;tpa;d;m,a Á Á 36 Á ÁC+.a;ya;a;Za;ñÍö�ÅÅ*:U .=+vea;~ta;a;Bya;Ma BUa;v.ya;a;sa;a;DRa;~ya ya;ea:ja;nEaH Áh;ta;a;Bya;Ma ;
a:�a:$ya;ya;a l+.b.Dea d;eaHk+:ea;f� ;a ya;ea:ja;na;a;�//////�a;tma;ke Á Á 37 Á Á.=+
a;va;BUa;}ya;nta:=+a;t,a k+:ea;�a;fM tya;�+:a ta;dõâ â ;a;hu ;va;gRa;ya;eaH Áya;ea;ga;a;t,a :pa;dM Ba;vea;;�ÂåÅ +a;na;eaH dx ;ë�Åë�Á*:+:Na;eRa ya;ea:ja;na;a;tma;kH Á Á 38 Á Á

dras.t.urbhūpr. s.t.hagasyendubimbo ′rkācca mahān bhavet |
nānātvāt pratideśam. tat neyam. bimbam. svadeśajam || 34 ||
madhyakālabhujājyāyāh. prāgvaddr. kks.epamānayet |
bhānordr. kks.epalagnā jyā hatā dr. kks.epaśaṅkunā || 35 ||
trijyāptā dr. ggatirbhānoh. yat taddr. kks.epavargayoh. |
yogāt padam. tadaikyonam. trijyāvargācca yatpadam || 36 ||
chāyāśaṅkū ravestābhyām. bhūvyāsārdhasya yojanaih. |
hatābhyām. trijyayā labdhe doh. kot.ı̄ yojanātmike || 37 ||
ravibhūmyantarāt kot.im. tyaktvā tadbāhuvargayoh. |
yogāt padam. bhavedbhānoh. dr. kkarn. o yojanātmakah. || 38 ||
[At the time of a solar eclipse] the dimension of the Moon’s disc will be larger than that of
the Sun for an observer on the surface of the Earth. Since this differs from place to place,
the dimension at one’s own location must be determined.

Find the dr. kks.epa from the madhya-kālabhujājyā as mentioned earlier. The product of
the dr. kks.epa-́saṅku and the Rsine of the difference of the Sun and the vitribhalagna
divided by the trijyā is the dr. ggati of the Sun. The sum of the squares of this and the
dr. kks.epa is found. The square root of this and that of the trijyā squared minus this square
are the chāyā (shadow) and the śaṅku (gnomon) of the Sun. These [the chāyā and śaṅku]

8 This reading, found in both the printed editions, seems to be faulty. The meaning intended to be

conveyed is: Ba;a;na;eaH dx ;k, [ea;pa;l+.çÉîå+;a;~ya ..a ya;d;nta:=M ta;~ya .$ya;a Á
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multiplied by the radius of the Earth in yojanas and divided by the trijyā are the doh. and
kot.i in yojanas.

The kot.i is subtracted from the distance of separation between the Sun and the Earth. The
square root of the sum of the squares of this and the bāhu is the dr. kkarn. a of the Sun in
yojanas.

Here the procedure for finding the dr. kkarn. a of the Sun is given. The term dr. k
in this context refers to the observer. As the term karn. a is used to refer to the hy-
potenuse, the term dr. kkarn. a refers to the hypotenuse joining the Sun with the ob-
server (OS in Fig. 5.14(a)). In short, the problem posed in the text is to obtain OS
from ES. In order to determine OS, a few intermediate quantities are introduced.
The quantities dr. ggati and dr. kks.epa are defined as follows:

dr. ggati =
Rsin(λs −λv)Rcoszv

R
dr. kks.epa = Rsinzv. (5.75)

The dr. ggati given by (5.75) is different from the dr. ggati defined earlier in verse 7
of this chapter. It is then stated that

chāyā =

√
dr. ggati

2 +dr. kks.epa
2

i.e. Rsinzs =
√

(Rsin(λs −λv)coszv)2 +(Rsinzv)2 (5.76)

and śaṅku =

√
trijyā2 − chāyā2

i.e. Rcoszs =
√

R2 −Rsinz2
s , (5.77)

where zs is the zenith distance of the Sun.
To understand the rationale behind the above expressions let us consider the

spherical triangle ZVS shown in Fig. 5.14(b). Here K is the pole of the ecliptic, Z
the zenith, V the vitribhalagna and S the Sun. Since ZV̂S = 90, the cosine formula
applied to this triangle gives

cos(ZS) = cos(ZV )cos(SV ). (5.78)

Using the notation ZS = zs, ZV = zv and SV = λs−λv, the above equation becomes

coszs = coszv cos(λs −λv). (5.79)

Squaring both the sides, and writing the cosines in terms of sines, we have

1− sin2 zs = cos2 zv(1− sin2(λs −λv))

= cos2 zv − cos2 zv sin2(λs −λv)

or sin2 zs = (1− cos2 zv)+ cos2 zv sin2(λs −λv)

= cos2 zv sin2(λs −λv)+ sin2 zv,
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or sinzs =

√
cos2 zv sin2(λs −λv)+ sin2 zv. (5.80)

The above equation is the same as the expression for the chāyā in (5.76). The aim
of the whole exercise of finding the chāyā and the śaṅku is to find ON and EN in
Fig. 5.14(a), which in turn is used in finding the dr. kkarn. a OS. In verse 37, ON and
EN are referred to as the doh. (sine) and the kot.i (cosine) respectively. Let Re be the
radius of the Earth (OE).

Now, in Fig. 5.14(a), draw ZN′ perpendicular to ES. As EZ = R and ZÊS = zs,
we have ZN′ = Rsinzs and EN′ = Rcoszs. Now the triangles EON and EZN ′ are
similar. Hence

doh. = ON =
EO
EZ

×ZN′

=
Re

R
×Rsinzs

=
bhūvyāsārdha

trijyā
× chāyā (5.81a)

and kot.i = EN =
EO
EZ

×EN′

=
Re

R
×Rcoszs

=
bhūvyāsārdha

trijyā
× śaṅku. (5.81b)

These are the relations that have been stated in verse 37. Since Re is in yojanas,
the dimensions of the doh. and the kot.i will be in yojanas. The expression of the
dr. kkarn. a, which is the distance between the observer and the Sun, is given to be

dr. kkarn. a =
√

(ravibhūmyantara− kot.i)2 +(doh. )
2. (5.82)

The rationale behind (5.82) can again easily be understood from Fig. 5.14(a).
Here ES (the ravibhūmyantara) and OS (the dr. kkarn. a) are the distances of the Sun
from the centre of the Earth and the observer. Denoting them by Ds and ds, and
considering the triangle NOS, we have

OS =
√

NS2 + ON2

ds =
√

(ES−EN)2 +ON2

=
√

(Ds −Re coszs)2 +(Re sinzs)2 . (5.83)
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Fig. 5.14 Spherical triangle considered to find the distance of the Sun from the observer.5.12 ..a;ndÒ +dx ;ë�Åë�Á*:+:NRaH
5.12 The dr. kkarn. a of the Moon[ea;pa;dx ;k, [ea;pa;.a;a;pEa;k�+.aM na;�a;taH .sa;a;}yeaY;nya;Ta;a;nta:=+m,a Á.=+a;a;Za:�a;yMa ya;dU ;nMa9 ya;t,a ta:êêÁ*.a�a;a;Za;ñÍö�ÅÅ*:u H :pa:=+a;Æa;Ba;DaH Á Á 39 Á Á..a;ndÒ +ea;na;l+.çÉîå+;a;ba;a;hU ;na;a ;
a:�a:$ya;a .jUa;k+:a;
a;d:ja;a;�///�a;nva;ta;a Á[ea;pa;k+:ea;f�a;a h;ta;a Ba;�+:a ;
a:�a:$ya;ya;a ba;a;Na o+..ya;tea Á Á 40 Á Áta;ta;ea dx ;k, [ea;pa;k+:ea;�a;f.Èåî ÁÁ*+M ;
a:�a:$ya;a;�Ma :pa:=+ta;~tya:jea;t,a 10 ÁZea;SaH Za;ñÍö�ÅÅ*:u H Za;Za;a;ñÍö�ÅÅ*:+.~ya ta;ta;ea dx ;giya;a ..a :pUa;vRa;va;t,a Á Á 41 Á ÁBUa;v.ya;a;sa;a;DRa;h;tea .tea ..a ;
a:�a:$ya;a;�ea k+:ea;�a;f;d;eaHP+.le Ádx ;ë�Åë�Á*:+:Na;eRaY;kR +:va;
a;d;nd;ea;~ta;t,a .~va;BUa;}ya;nta:=+ya;ea:ja;nEaH Á Á 42 Á Á

ks.epadr. kks.epacāpaikyam. natih. sāmye ′nyathāntaram |
rāśitrayam. yadūnam. yat tajjyāśaṅkuh. parābhidhah. || 39 ||
candronalagnabāhūnā trijyā jūkādijānvitā |
ks.epakot.yā hatā bhaktā trijyayā bān. a ucyate || 40 ||
tato dr. kks.epakot.ighnam. trijyāptam. paratastyajet |
śes.ah. śaṅkuh. śaśāṅkasya tato dr. gjyā ca pūrvavat || 41 ||
bhūvyāsārdhahate te ca trijyāpte kot.idoh. phale |
dr. kkarn. o

′rkavadindostat svabhūmyantarayojanaih. || 42 ||
The nati [of the Moon] is the sum of the viks.epa and the dr. kks.epa if both have the same
direction, and their difference if they have opposite directions. The Rsine of that (nati)
subtracted from three signs is called the paraśaṅku.

The Rsine of the difference of the lagna and the Moon’s longitude is added to the trijyā
if the difference is the tulādi (greater than 180 degrees), and subtracted from the trijyā
otherwise. This quantity multiplied by the Rcosine of the latitude of the Moon and divided
by the trijyā is called the bān. a (‘arrow’).

9 The vigraha is: yea;na �+:nMa = ya;dU ;na;m,a Á
10 :pa:=+Za;ñÍö�ÅÅ*:u H I+.�a;ta :pUa;v a ya;du ;�M ta;sma;a;t,a tya:jea;t,a Á
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This (the bān. a) multiplied by the kot.i of the dr. kks.epa and divided by the trijyā is to
be subtracted from the para (the paraśaṅku). The remainder is the śaṅku of the Moon.
From that the dr. gjyā may be obtained as earlier. These quantities (the śaṅku and dr. gjyā)
multiplied by the radius of the Earth and divided by the trijyā are the kot.i and doh. phala.
From this, the distance of separation between the Moon and the Earth or the dr. kkarn. a of
the Moon may be determined in the same way as in the case of the Sun.

The determination of the dr. kkarn. a of the Moon is a little more complicated than
that of the Sun. We explain this with the help of Figs 5.15 and 5.16. In Fig. 5.15, the
point V ′ is the point of intersection of the vertical through the vitribhalagna and the
circle parallel to the ecliptic passing through the Moon. Hence

VV ′ = AM = −βt , (5.84)

is the magnitude of the true latitude of the Moon, called the viks.epa. The ‘−’ sign in
the above equation indicates that the viks.epa is southwards (as shown in the figure).
Here an intermediate quantity called the nati (nm) is introduced, which is not to be
confused with the parallax in latitude of the Moon. It is defined to be the sum of the
dr. kks.epa and the viks.epa:

nm = ZV ′ = ZV −βt = zv ±|βt|, (5.85)

where the sign should be ‘+’ if both have the same direction and ‘−’ if they have
opposite directions. The term paraśaṅku is defined in verse 39a as

paraśaṅku = Rsin(90− nm) = Rcosnm. (5.86)
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Fig. 5.15 The sum of or difference between the dr. kks.epa and the viks.epa of the Moon, called
the nati, which is used in finding the distance of the Moon from the observer on the surface of the
Earth.
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Let λm be the sāyana (tropical) longitude of the Moon and λl that of the lagna.
Using them, an intermediate quantity (x) is defined, which in turn is used to define
another quantity, the bān. a:

x = R±|Rsin(λl −λm)|, (5.87)

where the sign should be ‘+’ when λl − λm > 180 and ‘−’ otherwise. In other
words, x = R−Rsin(λl − λm). In the measure of radians, x may be written as x =
1− sin(λl −λm). Now, the bān. a is defined as

bān. a =
x×Rcosβt

R
. (5.88)

Using this bān. a, the śaṅku of the Moon (Rcoszm) is given by

śaṅku = paraśaṅku− bān. a× dr. kks.epakot.i

trijyā
(5.89)

Rcoszm = Rcosnm − bān. a×Rcoszv

R
= Rcosnm − x× cosβt × coszv

= Rcosnm −R[1− sin(λl −λm)]cosβt × coszv. (5.90)

We now prove the result from spherical trigonometry.

Proof:

From (5.85),

cosnm = cos(zv −βt)

= coszv cosβt + sinzv sinβt

or cosnm − coszv cosβt = sin zv sinβt . (5.91)

Considering the spherical triangle ZAM in Fig. 5.16(a), and applying the cosine
formula we have,

cosZM = cosZAcosβt − sinZAsinβt cosθ , (5.92)

where θ is the angle between the vertical and the secondary to the ecliptic at A. The
same cosine formula applied to the triangle ZAV yields

cosZA = cosAV cosZV (since ZV̂A = 90). (5.93)

Applying the sine formula to the same triangle,

sin ZV

sinZÂV
=

sinZA
sin90

. (5.94)
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Fig. 5.16 Spherical triangle considered in order to find the śaṅku of the Moon, that is used in
finding the distance of the Moon from the observer on the surface of the Earth.

But sinZÂV = sin(θ −90) = −cosθ . Therefore

sinZV = −sinZAcosθ . (5.95)

Using (5.91), (5.93) and (5.95) in (5.92) with ZV = zv, we have

cosZM = cosAV coszv cosβt + sinzv sinβt

= cosAV coszv cosβt + cosnm − coszv cosβt . (5.96)

In the above equation, cosAV = cos(λm −λv). But λv = λl −90. Therefore,

cosAV = cos(90− (λl −λm)) = sin(λl −λm). (5.97)

Substituting for cosAV in (5.96)

cosZM = cosnm − coszv cosβt + coszv cosβt sin(λl −λm),

or coszm = cosnm − [1− sin(λl −λm)]coszv cosβt , (5.98)

which is the same as (5.90).
After giving the expression for śaṅku, it is stated that the dr. gjyā may be obtained

as earlier (tato dr. gjyā ca pūrvavat). The commentator explains this as follows.ta;ta;ea dx ;giya;a ..a :pUa;vRa;va;t,a ta;a:�áâ+;�a:$ya;a;va;gRa;
a;va:(ìÉÅ;e +Sa;mUa;le +.nEa;va k+:tRa;v.ya;a Á
As done earlier, the dr. gjyā has to be obtained by subtracting its square from the square of
the trijyā and finding the square root.

In other words,

dr. gjyā =

√
trijyā2 − śaṅku2
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=
√

R2 − (Rcoszm)2 = Rsinzm. (5.99)

The purpose of finding the śaṅku and dr. gjyā is to find EN and ON in Fig. 5.15(a),
which are required to find the dr. kkarn. a of the Moon OM. In verse 41, EN and ON
are referred to as the doh. phala and the kot.iphala respectively. If Re is the radius of
the Earth (OE), then they are to be obtained in the same way, as in the case of the
Sun, from the relations

doh. phala =
bhūvyāsārdha× dr. gjyā

trijyā
=

Re ×Rsinzm

R
= Re sin zm (5.100)

and

kot.iphala =
bhūvyāsārdha× śaṅku

trijyā
=

Re ×Rcoszs

R
= Re coszm. (5.101)

Since Re is in yojanas the dimensions of the doh. and kot.i are also in yojanas. Then
it is noted that the dr. kkarn. a of the Moon may be calculated as in the case of the
Sun. This is clarified in Laghu-vivr. ti thus:A;taH ta;de ;va k+:ea;�a;f;P+.lM ..a;ndÒ +~ya ;
a;dõ ;t�a;a;ya;~å.Pu +.f;ya;ea:ja;na;k+:NRa;ta;ea ;
a;va;Za;ea;Dya ;a;Za;�;~ya ta;�+eaHP+.l+.~ya..a va;gRa;ya;ea;ga;mUa;lM ..a;ndÒ +~ya dx ;ë�Åë�Á*:+:Na;eRa ya;ea:ja;na;a;tma;k+:ea Ba;va;�a;ta Á

Therefore, the square root of the sum of the squares of the same kot.iphala of the Moon sub-
tracted from the dvit̄ıya-sphut.a-yojana-karn. a and the doh. phala becomes the dr. kkarn. a
of the Moon in yojanas.

In other words,

dr. kkarn. a =

√
(dvit̄ıya-sphut.a-yojana-karn. a− kot.iphala)2 +doh. phala

2.
(5.102)

This is evident from Fig. 5.15(a). Here EM is referred to as the dvit̄ıya-sphut.a-
yojana-karn. a (discussed in Chap. 4), and OM is the dr. kkarn. a to be found. We
denote them by D2m and dm respectively. Considering the triangle NOM, we have

OM =
√

MN2 + ON2

or dm =
√

(EM−EN)2 + ON2

=
√

(D2m −Re coszm)2 +(Re sin zm)2. (5.103)5.13 dx ;gga;ea;l+.ga;ta;tva;sa;}å.pa;a;d;na;m,a
5.13 Transformation to the observer-centred celestial sphere;
a:�a:$ya;a.Èåî ÁÁ*+;a;dùÅ;a;ea:ja;na;v.ya;a;sa;a;t,a .tea;na;a;�a;a ;
a;ba;}ba;�a;l+.�a;�a;k+:aH ÁI+.�e ;ndu H .sa;ma;�a;l+.�ea;nd;eaH ;
a;dõ ;t�a;a;ya;~å.Pu +.f;Ba;ea;ga;taH Á Á 43 Á Á



5.13 Transformation to dr. ggola 341I+.�;ke +:va;l+.pa;va;Ra;nta;dùÅ;au ;ga;ta;a;nta:=+k+:a;l+ja;a;t,a Á;
a;va;[ea;paH :ke +:va;l+.a;�a;ndÒ +a;t,a :pra;a;gva;t,a ;
a:�a:$ya;a;&+.ta;ea h;taH Á Á 44 Á Áya;ea:ja;nEa;
a;vRa;va:=e ..a;ndÒ +Ba;ga;ea;l+.Ga;na;ma;Dya;ya;eaH Ádx ;ë�Åë�Á*:+:NRa;ya;ea:ja;nEa;BRa;�+:ea dx ;gga;ea;le [ea;pa I+.Sya;ta;a;m,a Á Á 45 Á Á:ke +:va;l+.a;de ;va dx ;k, [ea;pa;a;t,a BUa;v.ya;a;sa;a;DeRa;na ta;a;
a;q+.ta;a;t,a Á;
a;va;Da;ea;ya;eRa:ja;na;dx ;ë�Åë�Á*:+:NRa;Ba;�+:a:�a na;�a;ta;�a;l+.�a;�a;k+:aH Á Á 46 Á Áta;dõ ;de ;va ..a dx ;k, [ea;pa;a;t,a .~va;dx ;ë�Åë�Á*:+:NeRa;na Ba;a;~va;taH Á.=+v�a;a;ndõ ;ea;nRa;�a;ta;Bea;dH .~ya;a;t,a .sa;vRa;dE ;va na;�a;ta;
a;vRa;Da;eaH Á Á 47 Á Áta;;�ÂåÅU +pxa;�+ea;
a;d;ta;[ea;pa;yua;�a;taH .sa;a;}yeaY;nya;Ta;a;nta:=+m,a ÁO;;vMa BUa;pxa;�+ga;a;��a;a;tva;a na;�a;tMa ;
a;ba;}ba;dõ ;yMa ta;Ta;a Á Á 48 Á Á.sa;vRa;g{a;a;sa;ea ;
a;va;�a;na;NeRa;ya;ea na;a;}îå:a;a ma;Dya;ta;ma;~ta;Ta;a Ág{a;h;NMa va;a;pya;Ba;a;va;ea va;a va;a;.ya;ea ma;a;nEaH .~å.Pu +.fE ;�a:=+h Á Á 49 Á Á
trijyāghnādyojanavyāsāt tenāptā bimbaliptikāh. |
is. t.enduh. samaliptendoh. dvit̄ıyasphut.abhogatah. || 43 ||
is. t.akevalaparvāntadyugatāntarakālajāt |
viks.epah. kevalāccandrāt prāgvat trijyāhr. to hatah. || 44 ||
yojanairvivare candrabhagolaghanamadhyayoh. |
dr. kkarn. ayojanairbhakto dr. ggole ks.epa is.yatām || 45 ||
kevalādeva dr. kks.epāt bhūvyāsārdhena tād. itāt |
vidhoryojanadr. kkarn.abhaktātra natiliptikāh. || 46 ||
tadvadeva ca dr. kks.epāt svadr. kkarn. ena bhāsvatah. |
rav̄ındvornatibhedah. syāt sarvadaiva natirvidhoh. || 47 ||
tadbhūpr. s.t.hoditaks.epayutih. sāmye ′nyathāntaram |
evam. bhūpr. s.t.hagānn̄ıtvā natim. bimbadvayam. tathā || 48 ||
sarvagrāso vinirn. eyo nāmnā madhyatamastathā |
grahan. am. vāpyabhāvo vā vācyo mānaih. sphut.airiha || 49 ||
The diameter in yojanas multiplied by the trijyā and divided by that (the dr. kkarn. a)
is the diameter of the disc in minutes [with respect to the dr. ggola]. From the dvit̄ıya-
sphut.a-bhukti (second corrected rate of motion) of the Moon determined at the instant of
conjunction (samaliptendoh. ), and the time difference between the desired instant and un-
corrected instant of conjunction [i.e. the instant of conjunction not corrected for lambana],
the longitude of the Moon at the desired instant is obtained.

The latitude of the Moon is obtained from its uncorrected longitude (not corrected for paral-
lax in longitude) as earlier. It is divided by the trijyā and multiplied by the distance of sep-
aration between the centre of the Earth and the Moon. The above divided by the dr. kkarn. a
in yojanas is the latitude in the dr. ggola.

The dr. kks.epa multiplied by the radius of the Earth and divided by the dr. kkarn. a of the
Moon in yojanas will be the parallax in latitude [of the Moon] in minutes. Similarly from
the dr. kks.epa of the Sun and its own dr. kkarn. a [its parallax in latitude in minutes has to
be obtained]. The difference between the natis of the Sun and the Moon will always be the
effective parallax in latitude of the Moon.

The sum of or the difference between it (the effective parallax in latitude of the Moon) and
the latitude as seen by an observer on the surface must be found depending upon whether
they have the same direction or opposite directions.

Thus, having obtained the deflection from the ecliptic and the diameter of the two discs
for an observer on the surface of the Earth, the [instant of] totality of the eclipse has to
be determined, which is also called the middle of the eclipse. Similarly the occurrence or
non-occurrence of the eclipse should be pronounced only by considering these actual values
obtained thus.
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The angular diameter of an object for an observer at the centre of the Earth can be
calculated from its linear diameter, specified in the texts in yojanas, and its geocen-
tric distance. In order to get the values for an observer on the surface of the Earth,
a correction has to be applied to this value, since the angular diameter of a celestial
object measured by an observer depends upon the distance of the observer from the
object. This is true not only for the distances of the Sun and the Moon, but also for
the values of the latitude and the deflection from the ecliptic. In the following we
explain the corrections prescribed here to obtain the observer-centric values from
the geocentric values.

Correction to the diameter

O

M

B

B’

E

cross section of
the Moon’s disc

s

Fig. 5.17 The angular diameter of the Moon as seen by an observer on the surface of the Earth.

In Fig. 5.17, M is the centre of the Moon’s disc. B′ and B are its top and bottom
edges. E is the centre of the Earth and O the observer on the surface of the Earth.
BB′ is the diameter of the Moon’s disc in yojanas (specified in the text), OM is the
dr. kkarn. a of the Moon in yojanas, and s is the angular diameter in radians. Then
the angular diameter of the Moon in minutes as seen by an observer on the surface
of the Earth is given to be

R× s =
R×BB′

OM
. (5.104)

Similarly, the angular diameter of the Sun is obtained using the Sun’s linear diameter
in yojanas whose dr. kkarn. a was found earlier.

Correction to the latitude

The latitude of the Moon at a desired instant depends upon its longitude at that
instant. Hence the longitude of the Moon at the desired instant is determined accu-
rately first. If λm0 is the longitude of the Moon at the instant of conjunction, and tm
and td denote the instant of conjunction and the desired instant, then the longitude
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of the Moon at the desired instant is given by

λmd = λm0 +
(td − tm)× λ̇m

60
. (5.105)

In the above expression λ̇m represents the Moon’s dvit̄ıya-sphut.a-bhukti (second
corrected rate of motion). The latitude of the Moon at the desired instant td is ob-
tained using the formula

β = i sin(λmd −λn), (5.106)

where λn is the longitude of the Moon’s node at the desired instant. This latitude
corresponds to an observer at the centre of the Earth. The latitude as seen by an
observer on the surface of the Earth is given by

βt =
β ×dvit̄ıya-sphut.a-karn. a

dr. kkarn. a
. (5.107)

M
t

E

β

β

M’

O

Fig. 5.18 The latitude of the Moon as seen by an observer on the surface of the Earth.

The above expression for the true latitude may be understood with the help of
Fig. 5.18. Here M represents the actual position of the Moon, and M′ is the point on
the ecliptic whose longitude is the same as that of M. β and βt are indicated in the
figure. Considering the triangles MEM′ and MOM′, we have

MM′ = β ×EM = βt ×OM. (5.108)

Therefore,

βt =
β ×EM

OM
, (5.109)

which is the same as (5.107), once it is recognized that EM is the dvit̄ıya-sphut.a-
karn. a (the distance of separation between the centre of the Moon and the centre
of the Earth) in yojanas, and OM is the dr. kkarn. a (the distance of separation be-
tween the centre of the Moon and the observer on the surface of the Earth), again in
yojanas.
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Correction to the nati

In Fig. 5.19(a), M is the Moon and zm and z′m are the actual and the apparent zenith
distances of the Moon. If Re = OE is the radius of the Earth, then from the triangle
MOE we have

sinzm

OM
=

sin pm

Re
. (5.110)

Therefore, the parallax of the Moon is given by

z′m − zm = pm ≈ sin pm

=
sinzm ×Re

OM
, (5.111)

where OM is the dr. kkarn. a of the Moon. This is shown in Fig. 5.19(a). The parallax

z

Z Z

O O
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z’
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’
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zm s

m s
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s

Fig. 5.19 The parallax of the Moon and the Sun.

is along the vertical through the Moon. For finding the Moon’s nati (nm), which is
the component of the lunar parallax pm perpendicular to the ecliptic, this has to be
multiplied by

cosξ =
sinzv

sinzm
, (5.112)

where Rsinzv is the dr. kks.epa (refer to Sections 5.3 and 5.4 and Fig. 5.4 for details).
Hence

nm = pm cosξ

= pm × sinzv

sinzm

=
Re

OM
× sinzv, (5.113)
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where we have used (5.111). Similarly the parallax of the Sun (Fig. 5.19(b)) is given
by

z′s − zs = ps ≈ sin ps (5.114)

=
sinzs ×Re

OS
, (5.115)

and the solar parallax in latitude ns is given by

ns =
Re

OS
× sinzv. (5.116)

The net parallax in latitude is

nn = (nm ∼ ns). (5.117)

The effective deflection from the ecliptic (ne), which has to be considered for finding
the half-duration of the eclipse or the duration of its totality etc. is obtained by
finding the sum of or the difference between this and the true latitude of the Moon
βt , as calculated earlier. This is the same as the effective deflection from the ecliptic
discussed in Section 5.5; that is,

ne = βt ±nn, (5.118)

where the choice of sign is ‘+’ if βt and nn have the same direction and ‘−’ other-
wise. This may be understood with the help of Fig. 5.20. Here S and M represent the
geocentric positions of the Sun and the Moon respectively. nm = MM′ and ns = SS′

are the natis of the Moon and the Sun. S′M′ is the effective deflection from the
ecliptic to be calculated. In Fig. 5.20(a),

SM′ = SM +MM′

= SS′+ S′M +MM′

= SS′+ S′M′.

Therefore S′M′ = SM′− SS′

= SM +(MM′− SS′)

= βt +nn. (5.119)

The situation in which the two have opposite directions is shown in Fig. 5.20(b). In
this figure,

S′M = S′S+ SM′+MM′

= SS′+ SM

= S′M′ +MM′.

Therefore S′M′ = S′M−MM′

= SM +(SS′−MM′)
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Fig. 5.20 The effective deflection from the ecliptic in a solar eclipse.

= SM− (MM′− SS′)

= βt −nn. (5.120)5.14 ma;Dya;k+:a;l+.�a;na;NRa;yaH
5.14 Determination of the middle of the eclipseta;tk+:a;l+..a;ndÒ +dx ;k, [ea;pa;l+.çÉîå+;a;a;nta:=+Bua:ja;a;gua;Na;a;t,a ÁA;kR +:va;d, dx ;gga;�a;taH .sa;a;Dya;a BUa;v.ya;a;sa;a;DRa;h;tea ta;ya;eaH Á Á 50 Á Ádx ;gga;t�a;a .~va;~va;dx ;ë�Åë�Á*:+:NRa;ya;ea:ja;nEa;
a;vRa;&+.tea k+:l+.aH Á;Da;nMa dx ;k, [ea;pa;l+.çÉîå+;a;a;t,a :pra;a;k, .sUa;yeRa;ndõ ;eaH �+.Na;ma;nya;Ta;a Á Á 51 Á ÁO;;vMa kx +:ta;a;kR +:Z�a;a;ta;Ma:(õ;a;eaH .sa;a;}yea .~ya;a;t,a .sa;a;�a;kx +:�;ta;a Á

tatkālacandradr. kks.epalagnāntarabhujāgun. āt |
arkavad dr. ggatih. sādhyā bhūvyāsārdhahate tayoh. || 50 ||
dr. ggat̄ı svasvadr. kkarn. ayojanairvihr. te kalāh. |
dhanam. dr. kks.epalagnāt prāk sūryendvoh. r. n. amanyathā || 51 ||
evam. kr. tārkaś̄ıtām. śvoh. sāmye syāt sannikr. s.t.atā |
As in the case of Sun, the dr. ggati of the Moon has to be obtained from the product of
the kot.i of the dr. kks.epa with the Rsine of the difference between its longitude and the
longitude of the dr. kks.epa. Their dr. ggati must be multiplied by the radius of the Earth and
divided by their own dr. kkarn. a in yojanas. The results [which are nothing but lambana]
in minutes must be added to the longitudes of the Sun and the Moon if they lie to the east
of the dr. kks.epa-lagna and subtracted otherwise [if they lie to the west of the dr. kks.epa-
lagna]. Only when the [longitudes of the] Sun and the Moon thus obtained are equal will
they be in close proximity.

What is described here is the procedure for determining the instant at which the
longitudes of the Sun and the Moon are equal to each other as seen by an observer on
the surface of the Earth. That is the instant of conjunction for the observer. Though
an iterative method was described earlier for determining the instant of conjunction
(verse 9), there the focus was on determining the parallax in longitude and it was
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implicitly assumed that the horizontal parallax is one-fifteenth of the daily motion
of the Sun.

Here, a condition is given which must be satisfied at the middle of the eclipse
with respect to an observer on the surface of the Earth (the dr. ggola). The horizontal
parallax is taken to be Re

dm
or Re

ds
, in terms of the distances from the dr. ggola observer.

As stated earlier, the middle of the eclipse is when the corrected longitudes of the
Sun and Moon are equal.

The dr. ggati of the Sun and the Moon are defined to be:

Rcoszv ×Rsin(λs −λv)

R
(5.121)

and
Rcoszv ×Rsin(λm −λv)

R
, (5.122)

where zv and λv are the zenith distance and longitude of the vitribhalagna, and λs

and λm are the longitudes of the Sun and the Moon respectively.
It is mentioned that these quantities have to be multiplied by the radius of the

Earth (Re) and divided by their own dr. kkarn. as given in equations (5.83). Denoting
them by ∆λm and ∆λs, we have

∆λm =
Re coszv ×Rsin(λm −λv)

dm
(5.123)

∆λs =
Re coszv ×Rsin(λs −λv)

ds
. (5.124)

It can be shown that ∆λs and ∆λm are nothing but the effect of parallax in longitudes
of the Sun and the Moon, expressed in minutes.

Proof:

In Fig. 5.21(a), M is the Moon and dm its dr. kkarn. a. zm is the zenith distance of the
Moon and pm its parallax. From the planar triangle OEM we have

sin pm

Re
=

sin zm

dm
. (5.125)

Therefore,

MM′ = pm ≈ sin pm =
Re

dm
sinzm. (5.126)

The parallax in longitude is given by

M′A = MM′ sinξ
∆λm ≈ sin pm sinξ

=
Re

dm
sin zm sinξ . (5.127)
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Fig. 5.21 (a) Parallax in the longitude of the Moon as seen by the observer at the centre of the
dr. ggola. (b) Spherical triangle formed by the pole of the ecliptic, the zenith and the Moon.

Considering the triangle KZM in Fig. 5.21(b) and applying the sine formula,

sinξ
sin(90− zv)

=
sin θ
sin zm

. (5.128)

Therefore,
sinξ sin zm = sinθ coszv. (5.129)

Since θ = (λm −λv), the above equation becomes

sinξ sinzm = sin(λm −λv)coszv. (5.130)

Using the above equation in (5.127), we have

∆λm =
Re

dm
sin(λm −λv)coszv, (5.131)

Similarly for the Sun it can be shown that

∆λs =
Re

ds
sin(λs −λv)coszv. (5.132)

It can be easily seen that (5.131) and (5.132) are the same as (5.123) and (5.124)
given in the text, but for the fact that the former are in radians while the latter are
in minutes. The corrections (in minutes) have to be applied to the longitudes of the
Sun and the Moon to obtain their longitudes as seen by the observer on the surface
of the Earth. That is,

λ ′
s = λs +∆λs

λ ′
m = λm +∆λm. (5.133)
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Here ∆λs(∆λm) is positive when λs(λm) > λv. Hence the magnitude of ∆λs(∆λm) is
added to λs(λm) to obtain the longitude corrected for parallax. Similarly, ∆λs(∆λm)
is negative when λs(λm) < λv. Hence the magnitude of ∆λs(∆λm) is subtracted from
λs(λm) to obtain the corrected longitude, λ ′

s(λ ′
m). Only when λ ′

s = λ ′
m will it be the

middle of the eclipse.
While commenting on the first half of the 52nd verse, Laghu-vivr. ti notes:O;;vMa kx +:ta;l+.}ba;na;ya;eaH A;kR +:.a;ndÒ +ya;eaH .sa;a;}yea .sa;tyea;va ta;
a;dõâ â ;}ba;Ga;na;ma;Dya;ya;eaH :pa:=H .sa;a;�a;k+:SRaHI+.�a;ta Á ta:�Ea;va g{a;h;Na;ma;Dyea;na;a;
a;pa Ba;a;v.ya;m,a Á
Only if the longitudes of the Sun and the Moon thus corrected for parallax in longitude
are equal, will the two be in closest proximity. The middle of the eclipse must also be
[understood to be] at that instant.5.15 A;kR +:.a;ndÒ +
a;ba;}ba;a;nta:=+m,a

5.15 Distance of separation between the Sun and the Moonkx +:ta;l+.}ba;na;�a;l+.�a;a;kR +:.a;ndÒ +ya;ea;
a;vRa;va:=+~ya ..a Á Á 52 Á Ákx +:tya;eaH .~å.Pu +.f;na;tea;(ãÉEa;k�+.a;a;t,a mUa;lM ;
a;ba;}ba;a;nta:=M g{a;he Á
kr. talambanaliptārkacandrayorvivarasya ca || 52 ||
kr. tyoh. sphut.anateścaikyāt mūlam. bimbāntaram. grahe |
The square root of the sum of the squares of the difference in the longitudes of the Sun and
the Moon, thus corrected for parallax in longitude and the effective nati, is the distance of
separation between the two discs in an eclipse.

In Fig. 5.22, S and M are the positions of the Sun and the Moon corrected for
parallax in longitude as described in the last section. ne refers to the effective de-
flection of the Moon from the ecliptic. A is the point of intersection of the ecliptic
and the secondary to the ecliptic passing through the Moon. B is a point on AM such
that AB is the parallax in latitude of the Sun. Then BM is the effective nati, ne. If λ ′

s
and λ ′

m are the longitudes of the Sun and the Moon as seen by the dr. ggola observer,
then the distance of separation between the Sun and the Moon is given by

d2 =
√

(λ ′
m −λ ′

s)
2 +n2

e. (5.134)

It must be noted that the above formula is applicable at any instant of time during
the eclipse.
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Fig. 5.22 Distance of separation between the centres of the Sun and the Moon’s discs.
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5.16 Announcement of the visibility of the eclipseO;;va;ma;~ta;ma;yea .~å.pa;ZeRa ma;ea;[ea va;a;pyua;d;yea .=+veaH Á Á 53 Á ÁA;�pa;(ãÉea;d, g{a;a;sa A;a;n�a;a;taH na va;a;.ya;ea dõ ;a;d;Za;Ma;Za;taH ÁA;�peaY;kR +:ga;�a;ta;�a;ta;TyMa;Za;yua;ta;a;�pa;v.ya;a;sa;Ka;Nq+.taH Á Á 54 Á ÁZa;ñÍö�ÅÅ*:+.Ea ma;Dya;ta;ma;ssa;vRa;g{a;h;NMa va;a na l+.[ya;tea ÁA;~ta;ea;d;ya;a;kR +:.a;ndÒ +Ea ta;tpra;a;Na;Ba;ea;ga;ea;na;sMa;yua;ta;Ea Á Á 55 Á Ákx +:tva;a ta;tk+:a;l+.l+.çÉîå+;aM :tEaH na;yea;d, ;
a;ba;}ba;a;nta:=M dõ ;ya;eaH ÁA;�a;Da;ke ;
a;ba;}ba;Bea;d;a;Da;Ra;t,a :pra;a;#pa;(ãÉa;a;d, g{a;a;sa;ma;Dya;taH Á Á 56 Á Á.nEa;va .tea g{a;h;Nea dx ;Zyea .sa;v a ma;Dya;ta;ma;ea;
a;pa va;a Á

evamastamaye sparśe moks.e vāpyudaye raveh. || 53 ||
alpaśced grāsa ān̄ıtah. na vācyo dvādaśām. śatah. |
alpe ′rkagatitithyam. śayutālpavyāsakhan. d. atah. || 54 ||
śaṅkau madhyatamassarvagrahan.am. vā na laks.yate |
astodayārkacandrau tatprān. abhogonasam. yutau || 55 ||
kr. tvā tatkālalagnam. taih. nayed bimbāntaram. dvayoh. |
adhike bimbabhedārdhāt prākpaścād grāsamadhyatah. || 56 ||
naiva te grahan. e dr. śye sarvam. madhyatamopi vā |
Thus, when the first contact occurs close to the sunset, or the last contact occurs close to
the sunrise, and if the grāsa obtained by the method described earlier is found to be less
than one-twelfth the diameter of the sun, then the occurrence of a solar eclipse should not
be announced.

If the śaṅku is less than the sum of one-fifteenth of the daily motion of the Sun and its
semi-diameter, then the annular or total eclipse will not be visible.

From the longitudes of the Sun and the Moon corrected by their own prān. akalāntaras,
the kālalagna has to be obtained. From them [the vitribhalagna, dr. kks.epajyā, parallax in
longitude and the nati], the distance of separation between the two discs may be obtained.
If this is greater than the difference in the semi-diameters of the discs, then neither of the
two eclipses, total or annular, will be visible.

Here in the text a few conditions regarding the visibility of the solar eclipse are
given. Regarding the announcement of the occurrence of the eclipse, it is stated that
if

grāsa <
1

12
Sun’s disc, (5.135)

then the eclipse is not visible, though it actually occurs. This result appears to be an
empirical criterion, as no justification is provided.

Regarding the total or annular eclipses, two conditions are stated. One is the
condition on the śaṅku (the Rcosine of the zenith distance of the Sun/Moon) and
the other, the condition on the difference between their semi-diameters, which are
explained below.
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Condition on śaṅku for total or annular eclipse

Let x denote the sum of one-fifteenth of the daily motion of the Sun and its semi-
diameter. That is,

x =
1

15
λ̇s + semi-diameter of smaller disc. (5.136)

In the RHS of the above equation, the first term represents the horizontal parallax of
the Sun, which is the parallax at sunrise or sunset. The condition for the visibility of
the totality or annularity is given to be

śaṅku > x. (5.137)

Obviously the condition is applicable for those eclipses whose madhyakāla (mid-
dle of the eclipse) is very close to sunrise/sunset. Consider Fig. 5.23(a) and (b) in

F

F

O

O

A

B

C

A

C
s90 z

s90 z
(a)

(b)

Fig. 5.23 Criteria for the visibility of the totality/annularity of a solar eclipse.

which x = AC is the semi-diameter of the solar disc for a terrestrial observer plus the
horizontal parallax. AÔF = 90◦− zs, where zs is the zenith distance. Now, as AÔF
is small,

AF = AÔF (in minutes)

= Rsin(90− zs)

= Rcoszs

= śaṅku. (5.138)

In Fig. 5.23(a), as C is below the horizon,
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AF < AC = x or śaṅku < x. (5.139)

In this case, the totality/annularity is not visible. However, in Fig. 5.23(b) where C
is above the horizon the totality/annularity will be visible. For this to happen,

AF > AC or śaṅku > x. (5.140)

Condition on the difference of semi-diameters

The condition for the totality/annularity that will be presented in this section is not
very different from the one discussed earlier. In fact, the difference is only in the
details. Here, the difference in the semi-diameters is determined more accurately
and this is due to the fact that the longitude of the vitribhalagna is found more
precisely by finding the kālalagna—the procedure for which is discussed in detail
in Chapter 3. From the kālalagna, the prāglagna (the orient ecliptic point) may
be determined accurately. With this the vitribhalagna, the dr. kks.epa-jyā and hence
the parallax in longitude and the deflection from the ecliptic are obtained. After
obtaining the parallaxes in longitude (ls and lm) they are applied to the longitudes of
the Sun and the Moon in order to determine their values more precisely at the true
sunrise/sunset. That is,

λ ′
s = λs ± ls (5.141)

λ ′
m = λm ± lm, (5.142)

where the choice of signs in ‘+’ at sunrise and ‘−’ at sunset. From them, the sepa-
ration between the discs, d, is calculated:

d =
√

(λ ′
m −λ ′

s)
2 + n2

e, (5.143)

where ne is the effective deflection from the ecliptic. If ds and dm are the diame-
ters of the solar and the lunar discs then the condition given for the visibility of
totality/annularity may be mathematically represented by

d <
dm ∼ ds

2
. (5.144)

The rationale behind the above expression can be understood with the help of
Fig. 5.24. Here

AX = d =
√

AT 2 +XT2

=
√

(λ ′
m −λ ′

s)
2 +n2

e), (5.145)

since AT = λ ′
m−λ ′

s and XT = ne. Just as in Section 5.10, the condition for visibility
of totality is



5.17 Graphical representation of the eclipse 353

ecliptic

M

B

T

A

X

Fig. 5.24 Condition for the visibility of the totality/annularity.

MX = AX + AM < XB (5.146)

or AX < XB−AM

that is, d <
dm − ds

2
. (5.147)

Similarly for annularity, the condition is

d <
ds −dm

2
. (5.148)5.17 g{a;h;Na;pa;�a:=+le +.Ka;na;m,a

5.17 Graphical representation of the eclipse.~å.pa;ZeRa ma;Dyea ..a ma;ea;[ea ..a;a;pya;nya:�ea;�e Y;
a;pa va;a :pxa;Ta;k, Á Á 57 Á Áva;l+.na;dõ ;ya;ma;a;n�a;a;ya :pra;a;gva;t,a ta;dùÅ;a;ea;ga;Bea;d:ja;a;t,a Água;Na;a;de ;k+:a;ñÍö�ÅÅ*:+.BUa;Ba;�M va;l+.nMa .~ya;a;t,a .~å.Pu +.f;�//////////�a;ntva;h Á Á 58 Á Ávxa:�Ma ;Dxa;�a;ta;Æa;ma;ta;a;~yea;na k+:kR +:fe ;na;a;�a;l+.Kea;t,a ;Æa;[a;ta;Ea Á;
a;d;Za;Ea :pUa;va;Ra;pa:=e v.ya;~tMa le +.Ka;neaY;P+.l+.ke ya;
a;d Á Á 59 Á Áva;l+.nMa :pUa;vRa;va;��a;a;tva;a .=+veaH :pa;nTa;a;(ãÉa ta;�ë +ya;a;t,a Ána;tea;
a;dR ;a;Za ;
a;va;Da;ea;~ta;sma;a;t,a .~å.Pu +.f;na;tya;nta:=e Y;pa:=H 11 Á Á 60 Á Ák+:a;yRa;~ta;dõx :�a;ma;DyeaY;Ta .=+
a;va;
a;ba;}bMa .~å.Pu +.fM ;�a;l+.Kea;t,a Áma;a;tva;a ta;tke +:ndÒ +gEa;k+:a;g{a;
a;ba;}ba;a;nta:=+Za;l+.a;k+:ya;a Á Á 61 Á Á;
a;ba;ndMu kx +:tva;a ;
a;va;Da;ea;ma;Ra;geRa ta;
a;dõâ â ;}bMa ta:�a .sMa;�a;l+.Kea;t,a Á.~å.pa;ZeRa :pra;tya:ñÍíéÁÁ*+;u ;K�a;Ma ma;ea;[ea Za;l+.a;k+:Ma :pra;a:ñÍíéÁÁ*+;u ;K�a;Ma na;yea;t,a Á Á 62 Á ÁO;;va;mea;vea;�;k+:a;le Y;
a;pa :pra;a;k, :pa;(ãÉa;a;d, g{a;a;sa;ma;Dya;taH Á
11 The prose order is: ta;sma;a;t,a = :pa;TaH .~å.Pu +.f;na;tya;nta:=e , A;pa:=H (:pa;nTa;aH) k+:a;yRaH Á (.saH) ;
a;va;Da;eaH
(:pa;nTa;aH ) Á
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a;ba;}ba;a;dõâ â ;
a;h;BRUa;ta;ea Ba;a;ga;ea dx ;Zya;eaY;kR +:ma;Nq+.le Á Á 63 Á Áta;d;nta;gRa;ta;Ba;a;ga;~tua g{a;~ta;~tea;na;a;Æa;sa;taH .sa;d;a Á
sparśe madhye ca moks.e cāpyanyatres.t.e

′pi vā pr. thak || 57 ||
valanadvayamān̄ıya prāgvat tadyogabhedajāt |
gun. ādekāṅkabhūbhaktam. valanam. syāt sphut.antviha || 58 ||
vr. ttam. dhr. timitāsyena karkat.enālikhet ks. itau |
dísau pūrvāpare vyastam. lekhane ′phalake yadi || 59 ||
valanam. pūrvavann̄ıtvā raveh. panthāśca taddvayāt |
naterdísi vidhostasmāt sphut.anatyantare ′parah. || 60 ||
kāryastadvr. ttamadhye ′tha ravibimbam. sphut.am. likhet |
mātvā tatkendragaikāgrabimbāntaraśalākayā || 61 ||
bindum. kr. tvā vidhormārge tadbimbam. tatra sam. likhet |
sparśe pratyaṅmukh̄ım. moks.e śalākām. prāṅmukh̄ım. nayet ||62 ||
evameves.t.akāle

′pi prāk paścād grāsamadhyatah. |
candrabimbādbahirbhūto bhāgo dr. śyo

′rkaman. d. ale || 63 ||
tadantargatabhāgastu grastastenāsitah. sadā |
After determining the two valanas separately at the [time of] the first contact, the middle
and the moks.a, or at any desired instant, their sum or difference has to be found as described
earlier.12 The Rsine of this divided by 191 is the true valana here [in the case of a solar
eclipse]. A circle with a radius equal to 18 units should be drawn on the Earth [a flat surface].
The east and west directions have be marked in the opposite sense when the sketch is made
on a plank. The [direction of the] valana has to be obtained as earlier [by making marks
on the circumference of the circle on either side of the east-west line etc., as described for
a lunar eclipse]. Then the path traced by the Sun has to be drawn in the direction of the
parallax in latitude. At a distance of sphut.a-nati from that (path of the Sun), another path
for the Moon has to be drawn.

Then, at the centre of that circle, the disc of the Sun may be drawn clearly. Then, with a
piece of thin pointed stick (the śalākā) whose measure is equal to the distance of separation
between the two discs, mark a point in the path of the Moon. Then draw the Moon’s disc
there. The śalākā has to be pointed towards the west during the beginning of the eclipse
(the first contact) and towards the east during the end of the eclipse (the last contact). The
same is true of any instant which is prior to or later than the instant of the mid-eclipse. The
portion [of the Sun] which lies outside the Moon’s disc is visible. The portion which lies
inside is the portion eclipsed, and hence is always dark.

As in the previous chapter on lunar eclipse, consider the angle between the eclip-
tic and vertical through the Sun/Moon. Suppose the sum or difference of the two
valanas is ψ . Then Rsinψ is the valana in a circle of radius equal to the trijyā (R).
Then the valana corresponding to a circle of radius 18 is

sphut.a-valana = 18sinψ =
Rsinψ

191
, (5.149)

as the value of R is taken to be 3438 = 191×18. Here the value of the radius of the
circle has been chosen to be 18 only for the sake of convenience. In the last quarter
of verse 58, it is mentioned:va;l+.nMa .~ya;a;t,a .~å.Pu +.f;�//////////�a;ntva;h Á Á

This will be the true valana here (iha).

12 Chapter 4, verses 44, 45.
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While commenting upon the word ‘iha’, the following observation is made in
Laghu-vivr. ti:I+.he ;tya;nea;na A;~ya ..a;ndÒ +g{a;h;Na;ta;ea Bea;d;ea d;a;ZRa;taH Á ya;taH ta:�a ;
a;ba;}ba;a;nta:=e +Na ;�a;na;h;tya ;
a:�a:$ya;ya;a;
a;va;Ba;�M .~å.Pu +.fM va;l+.na;m,a Á

By using the word iha, distinction from the lunar eclipse has been shown. Because there
the valana is [obtained by] multiplying it (Rsinψ) by the separation between the discs and
dividing by the trijyā [to obtain the valana corresponding to a circle of radius equal to the
separation between the discs].
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Fig. 5.25 Graphical representation of a solar eclipse. The solar and lunar discs are drawn with A
and X as centres. The shaded portion is the eclipsed part of the Sun.

In Fig. 5.25, ENWS is a circle of radius 18 units with O as the centre. EW is along
the local east-west direction, and NS is along the north-south direction. Draw a line
UV perpendicular to EW such that

UV = 18sinψ , (5.150)

where ψ = UÔV is the angle corresponding to the valana. Then VO represents the
direction of the ecliptic as ψ is the angle between the ecliptic and the local east-
west direction. A is the centre of the Sun’s disc and OA, perpendicular to VO, is the
parallax in latitude of the Sun, which is the distance of the Sun from the ecliptic due
to parallax. X is the centre of the Moon’s disc. It is located such that

(i) AX is the distance between the solar and lunar discs and
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(ii) AO+XB (where XB is perpendicular to EO) is the sphut.a-nati, which is the
effective deflection from the ecliptic ne discussed earlier.

Now, draw PQ and RT passing through A and X and parallel to the east-west line.
Then PQ and RT are the instantaneous paths of the Sun and the Moon. Regarding
the depiction of the path traced by the Sun and the Moon, the commentator in his
Laghu-vivr. ti observes:. . . .sa;v a :pUa;va;eRa;�M .sma;a;�a:=+ta;m,a Á ta:�a ta;Ta;a;kx +:ta;a;ya;aH :pUa;va;Ra;pa:=;=e +Ka;a;ya;aH :pa;a:(õ;Ra;taH ya;Ta;a;
a;d;ZMa.~va;a;va;na;tya;nta;�a:=+ta;Ma A;pa:=+a;ma;
a;pa :pra;a;ga;pa:=+Ma :=e +Ka;Ma ku +:ya;Ra;t,a Á .sa I+.h .=+vea;ma;Ra;gRaH Á ta;taH ..a;ndÒ +a;kR +:ya;eaHA;va;na;tya;nta:=+ya;eaH ya;ea;ga;a;nta:=+ea;tpa;�a;~å.Pu +.f;a;va;na;�a;ta;tua;�yeaY;nta:=e ta;	a;�+Zya;pa:=+a;ma;
a;pa :pra;a;ga;pa:=+Ma :=e +Ka;Maku +:ya;Ra;t,a Á .sa ;
a;va;Da;ea;ma;Ra;gRaH Á

. . . all that was described earlier is recalled. There, to the line thus drawn parallel to the
east-west line, as per the direction [determined], another line is to be drawn east-west at a
distance of its own parallax in latitude from the ecliptic. That is the [instantaneous] path of
the Sun. Then again draw an east-west line along that direction at a distance equal to the
difference in the deflection from the ecliptic of the Sun and the Moon. That is the path of
the Moon.

The term tadvr. ttamadhye in verse 61 needs to be clarified. This literally means
‘at the centre of that circle’. Here the commentary states that:O;;vMa kx +:ta;ya;eaH ta;ya;eaH ma;a;gRa;ya;eaH ta;~ya ;Dxa;�a;ta;Æa;ma;ta;v.ya;a;sa;a;DRa;~ya ma;Dyea .=+
a;va;
a;ba;}bMa .~va;vxa:�a;v.ya;a;sa;a;DeRa;na.~å.Pu +.f;ta:=M ;�a;l+.Kea;t,a Á

Thus it is clear that here the term ‘that circle’ refers to the circle drawn with a
radius equal to 18 units. However, the term ‘centre’ in the verse should not be taken
literally to mean the centre of that circle. In fact, it refers to the centre of the path
of the Sun (A) as drawn which actually intersects the north–south line (NS) passing
through the centre of the circle.



Chapter 6v.ya;t�a;a;pa;a;ta;pra;k+.=+Na;m,a
Vyatı̄pāta

6.1 v.ya;t�a;a;pa;a;ta;sa;}Ba;vaH
6.1 The possibility of vyat̄ıpātaA;keR +:ndõ ;ea;h� ;Ra;ya;tea ..Ea;k+:a ya;d;a;nya;a va;DRa;tea kÒ +:ma;a;t,a ÁkÒ +:a;�////�a;nta:$ya;ya;ea;~ta;d;a .sa;a;}yea v.ya;t�a;a;pa;a;ta;ea na ..a;a;nya;Ta;a 1 Á Á 1 Á Á;vEa;Dxa;ta;eaY;ya;na;sa;a;}yea .~ya;a;t,a l+.a;fH .~ya;a;de ;k+:ga;ea;l+.ya;eaH Á

arkendvorh̄ıyate caikā yadānyā vardhate kramāt |
krāntijyayostadā sāmye vyat̄ıpāto na cānyathā || 1 ||
vaidhr. to

′yanasāmye syāt lāt.ah. syādekagolayoh. |
Of [the two objects] the Sun and the Moon, when [the magnitude of the declination of] one
is decreasing and the other is increasing steadily, and when the [magnitudes of] the Rsines
of their declinations become equal, then it is vyat̄ıpāta and not otherwise; [The same is
called] vaidhr. ta if the ayanas are the same and lāt.a when the hemispheres are the same.

Condition for the occurrence of vyat̄ıpāta

Let δs and δm be the declinations of the Sun and the Moon at any given time. Then
the condition to be satisfied for the occurrence of vyat̄ıpāta is given to be

|δs| = |δm|, (6.1)

with the constraint that the variation in the two declinations should be having oppo-
site gradients. That is, if |δs| is increasing, |δm| should be decreasing and vice versa.
Such a situation is schematically depicted in Fig. 6.1.

1 The prose order of this verse is: ya;d;a A;keR +:ndõ ;eaH (ma;Dyea) O;;k+:a kÒ +:a;�////�a;ntaH kÒ +:ma;a;t,a h� ;a;ya;tea A;nya;a ..ava;DRa;tea ta;d;a (kÒ +:a;ntya;eaH) .sa;a;}yea v.ya;t�a;a;pa;a;taH A;nya;Ta;a na ..a Á
357
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Fig. 6.1 Positions of the Sun and the Moon during vyat̄ıpāta.

Occurrence of lāt.a and vaidhr. ta

In the Fig. 6.1, Z represents the zenith, P the north celestial pole, Γ the vernal
equinox and N the ascending node of the Moon’s orbit. The Sun is at S whose
declination |δs| = SF. M1, M2, M3 and M4 correspond to different positions of the
Moon, which lie in four different quadrants, at which

|δm| = M1A = M2B = M3C = M4D = |δs|. (6.2)

Out of these four positions of the Moon—since |δs| is increasing at S—only M2

and M4 correspond to vyat̄ıpāta, as |δM | is decreasing only at these two positions.
Moreover, it may be noted that when the Moon is at M2, the ayanas of the Sun
and the Moon are different but lie in the same hemisphere. Hence it is an instance
of lāt.a-vyat̄ıpāta. On the other hand, when the Moon is at M4, the ayanas of the
Sun and the Moon are the same (both are northerly). Hence this is an example of
vaidhr. ta-vyat̄ıpāta.

The commentary begins with the following avatārikā: 2O;;vMa .=+v�a;a;ndõ ;eaH g{a;h;Na;dõ ;yMa dx ;gga;ea;l+.
a;va;Sa;yMa .~å.pa;�;ta:=M :pra;d;a;ZRa;ta;m,a Á I+.d;a;n�a;Ma Ba;ga;ea;l+.
a;va;Sa;yMa ta;ya;ea;=e +vakÒ +:a;�////�a;nta;sa;a;}ya:ja;�a;na;tMa v.ya;t�a;a;pa;a;tMa :pra;d;ZRa;�a;ya;tua;ma;a;h Á
Thus the two eclipses of the Sun and the Moon, related to the observer-centred celes-
tial sphere (dr. ggola), were clearly demonstrated. Now in order to explain the concept
of vyat̄ıpāta—that arises owing to the equality of declinations of them [the Sun and the
Moon]—related to the geocentric celestial sphere bhagola, [the following] is stated.

2 The word avatārikā refers to succinct introductory remarks.



6.3 Speciality in the determination of the Moon’s declination 3596.2 A;keR +:ndõ ;eaH kÒ +:a;ntya;a;na;ya;na;m,a
6.2 Finding the declination of the Sun and the Moon.sMa;~kx +:ta;a;ya;na;sUa;yeRa;ndõ ;eaH kÒ +:a;�////�a;nta:$yea :pUa;vRa;va;�a;yea;t,a Á Á 2 Á Á

sam. skr. tāyanasūryendvoh. krāntijye pūrvavannayet || 2 ||
From the ayana-corrected longitudes (sāyana longitudes) of the Sun and the Moon, let
the Rsines of their declinations be determined as earlier.

In Fig. 6.2a, Γ is the vernal equinox, S the Sun, M the Moon and N1 its ascending
node. The meridian passing through the Sun meets the equator at G. If λs is the
longitude of the Sun at S, then its declination is given by

Rsinδs = Rsinε sinλs. (6.3)

The secondary to the ecliptic passing through the Moon intersects the ecliptic at I.
If λm and δ ′ are the longitude and declination of this point, then considering the
triangle Γ IJ and applying the sine formula we obtain

Rsinδ ′ = Rsinε sinλm. (6.4)

It is the LHS of (6.3) and (6.4) that are referred to as Rsines of the declination
(krānti-jyā) of the Sun and the Moon in the above verse. Though (6.4) does not
give the actual declination of the Moon, which will be derived in the subsequent
sections, it can be taken as a reasonable approximation when the latitude of the
Moon is small. In fact, as we will see in the next section, the derivation of the actual
expression for the Moon involves the declination of the point I given in (6.4) and
that’s precisely the reason for Nı̄lakan.t.ha’s statement that it may be determined as
earlier.6.3 ..a;ndÒ +~ya I+.�;kÒ +:a;ntya;a;na;ya;nea ;
a;va;Zea;SaH
6.3 Speciality in the determination of the desired declination of

the Moon:pa;a;ta;ea;nea;nd;ea;BRua:ja;a .j�a;a;va;a :pa:=+ma;[ea;pa;ta;a;
a;q+.ta;a Á;
a:�a:$ya;a;Ba;�+:a ;
a;va;Da;eaH [ea;paH ta;tk+:ea;�a;f;ma;
a;pa ..a;a;na;yea;t,a Á Á 3 Á Á:pa:=+ma;a;pa;kÒ +:ma;k+:ea;f�a;a ;
a;va;[ea;pa:$ya;Ma ;�a;na;h;tya ta;tk+:ea;f�a;a ÁI+.�;kÒ +:a;�////�a;ntMa ..a;ea;Bea ;
a:�a:$ya;a;�ea ya;ea;ga;
a;va:=+h;ya;ea;gyea .~taH Á Á 4 Á Á.sa;
a;d;Za;eaH .sMa;yua;�a;ta:=+na;ya;eaH ;
a;va;yua;�a;ta;
a;vRa;
a;d;Za;ea:=+pa;kÒ +:maH .~å.pa;�H Á.~å.pa;�;a;pa;kÒ +:ma;k+:ea;�a;f;dùÅ;aRu :$ya;a ;
a;va;[ea;pa;ma;Nq+.le va;sa;ta;a;m,a Á Á 5 Á ÁI+.tyua;�+:a:�a .~å.Pu +.f;a kÒ +:a;�////�a;ntaH gxa;hùÅ:a;ta;Ma ga;ea;l+.
a;va:�a;mEaH Á
pātonendorbhujā jivā paramaks.epatād. itā |
trijyābhaktā vidhoh. ks.epah. tatkot.imapi cānayet || 3 ||
paramāpakramakot.yā viks.epajyām. nihatya tatkot.yā |
is. t.akrāntim. cobhe trijyāpte yogavirahayogye stah. || 4 ||
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Fig. 6.2a Finding the declinations of the Sun and the Moon.

sadísoh. sam. yutiranayoh. viyutirvidísorapakramah. spas.t.ah. |
spas.t.āpakramakot.irdyujyā viks.epaman. d. ale vasatām || 5 ||
ityuktātra sphut.ā krāntih. gr. hyatām. golavittamaih. |
The Rsine [of the longitude] of the node subtracted from [the longitude of] the Moon,
multiplied by the maximum deflection [of the Moon’s orbit] and divided by the trijyā,
gives the latitude of the Moon (β ). Let the Rcosine of it also be obtained.

Having multiplied the Rsine of the latitude of the Moon (the viks.epajyā) by the cosine
of the maximum deflection [of the ecliptic from the equator], and having multiplied the
Rcosine of that (the latitude of the Moon) by the [Rsine of the] desired declination [of the
Moon determined earlier], the two [products] divided by the trijyā are readily suited for
addition or subtraction.

If these two are in the same direction then they must be added, and if they are in different
directions then their difference must be found. [Now] the true declination [of the Moon is
obtained]. The Rcosine of the true declination will be the day-radius (dyujyā) for those
residing in the viks.epaman. d. ala. Let the process of the [determination of] true declination
[of the Moon] thus explained be understood by the experts in the spherics.

Considering the triangle PKM in Fig. 6.2b and applying the cosine formula, we
have

cosPM = cosPK cosKM + sinPK sinKM cosPKM. (6.5)

Let λm, β and δm be the longitude, the latitude and the declination of the Moon.
Then

KM = 90−β and PM = 90−δm. (6.6)

P and K being the poles of the equator and the ecliptic, the arc PK = ε. Γ is the pole
of the great circle passing through K and P. Therefore

Γ K̂P = 90 and PK̂M = 90−λm. (6.7)
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Using (6.6) and (6.7) in (6.5) we obtain

sinδm = cosε sinβ + sinε cosβ sinλm. (6.8)

This is the true declination of the Moon with latitude β . The krāntijyā of the Moon
denoted by δ ′, and given by (6.4), is the declination of a point on the ecliptic which
has the same longitude as the Moon (point I in Fig. 6.2a). It can be easily seen that
the RHS of (6.8) reduces to the RHS of (6.4) when β = 0. Now, using (6.4) in (6.8),
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Fig. 6.2b Determination of the true declination of the Moon.

we have
sinδm = cosε sinβ + cosβ sinδ ′. (6.9)

This is the formula for the true declination (spas.t.āpakrama) of the Moon given in
the verses, where it is stated in the form

|Rsinδm| =
Rcosε |Rsinβ |

R
+∼

Rcosβ |Rsinδ ′|
R

. (6.10)

The value of the latitude of the Moon (β ) used in the above equation is found by
using the formula

sinβ = 270× sinλm, (6.11)

where the inclination of the Moon’s orbit with the ecliptic is taken to be 270 minutes.
Further, it may be noted from Fig. 6.2 that, when β and δ ′ are in the same direction,
then the two terms are to be added, and if they are in different directions, that is,
if sinβ and sinδ ′ have opposite signs, then |sinδm| would be the difference of two
positive terms. This is what is mentioned in the first half of verse 5 in the text, and
is indicated by +∼ in (6.10).
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In a passing remark the text also mentions that: ‘The Rcosine of the true decli-
nation will be the day-radius (dyujyā) for those residing in the viks.epaman. d. ala’.
Here, the term viks.epaman. d. ala refers to the declination circle of the Moon whose
radius is given by

dyujyā = Rcosδm =
√

R2 − (Rsinδm)2. (6.12)6.4 I+.nd;eaH :pra;k+:a:=+a;nta:=e +Na kÒ +:a;ntya;a;na;ya;na;m,a
6.4 Determination of the declination of the Moon by another

methodA;Ta;va;a kÒ +:a;�////�a;nta:=+a;nea;ya;a :pa:=+kÒ +:a;ntya;a 3 ;
a;va;Da;ea:=+
a;pa Á Á 6 Á Á:pa:=+ma;[ea;pa;k+:ea;�a;f.Èåî ÁÁ*+M ;Æa:ja;na;Ba;a;ga;gua;NMa h:=e +t,a Á;
a:�a:$ya;ya;a [ea;pa;vxa:�eaY;~ya na;a;Byua;.C" +.ya I+.h;a;pya;tea Á Á 7 Á Á:pa;a;ta;~ya .sa;a;ya;na;~ya;a;Ta d;eaHk+:ea;�a;f:$yea o+.Bea h;tea Á;Æa;[a;�ya;a :pa:=+ma;ya;a ;
a:�a:$ya;a;Ba;�e .~ya;a;ta;Ma ..a ta;tP+.le Á Á 8 Á ÁA;ntya;dùÅ;au :$ya;a;h;tMa ta:�a k+:ea;�a;f:jMa ;
a:�a:$ya;ya;a h:=e +t,a Ána;a;Byua;.C" +.yea ..a ta;t,a .~va;N a mxa;ga;k+:k�+.a;Ra;
a;d :pa;a;ta:ja;m,a Á Á 9 Á Áta;dõâ â ;a;hu ;P+.l+.va;gERa;k�+.a;mUa;lM kÒ +:a;�////�a;ntaH :pa:=+a ;
a;va;Da;eaH Á;
a:�a:$ya;a.Èåî ÁÁ*+M d;eaHP+.lM Ba;�M ta;ya;a ..a;l+.na;ma;a;ya;na;m,a Á Á 10 Á Á.jUa;k+:
a;kÒ +:ya;a;
a;d;gea :pa;a;tea .~va;N a ta;t,a .sa;a;ya;nea ;
a;va;Da;Ea Áta;dõâ â ;a;hu :$ya;a h;ta;a kÒ +:a;ntya;a ta;d;a :pa:=+ma;ya;a .~va;ya;a Á Á 11 Á Á;
a:�a:$ya;a;�a;a;pa;kÒ +:ma:$yea;nd;eaH .~å.Pu +.f;a ta;a;tk+:a;�a;l+.k
 +:a Ba;vea;t,a Á
athavā krāntirāneyā parakrāntyā vidhorapi || 6 ||
paramaks.epakot.ighnam. jinabhāgagun. am. haret |
trijyayā ks.epavr. tte

′sya nābhyucchraya ihāpyate || 7 ||
pātasya sāyanasyātha doh. kot.ijye ubhe hate |
ks.iptyā paramayā trijyābhakte syātām. ca tatphale || 8 ||
antyadyujyāhatam. tatra kot.ijam. trijyayā haret |
nābhyucchraye ca tat svarn. am. mr. gakarkyādi pātajam || 9 ||
tadbāhuphalavargaikyamūlam. krāntih. parā vidhoh. |
trijyāghnam. doh.phalam. bhaktam. tayā calanamāyanam || 10 ||
jūkakriyadige pāte svarn. am. tat sāyane vidhau |
tadbāhujyā hatā krāntyā tadā paramayā svayā || 11 ||
trijyāptāpakramajyendoh. sphut.ā tātkālik̄ı bhavet |

Otherwise the [true] declination of the Moon may be obtained from its maximum declina-
tion. The Rsine of 24 (degrees) multiplied by the Rcosine of maximum inclination is divided
by the trijyā. The quantity obtained is called the nābhyucchraya of the ks.epavr. tta.

The Rsine and the Rcosine of the sāyana longitude of the node, multiplied by the maximum
deflection [of the Moon’s orbit] and divided by the trijyā, will be those phalas [i.e. the

3 In another reading of the text, we find the term .~å.Pu +.f;kÒ +:a;�////�a;nta instead of :pa:=+kÒ +:a;�////�a;nta Á That the latter
is correct gets confirmed from the procedure and formulae given in the text. The commentator

Śan. kara Vāriyar has also adopted the reading :pa:=+kÒ +:a;�////�a;nta Á
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doh. phala and the kot.iphala]. Of them, the kot.iphala is multiplied by the Rcosine of
the maximum declination of the Sun and divided by the trijyā. The result is added to or
subtracted from the nābhyucchraya depending upon whether the [sāyana] longitude of
the node lies within six rāśis beginning with Mr. ga or Karkat.aka. The square root of the
sum of the squares of that and the doh.phala is the maximum declination of the Moon.

The doh.phala multiplied by the trijyā and divided by that [i.e. the quantity obtained above]
is defined as the ayanacalana [of the Moon]. This has to be added to or subtracted from
the sāyana longitude of the Moon depending upon whether the node lies within six rāśis
beginning with Libra (Jūka) or with Aries (Kriyā). The Rsine of that is multiplied by
the maximum declination and divided by the trijyā. The result is the refined (sphut.ā)
instantaneous [value of the] Rsine of the declination of the Moon.

An expression for the declination (δm) of the Moon which is similar to (6.3) is
presented in the above verses. We may write such an expression as

sinδm = sin I sinη, (6.13)

where η = (λm−A); λm and A refer to the longitude and ayanacalana of the Moon.
I represents the maximum declination of the Moon which keeps varying and de-
pends upon the position of the Moon’s ascending node along the ecliptic. It is also
the inclination of the Moon’s orbit with the equator. For instance, when the ascend-
ing node N1 coincides with the vernal equinox, then the inclination of the Moon’s
orbit is

I = δmax = ε + i, (6.14)

which is the same as the maximum declination attained by the Moon. On the other
hand, when the ascending node coincides with the autumnal equinox then the incli-
nation of the Moon’s orbit is

I = δmin = ε − i. (6.15)

Generally the value of the obliquity of the ecliptic, ε is taken to be 24◦ and the
inclination of the Moon’s orbit with the ecliptic, i, to be 4.5◦.

From (6.13) it may be noted that the expression for the Moon’s declination in-
volves obtaining expressions for two intermediate quantities, namely

1. the maximum declination of the Moon in its orbit, which is called the parā-
krānti, denoted by I, and

2. the right ascension of the point of intersection of the Moon’s orbit and the equa-
tor. This is called the ayanacalana and is denoted by A.

The desired true declination of the Moon, denoted by δm, is expressed in terms of
these quantities.

Expression for the parā-krānti and ayanacalana

The expression for the parā-krānti, in turn requires the defining of a few interme-
diate quantities. A term called the nābhyucchraya (x) is defined as
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x =
Rsinε Rcos i

R
, (6.16)

Then the doh. phala (D) and the kot.iphala (K) are defined to be

D =
R|sinλn| Rsin i

R
,

and K =
R|cosλn| Rsin i

R
. (6.17)

We introduce yet another quantity (y), defined by

y = Rcosε ×K

=
Rcosε |cosλn| Rsin i

R
. (6.18)

Using x and y, one more term (z) is defined to be

z = x− y when 90 < λn ≤ 270,

= x + y otherwise.

Essentially, z = x + Rcosε cosλn sin i. (6.19)

Now the parā-krānti, the maximum declination I of the Moon, is given as

Rsin I =
√

z2 +D2

=
√

(Rsin ε cos i+ Rcosε sin icosλn)2 +(Rsinλn sin i)2.

(6.20)

The ayanacalana (A) of the Moon is defined in terms of the maximum declination
through the relation

RsinA =
R×D
Rsin I

. (6.21)

This is also referred to as the viks.epacalana.

Expression for the is.t.akrānti

Having obtained the ayanacalana, it is added to the true longitude of the Moon
when 180◦ ≤ λn ≤ 360◦, and subtracted from it otherwise. The Rsine of the result
is multiplied by the Rsine of the maximum declination and divided by the trijyā to
get the Rsine of the desired declination. That is,

Rsinδm =
Rsin I ×Rsin(λm ±A)

R
= Rsin I sinη, (6.22)
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where η is the angle of separation between the Moon and the point of intersection
of its orbit with the equator, along the orbit of the Moon. In the following we pro-
vide the rationale behind (6.20), (6.21) and (6.22) with the help of Figs 6.3a, 6.3b
and 6.3c.

Derivation of the expression for the parākrānti

While the Yuktibhās. ā derivation of the expression for the parākrānti is given in
Appendix E, here we derive the same using modern spherical trigonometry.
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Fig. 6.3a Determination of the parā-krānti, the greatest declination that can be attained by the
Moon at a given point in time.

In Fig. 6.3a, P is the celestial pole, K the pole of the ecliptic, Γ the vernal equinox
and N the node of the Moon’s orbit. Let I be the inclination of the Moon’s orbit to
the equator. Draw a great circle arc Γ E which is perpendicular to the Moon’s orbit
at E. Considering the triangle Γ EN and applying the sine formula, we have

sinΓ E = sin isinλn. (6.23)

Here λn = Γ K̂N is the sāyana longitude of the node. Similarly, applying the sine
formula to the triangle Γ EQ, we have

sinΓ E = sin I sinΓ Q, (6.24)

Hence
sin I sinΓ Q = sin isin λn, (6.25)

where I is the angle of inclination of the Moon’s orbit with respect to the equator.
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In the figure, C and D are points that are 90◦ away from Γ along the equator
and ecliptic respectively. Let ρ be the arc from C, perpendicular to the Moon’s
orbit. Considering the triangle QAC, which is right-angled at A, and using the sine
formula,

sinρ = sin I sinQC

= cosΓ Qsin I (Γ Q+ QC = 90). (6.26)

Let BD = K̃ be the arc from D, perpendicular to the Moon’s orbit. Considering the
triangle NBD, which is right-angled at B, and using the sine formula,

sin K̃ = sin isinND

= cosλn sin i (Γ N + ND = 90). (6.27)

Let the Moon’s orbit be inclined at an angle ξ to the prime meridian KPYDC. Let
Y D = x. Therefore, YC =Y D+DC = x+ε. Now considering the triangles YBD and
YAC and using the sine formula, we have

sin K̃ = sinxsinξ and sinρ = sin(x + ε)sinξ . (6.28)

Therefore,

sinρ
sin K̃

=
sin(x + ε)

sinx

=
sinxcosε + cosxsinε

sinx

= cosε +
cosx

sinx
sinε. (6.29)

In the above equation, we would like to express cosx
sinx in terms of other known quan-

tities. From now on, all the intermediate steps till (6.35) are worked out for that
purpose. Let NY = χ in the triangle NDY , which is right-angled at D. Using the sine
formula, we have

sinx = sin χ sin i. (6.30)

Let Y Z be perpendicular to the secondary to the ecliptic passing through N. Consid-
ering the triangle NY Z which is right-angled at Z, we have

sinYZ = sin χ cos i. (6.31)

Now NK̂Y = 90−λn. Further,

KY = KP+ PY

= ε +(90− (x+ ε))

= 90− x. (6.32)

Considering the triangle KY Z, which is right-angled at Z, we have
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sinY Z = sin KY sin(90−λn)

= sin(90− x)cosλn

= cosxcosλn. (6.33)

From (6.31) and (6.33),
sin χ cos i = cosxcosλn. (6.34)

Replacing sin χ in the above equation using (6.30), we have

cosxcosλn =
cos i

sin i
sin x

or
cosx
sinx

=
cos i

sin icosλn
. (6.35)

Using the above in (6.29), we obtain

sinρ
sin K̃

= cosε +
cos i

sin icosλn
sinε. (6.36)

Further, eliminating sin K̃ using (6.27) in the above equation, we have

sinρ = sin icosλn cosε + cos isinε. (6.37)

From (6.26) and (6.37), we get

sin I cosΓ Q = sin icosλn cosε + cos isinε. (6.38)

Now squaring and adding (6.25) and (6.38), we obtain

sin2 I = (sinλn sin i)2 +(sin icosλn cosε + cosisinε)2. (6.39)

Therefore,

sin I =
√

(sinλn sin i)2 +(sin icosλn cosε + cos isinε)2. (6.40)

This is the formula for the inclination of the Moon’s orbit to the equator presented
in the text as given in (6.20), which is also the maximum declination of the Moon
(at any given time). It is known that the nodes of the Moon’s orbit complete one
revolution in about 18.6 years. During that period, it could happen that the Moon’s
orbit lies in between the ecliptic and the equator as indicated in Fig. 6.3b. In such a
situation, the expression for sinρ in (6.28) will have sin(ε −x) instead of sin(x+ε).
The effect of this in the final expression for the parā-krānti (maximum declination)
would be

sin I =
√

(sinλn sin i)2 +(cos isinε − sin icosλn′ cosε)2, (6.41)
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Fig. 6.3b Determination of the parā-krānti, when the Moon’s orbit is situated between the equa-
tor and the ecliptic.

where N′ is the descending node of the Moon’s orbit and λn′ = λn + 180◦. Then it
can easily be seen that the above equation is also the same as (6.20) given in the
text.
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Fig. 6.3c Determination of the is. t.a-krānti, the actual declination of the Moon at a given point in
time.

In Fig. 6.3c, M represents the Moon and MX is its declination at a given instant.
P is the point where the secondary to the ecliptic passing through M meets the
ecliptic. Considering the triangle MQX , which is right-angled at X , and applying
the sine formula,

sinδm = sinMQ sin I. (6.42)

Now

MQ = MN + NQ

= MN +Γ N + NQ−Γ N
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≈ NP +Γ N − (Γ N −NQ)

= Γ P− (Γ N −NQ)

≈ λm −Γ Q, (6.43)

where λm is the sāyana longitude of the Moon. In arriving at the above equation we
have used two approximations:

1. MN ≈ NP. This is a fairly good approximation since i, the inclination of the
Moon’s orbit is, very small.4

2. The other approximation is that (Γ N −NQ) ≈ Γ Q. This again is reasonable as i
is small.5

Applying the sine formula to the triangle Γ QN, we have

sinΓ Q =
sinλn sin i

sin I
. (6.44)

It may be noted that the above equation is the same as (6.21) presented by Nı̄lakan. t.ha,
once we identify Γ Q with the ayanacalana A. Obviously the term ayanacalana in
this context refers to the right ascension of the point Q.

Again, because i is small, we may write

MQ ≈ λm −Γ Q = λm −A. (6.45)

Substituting for MQ in (6.42) we get

sinδ = sin(λm −A)sin I, (6.46)

which is the same as the expression for the declination (6.22) given in the text.6.5 v.ya;t�a;a;pa;a;ta;~ya .sa;d;sa;;�ÂåÅ +a;vaH
6.5 The occurrence or non-occurrence of vyat̄ıpāta.sMa;~kx +:ta;[ea;pa;.a;l+.na;sa;a;ya;nea;nd;eaH .=+veaH :pa;d;a;t,a Á Á 12 Á ÁA;ea:ja;yua;gma;ta;ya;a Bea;de v.ya;t�a;a;pa;a;ta;ea na ..a;a;nya;Ta;a Á

sam. skr. taks.epacalanasāyanendoh. raveh. padāt || 12 ||
ojayugmatayā bhede vyat̄ıpāto na cānyathā |
Only if the longitude of the Moon, corrected for the change in viks.epa and ayana [as
described earlier], is such that the Sun and the Moon lie in the odd and the even quadrants
[or vice versa] does vyat̄ıpāta occur and not otherwise.

The condition for the possibility of the occurrence of vyat̄ıpāta or otherwise, that
was hinted at in—and hence to be inferred from—verses 1 and 2a of this chapter, is

4 It may be recalled that the inclination is taken to be 270′ = 4.5◦ in Indian astronomy.
5 It needs to be verified numerically how good this approximation is.
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being explicitly stated here. It is said that the Sun and the Moon must be in odd and
even quadrants for the occurrence of vyat̄ıpāta. In other words, the gradients with
respect to the change in declination must have opposite signs during vyat̄ıpāta.

The following verse in Laghu-vivr. ti succinctly puts forth the criteria to be satis-
fied for vyat̄ıpāta to occur:kÒ +:a;�////�a;nta;sa;a;}yea v.ya;t�a;a;pa;a;ta;ea Ba;vea;d, ;Æa;Ba;�a;pa;d;~Ta;ya;eaH Ána;a;Æa;Ba;�a;pa;d;ya;ea:=+kR +:.a;ndÒ +ya;ea;na;Ra;pya;tua;�ya;ya;eaH Á Á

Vyat̄ıpāta occurs only when the declinations [of the Sun and the Moon] are equal and
they are in different quadrants. And not when they are in the same quadrant or when their
declinations are not equal [in magnitude].

We explain this with the help of Fig. 6.4. Here S refers to the Sun and ST its dec-
lination. M1 and M4 represent the Moon when it lies in the I and the IV quadrant
respectively. We have depicted their positions such that

AM1 = ST = BM4. (6.47)

In other words, the magnitude of the declination of the Moon at M1 is same as that
at M4, which is also equal to that of the Sun. When the Moon is at M1 there is no
vyat̄ıpāta, because the declination gradients of the Sun and the Moon have the same
sign. On the other hand, when the Moon is at M4 there will be a vyat̄ıpāta since the
gradients have opposite signs, and it is vaidhr. ta since the Sun and the Moon lie in
different hemispheres.
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Fig. 6.4 Criterion for the occurrence of vyat̄ıpāta.

For the sake of clarity and completeness we present in Table 6.1 all the different
possible cases that could give rise to a vyat̄ıpāta. The term ‘quadrant’, occurring
as the heading of the first column of the table, has been given a special connotation
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that suits the present context. From this, the origins of the quadrants for the Sun
and the Moon are taken to be the (ascending) points of intersection of their own
orbits with the equator. They are referred to as gola-sandhis. In the case of the Sun
it is the same as the vernal equinox, marked as Γ . The gola-sandhi of the Moon is
marked by the point Q (see Fig. 6.4). This point moves at a much faster rate than Γ .
It completes a cycle in about 18.6 years which amounts to about 20◦ per year.

Quadrant Declination Ayana Nature of
Sun Moon Sun Moon Sun Moon Vyat̄ıpāta

I I ↑ ↑ uttara uttara —
I II ↑ ↓ uttara daks.in. a lāt.a
I III ↑ ↑ uttara daks.in. a —
I IV ↑ ↓ uttara uttara vaidhr. ta
II I ↓ ↑ daks.in. a uttara lāt.a
II II ↓ ↓ daks.in. a daks.in. a —
II III ↓ ↑ daks.in. a daks.in. a vaidhr. ta
II IV ↓ ↓ daks.in. a uttara —
III I ↑ ↑ daks.in. a uttara —
III II ↑ ↓ daks.in. a daks.in. a vaidhr. ta
III III ↑ ↑ daks.in. a daks.in. a —
III IV ↑ ↓ daks.in. a uttara lāt.a
IV I ↓ ↑ uttara uttara vaidhr. ta
IV II ↓ ↓ uttara daks.in. a —
IV III ↓ ↑ uttara daks.in. a lāt.a
IV IV ↓ ↓ uttara uttara —

Table 6.1 The different possible cases for the occurrence of vyat̄ıpāta.6.6 v.ya;t�a;a;pa;a;ta;a;Ba;a;va;�a;na;ya;maH
6.6 The criterion for the non-occurrence of vyat̄ıpātaA;keR +:ndõ ;eaH :pa:=+ma;kÒ +:a;ntya;eaH A;�pa;a ;
a:�a:$ya;a;h;ta;a;nya;ya;a Á Á 13 Á ÁBa;�+:a ta;ta;eaY;�a;Da;ke ba;a;h;Ea ma;h;a;kÒ +:a;ntea;nRa tua;�ya;ta;a Áta;�a;a;pMa Ba:�a;ya;a;.C+.ea;DyMa ta;d;a;Q.�a;ea;na;a;ya;na;a;nta;ya;eaH Á Á 14 Á ÁA;nta:=+a;lM ga;tea ta;�/////////�a;sma;n,a kÒ +:a;ntya;eaH .sa;a;}yMa na .ja;a;ya;tea Á

arkendvoh. paramakrāntyoh. alpā trijyāhatānyayā || 13 ||
bhaktā tato ′dhike bāhau mahākrānterna tulyatā |
taccāpam. bhatrayācchodhyam. tadād. hyonāyanāntayoh. || 14 ||
antarālam. gate tasmin krāntyoh. sāmyam. na jāyate |
The lesser of the the maximum declinations of the Sun and the Moon is multiplied by the
trijyā and divided by the other. If the Rsine of the greater is larger than the result, then
there will be no equality.

The arc of that has to be subtracted from 90◦. The result has to be added and subtracted
from the ayanāntas. If ‘that’ lies in between, then the equality of the declinations does not
take place.
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Like many other verses in Tantrasaṅgraha, these have been written in a somewhat
terse form and require a detailed explanation. The condition given here for the non-
occurrence of vyat̄ıpāta may be represented in the form

Rsinλ+ >
Rsinδ−×R

Rsinδ+
, (6.48)

where R represents the trijyā, δ+/δ− is the larger/smaller of the paramakrāntis of
the Sun and the Moon, and λ+ the longitude of the Sun/Moon corresponding to δ+

(measured from the point of intersection of its orbit with the equator). If the above
condition is satisfied then there will be no vyat̄ıpāta. The maximum declination of
the Moon depends upon the situation of the lunar orbit, which in turn is determined
by the location of the Moon’s nodes. It is worth while discussing the variation of the
maximum declination quantitatively before we take up (6.48).

Variation in the maximum declination of the Moon

Let δ ∗
s and δ ∗

m be the maximum declinations of the Sun and the Moon. While the
maximum value of the Sun’s declination is fixed—and is equal to the obliquity of the
ecliptic, ε = 24◦—the maximum declination of the Moon δ ∗

m is a variable quantity.
Its value depends upon the position of the ascending node (Rāhu, denoted by N1) of
the Moon’s orbit with respect to the equinox. The range of its variation is given by

(ε − i) < δ ∗
m < (ε + i), (6.49)

where i is the declination of the Moon’s orbit, which is taken to be 4.5◦ in the text.
When Rāhu coincides with the vernal equinox, then δ ∗

m = (ε + i). On the other hand,
when it coincides with the autumnal equinox, then δ ∗

m = (ε − i). The two limiting
cases are depicted in Figs 6.5a and 6.5b respectively.

As the Moon’s orbit itself has a retrograde motion, around the ecliptic, the node
of the Moon’s orbit completes one revolution in about 18.6 years. Hence the inter-
val between these two limiting cases depicted in Fig. 6.5 is nearly 9.3 years. We
now analyse the two cases from the viewpoint of the occurence of vyat̄ıpāta or
otherwise.

Case i: δ ∗
m ≥ δ ∗

s

When the maximum declination of the Moon is greater than the obliquity of the
ecliptic, then invariably the magnitude of the declination of the Moon becomes
equal to that of the Sun four times during the course of its sidereal period (section
6.1). Of the four instants at which the declinations are equal, only two correspond
to vyat̄ıpāta. These two vyat̄ıpātas, namely lāt.a and vaidhr. ta, necessarily occur
during the course of a sidereal revolution of the Moon.

In Fig. 6.5a, we have depicted the limiting case in which the Moon’s orbit has
the maximum inclination (I = ε + i) to the ecliptic. U and D represent the ayana-
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sandhis6 in the northern and the southern hemispheres respectively. M1 and M2

represent the positions of the Moon, in the uttarāyan. a and daks. in. āyan. a (northern
and southern courses of the Sun), when its declination is equal to that of the obliquity
of the ecliptic. Let tm be the time taken by the Moon to travel from M1 to M2. During
this interval, the declinations of the Sun and the Moon will never become equal and
hence there can be no vyat̄ıpāta. This is because the declination of the Moon during
this period will be greater than that of the Sun. As has been stated in the text:A;nta:=+a;lM ga;tea ta;�/////////�a;sma;n,a kÒ +:a;ntya;eaH .sa;a;}yMa na .ja;a;ya;tea Á

When it (the Moon) is in that interval, the declinations do not become equal.

P

Γ (vernal equinox)

M 1

M2

(autumnal equinox) Γ ’

Moon’s o
rbitecliptic

I
ε

equator

D

U

Fig. 6.5a Moon’s orbit having the maximum inclination, I = ε + i, with the ecliptic.

Case ii: δ ∗
m < δ ∗

s

When the Moon’s orbit lies completely in between the equator and the ecliptic, then,
depending upon the longitude of the Sun, its declination could remain greater than
the maximum declination of the Moon—which is the same as the inclination of the
Moon’s orbit with respect to the equator, denoted by I in Fig. 6.5b—for fairly long
intervals of time. The said interval may extend even up to two to three months of
time when the inclination I has the minimum value. During this period, the declina-
tion of the Moon doesn’t become equal to that of the Sun and hence vyat̄ıpāta does
not occur.

In Fig. 6.5b, S1 corresponds the position of the Sun when its declination is just
equal to δ ∗

m. As the Sun S1 has northern motion, and is approaching the ayanasandhi

6 The point of intersection of the two ayanas, namely the uttarāyan. a and the daks.in. āyana.
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U , its declination will be increasing during the next few days till it reaches the
maximum ε . Having crossed the ayanasandhi, the Sun starts receding away from
it and its declination starts decreasing. When the Sun is at S2, again its declination
will be equal to δ ∗

m. Between S1 and S2, the declination of the Sun remains greater
than δ ∗

m and hence there will be no vyat̄ıpāta.

P

(autumnal equinox) Γ ’

equator

D

U

ecliptic

Moon’s orbit Γ (vernal equinox)

ε I

S 2

MS1

Fig. 6.5b Moon’s orbit having the minimum inclination, I = ε − i, with the ecliptic.

However, the inclination of the Moon’s orbit, which is the same as the maximum
declination attained by the Moon, does not change significantly. The change in the
maximum declination from (ε + i) to the minimum value (ε − i), a difference of
2× 4.5◦ = 9◦, takes place in about 9.3 years. This amounts to hardly one degree
per year or around 5′ per month, whereas the change in the declination of the Sun
is around 480′ per month. Hence, the change in the inclination of the Moon’s orbit
over a few weeks is negligible compared with that of the Sun. In the following, we
make a rough estimate of the duration during which there will be no vyat̄ıpāta.

Minimum period for which vyat̄ıpāta does not occur

In the latter half of the 14th verse and the first half of the 15th verse, the criterion
for the non-occurrence of vyat̄ıpāta is given. From this, the minimum period during
which vyat̄ıpāta does not occur can be estimated. For numerical illustration, we
choose the limiting case where the maximum declination of the Moon attains its
minimum value as shown in Fig. 6.5b. In this case δ ∗

m = 24.0− 4.5 = 19.5. The
longitude of the Sun corresponding to this declination is
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λs = sin−1
(

sin19.5
sin24

)

≈ 55◦. (6.50)

As the longitude of the Sun increases in the odd quadrants, the magnitude of its
declination also increases. Hence, when the longitude7 of the Sun is approximately
in the range

55◦ < λs < 125◦,

or when it is in the range
235◦ < λs < 305◦, (6.51)

the magnitude of its declination will always be greater than the maximum declina-
tion the Moon can attain. Therefore, there will be no vyat̄ıpāta during this period.

Since the rate of motion of the Sun is approximately 1◦ per day, under the limiting
cases the minimum period for which a vyat̄ıpāta does not occur is about 70 days. As
the longitude of the Sun is 0◦ around March 21, this period approximately extends
from the later half of the second week of May to the last week of July, when the
Sun is in the northern hemisphere. When the Sun is in the southern hemisphere,
this period would be from from the later half of November to the end of January
approximately. With this background, we now proceed to explain the criterion given
in the text.

Rationale behind Nilakan. t.ha’s criterion for the non-occurrence of vyat̄ıpāta

The declination of the Sun and its longitude are related through the formula

sinδs = sinε sinλs, (6.52)

where ε is the obliquity of the ecliptic, which is the same as the maximum decli-
nation of the Sun. In otherwords δ ∗

s = ε. The longitude of the Sun λs is measured
from Γ along the ecliptic and is given by Γ S in Fig. 6.6.

The declination of the Moon is given by

sinδm = sin I sinQM = sin I sinη. (6.53)

Here, I is the inclination of the Moon’s orbit with respect to the equator. As in the
case of the Sun, I is the maximum declination of the Moon. That is, δ ∗

m = I. QM = η
is measured along the Moon’s orbit from the point of intersection of the equator and
the Moon’s orbit. We have seen that η ≈ λm −A, where λm is Moon’s longitude,
and A is its ‘ayanacalana’. Dividing (6.52) by (6.53) and rearranging, we have

sinη × sinδs

sinδm
=

sinε
sin I

× sinλs. (6.54)

7 Since declination is involved, the longitudes that we talk about here are all sāyana longitudes.
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Fig. 6.6 Schematic sketch of the Moon’s orbit and the ecliptic, when the maximum inclination of
the Moon’s orbit, I, is greater than ε .

Depending upon the position of the Moon’s ascending node represented by Q in
Fig. 6.6, either ε > I or ε < I. The case ε = I is true only at one instant, and is a
very special case. The other two cases do prevail for an extended period of time.
Now let us consider the case ε < I. Vyat̄ıpāta occurs under these circumstances
when

sinη =
sinε
sin I

× sinλs. (6.55)

As sinλs ≤ 1, this implies that the condition for the occurrence of vyat̄ıpāta is

sin η ≤ sinε
sin I

. (6.56)

Hence there is no vyat̄ıpāta if

sin η >
sinε
sin I

. (6.57)

The above condition is the same as the one given in (6.48) once we identify that
ε = δ−, I = δ+ and η = λ+, as the maximum declination of the Sun is less than that
of the Moon. Similarly, when I < ε, there is no vyat̄ıpāta if

sinλs >
sin I
sinε

. (6.58)

The equivalence of this condition with (6.48) is also clear once we identify that in
this case I = δ−, ε = δ+ and λs = λ+.
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6.7 Determining whether vyat̄ıpāta has occurred or is yet to

occurd;ea:$ya; a .=+veaH :pa:=+kÒ +:a;ntya;a h;tva;a ..a;a;ndùÅò ;a;a ta;ya;a h:=e +t,a Á Á 15 Á Ál+.b.Da;.a;a;pa;sa;mea ..a;ndÒ +ba;a;h;Ea kÒ +:a;�////�a;nta;gua;Na;Ea .sa;ma;Ea Á..a;ndÒ +~ya;Ea:ja;pa;d;~Ta;~ya d;ea;DRa;nua;Sya;�a;Da;ke ta;taH Á Á 16 Á Áv.ya;t�a;a;pa;a;ta;ea ga;ta;ea nyUa;nea Ba;a;v�a;a yua;gma;pa;de Y;nya;Ta;a Áta;
a;d;�;.a;ndÒ +Da;nua;SaH .~va;~va;Bua;�a;�+Èåî ÁÁ*+;ma;nta:=+m,a Á Á 17 Á Ága;�a;ta;ya;ea;ga;&+.tMa .~va;N a d;ea;Sea ga;}yea ga;teaY;
a;pa ..a Á.sUa;yeRa;ndõ ;ea:=+nya;Ta;a :pa;a;tea ta;a;va;tku +:ya;Ra;
a;d;dM mua;hu H Á Á 18 Á Áya;a;va;d;k+:eRa;tTa;Da;nua;Sa;a ta;tk+:a;le +.ndu ;Da;nuaH .sa;ma;m,a Á
dorjyām. raveh. parakrāntyā hatvā cāndryā tayā haret || 15 ||
labdhacāpasame candrabāhau krāntigun. au samau |
candrasyaujapadasthasya dordhanus.yadhike tatah. || 16 ||
vyat̄ıpāto gato nyūne bhāv̄ı yugmapade ′nyathā |
tadis.t.acandradhanus.ah. svasvabhuktighnamantaram || 17 ||
gatiyogahr. tam. svarn. am. dos.e gamye gate ′pi ca |
sūryendvoranyathā pāte tāvatkuryādidam. muhuh. || 18 ||
yāvadarkotthadhanus.ā tatkālendudhanuh. samam |
Having multiplied the sine of the longitude of the Sun by its parakrānti, divide [that] by
the parakrānti of the Moon. If the resulting arc [say x] is equal to the arc corresponding to
the Moon (η), then the Rsine of the declination of the Sun and the moon will be equal.

If the arc corresponding to the Moon, in the odd quadrant, is greater than that (x), then
vyat̄ıpāta has already occurred; if less, then it is yet to occur. It is exactly the reverse
[when the Moon is] in the even quadrant.

The difference of the arc corresponding to that (Rsinx) and that of the [ayana-corrected]
Moon must be multiplied separately by their own [i.e. of the Sun and Moon] daily motions
and divided by the sum of their daily motions. The results must be added to or subtracted
from the Sun and the Moon depending upon whether the dos.a (a vyat̄ıpāta) is yet to occur
or has already occurred. In the case of the node it has to be applied inversely. The process
has to be repeated till the arc obtained from the Sun becomes equal to the Moon’s arc
[found] at that time.

We saw earlier in (6.54) that the ratio of the declinations of the Sun and the Moon
satisfy the relation

sinδs

sinδm
=

sinε sinλs

sin I sinη
. (6.59)

Using the notation

sinx =
sinε
sin I

× sinλs and y =
sinδs

sinδm
, (6.60)

(6.59) reduces to,
sinη × y = sinx. (6.61)
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If x = η , the above equation implies that y = 1, that is, δs = δm. This is precisely
the condition given here for the declinations of the Sun and Moon to be equal and is
stated in the following words:l+.b.Da;.a;a;pa;sa;mea ..a;ndÒ +ba;a;h;Ea kÒ +:a;�////�a;nta;gua;Na;Ea .sa;ma;Ea Á

Though the term cāpa in general refers to arc, in the present verse it seems to
have been used to refer to the sine of the arc. In other words, the term labdhacāpa in
the above verse refers to sinx. The term candrabāhu refers to sinη . As mentioned
earlier,

if x = η, it is the middle of vyat̄ıpāta.

The criteria as to whether a vyat̄ıpāta has already occurred, or it is yet to occur are
given by

if x < η, already occured,

and if x > η, yet to occur,

in the odd quadrant. It is the other way round in the even quadrant, as |δm| decreases
with time. Here η is the angular separation of the Moon from the point of intersec-
tion of the Moon’s orbit and the equator. In Fig. 6.7 it is given by QMi = αi (i = 0,1
and 2).

Rationale behind the given criteria

(a) Criterion for vyat̄ıpāta to have occured

Suppose x < η at some time t = t1, then we should have y < 1 in order that (6.61)
is satisfied. Now

y < 1 ⇒ sinδs < sinδm. (6.62)

This situation is represented by the positions of the Sun and the Moon at S1 and
M1 in Fig. 6.7. Since the Moon is in the odd quadrant and the Sun is in the even
quadrant, the magnitude of the declination of the Moon keeps increasing and that of
the Sun keeps decreasing. Since |δs|< |δm| at t = t1, there must be an earlier instant,
t = t0, at which |δs| = |δm|. This is precisely the condition for the occurrence of
vyat̄ıpāta. Thus we see that if x < η and the Moon is in the odd quadrant, then
vyat̄ıpāta has already occurred.

(b) Criterion for vyat̄ıpāta to occur later

If x > η , then from (6.61), y > 1. Now,

y > 1 ⇒ sinδs > sinδm. (6.63)
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Fig. 6.7 Positions of the Sun and the Moon before vyat̄ıpāta, at the instant of vyat̄ıpāta and after
vyat̄ıpāta.

This situation is represented by the positions of the Sun and the Moon at S2 and
M2 in Fig. 6.7. Again, since the Moon is in the odd quadrant and the Sun is in the
even quadrant, the magnitudes of their declinations are increasing and decreasing
respectively. Since at t = t2, |δs| > |δm|, vyat̄ıpāta is yet to occur at t = t0 > t2.

The situation in the even quadrants can be understood similarly. The above cri-
teria are precisely those given in verses 16b and 17a to find out whether vyat̄ıpāta
has already occurred or it is yet to occur. In the succeeding verses 17b and 18, a
procedure is given for finding the time interval (∆t) between the desired instant and
the instant of vyat̄ıpāta. Having determined this time interval, an iterative proce-
dure for finding the longitudes of the Sun and the Moon at the instant of vyat̄ıpāta
is outlined.

The time interval between the desired instant and the middle of vyat̄ıpāta

Let λs and λm be the longitudes of the Sun and the Moon a given instant t, and let the
angular velocities (gati) of them at that instant be λ̇s and λ̇m. It is seen from (6.60)
that the quantity x is related to the Sun’s longitude and η is related to the Moon’s
longitude. We denote the difference in arcs between x and η by ∆θ . That is,

x−η = ∆θ . (6.64)

The significance of ∆θ is that it refers to the angle by which the sum of the longi-
tudes of the Sun and the Moon must increase for vyat̄ıpāta to occur. It is mentioned
that this has to be divided by the sum of the angular velocities of the Sun and the
Moon. We denote the result in time units by ∆ t, which is given by
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∆ t =
∆θ

λ̇m + λ̇s
(in days)

=
∆θ

λ̇m + λ̇s
×60 (in ghat.ikas). (6.65)

The longitudes of the Sun and the Moon at the middle of vyat̄ıpāta

The changes in the longitudes of the Sun and the Moon during the above time inter-
val ∆t are obtained by multiplying their daily motions with it. That is

∆λs = λ̇s ×∆t (6.66)

and ∆λm = λ̇m ×∆t. (6.67)

If λs and λs0 are the longitudes of the Sun at the desired instant t and the middle of
the vyat̄ıpāta, then

λs0 = λs ∓∆λs. (6.68)

Similarly, if λm and λm0 are the longitudes of the Moon at the desired instant and
the middle of the vyat̄ıpāta, then

λm0 = λm ∓∆λm. (6.69)

Here we take the sign ‘−’ if the vyat̄ıpāta has already occurred and the sign ‘+’ if
it is yet to occur.

Iterative method

In the procedures described in the previous sections, it has been implicitly assumed
that the rates of motion of the Sun and the Moon (λ̇m and λ̇s) are constant, which is
not true. Hence both ∆t and the longitudes λs0 and λm0 obtained are only approx-
imate. As a corrective measure to this, an iterative procedure for determining the
longitudes of the Sun and the Moon at vyat̄ıpāta is prescribed. The iterative method
to be used here is indicated in verses 18b and 19a.ta;a;va;t,a ku +:ya;Ra;
a;d;dM mua;hu H ya;a;va;d;k+:eRa;tTa;Da;nua;Sa;a ta;tk+:a;le +.ndu ;Da;nuaH .sa;ma;m,a Á

This [process] has to be repeated till the arc of the Moon at that time will be equal to that of
the Sun.

The method indicated above, and further explained in the commentary, may be
explained as follows. As ∆t given by (6.65) is not exact, we denote it by ∆ t1 to
indicate that it is the first approximation to the actual value. Having determined ∆ t1
we evaluate x and η at time

t1 = t +∆ t1, (6.70)

and denote their values as x1 and η1. The rates of motion of the Sun and the Moon
are also evaluated at t1 and are denoted by λ̇s1 and λ̇m1. With them, we find ∆ t2
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given by

∆ t2 =
∆θ1

λ̇m1 + λ̇s1
, (6.71)

where ∆θ1 = x1 −η1. The second approximation to the actual instant of vyat̄ıpāta
is t2 and is given by

t2 = t1 +∆ t2. (6.72)

Again at t2 the values of x and η denoted by x2 and η2 are to be determined. From
their difference ∆θ2, and the rates of motion of the Sun and the Moon, ∆ t3 is found.
The process is repeated and, in general,

∆θi = xi −ηi

∆ti+1 =
∆θi

λ̇mi + λ̇si

and ti+1 = ti + ∆ti+1. (6.73)

The iteration is continued till ∆ tr ≈ 0. At this instant (t ′), x = η to the desired ac-
curacy. Hence, the longitude of the Moon that is determined from η in this process,
which in turn is determined by finding x, would be the same as the longitude deter-
mined at t ′ directly. This is what is stated in verse 19a, quoted above. The instant of
vyat̄ıpāta is then given by

t ′ = t + ∆t1 + ∆t2 + · · ·+∆ tr. (6.74)

Here, it should be noted that ∆ tr can be positive or negative.6.8 v.ya;t�a;a;pa;a;ta;ma;DyaH
6.8 The middle of vyat̄ıpātakÒ +:a;�////�a;nta;sa;a;}yea v.ya;t�a;a;pa;a;ta;ma;Dya;k+:a;lH .sua;d;a:�+:NaH Á Á 19 Á Á

krāntisāmye vyat̄ıpātamadhyakālah. sudārun. ah. || 19 ||
When the declinations [of the Sun and the Moon] are equal, that instant corresponds to the
middle of vyat̄ıpāta, which is quite dreadful.6.9 v.ya;t�a;a;pa;a;ta;pra;a:=+}BaH :pa;yRa;va;sa;a;na:úãÁ*.a

6.9 The beginning and the end of vyat̄ıpātana;va;Ma;Za;pa:úãÁ*.a;kM ta:�va;Ba;a;ga;Ea ;
a;ba;}ba;Ea .~va;Bua;�a;�+:taH Á.sUa;yeRa;ndõ ;ea;
a;bRa;}ba;sa;}å.pa;kR +:d;lM :Sa;��a;a ;�a;na;h;tya ya;t,a Á Á 20 Á Ága;�a;ta;ya;ea;ga;ea:;dÄâx ;tMa ta;�a:;dÄâ v.ya;t�a;a;pa;a;ta;d;lM ;
a;va;du H Áv.ya;t�a;a;pa;a;ta;d;le ta;�/////////�a;sma;n,a na;a;
a;q+.k+:a;d;Ea ;
a;va;Za;ea;�a;Da;tea Á Á 21 Á Á
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a;h ;D�a;a;ma;ta;a Á Á 22 Á Á
navāmśapañcakam. tattvabhāgau bimbau svabhuktitah. |
sūryendvorbimbasamparkadalam. s.as.t.yā nihatya yat || 20 ||
gatiyogoddhr. tam. taddhi vyat̄ıpātadalam. viduh. |
vyat̄ıpātadale tasmin nād. ikādau vísodhite || 21 ||
madhyakālād bhavet tasya prāram. bhasamayah. sphut.ah. |
tadyute madhyakāle ′sya moks.o vācyo hi dh̄ımatā || 22 ||
The daily motion of the Sun multiplied by 5 and divided by 9, and that of the Moon divided
by 25, are the diameters of the discs (bimbas) of the Sun and the Moon. Half the sum of
the discs multiplied by 60 and divided by the sum of their daily motions is considered to be
the half-duration of the vyat̄ıpāta.

By subtracting the half-duration of the vyat̄ıpāta, in nād. ikās etc., from the middle of the
vyat̄ıpāta, the actual beginning moment is obtained. By adding the same to the the middle
of the vyat̄ıpāta, the ending moment has to be stated by the wise ones.

If λ̇s and λ̇m are the daily motions of the Sun and the Moon, expressed in minutes,
then the angular diameters of their discs αs and αm are given as

αs =
λ̇s ×5

9
, αm =

λ̇m

25
. (6.75)

Now the angular diameter of the Sun

αs =
Ds

ds
, (6.76)

where Ds and ds are the Sun’s diameter and its distance from the Earth in yojanas
respectively. The horizontal parallax of the Sun (P), whose value is taken to be one-
fifteenth of daily motion of the Sun, is given by

P =
Re

ds
=

1
15

λ̇s. (6.77)

Using this in (6.76),

αs =
Ds

Re

λ̇s

15
=

2Ds

De

λ̇s

15
, (6.78)

where De = 2Re is the diameter of the Earth. In Chapter 4, the values of Ds and De

are given to be 4410 and 1050.42 yojanas respectively. Therefore

αs =
2×4410

1050.42×15
θ̇s = 0.5598 λ̇s. (6.79)

It is this 0.5598 that is approximated by 5
9 = 0.5556 in the text. Similarly, the angular

diameter of the Moon is given by

αm =
2Dm

De
× λ̇m

15
, (6.80)
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where Dm is the Moon’s diameter in yojanas. As Dm is given to be 315 yojanas,

αm =
2×315

1050.42×15
λ̇m

= 0.04 λ̇m

=
λ̇m

25
. (6.81)

Using the angular diameters, the half-duration of the vyat̄ıpāta is found using the
formula

∆ t =
S×60

λ̇m + λ̇s
, (6.82)

where S is the sum of the semi-diameters of the Sun and the Moon and is given by

S =
ds +dm

2
. (6.83)

Let tb, tm and te be the actual beginning, the middle and the ending moment of the
vyat̄ıpāta. Here tm refers to the instant at which (6.1) is satisfied. Then the beginning
and the ending moments are given by

tb = tm −∆t and te = tm + ∆t. (6.84)6.10 ;
a;va;Sk+:}Ba;a;
a;d;ya;ea;ga;a;ntya;a;Da;Ra;na;Ma tya;a:$ya;tva;m,a
6.10 Inauspiciousness of the later half of vis.kambhayoga and

others;
a;va;Sk+:}Ba;a;
a;d;Sua ya;ea;gea;Sua v.ya;t�a;a;pa;a;ta;a;�ë+:ya;eaY;
a;pa yaH Áta;~ya .sa;�a;d;Za;~ya;a;ntya;ma;D a ..a;a;pya;�a;ta;d;a:�+:Na;m,a Á Á 23 Á Á
vis.kambhādis.u yoges.u vyat̄ıpātāhvayo ′pi yah. |
tasya saptadaśasyāntyamardham. cāpyatidārun. am || 23 ||
The later half of the seventeenth yoga commencing with vis.kambha, also known as
vyat̄ıpāta, is extremely inauspicious.

Analogous to the 27 naks.atras, 27 yogas (see Table 6.2) are defined in Indian
astronomy. They correspond to intervals of time during which the sum of the longi-
tudes of the Sun and the Moon increases by 13◦20′. It may be noted from Table 6.2
that the 17th yoga is called vyat̄ıpāta. Perhaps, hereby due to the similarity in name,
this is also considered inauspicious (particularly its later half).

In this context the following verse is quoted in the commentary Laghu-vivr. ti:.sUa;yeRa;ndu ;ya;ea;gea mEa:�a;~ya :pa:=+a;D a .sa;}Ba;vea;dùÅ;a;
a;d Á.sa;a;pRa;ma;~ta;k+:sMa::℄aH .~ya;a;t,a ta;d;a d;ea;Sa;eaY;�a;ta;�a;na;�///�a;nd;taH Á Á
Among the yogas of the Sun and the Moon, the later half of Maitra is called Sārpamastaka
and that period is considered to be highly inauspicious.
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1. vis.kambha 10. gan. d. a 19. parigha
2. pr̄ıti 11. vr. ddhi 20. śiva
3. āyus.mān 12. dhruva 21. siddha
4. saubhāgya 13. vyāghāta 22. sādhya
5. śobhana 14. hars.an. a 23. śubha
6. atigan. d. a 15. vajra 24. śukla
7. sukarma 16. siddhi 25. brāhma
8. dhr. ti 17. vyat̄ıpāta 26. aindra
9. śūla 18. var̄ıyān 27. vaidhr. ti

Table 6.2 The names of the 27 yogas.

Note:

In the above verse, the term maitrasya literally means ‘ belonging to Maitra’. Ac-
cording to the tradition, each naks.atra is associated with a deity. The deity for the
17th naks.atra, namely Anūrādha, is Maitra. Hence the 17th naks.atra is called
Maitra.

While discussing vyat̄ıpāta, Bhāskara I states:.sUa;yeRa;ndu ;ya;ea;gea ..a;kÒ +:a;DeRa v.ya;t�a;a;pa;a;ta;eaY;Ta ;vEa;Dxa;taH Á..a;kÒe ..a mEa:�a;pa;yRa;ntea ;
a;va::℄ea;yaH .sa;a;pRa;ma;~ta;kH Á Á 8

When the sum of the [nirayan. a] longitudes of the Sun and the Moon is half a circle (i.e.
180◦) it is vyat̄ıpāta; when the sum is a full circle (360◦) it is vaidhr. ta. If [the sum] ex-
tends to the end of Maitra (Anūrādha naks.atra) then it is to be known as sārpamastaka
[vyat̄ıpāta].6.11 v.ya;t�a;a;pa;a;ta:�a;ya;a;Na;Ma tya;a:$ya;tva;m,a

6.11 Inauspiciousness of the three vyat̄ıpātasv.ya;t�a;a;pa;a;ta:�a;yMa ;Ga;ea:=M .sa;vRa;k+:mRa;sua ga;
a;hR ;ta;m,a Á.=+:ïîåéa;a;na;d;a;na:ja;pa;(ra;a:;dÄâ ;v.ra;ta;h;ea;ma;a;
a;d;k+:mRa;sua Á:pra;a;pya;tea .sua;ma;h;.C" e +.yaH ta;tk+:a;l+:℄a;a;na;ta;~ta;taH Á Á 24 Á Á
vyat̄ıpātatrayam. ghoram. sarvakarmasu garhitam |
snānadānajapaśrāddhavratahomādikarmasu |
prāpyate sumahacchreyah. tatkālajñānatastatah. || 24 ||
The [period of the] three vyat̄ıpātas (lāt.a, vaidhr. ta and sārpa-mastaka) is [considered
to be] dreadful and is inauspicious for performing all religious rites. But by acquiring the
correct knowledge of these periods and performing certain deeds such as having a holy dip,
performing charitable deeds or sacrificial deeds, doing penance, oath-taking, performing
homa etc. one reaps great benefits.

8 {LB 1974}, (II. 29), p. 39.



Chapter 7dx ;ë�Åë�Á*:+:mRa;pra;k+.=+Na;m,a
Reduction to observation

7.1 dx ;ë�Åë�Á*:+:mRa;dõ ;ya;m,a - A;a;[a;m,a A;a;ya;na:úãÁ*.a
7.1 The two visibility corrections–due to the latitude of the

observer and due to the position on the ecliptic;
a;va;Sua;va;;�ÂåÅ +a.Èåî ÁÁ*+;
a;va;[ea;pa;a;t,a dõ ;a;d;Za;a;�Ma ;
a;va;Da;eaH .~å.Pu +.f;a;t,a Áo+.d;yea .sa;Ea;}ya;
a;va;[ea;pea Za;ea;Dya;ma;~ta;ma;yea ;Da;na;m,a Á Á 1 Á Áv.ya;~tMa ta;d, ya;a;}ya;
a;va;[ea;pea na ma;Dya;~Tea ;
a;va;Da;a;
a;va;d;m,a Á.sa;
a:�a;Ba;g{a;h:ja;kÒ +:a;�////�a;nta;Ba;a;ga.Èåî ÁÁ*+;aH [ea;pa;�a;l+.�a;�a;k+:aH Á Á 2 Á Á;
a;va;k+:l+.aH .~va;mxa;NMa kÒ +:a;�////�a;nta;[ea;pa;ya;eaH ;Æa;Ba;�a;tua;�ya;ya;eaH ÁO;;vMa kx +:ta;ea g{a;h;ea l+.çÉîå+;aM .~va;ea;d;yea Ba;va;�a;ta .~å.Pu +.f;m,a Á Á 3 Á Á.~va;a;~teaY;~ta;l+.çÉîå+;a;mea;vMa .~ya;a;t,a ma;Dya;l+.çÉîå+;aM Ka;ma;Dya;gea Á
vis.uvadbhāghnaviks.epāt dvādaśāptam. vidhoh. sphut.āt |
udaye saumyaviks.epe śodhyamastamaye dhanam || 1 ||
vyastam. tad yāmyaviks.epe na madhyasthe vidhāvidam |
satribhagrahajakrāntibhāgaghnāh. ks.epaliptikāh. || 2 ||
vikalāh. svamr. n. am. krāntiks.epayoh. bhinnatulyayoh. |
evam. kr. to graho lagnam. svodaye bhavati sphut.am || 3 ||
svāste ′stalagnamevam. syāt madhyalagnam. khamadhyage |
The latitude of the Moon, multiplied by the equinoctial shadow and divided by 12, has to be
subtracted from the true longitude of the Moon if the latitude is north at sunrise. At sunset
it has to be added.

If the declination is south, then the application is reversed and there is no correction when
the Moon is at the centre [zenith]. The product of latitude in minutes and the declination
of the point whose longitude is 90 degrees plus that of the planet in degrees, [which is] in
seconds, is added to or subtracted from the longitude of the planet depending upon whether
the declination and the latitude are in different hemispheres or in the same hemisphere.

After this correction, the longitude of the planet thus obtained at the time of its own rise
will be the udayalagna and the one that is obtained at its setting will be the astalagna.
The longitude obtained when it is on the meridian will be the madhyalagna.

The aim is to find out the lagna (ascendant) corresponding to the instant when
the planet is rising or setting. This would have been the same as the longitude of the

385
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planet, if the planet had no latitudinal deflection. Because of the deflection due to
latitude, the lagna corresponding to the rising of the planet called the udayalagna,
and the one corresponding to its setting called the astalagna, are different from the
longitude of the planet at its rising or setting. To obtain the lagna, two corrections
have to be applied, namely (i) the āks.a-dr. kkarma (latitude correction) and (ii) the
āyana-dr. kkarma (āyana correction).

Āks.a correction

Let φ be the latitude of the place and β the latitude of the Moon. Then, the āks.a
correction a is given to be

a =
viks.epa× vis.uvacchāyā

12

=
β ×12tanφ

12
= β × tanφ . (7.1)

This is applied to the longitude of the Moon as follows. If the latitude of the Moon
is north,

λ ′ = λ −a (Moon rising) (7.2)

= λ +a (Moon setting). (7.3)

If the latitude of the Moon is south, then the application of the correction must be
reversed.
Note: Though it is stated here that the above correction is to be applied to the Moon,
it may be noted that the correction is applicable to all the planets in general. In fact,
this is mentioned later in verse 7 of this chapter.

Rationale behind the āks.a correction

In Fig. 7.1a, G is the planet, which is rising, whose longitude is λ and declination is
δ . D is the point on the ecliptic where the secondary to the ecliptic passing through
the planet intersects the ecliptic. Here Γ D = λ represents the sāyana longitude of
the planet. D′ is the point on the ecliptic which is rising along with the planet. Γ D′

is to be found from Γ D. Let the secondary to the equator through G intersect the
ecliptic at C. Then the difference

DD′ = DC +CD′. (7.4)

CD′ is the āks.a-dr. kkarma and CD is the āyana-dr. kkarma. The āks.a-dr. kkarma is
obtained as follows. Consider the triangles PGN and CGD′. Let
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Fig. 7.1a Āks.a- and āyana-dr. kkarmas when the latitude and the declination both have the same
direction (both are positive).

CĜD′ = PĜN = ψ . (7.5)

In the spherical triangle PGN, PG = 90−δ , PN = φ and PĜN = ψ . Applying the
sine formula, we have

sinψ
sinφ

=
sin90

sin(90−δ )
. (7.6)

Therefore

sinψ =
sinφ
cosδ

. (7.7)

Since the latitude of the planet GD = β is always small, the triangles CGD′ and
DGD′ can be considered to be planar triangles. In the triangle CGD, let the angle
CĜD be θ . Here

CD̂′G = DD̂′G = 90−DĜD′

= 90− (CĜD+CĜD′)

= 90− (θ +ψ). (7.8)

Now
CD′

sinψ
=

CG
sin[90− (θ +ψ)]

=
CG

cos(θ +ψ)
. (7.9)

From the triangle CGD,

CG =
GD

cosθ
=

β
cosθ

. (7.10)

Using (7.10) in (7.9), we get the expression for the āks.a-dr. kkarma as
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a = CD′ =
β sinψ

cosθ cos(θ + ψ)
. (7.11)

When δ is small, cosδ ≈ 1 and sinψ = sinφ or ψ = φ . If we also take θ ≈ 0,

a = β tanφ , (7.12)

which is the same as (7.1), the formula prescribed in the text.

Āyana correction

In order to find the expression for the āyana-dr. kkarma, δ ′, which is the declination
of the point on the ecliptic corresponding to λ +90, i.e. the sāyana longitude of the
planet increased by 90 degrees, is to be determined. Now, the āyana correction x is
given to be

x(sec) = β (min)× δ ′(degrees). (7.13)

If λ is the sāyana longitude of the planet, then it is stated that the āyana corrected
longitude is given by

λ ′ = λ ± x, (7.14)

where the sign ‘−’ is to be chosen if δ ′ and β are in the same hemisphere, and ‘+’
is to be chosen if they are in different hemispheres.

Rationale behind the āyana correction

In the spherical triangle KDP (see Fig. 7.1a), KP = ε , KD = 90. Let KD̂P = θ ′.
Also,

PD = 90−δ , 1 DK̂P = GK̂P = 90−λ . (7.15)

Using the sine formula we have

sinθ ′ =
sinε cosλ

cosδ
=

sinδ ′

cosδ
, (7.16)

where δ ′ is the declination corresponding to the longitude 90+λ . When δ is small,
sinθ ′ = sinδ ′ or θ ′ = δ ′.

We now consider the triangle GDF. Since it is small, we consider it to be planar
and hence we have

GF = GDsinθ ′

= β sin θ ′

≈ β δ ′. (7.17)

1 We have taken the declination of the point, where the secondary to the ecliptic passing through
the planet meets the ecliptic, to be δ . This seems to have been the practice.



7.1 The āks.a and āyana corrections 389

As β is small, the āyana-dr. kkarma will become

x = CD ≈ GF ≈ β δ ′. (7.18)

Here x, β and δ ′ are all in radians. In the text it is mentioned that x is in seconds, β
in minutes and δ ′ in degrees. Here the commentator Śaṅkara Vāriyar observes:

‘ . . . ta;tk+:a;l+.sa;a;ya;nea;nd;eaH kÒ +:a;�////�a;nta;.a;a;pa;ma;a;n�a;a;ya ta;taH :Sa;��a;a ;
a;va;Ba:$ya l+.b.Da;aH kÒ +:a;�////�a;nta;Ba;a;ga;aHta;�ç Åu +a;Na;ta;a I+.�;
a;va;[ea;pa;k+:l+.a O;;va d;ZRa;na;sMa;~k+:a:=+
a;va;k+:l+.aH Á Á’.

The visibility correction in seconds is obtained by first finding the arc corresponding to the
declination from the sāyana longitude of the Moon and then converting the same to degrees
(krāntibhāga) by dividing by 60, and multiplying it by the desired latitude in minutes.

If the relation (7.18), which is in radians, is to be expressed in seconds, it has
to be multiplied by R (which will give it in minutes) and then by 60 (to get it in
seconds):

x× (R×60) = (β ×δ ′)× (R×60)

x∗(sec) = (β ×R)× (δ ′× 60). (7.19)

Now we rewrite2 the above as

x∗(sec) ≈ (β ×R)×
(

δ ′×R

60

)
(7.20)

= β ∗(min)× δ ∗(deg). (7.21)

Since β and δ ′ are in radians, β ∗ = β ×R is in minutes, and δ ∗ = Rδ ′
60 is in degrees.

This explains the different units specified for the different quantities appearing in
(7.13).

Application of the āyana-dr. kkarma

When the declination and the latitude of the planet have the same direction—say
both are positive as shown in Fig. 7.1a—then the āyana-dr. kkarma has to be applied
to the longitude of the planet negatively. That is, if λ is the (sāyana) longitude
before correction, then the longitude with the āyana-dr. kkarma (λ ′) will be

λ ′ = ΓC = Γ D−CD

= λ − x. (7.22)

2 In rewriting, the following approximation seems to have been used:

R
60

=
3438
60

= 57.3 ≈ 60.
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Fig. 7.1b Āks.a- and āyana-dr. kkarmas when the latitude and the declination both have different
directions (one positive and the other negative).

On the other hand, if the declination and latitude have opposite directions
(Fig. 7.1b), then the correction has to be applied positively. In the figure, CD′ rep-
resents the āks.a correction and CD represents the āyana correction. In this case, it
may be noted that β = G′D is negative, whereas the declination is positive.

λ ′ = ΓC = Γ D +DC

= λ + |x|
= λ + |β | |δ ′|. (7.23)

Absence of the dr. kkarma

In Figs. 7.1a and 7.1b, we have depicted the dr. kkarma corrections when the planet
is rising. Similar corrections have to be applied at its setting. By applying these
corrections we essentially get the lagna at the time of rising or setting of the planet.
Since the rising and setting times of the different lagnas have already been discussed
extensively in Chapter 3, here the whole exercise is meant for finding the rising and
setting time of the planets.

When the planet is on the meridian, the āks.a-dr. kkarma is zero. The formula for
finding the āks.a-dr. kkarma is given by

a =
β sin ψ

cosθ cos(θ +ψ)
. (7.24)
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When the graha G is on the meridian, ψ = PĜN = 0◦ or 180◦. Therefore, sinψ = 0
and hence a = 0. Thus, in the madhyalagna calculation, only the āyana-dr. kkarma
contributes.7.2 g{a;h;a;Na;Ma I+.�;
a;va;[ea;paH
7.2 The desired latitude of the planetsma;nd;~å.Pu +.f;a;t,a .~va;pa;a;ta;ea;na;a;t,a Ba;Ea;ma;a;d� ;a;na;Ma Bua:ja;a;gua;Na;a;t,a Á Á 4 Á Á:pa:=+ma;[ea;pa;�a;na.Èåî ÁÁ*+;a .~ya;a;t,a [ea;pa;eaY;ntya;(ra;va;Na;ea:;dÄâx ;taH Ákx +:ta;nea:�a;Bua:ja;ñÍç ÅÅ*:+.a;ñÍç ÅÅ*:+.
a;d;Za;ea d;Za;gua;Na;aH kÒ +:ma;a;t,a Á Á 5 Á Á:pa;a;ta;Ba;a;ga;aH ku +.ja;a;d� ;a;na;Ma A;Ta ;
a;va;[ea;pa;�a;l+.�a;�a;k+:aH Ána;va;a;kR +:tvRa;kR +.=+va;ya;ea d;Za.Èåî ÁÁ*+;aH :pa:=+ma;aH kÒ +:ma;a;t,a Á Á 6 Á Á

mandasphut.āt svapātonāt bhaumād̄ınām. bhujāgun. āt || 4 ||
paramaks.epanighnā syāt ks.epo

′ntyaśravan. oddhr. tah. |
kr. tanetrabhujaṅgāṅga díso daśagun. āh. kramāt || 5 ||
pātabhāgāh. kujād̄ınām. atha viks.epaliptikāh. |
navārkartvarkaravayo daśaghnāh. paramāh. kramāt || 6 ||
The product of the Rsine of the manda-sphut.a of the planet Mars etc. from which the
longitude of the node is subtracted, and the maximum deflection [of the planetary orbit],
when divided by the last hypotenuse (antya-́sravan. a) gives the latitude of the planet. 4,
2, 8, 6 and 10, [each of them] multiplied by 10, are respectively the longitudes of the nodes
in degrees of the five planets beginning with Mars. The maximum deflection [of Mars etc.
from the ecliptic] in minutes are 9, 12, 6, 12 and 12, respectively, multiplied by 10.

The product of the maximum deflection of the planet and the Rsine of the
manda-sphut.a minus the node of the planet, i.e. Rsin(λms − λn), divided by the
trijyā is the heliocentric latitude of the planet. When that is multiplied by the trijyā
and divided by the last hypotenuse called the antya-śravan. a, it gives the geocentric
latitude of the planet known as the is. t.a-viks.epa (desired latitude). In other words,
the relation given is

is. t.a-viks.epa =
parama-ks.epa×Rsin (mandasphut.a−pāta)

antya-śravan. a
. (7.25)

The commentator mentions that the manda-sphut.a referred to here is the longitude
of the planet obtained after applying the full-manda correction. That is, the longi-
tude obtained after the third stage of the correction in the case of exterior planets.3

That the term antya-śravan. a is used to refer to the ś̄ıghra-karn. a, which arises in the
last operation of the four-step process, is clarified by the commentator as follows:

. . .A;ntya;(ra;va;Nea;na Z�a;a;Gra;k+:NeRa;na ;
a;va;Ba:jea;t,a Á ta:�a l+.b.DaH I+.�;
a;va;[ea;paH Á A:�a ma;nd;~å.Pu +.f;Za;b.de ;nakx +:t=+:ïîåéa;ma;nd;P+.l+.sMa;~kx +:ta;~å.Pu +.f;ma;Dya;ma o+..ya;tea Á Z�a;a;Gra;k+:NRa;(ãÉa A;ntya;~å.Pu +.f;k+:mRa;Nya;a;n�a;a;taH ÁA;ta O;;va;ea;�+:m,a ‘A;ntya;(ra;va;Na;ea:;dÄâx ;ta’ I+.�a;ta Á
3 For details regarding the four stages of the correction that is done to obtain the true longitude of
the planet, the reader is referred to Chapter 2, verses 61–8.
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. . . divide by the last hypotenuse which is ś̄ıghra-karn. a. The result thus obtained is the
desired deflection. Here, by the word manda-sphut.a, the mean planet corrected by the
application of the whole manda-phala is referred to. The ś̄ıghra-karn. a is the one that is
obtained in the final-correction process (antya-sphut.a-karma). Hence it is said: ‘divided
by the antya-́sravan. a’.

Earlier in Chapter 2, we have discussed the revision of the planetary model by
Nı̄lakan. t.ha, and his geometrical model of planetary motion. In this unified model
for both exterior and interior planets, each planet moves in an eccentric circle around
the ś̄ıghrocca, which is the mean Sun. The longitude of the planet on the eccentric
orbit with respect to the mean Sun corresponds to the manda-sphut.a-graha, which
is the true heliocentric longitude. The mean Sun itself moves around the Earth uni-
formly in the plane of the ecliptic. Taking this into account, we obtain a longitude
of the planet with respect to the Earth, which is the geocentric longitude. The same
considerations apply for a unified model of latitudes, presented in the above verses.

The geocentric latitude at any desired instant called the is. t.a-viks.epa, given in
(7.25), may be expressed as

βE = βmax ×
Rsin (λms −λn)

ś̄ıghra-karn. a
, (7.26)

where λms is the manda-sphut.a, λn is the longitude of the node, βmax is the max-
imum deflection, and the s̄ıghrakarn. a is the Earth–planet distance. The maximum
deflections (in minutes) are 19, 120, 60, 120 and 120 for Mars, Mercury, Jupiter,
Venus and Saturn respectively. The rationale behind the above expression may be
understood as follows.

βh

Q

P

i

S

N

Fig. 7.2a Heliocentric latitude of the planet.

Consider the latitude of the planet with respect to the Sun, as shown in Fig. 7.2a.
Here P and N refer to the planet and the node, and S is the mean Sun. The orbit of the
planet is inclined at an angle i with respect to the mean Sun. Then the heliocentric
latitude βh is given by

βh ≈ isin(λms −λn), (7.27)

where the latitude and the inclination are assumed to be small. The relation between
the geocentric latitude, βE , which is measured with respect to the Earth, and βh is
depicted in Fig. 7.2b. Now the arc PQ may be written as
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Fig. 7.2b Obtaining the geocentric latitude of a planet from its heliocentric latitude.

PQ = βE ×EP. (7.28)

Also PQ = βh × SP. (7.29)

Hence

βE = βh
SP
EP

, (7.30)

or βE = isin(λms −λn)
SP
EP

. (7.31)

This is the model described in Yuktibhās. ā also. For exterior planets, SP = R (the
trijyā), and EP = the ś̄ıghra-karn. a. Then

βE =
iRsin(λms −λn)

ś̄ıghra-karn. a
. (7.32)

Comparing this expression with (7.25), the inclination i can be identified with the
maximum deflection, βmax.

For the interior planets, SP = rs, the radius of the ś̄ıghra epicycle. Then

βE =
i rs sin(λms −λn)

ś̄ıghra-karn. a

=
i
( rs

R

)
Rsin(λms −λn)

ś̄ıghra-karn. a
.

Again comparing this with (7.25), βmax should be identified with i
(

rs
R

)
. In other

words i, which is the inclination of the orbit of an interior planet with respect to

the ecliptic, should be identified with βmax

(
R
rs

)
.4 βmax is given as 2◦ for both, Mer-

cury and Venus. Now, the mean values of rs
R for Mercury and Venus are 31

80 and 59
80 .

Then we find that the inclinations for Mercury and Venus are found to be 5◦ 10′

and 2◦ 43′ respectively. In fact, these values are essentially the same as the ones in
Āryabhat. ı̄ya.

4 This point has been noted by D. A. Somayaji in his explanatory notes to Siddhāntaśiroman. i;
{SSR 2000}, p. 476.



394 dx ;ë�Åë�Á*:+:mRa;pra;k+.=+Na;m,a Reduction to observation

Maximum Corresponding Inclination, i
Planet deflection, βmax (textual) inclination, i (textual) (modern)
Mercury 2◦ 5◦ 10′ 7◦

Venus 2◦ 2◦ 46′ 3◦ 24′

Mars 1◦ 30′ 1◦ 30′ 1◦ 51′

Jupiter 1◦ 1◦ 1◦ 18′

Saturn 2◦ 2◦ 2◦ 29′

Table 7.1 Comparison of the textual values of the inclinations of the planetary orbits with the
modern ones.

We compare the values of these inclinations with the modern values in Table 7.1.
It can be seen from table that for exterior planets there is reasonable agreement
between the stated values and the modern values. The interior planets fare worse,
even after taking the factor of R

rs
into account. This is understandable, particularly

for Mercury, as their latitudes would have been difficult to observe.7.3 g{a;h;a;Na;Ma dx ;ë�Åë�Á*:+:mRa
7.3 Reduction to observation of the true planets;
a;va;[ea;pa;a;.C+.a;Za;va;t,a k+:a;yeRa .tea;Sa;Ma dx ;ë�Åë�Á*:+:mRa;N�a;a o+.Bea Á Á 7 Á Á

viks.epācchaśivat kārye tes. ām. dr. kkarman. ı̄ ubhe || 7 ||
The two dr. kkarmas have to be carried out (for the planets also) as in the case of the Moon,
using their own latitudes.

Since the dr. kkarma for the five star planets have been discussed earlier along with
the Moon, while explaining verses 1–4 of this chapter, this is not elaborated here.7.4 dx ;ë�Åë�Á*:+:mRa;a;Na :pra;k+:a:=+a;nta:=+m,a
7.4 Alternate method for reduction to observation;
a;va;[ea;pa;dx ;k, [ea;pa;va;Dea 5 ;
a:�a;ma;Ea;v.ya;Ra ;�a;na;h;tya ta;t,a k+:ea;�a;f;va;Dea;na Ba;�e Á;Da;nua;DRa;na;N a h;�a:=+dE ;k�+.a;Bea;d;a;t,a ta;ya;eaH Za;Za;a;ñÍö�ÅÅ*:+.a;dùÅ;au ;d;yeaY;nya;Ta;a;~tea Á Á 8 Á ÁO;;vMa va;a yua;ga;pa;t,a k+:a;y a dx ;ë�Åë�Á*:+:mRa;yua;ga;lM .~å.Pu +.f;m,a Á Á 9 Á Á

viks.epadr. kks.epavadhe trimaurvyā nihatya tat kot.ivadhena bhakte |
dhanurdhanarn.am. haridaikyabhedāt tayoh.
śaśāṅkādyudaye ′nyathāste || 8 ||
evam. vā yugapat kāryam. dr. kkarmayugalam. sphut.am || 9 ||
The product of the viks.epa [of the planet] and the dr. kks.epa is to be multiplied by the
trijyā and divided by the product of the cosines of the viks.epa and the dr. kks.epa. The arc

5 We feel that the text here should be ;
a;va;[ea;pa;dx ;k, [ea;pa;va;Da;m,a instead of ;
a;va;[ea;pa;dx ;k, [ea;pa;va;Dea, because the
former seems to be grammatically appropriate.
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of the result has to be added or subtracted [to the longitude of the planet] depending upon
whether the viks.epa and the dr. kks.epa have the same direction or otherwise, when it is
rising as in the case of the Moon. During setting the application has to be reversed.

In this way, the two dr. kkarmas may be carried out in a single step for getting the position.

The aim is to arrive at a single formula for the dr. kkarma (DD′ of Fig. 7.1 or 7.3).
It turns out that the formula is an exact result without involving the kind of approx-
imations used in getting the āks.a and āyana-dr. kkarmas (in verses 1–4). It is stated
that the dr. kkarma is the arc corresponding to the following expression:

DD′ = Arc of

(
viks.epa× dr. kks.epa× trijyā

cos (viks.epa)× cos (dr. kks.epa)

)
. (7.33)

In modern notation, we have the following relation

DD′ = sin−1(tanβ tanzv). (7.34)

This expression is the same as the expression for the ‘cara’ (ascensional difference),
with the declination δ replaced by the celestial latitude β and the terrestrial latitude
φ replaced by the arc of the dr. kks.epa zv.
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Fig. 7.3 Expression for the dr. kkarma correction.

Proof:

In what follows, we give the derivation of the dr. kkarma correction using spherical
trigonometry. For a derivation of this result using the traditional approach, the reader
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is referred to Chapter 14 of Yuktibhās. ā.6 In Fig. 7.3, V refers to the vitribhalagna,
which is a point on the ecliptic which is 90◦ from the lagna D′. The sine of the
zenith distance of the vitribhalagna, denoted by sinzv, is called the dr. kks.epa. In the
triangle V ZD′,

D′V = 90, ZD′ = 90, and VD̂′Z = ZV = zv. (7.35)

In the spherical triangle DD′G, GD = β and DD̂′G = 90−VD̂′Z = 90− zv. Let θ
be the instantaneous angle between the secondary to the ecliptic through G and the
horizon. Using the sine formula, we have

sin DD′

sinθ
=

sinβ
sin(90− zv)

. (7.36)

Therefore

sinDD′ =
sinθ sinβ

coszv
. (7.37)

Considering the spherical triangle ZGK and applying the cosine formula, we have

cosZK = cosβ sinθ . (7.38)

Since ZK = 90− zv, we have

sinθ =
sinzv

cosβ
. (7.39)

Using (7.39) in (7.36), we get

sinDD′ = tanβ tanzv, (7.40)

which is the same as the formula (7.34) given in the text.7.5 k+:a;l+.l+.çÉîå+;aM k+:a;l+.Ba;a;ga;(ãÉa
7.5 Kālalagna and the divisions of timeO;;vMa kx +:ta;~ya ..a;ndÒ +a;de H .~va;ea;d;yeaY;~ta;ma;yeaY;
a;pa va;a Á.sa;a;ya;na;~ya .=+vea;(ãÉa;a;
a;pa k+:a;l+.l+.çÉîå+;aM na;yea;d, dõ ;ya;eaH Á Á 10 Á Áta;d;nta:=+Ba;vEa;Ba;Ra;gEaH dx ;ZyaH .~ya;a;d, dõ ;a;d;Za;a;
a;d;Æa;BaH ÁnyUa;nEaH Kea;f;ea na dx ;ZyaH .~ya;a;t,a Ba;a;nua:=+�////////�a;Zma;h;ta;pra;BaH Á Á 11 Á Ádõ ;a;d;Za;a;tya;�;ya;ea ;
a;va:(õ;ea .�+:dÒ +a;ñÍö�ÅÅ*:+.�a;ta;Ta;yaH kÒ +:ma;a;t,a Á..a;ndÒ +a;
a;d;k+:a;l+.Ba;a;ga;a;~tEaH dx ;Zya;a .~va;a;k+:Ra;nta:=+ea;;�ÂåÅ +vEaH Á Á 12 Á Á

evam. kr. tasya candrādeh. svodaye ′stamaye ′pi vā |
sāyanasya raveścāpi kālalagnam. nayed dvayoh. || 10 ||
tadantarabhavairbhāgaih. dr. śyah. syād dvādaśādibhih. |

6 {GYB 2008}, pp. 822–6.
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nyūnaih. khet.o na dr. śyah. syāt bhānuraśmihataprabhah. || 11 ||
dvādaśātyas.t.ayo vísve rudrāṅkatithayah. kramāt |
candrādikālabhāgāstaih. dr. śyā svārkāntarodbhavaih. || 12 ||
Let the kālalagna of the sāyana (tropical) Sun and that of the Moon and the other planets,
with the above corrections incorporated, be found at their rising or setting.

If the difference in degrees [stated below] is greater than twelve etc. then the planet is
visible. If less, it will not be visible [because of] its glow being suppressed by the brilliance
of the Sun.

If the differences between the kālalagna of the Sun and those of the other planets starting
with the Moon are 12, 17, 13, 11, 9 and 15 respectively, then they are visible.

Here the minimum angular separations that are required for the visibility of the
Moon and the five star planets in terms of the difference in the kālalagnas are
specified. The minimum angular separations for the different planets are given in
Table 7.2.

Name of planet Min. angular separation, ψm (in deg)
Moon 12
Mars 17

Mercury 13
Jupiter 11
Venus 9
Saturn 15

Table 7.2 Angular separation required for the visibility of the planets.
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Fig. 7.4 Minimum angular separation for the visibility of a planet.
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In Fig. 7.4, S is the Sun and G the planet. If ξ and θ are the kālalagnas of the Sun
and the planet respectively, then the difference between their kālalagnas is given by

ψ = |θ −ξ |. (7.41)

The criterion for the visibility of a planet given by Nı̄lakan. t.ha is that ψ ≥ ψm,
where ψm is the minimum angular separation, whose value is listed for each planet
in Table 7.2. If ψ < ψm, then the planet is invisible. This seems to be an empirical
prescription.7.6 g{a;h;a;Na;Ma o+.d;ya;a;~ta;ma;ya;dx ;Zya;a;dx ;Zya;ta;a
7.6 Visibility or otherwise of the planets during their rising and

settingA;~tMa ya;a;nt�a;a;q:�a;Za;nya;a:=+aH :pa;(ãÉa;a;t,a :pra;a;gua;d;ya;�////�a;nta ..a Á:℄a;Zua;kÒ +:Ea va;
a;kÒ +:Na;a;vea;vMa A;nya;Ta;a Z�a;a;Gra;ga;a .=+veaH Á Á 13 Á Á:pa;(ãÉa;a;�ea;t,a :Sa:ñÂÅÅå*.+:yua;�+:a;kR +:g{a;h;ya;ea:=+nta:=+ea;;�ÂåÅ +vEaH Ák+:a;l+.Ba;a;gEa;�a:=+h :℄ea;yMa dx ;Zya;tvMa va;a;pya;d;ZRa;na;m,a Á Á 14 Á Á.~va;a:�+.Q+Ba;Ma;Za;�a;l+.�a;a;dùÅ;aE H .~va;~va;
a;va;[ea;pa;ta;eaY;
a;pa ..a Á.$ya;ea;�a;ta;Sa;a;Æa;ma;ta:=e +Sa;Ma ..a k+:a;l+.Ma;ZEa;n�a;Ra;ya;tea .~va;kE H Ád;ZRa;na;a;d;ZRa;nea va;a;.yea .sa;}ya;gea;va :pa:=� +a;[a;kE H Á Á 15 Á Á
astam. yānt̄ıd. yaśanyārāh. paścāt prāgudayanti ca |
jñaśukrau vakrin. āvevam. anyathā ś̄ıghragā raveh. || 13 ||
paścāccet s.ad. bhayuktārkagrahayorantarodbhavaih. |
kālabhāgairiha jñeyam. dr. śyatvam. vāpyadarśanam || 14 ||
svārūd. habhām. śaliptādyaih. svasvaviks.epato

′pi ca |
jyotis. āmitares.ām. ca kālām. śairn̄ıyate svakaih. |
darśanādarśane vācye samyageva par̄ıks.akaih. || 15 ||
Mars, Jupiter and Saturn set in the east and rise in the west. Even Mercury and Venus do so
when they are in retrograde motion. It is otherwise in the case of those which move faster
than the Sun (namely the Moon, Mercury and Venus in their direct motion).

If (the rising or setting) is to the west, then the visibility or otherwise is to be decided by
finding the difference between the kālalagna of the planet and that of the Sun increased by
180 degrees.

Even in the case of other celestial objects, depending upon their latitude and the rāśi etc.
in which they are located, and their own kālalagna, their visibility or non-visibility should
be declared by the observers correctly.

At the first glance, the prose order of verse 13 would seem to be:IR +.q:�a;Za;nya;a:=+aH :pa;(ãÉa;a;t,a A;~tMa ya;a;�////�a;nta; :pra;a;gua;d;ya;�////�a;nta ..a Á va;
a;kÒ +:Na;Ea :℄a;Zua;kÒ +:Ea (A;
a;pa) O;;va;m,a Á .=+veaHZ�a;a;Gra;ga;a A;nya;Ta;a Á
However, closely examining the phenomenon explained by these verses with di-

agrams, we concluded that the prose order must be:



7.6 Visibility or otherwise of the planets 399IR +.q:�a;Za;nya;a:=+aH :pra;a;k, A;~tMa ya;a;�////�a;nta; :pa;(ãÉa;a;du ;d;ya;�////�a;nta ..a Á va;
a;kÒ +:Na;Ea :℄a;Zua;kÒ +:Ea (A;
a;pa) O;;va;m,a Á .=+veaHZ�a;a;Gra;ga;a A;nya;Ta;a Á
The translation of the verse given above is also in the light of the above under-

standing. This is at variance with the commentary given by Śaṅkara Vāriyar. It
appears that the terms udaya and astamaya used in the above verses are not to be
understood in the usual sense of the rising and setting of the planets at the observer’s
horizon. They are actually used to refer to the visibility and the non-visibility of the
planets when their directions are close to that of the Sun.
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Fig. 7.5 Rising and setting of an exterior planet.

In Fig. 7.5, let J1 and J2 be the positions of the Jupiter when it becomes invisible
(owing to the brilliance of the Sun) and once again becomes visible, respectively.
Let S1 and S2 be the corresponding positions of the Sun. When the Sun is at S1 the
planet Jupiter is at J1 and just becomes invisible. Here it must be noticed that the
direction of Jupiter is to the east compared with that of the Sun. In other words,
Jupiter sets when it is to the east of the Sun.

Similarly the rising (becoming visible again) of Jupiter happens when it is to the
west of the Sun. This is indicated by the position of Jupiter at J2 which is to the west
of the Sun at S2. The above picture is also true for inner planets when they are in
retrograde motion (see Fig. 7.6). When the Sun is at S1, Venus is at V1, just setting,
and it is to the east of the Sun as seen from the Earth. Similarly, when the Sun is at
S2, Venus is at V2. It is just rising and lies to the west of the Sun as mentioned in the
verse: vakrin. au jñaśukrau (api) evam. .

On the other hand, when the inner planets are executing direct motion, as shown
in Fig. 7.7, they set in the west and rise in the east. The orbit of the Moon is also
shown in the figure. Here M1 and V1 are the positions of the Moon and Venus when
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Fig. 7.6 Rising and setting of an interior planet in retrograde motion.

W
E

E

W

O

M

M

V

V

S
S

(Earth)

around the Earth
orbit of the Moon

around the Earth
orbit of the Venus 

orbit of the Sun
around the Earth

(direction of motion 
 of the Moon ) 

1

2

1

2

1

2

Fig. 7.7 Rising and setting of the Moon and the interior planet in its direct motion.

they lose their visibility (set). It may be noted that the Moon and Venus lie to the
west of the Sun at S1. By the time the Sun moves from S1 to S2, say, the Moon and
the Venus would have moved to the positions M2 and V2, where they once again
become visible (by rising). This is what is stated as:A;nya;Ta;a Z�a;a;Gra;ga;a .=+veaH Á

the directions (of rising and setting) are reversed for those (planets) which move faster than
the Sun.



Chapter 8Zxa;ñÍç ÅÅ*:+.ea;�a;�a;ta;pra;k+.=+Na;m,a
Elevation of lunar horns

8.1 BUa;.a;ndÒ +a;nta:=+~å.Pu +.f� ;a;k+.=+Na;m,a
8.1 Correcting the distance of separation between the Earth and

the Moonv.ya;keR +:ndu ;ba;a;hu ;k+:ea;�a;f:$yea h;teaY;p�a;a;ndU ;�a;Ba;a;~va;taH Ák+:ea;f�a;DeRa;na ;
a:�a:j�a;a;va;a;�a;d;Za.Èåî ÁÁ*+e ;ndu ;k+:l+.a;(rua;ta;Ea Á Á 1 Á ÁA;ya;nEa;k�+.ae ..a Bea;de ..a .~va;N a k+:ea;�a;f:ja;mea;ta;ya;eaH Áta;dõâ â ;a;hu ;P+.l+.va;gERa;k�+.a;mUa;l+.Æa;ma;ndu ;Da:=+a;nta:=+m,a Á Á 2 Á Á;
a:�a:$ya;a.Èåî ÁÁ*+M ba;a;hu :jMa .tea;na Ba;�M .~va;N a ;
a;va;Da;eaH .~å.Pu +.fe Ák+:k�+.aeR ;Na;a;d;Ea ;
a;va;DUa;�a;ea;na:=+va;Ea Zua;ë�ÅÉì*:e Y;nya;Ta;aY;Æa;sa;tea Á Á 3 Á Á
vyarkendubāhukot.ijye hate ′p̄ındūccabhāsvatah. |
kot.yardhena trij̄ıvāptadaśaghnendukalāśrutau || 1 ||
ayanaikye ca bhede ca svarn. am. kot.ijametayoh. |
tadbāhuphalavargaikyamūlamindudharāntaram || 2 ||
trijyāghnam. bāhujam. tena bhaktam. svarn. am. vidhoh. sphut.e |
karkyen. ādau vidhūcconaravau śukle ′nyathā ′site || 3 ||
The bhujājyā and kot.ijyā of the difference between the longitudes of the Sun and the
Moon is multiplied by half of the kot.ijyā of the difference between the longitudes of the
Sun and the mandocca of the Moon and divided by the trijyā. Of these two, the one
obtained from the kot.ijyā is applied to 10 times the hypotenuse of the Moon in minutes,
positively or negatively depending on whether the ayanas are the same or different. The
square root of the sum of the squares of that and the bāhuphala is the distance of separation
between the Moon and the Earth (in yojanas). Whatever is obtained from the bhujājyā [or
bāhuphala] has to be multiplied by trijyā and divided by that [dvit̄ıya-sphut.a-karn. a].
The result obtained must be applied positively or negatively to the true (manda-corrected)
Moon, depending upon whether the longitude of Sun minus the mandocca of the Moon
lies within the six signs beginning with Karka or Mr. ga in a bright fortnight, and reversely
in a dark fortnight.

The second major correction to the Moon’s longitude is the so called ‘evec-
tion’ term, some form of which was first introduced by Ptolemy in his Almagest.
Among the Indian astronomical works that are extant today, this correction first

401
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appears—in very much the form it is used in modern astronomy—in Laghumānasa
of Mañjulācārya.1 The set of verses given above present the evection correction
which is to be applied to the Moon in a general situation, and not necessarily only in
the computation of eclipses. In fact, the variation that arises in the Moon’s distance
owing to this term has already been considered in the earlier chapters on lunar and
solar eclipses, in discussing the ‘dvit̄ıya-sphut.a-yojana-karn. a’ (the second true
distance in yojanas). In other words, the expression for the distance of separation
between the Earth and the Moon given there takes this evection correction into ac-
count (though this is not explicitly stated). We now proceed to explain the formula
presented in the text.

Let λs and λm be the longitudes of the Sun and the Moon. Then during an eclipse
the two are related by

λm = λs +180◦ (lunar)

and λm = λs (solar). (8.1)

Let λu be the true longitude of the mandocca (apogee) of the Moon. Now we define
two quantities x and y as follows:

x =
Rsin(λm −λs)×

Rcos(λs −λu)

2
R

(8.2)

and y =
Rcos(λm −λs)×

Rcos(λs −λu)

2
R

. (8.3)

Here x is called the bāhuphala, and y the kot.iphala. As discussed in Chapter 4, the
mean value of the Earth–Moon distance is 10 R or 34380 yojanas. When the equa-
tion of centre is included, the distance would be 10 K, where K is the mandakarn. a.
The kot.iphala is to be applied to 10K to obtain an intermediate quantity K′ that will
be used in making a new estimate of the distance,

K′ = 10K + y. (8.4)

The sign of the correction is incorporated in the above expression. This is because
y is positive when both (λm − λs) and (λs − λu) lie between −90◦ and +90◦ or
between 90◦ and 270◦, that is, both have the same ayana. It is only in this range that
the product of the cosines is positive as both of them are positive or negative in this
range. When they have different ayanas, y is negative. The distance of separation
between the Earth and the Moon is given as

Dm =
√

K′2 + x2. (8.5)

1 It has been ascribed by later commentators to a work of Vat.eśvara (904 CE), manuscripts of
which have not been traced so far.
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The geometrical picture corresponding to the evection correction—known as sec-
ond correction or dvit̄ıya-sphut.a—is described in Yuktibhās. ā.2 In this model, the
centre of the bhagola is displaced from the centre of the Earth. The manda-sphut.a
(manda-corrected longitude) of the Moon obtained earlier was with respect to the
centre of the bhagola. Now we have to determine the true Moon with respect to the
centre of the Earth.

The procedure for the second correction is similar to the calculation of the
manda-sphut.a with the centre of the bhagola serving as the ucca, which is speci-
fied to be in the direction of the Sun. The distance between this and the centre of the
Earth, which is the radius of the epicycle, is a continuously varying quantity and is
given by

r =
R
2

cos(λs −λu) (in yojanas), (8.6)

where, as stated earlier, λs and λu are the longitudes of the Sun and the apogee of
Moon (candrocca). Here, the mean distance between the Moon and the centre of the
bhagola is 10R = 34380 yojanas. The actual distance between the same points is
10K, where K is the manda-karn. a in minutes.

For the present, we ignore the Moon’s latitude. In Fig. 8.1, C is the centre of the
Earth, separated from the centre of the bhagola (Cz) by a distance given by (8.6). A
is the Mes. ādi, and AĈCZ = λs. The manda-sphut.a of the Moon is at M1. In other
words

AĈZM1 = λm

and CZM1 = 10K, (8.7)

where K is the manda-karn. a in minutes. It is clear that CĈZN = λm −λs. CM1, the
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Fig. 8.1 The second correction for the Moon.

2 {GYB 2008}, pp. 584–7, 786–8, 975–80.
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dvit̄ıya-sphut.akarn. a in yojanas, is the distance between the manda-sphut.a and
the centre of the Earth. The bhujāphala and kot.iphala are given by

CN = x = r sin(λm −λs)

=
R

2
cos(λs −λu)sin(λm −λs),

and CZN = y = r cos(λm −λs)

=
R
2

cos(λs −λu)cos(λm −λs). (8.8)

Then, the dvit̄ıya-sphut.akarn. a (the second true distance in yojanas) is given by

CM1 = Dm =
√

(M1N)2 +CN2

=
√

(M1CZ +CZN)2 +CN2

=

√
(manda-karn. a+ kot.iphala)2 + bhujāphala2

=

[(
10K +

R
2

cos(λs −λu)cos(λm −λs)

)2

+

(
R
2

cos(λs −λu)sin(λm −λs)

)2
] 1

2

. (8.9)

As Śaṅkara notes in Laghu-vivr. ti,O;;vMa ta;tk+:ea;�a;f;P+.l+.sMa;~kx +:ta;~ya d;Za;gua;a;Na;ta;.a;ndÒ +ma;nd;~å.Pu +.f;k+:NRa;~ya ta;dõâ â ;a;hu ;P+.l+.~ya ..a va;gRa;ya;ea;ga-mUa;lM I+.ndu ;Da:=+ya;ea:=+nta:=M ya;ea:ja;na;a;tma;kM ;
a;dõ ;t�a;a;ya;~å.Pu +.f;k+:NRa I+.tya;TRaH Á
Thus, it is to be understood that the square root of the sum of the squares of that bāhuphala,
and the karn. a of the manda-sphut.a of the Moon, which is multiplied by 10 and corrected
by the kot.iphala, will be the dvit̄ıya-sphut.akarn. a, which corresponds to the distance of
separation between the Earth and the Moon in yojanas.

Now the longitude of the Moon as seen from the centre of the Earth (bhūgola) is

λ ′
m = AĈM1

= AĈM′
1 −M1ĈM′

1

= AĈzM1 −M1ĈM′
1

= λm −δθ . (8.10)

In the right-angled triangle CM1N,

CN = CM1 sin (CM̂1N)

= CM1 sin (M1CM′
1)

= Dm sinδθ . (8.11)
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From (8.11) and (8.8) we have

Rsinδθ =
R× x
Dm

=
R

R
2 sin(λm −λs)× Rcos(λs−λn)

2

R
Dm

, (8.12)

where Dm is given in (8.9). This is what is stated in the text. Though the verse does
not make it explicit whether the arc of this is to be taken before applying it to the
Moon’s manda-sphut.a, from the discussion of this correction in Yuktibhās. ā it is
clear that it is indeed the arc which has to be applied.

When it is a bright fortnight, 0 ≤ (λm −λs) ≤ 180◦ and sin(λm −λs) is positive.
Now x is negative when (λs −λu) is between 90◦ and 270◦ and positive otherwise.
Then the correction term in λ ′

m, which is −δθ , is positive or negative respectively in
the above two ranges for (λs −λu). In the dark fortnight, 180◦ ≤ (λm −λs) ≤ 360◦

and sin(λm −λs) is negative and the signs are interchanged.8.2 .~å.Pu +.f;.a;ndÒ +ga;�a;taH
8.2 The true motion of the Moonma;Dya;Bua;�a;�+:dR ;Za.Èåî ÁÁ*+e ;nd;eaH ;
a:�a:$ya;a.Èåî ÁÁ*+;a ya;ea:ja;nEa;&R +.ta;a ÁBUa;.a;ndÒ +a;nta:=+gEa;BRua;�a;�H ;
a;va;Da;ea:=+~ya .~å.Pu +.f;a ma;ta;a Á Á 4 Á Á

madhyabhuktirdaśaghnendoh. trijyāghnā yojanairhr. tā |
bhūcandrāntaragairbhuktih. vidhorasya sphut.ā matā || 4 ||
The mean motion of the Moon multiplied by 10 and the trijyā, and [then] divided by the
distance of separation between the Earth and the Moon in yojanas, is considered to be the
true motion of the Moon.

If it is taken that the linear velocity of the Moon (and indeed of all the planets) is
a constant, then the product of the true distance (Dm) and the true daily motion (d′

m)
will be equal to the product of the mean distance (10R) and the mean daily motion
(dm). That is,

Dm × d′
m = 10R×dm

or d ′
m =

dm ×10×R
Dm

, (8.13)

which is what is given in the text.
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a;va;�a;na;ya;ea;gaH
8.3 Application of the true motion of the Moon etc. obtained

earlierg{a;a;hùÅ:a;eaY;ya;mea;va BUa;~Ta;a;na;Ma dÒ +�X ;Na;Ma ..a;ndÒ +ma;aH .sa;d;a 3 Á;�a;ta;�a;Ta;na;[a:�a;ya;ea;ga;a;d;Ea l+.a;fe ..a;a;nya;ea Ba;ga;ea;l+.gaH Á Á 5 Á Á
grāhyo ′yameva bhūsthānām. dras.t.r̄. n. ām. candramāh. sadā |
tithinaks.atrayogādau lāt.e cānyo bhagolagah. || 5 ||
This [what has been stated above] should be taken as the true Moon for the observers on
the surface of the Earth. For (calculating) the tithi, naks.atra, yoga etc. and the lāt.a, the
other Moon obtained for the bhagola is to be used.

The positions of the Moon, its rate of motion, etc. as observed from the centre
of the celestial sphere, called the bhagola-madhya, will be different from those ob-
served from the centre of the Earth, called the bhūgola-madhya. Here Nı̄lakan.t.ha
specifies the problems for which the bhagola values have to be used, and those for
which the bhūgola values have to be used.

The calculation of the tithi, naks.atra, etc. are all with respect to the centre of
the celestial sphere (the bhagola). Hence the parameters obtained for an observer
centred at the bhagola have to be used. In other words, in their computation the
second correction for the Moon is not taken into account. However, for problems
like the grahan. a, śr. ngonnati etc. the bhūgola values have to be used, that is, the
second correction is taken into account. In these problems, which are very much
dependent on the position of the observer on the surface, there is a further correction
due to parallax, which has been discussed earlier.

This demarcation as to where to use the dvit̄ıya-sphut.a-candra (the second-
corrected Moon) and where to use the prathama-sphut.a has also been explained
by Śaṅkara Vāriyar in his Laghu-vivr. ti:BUa;pxa;�+a;va;�//////�a;~Ta;ta;dÒ +�x ;ke +:ndÒ e +Na g{a;h;pra;a;
a;pa;Na;a :pra;�a;ta;[a;Na;ma;nya;a;dx ;Za;sMa;~Ta;a;nea;na dx :ñÍíéÁÁ*+;;Nq+.le +.na ya;d;a g{a;hH:pa;�a:=+�/////�a;.C+.dùÅ;a;tea ya;Ta;a g{a;h;Na;dõ ;yea ..a;ndÒ +a;k+:ERa, ya;Ta;a va;a Zxa;ñÍç ÅÅ*:+.ea;�a;ta;Ea ..a;ndÒ H ta:�a, o+.�+:va;t,a;
a;dõ ;t�a;a;ya;~å.Pu +.f;Æa;sa:;dÄâ O;;va ..a;ndÒ +ea g{a;a;hùÅ:aH Á A;nya:�a ;�a;ta;�a;Ta;na;[a:�a;ya;ea;ga;a;d;Ea l+.a;fe ..a Ba;ga;ea;l+.ga;taO;;va, :pra;Ta;ma;~å.Pu +.f;Æa;sa:;dÄâ O;;va I+.tya;TRaH Á

When the planet is measured with reference to the dr. ṅman. d. ala, which is centred around
the observer on the surface of the Earth and touches the planet, and which keeps changing
every second, as in the case of the Sun and the Moon during an eclipse or the Moon in the
case of the śr. ṅgonnati, it is only the dvit̄ıya-sphut.a-candra that has to be considered,
as mentioned earlier. Elsewhere, as in the case of [the computation of] the tithi, naks.atra,
yoga etc., as well as the lāt.a-yoga, it is only the first-corrected Moon, computed with
reference to the bhagola, that needs to be considered.

3 The prose order is: BUa;~Ta;a;na;Ma dÒ +�X ;Na;a;m,a A;ya;mea;va ..a;ndÒ +ma;aH .sa;d;a g{a;a;hùÅ:aH Á Here the term sadā is

to be understood to refer to the calculation of eclipse, sr. ṅggonnati etc.
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a;va;[ea;paH na;�a;ta;(ãÉa
8.4 The latitude and the zenith distance:pa;a;tMa ;
a;va;Za;ea;Dya ..a;a;nya;sma;a;t,a v.ya;t�a;a;pa;a;ta;ea;�+:va;tmRa;na;a ÁA;a;n�a;a;ta;Æa;ma;�;
a;va;[ea;pMa ya;ea:ja;na;(rua;�a;ta;ta;a;
a;q+.ta;m,a Á Á 6 Á ÁBUa;.a;ndÒ +a;nta:=+gEa;&R +.tva;a l+.b.DaH [ea;pa;~ta;TEa;va ..a Á.=+v�a;a;ndõ ;eaH :pxa;Ta;ga;a;n�a;a;ya na;�a;ta;l+.}ba;na;�a;l+.�a;�a;k+:aH Á Á 7 Á Á:pra;a;gva;d, BUa;pxa;�+
a;va;[ea;paH .sa ..ea;ndu ;na;�a;ta;sMa;~kx +:taH Á;
a;ba;}ba;a;nta:=e na;�a;ta;g{a;Ra;hùÅ:a;a ;
a;va;Da;ea:=+kR +:~ya ..ea;t,a .~va;k+:aH Á Á 8 Á Á

pātam. vísodhya cānyasmāt vyat̄ıpātoktavartmanā |
ān̄ıtamis.t.aviks.epam. yojanaśrutitād. itam || 6 ||
bhūcandrāntaragairhr. tvā labdhah. ks.epastathaiva ca |
rav̄ındvoh. pr. thagān̄ıya natilambanaliptikāh. || 7 ||
prāgvad bhūpr. s.t.haviks.epah. sa cendunatisam. skr. tah. |
bimbāntare natirgrāhyā vidhorarkasya cet svakāh. || 8 || 4

Having subtracted the node from the other [i.e. the longitude of the Moon obtained with-
out applying the dvit̄ıya-sphut.a], the viks.epa is to be obtained as per the procedure out-
lined in vyat̄ıpāta. This should be multiplied by the hypotenuse in yojanas (the manda-
sphut.a-karn. a) and divided by the distance of separation between the Earth and the Moon
(the dvit̄ıya-sphut.a-karn. a). The value that is obtained is the viks.epa [as seen from the
bhūgola].

Similarly, after obtaining the nati, lambana etc. in minutes, for the Sun and the Moon
separately [corresponding to the bhagola], the latitude corresponding to the observer on
the surface of the Earth (bhūpr. s.t.ha-viks.epa) has to be obtained as earlier. In finding the
distance of separation between the discs, it is this viks.epa corrected by the deflection from
the ecliptic of the Moon that should be taken as the [true] deflection from the ecliptic of the
Moon. In the case of the Sun, the parallax in latitude obtained as such should be taken as
the [true] parallax in latitude.

The latitude of the Moon corresponding to the bhagola is multiplied by the
manda-karn. a and divided by the dvit̄ıya-sphut.a-karn. a to obtain the latitude cor-
responding to the bhūgola-madhya. This viks.epa is corrected by the nati of the
Moon (deflection due to parallax) to obtain its true deflection from the ecliptic (the
bhūpr. s. t.ha-viks. epa). This is the deflection from the ecliptic which is to be used in
the computation of the distance between the solar and lunar discs.8.5 ..a;ndÒ +a;kR +:
a;ba;}ba;a;nta:=+a;na;ya;na;m,a
8.5 Finding the distance of separation between the solar and

lunar discskx +:ta;l+.}ba;na;.a;ndÒ +a;kR +:
a;va;va:=+a;t,a .$ya;a;Za:=+Ea na;yea;t,a Áta:êêÁ*.a�a;a;Æa;ma;ndu ;na;t�a;a;Sua.Èåî ÁÁ*+;Ma ;
a:�a:$ya;a;�a;Ma gua;Na;ta;~tya:jea;t,a Á Á 9 Á Ána;t�a;a;Sua;P+.l+.kx +:tya;ea;(ãÉa Bea;d;a;n}å.Ua;l+.Æa;ma;Sa;Ea ;Æa;[a;pea;t,a Á
4 Here the term ;
a;ba;}ba;a;nta:=e , should perhaps be interpreted to mean ;
a;ba;}ba;a;nta:=+a;na;ya;nea.
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a;va;va:=+ea;;�ÂåÅ +va;Ea Á Á 10 Á Á;
a;va;va:=+ea;tTa;Za:=+~ya;a;kR +:na;�a;ta;ba;a;Na;~ya ..a;a;nta:=+m,a ÁA;nta:=;$ya;a ..a ya;a ya;�a na;�a;ta:$ya;a;
a;va;va:=M ta;ya;eaH Á Á 11 Á Áya;ea;ga O;;va ;
a;d;Za;ea;BeRa;de na;tya;ea:=;�a Za;Z�a;a;na;ya;eaH Á�a;ya;a;Na;Ma va;gRa;ya;ea;ga;~ya mUa;lM ;
a;ba;}ba;a;nta:=M .~å.Pu +.f;m,a Á Á 12 Á Ákx +:ta;l+.}ba;na;.a;ndÒ +a;kR +:
a;va;va:=e Ba:�a;ya;a;�a;Da;ke Áta;d;nta:=+d;l+.~yEa;va .$ya;a g{a;a;hùÅ:a;a na Za:=+~ta;d;a Á Á 13 Á Á.=+v�a;a;ndu ;na;�a;ta;ba;a;Na.Èåî ÁÁ*+;a ;
a;dõ ;�+a ;
a:�a:$ya;a;&+.ta;a :pxa;Ta;k, Áya;ea:$yea .~va;~va;P+.l+.ea;nea .tea5 .j�a;a;va;a .sEa;va;a;nta:=+ea;;�ÂåÅ +va;a Á Á 14 Á Ána;t�a;a;Sua;P+.l+.kx +:tya;ea;yeRa Bea;d;mUa;le ta;d;nta:=+m,a Á;
a;dõ ;t�a;a;yMa ..a:=+ma;a :pra;a;gva;t,a na;�a;ta;ya;ea;ga;ea ;Æa;Ba;d;a;
a;pa va;a Á Á 15 Á Á�a;ya;a;Na;a;ma;
a;pa va;gERa;k�+.a;a;t,a mUa;lM ;
a;ba;}ba;a;nta:=M ta;d;a Á.sa;d;a ;
a;ba;}ba;a;nta:=+a;DRa;~ya ..a;a;pMa ;
a;dõ ;gua;Na;ma;nta:=+m,a Á Á 16 Á Á.=+v�a;a;ndõ ;ea;vRa;l+.yea ta:�a dÒ +�x ;ma;Dya;ea;Ba;ya;~å.pxa;a;Za Á
kr. talambanacandrārkavivarāt jyāśarau nayet |
tajjyāmindunat̄ıs.ughnām. trijyāptām. gun. atastyajet || 9 ||
nat̄ıs.uphalakr. tyośca bhedānmūlamis.au ks.ipet |
gun. abān. au tathābhūtau ucyete vivarodbhavau || 10 ||
vivarotthaśarasyārkanatibān. asya cāntaram |
antarajyā ca yā yacca natijyāvivaram. tayoh. || 11 ||
yoga eva dísorbhede natyoratra śaś̄ınayoh. |
trayān. ām. vargayogasya mūlam. bimbāntaram. sphut.am || 12 ||
kr. talambanacandrārkavivare bhatrayādhike |
tadantaradalasyaiva jyā grāhyā na śarastadā || 13 ||
rav̄ındunatibān. aghnā dvis.t.hā trijyāhr. tā pr. thak |
yojye svasvaphalone te j̄ıvā saivāntarodbhavā || 14 ||
nat̄ıs.uphalakr. tyorye bhedamūle tadantaram |
dvit̄ıyam. caramā prāgvat natiyogo bhidāpi vā || 15 ||
trayān. āmapi vargaikyāt mūlam. bimbāntaram. tadā |
sadā bimbāntarārdhasya cāpam. dvigun. amantaram || 16 ||
rav̄ındvorvalaye tatra dras.t.r.madhyobhayaspr. śi |
From the difference in the longitudes of the Sun and the Moon, corrected for the parallax
in longitude, the Rsine and Rversine have to be obtained. That Rsine multiplied by the
Rversine of the deflection from the ecliptic of the Moon and divided by the trijyā, [referred
to later as the nat̄ıs.uphala] should be subtracted from the [same] Rsine.

The square root of the difference between the squares of the Rversine of the deflection from
the ecliptic and the phala (nat̄ıs.uphala) is to be added to the Rversine. [The quantities]
thus obtained from the difference [of the Sun and the Moon] are called the gun. a and the
bān. a [respectively].

The difference between the Rversine of Sun’s parallax in latitude and the bān. a [is the first
quantity]. The [one related to the] Rsine of the difference [, or the gun. a, is the second
quantity]. The difference between the Rsines of the deflection from the ecliptic of the two
[, i.e., the Sun and the Moon, is the third quantity]. Here if the directions of the deflection
from the ecliptic of the Sun and the Moon are different, then it is only the sum that must be
considered [and not the difference]. The square root of the sum of the squares of the three

5 This has to be understood as follows: :pxa;Ta;k, (.~Ta;a;
a;pa;tea) .~vea (=.$yea) .~va;P+.le +.na (=;
a:�a:$ya;a-&+.ta:=+
a;va;na;�a;ta;ba;a;Na.Èåî ÁÁ*+:$ya;ya;a, ;
a:�a:$ya;a;&+.tea;ndu ;na;�a;ta;ba;a;Na.Èåî ÁÁ*+:$ya;ya;a ..a) �+:nea, ya;ea:$yea Á
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[quantities defined above] is the true distance between the discs (the bimbāntara) [of the
Sun and the Moon].

If the difference between the longitudes of the Sun and the Moon corrected for parallax in
longitude is greater than 90◦, then only the Rsine of half the difference of them (the Sun
and the Moon) has to be considered and not the śara.

The Rsine [thus found], kept in two places separately and multiplied by the deflection from
the ecliptic of the Sun and the Moon, should be divided by the trijyā. These [two] have
to be subtracted individually from the Rsine [thus obtained] and the results added. That is
the Rsine obtained from the difference [and this is the first phala]. The square roots of the
difference of the squares of the śaras of the deflection from the ecliptic and the phalas [are
also obtained]. The difference between them (the square roots) is the second [phala]. The
last [or the third phala] is either the sum or the difference as earlier. The square root of the
sum of the squares of the three [quantities obtained above] is then the true distance between
the discs [of the Sun and the Moon].

The angular separation between the lines emanating from the observer and passing through
the Sun and the Moon is always equal to twice the arc corresponding to half the separation
between the discs.

Here the procedure for finding the exact angular separation between the Sun and
the Moon is described. The angular separation is not the difference between the
longitudes of the Sun and the Moon, as the two bodies do not lie on the ecliptic. The
Moon has a latitudinal deflection, as its orbit is inclined to the ecliptic by about 5◦.
Moreover, both the Sun and the Moon have apparent latitudinal deflections due to
parallax. In Fig. 8.2, the actual positions of the Sun and the Moon are represented
by S′ and M′. It may be noted that both are off the ecliptic plane. S′ÔM′ is the actual
angular separation which is to be determined.

In the figure, O represents the observer on the surface of the Earth and not the
centre of the Earth. MQ is drawn perpendicular to OS. Let θ = SÔM be the differ-
ence between the longitudes of the Sun and the Moon, that is

θ = λm −λs, (8.14)

where λm and λs are the longitudes of the Moon and the Sun corrected for the
parallax in longitude. Now we find out the jyā and śara of this angle:

jyā = Rsinθ = MQ (8.15)

śara = R(1− cosθ ) = SQ. (8.16)

Depending upon the value of θ (< 90◦ or > 90◦), two apparently different formulae
are given. The true angular separation between the Sun and the Moon is referred to
as (the sphut.a-bimbāntara). Let M′′ and S′′ be the projections of M′ and S′ on the
plane of the ecliptic. If ηm is the net latitudinal deflection of the Moon (its latitude
+ parallax) denoted by MM′, then the śara corresponding to it is given by

MM′′ = R(1− cosηm). (8.17)

Similarly the śara corresponding to the parallax in latitude of the Sun is
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Fig. 8.2 The exact angular separation between the Sun and the Moon when their difference in
longitude θ < 90◦.

SS′′ = R(1− cosηs). (8.18)

With these parameters, a number of auxiliary quantities such as the nat̄ıs.uphala,
gun. a, bān. a etc. are defined in order to arrive at the required angular separation. We
explain all of the them in the following by considering the two cases θ < 90◦ and
θ > 90◦ separately.

Case 1: 0 < θ ≤ 90◦

From the jyā, (defined earlier in (8.15)) we have to find the the nat̄ıs.uphala, which
is given by

nat̄ıs.uphala =
jyā× indunat̄ıs.u

trijyā

x =
Rsinθ ×R(1− cosηm)

R
. (8.19)

In Fig. 8.2, M′′P is the perpendicular from M′′ on MQ. Therefore

PM = MM′′× cos(OM̂Q)
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= R(1− cosηm)× cos(90−θ )

= Rsinθ × (1− cosηm), (8.20)

which is the same as the nat̄ıs.uphala given in (8.19). Thus we see that the
nat̄ıs.uphala is nothing but the projection of MM′′ along MQ. Now the difference
between the jyā and the nat̄ıs.uphala is termed the gun. a. That is,

gun. a = g = Rsinθ − x. (8.21)

It can be easily seen that the gun. a is nothing but PQ in Fig. 8.2. Having found PQ,
SQ′ is determined. The latter is termed the bān. a (U).

U = SQ′ = SQ+QQ′

= R(1− cosθ)+ PM′′ (as QQ′ = PM′′)

= R(1− cosθ)+
√

(MM′′)2 −PM2

= R(1− cosθ)+
√

(R(1− cosηm))2 − x2. (8.22)

Substituting for x and simplifying, we get

U = R(1− cosηm cosθ). (8.23)

We have to find the angle S′ÔM′. In order to arrive at it, three quantities—referred
to as rāśis—are defined. The square root of the sum of the squares of the three
rāśis gives the exact separation (chord length) between the Sun and the Moon, or
the bimbāntara. It can be shown that the three rāśis ri, i = 1,2,3, defined are noth-
ing but the sides of the different right-angled triangles considered to arrive at the
required result. The first rāśi is defined as

r1 = U −R(1− cosηs)

= R(cosηs − cosηm cosθ ). (8.24)

In Fig. 8.2,

S′′Q′ = SQ′− SS′′

= U −R(1− cosηs)

= r1. (8.25)

Thus we see that the first rāśi is one side of the right-angled triangle S′′Q′M′′.
The second rāśi is defined in just one quarter of verse 11 as: ‘antarajyā ca

yā’. However, the explanation necessary to understand this statement is provided in
Laghu-vivr. ti, where it is defined as:na;t�a;a;Sua;P+.l+.sMa;~kx +:ta;a ..a;ndÒ +a;k+:Ra;nta:=+a;l+$ya;a ;
a;dõ ;t�a;a;ya;ea .=+a;a;ZaH Á

The Rsine of the difference of the Sun and the Moon corrected by the nat̄ıs.uphala is the
second rāśi.
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This implies that

r2 = Rsinθ − x

= Rcosηm sinθ . (8.26)

Now MQ = Rsinθ and PM = x. Hence

PQ = PM−MQ = Rsinθ − x. (8.27)

Thus the second rāśi is PQ, which is also equal to M′′Q′, the other side of the right-
angled triangle S′′Q′M′′. Now

√
r2

1 + r2
2 =

√
(S′′Q′)2 +(M′′Q′)2 = S′′M′′, (8.28)

is the hypotenuse of the triangle S′′Q′M′′.
The third rāśi is given to be the difference in the natijyās of the Sun and the

Moon. That is,

r3 = Rsinηm ±Rsinηs

= R(sinηm ± sinηs). (8.29)

where the sign is chosen to be ‘+’ when the deflections from the ecliptic have
opposite directions, and ‘−’ when they have the same direction. From Fig. 8.3,
M′M′′ = Rsinηm and S′S′′ = Rsinηs. Therefore

M′T = M′M′′±S′S′′

= r3. (8.30)

It may be noted that r3 forms one side of the right-angled triangle S′TM′, whose
other side S′T = S′′M′′ is given by (8.28). The separation between the discs is de-
fined to be

B =
√

r2
1 + r2

2 + r2
3. (8.31)

Substituting the expressions for the three rāśis given by (8.24), (8.26) and (8.29)
and simplifying, we have

B = R
√

2(1− (sinηm sinηs + cosηm cosηs cosθ)). (8.32)

From Fig. 8.2,

√
(S′′M′′)2 +(M′T)2 =

√
(S′′Q′)2 +(M′′Q′)2 +(M′T)2

=
√

(S′T )2 +(M′T )2

=
√

r2
1 + r2

2 + r2
3

= S′M′. (8.33)
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Fig. 8.3 The exact angular separation between the Sun and the Moon when their difference in
longitude θ > 90◦.

Thus the expression given in the text for the separation between the discs B is for
the chord joining the true positions of the Sun and the Moon as observed by an
observer on the surface of the Earth. The angle corresponding to this chord length
gives the required angular separation between the observed positions of the Sun and
the Moon. This will be discussed after considering the second case, namely θ > 90◦.

Case 2: 90◦ < θ ≤ 180◦

In this case, illustrated in Fig. 8.3, it is mentioned that we need to consider Rsin θ
2

instead of R(1−cosθ) and that this has to be multiplied by the bān. as corresponding
to the natis of the Sun and the Moon. These results have to be stored. They are
referred to as the nat̄ıs.uphalas by the commentator and are given by

xm = Rsin
θ
2
× (1− cosηm)

and xs = Rsin
θ
2
× (1− cosηs). (8.34)
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In writing the above expressions the trijyā has been factored out from both the
numerator and the denominator. In Fig. 8.3 we notice that

SS′′ = R(1− cosηs) (8.35)

and MM′′ = R(1− cosηm). (8.36)

S′′B and M′′A are perpendiculars to the line joining S and M.

If SÔM = θ , then S′′ŜB = 90− θ
2

. (8.37)

Considering the triangle S′′SB, by construction, SB is the projection of SS′′ along
MS. Thus

SB = R(1− cosηs)sin
θ
2

. (8.38)

This is the same as the expression given for the nat̄ıs.uphala of the Sun. Similarly
it can be shown that MA = xm. Thus we see that the nat̄ıs.uphalas are nothing but
the projections of the śaras of the natis of the Sun and the Moon along the chord
joining S and M.

Now the gun. as are defined by

gm = Rsin
θ
2
− xm = Rsin

θ
2

cosηm

and gs = Rsin
θ
2
− xs = Rsin

θ
2

cosηs. (8.39)

In Fig. 8.3,

O′B = O′S− SB

= Rsin
θ
2
−Rsin

θ
2
× (1− cosηs)

= Rsin
θ
2

cosηs. (8.40)

Similarly,

O′A = Rsin
θ
2

cosηm. (8.41)

Thus, from (8.39), (8.40) and (8.41) we see that the gun. as corresponding to the Sun
and the Moon given earlier are nothing but O′B and O′A. Their sum is defined to be
the first rāśi:

AB = AO′ +O′B

r1 = Rsin
θ
2

(cosηm + cosηs). (8.42)

The utkramajyās (versines) corresponding to the natis of the Sun and the Moon are
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Us = R(1− cosηs)

and Um = R(1− cosηm). (8.43)

With them the following quantities are defined:

hs =
√

U2
s − x2

s ,

hm =
√

U2
m − x2

m. (8.44)

Their difference is taken to be the second rāśi:

r2 = hm − hs. (8.45)

Substituting the appropriate expressions for the utkramajyās and the nat̄ıs.uphalas
((8.43) and (8.34)), we get

r2 = Rcos
θ
2

(cosηm − cosηs). (8.46)

Again from Fig. 8.3,

S′′B =
√

(SS′′)2 −SB2

=

√
(R(1− cosηs))2 − (Rsin

θ
2

(1− cosηs))2

=
√

U2
s − x2

s

= hs. (8.47)

Similarly, M′′A = hm. Thus

r2 = M′′A−S′′B = M′′C. (8.48)

Clearly,

M′′S′′ =
√

(S′′C)2 +(CM′′)2

=
√

(AB)2 +(CM′′)2

=
√

r2
1 + r2

2 . (8.49)

As in the previous case, the third rāśi is taken to be

r3 = M′M′′±S′S′′ = M′T. (8.50)

The separation between the discs M′S′ is defined to be
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M′S′ =
√

(AB)2 +(M′′A−S′′B)2 +(M′M′′± S′S′′)2

=
√

S′T 2 +M′T 2

=
√

(S′′M′′)2 +M′T 2

B =
√

(r2
1 + r2

2)+ r2
3

= R
√

2(1− (sinηm sinηs + cosηm cosηs cosθ )). (8.51)

Though the final expression for the separation between the discs is the same as in
the previous case (8.32), it must be noted that the expressions for r1 and r2 are quite
different in the two cases.

Now that the separation between the discs has been found for both cases, the
only thing that remains is to convert this into angular measure. Let φ be the actual
angular separation between S′ and M′ as indicated in Fig. 8.4a, that is, S′ÔM′ = φ .
Then it is easy to see that the separation between the discs M′S′ is given by

B = 2Rsin

(
φ
2

)

or φ = 2×Rsin−1
(

B

2

)
. (8.52)

This is the expression, stated in the text, for the angular separation. Note that φ can
always be taken to be less than 180◦ (see Fig. 8.4a). As φ is very nearly equal to
|λm −λs|, it will be easy to check whether φ ≤ 90◦ or 90◦ < φ < 180◦.

O B

M’

S’

_
2
φ

R

Fig. 8.4a Converting the separation between the discs into angular measure.

Bimbāntara through coordinate geometry

The three rāśis
r1 = S′′Q′, r2 = M′′Q′ and r3 = M′T

in Case 1, and

r1 = AB, r2 = M′′A−S′′B and r3 = M′M′′±S′S′′
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in Case 2, are the projections of the chord S′M′ along three mutually perpendicu-
lar directions. They are just the differences in coordinates of S′ and M′ along the
three directions, and the whole exercise is very similar to what is done in three-
dimensional coordinate geometry. For comparison, we derive the expression for the
separation between the discs in (8.32) and (8.51) using modern coordinate geometry.

O

X

Y

(direction of 
    the Sun) 

M’

S’

M (Moon’s direction)

θ

Fig. 8.4b The exact angular separation between the Sun and the Moon using coordinate geometry.

In Fig. 8.4b, the ecliptic is taken to be the x–y plane. Further, the x-axis is taken
to be along the direction of the Sun. The line OM, drawn at an angle θ with respect
to the x-axis, is taken to be the direction representing the longitude of the Moon.
The actual positions of the Sun and the Moon as seen by an observer are off the
plane owing to parallax. Their positions are represented by the points S′ and M′. For
convenience both are taken to be lying above the plane (+ve z-axis). Taking ηs and
ηm to be the parallactic shifts in latitude of the Sun and the Moon, their coordinates
are given by

S′ = (cosηs, 0, sinηs)

and M′ = (cosηm cosθ , cosηm sinθ , sinηm). (8.53)

Therefore, the distance between them is given by

S′M′ =
√

(cosηs − cosηm cosθ )2 +(cosηm sinθ )2 +(sinηs − sinηm)2

= R
√

2(1− (sinηm sinηs + cosηm cosηs cosθ )), (8.54)

which is the same as the expression for the separation between the discs given by
(8.32) and (8.51).
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a;ba;}ba;a;nta:=+sMa;~k+:a:=H
8.6 The correction to the angular separation for finding the

Moon’s phaseta;dõâ â ;a;hu :$ya;a ..a k+:ea;�a;f:$ya;a ..a;ndÒ +dx ;ë�Åë�Á*:+:NRa;ta;a;
a;q+.tea Á Á 17 Á ÁBua:ja;a;k+:ea;�a;f;P+.le Ba;�e .=+
a;va;dx ;ë�Åë�Á*:+:NRa;ya;ea:ja;nEaH Áta;a;Bya;Ma ;
a:�a;Ba:$ya;ya;a k+:Na;Ra;.C� +.a;Gra;nya;a;yea;na d;eaHP+.l+.m,a Á Á 18 Á Á..a;a;
a;pa;tMa ;Da;na;mea;va;a:�a ;
a;ba;}ba;a;nta:=+Da;nua;Sya;dH Ák+:k�+.aeR ;Na;a;d;Ea ;
a:�a;Ba:$ya;a;ya;Ma .~va;N a k+:ea;�a;f;P+.lM ;�//�a;tva;h Á Á 19 Á Á;Æa;sa;ta;ma;a;na;a;TRa;mea;vEa;vMa .=+v�a;a;ndõ ;nta:=+Æa;ma;Sya;tea Á
tadbāhujyā ca kot.ijyā candradr. kkarn. atād. ite || 17 ||
bhujākot.iphale bhakte ravidr. kkarn. ayojanaih. |
tābhyām. tribhajyayā karn. ācch̄ıghranyāyena doh. phalam || 18 ||
cāpitam. dhanamevātra bimbāntaradhanus.yadah. |
karkyen. ādau tribhajyāyām. svarn. am. kot.iphalam. tviha || 19 ||
sitamānārthamevaivam. rav̄ındvantaramis.yate |
By multiplying the Rsine and Rcosine of the [angular separation between the discs] by the
dr. kkarn. a [in yojanas] of the Moon, and dividing by the dr. kkarn. a of the Sun in yojanas,
the bhujā and the kot.iphalas are obtained.

From them and the trijyā, the karn. a may be obtained. From the karn. a and bāhuphala,
by following the procedure discussed in ś̄ıghra-sam. skāra, the arc may be obtained and it
must always be applied positively to the angular separation between the discs. [In determin-
ing the karn. a] the kot.iphala has to be applied positively or negatively, depending upon
whether the argument lies within six signs beginning from Karka or from Mr. ga. It is only
for obtaining the phase of the Moon that [this correction to the] angular separation between
the Sun and the Moon is required.

Let φ be the angular separation between the centres of the solar and the lunar
discs6 and ds and dm be the dr. kkarn. as (distances from the Earth)7 of the Sun and
the Moon. Then the bāhuphala (b) and the kot.iphala (k) are defined by

b =
R|sinφ |× dm

ds

k =
R|cosφ |×dm

ds
. (8.55)

From these two and the trijyā, the karn. a (K) is found to be

K =
√

b2 +(R± k)2, (8.56)

where we choose the sign ‘−’ when 270 ≤ φ ≤ 90, and ‘+’ when 90 ≤ φ ≤ 270.
Then the cāpa (arc) corresponding to the correction is to be determined from the
ś̄ıghra-karn. a-nyāya, that is,

6 φ should not be confused with the terrestrial latitude.
7 The term dr. kkarn. a refers to the distance of separation between the observer and the celestial
body in yojanas.



8.7 The measure of the phase 419

Rsinθ =
b×R

K

or θ = Rsin−1
(

b×R
K

)
. (8.57)

This is always applied positively to the angular separation φ obtained earlier. That
is, the true angular separation is given by

φ ′ = φ +θ . (8.58)

Note: Here, it is mentioned that this procedure must certainly be adopted in the
calculation of the phase of the Moon. It is implicit from the use of the word ‘eva’,
in verse 20a, that it need not be done elsewhere. The significance of φ ′ is explained
in the following section.8.7 ;Æa;sa;ta;ma;a;na;m,a
8.7 The measure of the phaseo+.tkÒ +:ma:$ya;a ta;ta;ea g{a;a;hùÅ:a;a kÒ +:ma:$ya;a ..a .sa;mea :pa;de Á Á 20 Á Á;
a;ba;}ba;ma;a;na;a;h;ta;a;d, ba;a;Na;a;t,a ;
a:�a:$ya;a;Q.�a;a ..a :pa;d;a;
a;d;ke Áta;�ç Åu +Na;a;t,a kx +:t=+:ïîåéa;
a;va;Sk+:}Ba;Ba;�+:mea;va ;Æa;sa;tMa .sa;d;a Á Á 21 Á Á

utkramajyā tato grāhyā kramajyā ca same pade || 20 ||
bimbamānāhatād bān. āt trijyād. hyā ca padādike |
tadgun. āt kr. tsnavis.kambhabhaktameva sitam. sadā || 21 ||
From that (corrected angular separation between the discs) the Rversine is to be found [in
the odd quadrants] and the Rsine in the even quadrants. If φ ′ is greater than a quadrant (90◦),
then the trijyā is added to the Rsine of the excess; or else the Rversine [is considered].
Either of them is multiplied by the the diameter of the disc of the Moon (bimbamāna).
The result divided by twice the trijyā (vis.kambha) always gives the measure of the bright
phase of the Moon.

The corrected angular separation between the discs φ ′, given by (8.58), can also
be taken to be less than 180◦. With φ ′, we have to compute

utkramajyā = R(1− cosφ ′), (8.59)

when φ ′ is in the odd quadrant. On the other hand, the sum of the kramajyā (Rsine)
and the trijyā, that is,

R(1+ sinα), (α = φ ′− 90), (8.60)

has to be calculated when φ ′ is in the even quadrant.
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Formula for the phase of the Moon

Now, if am is the angular diameter of the disc of the Moon in minutes, then the
following is the expression for the phase, which is defined as the fraction of the
illuminated portion of the lunar disc:

R(1− cosφ ′)×am

2R
0 ≤ φ ′ < 90

and
R(1 + sinα)×am

2R
90 ≤ φ ′ < 180. (8.61)

As α = φ ′− 90 from (8.60), we see that the latter expression is the same as the
previous one. As the argument of the trigonometric function is less than 90 degrees,
in Indian astronomy, the two ranges are considered separately. Thus the formula for
the illuminated portion of the lunar disc reduces to

(1− cosφ ′)am

2
(8.62)

in all cases.

Rationale behind the formula

In Fig. 8.5, E, S and M represent the Earth, Sun and the Moon respectively. Let
MŜE = θ and SM = x. Now from the triangle MUS,

x =
√

MU2 +US2

=
√

(ds − dm cosφ)2 +(dm sinφ)2

=
ds

R

√(
R− dm cosφ R

ds

)2

+

(
dm sinφ R

ds

)2

=
ds

R

√
(R± k)2 +b2

=
ds

R
K. (8.63)

Now xsinθ = MU = dm sinφ . Therefore,

Rsinθ =
R dm sinφ

x

= R
b
K

[using (8.57)]. (8.64)

This is the angle θ that has to be added to φ to get φ ′. It may be noted that the
angular separation between the Sun and the Earth at the location of the Moon is
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Fig. 8.5 The illuminated portion of the Moon as seen by the observer.

ψ = 180− (θ + φ). Hence

cosψ = −cos(θ + φ) = −cosφ ′. (8.65)

This is used in the next subsection.

Phase of the Moon from spherical trigonometry

Consider the Earth-Sun-Moon system as shown in Fig. 8.6. By definition, the illu-
minated portion of the Moon’s disc—also known as the phase of the Moon—is the
arc CB. This corresponds to the segment CF across the diameter:

CF = CM +MF

= CM +MBcosψ

=
am

2
(1 + cosψ) (since CM = MB =

am

2
), (8.66)

where am is the diameter of the Moon’s disc. Using (8.65) in the above equation, the
phase of the Moon is

am

2
(1− cosφ ′), (8.67)

which is precisely the formula given in the text.8.8 Zxa;ñÍç ÅÅ*:+.ea;�a;�a;taH
8.8 Deflection of the horn (phase of the Moon):pra;a;gva;.C+.a;ya;a;Bua:ja;Ma Ba;a;na;eaH .~va;a;g{a;a;Bya;Ma ..a ;
a;va;Da;ea;nRa;yea;t,a ÁZa;ñÍö�ÅöÅ*:+.g{Ma .sa;Ea;}ya;
a;d;ë�Åë�Á*:M .~ya;a;t,a A;dx ;Zya;a;DRa;ga;tea g{a;he Á Á 22 Á Ádx ;ë�Åë�Á*:+:Na;Ra;na;ya;nea Za;ñÍö�ÅÅ*:+.eaH :P+.l+.ma;pya:�a ya;ea:ja;yea;t,a Á
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Fig. 8.6 The modern definition of the phase (illuminated portion) of the Moon.v.ya;a;sa;a;Da;Ra;t,a ta:;dÄâ ;ta;a;t,a C+.a;ya;a;Ba;�e ;Æa;[a;�a;ta:ja;gea o+.Bea Á Á 23 Á Áya;ea;ga;~ta:;dÄâ ;nua;Sa;eaH k+:a;yRaH ya;Ta;a;yua;��+.a;nta:=M ta;Ta;a ÁC+.a;ya;a;ba;a;�ë+:ea;
a;dR ;Za;ea;BeRa;de ya;ea;gaH .sa;a;}yeaY;nta:=M ta;Ta;a Á Á 24 Á Á;
a;va:(ìÉÅ;e +Sa;.a;ndÒ +ba;a;hu ;(ãÉea;t,a ;a;Za;�H .~ya;a;d, v.ya;tya;yea;na ;
a;d;k, Á.sUa;yRa;~yEa;va ta;ta;eaY;nya:�a g{a;a;hùÅ:a;a ;
a;d;g,a ya;ea;ga;Bea;d;ya;eaH Á Á 25 Á Á.~va;BUa;}ya;nta:=+�a;na.Èåî ÁÁ*+;~va;dx ;giya;a dx ;ë�Åë�Á*:+:NRa;Ba;a;Æa:ja;ta;a ÁA;keR +:ndõ ;eaH .sua;~å.Pu +.f;a dx ;giya;a dÒ +�x ;BUa;pxa;�+ga;~ya ;
a;h Á Á 26 Á Ába;a;hu ;.a;a;pa;a;nta:=;$ya;a.Èåî ÁÁ*+;a dx ;giya;a ;
a:�a:$ya;a;&+.ta;a .=+veaH Á..a;ndÒ +
a;ba;}ba;a;DRa;�a;na.Èåî ÁÁ*+;a;Ta ;
a;ba;}ba;a;nta:=+Bua:ja;a;&+.ta;a Á Á 27 Á Áo+.�a;�a;ta;(ãÉa;ndÒ +Zxa;ñÍç ÅÅ*:+.~ya na;�a;ta;va;Ra;DRa;gua;Na;a;�//////�a;tma;k+:a Áva;gRa:�a;yEa;k�+.a;mUa;l+.~ya d;l+.~ya ;
a;dõ ;gua;NMa ;Da;nuaH Á Á 28 Á Áya:�a;~ya ba;a;hu :j�a;a;va;a:�a ;
a;ba;}ba;a;nta:=+Bua:ja;ea;
a;d;ta;a Á
prāgvacchāyābhujām. bhānoh. svāgrābhyām. ca vidhornayet |
śaṅkvagram. saumyadikkam. syāt adr. śyārdhagate grahe || 22 ||
dr. kkarn. ānayane śaṅkoh. phalamapyatra yojayet |
vyāsārdhāt taddhatāt chāyābhakte ks.itijage ubhe || 23 ||
yogastaddhanus.oh. kāryah. yathāyuktyantaram. tathā |
chāyābāhvordísorbhede yogah. sāmye ′ntaram. tathā || 24 ||
vísles.acandrabāhuścet śis. t.ah. syād vyatyayena dik |
sūryasyaiva tato ′nyatra grāhyā dig yogabhedayoh. || 25 ||
svabhūmyantaranighnasvadr. gjyā dr. kkarn. abhājitā |
arkendvoh. susphut.ā dr. gjyā dras.t.r. bhūpr. s.t.hagasya hi || 26 ||
bāhucāpāntarajyāghnā dr. gjyā trijyāhr. tā raveh. |
candrabimbārdhanighnātha bimbāntarabhujāhr. tā || 27 ||
unnatíscandraśr. ṅgasya natirvārdhagun. ātmikā |
vargatrayaikyamūlasya dalasya dvigun. am. dhanuh. || 28 ||
yattasya bāhuj̄ıvātra bimbāntarabhujoditā |
Like before, find the chāyābhujā (projection of the shadow perpendicular to the east-west
line) of the Sun and that of the Moon from its own agrās (the śan. kvagrā and arkāgrā).
The śan. kvagrā will be in the north direction if the planet is in the invisible hemisphere.

Here [when the planet is in the invisible hemisphere], while obtaining the dr. kkarn. a, the
śan. kuphala must be added [to the dvit̄ıya-sphut.a-karn. a (Kd )]. By multiplying them [the
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chāyā-bhujas of the Sun and the Moon] by the trijyā and dividing by the chāyā, the two
quantities would have been converted to the ones corresponding to the ks.itija.

The arcs of the two have to be added or subtracted as is appropriate (yathāyukti). [That is,]
if the two have different directions, then they have to be added and if they have the same
direction then their difference has to be found.

While finding the difference, if the Rsine [of the zenith distance] of the Moon is remaining
[that is, if zm > zs], then the directions have to be reversed. Otherwise [that is, if zs > zm ,
both in finding the sum and difference], the direction of the azimuth of the Sun (RsinAs) is
taken to be the direction [of the resulting quantity, say x].

The dr. gjyās of the Sun and the Moon multiplied by the distance between them and the
centre of the Earth, and the two products, each divided by its own dr. kkarn. a, are indeed
the true values of the dr. gjyā of the Sun and the Moon for an observer on the surface of the
Earth.

The Rsine of the sum or difference of the arcs (x) is multiplied by the [true value of the]
dr. gjyā of the Sun and divided by the trijyā. This is multiplied by the radius of the lunar
disc and divided by the Rsine of the distance between the discs (bimbāntara-bhujā). The
result is the Rsine of the elevation of the cusp (́sr. ṅgonnati) or depression of the cusp
(́sr. ṅga-avanati) of the Moon.

The square root of the sum of the squares of the three [quantities] is halved, converted into
arc and doubled. The Rsine of that is called the bimbāntara-bhujā.

Obtaining an expression for the measure of the elevation of the Moon’s horn
(́sr. ṅgonnati) or its depression (śr. ṅgāvanati) is quite an involved process and hence
it is described in several steps. We discuss them in order below.

Chāyābhujā, arkāgrā and śaṅkvagrā and the relation among them

The terms chāyā-bhujā, also known as mahābāhu, śaṅkvagrā and arkāgrā have all
been defined in Section 3.20. The relation between them was also discussed there.
For the sake of convenience, we recapitulate some of them here. In Fig. 8.7, when
the planet is at G1, ZG1 = z is the zenith distance and PẐG1 = A is the azimuth. Then
chāyābhujā is |RsinzcosA|. I1 is the foot of perpendicular from G1 on the plane of
the horizon. From I1 draw I1J1 perpendicular to the east-west line. It is easily seen
that

I1ÔJ1 = a = 90−A

and I1J1 = chāyābhujā

= RsinzcosA

= Rsinzsina. (8.68)

The udaya-sūtra is the line joining the rising and setting points. It is parallel to the
east-west line. The perpendicular distance between the udaya-sūtra and the east-
west line is the arkāgrā (RcosA), which has been shown (see (3.88)) to be R sinδ

cosφ .
The perpendicular distance of I1 from the udaya-sūtra, represented by I1K1 in

the figure, is called the śaṅkvagrā. Since the inclination of the diurnal circle to the
vertical is same as that of the equator, which is equal to φ , I1Ĝ1K1 = φ . Therefore
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tanφ =
I1K1

I1G1
=

I1K1

cosz
. (8.69)

Hence,
I1K1 = śaṅkvagrā = cosz tan φ . (8.70)

When the planet is at G1, arkāgrā = J1K1. We now summarize the relation between
the chāyābhujā, arkāgrā and śaṅkvagrā.

Case i: Chāyābhujā north, δ north (planet at G1)

In this case,

I1J1 = J1K1 − I1K1

chāyābhujā = arkāgrā− śaṅkvagrā. (8.71)

Case ii: Chāyābhujā south, δ north (planet at G2)

In this case,

I2J2 = I2K2 − J2K2

chāyābhujā = śaṅkvagrā−arkāgrā. (8.72)

Further, I2ÔJ2 = a = A−90◦.

Case iii: Chāyābhujā south, δ south (planet at G3)

I3J3 = I3K3 + J3K3

chāyābhujā = śaṅkvagrā+arkāgrā. (8.73)

In this case also, I3ÔJ3 = a = A− 90◦. It is clear that the point I will be north of
the udaya-sūtra (that is, the śaṅkvagrā is north) only when the planet is below the
horizon. This is because, the equator and the diurnal circle tilt away from N above
the horizon, and towards N below the horizon.

Calculation of the dr. kkarn. a

The term dr. kkarn. a here refers to the distance of the Sun from the observer. This
can be found from the dvit̄ıya-sphut.a-karn. a, Kd , the distance of the Sun from the
centre of the Earth, and the zenith distance, zs. In Fig. 8.8, O is the observer and C the
centre of the Earth, whose radius is Re. S is the Sun below the horizon whose zenith
distance is zs > 90◦. Let ds be the dr. kkarn. a of the Sun. The dvit̄ıya-sphut.a-karn. a
Kd = CS. Hence MC = |Re coszs|. Considering the triangle OSM,

d2
s = OS2
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Fig. 8.7 Relation between the arkāgrā, āśāgrā and śaṅkvagrā when planet has northern decli-
nation.

= SM2 +OM2

= (Kd + |Re coszs|)2 +(Re sinzs|)2. (8.74)

Therefore

ds =
√

(Kd + |Re coszs|)2 +(Re sinzs|)2. (8.75)

Here the śaṅkuphala (|Re coszs|) is added to Kd in the first term. When the Sun is

O

S

P

equatorial plane

horizon

Re z s

π − z s

d s

meridian passing 
through the Sun 

Earth

C

M

Fig. 8.8 Calculation of dr. kkarn. a, of the Sun.

above the horizon (zs < 90◦), it can easily be seen that
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ds =
√

(Kd −|Re coszs|)2 +(Re sin zs)2. (8.76)

That is, the śaṅkuphala is subtracted from Kd .

Difference between the azimuths of the Sun and the Moon

In Fig. 8.9, S and M represent the feet of the perpendiculars from the Sun and the
Moon on the observer’s horizon. SA and MB are the perpendiculars from the Sun
and the Moon respectively on the EW line. If zs is the zenith distance of the Sun,
then

OS = chāyā = Rsinzs. (8.77)

If As and Am are the azimuths of the Sun and the Moon, then

SA = chāyābāhu = Rsin zs sinas, (8.78)

where as = As ± 90◦. The ratio of the chāyābāhu to the chāyā multiplied by the
trijyā gives Rsinas. Similarly we find Rsinam. Then the sum of or difference be-
tween the arcs of the two is calculated . That is,

α = am
+∼ as. (8.79)

We take the ‘+’ sign, when the Sun and the Moon are in different hemispheres, i.e.
projections of the Sun and the Moon fall on either side of the EW line and the ‘∼’
when both lie in the north or south. In Fig. 8.9, both are shown to be lying to the
north. If SA and MB are in different directions, or SA > MB, the projected point S

M

SO

A

B

a

Z

N

horizon

projection of the
Sun on the horizon

W

E

am

s

Fig. 8.9 The sum of or difference between the azimuths of the Sun and the Moon.
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will be north/south of M if S is north/south. If SA and MB are in the same direction
and if MB > SA, S will be south/north of M if S is north/south.

Zenith distances of the Sun and the Moon as seen by the observer

In Fig. 8.10(a), C is the centre of the Earth, O is the observer and S is the Sun. zs is
the zenith distance of the Sun with respect to the centre of the Earth and z′s is that
seen by the observer. Now

ds sin z′s = Kds sinzs. (8.80)

Since the zenith distance zs, ds the dr. kkarn. a of the Sun, and Kds = CS the dvit̄ıya-
sphut.a-karn. a are known, z′s can be calculated. A similar relation holds for the Moon
also (see Fig. 8.10(b)). Thus, for an observer on the surface of the Earth, the Rsines

z s z m

mz’sz’

d s

O

C

O

C

S

M

(b)(a)

Fig. 8.10 Calculation of the observer’s zenith distance (a) of the Sun, (b) of the Moon.

of the zenith distances of the Sun and the Moon are given by

Rsinz′s =
Rsinzs ×Kds

ds

and Rsin z′m =
Rsinzm ×Kdm

dm
(8.81)

respectively.



428 Zxa;ñÍç ÅÅ*:+.ea;�a;�a;ta;pra;k+.=+Na;m,a Elevation of lunar horns

Expression for the śr. ṅgonnati

The śr. ṅgonnati, Rm sinβ , is given by

Rm sinβ =
Rsinα ×Rsinz′s

R×Rsinφ
×Rm, (8.82)

where α is the sum or difference of the azimuths of the Sun and the Moon given
by (8.79), φ is the angular separation between the Sun and the Moon, and Rm is
the radius of the lunar disc. Essentially β is the angle of elevation/depression of the
line of cusps of the Moon. Rsinφ is termed the bimbāntarabhujā. In verse 29a it
is stated that the bimbāntara, the distance of separation between the Sun and the
Moon (denoted by d), is the square root of sum of the squares of three rāśis. It is
further mentioned that d and φ are related through the relation

d = 2Rsin

(
φ
2

)
. (8.83)

Rationale behind the formula for the śr. ṅgonnati

In Fig. 8.11(a), O represents the observer, M the centre of the Moon and S the Sun.
The figure schematically depicts the situation where the Sun has already set and
the Moon is about to set. This can be taken to roughly represent the scenario that
prevails during the last quarter of the dark fortnight.

In Fig. 8.11(b), we have depicted the cross-sectional view of the Moon. M is the
centre of the Moon. C1C2 is the line of cusps which is perpendicular to both MS and
ME, which are the lines joining the Moon to the Sun and Earth respectively. C1 and
C2 are the poles of the circle XYQBZPX , lying in the plane of the paper.

The illuminated portion of the Moon is the hemisphere facing the Sun, with
C1YC2C1 as the boundary. In this, the portion above the great circle C1XC2C1 will
be invisible to the observer, and the illuminated portion of the Moon as seen by the
observer is the union of the two spherical triangles C1XY and C2XY . In other words,
the cross-sectional view of the Moon as seen by the observer will be the interstice
between the two arcs C1XC2 and C1HGFC2 (shown shaded in the figure). For an
observer on the Earth, this portion looks as if two similar horns have been cemented
together at the bottom. The tips of the horns are C1 and C2. Since the term śr. ṅga is
used for horns in Sanskrit, the phenomenon is called the śr. ṅgonnati.

Normally the elevation of one of the śr. ṅgas will be higher than that of the other.
The śr. ṅgonnati is the angle between the line of cusps and the horizontal plane. In
the following we derive the expression for the śr. ṅgonnati using modern spherical
trigonometry and compare that with the expression given in the text. In Fig. 8.12, S
and M represent the Sun and the Moon in the same way as in the previous figures,
but on the surface of the celestial sphere. The point C is the pole of the great circle
passing through M and S. The dotted lines OS and OM represent the directions of
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Fig. 8.11 (a) Schematic sketch of the Sun and the Moon with respect to the observer’s horizon.
(b) The phase of the Moon as seen by the observer for the situation depicted in (a).

the Sun and the Moon as seen by the observer. φ is the angular separation between
the Sun and the Moon. The difference in their azimuths is given by α .

As may be seen from Fig. 8.11(b), the line of cusps C1C2 is perpendicular to OM
and MS. In other words, it is perpendicular to the plane containing the observer,
the Sun and the Moon. The direction of the Sun as seen from the Moon, and the
direction as seen from the Earth, will be almost the same because the Moon is very
close to the Earth as compared with the Sun. Hence, the lines MS and OS can be
taken to be parallel. By construction, the line OC is parallel to the line of cusps
C1C2. Hence (refer to Fig. 8.12(b) and (a)),

CÔX = C1M̂D = β . (8.84)

Therefore
CÔZ = 90−β = ZC. (8.85)

Considering the triangle ZCM and using the cosine formula,

sinβ = sinzm sin im, (8.86)

where im is the spherical angle ZM̂S. Here we need to know the angle im in terms
of other known angles. For this we consider the triangle ZMS. Applying the sine
formula, we get

sin im =
sin z′s sinα

sinφ
. (8.87)



430 Zxa;ñÍç ÅÅ*:+.ea;�a;�a;ta;pra;k+.=+Na;m,a Elevation of lunar horns

z ’m

miφ

β

α

90

Ν

 Ζ

 S

O

z’s

C

X

φpole of the circle
passing through

the Sun and the Moon

β

C
Μ

mR
(a)

(b)

vertical passing
through the Moon C1

2

D

horizon

(Sun)

i  − 90

90
 −

 β

horizontal
plane

DP

m

Μ (Moon)

Fig. 8.12 (a) Schematic sketch for finding the expression of the śr. ṅgonnati using modern spheri-
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Substituting this in (8.86), we have

sinβ =
sin z′s sinα

sinφ
sin zm. (8.88)

When the Moon is on the horizon, zm = 90, and the above equation reduces to

sinβ =
sinz′s sinα

sinφ
, (8.89)

which is same as the formula given in the text (8.82). Hence, it appears that the ex-
pression for the śr. ṅgonnati (the angle between the line of cusps and the horizontal
plane) in the verses is valid only when the Moon is on the horizon, that is zm = 90◦.8.9 Zxa;ñÍç ÅÅ*:+.ea;�a;teaH :pa;�a:=+le +.Ka;na;m,a
8.9 Graphical representation of the śr. ṅgonnati..a;ndÒ +
a;ba;}ba;a;DRa;ma;a;nea;na ;�a;l+.Kea;dõx :�Ma tua ta;�ç Å +tea Á Á 29 Á Á:=e +Kea :dõe ;
a;d;�//�a;gva;Ba;a;ga;a;T a, :pra;tya;g{ea;Ka;a;g{a;taH :pua;naH Án�a;a;tva;a Zxa;ñÍç ÅÅ*:+.ea;�a;tea;ma;Ra;nMa :pra;a;gva;d;DRa;gua;Na;a;tma;k+:m,a Á Á 30 Á Á
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a;d;Z�a;a;nd;ea;~tua :pa;�a:=+Da;Ea :pra;a;�//�a;gva;pa;yRa;ya;a;t,a Á;
a;ba;ndMu kx +:tva;a ;�a;l+.Kea;dÒ e +Ka;Ma ta;n}å.a;a;geRa;Na ;Æa;sa;tMa na;yea;t,a Á Á 31 Á Á:pra;tya;ga;g{a;a;t,a ;Æa;sa;tea :pa;[ea :pra;a;ga;g{a;a;d;Æa;sa;teaY;
a;pa ..a Á;Æa;sa;ta;a;ntea ;
a;ba;ndu ;ma;a;Da;a;ya ;�a;ta;yRa;g{ea;Ka;a;g{a;ya;ea;~ta;taH Á Á 32 Á Á;
a;ba;ndMu kx +:tva;a ;�a;l+.Kea;dõx :�Ma ;
a;ba;nd;va;ea nea;Æa;ma;ga;a ya;Ta;a Ávxa:�a;a;nta:=+a;kx +:�a;ta;(ãÉa;ndÒ H Zxa;ñÍç ÅÅ*:+.ea;�a;tya;a :pra;d;ZyRa;ta;a;m,a Á Á 33 Á Áv.ya;~ta;
a;d;ë�Åë�Á*:+:eaY;kR +:ba;a;hu H .~ya;a;t,a ta;ya;ea;na;Ra;na;a;k+:pa;a;l+.ya;eaH Á:pra;tya;a;sa;�a:=+vea;Ba;Ra;ga;a;t,a I+.h;a;pya;nta;nRa;yea;t,a ;Æa;sa;ta;m,a Á Á 34 Á ÁA;nya;sma;a;d;Æa;sa;tMa va;a;
a;pa .sa;vRa;ma;nya;d, ya;Ta;ea;
a;d;ta;m,a Á
candrabimbārdhamānena likhedvr. ttam. tu tadgate || 29 ||
rekhe dve digvibhāgārtham. , pratyagrekhāgratah. punah. |
n̄ıtvā śr. ṅgonnatermānam. prāgvadardhagun. ātmakam || 30 ||
candrādarkadís̄ındostu paridhau prāgviparyayāt |
bindum. kr. tvā likhedrekhām. tanmārgen. a sitam. nayet || 31 ||
pratyagagrāt site paks.e prāgagrādasite ′pi ca |
sitānte bindumādhāya tiryagrekhāgrayostatah. || 32 ||
bindum. kr. tvā likhedvr. ttam. bindavo nemigā yathā |
vr. ttāntarākr. tíscandrah. śr. ṅgonnatyā pradarśyatām || 33 ||
vyastadikko ′rkabāhuh. syāt tayornānākapālayoh. |
pratyāsannaraverbhāgāt ihāpyantarnayet sitam || 34 ||
anyasmādasitam. vāpi sarvamanyad yathoditam |
Draw a circle with a radius equal to that of the disc of the Moon. Draw two lines [from the
centre perpendicular to each other] so as to mark the directions. From the tip of the west
line, with a measure equal to the cusp of the Moon, which is nothing but half of the Rsine
of elevation given earlier, mark a point on the circumference along the direction of the Sun
from the Moon. [This has to be repeated] with the east point in the reverse order. Draw a
line passing through these points, and [hence] find the bright phase.

From the west end during the waxing period, and from the east end during waning, mark
points which represent the end of the bright portion. Also mark the end points of the tirya-
grekhā. Now draw a circle such that the three points lie on its circumference. The [bright
phase of the] Moon in the shape of the area inscribed/sandwiched between the two circles
should thus be demonstrated through the elevation of the cusps.

If the two [i.e. the Sun and the Moon] are in different hemispheres, then their chāyābāhus
will be in the opposite directions. Even then the bright phase has to be marked towards the
direction of the Sun. The dark phase has to be shown from the other direction [that is the
direction away from the Sun]. The rest of the process is as described earlier.

The graphical representation of the Moon’s disc is done in two stages as ex-
plained below.

Marking the elevation on the Moon’s disc and drawing the line of cusps

Having drawn a circle (see Fig. 8.13) whose radius is equal to that of the Moon’s
disc (in some scale), the north–south line NS parallel to the horizon, and the east-
west line EW perpendicular to that, are drawn as shown in the figure. Then a point
B in the direction of the Sun, on the circumference of the disc, is marked such that
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GB = rm sinβ . (8.90)

This point B will be to the north or south of the EW line, depending upon the di-
rection of the Sun with respect to the Moon at that instant. GB is the depression or
elevation of the lunar cusps with respect to the Moon’s centre. Similarly the point A
is marked on the circumference in the direction opposite that of the Sun, such that
GB = HA.

Having marked the points B and A on either side of the EW line, we draw the
line BA, and a line CD perpendicular to it. CD is called the tiryagrekhā and it is the
same as the line of cusps.

Representation of the illuminated portion

Then we locate a point F on AB such at BF represents the measure of the phase of
the Moon. Through the points C, F and D we draw a circle. The portion inscribed
between this circle CFD and the Moon’s disc CWBD is the illuminated portion of
the Moon as seen by the observer (the shaded portion in the figure). Fig. 8.13(a)
is the graphical representation of the Moon in the first quarter of the bright phase.
During the last quarter of the bright phase, the disc will be as shown in (b).
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Fig. 8.13 Graphical representation of the Moon’s disc (a) during the first quarter of the bright
fortnight, (b) during the last quarter of the bright fortnight.

If the Sun and the Moon are in different hemispheres, the chāyābāhus will be in
opposite directions. However, even in this case, the sita should be marked only with
reference to the Sun’s direction (to represent the bright phase). Even in the bright
phase, if the dark portion of the Moon has to be represented, it has to be marked
from the east (point A in the figure). The same process is repeated even for the dark
fortnight, with the only difference being that, in graphical representation, the bright
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portion has to be marked from point A. In other words, it must be marked from the
east point E as shown in Fig. 8.14.
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Fig. 8.14 Graphical representation of the Moon’s disc (a) during the first quarter of the dark fort-
night, (b) during the last quarter of the dark fortnight.8.10 A;k+:Ra;~ta;ma;ya;a;tpa:=M ..a;ndÒ +~ya;ea;d;ya;a;
a;d;ga;Na;na;a
8.10 Time of moonrise etc. after the sunseto+.d;ya;a;~ta;ma;ya;a;
a;va;nd;eaH A;
a;va;Zea;Sea;Na ;Æa;sa;Dya;taH Á Á 35 Á Áma;Dya;pra;a;�a;�a;(ãÉa k+:a;l+.(ãÉa C+.a;ya;yEa;Sya;ea ga;ta;eaY;
a;pa va;a Á

udayāstamayāvindoh. avíses.en. a sidhyatah. || 35 ||
madhyaprāptísca kālaśca chāyayais.yo gato ′pi vā |
The rising and setting times of the Moon are obtained by the process of iteration. In the
same way, the time at which it crosses the meridian and the time that has elapsed or is yet
to elapse [since rising or till setting, are to be found by iteration].

Here it is stated that the time difference between sunset and moonrise (in the
dark fortnight), or sunrise and moonrise (in the bright fortnight), is to be determined
using an iterative procedure. To be specific, consider the bright fortnight.

Let λs be the longitude of the true Sun when it is rising, at the instant t0. We
assume that t0 has been calculated taking the equation of time and the carāsava
(ascensional difference) into account, from the instant at which the mean Sun tran-
sits the meridian at the desired place, as explained in Chapter 2. Let λm(t0) be the
longitude of the true Moon at t0. We have to find the exact instant at which the true
Moon rises. This is done using an iterative procedure as follows:



434 Zxa;ñÍç ÅÅ*:+.ea;�a;�a;ta;pra;k+.=+Na;m,a Elevation of lunar horns

1. Let θ0 = λm(t0)−λs. This can be converted into time units from the rising times
of the rāśis. Now find ∆ t0 = θ0 (in time units). Then t1 = t0 + ∆t0 is the first
approximation to moonrise.

2. Find the rate of motion of the Moon (λ̇m) at t0. Now λ̇m × ∆ t0 = δλm is the
increase in the longitude of the Moon in the time interval ∆ t0.

3. Let λm +δλm = λm(t1).
4. From θ1 = λm(t1)−λs, we find ∆ t1 = θ1 (in time units). Then t2 = t0 +∆ t0 +∆ t1

is the second approximation to the moonrise.

The whole process is repeated till ∆tn becomes negligible. Note that ∆ ti can also be
negative at any stage.

The time difference between the meridian transits of the Moon and Sun can also
be determined by iteration in this manner, except that the carāsus are absent in this
case. In the same way, the instant corresponding to the Moon on the meridian can be
obtained, using the time elapsed since sunrise or the time to elapse till sunset from
the desired time.8.11 ku +.ja;a;d� ;a;na;Ma k+:[ya;a;dùÅ;a;a;na;ya;na;m,a
8.11 Obtaining the dimensions of the orbits of Mars and other

planets.=+
a;va;va;�a;ndÒ +k+:[ya;a;ya;aH nea;ya;a;nyea;Sa;Ma ;
a;h .sa;a ta;taH Á Á 36 Á ÁBea;de .sa;ma;a;ga;ma;a;d;Ea ..a l+.}ba;na;a;dùÅ;ae ;va;mea;va ;
a;h ÁZ�a;a;Gra;k+:NRa.Èåî ÁÁ*+;k+:[ya;a;ya;aH ta;dõx :�ea;na ;Æa;sa;ta::℄a;ya;eaH Á Á 37 Á ÁA;a;�a;a ;
a;h .~å.Pu +.f;k+:[ya;a .~ya;a;t,a ta;dõ ;Za;a;�+:}ba;na;a;
a;d ..a Á
ravivaccandrakaks.yāyāh. neyānyes.ām. hi sā tatah. || 36 ||
bhede samāgamādau ca lambanādyevameva hi |
ś̄ıghrakarn. aghnakaks.yāyāh. tadvr. ttena sitajñayoh. || 37 ||
āptā hi sphut.akaks.yā syāt tadvaśāllambanādi ca |
As in the case of the Sun, the [dimension] of the orbits of the Moon and other planets
have to be obtained. It is only from their orbits that the parallax in longitude at the instant
of opposition, conjunction etc. have to be obtained in a similar manner [as described for
eclipses]. [In the case of Mars, Jupiter and Saturn], the mean radii of their orbit (kaks.yā-
vyāsārdha-yojanas) multiplied by the ś̄ıghra-karn. a [and divided by the trijyā] gives
the true orbital radii (sphut.akaks.yās). In the case of Mercury and Venus their mean orbital
radii in yojanas, multiplied by the ś̄ıghra-karn. a and divided by the mean radii of their
own orbits, give the true values of their orbital radii (sphut.akaks.yās). And from that the
parallax in longitude etc. [must be calculated].

Here it is stated that the average values of the radii of the planets in yojanas are
to be determined from the orbit of the Moon, just as in the case of the Sun (chapter 4,
verse 8).

According to the standard assumption in Indian astronomy, the mean linear ve-
locities of all the planets have the same value. If Rp and Rm are the mean radii of the
planet and the Moon in yojanas, and Np and Nm are the number of revolutions made
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by them in a yuga, then the total distance covered by each in a yuga is the same, and
hence

2πRm ×Nm = 2πRp ×Np. (8.91)

Thus, the mean radius of each planetary orbit (the kaks.yā-vyāsārdha-yojana) in
yojanas is

Rp =
Rm ×Nm

Np
. (8.92)

This has to be used in the calculation of angular differences between the planets, in
determining their conjunctions, in the calculation of parallax etc., for an observer
on the surface of the Earth.
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Fig. 8.15 Ratio of the Sun–planet distance to the Earth–planet distance of an inner planet (a) in
yojanas, (b) in terms of the epicycle radius.

That the radii obtained from the procedure given in verses 36b and 37a are not
the orbital radii around the Earth, is clear from the verses that follow it namely 37b
and 38a. The commentary of this verse runs as follows:;Æa;sa;ta::℄a;ya;ea:�+:�+:va;d;a;n�a;a;tMa k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;nMa .~va;Z�a;a;Gra;k+:NeRa;na ;�a;na;h;tya Z�a;a;Gra;vxa:�a;pra;Æa;ma;ta-.~va;vxa:�a;v.ya;a;sa;a;DeRa;na ;
a;va;Ba:jea;t,a Á ta:�a l+.b.Da;a .~å.Pu +.f;k+:[ya;a Ba;va;�a;ta Á

In the case of Mercury and Venus, the radius of the kaks.yā-vr. tta in yojanas has to be
multiplied by the ś̄ıghra-karn. a and divided by the radius of its own orbit measured in
units of the ś̄ıghra-vrtta. The result obtained will be the true radius of the orbit.

What is noteworthy here is the use of the phrase ‘́s̄ıghravr. ttapramita-svavr. tta-
vyāsārdhena’. Particularly, the word sva-vr. tta (‘own’ circle) clearly indicates
Nı̄lakan. t.ha’s geometrical picture of the motion of the inner planets. According to
this picture, the epicycle which figures in the ś̄ıghra-sam. skāra is the same as the
orbit of the inner planet.

In the procedure for finding the actual distance of the planet from the Earth,
the kaks.yāvyāsārdha-yojana Rp, calculated using (8.92), is not to be taken as the
mean Earth–planet distance, but instead as the mean ś̄ıghrocca–planet distance. If
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E is the Earth and P the inner planet (see Fig. 8.15(a)), then the formula given by
Nı̄lakan. t.ha for the Earth–planet distance may be written as

EP =
Ks

r
×Rp, (8.93)

where Ks is the ś̄ıghra-karn. a and r is the svavr. tta-vyāsārdha (radius of the ‘own
orbit’), which is the same as the radius of the epicycle in the ś̄ıghra-sam. skāra in
the case of Mercury and Venus.

As regards the outer planets, the commentator states:A;nyea;Sa;Ma tua :pra;a;gva;�+:b.DMa k+:[ya;a;v.ya;a;sa;a;D a .~va;Z�a;a;Gra;k+:NRa;gua;a;Na;tMa ;
a:�a:$ya;ya;a ;
a;va;Ba;�+:m,a - I+.�a;ta;
a;va;Zea;SaH Á
The above statement may be written down as

EP =
Ks

R
×Rp, (8.94)

where EP is the distance in yojanas of the outer planet from the Earth and Ks is the
ś̄ıghra-karn. a as in the earlier formula (see Fig. 8.16). It may be noted that here the
trijyā, R, appears in the denominator instead of the epicycle radius.
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Fig. 8.16 Ratio of the Earth–planet distance to the planet–Sun distance of an outer planet (a) in
yojanas, (b) in terms of the epicycle radius.

Note: In these verses Nı̄lakan. t.ha has introduced a modification of the tradi-
tional prescription for planetary distances. According to him the kaks.yā-vyāsārdha-
yojanas computed from its revolution number according to (8.92), is actually the
mean ś̄ıghrocca–planet distance and not the mean Earth–planet distance. The latter
is to be found from (8.93) and (8.94).



8.13 Concluding words 437

Since these verses have come at the very end of the Tantrasaṅgraha, Nı̄lakan.t.ha
has not worked out the implications of this revised prescription. Nı̄lakan. t.ha also
briefly alludes to the above prescription for planetary distances in his Golasāra
and Āryabhat.ı̄ya-bhās. ya. However, even this revised prescription for planetary dis-
tances is not really consistent with the cosmological model that Nı̄lakan.t.ha has ex-
pounded definitively in his later work, Grahasphut.ānayane viks.epavāsanā. This
issue is discussed further in Appendix F.8.12 ;
a;ba;}ba;ma;a;na;a;d� ;a;na;Ma dx ;#sa;a;}ya;pa:=� +a;[a;Na;m,a
8.12 Verifying the measures of the discs with the observed values..a;kÒ +:Ma;Za;a;dùÅ;a;
a;ñÍö�ÅÅ*:+.tea vxa:�ea ta;n}å.a;Dya;a;sa;�+:.a;[ua;Sa;a Á Á 38 Á Á:℄ea;yMa g{a;h;a;nta:=M ;
a;ba;}ba;dx ;giya;a ..a;a;pa;a;
a;d;kM .~å.Pu +.f;m,a Á

cakrām. śādyaṅkite vr. tte tanmadhyāsaktacaks.us. ā || 38 ||
jñeyam. grahāntaram. bimbadr. gjyā cāpādikam. sphut.am |
Considering a circle with 360 degrees, (seconds) etc. marked on it, and with the eye placed
at its centre, the angular separation between the planets and the arc of the Rsines of their
zenith distances (dr. gjyās) etc. are to be determined accurately.

Essentially, it is stated that with a flat circular ring of arbitrarily large radius and
with degrees and seconds marked along the circumference and with a provision for
viewing from the centre, suitably mounted, accurate angular measurements such as
the separation between two planets, zenith distance etc. can be made.

The commentator explains how the set-up should be made in order to carry out
observations, as follows:k+:Ta;Æa;ma;�a;ta ..ea;t,a, ta;dõx :�a;ma;DyMa ..a;[ua;ga;eRa;l+.sa;a;�a;
a;h;tMa kx +:tva;a A;B�a;a;�;g{a;h;dõ ;ya;~å.Pu +.f;pa;�a:=+�a;Da;kM ya;Ta;aBa;va;�a;ta ta;Ta;a kx +:tea ta;�/////////�a;sma;n,a A;B�a;a;�;g{a;h;a;nta:=+a;l+.pa;�a:=+�a;Da;Ba;a;gea ya;a;va;nta;eaY;}å.Za;aH k+:l+.a va;a.sMa;Ba;va;�////�a;nta ta;a;va;de ;va ta;ya;ea;
a;bRa;}ba;a;nta:=+m,a Á O;;vMa ta:�a;
a;dõâ â ;}ba;ma;a;nMa dx ;giya;a;.a;a;pa;a;
a;d;k+:ma;
a;pa .~å.Pu +.f;mea;va;
a;va::℄a;a;tMua Za;k�+.a;Æa;ma;�a;ta Á

If it is asked how it is, [then we say:] Keeping the centre of the circle close to the eyeball and
focusing on the two desired planets in their orbits, whatever is measured to be the [angular]
distance of separation in degrees or minutes is actually the separation between the discs.
Thus the measure of their own discs as well as the arc corresponding to the dr. gjyā can all
be correctly obtained.8.13 o+.pa;sMa;h;a:=+va;.a;na;m,a

8.13 Concluding wordsga;ea;lH k+:a;l+.
a;kÒ +:ya;a ..a;a;
a;pa dùÅ;a;ea;tya;teaY:�a ma;ya;a .~å.Pu +.f;m,a Á Á 39 Á Ál+.[m�a;a;Za;�a;na;
a;h;ta;Dya;a;nEaH I+.�M .sa;v a ;
a;h l+.Bya;tea Á Á 40 Á Á
golah. kālakriyā cāpi dyotyate ′tra mayā sphut.am || 39 ||
laks.mı̄́sanihitadhyānaih. is. t.am. sarvam. hi labhyate || 40 ||
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The spherics and also the computations related to [the determination of] time [from the
motion of planets] are clearly being expounded here. Those who meditate intensely on the
Lord of Laks.mı̄ indeed obtain all that they desire.

It is mentioned in this concluding verse that the author has in this work, besides
other things, also explained the topics that are generally covered under the sections
on the golapāda and the kālakriyāpāda in other works such as Āryabhat. ı̄ya.

Since only the calculational procedures for obtaining different physical quanti-
ties are being discussed in the text, the commentator Śaṅkara Vāriyar raises the
objection as to what would have prompted Nı̄lakan. t.ha to make the above state-
ment. Having raised this question he presents an answer to it in the latter half of the
verse. The explanation runs as follows:ya;dùÅ;a;pya;�/////////�a;sma;n,a ga;a;Na;ta;
a;va;Zea;Sa O;;va .sa;}ya;#pra;d;a;ZRa;taH , ta;Ta;a;pya;~ya .sa;m�a;a;.�a;a;na;Ma yua;�a;�+:pa;d;v�a;MaA;pa;�îåu+:va;a;nea;na ma;ya;a ga;ea;l+.ea ga;a;Na;ta;ga;}ya;[ea:�a;
a;va;Zea;SaH k+:a;l+.
a;kÒ +:ya;a ..a ta;tpa;�a:=+.Ce +.
a;d;k+:a,.~å.pa;�;ta:=+mea;va :pra;k+:a;a;Za;tea .~ya;a;ta;a;m,a Á na;nva;nya;pra;d;ZRa;nea;na A;nya;~ya :pra;k+:a;Za;nMa k+:Ta;m,a? I+.tya;taA;a;h - l+.[m�a;a;Za;�a;na;
a;h;ta;Dya;a;nEa;�a:=+�a;ta Á . . . :pra;k+.=+Na;sa;ma;a;�a;�a;sa;ma;ya;a;h;gRa;Na;(ãÉa d;a;ZRa;taH ‘l+.[m�a;a;Za-;�a;na;
a;h;ta;Dya;a;nEaH’ I+.tya;[a:=+sa;*ñÍËÉ ùÁ+;a;ya;a - I+.�a;ta Á

Though in this [work] it is only the calculational procedures that have been explained in
detail, nevertheless in the process of explaining their rationale, the spherics (gola), which
is the geometrical picture implied by the calculational procedures, and the computations
related to time which delimit it (the gola) have also been explained as well. May be so
[that the two were also explained]. But how is it that by explaining one thing something
else also gets explained? Therefore he says – by meditating upon the Lord of Laks.mı̄

. . . The author has also indicated the date of completion of the work through [the word]
‘laks.mı̄́sanihitadhyānaih. ’ by [using] the letter numeral (aks.arasaṅkhyā).

The material to be covered in the Golapāda includes the geometric models im-
plied by the calculational procedures. The commentator, in clarifying the intent of
the author, mentions that while explaining their rationale (by experienced teachers)
the spherical astronomical descriptions and the computations of planetary motions
which are related to them will get elaborated upon. He also mentions that if one
has the grace of the Lord, then the geometrical pictures implied by the calculational
procedures can be understood clearly even without a detailed description of them.

Further, the commentator points out that the chronogram of the date of com-
pletion of the work is also indicated by the word laks.mı̄́sanihitadhyānaih. in
aks.arasaṅkhyā (letter numeral), which is the same as in the kat.apayādi number
system. According to this system this word corresponds to the number 1680553,
which refers to the number of days elapsed since the commencement of Kaliyuga,
namely kalyahargan. a. This corresponds to Mes.a 1, 4601 kalyabda or March 27,
1500 CE. Since in the invocatory verse in Chapter 1 it was indicated that the com-
position of this work was started on kalyahargan. a 1680548, which corresponds to
March 22, 1500, it seems that Nı̄lakan.t.ha composed this great treatise on mathe-
matical astronomy in just five days!



Appendix A
Representation of numbers

Long before the ten numerals: 1, 2, 3, . . . 0, were introduced and the notation
for representing numbers became standardized, words like ekam, dve, tr̄ın. i,
catvāri, . . . (one, two, three, four, . . . ) seem to have been employed by the Vedic
people. Listings of a series of odd numbers and multiples of four are found in
Yajurveda, 1 indicating the antiquity of numeration by words. In fact, in Kr. s.n. a-
yajurveda one also finds a listing of powers of 10 in several places.2

Besides listing numbers, the Vedic corpus also presents evidences to show that
additive and subtractive principles were employed while coining words to connote
numbers. For instance, one finds words like saptavim. śati (7+20 = 27), dvātrim. śat
(2+30 = 32), ekonavim. śati (20−1 = 19) and the like. It is not difficult to see that
this can easily be extended to represent large numbers having three, four and more
digits.

However, it does not take long to realize that this method of employing words to
represent numbers becomes extremely cumbersome, particularly with the increase
in the number of digits. Thus there is a need for developing more efficient ways of
representing numbers. The need will be felt all the more when one deals frequently
with large magnitudes, which is the case in subjects like astronomy. Besides this
need mentioned above, Indian astronomers and mathematicians had to meet with
one more constraint, namely the rules imposed by metrical compositions. These two
requirements, besides other considerations, made them invent different schemes for
representing numbers, among which (i) the Kat.apayādi and (ii) the Bhūtasaṅkhyā
systems are the most commonly employed ones.

Before we proceed to explain these systems in detail, it may be mentioned here
that these systems, apart from being simply an alternate way of representing num-
bers, have several advantages over the word-numeral scheme described above. This
will become amply evident from the description of these systems and the numerical
examples provided in following sections.

1 Kr. s.n. a-yajurveda Taittir̄ıya-sam. hitā 4.6.11. A similar listing is found in Yajurveda
Vājasaneȳı-sam. hitā (18.24–25) also.
2 See for instance, Kr. s.n. a-yajurveda Taittir̄ıya-sam. hitā 4.4.10 and 7.2.20.

439
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A.1 Kat.apayādi system

The name ‘Kat.apayādi’ for this system of representing numbers stems from the fact
that here the Sanskrit alphabets ka, t.a, pa, ya etc. are used to denote the numbers.
According to this system, the vowels standing alone, represent the number zero.
However, the same vowels in conjunction with the consonants have no numerical
significance. It is only the 33 consonants k, kh, g, gh, . . . , ś, s. , s, h that are associ-
ated with the numbers. The mapping of these consonants with different numbers is
listed in Table A.1.

Number 1 2 3 4 5 6 7 8 9 0
Consonants k kh g gh ṅ c ch j jh ñ

used t. t.h d. d. h n. t th d dh n
to represent p ph b bh m – – – – –

numbers y r l v ś s. s h l.
3 –

Table A.1 The Kat.apayādi system of numeration.

The following verse found in Sadratnamālā of Śaṅkaravarman (c. 1830 CE)
succinctly summarizes the system:na;Va;a;va;.a;(ãÉa ZUa;nya;a;�a;na .sa;*ñÍËÉ ùÁ+;a;aH k+:f;pa;ya;a;d;yaH Á;Æa;ma;(rea tUa;pa;a;nta;h;�sMa;K.ya;a na ..a ;�a;.a;ntya;ea h;lH .~va:=H Á Á

[The letters] n, ñ and the vowels [when standing alone] denote zeros. [The consonants]
commencing from ka, t.a, pa and ya denote the numbers [1, 2, 3, . . . ] in order. In the
case of conjunct consonants (mísre tu) only the last consonant represents the number. The
vowel suffixed to a consonant should not be counted.

It is believed that this system of using alphabets to represent numbers is as old as
4th century CE. This is because the cāndravākyā, the chronograms associated with
the Moon for reading its longitudes on different days simply from a look-up table—
beginning with ‘ḡırn. ah. śreyah. ’, ‘dhenavah. śr̄ıh. ’ etc.—which are based on this
system, were composed by the Kerala astronomer Vararuci, who is traditionally
ascribed to the above period. In this system, as we read the chronogram and try to
decipher the coded number, it is to be borne in mind that it is the least significant
decimal place that is given first, and the highest the last. For example, take the
word āyurārogyasaukhyam. , as indicated in the table here, represents the number

ā yu rā ro gya sau khyam
0 1 2 2 1 7 1

3 This is a special character—very rarely employed in the classical Sanskrit literature—whose
representation in Devanāgari script is L Á. However, the Kerala astronomers once in a while seem
to employ this to represent the number nine. One such example using this character is presented in
Table A.2.
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1712210. In the carnatic (south Indian) system of music, the first two letters of
the name of a mel.akartā rāga indicates the rank number of its mel.akartā in the
Kat.apayādi system.4 Table A. 2 presents a few illustrative examples from the texts
on Indian mathematics and astronomy.

Word/Words Number represented;
a;va;dõ ;a;n,a 44tua;�a;ba;lH 3306k+:v�a;a;Za;�a;na;.a;yaH 160541.sa;va;Ra;TRa;Z�a;a;l+.�//////�a;~Ta:=H 2735747;�a;na;
a;vRa:;dÄâ ;a;ñÍç ÅÅ*:+.na:=e +ndÒ ;�+:k, 22203940.sua;ga;�////�a;nDa;na;ga;nua;t,a 30937Ba;dÒ +a;ñÍç ÅÅ*:+.Ba;v.ya;a;sa;naH 714324�+:na;Da;na;kx +:;�ÂåÅU ;=e +va 42410900;D�a;a;ga;a;pa;a;ñÍç ÅÅ*:+ja;L+:a;ñÍç ÅÅ*:+.~:��a;a 23983139na;a;na;a::℄a;a;na;ta;pa;ea;Da:=H 29160000:he ;
a;va;SNa;ea ;�a;na;
a;h;tMa kx +:t=+:ïîåéa;m,a5 1680548l+.[m�a;a;Za;�a;na;
a;h;ta;Dya;a;nEaH 1680553

Table A.2 A few examples of the Kat.apayādi system of representing numbers.

A.2 Bhūtasaṅkhyā system

The word Bhūtasaṅkhyā is a compound word which has two constituents, namely
bhūta and saṅkhyā—referring to a ‘being’ and a ‘number’ respectively. Thus the
compound Bhūtasaṅkhyā, which can be derived as ‘bhūtānām. saṅkhyā’, means
‘the number associated with beings’. In fact this system uses words commonly em-
ployed in Sanskrit which are widely known to be associated with specific numbers
such as:

1. The physical entities such as Earth, Sun, Moon, planets, stars, ocean, mountain,
fire, sky, direction etc.

4 For example, in the names of the rāgas ;D�a;a:=+Za;ñÍö�ÅÅ*:+=+a;Ba:=+NMa and mea;.a;k+:�ya;a;N�a;a—popularly referred

to as simply Za;ñÍö�ÅÅ*:+=+a;Ba:=+NMa and k+:�ya;a;N�a;a—the first two syllables represent the numbers 29 and 65
respectively.
5 This is the first quarter of the verse with which the text Tantrasaṅgraha commences. It has
been pointed out by the commentator Śaṅkara Vāriyar that this also serves the purpose of being a
chronogram—representing the Kalyahargan. a corresponding to the date of commencement of the
the work. The next example is the third quarter of the concluding verse of Tantrasaṅgraha, which
again, as per the commentator, is the Kalyahargan. a corresponding to the date of completion of
the work. This indicates that the entire work, consisting of about 432 verses, has been composed
in just five days!
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2. The parts of a human body such as eyes, ears, jaws, knees, hands, fingers, teeth,
nails etc.

3. The animals, such as serpent, horse, elephant etc.
4. The names of the gods, such as Śiva, Indra etc. and sometimes historical figures

such as Manu, Rāma, Jina etc.
5. The season, fortnight, month, week, etc.

These are used to denote the numbers 1, 2, 3 etc. Since all the things listed above
share the common property of ‘being’ (bhūta), this system of representation of num-
bers is called the bhūtasaṅkhyā system. Table A.3 presents a few examples of num-
bers given by Bhāskarācārya in his Siddhāntaśiroman. i using this system.

Word Number representedKa;a;
a;dÒ ;=+a;ma;a;çÉîå+;a;yaH 3370:vea;d;vea;d;a;ñÍö�ÅÅ*:+..a;ndÒ +aH 1944:vea;d;.a;ndÒ +
a;dõ ;vea;d;a;�///�a;b.Da;na;a;ga;aH 544214Bua:ja;ñÍç ÅÅ*:+.na;nd;
a;dõ ;na;ga;a;ñÍç ÅÅ*:+.ba;a;Na;Sa:æö�ÅÅ*:x +.tea;nd;vaH 146567298Ka;a;Bra;ga;ga;na;a;ma:=e +�///�a;ndÒ +ya;[ma;a;Da:=+a;
a;dÒ +
a;va;Sa;ya;aH 577533000

Table A.3 Numbers specified using the Bhūtasaṅkhyā system of representation.

This system, which is quite different from the alphabetical system of representa-
tion described earlier, has its own advantages and disadvantages. One of the distinct
advantages, particularly from the viewpoint of an author of a text, would be that here
it may be a lot easier to meet the metrical compulsions of verses used in the texts
on astronomy and mathematics. As the language is extremely rich in synonyms, an
author could choose any synonym that would suit the metre to represent a given
number. However, from the viewpoint of the reader, this system may be considered
disadvantageous for at least two reasons:

1. The lack of familiarity with the connotation of a specific bhūta representing a
particular number would present difficulties in deciphering the number.

2. Even if one were somewhat familiar, the lack of knowledge of synonyms could
pose serious problems—not to mention the difficulties that could arise owing to
improper splitting of the words.

Of course, ignorance on the part of a reader is no reason to blame the system.
Notwithstanding the ‘disadvantages’ mentioned above, this system has its own ap-
peal, charm and beauty. The table below presents a list of bhūtasaṅkhyās that have
been employed by astronomers in their texts. Note that the list should only be con-
sidered as representative and not exhaustive.

Number Bhūtas used to refer to number

0 – kham. , ākāśa, nabha, vyoma, antariks.am. . . . synonyms of
sky/space
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– bindu (a dot)

1 – indu, candra, himām. śu, mr. gāṅka, śaśāṅka, śaśadhara, . . .
all synonyms of the Moon

– pr. thv̄ı, ks. iti, vasundharā, ku, dharan. i, dharā . . . synomyms
of the Earth

– nāyaka, mah̄ıpāla, bhūpāla, . . . synonyms of a king, including
pitāmaha (the creator Brahmā)

2 – aks. i, caks.u, nayana, netra . . . synonyms of eyes
– bāhu, bhuja, hasta, . . . synonyms of hands
– words referring other parts of the body such as karn. a (ears),

jānu (knees) and kuca (breasts) etc.
– words like aśvinau, rat̄ıputrau etc. which are known to be pairs

from the purān. ās are also used

3 – agni, anala, hutāśana, śikhin, vahni . . . synonyms of fire.
– bhuvana, jagat, loka . . . synonyms of ‘world’.
– Rāma (signifying the three Rāmas: Paraśurāma, Ayo-

dhyārāma and Balarāma)
– hotr. (signifying the three important priests of the sacrifice Ad-

hvaryu, Hotā and Udgātā)

4 – abdhi, udadhi, jaladhi, vāridhi, payodhi, arn. ava . . . syn-
onyms of ocean

– śruti, veda, āmnāya . . . synonyms of veda
– words like yuga (aeon), āśrama (stages of life), varn. a (broad

classification of humans), dik (direction) etc. that are known to
be four in number.

– the word kr. ta, being the name of the first of the group of four
yugās is also used

5 – is.u, śara, bān. a, . . . synonyms of arrow (supposed to be shot
by Cupid to arouse desire)

– indriya, aks.a . . . synonyms of the sense organs
– vis.aya (denoting the five sense objects)
– mahābhūta (denoting the five basic elements: Earth, water, fire,

air and space)
– prān. a (denoting the five types of wind in the body—prān. a,

apāna, vyāna, udāna and samāna

6 – aṅga (signifying the six subsidiary parts of Veda)
– r. tu (signifying the six seasons)
– kāraka (signifying six relatants of an action)
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– rasa (signifying six types of tastes: madhura, āmla, lavan. a,
kat.u, kas. āya and tikta)

– ari (signifying six enemies to be conquered: kāma, krodha,
lobha, moha, mada and mātsarya)

– darśana (signifying six major philosophical systems)

7 – aga, acala, adri, giri, bhūdhara, ks.mādhara . . . synonyms of
mountains

– aśva, turaga, vājin, haya . . . synonyms of horses
– words such as r. s.i, muni (a particular group of seven sages),

svara (fundamental notes in music), dv̄ıpa (major islands) and
vāra (weekdays)

8 – hastin, gaja, diggaja, kuñjara, dantin, ibha . . . synonyms of
elephants

– nāga, sarpa, taks.a, ahi . . . synonyms of serpents
– words like vasu (types of wealth), siddhi (special powers),

maṅgala (auspicious things) etc. that are known to represent
eight things.

9 – randhra, chidra . . . synonyms of holes signifying the number
of holes present in the human body (seven in the face and two
used for excretion)

– aṅka (the digit), graha (planets), durgā, go, nanda

10 – aṅguli (fingers), āśā, dik (direction), avatāra (incarnations of
Lord Vis.n. u), rāvan. aśira (heads of the demon Rāvan. a), paṅkti
(rows) etc.

11 – ı̄́sa, ísvara, rudra, śaṅkara, śiva, hara . . . synonyms of Lord
Siva

– aks.auhin. ı̄ (a huge regiment of an army)

12 – sūrya, arka, bhānu, āditya, divākara . . . synonyms of Sun
– māsa (month), rāśi (zodical signs)

13 – vísva, vísvedevāh. , atijagat̄ı, aghos.a

14 – indra, śakra, manu, loka

15 – tithi, dina, paks.a (number of days in a fortnight)

16 – as.t.i, kalā (one part of the lunar disc, which is conceived as
made up of 16 parts)
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17 – atyas.t.i

23 – vikr. ti

24 – arhat, jina (generic term for a Jaina saint), gāyatr̄ı (metre hav-
ing 24 syllables)

25 – tattva (the fundamental principles that the world is constituted
of—taken to be 25 in Sāṅkhya philosophy)

27 – naks.atra, bham. , tārā . . . synonyms of stars

32 – rada, danta . . . synonyms of teeth

33 – amara, deva, sura . . . synonyms of deities

48 – jagat̄ı (metre having 48 syllables)





Appendix B
Spherical trigonometry

For an observer on the surface of the Earth, the sky appears to be the surface of
a large sphere, with the celestial objects situated on it. For solving problems in
positional astronomy, we need to know the properties of triangles drawn on spherical
surfaces. This is the subject-matter of spherical trigonometry.

B.1 Great and small circles

A circle drawn on the surface of a sphere whose radius is equal to the radius of
the sphere—or, equivalently, whose centre coincides with the centre of the sphere—
is called a great circle. A great circle can also be conceived of as the intersection
of a sphere with a plane passing through its centre. For instance, if the Earth is
considered as a sphere, the equator on its surface is a great circle. All the meridian
circles passing through the north and the south poles are also great circles.

If we consider any two points on the surface of a sphere that are not diametrically
opposite, there is only one great circle that passes through them. If, however, the
points happen to be diametrically opposite, then an infinite number of great circles
can be drawn passing through them—just like the meridian or longitude circles on
the surface of the Earth.

A small circle on the surface of a sphere is a circle whose centre does not coincide
with the centre of the sphere. For instance, the Tropic of Cancer and Tropic of
Capricorn, which are parallel to the equator, are small circles. In fact, all latitudinal
circles are small circles, as their radii are smaller than the equator; their centres lie
along the axis of the Earth and do not coincide with the centre of the Earth.
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B.2 Spherical triangles

When two great circle arcs meet at a point, the ‘spherical angle’ between them is
the angle between the tangents to them at that point. From now onwards, we refer
to a spherical angle just as an angle.

A spherical triangle is a closed figure formed on the surface of a sphere by the
pairwise intersection of three great circular arcs. As spherical astronomy is con-
cerned primarily with the positions of the celestial objects on the surface of the
celestial sphere, studying the properties of spherical triangles is of great importance
in spherical astronomy. In Fig. B.1, ABC is a spherical triangle formed by the great
circle arcs, AB, BC and CA. The spherical angles are denoted by A, B and C. Simi-
larly, A′B′C′ is a spherical triangle.

The sides of a spherical triangle are the lengths of the great circle arcs forming
it, divided by the radius of the sphere. Defined this way, the sides are the angles
subtended by the great circle arcs at the centre, in radians. As the sides are angles,
they are often expressed in degrees also. In the spherical triangle ABC, the sides BC,
CA and AB are denoted by a, b and c.

A

C

B

C’

A’ B’

Fig. B.1 Spherical triangles formed by the intersection of three great circles on the surface of a
sphere.

A spherical triangle can be conceived of as the spherical analogue of the planar
triangle, for they have many properties in common. However, the geometry of a
sphere is quite different from the geometry of a plane. Hence the properties of a
spherical triangle are quite different from those of a planar triangle. However, as
will be shown a little later, some of the fundamental formulae for a spherical triangle
reduce to that of a plane triangle, when the sides of the former are ‘small’ compared
with the radius of the sphere.
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Properties of a spherical triangle

The following properties of a plane triangle are applicable to a spherical triangle as
well:

1. The largest/smallest angle formed at the vertex is opposite the largest/smallest
side of the triangle.

2. The sum of two sides of the triangle is always larger than the third side.

The important differences between the spherical and plane triangles that are of
immediate utility in the study of spherical astronomy are, in summary:

1. While the sum of the three angles in a plane triangle is always equal to the sum
of two right angles, in the case of a spherical triangle it is always greater than
that. The sum is not constant and the upper bound happens to be the sum of six
right angles. In other words, in a spherical triangle

180◦ < A+ B+C < 540◦. (B.1)

2. While in a plane triangle the sides a, b and c are specified in units of length, in
the case of a spherical triangle they are usually specified in terms of angles. The
sum of the three sides in a spherical triangle satisfies the following inequality:

0◦ < a +b + c < 360◦. (B.2)

Fundamental formulae for spherical triangles

There are several formulae connecting the sides and angles of a spherical triangle.
Out of them four are considered fundamental and they are frequently referred to,
while providing explanations in the text. In the following we explain these formulae
without providing any derivations.1

Cosine formula

If ABC is the spherical triangle, with sides a, b, c, then the law of cosines is given
by

cosa = cosbcosc+ sinbsinccosA. (B.3)

Clearly, there are two companions to the above formula. They are easily obtained
by cyclically changing the sides and the angles, and are given by

cosb = cosccosa + sincsinacosB (B.4)

cosc = cosacosb + sinasinbcosC. (B.5)

1 The derivation of these formulae, for instance, may be found in W. M. Smart, Textbook on Spher-
ical Astronomy, Cambridge University Press, 1965.
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The law of cosines – more often referred to as the cosine formula – is analogous to
the ordinary law of cosines used in plane trigonometry. It has two direct practical
applications: (i) it straightaway gives the third side of a spherical triangle if the other
two sides and the included angle are known, and (ii) it gives all the angles if all the
three sides are known. Further, it may be noted that the above rule reduces to the
planar law when the sides of the spherical triangle are small. It is well known that
when θ is small,

sinθ → θ ; and cosθ → 1− θ 2

2
. (B.6)

Using the above approximation, (B.3) reduces to

a2 = b2 + c2 −2bccosA, (B.7)

which is none other than the cosine formula for a plane triangle.

Sine formula

The relation between the ratio of the sides to that of the angles of a spherical triangle
is given by

sina
sinA

=
sinb
sinB

=
sinc
sinC

. (B.8)

When the sides a, b and c are small, it is quite evident that the above formula reduces
to

a
sinA

=
b

sinB
=

c
sinC

, (B.9)

which is the sine formula for a plane triangle.

Four-parts formula

Considering any four consecutive parts of a spherical triangle, which obviously in-
cludes two sides and two angles, they can be shown to satisfy the following relation:

cos (inner side)cos (inner angle) = sin (inner side)cot (other side).

−sin (inner angle)cot (other angle).

(B.10)

Of the two sides and two angles that we consider consecutively, the side which
is flanked by two angles is called the ‘inner side’ and the angle which is contained
by two sides is called the ‘inner angle’. For instance, consider the four consecutive
parts B, a, C and b in the spherical triangle ABC in Fig. B.2. Here a is the inner side
and b is the other side. Similarly, C is the inner angle and B is the other angle. Then,
for these four parts, the four-parts formula is
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A

C

a

c

B

b

Fig. B.2 A spherical triangle with markings on two consecutive sides and consecutive angles.

cosacosC = sinacotb− sinC cotB. (B.11)

Analogue of the cosine formula

One more formula, involving the three sides and two angles, that is often found to
be useful in solving problems is

sinacosB = cosbsinc− sinbcosccosA. (B.12)

This formula generally goes by the name of the ‘analogue of the cosine formula’ as
it is simply obtained by substituting the cosine formula in itself. For instance, the
above formula is obtained by substituting (B.3) in (B.4).





Appendix C
Coordinate Systems

Anyone who observes the sky even for short periods of time will have the impression
that the objects in it are in continuous motion. This motion consists of two parts. One
of them is the apparent motion of all celestial objects, including stars, from east to
west, which is actually due to the rotation of the Earth from west to east. This is
the diurnal motion. The other is due to the relative motion of any particular celestial
object like the Sun, Moon or a planet with respect to the seemingly fixed background
of stars.

Just as one uses latitude and longitude (two numbers) to specify any location
on the surface of the Earth, so also one employs different coordinate systems to
specify the location of celestial objects on the celestial sphere at any instant. In
this appendix, we will explain the three commonly employed coordinate systems—
namely, the horizontal, the equatorial and the ecliptic.

C.1 Celestial sphere

All the celestial objects seem to be situated on the surface of a sphere of very large
radius, with the observer at the centre. This is the celestial sphere. Though ficti-
tious, the celestial sphere is the basic tool in discussing the motion (both diurnal and
relative) of celestial objects.

In Fig. C.1, C is the centre of the Earth and O the observer on the surface of the
Earth whose northerly latitude is φ . The tangential plane drawn at the location of the
observer, represented by NOS, is the horizon. Only those celestial objects that are
above the horizon can be seen by the observer. The point on the celestial sphere that
is directly overhead, and in the direction of the plumb-line, is the zenith, denoted by
Z. The plumb-line direction is the nadir.

As the Earth rotates about the axis PQ, it appears as if the entire celestial sphere
rotates in the opposite direction about P1, which is the point of interesection of the
extension of QP with the celestial sphere. The line OP2 is parallel to CP1. Since the
radius of the Earth is very small compared with the radius of the celestial sphere,

453



454 Coordinate Systems

direction of
zenith

O (observer) horizon

Earth

SN

φ

eq
ua

to
r

C

Q

 earth’s spin
direction of

P(north pole)

(south pole)

1P

P2

φ

apparent direction

celestial objects
of motion of

ce
les

tia
l p

ol
e

to
war

ds
 n

or
th

Fig. C.1 The horizon and the north celestial pole as seen by the observer on the surface of the
Earth.

the points P2 and P1 would be indistinguishable on the celestial sphere. All the ce-
lestial bodies seem to be rotating around the axis OP2 with a period equal to the
period of rotation of the Earth (nearly 4 seconds less than 24 hours). The point P2

is generally denoted by P and is called the north celestial pole. The south celestial
pole is denoted by Q. The celestial sphere for the observer with latitude φ is shown
in Fig. C.2.

C.2 Locating an object on the celestial sphere

An object situated at any point on the surface of the celestial sphere, which is a two
dimensional surface, can be uniquely specified by two angles. Based on the choice
of the fundamental great circle—the horizon, the celestial equator or the ecliptic—
we have the following sytems listed in Table C.1.

Each of these systems has its own advantages and the choice depends upon the
problem at hand, somewhat like the choice of coordinate system that is made in
order to solve problems in physics. Table C.2 presents the Sanskrit equivalents of the
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Ζ (zenith)

Earth

Q

rotation of the 
celestial sphere

(observer)O

horizon

P

rotation of
Earth

Fig. C.2 The celestial sphere for an observer in the northern hemisphere with latitude φ .

Coordinate Fundamental Poles Coordinates
system plane/circle of circle and notation used

Horizontal Horizon Zenith/nadir Altitude and azimuth
(a, A)

Equatorial Celestial equator Celestial poles Declination and right ascen-
sion/hour angle

(δ , α) or (δ , H)
Ecliptic Ecliptic Ecliptic poles Celestial latitude and longi-

tude (β , λ )

Table C.1 The different coordinate systems generally employed to specify the location of a celes-
tial object.

different coordinates and the fundamental reference circles employed for specifying
a celestial object.

The horizontal system

In this system, which is also known as the alt-azimuth system, the horizon is taken
to be the fundamental reference place. In Fig. C.3, the great circle passing through
the zenith and the north celestial pole P intersects the horizon at N and S, the north
and the south points. E and W are the east and the west points, which are 90◦ away
from the north and the south points. These four points together represent the four
cardinal directions for an observer.

The circles passing through the zenith and perpendicular to the horizon are called
vertical circles and the vertical passing through E and W is called the prime vertical.
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Coordinates Reference circles
Modern name Skt equivalent. Modern name Skt equivalent

Altitude o+.tkÒ +:ma Horizon ;Æa;[a;�a;ta:ja
Azimuth o+.d;g{a;a Prime meridian d;Æa;[a;Na;ea:�a:=+vxa:�a
Hour angle na;ta Prime meridian d;Æa;[a;Na;ea:�a:=+vxa:�a
Declination kÒ +:a;�////�a;nta Celestial equator ;
a;va;Sua;va;dõx :�a/;Ga;�a;f;k+:a;vxa:�a
Right Ascension k+:a;l Celestial equator ;
a;va;Sua;va;dõx :�a/;Ga;�a;f;k+:a;vxa:�a
Declination kÒ +:a;�////�a;nta its secondary ta;
a;dõ ;pa:=� +a;ta
Longitude Ba;ea;ga Ecliptic kÒ +:a;�////�a;nta;vxa:�a
Latitude ;
a;va;[ea;pa its secondary ta;
a;dõ ;pa:=� +a;ta

Table C.2 Sanskrit equivalents for different coordinates and the reference circles.

Z (zenith)

a (altitude)

z

N
S

(zenith distance)

horizon

φ

X

P

A
(azimuth)

B

O

E

W

Fig. C.3 Altitude, azimuth and zenith distance in the horizontal system.

The point X in Fig. C.3 represents a star and ZX is the vertical passing through the
star which intersects the horizon at B. Now we define two angles called the altitude
and azimuth

altitude (a) = XÔB (range: 0−90◦)

azimuth(A) = NÔB (range: 0− 360◦W ). (C.1)

These two angles—one measured along the horizon and the other along the verti-
cal circle perpendicular to the horizon—completely specify the location of the star.
Sometimes, in place of altitude, zenith distance, given by

z = 90−a, (C.2)
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could be specified. The main disadvantage of the horizontal system is that it is
observer-dependent. Two observers situated at different locations on the Earth will
come up with different coordinates.

The equatorial system

In this system, the celestial equator is taken to be the fundamental plane with ref-
erence to which the coordinates are specified. The celestial equator is a great circle
whose plane is perpendicular to OP. Clearly, its plane is parallel to that of the Earth’s
equator. This would be inclined to the horizon by an angle equal to the co-latitude
(90−φ ) of the observer (see Fig. C.4).

Z (zenith)

N
S

(d
ec

lin
ati

on
)

δ

BE

H (hour angle)(north celestial
P

X

pole)

W

ce
les

tia
l

eq
ua

tor

Γ

α (right
ascension)horizon

diu
rn

al 
pa

th 
tra

ce
d

O

by
 a 

sta
r

Fig. C.4 Declination, hour angle and right ascension in the equatorial system.

All circles passing through the pole P and perpendicular to the equator are known
as meridian circles. Of them, the meridian circle passing through the zenith of the
observer is of special significance and is known as the prime meridian. If X is the
star whose coordinates are to be specified in this system, then we draw a meridian
passing through the star X and the north celestial pole P. This intersects the equator
at B. Now, the two quantities declination and hour angle1 of the star are defined as

1 While in modern astronomy the hour angle is specified in terms of hours 0–24, in Indian as-
tronomical texts it is given in terms of ghat.ikās, whose measure is taken to be 24 minutes. Thus
60 ghat.ikās are equal to 24 hours. In texts such as Laghujātaka, the term hora is employed to
specify the duration of an hour.
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follows:

declination (δ ) = XÔB (range: 0− 90◦N/S)

hour angle (H) = ZP̂X (range: 0− 360◦/24 h W). (C.3)

To enable various formulae derived to be valid for both north and south declinations,
it is convenient to treat δ as an algebraic quantity. δ is positive when it is north,
and negative when it is south. We can obtain (δ ,H) from (a,A) using spherical
trigonometrical formulae. For instance, considering the triangle ZPX in Fig. C.4,
where PX = 90◦ − δ , PZ = 90◦ − φ , PZX = A and ZPX = H and applying the
cosine formula, we have

cos(PX) = cos(PZ)cos(ZX)+ sin(PZ)sin(ZX)cos(PZX)

or sinδ = sinφ sina + cosφ cosacosA, (C.4)

and

cos(ZX) = cos(ZP)cos(PX)+ sin(ZP)sin(PX)cos(ZPX)

or sina = sin φ sinδ + cosφ cosδ cosH. (C.5)

Now, if a and A are known then δ can be determined from (C.4). Then using (C.5) H
can be determined. It may be noted that these formulae can be used to obtain (a,A)
from (δ ,H) also.

Of the two quantities (δ ,H), though δ is independent of the observer—as the
celestial equator is common to all the observers on the surface of the Earth—H is
not so. This is because H is defined to be the angle between the prime meridian and
the meridian passing through the star (measured westwards). Though the latter is
observer-independent the former is not, as the prime meridian passes through the
zenith of the observer.

To make the coordinates observer-independent, instead of hour angle, right as-
cension defined by

right ascension (α) = Γ P̂X (range: 0−360◦E), (C.6)

is employed. In contrast to the hour angle H which is measured westwards, the right
ascension is measured eastwards. Here, the point Γ shown in the figure represents
the point of intersection of the equator and the ecliptic (to be discussed in the next
subsection), and is observer-independent.

Further from Fig. C.4, it is clear that for the object X ,

H.A. (X)+ R.A. (X) = H.A. (Γ ). (C.7)

The above equation is valid for any choice of X . In other words, the sum of the hour
angle and right ascension of any celestial object is always equal to the hour angle of
the vernal equinox.
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The ecliptic system

It has been known from ancient times that the Sun traces out a closed path on the
celestial sphere each year. This apparent path of the Sun in the background of the
stars is called the ecliptic. The system of coordinates which makes use of the ecliptic
as the fundamental reference plane is known as the ecliptic system. In this system,
two angles called the celestial longitude and the celestial latitude, or simply the lon-
gitude and the latitude, are used to specify the location of an object on the celestial
sphere. These are defined as (see Fig. C.5).

latitude (β ) = XÔB (range: 0− 90◦N/S)

longitude (λ ) = Γ K̂X (range: 0−360◦/24 h East). (C.8)

Here K is the pole of the ecliptic. β is positive when it is north, and negative
when it is south.
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Fig. C.5 Celestial latitude and longitude in the ecliptic system.

Because the axis of rotation of the Earth is tilted (by roughly 23.5◦) with respect
to the plane of its orbital motion, the ecliptic, which is the path of the Sun on the
celestial sphere, is a circle which is inclined with respect to the celestial equator.
This inclination, denoted by ε, is known as the obliquity of the ecliptic. The ecliptic
and the celestal equator inersect at two points known as the vernal equinox and
autumnal equinox. The Sun’s motion on the ecliptic is eastwards. At the vernal
equinox Γ , it moves from south to north, or its declination changes sign from − to
+.
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Among the various great circles represented on the celestial sphere, the ecliptic
is very important. This is because the Sun moves along the ecliptic, and the inclina-
tions of the orbits of all the planets and the Moon with the ecliptic are small.

Using the formulae of spherical trigonometry, it can be shown that the eclip-
tic coordinates (β ,λ ) and the equatorial coordinates (δ ,α) are related through the
following equations:

sinβ = sinδ cosε + cosδ sinε sinα (C.9)

sinδ = sinβ cosε + cosβ sinε sinλ . (C.10)

C.3 Precession of equinoxes

precesses in 

spin of

axis in the celestial sphere

reference axisP

the Earth

locus of  the tip of the Earth’s K (pole of the ecliptic)

space−fixed

~26000 years

Fig. C.6 The locus of points traced by the equatorial axis due to precession.

Because of the gravitational forces of the Sun and the moon on the equatorial
bulge of the rotating Earth, the rotational axis of the Earth moves with respect
to a space-fixed reference frame as shown in Fig. C.6, like the axis of a precess-
ing top. As a result of this, the relative orientations of the ecliptic and the celes-
tial equator in space keep steadily varying, maintaining the angle of inclination
around an average value of 23.5◦. In otherwords, the equinoctial points Γ and Ω
as indicated in Fig. C.7 move backwards (westwards) along the ecliptic. This phe-
nomenon is known as the precession of equinoxes. In this figure, K is the pole of
the ecliptic. The tip of the axis of rotation of the Earth moves around the circle
P → P1 → P2 → P3 → P.
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Fig. C.7 (a) Different orientations of the celestial equator with respect to the ecliptic due to pre-
cession; (b) and (c) orientation of the equator and its axis at different epochs about 13000 years
apart.

As per the current estimates, the axis of rotation of the Earth completes one full
revolution about the pole of the ecliptic in around 25800 years. This means that
the vernal equinox Γ slides back along the ecliptic in the same period. The rate of
motion is given by

360×60× 60
25800

≈ 50′27′′ per year,

which amounts to 1◦ in about 72 years.
This phenomenon of precession seems to have been noted in the Indian tradition

from early times. For instance, Varāhamihira (c. 505 CE) in his Br. hatsam. hitā
observes:A;a:(ìÉÅ;e +Sa;a;Da;Ra;�+Æa;[a;Na;mua:�a:=+ma;ya;nMa .=+vea;DRa;�a;na;�+a;dùÅ;a;m,a ÁnUa;nMa k+:d;a;�a;.a;d;a;s�a;a;t,a yea;na;ea;�M :pUa;vRa;Za;a;~:�ea;Sua Á Á.sa;a;}å.pra;ta;ma;ya;nMa .sa;
a;va;tuaH k+:kR +:f;k+:a;dùÅ;aM mxa;ga;a;
a;d;ta;(ãÉa;a;nya;t,a Áo+.�+:a;Ba;a;va;ea ;
a;va;kx +:�a;taH :pra;tya;[a;pa;�a:=+[a;NEa;v.yRa;�a;�H Á Á



462 Coordinate SystemsdU :=+~Ta;�a;.a;�îå+:vea;Da;a;du ;d;yeaY;~ta;ma;yeaY;
a;pa va;a .sa;h;~åò:a;Ma;Za;eaH ÁC+.a;ya;a;pra;vea;Za;�a;na;gRa;ma;�a;.a;�îåE +:va;Ra ma;Nq+.le ma;h;�a;ta Á Á 2
There was indeed a time when the Sun’s southerly course began from the middle of the star
Āśles.a and the northerly one from the commencement of the star Dhanis.t.hā, as it has
been so stated in ancient works.

At present the southerly course of the Sun starts from the beginning of Cancer and the
other from the initial point of sign Capricorn. The actual state of affairs which goes against
the old statement can be verified by direct observation. The Sun’s change of course can be
detected by marking everyday the position of a distant object either at sunrise or sunset, or
by watching and marking the entry and exit of the shadow of the gnomon fixed at the centre
of a big circle drawn on the ground.

The above passage besides giving the positions of the solstices during Varāhami-
hira’s time also clearly brings out Varāha’s understanding of the phenomenon of
precession. The simple techniques recommended by him for the determination of the
current positions of the solstices also enable us to discern his ingenuity. This also
highlights the fact that he was not blindly following the statements of the ancient
writers, but as a true astronomer was making observations for himself to verify them,
which is quite essential for the advancement of science in general and astronomy in
particular.

Many of the Indian astronomical works talk about the phenomenon of precession.
They give slightly differing values for the rate of precession, which are all centred
around the value of 54′ per year.

Sāyana and nirayan. a longitudes

As noted in the previous section, the point of intersection of the ecliptic and the
celestial equator, namely the vernal equinox, constantly drifts westwards at the rate
of around 50′′ per year. There are two kinds of longitude specifications, namely
sāyana and nirayan. a, based on whether the vernal equinox or the beginning point
of the Mes.a rāśi (which is the same as the beginning point of the Aśvin̄ı naks.atra)
is taken as the reference point on the ecliptic for the measurement of longitudes.

The term ayana refers to motion in Sanskrit. Hence sāyana means ‘with motion’
and nirayan. a means ‘without motion’. In the nirayan. a system, the longitude of any
celestial object is measured from the beginning point of the Mes.a rāśi (which is a
fixed point in space) in the eastward direction, whereas in the sāyana system it is
measured with respect to the vernal equinox (which is a moving point with respect
to fixed stars). This explains the origin of the terminology sāyana and nirayan. a
longitudes. While the longitudes differ, the celestial latitudes are the same in both
the systems, as latitude is a measure of the distance of the celestial object along a
the circle perpendicular to the ecliptic.

2 {BS 1981}, (III.1–3), p. 23.
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Ayanām. śa

By doing a back computation, it is generally found that around the year 285 CE the
vernal equinox coincided with the beginning point of the Aśvin̄ı naks.atra, so that
the sāyana and the nirayan. a longitudes were the same at that time. Due to the pre-
cession of equinox, at present3 the position of vernal equinox is 24◦ 00′ 16′′ west of
the Mes. ādi. In other words, the sāyana longitude of the Mes. ādi is 24◦ 00′ 16′′. The
difference in longitude between the two reference points on the ecliptic is known as
the ayanām. śa:

ayanām. śa = sāyana longitude−nirayan. a longitude.

This means that one has to add the ayanām. śa to the nirayan. a longitude to get the
sāyana longitude (see Fig. C.8)

X

(pole of the ecliptic)K

Γ

(celestial
object)

M

longitude

Y

longitude

nirayan. a

ayanām. śa

sāyana

Fig. C.8 Nirayan. a and sāyana longitudes. Γ is the vernal equinox and M is the Mes.ādi.

In Fig. C.8, the arcs MY and ΓY are the nirayan. a and sāyana longitudes of X .
Γ M, which is the difference between them, is the ayanām. śa. The ayanām. śa for the
beginning of each month is provided in some almanacs, like Rās.t.riya Pañcāṅga
published by the Government of India. So it is easy to convert from one system to
another. Most of the Pañcāṅgas published in various parts India use the nirayan. a
system for fixing the dates and times of observance of almost all religious and social
functions.

3 As on March 22, 2010.
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C.4 Equation of time

In ancient times day-to-day activities of human beings were much linked with the
position of the Sun, and its diurnal motion across the sky was the primary means by
which people kept track of time. Sundials were employed for this purpose. However,
the time indicated by them is apparent solar time, based on the actual position of
the Sun; this is to be distinguished from the mean solar time, based upon the motion
of a fictitious body called the mean Sun, which we will define shortly.

The time interval between two successive passages of the Sun at the observer’s
meridian is defined as an apparent solar day. The length of an apparent solar day is
not constant for two reasons:

1. The Sun does not move with uniform speed along its apparent orbit.
2. The orbit of the Sun is inclined to the equator—along which all the time mea-

surements are done—by about 23.5◦.

ε

R

Pε
K

D S

Ω

M B

E

ecliptic

equator

Γ

Fig. C.9 Positions of the ‘true’ Sun (S), the ‘mean’ Sun (M) and the ‘dynamical mean’ Sun (D).

In order to introduce a day which is of constant duration, ancient astronomers in-
troduced a fictitious body called the ‘mean Sun’ which moves on the equator along
the direction of increasing right ascension at a uniform speed. The time interval be-
tween two successive passages of this fictitious body across the observer’s meridian
is a constant quantity which is defined as a mean solar day. This is divided into 24
hours. All our clocks are set to measure this mean solar time.

The ‘dynamical mean Sun’ moves along the ecliptic at a constant angular speed,
which is the same as the average angular speed of the true Sun and the mean Sun. In
Fig. C.9, S, M and D represent the true/actual Sun, the mean Sun and the dynamical
mean Sun respectively.
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1. When the Sun is at the perigee, the dynamical mean Sun starts off its motion
along the ecliptic with a uniform angular speed in such a way that it would meet
the true Sun again at the perigee after one complete revolution.

2. The motion of the mean Sun is such that it starts off its motion along the
equator—with uniform angular speed, when the dynamical mean Sun is at the
vernal equinox—in such a way that it would meet the dynamical mean Sun again
at the vernal equinox after one complete revolution.

The difference between the right ascension of the mean Sun (RAMS) and that of
the actual Sun (RA⊙) is defined as the equation of time (ε) . That is,

ε = RAMS−RA⊙ (C.11)

= H.A.⊙−H.A.M.S. (C.12)

0
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Fig. C.10 Variation in the equation of time over a year.

A graph depicting the variation in the equation of time over the period of an
year is shown in Fig. C.10. The equation of time is the time difference between the
meridian transits of the true Sun and the mean Sun.





Appendix D
Solution of the ten problems: a couple of
examples from Yuktibhās. ā

A ‘declination type’ formula is the only essential ingredient in the solution of all the
spherical trigonometry problems in Yuktibhās. ā. The problem can be posed thus:
what is the distance of a point on a great circle from the plane of another great circle
which intersects it?

In Fig. D.1, two circles with a common radius R and a common centre O intersect
at points X and X ′. Let i be the angle of inclination between the two circles. It may
be noted that the maximum separation between the two circles given by CD = Ri
occurs when CX = DX = 90◦.

RiX’

B
X

O
D

 C

Rχχ
Rρ

i
F

A

Fig. D.1 Measure of the arc connecting two intersecting circles.

Consider a point A on one of the circles such that arc XA = Rρ . Draw a great
circle arc AB = Rχ such that it is perpendicular to the second circle XDX ′ at B.
Then Rsin χ , denoted by AF in the figure, is the perpendicular distance between A
and the second circle and is given by

Rsin χ = Rsin i sinρ . (D.1)

It can be easily seen that the above relation reduces to the familiar relation for the
declination

sinδ = sinε sinλ , (D.2)

467
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if, for example, we consider the two circles XCX ′ and XDX ′ to be the ecliptic and
the celestial equator respectively, i to be the obliquity of the ecliptic ε , ρ to be the
longitude λ and χ to be the declination δ .

Thus Rsin χ can be found if the arc Rρ is given; conversely, the arc Rρ can be
found when the perpendicular distance Rsin χ is known. This is the ‘trairāśika’ that
is invariably used in the solution of all the ten problems discussed in Yuktibhās. ā.

Now there are five quantities: (i)́saṅku (gnomon) Rcosz, (ii) nata-jyā (Rsine
hour angle) RsinH, (iii) apakrama (declination) Rsinδ , (iv) āśāgrā (amplitude)
Rsina, where a = 90◦ ∼ A, A being the azimuth, and (v) aks.ajyā (Rsine latitude)
Rsinφ . When three of them are known, the other two are to be determined. This can
happen in ten different ways, and so the topic is referred to as ‘the ten problems’.
We shall outline the Yuktibhās. ā derivation of the solution of the first two problems,
where the śaṅku and the nata, and the śaṅku and the apakrama, are derived in
terms of the other three quantities.

D.1 Problem one: to derive the śaṅku and nata from the other
three quantities

We now discuss the method to derive the śaṅku and the nata-jyā, when the decli-
nation, āśāgrā and latitude are known.

In Fig. D.2, X is the planet. The great circle through Z and X is the is. t.a-digvr. tta,
cutting the horizon at A. If WA = a is the arc between the west point and A, the
aśāgrā is Rsina. Let B be between N and W , at 90◦ from A. Then the great circle
through Z and B is the vipar̄ıta-digvr. tta. Consider the great circle through B and
the north celestial pole P. This is the tiryagvr. tta, which is perpendicular to both the
is.t.a-digvr. tta and the celestial equator. This is so because this circle passes through
the poles of both the digvr. tta and the celestial equator (B and P respectively).

Let the tiryagvr. tta intersect the is. t.a-digvr. tta and the celestial equator at C and D
respectively. Let the arc BP = x. Then, as B is the pole of the is.t.a-digvr. tta, BC = 90
or PC = 90−x. As PD = 90, CD = x. This is indeed the angle between the digvr. tta
and the celestial equator at Y (XŶU). The distance between P on the meridian and
the vipar̄ıta-digvr. tta ZB is given by

RsinPF = Rsina cosφ , (D.3)

as PZ = 90−φ , and PẐB, the inclination of the vipar̄ıta-digvr. tta with the meridian,
is a.

Let the angle between the tiryagvr. tta and the horizon be i. Then the angle be-
tween the tiryagvr. tta and the vipar̄ıta-digvr. tta is 90− i. It follows that RsinPF is
also given by

RsinPF = Rsinxcos i. (D.4)

Equating the above two expressions,
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φ

P

90−a a

Y

C

G

cel
. eq

uato
r

horizon

SN

X

x

U

δ

a

a

ρ

A

E

W

δ

Z

x

B
(pole of

C’

i

90−x

D

a

x
F

diu
rn

al 
cir

cle

)
tiryag-vr. tta

is.
t.a

-d
ig
vr.

tt
a

vipar̄ıta-d
igvr.tta

is. t.a-digvr.tta

Fig. D.2 The important circles and their secondaries considered in the ‘ten problems’.

Rsinxcos i = Rsinacosφ . (D.5)

Now PN = φ is the perpendicular arc from P on the tiryagvr. tta, on the horizon,
which is inclined to it at angle i. Therefore,

Rsinxsin i = Rsinφ . (D.6)

From (D.5) and (D.6), we get

Rsinx =

√
R2 sin2 acos2 φ +R2 sin2 φ , (D.7)

which is what has been stated. This is the maximum separation between the is.t.a-
digvr. tta and the celestial equator, as the angle between them is x.

Now the arc BC on the tiryagvr. tta and the arc BC′ on the horizon are both 90◦.
Hence arc CC′ = i, the angle between the two vr. ttas. Then CZ = 90− i, and as C is
at 90◦ from Y , the intersection between the celestial equator and the is. t.a-digvr. tta,
ZY = i. Hence the ascent of the tiryagvr. tta from the horizon on the digvr. tta = i is
the same as the descent of the equator from the zenith on the digvr. tta. Let the arc
XY = ρ . XG is the perpendicular arc from X on the digvr. tta on the celestial equator.
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Rsin(XG) = Rsinδ = Rsin(XY) sinx

= Rsinρ sin x. (D.8)

Now the perpendicular arc from Z on the digvr. tta on the celestial equator = ZU = φ .
Therefore

RsinZU = Rsinφ = Rsin(ZY )sinx

= Rsin isinx. (D.9)

Rsinρ and Rsin i are called the sthān̄ıyas or the ‘representatives’ of the apakrama
and aks.ajyā on the digvr. tta. Now the zenith distance

z = ZX = ZY −XY

= i−ρ . (D.10)

Therefore

Rsin z = Rsin(i−ρ) = Rsin icosρ −Rcos isinρ

=
(Rsinφ cosρ −Rsinδ cos i).R

Rsinx
. (D.11)

Consider the kot.is of the Rsinφ and Rsinδ on a circle of radius Rsinx (which are
denoted as kot.i

′):

kot.i
′(φ) =

√
R2 sin2 x−R2 sin2 φ

=
√

R2 sin2 x−R2 sin2 isin2 x

= Rcos isinx. (D.12)

Similarly,

kot.i
′(δ ) =

√
R2 sin2 x−R2 sin2 δ

=

√
R2 sin2 x−R2 sin2 ρ sin2 x

= Rcosρ sinx. (D.13)

Hence we have

Rsinz =
(Rsinφ kot.i

′(δ )−Rsinδ kot.i
′(φ))R

R2 sin2 x
. (D.14)

This is the shadow Rsinz at the desired place, which is expressed in terms of the
declination δ , the latitude φ and the āśāgrā, as x is given in terms of φ and a by

Rsinx =

√
R2 sin2 acos2 φ +R2 sin2 φ . (D.15)
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The gnomon Rcosz is given by

Rcosz = Rcos(i−ρ)

= R(cos icosρ + sin isinρ)

=
(kot.i

′(φ)kot.i
′(δ )+ Rsinφ Rsinδ )R
R2sin2x

. (D.16)

When the declination δ is south and δ > 90◦ −φ , the diurnal circle is below the
horizon and there is no gnomon. When the northern declination is greater than the
latitude, midday is to the north of the zenith and the gnomon in the southern direc-
tion. However, in this case, the gnomon will occur only when the āśāgrā is north,
i.e. A is north of W .

Now from (D.7) and (D.12), kot.i
′(φ ) reduces to

kot.i
′(φ) = Rcosφ sina. (D.17)

Similarly, from (D.7) and (D.13)

kot.i
′(δ ) = R

√
sin2 φ + cos2 φ sin2 a− sin2 δ . (D.18)

Hence,

Rcosz =
R (sinφ sin δ + cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ )

(sin2 φ + cos2 φ sin2 a)
. (D.19)

When the declination is north and the planet X is to the north of the prime vertical,
one can show that z = 180− (i+ρ) and we would get

Rcosz =
R (sinφ sin δ − cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ )

(sin2 φ + cos2 φ sin2 a)
. (D.20)

When the declination is south, z = i+ρ and we would get (D.19) again where it is
understood that δ is negative.

Thus in all cases

Rcosz =
R (sinφ sinδ +∼ cosφ sina

√
sin2 φ + cos2 φ sin2 a− sin2 δ )

(sin2 φ + cos2 φ sin2 a)
. (D.21)

Kon. a-śaṅku (corner shadow)

The term kon. a means corner. In this context, it refers to the corner between any
two cardinal directions, such as north-east, south-west etc. Technically, the kon. a-
śaṅku or corner shadow occurs when the āśāgrā = 45◦. In this case, from (D.14)
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and (D.15) we have

Rsinx =

√
1
2

R2 cos2 φ +R2 sin2 φ (D.22)

Rsin zsinx =
RsinφRcos′ δ −Rsinδ Rcos′ φ

Rsinx
. (D.23)

Derivation of nata-jyā
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Fig. D.3 The is. t.a-digvr. tta passing through a planet.

In Fig. D.3, X is the planet whose declination is δ . Let H be the hour angle. Since
PX = 90−δ , the distance between X and the north–south circle will be

= RsinH sin(90− δ )

= RsinH cosδ . (D.24)

But the maximum angle between the north–south circle and the is. t.a-digvr. tta on
which X is situated at a distance z from the zenith is 90− a. Therefore the distance
between X and the north–south circle is also

= Rsinzsin(90−a)

= Rsinzcosa = chāyā-koti. (D.25)

Equating the two expressions, we get

RsinH cosδ = Rsinzcosa = chāyā-koti.

Therefore the nata-jyā is given by
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RsinH =
chāyākot.i

cosδ
=

chāyākot. i× trijyā

dyujyā
. (D.26)

D.2 Problem two: the śaṅku and apakrama

Here, the śaṅku and krānti (apakrama) are to be derived in terms of the nata-jyā,
āśāgrā and aks.a.
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Fig. D.4 Some important great circles and their secondaries.

In Fig. D.4, the nata-vr. tta is the great circle passing through P and X (the Sun)
which intersects the horizon at C. Now, draw the nata-samaman. d. ala, which is a
vertical through Z and C. D is a point on the horizon at 90◦ from C. The nata-
dr. kks.epa-vr. tta or svadeśa-nata is the vertical through D and the is. t.a-digvr. tta is
the vertical through X intersecting the horizon at A. B is a point 90◦ from A and the
vertical through B is the ‘vyasta’ or vipar̄ıta or vidig-vr. tta. The point of intersection
of the equator and the nata-dr. kks.epa-vr. tta is denoted by G.
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Consider the great circle (tiryag-vr. tta) through B and G. We show that BG is
perpendicular to both the natavr. tta and the digvr. tta. The tiryagvr. tta and the is.t.a-
digvr. tta intersect at F . Y is the point of intersection of the nata-dr. kks.epa-vr. tta
and the nata-vr. tta. Let ZY = α. RsinZY = Rsinα is the svadeśa-nata-jyā. YD =
90−α, Rsin(Y D) = Rcosα is the svadeśa-nata-kot.i.

Since B is at 90◦ from Z and A, it is the pole of the is. t.a-digvr. tta. Therefore
BF = BX = 90◦. Similarly, C is the pole of the nata-dr. kks.epa-vr. tta, since CD =
CZ = 90◦. Therefore G is at 90◦ from C. G, being on the celestial equator, is at 90◦

from P. Therefore G is the pole of the nata-vr. tta. Hence BG passes through the
poles of nata-vr. tta and digvr. tta. Thus, BG is the perpendicular to both the nata-
vr. tta and the is. t.a-digvr. tta.

Now X is the pole of the tiryagvr. tta, as it is at 90◦ from B and G.1 Therefore
XF = 90◦. But XA = 90− z. Hence, AF = z, where z is the maximum separation
between the horizon and the tiryagvr. tta (as BA = BF = 90◦). Therefore, z = DB̂G.
The tiryagvr. tta meets the is. t.a-digvr. tta also at F ′. Then,

180◦ = FF ′ = ZF ′ +ZF

= ZF ′ +ZA +AF

= ZF ′ +90 + z.

Therefore, ZF ′ = 90−z or F ′F ′′ = z. This is the elevation of the tiryagvr. tta from the
horizon on the is. t.a-digvr. tta. As this maximum separation occurs at 90◦, BF ′ = 90◦.
It is clear from the figure that the angle between the tiryagvr. tta and the vidig-vr. tta
is 90− z.

Now C is the pole of ZD. Therefore CY = 90◦, and the angle at Y is 90◦. Since
the angle between ZP and Y P is H and ZP = 90−φ , the sine of the zenith distance
of the point Y , denoted by α, is

sinα = sin(90−φ)sinH

= cosφ sinH. (D.27)

Therefore

cosα =

√
1− cos2 φ sin2 H. (D.28)

Let CS = β be the distance between the north–south circle and the nata-vr. tta at the
horizon. It is easy to see that NC′ = ED = β , where C′ is the point on the horizon
diametrically opposite to C.

Note:

1. C being the pole of ZDG, DY = 90−α is the angle between the nata-vr. tta and
the horizon. Therefore

sinφ = sinPN = sin(90−α)sin(PC).

1 The point X is at 90◦ from G, since G is the pole of the nata-vr. tta.
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Hence

sinPC =
sinφ
cosα

. (D.29)

2. Now H is the angle between the north-south circle and the nata-vr. tta. Therefore,

sinβ = sin(SC) = sinH sinPC. (D.30)

Using (D.29) in the above equation, we get

sin β =
sinH sinφ

cosα

=
sin φ sinH√

1− cos2 φ sin2 H
, (D.31)

using (D.28). This result will be used later.

Again, in Fig. D.4, AE = a is is. t.āgrā. The angle between the nata-sama-vr. tta
and the digvr. tta on the horizon is given by CA = γ . It may be noted that this is also
equal to the angle between the nata-dr. kks.epa-vr. tta and the vyasta-dr. kks. epa-vr. tta.
Since B is the pole of the digvr. tta, clearly γ = 90−β −a. Therefore

sinγ = sin(90−β −a)

= cos(β + a)

= (cosβ cosa− sinβ sina). (D.32)

When āśāgrā a is to the north of east, γ = 90− β + a and sin γ = cosβ cosa +
sinβ sina. Thus sinγ is determined in terms of known quantities, since sina is given
and sinβ is known from (D.31).

Now, let GB = x and GL be the perpendicular arc from G to vidig-vr. tta. Then
sinDG, which is the same as sinZY , is given by

sinα = sin zsinx. (D.33)

Also
sinGL = sinxcosz, (D.34)

as z and 90− z are the angles between the tiryagvr. tta and the horizon, and the
tiryagvr. tta and the vidig-vr. tta, respectively. But the angle between ZG and ZL is γ
and ZG = 90◦ +α . (For GY = 90◦, G being the pole of nata-vr. tta.) Therefore

sinGL = sin(90 +α)sinγ
= sinγ cosα. (D.35)

Equating the two expressions for sinGL, we get

sinxcosz = sinγ cosα. (D.36)
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We had
sinxsin z = sinα. (D.37)

From (D.36) and (D.37), we get

sinx =

√
sin2 α + sin2 γ cos2 α. (D.38)

Using the above in (D.36) and (D.37), we have

cosz =
sinγ cosα√

sin2 α + sin2 γ cos2 α
, (D.39)

and sin z =
sinα
sinx

. (D.40)

Now

sinβ =
sinφ sinH

cosα
. (D.41)

Therefore

cosβ =

√
1− sin2 β

=

√

1− sin2 φ sin2 H
cos2 α

=

√
cos2 α − sin2 φ sin2 H

cosα

=

√
1− cos2 φ sin2 H − sin2 φ sin2 H

cosα

=
cosH
cosα

, (D.42)

where we have used (D.28).
Hence, from (D.32), (D.41) and (D.42), we have

sinγ cosα = (cosβ cosa− sinβ sina)cosα
= cosH cosa− sinφ sinH sina. (D.43)

We have already shown that

sinα = cosφ sinH. (D.44)

Substituting these in (D.39), we obtain the following expression for śaṅku in terms
of natajyā, āśāgrā and aks.a:
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Rcosz =
(RcosH cosa−Rsinφ sinH sina)R√

R2 cos2 φ sin2 H +(RcosH cosa−Rsinφ sinH sina)2
. (D.45)

We have actually considered the āśāgrā ‘a’ to be south in Fig. D.4. When the āśāgrā
‘a’ is north, the ‘−’ sign in (D.45) has to be replaced by ‘+’ sign. Similarly, substi-
tuting in (D.40) we have

Rsinz =
(Rcosφ sinH)R√

R2 cos2 φ sin2 H +(RcosH cosa−Rsinφ sinH sina)2
. (D.46)

These are the gnomon and the shadow respectively.
Now X is at the intersection of the nata-vr. tta and the digvr. tta, which makes

angles H and 90 − a, respectively, with the north-south circle. PX = 90 − δ and
ZX = z. Equating the two expressions for the distance between X and the north–
south circle, we get

Rcosδ sin H = Rsinzcosa. (D.47)

Hence

Rcosδ =
Rsinz Rcosa

RsinH
, (D.48)

or

Dyujyā =
chāyā× āśāgrā-kot.i

natajyā
,

from which the apakrama can be obtained as

Rsinδ =
√

R2 −R2 cos2 δ . (D.49)





Appendix E
Derivation of the maximum declination of the
Moon

Here we outline the derivation of the maximum declination of the Moon as given in
Chapter 13 on vyat̄ıpāta in Yuktibhās. ā.

E.1 Occurrence of Vyat̄ıpāta

Vyat̄ıpāta is said to occur when the (magnitudes of the) declinations of the Sun and
the Moon are equal, and when one of them is increasing and the other decreasing.
This can happen when one of these bodies is in an odd quadrant and the other is in
an even quadrant.

E.2 Derivation of declination of the Moon

A method of computing the declination of the Moon (which has a latitude) has
already been described. Here, a new method to compute it is described in Section
6.3. The declination of the Sun is determined with the knowledge of the intersection
point (Γ in Fig. E.1) and the maximum divergence Rsinε of the ecliptic and the
celestial equator. Similarly, the declination of the Moon can be determined if we
know (i) the point where the celestial equator and the viks.epa-vr. tta (the lunar orbit)
intersect, (ii) the maximum divergence between them, and (iii) the position of the
Moon on the viks.epa-vr. tta.

E.3 Viks.epa

The viks.epa-vr. tta will intersect the ecliptic at Rāhu (the ascending node of the
Moon) and Ketu (the descending node) and diverge northwards and southwards
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respectively, from those points. A method to determine the intersection point of the
celestial equator and the viks.epa-vr. tta, and their maximum divergence, is described
first in qualitative terms. For this, four distinct cases are discussed.

P

o

ε

V K 

ε

Γ

i

celestial equator 

ec
lip

tic

i

vi
ks.
ep
a-
vr.
tta

(Rāhu)

(viks.epa-pārśva)

Fig. E.1 Moon’s orbit when the node Rāhu coincides with the vernal equinox Γ .

Case 1: Rāhu at the vernal equinox:
Here the maximum declination (ε) on the ecliptic and maximum viks.epa (i) on

the viks.epa-vr. tta are both on the north-south circle as shown in Fig. E.1. The maxi-
mum possible declination of the Moon on that day will be equal to the sum of these
two (ε + i). Then, the declination of the Moon can be determined with the knowl-
edge of its position on the viks.epa-vr. tta, as the inclination of viks.epa-vr. tta with
the equator is (ε + i). The viks.epa-pārśva

1 is the northern pole (V0) of the viks.epa-
vr. tta. When Rāhu is at the vernal equinox, the distance between this and the north
celestial pole is equal to (ε + i).

The viks.epa-pārśva is the (north) pole of the viks.epa-vr. tta, just as the north
celestial pole is the pole of the celestial equator or the rāśi-kūt.a is the pole of the
ecliptic. Whatever the position of Rāhu, the distance between the celestial pole and
the viks.epa-pārśva is equal to the maximum divergence between the equator and
the viks.epa-vr. tta.

Case 2: Rāhu at the winter (southern) solstice:
In this case, the viks.epa-vr. tta would be deflected towards the north from the

vernal equinox by the measure of maximum viks.epa as shown in Fig. E.2. The

1 Though generally the term pārśva refers to a side, in the present context it is used to refer to the
pole.
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Fig. E.2 Moon’s orbit when the node Rāhu coincides with the winter solstice.

viks.epa-pārśva
2 would be deflected towards the west from V0 and would be at VW ,

with the arc length KVW = i. The distance between the (celestial) pole P and VW

is the viks.epāyanānta (I). The great circle passing through P and VW is called the
viks.epāyana-vr. tta. Its intersection point (DW ) with the celestial equator would be
deflected west from the north–south circle by the angle KP̂VW . The point of intersec-
tion of the viks.epa-vr. tta and the viks.epāyana-vr. tta corresponds to the maximum
declination of the Moon in this set-up.

The viks.epa-vis.uvat is the point of intersection of the viks.epa-vr. tta and the ce-
lestial equator and is denoted by CW . CW is at 90◦ from DW . CW Γ = KP̂VW is called
viks.epa-calana. CW is situated west of the vernal equinox when Rāhu is at the win-
ter solstice.

Case 3: Rāhu at the autumnal equinox:3

As depicted in Fig. E.3, the viks.epa-vr. tta would intersect the north-south circle
at a point north of the winter solstice by i, which is taken to be 4 1

2
◦
. The viks.epa-

pārśva, now at V ′, would also be deflected towards north from K, and the distance
between V ′ and P would be ε − i = 19 1

2
◦
. It is easy to see that the viks.epa-vis.uvat

would coincide now with the equinox and there will be no viks.epa-calana.
Case 4: Rāhu at the summer (northern) solstice:
This situation is depicted in Fig. E.4. Here, the viks.epa-pārśva VE is deflected

towards the east from V0, with KVE = i. The viks.epāyana-vr. tta touches the equator
at DE , which is deflected east from the north–south circle. The viks.epa-vis.uvat is at
CE and is east of the vernal equinox Γ .

Thus the location of the viks.epa-pārśva, V , depends upon the position of Rāhu.
However, it is always at a distance of maximum viks.epa from the northern rāśi-kūt.a

2 It may be noted that this point VW lies on the other side of the celestial sphere.
3 The autumnal equinox was approximately at the middle of the Kanyā-rāśi at the time of com-
position of Yuktibhās.ā (c. 1530 CE).
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Fig. E.3 Moon’s orbit when the node Rāhu coincides with the autumnal equinox.
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Fig. E.4 Moon’s orbit when the node Rāhu coincides with the summer solstice.

(KV = i). The location of the southern viks.epa-pārśva with respect to the southern
rāśi-kūt.a can be discussed along similar lines.

E.4 Viks.epa-calana

Here the method to determine the distance between the (north) celestial pole and the
viks.epa-pārśva is described in broad terms first. Consider Fig. E.5. The viks.epa-
pārśva is at V0 separated from K by the maximum viks.epa i. Drop a perpendicu-
lar V0T from V0 to OK, where O is the centre of the sphere. As the arc V0K = i,
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Fig. E.5 The distance between the viks.epa-pārśva and the north celestial pole.

V0T = Rsin i. Draw a circle with radius Rsin i centred at T in the plane perpendicu-
lar to OT . This is the viks.epa-pārśva-vr. tta. It may be noted that this circle (shown
separately in Fig. E.5(b)), will be parallel to the plane of the ecliptic.4 Mark a point
V on this circle such that the angle corresponding to the arc V0V is the longitude of
Rāhu, λN . Drop a perpendicular TU from T to the aks.a-dan. d. a OP. Draw a circle
with U as the centre and TU as the radius in the plane perpendicular to OP. The
relationship between this circle and the viks.epa-pārśva-vr. tta is the same as that of
the kaks.yāvr. tta and the ucca-n̄ıcavr. tta. Now

OT = Rcos i,

and TU = OT sinε = Rcos isinε,

is the radius of the kaks.yāvr. tta. Draw VM perpendicular to V0T . Then VM =
Rsin isin λN and MT = Rsin icosλN play the role of the bhujā-phala and the
kot.iphala respectively in the determination of VU , which is the karn. a. It must be
noted that VM is along the east-west direction and perpendicular to the plane of the
figure. It is the distance between V and the north–south circle. When the Rāhu is
between Makarādi and Karkyādi (or equivalently λN is between 270◦ and 90◦),
the kot.iphala has to be added to the representative of the trijyā, which is TU . Sim-
ilarly, when it is between Karkyādi and Makarādi (λN is between 90◦ and 270◦ ),
the kot.iphala is to be subtracted. (Actually the kot.iphala has to be projected along
TU before this is done; this becomes clear in the next section.) When Rāhu is at

4 In the figure V M is along the east-west line and is perpendicular to the plane of the figure.
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the vernal equinox, viks.epa-pārśva is at V0 and VP would be maximum. Similarly,
when Rāhu is at the autumnal equinox, viks.epa-pārśva is at V ′ and V P is minimum.

The viks.epa-pārśva is in the eastern part of the sphere (or to the east of the
north–south circle) when Rāhu moves from the vernal equinox to the autumnal
equinox (or λN is between 0◦ and 180◦). Then the viks.epa-vis. uvat is situated east
of the equinox, and the viks.epa-calana is to be subtracted (from the longitude of the
Moon) while calculating the Moon’s declination. Similarly, the viks.epa-vis.uvat is
situated west of the equinox, when Rāhu moves from the autumnal equinox to the
vernal equinox (or λN is between 180◦ and 360◦), and the viks.epa-calana is to be
added (to the longitude of the Moon) while calculating the Moon’s declination.

E.5 Karn. ānayana
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Fig. E.6 The inclination of the Moon’s orbit with the equator.

In Fig. E.6, the points V0, V , T (the centre of the viks.epa-pārśva-vr. tta), M and
U have the same significance as in Fig. E.5. MV is perpendicular to the plane of the
figure. Draw MU ′ from M, perpendicular to the aks.a-dan. d. a, OP. V M is perpendic-
ular to the plane of the figure and hence to OP, and MU ′ is also perpendicular to OP.
Hence VU ′M is a triangle, right-angled at M, and in a plane perpendicular to OP.
Therefore, VU ′ is perpendicular to OP and is the desired distance, Rsin I, between
V and the aks.a-dan. d. a. Let MM′ be perpendicular to UM′, which is the extension
of UT . The angle between T M′ and T M is ε . It is clear that MU ′ = M′U . Therefore

M′U = M′T +TU

= MT cosε +Rcos isinε
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= Rsin icosλN cosε +Rcos isin ε, (E.1)

where MT is the kot.iphala discussed in the previous section. It may be seen that
MV = Rsin isin λN , is the bhujā-phala. Then

VU ′ =
√

(MV )2 +(MU ′)2

=
√

(Rsin isinλN)2 +(Rsin icosλN cosε +Rcos isin ε)2. (E.2)

Clearly VU ′ = Rsin I, where I is the angle corresponding to the arc VP. Hence,

Rsin I =
√

(Rsin isin λN)2 +(Rsin icosλN cosε +Rcos isinε)2. (E.3)

This is the maximum declination, or the maximum divergence between the equator
and the viks.epavr. tta (the Moon’s orbit).





Appendix F
The traditional Indian planetary model and its
revision by Nı̄lakan.t.ha Somayāj̄ı 1

It is now generally recognized that the Kerala school of Indian astronomers,2 start-
ing from Mādhava of Saṅgamagrāma (1340–1420 CE), made important contribu-
tions to mathematical analysis much before this subject developed in Europe. The
Kerala astronomers derived infinite series for π , sine and cosine functions and also
developed fast convergent approximations to them.3

Here we shall explain how the Kerala school also made equally significant dis-
coveries in astronomy, and particularly in planetary theory. Mādhava’s disciple
Parameśvara of Vat.aśśeri (c. 1380–1460) is reputed to have made continuous and
careful observations for over 55 years. He is famous as the originator of the Dr. g-
gan. ita system, which replaced the older Parahita system. He also discussed the
geometrical picture of planetary motion as would follow from the traditional Indian
planetary model.

1 This appendix, prepared by K. Ramasubramanian, M. D. Srinivas and M. S. Sriram, is a revised
and updated version of the following earlier studies on the subject: (i) K. Ramasubramanian,
M. D. Srinivas and M. S. Sriram, Modification of the Earlier Indian Planetary Theory by the Kerala
Astronomers (c. 1500) and the implied Heliocentric Picture of Planetary Motion, Current Science
66, 784–790, 1994. (ii) M. S. Sriram, K. Ramasubramanian and M. D. Srinivas (eds), 500 Years
of Tantrasangraha: A Landmark in the History of Astronomy, IIAS, Shimla 2002, pp. 29–102.
(iii) Epilogue: Revision of Indian Planetary Model by Nı̄lakan. t.ha Somayāj̄ı, in Gan. ita-yukti-
bhās.ā of Jyes.t.hadeva, ed. and tr. K. V. Sarma with Explanatory Notes by K. Ramasubramanian,
M. D. Srinivas and M. S. Sriram, 2 vols, Hindustan Book Agency, Delhi 2008; repr. Springer, 2009,
vol II, pp. 837–856.
2 For the Kerala school of astronomy, see for instance, K. V. Sarma, A Bibliography of Kerala and
Kerala-based Astronomy and Astrology, Hoshiarpur 1972; K. V. Sarma, A History of the Kerala
School of Hindu Astronomy, Hoshiarpur 1972.
3 For overviews of the Kerala tradition of mathematics, see S. Parameswaran, The Golden Age of
Indian Mathematics, Kochi 1998; G. G. Joseph, The Crest of the Peacock: Non-European Roots
of Mathematics, 2nd edn. Princeton 2000; C. K. Raju, Cultural Foundations of Mathematics: The
Nature of Mathematical Proof and the Transmission of the Calculus from India to Europe in the
16th c. CE, Pearson Education, Delhi 2007; Kim Plofker, History of Mathematics in India: From
500 BCE to 1800 CE, Princeton 2009; G. G. Joseph (ed.), Kerala Mathematics: History and Possi-
ble Transmission to Europe, B. R. Publishing, New Delhi 2009. See also the detailed mathematical
notes in Gan. ita-yukti-bhās.ā cited above.
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Nı̄lakan.t.ha Somayāj̄ı of Tr.kkan. t.iyūr (c. 1444–1550), a disciple of Parameś-
vara’s son Dāmodara, carried out a fundamental revision of the traditional planetary
theory. In his treatise Tantrasaṅgraha, composed in 1500, Nı̄lakan. t.ha outlines the
detailed computational scheme of his revised planetary model. For the first time in
the history of Astronomy, Nı̄lakan. t.ha proposed that in the case of an interior planet
(Mercury or Venus), the manda-correction or the equation of centre should be ap-
plied to what was traditionally identified as the śighrocca of the planet—which, in
the case of interior planets, corresponds to what we currently refer to as the mean
heliocentric planet. This was a radical departure from the traditional Indian plan-
etary model where the manda-correction for an interior planet was applied to the
mean Sun.4

In this way, Nı̄lakan.t.ha arrived at a much better formulation of the equation of
centre and the latitudinal motion of the interior planets than was available either
in the earlier Indian works or in the Islamic or the Greco-European traditions of
astronomy till the work of Kepler, which was to come more than a hundred years
later. In fact, in so far as the computation of the planetary longitudes and latitudes is
concerned, Nı̄lakan.t.ha’s revised planetary model closely approximates to the Kep-
lerian model, except that Nı̄lakan. t.ha conceives of the planets as going in eccentric
orbits around the mean Sun rather than the true Sun.

In his Āryabhat. ı̄ya-bhās.ya, Nı̄lakan. t.ha explains the rationale behind his revi-
sion of the traditional planetary theory. This has to do with the fact (which was no-
ticed by several Indian astronomers prior to Nı̄lakan. t.ha) that the traditional Indian
planetary model employed entirely different schemes for computing the latitudes
of the exterior and the interior planets. While the latitudes of the exterior planets
were computed from their so-called manda-sphut.a (which corresponds to what we
currently refer to as the true heliocentric planet), the latitudes of the interior plan-
ets were computed from their so-called ś̄ıghrocca. Nı̄lakan. t.ha argued that since the
latitude should be dependent on the deflection (from the ecliptic) of the planet it-
self and not of any other body, what was traditionally referred to as the ś̄ıghrocca
of an interior planet should be identified with the planet itself. Nı̄lakan.t.ha also
showed that this would lead to a unified treatment of the latitudinal motion of all the
planets—interior as well as exterior.5

In Āryabhat. ı̄ya-bhās.ya, Nı̄lakan.t.ha also discusses the geometrical picture of
planetary motion implied by his revised model.6 This geometrical picture, which
is also stated by Nı̄lakan. t.ha succinctly in terms of a few verses in Golasāra and
Siddhānta-darpan. a, is essentially that the planets move in eccentric orbits (which

4 It had also been a general feature of all ancient planetary theories in the Greco-European and the
Islamic traditions of astronomy, till the work of Kepler, that the equation of centre for an interior
planet was wrongly applied to the mean Sun.
5 In fact, it has been noted in a later text, Viks.epagolavāsanā, that Nı̄lakan. t.ha pioneered a
revision of the traditional planetary theory in order to arrive at a unified formulation of the motion
in latitude of both the interior and the exterior planets.
6 The renowned Malayalam work Gan. ita-yukti-bhās.ā (c. 1530) of Jyes.t.hadeva also gives a
detailed exposition of the geometrical picture of planetary motion as per the planetary model of
Nı̄lakan. t.ha outlined in Tantrasaṅgraha.
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are inclined to the ecliptic) around the ś̄ıghrocca, which in turn goes around the
Earth.

While discussing the geometrical picture of planetary motion, Āryabhat. ı̄ya-
bhās.ya, as well as Golasāra and Siddhānta-darpan. a, consider the orbit of each of
the planets individually and they are not put together in a single cosmological model
of the planetary system. There is however an interesting passage in Āryabhat. ı̄ya-
bhās.ya, where Nı̄lakan. t.ha explains that the Earth is not circumscribed by the orbit
of the interior planets, Mercury and Venus; and that the mean period of motion in
longitude of these planets around the Earth is the same as that of the Sun, precisely
because they are being carried around the Earth by the Sun. In fact, Nı̄lakan.t.ha
seems to be the first savant in the history of astronomy to clearly deduce from his
computational scheme—and not from any speculative or cosmological argument—
that the interior planets go around the Sun and that the period of their motion around
the Sun is also the period of their latitudinal motion.

In a remarkable short tract called Grahasphut.ānayane viks.epavāsanā, which
seems to have been written after Āryabhat.ı̄ya-bhās. ya as it cites extensively from
it, Nı̄lakan.t.ha succinctly describes his cosmological model, which is that the five
planets, Mercury, Venus, Mars, Jupiter and Saturn, go around the mean Sun in ec-
centric orbits (inclined to the ecliptic), while the mean Sun itself goes around the
Earth.7 Following this, Nı̄lakan. t.ha also states that the dimensions of ś̄ıghra epicy-
cles are specified by measuring the orbit of the mean Sun around the Earth in terms
of the planetary orbit in the case of the exterior planets, and they are specified by
measuring the planetary orbit (which is smaller) in terms of the orbit of the mean
Sun in the case of the interior planets. This remarkable relation8 follows clearly
from the identification of the śighrocca of all the planets with physical mean Sun, a
fact also stated by Nı̄lakan.t.ha in his Āryabhat.ı̄ya-bhās. ya.

Towards the very end of the last chapter of Tantrasaṅgraha, Nı̄lakan. t.ha briefly
considers the issue of planetary distances. Unlike the longitudes and latitudes of
planets, the planetary distances were not amenable to observations in ancient astron-
omy and their discussion was invariably based upon some speculative hypothesis. In
traditional Indian planetary theory, at least from the time of Āryabhat.a, the mean
planetary distances were obtained based on the hypothesis that all the planets go
around the Earth with the same linear velocity—i.e. they all cover the same physi-
cal distance in any given period of time. In Tantrasaṅgraha, Nı̄lakan. t.ha proposes
an alternative prescription for planetary distances which seems to be based on the
principle that all the planets go around the śighrocca with the same linear veloc-
ity. He also briefly hints at this alternative hypothesis in his Āryabhat. ı̄ya-bhās. ya.
However, among the available works of Nı̄lakan.t.ha, there is no discussion of plan-

7 This cosmological model is the same as the one proposed by Tycho Brahe, albeit on entirely
different considerations, towards the end of sixteenth century.
8 The ś̄ıghra epicycle is essentially the same as the epicycle associated with the so-called ‘solar
anomaly’ in the Greco-European tradition of astronomy, and the above relation is the same as
the one proposed by Nicholas Copernicus (perhaps around the same time as Nı̄lakan. t.ha) by
identifying this epicycle as the orbit of the Earth around the Sun in the case of the exterior planets
and as the orbit of the planet itself in the case of the interior planets.
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etary distances as would follow from his revised cosmological model outlined in
Grahasphut.ānayane viks.epavāsanā.

Before taking up the various aspects of the revised planetary model of Nı̄lakan. t.ha
it is essential to understand the traditional Indian planetary model, which had been
in vogue at least from the time of Āryabhat.a (c. 499). We shall therefore devote
the initial sections of this appendix to a detailed exposition of the traditional Indian
planetary theory and important developments in it prior to the work of Nı̄lakan.t.ha.

F.1 The traditional Indian planetary model: Manda-sam. skāra

In the Indian astronomical tradition, at least from the time of Āryabhat.a (499 CE),
the procedure for calculating the geocentric longitudes of the planets consists essen-
tially of two steps:9 first, the computation of the mean longitude of the planet known
as the madhyama-graha, and second, the computation of the true or observed lon-
gitude of the planet known as the sphut.a-graha.

The mean longitude is calculated for the desired day by computing the number
of mean civil days elapsed since the epoch (this number is called the ahargan. a) and
multiplying it by the mean daily motion of the planet. Having obtained the mean
longitude, a correction known as manda-sam. skāra is applied to it. In essence, this
correction takes care of the eccentricity of the planetary orbit around the Sun. The
equivalent of this correction is termed the ‘equation of centre’ in modern astronomy,
and is a consequence of the elliptical nature of the orbit. The longitude of the planet
obtained by applying the manda-correction is known as the manda-sphut.a-graha
or simply the manda-sphut.a.

While manda-sam. skāra is the only correction that needs to be applied in case
of the Sun and the Moon for obtaining their true longitudes (sphut.a-grahas), in the
case of the other five planets, two corrections, namely the manda-sam. skāra and
ś̄ıghra-sam. skāra, are to be applied to the mean longitude in order to obtain their
true longitudes. Here again, we divide the five planets into two groups: the interior,
namely Mercury and Venus, and the exterior, namely Mars, Jupiter and Saturn—not
necessarily for the purpose of convenience in discussion but also because they are
treated differently while applying these corrections.

The ś̄ıghra-sam. skāra is applied to the manda-sphut.a-graha to obtain the true
geocentric longitude known as the sphut.a-graha. As will be seen later, the ś̄ıghra
correction essentially converts the heliocentric longitude into the geocentric longi-
tude. We will now briefly discuss the details of the manda-sam. skāra, which will

9 For a general review of Indian astronomy, see D. A. Somayaji, A Critical Study of Ancient Hindu
Astronomy, Dharwar 1972; S. N. Sen and K. S. Shukla (eds), A History of Indian Astronomy, New
Delhi 1985 (rev. edn 2000); B. V. Subbarayappa and K. V. Sarma (eds.), Indian Astronomy: A
Source Book, Bombay 1985; S. Balachandra Rao, Indian Astronomy: An Introduction, Hyderabad
2000; B. V. Subbarayappa, The Tradition of Astronomy in India: Jyotih. śāstra, PHISPC vol. IV,
Part 4, Centre for Studies in Civilizations, New Delhi 2008.
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be followed by a discussion on the ś̄ıghra-sam. skāra for the exterior and the interior
planets respectively.
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Fig. F.1 The epicyclic and eccentric models of planetary motion.

F.1.1 Epicyclic and eccentric models

As mentioned earlier, the manda-sam. skāra essentially accounts for the eccentricity
of the planetary orbit. This may be explained with the help of Fig. F.1. Here, O is
the centre of the kaks.yāman. d. ala

10 on which the mean planet P0 is assumed to be
moving with mean uniform velocity. OΓ is the reference line usually chosen to be
the direction of Mes. ādi. The kaks.yā-man. d. ala is taken to be of radius R, known as
the trijyā.11 The longitude of the mean planet P0 moving on this circle is given by

Γ ÔP0 = madhyama-graha = θ0. (F.1)

The longitude of the manda-sphut.a-graha P given by Γ ÔP is to be obtained from
θ0, and this can be obtained by either by an eccentric or epicyclic model.

10 The centre of the kaks.yāman. d. ala is generally referred to as the bhagola-madhya (centre of
the celestial sphere), and it coincides with the centre of the Earth in the case of the Sun and the
Moon, when the ‘second correction’ which corresponds to the ‘evection term’ is ignored.
11 The value of the trijyā is chosen such that one minute of arc in the circle corresponds to unit
length. This implies that 2πR = 21600 or R ≈ 3437.74, which is taken to be 3438 in most of the
Indian texts.
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The procedure for obtaining the longitude of the manda-sphut.a-graha by either
of the two models involves the longitude of the mandocca. In Fig. F.1, OU repre-
sents the direction of the mandocca whose longitude is given by

Γ ÔU = mandocca = θm. (F.2)

The modern equivalent of mandocca is apoapsis—apogee in the case of the Sun
and the Moon and aphelion in the case of the five planets.

Around the mean planet P0, a circle of radius r is to be drawn. This circle is
known as the manda-n̄ıcocca-vr. tta

12 or simply as manda-vr. tta (epicycle). The
texts specify the value of the radius of this circle r (r ≪ R), in appropriate measure,
for each planet.

At any given instant of time, the manda-sphut.a-graha P is to be located on this
manda-n̄ıcocca-vr. tta by drawing a line from P0 along the direction of mandocca
(parallel to OU). The point of intersection of this line with the manda-n̄ıcocca-vr. tta
gives the location of the planet P. Since this method of locating the manda-sphut.a-
graha involves the construction of an epicycle around the mean planet, it is known
as the epicyclic model.

Alternatively, one could draw the manda-n̄ıcocca-vr. tta of radius r centred
around O, which intersects OU at O′. With O′ as centre, a circle of radius R (shown
by dashed lines in the figure) is drawn. This is known as pratiman. d. ala or the ec-
centric circle. Since P0P and OO′ are equal to r, and they are parallel to each other,
O′P = OP0 = R. Hence, P lies on the eccentric circle. Also,

Γ Ô′P = Γ ÔP0 = madhyama-graha = θ0. (F.3)

Thus, the manda-sphut.a-graha P can be located on an eccentric circle of radius R
centred at O′ (which is located at a distance r from O in the direction of mandocca),
simply by marking a point P on it such that Γ Ô′P corresponds to the the mean
longitude of the planet. Since this process involves only an eccentric circle, without
making a reference to the epicycle, it is known as the eccentric model. Clearly, the
two models are equivalent to each other.

F.1.2 Calculation of manda-sphut.a

The formula presented by the Indian astronomical texts for the calculation of the
manda-sphut.a—the longitude of the planet obtained by applying the manda-
sam. skāra (equation of centre) to the mean longitude of the planet—and the un-
derlying geometrical picture can be understood with the help of Fig. F.2.13 Here,

12 The adjective n̄ıcocca is given to this vr. tta because, in this conception, it moves from ucca to
n̄ıca on the deferent circle along with the mean planet P0. The other adjective manda is to suggest
that this circle plays a crucial role in the explanation of the manda-sam. skāra.
13 It may be noted that Fig. F.2 is the same as Fig. F.1, with certain circles and markings removed
from the latter and certain others introduced in the former for the purposes of clarity.
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Fig. F.2 Geometrical construction underlying the rule for obtaining the manda-sphut.a from the
madhyama using the epicycle approach.

θms = Γ ÔP represents the manda-sphut.a which is to be determined from the posi-
tion of the mean planet (madhyama-graha) P0. Clearly,

θms = Γ ÔP

= Γ ÔP0 −PÔP0

= θ0 −∆θ . (F.4)

Since the mean longitude of the planet θ0 is known, the manda-sphut.a θms is ob-
tained by simply subtracting ∆θ from the madhyama. The expression for ∆θ can
be obtained by making the following geometrical construction. We extend the line
OP0, which is the line joining the centre of the kaks.yāman. d. ala and the mean planet,
to meet the epicycle at X . From P drop the perpendicular PQ onto OX . Then

UÔP0 = Γ ÔP0 −Γ ÔU

= θ0 −θm (F.5)

is the manda-kendra (madhyama−mandocca), whose magnitude determines the
magnitude of ∆θ (see (F.8) ). Also, since P0P is parallel to OU (by construction),
PP̂0Q = (θ0 −θm). Hence, PQ = r sin(θ0 −θm) and P0Q = r cos(θ0 −θm). Since the
triangle OPQ is right-angled at Q, the hypotenuse OP = K (known as the manda-
karn. a) is given by

K = OP =
√

OQ2 +QP2
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=
√

(OP0 + P0Q)2 + QP2

=

√
{R+ rcos(θ0 −θm)}2 + r2 sin2(θ0 −θm). (F.6)

Again from the triangle POQ, we have

K sin∆θ = PQ

= r sin(θ0 −θm). (F.7)

Multiplying the above by R and dividing by K we have

Rsin∆θ =
r
K

Rsin(θ0 −θm). (F.8)

In the Āryabhat.an school, the radius of the manda epicycle is assumed to vary
in the same way as the karn. a, as explained for instance by Bhāskara I (c. 629) in
his Āryabhat. ı̄ya-bhās.ya, and also in his Mahābhāskar̄ıya. Thus the relation (F.8)
reduces to

Rsin∆θ =
r0

R
Rsin(θ0 −θm), (F.9)

where r0 is the mean or tabulated value of the radius of the manda epicycle.

F.1.3 Avísis. t.a-manda-karn. a: iterated hypotenuse

According to the geometrical picture of planetary motion given by Bhāskara I, the
radius of the epicycle manda-n̄ıcocca-vr. tta (r) employed in the the manda process
is not a constant. It varies continuously in consonance with the hypotenuse, the
manda-karn. a (K), in such a way that their ratio is always maintained constant and
is equal to the ratio of the mean epicycle radius (r0)—whose value is specified in
the texts—to the radius of the deferent circle (R). Thus, according to Bhāskara, as
far as the manda process is concerned, the motion of the planet on the epicycle is
such that the following equation is always satisfied:

r

K
=

r0

R
. (F.10)

If this is the case, then the question arises as to how one can obtain the manda-
karn. a as well as the the radius of the manda-n̄ıcocca-vr. tta at any given instant. For
this, Bhāskara provides an iterative procedure called asakr. t-karma, by which both
r and K are simultaneously obtained. We explain this with the help of Fig. F.3a.
Here P0 represents the mean planet around which an epicycle of radius r0 is drawn.
The point P1 on the epicycle is chosen such that PP1 is parallel to the direction of
the mandocca, OU .
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Fig. F.3a The variation of the radius of the manda epicycle with the manda-karn. a.

Now, the first hypotenuse (sakr. t-karn. a) is found from r0 using the relation

OP1 = K1 = [(Rsin(θ0 −θm))2 +(Rcos(θ0 −θm)+ r0)
2]

1
2 . (F.11)

From K1, using (F.10), we get the next approximation to the radius r1 = r0
R K1, and

the process is repeated. From r1 we get the next approximation to the karn. a,

K2 = [{Rsin(θ0 −θm)}2 + {Rcos(θ0 −θm)+ r1}2]
1
2 , (F.12)

and from that we get r2 = r0
R K2 and so on, till the radii and the karn. as do not change

(avíses.a). The term avíses.a means ‘not distinct’. In the present context it means that
the successive karn. as are not distinct from each other. That is, Ki+1 ≈ Ki = K. If
this is satisfied, then ri+1 ≈ ri = r. Consequently, the equation giving the manda-
correction (F.8) becomes

Rsin∆θ =
r
K

Rsin(θ0 −θm) =
r0

R
Rsin(θ0 −θm). (F.13)

Thus the computation of the manda-phala involves only the mean epicycle radius
and the value of the trijyā. It does not involve the value of the manda-karn. a. It
can be shown that the iterated manda-karn. a is actually given (in the limit) by OP
in Fig. F.3a, where the point P is obtained as follows.14 Consider a point O′′ at a
distance of r0 from O along the direction of mandocca OU and draw O′′P1 so that
it meets the concentric at Q. Then produce OQ to meet the extension of P0P1 at P.

14 See for instance, the discussion in {MB 1960}, pp. 111–9.
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Mādhava of Saṅgamagrāma, the renowned mathematician and astronomer of
the 14th century, by carefully analysing the geometry of the problem, came up with
a brilliant method of finding the avísis. t.a-manda-karn. a without performing an iter-
ative process, which is explained in the next section.

F.1.4 Mādhava’s formula for the avísis. t.a-manda-karn. a

Mādhava’s procedure for determining the avísis. t.a-manda-karn. a involves finding
a new quantity called the viparyaya-karn. a or vipar̄ıta-karn. a. The term vipar̄ıta-
karn. a literally means ‘inverse hypotenuse’, and is nothing but the radius of the
kaks.yāvr. tta when the manda-karn. a is taken to be the trijyā, R. The following
verses from Tantrasaṅgraha (II, 43–44) present the way of obtaining the avísis. t.a-
manda-karn. a proposed by Mādhava that circumvents the iterative process.;
a;va;~txa;�a;ta;d;l+.d;eaHP+.l+.kx +:�a;ta;
a;va;yua;�a;ta;pa;dM k+:ea;�a;f;P+.l+.
a;va;h� ;a;na;yua;ta;m,a Á:ke +:ndÒ e mxa;ga;k+:
a;kR +:ga;tea .sa Ka;lu ;
a;va;pa;yRa;ya;kx +:ta;ea Ba;vea;t,a k+:NRaH Á Á.tea;na &+.ta;a ;
a:�a:$ya;a;kx +:�a;taH A;ya;�a;
a;va;
a;h;ta;eaY;
a;va;Zea;Sa;k+:NRaH .~ya;a;t,a Á

The square of the doh. phala is subtracted from the square of the trijyā and its square root
is taken. The kot.iphala is added to or subtracted from this depending upon whether the
kendra (anomaly) is within six signs beginning from Karki (Cancer) or Mr. ga (Capricorn).
This gives the viparyaya-karn. a. The square of the trijyā divided by this viparyaya-
karn. a is the avíses.a-karn. a (iterated hypotenuse) obtained without any effort [of itera-
tion].
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Fig. F.3b Determination of the vipar̄ıta-karn. a when the kendra is in the first quadrant.
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The rationale behind the formula given for the vipar̄ıta-karn. a is outlined in the
Malayalam text Yuktibhās. ā, and can be understood with the help of Figs F.3a and
F.3b. In these figures P0 and P represent the mean and the true planet respectively. N
denotes the foot of a perpendicular drawn from the true planet P to the line joining
the centre of the circle and the mean planet. NP is equal to the doh. phala. Let the
radius of the karn. avr. tta OP be set equal to the trijyā R. Then the radius of the
uccan̄ıca-vr. tta P0P is r0, as it is in the measure of the karn. avr. tta. In this measure,
the radius of the kaks.yāvr. tta OP0 = Rv, the vipar̄ıta-karn. a, and is given by

Rv = ON ±P0N

=
√

R2 − (r0 sin(θ0 −θm))2 ±|r0 cos(θ0 −θm)|. (F.14a)

Nı̄lakan. t.ha has also given another alternative expression for the vipar̄ıta-karn. a in
terms of the longitude θms of the manda-sphut.a.

Rv =
√

R2 + r2
0 −2Rr0 cos(θms −θm). (F.14b)

This is clear from the triangle OP0P, where OP0 = Rv, OP = R and P0PO = θms−θm.
In Fig. F.3a, Q is a point where O′′P1 meets the concentric. OQ is produced to

meet the extension of P0P1 at P. Let T be the point on OP0 such that QT is parallel
to P0P1. Then it can be shown that OT = Rv is the vipar̄ıta-karn. a. Now, in triangle
OQT , OQ = R, QT = P1P0 = r0 and OQ̂T = PÔU = (θms −θm) and we have

OT =
√

R2 + r2
0 −2Rr0 cos(θms −θm) = Rv. (F.14c)

Now, since triangles OQT and OPP0 are similar, we have

OP
OP0

=
OQ
OT

=
R
Rv

or, OP = K =
R2

Rv
. (F.15)

Thus we have obtained an expression for the avísis. t.a-manda-karn. a in terms of the
trijyā and the vipar̄ıta-karn. a. As the computation of the vipar̄ıta-karn. a as given
by (F.14a) does not involve iteration, the avísis. t.a-manda-karn. a can be obtained in
one stroke using (F.15) without having to go through the arduous iterative process.

F.1.5 Manda-sam. skāra for the exterior planets

We will now discuss the details of the manda correction for the case of the exterior
planets, namely Mars, Jupiter and Saturn, as outlined in the traditional texts of In-
dian astronomy. The texts usually specify the the number of revolutions (bhagan. as)
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made by the planets in a large period known as Mahāyuga. In Table F.1, we list the
bhagan. as as specified in the texts Āryabhat. ı̄ya and Tantrasaṅgraha. In the same
table, we have also given the corresponding sidereal period of the planet in civil
days along with the modern values for the same.

Planet Revolutions Sidereal period Revolutions Sidereal period Modern values
(in Āryabhat.̄ıya) (in Tantrasaṅgraha) of sidereal period

Sun 4320000 365.25868 4320000 365.25868 365.25636
Moon 57753336 27.32167 57753320 27.32168 27.32166
Moon’s apogee 488219 3231.98708 488122 3232.62934 3232.37543
Moon’s node 232226 6794.74951 232300 6792.58502 6793.39108
Mercury’s
ś̄ıghrocca

17937020 87.96988 17937048 87.96974 87.96930

Venus’s
ś̄ıghrocca

7022288 224.69814 7022268 224.70198 224.70080

Mars 2296824 686.99974 2296864 686.98778 686.97970
Jupiter 364224 4332.27217 364180 4332.79559 4332.58870
Saturn 146564 10766.06465 146612 10762.53990 10759.20100

Table F.1 The bhagan. as and sidereal periods of the planets.

In the case of exterior planets, while the planets move around the Sun they also
move around the Earth, and consequently, the mean heliocentric sidereal period
of the planet is the same as the mean geocentric sidereal period. Therefore, the
madhyama-graha or the mean longitude of the planet, as obtained from the above
bhagan. as, would be the same as the mean heliocentric longitude of the planet as
understood today. Now the manda-sam. skāra is applied to the madhyama-graha
to obtain the manda-sphut.a-graha. As we will see below, this manda correction
is essentially the same as the equation of centre in modern astronomy and thus the
manda-sphut.a-graha would essentially be the true heliocentric longitude of the
planet.

It was shown above in (F.9) that the magnitude of the correction ∆θ to be applied
to the mean longitude is given by

Rsin∆θ =
r0

R
Rsin(θ0 −θm), (F.16)

If r0
R is small in the above expression, then sin ∆θ ≪ 1 and we can approximate

sin∆θ ≈ ∆θ . Hence (F.16) reduces to

∆θ =
r0

R
sin(θ0 −θm). (F.17)

As ∆θ = θ0 −θms, in this approximation we have

θms ≈ θ0 −
r0

R
sin(θ0 −θm). (F.18)
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As outlined in Section F.8.1, in the Keplerean picture of planetary motion the equa-
tion of centre to be applied to the mean heliocentric longitude of the planet is
given—to the first order in eccentricity—by the equation

∆θ ≈ (2e)sin(θ0 −θm). (F.19)

Now, comparing (F.19) and (F.17), we see that the manda correction closely ap-
proximates the equation of centre as understood in modern astronomy if the values
of r0

R are fairly close to 2e.
The values of r0

R for different planets as specified in Āryabhat. ı̄ya and
Tantrasaṅgraha are listed in Table F.2. It may be noted here that the ratios speci-
fied in the texts are close to twice the value of the eccentricity (2e) associated with
the planetary orbits. In Table F.2, the modern values of 2e are listed according to
Smart.15

Name of Āryabhat.ı̄ya Tantrasaṅgraha 2e

the planet r0
R Average r0

R Average Modern

Sun
13.5
360

0.0375 3
80 0.0375 0.034

Moon
31.5
360

0.0875 7
80 0.0875 0.110

Mercury
31.5−9|sin(θ0 −θm)|

360
0.075 1

6 0.167 0.412

Venus
18−9| sin(θ0 −θm)|

360
0.0375

1

14+ R| sin(θ0−θm)|
240

0.053 0.014

Mars
63+18|sin(θ0 −θm)|

360
0.200

7+ | sin(θ0 −θm)|
39

0.192 0.186

Jupiter
31.5+4.5| sin(θ0 −θm)|

360
0.0938

7+ | sin(θ0 −θm)|
82

0.091 0.096

Saturn
40.5+18| sin(θ0 −θm)|

360
0.1375 39

360 0.122 0.112

Table F.2 Comparison of manda epicycle radii and modern eccentricity values.

F.1.6 Manda-sam. skāra for interior planets

For the interior planets Mercury and Venus, since the mean geocentric sidereal pe-
riod of the planet is the same as that of the Sun, the ancient Indian astronomers took
the mean Sun as the madhyama-graha or the mean planet. Having taken the mean
Sun as the mean planet, they also prescribed the application of the manda correc-
tion, or the equation of centre characteristic of the planet, to the mean Sun, instead
of the mean heliocentric planet. Therefore, the manda-sphut.a-graha in the case of

15 W. M. Smart, Textbook on Spherical Astronomy, Cambridge University Press, 1965, pp. 422–3.
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an interior planet, as computed from (F.17) in the traditional planetary model, is
just the mean Sun, with a correction applied, and does not correspond to the true
heliocentric planet.

However, the ancient Indian astronomers also introduced the notion of the
ś̄ıghrocca for these planets whose period (see Table F.1) is the same as the mean
heliocentric sidereal period of these planets. Thus, in the case of the interior planets,
it is the longitude of the ś̄ıghrocca which will be the same as the mean heliocentric
longitude of the planet as understood in the currently accepted model of the solar
system. As we shall see below, the traditional planetary model made use of this
ś̄ıghrocca, crucially, in the calculation of both the longitudes and latitudes of the
interior planets.

F.2 Ś̄ıghra-sam. skāra

We will now show that the application of ś̄ıghra-sam. skāra is equivalent to the trans-
formation of the manda-sphut.a to the true geocentric longitude of the planet called
the sphut.a-graha. Just as the mandocca plays a major role in the application of
manda-sam. skāra, so too the ś̄ıghrocca plays a key role in the application of ś̄ıghra-
sam. skāra. As in the case of manda-sam. skāra, we shall consider the application of
ś̄ıghra-sam. skāra for the exterior and interior planets separately.

F.2.1 Exterior planets

For the exterior planets, Mars, Jupiter and Saturn, we have already explained that
the manda-sphut.a-graha is the true heliocentric longitude of the planet. The ś̄ıghra-
sam. skāra for them can be explained with reference to Fig. F.4a. Here A denotes the
nirayan. a-mes. ādi, E the Earth and P the planet. The mean Sun S is referred to as
the ś̄ıghrocca for exterior planets and thus we have

AŜP = θms (manda-sphut.a)

AÊS = θs (longitude of ś̄ıghrocca (mean Sun))

AÊP = θ (geocentric longitude of the planet).

The difference between the longitudes of the ś̄ıghrocca and the manda-sphut.a,
namely

σ = θs −θms, (F.20)

is called the ś̄ıghra-kendra (anomaly of conjunction) in Indian astronomy. From the
triangle EPS we can easily obtain the result
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Fig. F.4a Ś̄ıghra correction for exterior planets.

sin(θ −θms) =
rs sinσ

[(R+ rs cosσ)2 + r2
s sin2 σ ]

1
2

, (F.21a)

which is the ś̄ıghra correction formula given by Indian astronomers to calculate the
geocentric longitude of an exterior planet. It may be noted that the true or geocentric
longitude of the planet known as the ś̄ıghra-sphut.a is found in the same manner
from the manda-sphut.a, as the manda-sphut.a is found from the mean planet, the
madhyama-graha.

From Fig. F.4a it is clear that the ś̄ıghra-sam. skāra transforms the true heliocen-
tric longitudes into geocentric longitudes only if the ratio of the radii of the epicycle
and the deferent circle is equal to the ratio of the Earth–Sun and planet–Sun dis-
tances. That this is indeed very nearly so in the Indian texts, as may be seen from
Table F.3. It my also be noted that (F.21a) has the same form as the formula for the
difference between the geocentric and heliocentric longitudes for an exterior planet
in the Keplerian model (see (F.46)) if rs

R is identified with the ratio of the Earth–Sun
and planet–Sun distances. However, (F.21a) is still an approximation as it is based
upon mean Sun and not the true Sun.

F.2.2 Interior planets

The ś̄ıghra-sam. skāra for the interior planets can be explained with reference to
Fig. F.4b. Here E is the Earth and S (the manda-corrected mean Sun) is the manda-
sphut.a-graha and P, the so-called ś̄ıghrocca, actually corresponds to the (mean he-
liocentric) planet. We have
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AÊS = θms (manda-sphut.a)

AŜP = θs (longitude of ś̄ıghrocca)

AÊP = θ (geocentric longitude of the planet).

Again, the ś̄ıghra-kendra is defined as the difference between the ś̄ıghrocca and the
manda-sphut.a-graha as in (F.20). Thus, from the triangle EPS we get the same
formula

sin(θ −θms) =
rs sinσ

[(R+ rs cosσ)2 + r2
s sin2 σ ]

1
2

, (F.21b)

which is the ś̄ıghra correction given in the earlier Indian texts to calculate the
geocentric longitude of an interior planet. For the interior planets also, the value
specified for rs

R is very nearly equal to the ratio of the planet–Sun and Earth–Sun
distances, as may be seen from Table F.3.

r

msθ
θ

θ

E

R

A

s

P

G

A

S

F
s

Fig. F.4b Ś̄ıghra correction for interior planets.

Since the manda correction or equation of centre for an interior planet was ap-
plied to the longitude of the mean Sun instead of the mean heliocentric longitude
of the planet, the accuracy of the computed longitudes of the interior planets ac-
cording to the ancient Indian planetary models would not have been as good as that
achieved for the exterior planets. But for the wrong application of the equation of
centre, equation (F.21b) has the same form as the formula for the difference be-
tween the geocentric longitude of an interior planet and the Sun in the Keplerian
model (see (F.50)), if rs

R is identified with the ratio of the planet–Sun and Earth–Sun
distances.
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Name of Āryabhat.ı̄ya Tantrasaṅgraha Modern

the planet rs
R Average rs

R Average value

Mercury
139.5−9|sin(θms −θs)|

360
0.375

133−|sin(θms −θs)|
360

0.368 0.387

Venus
265.5−9|sin(θms −θs)|

360
0.725

59−2|sin(θms −θs)|
80

0.725 0.723

Mars
238.5−9|sin(θms −θs)|

360
0.650

7+ |sin(θms −θs)|
39

0.656 0.656

Jupiter
72−4.5|sin(θms −θs)|

360
0.194

16−|sin(θms −θs)|
80

0.194 0.192

Saturn
40.5−4.5|sin(θms −θs)|

80
0.106

9−|sin(θms −θs)|
80

0.106 0.105

Table F.3 Comparison of rs
R , as given in Āryabhat.̄ıya and Tantrasaṅgraha, with the modern

values of the ratio of the mean values of Earth–Sun and planet–Sun distances for the exterior
planets and the inverse ratio for the interior planets.

F.2.3 Four-step process

In obtaining the expression (F.21) for the ś̄ıghra correction, we had taken SP, the
Sun–planet distance, to be given by R. But actually SP is a variable and is given
by the (iterated) manda-karn. a K. Hence the correct form of the ś̄ıghra correction
should be

sin(θs −θms) =
rs sinσ

{(K + rs cosσ)2 + r2
s sin2 σ} 1

2

, (F.22)

where K is the (iterated) manda-karn. a. Since K as given by (F.14) and (F.15) de-
pends on the manda anomaly θ −θm, the ś̄ıghra correction as given by (F.22) cannot
be tabulated as a function of the ś̄ıghra anomaly (σ ) alone.

It is explained in Yuktibhās. ā (section 8.20) that, in order to simplify computa-
tion, the ancient texts on astronomy advocated that the computation of the planetary
longitudes may be done using a four-step process—involving half-manda and half-
ś̄ıghra corrections followed by the full manda and ś̄ıghra corrections. The ś̄ıghra
corrections involved in the four-step process are based on the simpler formula (F.21)
which can be read off from a table. According to Yuktibhās. ā, the results of the four-
step process indeed approximate those obtained by the application of the manda
correction followed by the ś̄ıghra correction where, in the latter correction, the ef-
fect of the manda-karn. a is properly taken into account as in (F.22).

F.2.4 Computation of planetary latitudes

Planetary latitudes (called viks.epa in Indian astronomy) play an important role in
the prediction of planetary conjunctions, the occultation of stars by planets etc. In
Fig. F.5, P denotes the planet moving in an orbit inclined at an angle i to the ecliptic,
intersecting the ecliptic at point N, the node (called the pāta in Indian astronomy).
If β is the latitude of the planet, θh its heliocentric longitude and θn the heliocentric
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θ  − θ
h 0

planetary orbit

β

ecliptic

P

N i

Fig. F.5 Heliocentric latitude of a planet.

longitude of the node, then it can be shown that

sinβ = sin i sin(θh −θn). (F.23)

For small i we have
β = i sin(θh −θn). (F.24)

This is essentially the rule for calculating the latitude of a planet, as given in In-
dian texts, at least from the time of Āryabhat.a.16 For the exterior planets, it was
stipulated that

θh = θms, (F.25)

the manda-sphut.a-graha, which, as we saw earlier, coincides with the heliocentric
longitude of the exterior planet. The same rule applied for interior planets would not
have worked, because in the traditional Indian planetary model the manda-corrected
mean longitude for the interior planet has nothing to do with its true heliocentric lon-
gitude. However, most of the Indian texts on astronomy stipulated that the latitude
in the case of the interior planets is to be calculated from (F.24) with

θh = θs +manda correction, (F.26)

the manda-corrected longitude of the ś̄ıghrocca. Since the longitude of the ś̄ıghrocca
for an interior planet, as we explained above, is equal to the mean heliocentric lon-
gitude of the planet, (F.26) leads to the correct relation that, even for an interior
planet, θh in (F.24) becomes identical with the true heliocentric longitude. Thus we
see that the earlier Indian astronomical texts did provide a fairly accurate theory
for the planetary latitudes. But they had to live with two entirely different rules for
calculating latitudes: one for the exterior planets given by (F.25), where the manda-
sphut.a-graha appears; and an entirely different one for the interior planets given
by (F.26), which involves the ś̄ıghrocca of the planet, with the manda correction
included.

This peculiarity of the rule for calculating the latitude of an interior planet
was noticed repeatedly by various Indian astronomers, at least from the time of

16 Equation (F.24) actually gives the heliocentric latitude and needs to be multiplied by the ratio of
the geocentric and heliocentric distances of the planet to get the geocentric latitude. This feature
was implicit in the traditional planetary models.
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Bhāskara I (c. 629), who in his Āryabhat. ı̄ya-bhās. ya drew attention to the fact
that the procedure given in Āryabhat. ı̄ya for calculating the latitude of an interior
planet is indeed very different from that adopted for the exterior planets.17 The cel-
ebrated astronomer Bhāskarācārya II (c. 1150) also draws attention to this pecu-
liar procedure adopted for the interior planets, in his Vāsanā-bhās.ya on his own
Siddhāntaśiroman. i, and quotes the statement of Caturveda Pr. thūdakasvāmin
(c. 860) that this peculiar procedure for the interior planets can be justified only
on the ground that this is what has been found to lead to predictions that are in
conformity with observations.18

F.3 Geometrical picture of planetary motion according to
Parameśvara

The renowned Kerala astronomer Parameśvara of Vat.asseri (1380–1460) has
discussed in detail the geometrical model implied in the conventional planetary
model of Indian astronomy in his super-commentary Siddhāntad̄ıpikā (on Govin-
dasvāmin’s commentary on) Mahābhāskar̄ıya of Bhāskara I. A shorter version is
available in his commentary on Āryabhat. ı̄ya, which is given below..~å.Pu +.f;
a;va;�a;Da;yua;�a;�+:�/////////�a;ssa;Dyea;�Ea;va ;
a;va;na;a Ce +.dùÅ;a;ke +:na ;
a;va;h;ga;a;na;a;m,a Áta;sma;a;
a;d;h .sMa;[ea;pa;a;.Ce +.dùÅ;a;k+:k+:mRa :pra;d;ZyRa;tea .tea;Sa;a;m,a Á Á;
a:�a:$ya;a;kx +:tMa ku +:ma;DyMa k+:[ya;a;vxa:�Ma Ba;vea:�ua ta;.CE +.Grya;m,a ÁZ�a;a;Gra;
a;d;a;Za ta;~ya :ke +:ndÒ M Z�a;a;Gra;a;ntya;P+.l+.a;nta:=e :pua;naH :ke +:ndÒ +m,a Á Ákx +:tva;a ;
a;va;�a;l+.Kea;dõx :�Ma Z�a;a;Gra;pra;�a;ta;ma;Nq+.l+.a;K.ya;mua;
a;d;ta;Æa;ma;d;m,a ÁI+.d;mea;va Ba;vea;n}å.a;a;nde k+:[ya;a;vxa:�Ma :pua;na;~tua ta;tke +:ndÒ +a;t,a Á Á:ke +:ndÒ M kx +:tva;a ma;nd;a;ntya;P+.l+.a;nta:=e vxa:�a;ma;
a;pa ..a ma;nd;
a;d;a;Za Áku +:ya;Ra;t,a :pra;�a;ta;ma;Nq+.l+.Æa;ma;d;mua;
a;d;tMa ma;a;ndM Za;n�a;a;q:�a;BUa;pua:�a;aH Á Áma;a;nd;pra;�a;ta;ma;Nq+.l+.ga;a;~ta;tk+:[ya;a;ya;Ma tua ya:�a l+.[ya;ntea Áta:�a ;
a;h .tea;Sa;Ma ma;nd;~å.Pu +.f;aH :pra;
a;d;�;a;~ta;TEa;va ZEa;Grea .tea Á Á:pra;�a;ta;ma;Nq+.le ;�//////�a;~Ta;ta;a;s~yua;~tea l+.[ya;ntea :pua;na;~tua ZEa;Gra;a;K.yea Ák+:[ya;a;vxa:�ea ya;�/////////�a;sma;nBa;a;gea ta:�a .~å.Pu +.f;g{a;h;a;~tea .~yuaH ÁO;;vMa ;Æa;sa:;dÄùÅ;a;�a;ta ta:�a .~å.Pu +.f;yua;gmMa ta:�a Ba;va;�a;ta dx ;gBea;dH Áya:�a Ka;ga;a l+.[ya;ntea ta:�a;~Ta;a l+.Æa;[a;ta;a ya;ta;eaY;nya;�/////////�a;sma;n,a Á Á;
a;kÒ +:ya;teaY:�a ta;a;�a;Æa;ma:�Ma ma;Dyea ma;a;nd;a;DRa;ma;
a;pa ZEa;Gra;a;DRa;m,a ÁZEa;GrMa ma;a;ndM ma;a;ndM ZEa;Gra:úãÁ*.ae ;�a;ta kÒ +:ma;ssmxa;ta;eaY;nya:�a Á Áma;a;ndM k+:[ya;a;vxa:�Ma :pra;Ta;mMa bua;Da;Zua;kÒ +:ya;eaH ku +:ma;DyMa .~ya;a;t,a Áta;tke +:ndÒ +a;n}å.a;nd;
a;d;a;Za ma;nd;a;ntya;P+.l+.a;nta:=e tua ma;DyMa .~ya;a;t,a Áma;a;nd;pra;�a;ta;ma;Nq+.l+.~ya ta;�/////////�a;sma;n,a ya:�a ;�//////�a;~Ta;ta;ea .=+
a;va;~ta:�a Á:pra;�a;ta;ma;Nq+.l+.~ya ma;DyMa ZEa;Gra;~ya ta;~ya ma;a;na;ma;
a;pa ..a ga;
a;d;ta;m,a Á
17 {AB 1976}, p. 32, 247.
18 {SSR 1981}, p. 402.
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a;d;h ..a Á Á;
a;kÒ +:ya;teaY:�a ta;a;�a;Æa;ma:�Ma ZEa;Gra;a;D a v.ya;tya;yea;na ma;nd;ea;�ea Áta;�//////�a;tsa:;dÄâ M ma;a;ndM :pra;a;k, :pa;(ãÉa;a;.CE +.Gra:úãÁ*.a .sUa;�a:=+Æa;BaH :pUa;vERaH Á Á 19

Since the rationale for the sphut.avidhi (the scheme of computing the true planet) for the
celestial bodies is not clear without the aid of chedyaka (diagrams), we present briefly the
way of obtaining the diagrams.

For Mars, Jupiter and Saturn, with the centre of the Earth as the centre, the ś̄ıghra-kaks.yā-
vr. tta (concentric circle) is drawn with the trijyā (R sin90) as the radius. Then draw the
ś̄ıghra-pratiman. d. ala (eccentric circle) with its centre located at a distance of the ś̄ıghra-
antyaphala (maximum ś̄ıghra-correction) in the direction of the ś̄ıghrocca. The same
will be the manda-concentric. From its centre go along in the direction of the mandocca a
distance equal to the maximum manda correction, and with this as the centre draw a circle.
This is referred as the manda eccentric circle. The planets Mars, Jupiter and Saturn move
on this eccentric when reduced to the manda-concentric they are referred to as manda-
sphut.a, and when reduced to the ś̄ıghra-concentric they are sphut.a (true planets). . . .

For Mercury and Venus, the manda-concentric is first drawn with the centre of the Earth
as the centre. From that go along in the direction of mandocca a distance equal to the
maximum manda correction and with that as the centre draw the manda eccentric circle.
The point where the Sun is located on that eccentric is the centre of the ś̄ıghra epicycle and
the radius of that circle is [not the trijyā but] as enunciated. In that ś̄ıghra epicycle, the
Mercury and the Venus always move . . .

The chedyaka procedure enunciated by Parameśvara is illustrated in Figs F.6
and F.7. In both these figures, O represents the observer, M the mandocca and P
the planet whose longitude as measured from O is to be determined. In Fig. F.6,
the circles C1,C2 and C3 are all of radius R. The circle C1, centred around the ob-
server O, is the ś̄ıghra-kaks.yā-man. d. ala or the ś̄ıghra-concentric circle. The circle
C2 which is centred at the ś̄ıghrocca S is the ś̄ıghra-pratiman. d. ala (ś̄ıghra-eccentric
circle). The distance of separation between these two circles denoted by OS is the
ś̄ıghrāntya-phala, and corresponds to the radius of the ś̄ıghra epicycle. It has been
clearly enunciated by Parameśvara that the ś̄ıghra-pratiman. d. ala, denoted by C2

in the figure, itself serves as the manda-kaks.yā-man. d. ala, or the manda-concentric
circle. The third circle C3, which is centred around the mandocca M, is the manda-
pratiman. d. ala or the manda-eccentric circle. The distance of separation between
the centers of the manda-concentric and the manda-eccentric circles is equal to the
radius of the manda epicycle and is also the mandāntya-phala, whose measure
varies from planet to planet.

Parameśvara has depicted the geometrical picture of motion of the interior plan-
ets also by employing three circles, C1,C2 and C3, as in the case of exterior planets,
as shown in Fig. F.7. However, here these three circles have completely different
connotations and, while C1 and C2 are of radius R, C3 is of radius rs, the radius
of the ś̄ıghra epicycle. Here the circle C1 centred around O, is the manda-kaks.yā-
man. d. ala, or the manda-concentric circle. The circle C2, which is centred around
the mandocca M, is the manda-pratiman. d. ala, which serves as the locus for the

19 {AB 1874}, pp. 60-1.
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Fig. F.6 Geometrical picture of the motion of an exterior planet given by Parameśvara.

centre of the ś̄ıghra-vr. tta denoted by the circle C3. The distance of separation be-
tween the centers of C1 and C2 is equal to the radius of the manda epicycle, and is
also the mandāntya-phala. P represents the ś̄ıghrocca associated with the interior
planet and S is the manda-corrected Sun on the manda-pratiman. d. ala.
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Fig. F.7 Geometrical picture of the motion of an interior planet given by Parameśvara.
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It is important to note that, through his diagrammatic procedure, Parameśvara
clearly illustrates the fact that, in the traditional planetary model, the final longitude
that is calculated for an interior planet is actually the geocentric longitude of what
is called the ś̄ıghrocca of the planet. From Figs F.6 and F.7 we can see easily that
Parameśvara’s geometrical picture of planetary motion is fairly accurate except for
the fact that the equation of centre for the interior planets is wrongly applied to the
mean Sun. Incidentally, it may also be noted that Parameśvara has given a succinct
description of the same chedyakavidhi in his Golad̄ıpikā.20

F.4 Nı̄lakan. t.ha’s revised planetary model

Among the available works of Nı̄lakan.t.ha, his revised planetary motion is dis-
cussed in the works Tantrasaṅgraha, Āryabhat. ı̄ya-bhās. ya, Siddhānta-darpan. a
and the Vyākhyā on it, Golasāra and the tract called Grahasphut. ānayane
viks.epavāsanā. Of these, Golasāra and Siddhānta-darpan. a are presumed to have
been written prior to the detailed work Tantrasaṅgraha composed in 1500. The
Āryabhat. ı̄ya-bhās. ya refers to Golasāra and Tantrasaṅgraha. The Siddhānta-
darpan. a-vyākhyā cites the Āryabhat. ı̄ya-bhās. ya. In the same way, the small but
important tract Grahasphut.ānayane viks.epavāsanā includes long passages from
the Āryabhat. ı̄ya-bhās.ya and is clearly a later composition.

In Tantrasaṅgraha, Nı̄lakan. t.ha presents the revised planetary model and also
gives the detailed scheme of computation of planetary latitudes and longitudes,
but he does not discuss the geometrical picture of planetary motion. Towards the
end of the last chapter of the work, Nı̄lakan. t.ha introduces a prescription for the
sphut.akaks.yā (the true distance of the planets). There seems to be just a brief (and
incomplete) mention of this subject in Golasāra and Āryabhat. ı̄ya-bhās. ya.

The geometrical picture of planetary motion is discussed in detail in the
Āryabhat. ı̄ya-bhās. ya. It is also succinctly presented in terms of a few verses in
both Golasāra and Siddhānta-darpan. a. Nı̄lakan.t.ha presents some aspects of his
cosmological model while discussing the geometrical picture of the motion of the
interior planets in his Āryabhat. ı̄ya-bhās. ya. He presents a definitive but succinct
account of his cosmological model in terms of a few verses in his later work
Grahasphut.ānayane viks.epavāsanā.

F.4.1 Identifying the mean Mercury and Venus

In the very first chapter of Tantrasaṅgraha (c. 1500), Nı̄lakan. t.ha introduces a
major revision of the traditional Indian planetary model, according to which what
were traditionally referred to as the ś̄ıghroccas of the interior planets (Mercury and

20 {GD 1916}, pp. 14–15.
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Venus) are now identified with the planets themselves; and the mean Sun is taken as
the ś̄ıghrocca of all the planets.Ka;a;��a:(õ;a;de ;vea;Sua;sa;�a;a;
a;dÒ +Za:=+a;(ãÉea;nd;eaH , ku +.ja;~ya tua Á:vea;d;a;ñÍç ÅÅ*:+.a;
a;h:=+sa;a;ñÍö�ÅÅ*:+.a;��a:(õ;a;k+.=+aH , :℄a;~ya .~va;pa;yRa;ya;aH Á Ána;a;ga;vea;d;na;Ba;ssa;�a:=+a;ma;a;ñÍö�ÅÅ*:+.~va:=+BUa;ma;yaH Áv.ya;ea;ma;a;�:�+.pa;vea;d;a;ñÍç ÅÅ*:+.pa;a;va;k+:a;(ãÉa bxa;h;~å.pa;teaH Á ÁA;�;a;ñÍç ÅÅ*:+.d;~åò:a;nea:�a;a;��a:(õ;a;Ka;a;dÒ +ya;ea Bxa;gua;pa;yRa;ya;aH Á 21

[The number of revolutions in a mahāyuga] of the Moon is 57753320. That of Mars
is 2296864. The number of own revolutions of Mercury is 17937048. That of Jupiter is
364180. The number of revolutions of Venus is 7022268.

Here the commentator Śaṅkara Vāriyar observes:A:�a .~va;Za;b.de ;na :pa;ya;Ra;ya;a;Na;Ma Ba;a;~k+.=+a;.a;a;ya;Ra;dùÅ;a;Æa;Ba;ma;tMa .~va;Z�a;a;Gra;ea;�a;sa;}ba;�////�a;nDa;tvMa bua;Da;~ya ;�a;na:=+~ta;m,a Á22

Here, by the use of the word sva (own), the association of this number of revolutions with
the ś̄ıghrocca of Mercury, as done by Bhāskara and others, is rejected.

It may be noted (see Table F.1) that, except for the above redefinition of the
mean Mercury and Venus, the bhagan. as, or the number of planetary revolutions in
a Mahāyuga, are nearly same as those given in Āryabhat. ı̄ya.

F.4.2 Computation of planetary longitudes

Nı̄lakan. t.ha presents the details of his planetary model in the second chapter of
Tantrasaṅgraha. For the exterior planets, he essentially follows the traditional
model. He also retains the four-step process, while noting that (the rationale for
such a scheme seems to be essentially that) such has been the recommendation of
the earlier masters:ma;a;ndM ZEa;GrMa :pua;na;ma;Ra;ndM ZEa;GrMa ..a;tva;a;yRa;nua;kÒ +:ma;a;t,a Áku +.ja;gua;vRa;kR +.ja;a;na;Ma ;
a;h k+:ma;Ra;Nyua;�+:a;�a;na .sUa;�a:=+Æa;BaH Á Á 23

The earlier masters have stated that the manda, ś̄ıghra and again manda and ś̄ıghra are
the four corrections that have to be applied in sequence in the case of Mars, Jupiter and
Saturn (in order to obtain their geocentric longitude).

The actual procedure given by Nı̄lakan.t.ha is the following: If θ0 is the mean
longitude of the planet and θm that of its mandocca, then θ1 (the longitude at the
end of the first step of the four-step process) is found by applying the half-manda
correction as follows:

21 {TS 1958}, p. 8.
22 {TS 1958}, p. 9.
23 {TS 1958}, p. 41.
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θ1 = M +
1
2

Rsin−1
[
− r0

R
Rsin(θ0 −θm)

]
, with

r0

R
=

[7 + |sin(θ0 −θm)|]
39

(for Mars)

r0

R
=

[7 + |sin(θ0 −θm)|]
82

(for Jupiter)

r0

R
=

39
320

(for Saturn).

Then θ2 is found by applying the half-ś̄ıghra correction with the mean Sun θs as
the ś̄ıghrocca as follows:

θ2 = θ1 +
1
2

Rsin−1
[

rs

Ks1
Rsin(θs −θ1)

]
, with

Ks1 = [{rs sin(θ1 −θs)}2 + {R + rs cos(θ1 −θs)}2]
1
2

(rs

R

)
=

[53−2|sin(θ1 −θs)|]
80

(for Mars)

(rs

R

)
=

[16−|sin(θ1 −θs)|]
80

(for Jupiter)

(rs

R

)
=

[9−|sin(θ1 −θs)|]
80

(for Saturn).

Then the manda-sphut.a θms is found by adding the whole manda correction ob-
tained with θ2 to θ0:

Rsin(θms −θ0) = −
(r0

R

)
Rsin(θ2 −θm).

Then the true planet sphut.a-graha P is found by applying the whole of the ś̄ıghra
correction to θms.

Rsin(θ −θms) =

[
rs

Ks
Rsin(θs −θms)

]

where Ks = [{rs sin(θms −θs)}2 + {R + rs cos(θms −θs)}2]
1
2 . (F.27)

Again, as we had noted earlier in connection with the traditional planetary model, in
the above four-step process also the iterated manda-hypotenuse (avísis. t.a-manda-
karn. a) does not appear and the manda and ś̄ıghra corrections can be read off from
a table.

In the case of the interior planets, Nı̄lakan.t.ha presents just the two-step pro-
cess: manda-sam. skāra followed by ś̄ıghra-sam. skāra. For the interior planets, if
θ0 is the longitude of the mean planet (as per his revised model), θm its mandocca
and θs that of the mean Sun (́s̄ıghrocca), then the manda correction leading to the
mandasphut.a is given by

Rsin(θms −θ0) = − r0

R
Rsin(θ0 −θm)



F.4 N̄ılakan. t.ha’s revised planetary model 511

r0

R
=

1
6
,

1[
14 + |R sin(θ0−θm)|

240

] (for Mercury, Venus).

It may be recalled that the avísis. t.a-manda-karn. a K is to be calculated using the
Mādhava formula (F.15). The ś̄ıghra correction giving the true planet θ is given by

Rsin(θ −θs) =

[(rs

R

)( K
Ks

)
Rsin(θms −θs)

]

where Ks = [Rsin(θms −θs)
2 +{Rcos(θms −θs)+

(rs

R

)
K}2]

1
2 (F.28)

( rs

R

)
=

[31−2|sin(θms −θs)|]
80R

(for Mercury)

( rs

R

)
=

[59−2|sin(θms −θs)|]
80R

(for Venus).

Note that in the above two-step process the avísis. t.a-manda-karn. a K shows up
in the ś̄ıghra correction. In his discussion of the geometrical picture of planetary
motion in the Āryabhat. ı̄ya-bhās.ya, Nı̄lakan.t.ha presents the two-step process as the
planetary model for all the planets. This has also been the approach of Yuktibhās. ā.

F.4.3 Planetary latitudes

In the seventh chapter of Tantrasaṅgraha, Nı̄lakan.t.ha gives the method for calcu-
lating the latitudes of planets, and prescribes that for all planets, both exterior and
interior, the latitude is to be computed from the manda-sphut.a-graha.ma;nd;~å.Pu +.f;a;t,a .~va;pa;a;ta;ea;na;a;t,a Ba;Ea;ma;a;d� ;a;na;Ma Bua:ja;a;gua;Na;a;t,a Á:pa:=+ma;[ea;pa;�a;na.Èåî ÁÁ*+;a .~ya;a;t,a [ea;pa;eaY;ntya;(ra;va;Na;ea:;dÄâx ;taH Á Á 24

The Rsine of the manda-sphut.a of the planet Mars etc., from which the longitude of its
node is subtracted, is multiplied by the maximum latitude and divided by the last hypotenuse
(the ś̄ıghra hypotenuse of the last step). The result is the latitude of the planet.

This is as it should be, for in Nı̄lakan.t.ha’s model the manda-sphut.a-graha (the
manda corrected mean longitude) coincides with the true heliocentric longitude for
both exterior and interior planets. In this way, Nı̄lakan. t.ha, by his modification of
the traditional Indian planetary theory, solved the problem, long-standing in Indian
astronomy, of there being two different rules for calculating the planetary latitudes.

In the above verse, Nı̄lakan. t.ha states that the last hypotenuse that arises in the
process of computation of longitudes, namely the ś̄ıghra-karn. a Ks, is to be used as
the divisor. In Āryabhat. ı̄ya-bhās. ya, he identifies this as the Earth–planet distance
(the bhū-tārāgraha-vivara). There, Nı̄lakan.t.ha has also explained how the compu-
tations of true longitude and latitude get modified when latitudinal effects are also

24 {TS 1958}, p. 139.
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taken into account. The true Earth-planet distance (the bhū-tārāgraha-vivara) is
also calculated there in terms of the Ks and the latitude.25

From the above discussion it is clear that the central feature of Nı̄lakan. t.ha’s revi-
sion of the traditional planetary model is that the manda correction, or the equation
of centre for the interior planets, should be applied to the mean heliocentric planet
(or what was referred to as the ś̄ıghrocca in the traditional Indian planetary model),
and not the mean Sun. In this way Nı̄lakan.t.ha, by 1500 CE, had arrived at the cor-
rect formulation of the equation of centre for the interior planets, perhaps for the first
time in the history of astronomy. Nı̄lakan. t.ha was also able to formulate a unified
theory of planetary latitudes.

Just as was the case with the earlier Indian planetary model, the ancient Greek
planetary model of Ptolemy and the planetary models developed in the Islamic tra-
dition during the 8th–15th centuries postulated that the equation of centre for an
interior planet should be applied to the mean Sun, rather than to the mean helio-
centric longitude of the planet as we understand today.26 Further, while the ancient
Indian astronomers successfully used the notion of the ś̄ıghrocca to arrive at a satis-
factory theory of the latitudes of the interior planets, the Ptolemaic model is totally
off the mark when it comes to the question of latitudes of these planets.27

Even the celebrated Copernican revolution brought about no improvement in the
planetary theory for the interior planets. As is widely known now, the Copernican
model was only a reformulation of the Ptolemaic model—with some modifications
borrowed from the Maragha school of astronomy of Nasir ad-Din at-Tusi (c. 1201–
74), Ibn ash-Shatir (c. 1304–75) and others—for a heliocentric frame of reference,
without altering his computational scheme in any substantial way for the interior
planets. As an important study notes:

‘Copernicus, ignorant of his own riches, took it upon himself for the most part to represent
Ptolemy, not nature, to which he had nevertheless come the closest of all’. In this famous
and just assessment of Copernicus, Kepler was referring to the latitude theory of Book V
[of De Revolutionibus], specifically to the ‘librations’ of the inclinations of the planes of the
eccentrics, not in accordance with the motion of the planet but by the unrelated motion of
the Earth. This improbable connection between the inclinations of the orbital planes and the
motion of the Earth was the result of Copernicus’s attempt to duplicate the apparent latitudes
of Ptolemy’s models in which the inclinations of the epicycle planes were variable. In a way
this is nothing new since Copernicus was also forced to make the equation of centre of the
interior planets depend upon the motion of the Earth rather than the planet.28

Indeed, it appears that the correct rule for applying the equation of centre for an
interior planet to the mean heliocentric planet (as opposed to the mean Sun), and a

25 {ABB 1957}, pp. 6–7. This issue has also been discussed at great length in {GYB 2008},
pp. 495–500, 653–9, 883–9).
26 See for example The Almagest by Ptolemy, translated by G. J. Toomer, London 1984.
27 As a well-known historian of astronomy has remarked: ‘In no other part of planetary theory did
the fundamental error of the Ptolemaic system cause so much difficulty as in accounting for the
latitudes, and these remained the chief stumbling block up to the time of Kepler’ (J. L. E. Dreyer,
A History of Astronomy from Thales to Kepler, New York 1953, p. 200).
28 N. M. Swerdlow and O. Neugebauer, Mathematical Astronomy in Copernicus’ De Revolution-
ibus, Part I, New York 1984, p. 483.
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satisfactory theory of latitudes for the interior planets, were first formulated in the
Greco-European astronomical tradition only in the early 17th century by Kepler.

We have already seen how the traditional Indian planetary model presented a
fairly accurate computational scheme for calculating longitudes and latitudes for
the exterior planets. With his revision of the traditional model, Nı̄lakan.t.ha arrived
at a fairly accurate scheme for the interior planets also. In fact, as a computational
scheme for calculating planetary longitudes and latitudes, Nı̄lakan.t.ha’s model is
indeed a good approximation to the Keplerian model of planetary motion.

F.4.4 Rationale for the revised planetary model

In his Āryabhat. ı̄ya-bhās.ya, Nı̄lakan. t.ha explains the rationale behind his revi-
sion of the traditional planetary theory. This has to do with the fact (which, as
we have mentioned above, was also noticed by several Indian astronomers prior
to Nı̄lakan.t.ha) that the traditional planetary model employed entirely different
schemes for computing the latitudes of the exterior and the interior planets. While
the latitude of the exterior planets was computed from their so-called manda-sphut.a
(which corresponds to what we currently refer to as the true heliocentric planet),
the latitudes of the interior planets was computed from their so-called ś̄ıghrocca.
Nı̄lakan. t.ha argued that since the latitude should be dependent upon the deflection
(from the ecliptic) of the planet itself and not of any other body, what was tradition-
ally referred to as the ś̄ıghrocca of an interior planet should be identified with the
planet itself. Nı̄lakan. t.ha also showed that this would lead to a unified treatment of
the latitudinal motion of all the planets—interior as well as exterior.

In his commentary on verse 3 of Golapāda of Āryabhat.a dealing with the cal-
culation of latitudes, Nı̄lakan.t.ha discusses the special features that arise in the case
of interior planets. It is here that he provides a detailed rationale for his revision of
the traditional planetary model:Z�a;a;Gra;va;Za;a;�a ;
a;va;[ea;pa o+.�H Á k+:Ta;mea;ta;dùÅ;au :$ya;tea? na;nua .~va;
a;ba;}ba;~ya ;
a;va;[ea;paH .~va;Bra;ma;Na;va;Za;a;de ;vaBa;
a;va;tua;ma;hR ;�a;ta, na :pua;naH A;nya;Bra;ma;Na;va;Za;a;
a;d;�a;ta Á .sa;tya;m,a Á na :pua;naH A;nya;~ya Bra;ma;Na;va;Za;a;t,aA;nya;~ya ;
a;va;[ea;paH o+.pa;pa;dùÅ;a;tea Á ta;sma;a;t,a bua;DaH A;�;a;Z�a;a;tyEa;va ;
a;d;nEaH .~va;Bra;ma;Na;vxa:�Ma :pUa:=+ya;�a;ta Á . . .O;;ta;�a na;ea;pa;pa;dùÅ;a;tea ya;de ;ke +:nEa;va .sMa;va;tsa:=e +Na ta;tpa;�a:=+Bra;ma;Na;mua;pa;l+.Bya;tea .nEa;va;a;�;a;Z�a;a;tya;a ;
a;d;nEaH Á.sa;tya;m,a Á Ba;ga;ea;l+.pa;�a:=+Bra;ma;NMa ta;~ya;a;pyea;ke +:nEa;va;a;b.de ;na Á . . .O;;ta;du ;�M Ba;va;�a;ta Á ta;ya;eaH Bra;ma;Na;vxa:�ea;na na BUaH k+:ba;l� +.a;
a;kÒ +:ya;tea Á ta;ta;ea ba;
a;h;=e +va .sa;d;a BUaH ÁBa;ga;ea;lE +.k+:pa;a:(õ;eRa O;;va ta;dõx :�a;~ya :pa;�a:=+sa;ma;a;�a:�va;a;t,a ta;;�ÂåÅ +ga;Nea;na na dõ ;a;d;Za:=+a;a;Za;Sua ..a;a:=H .~ya;a;t,a Áta;ya;ea:=+
a;pa va;~tua;taH A;a;
a;d;tya;ma;Dya;ma O;;va Z�a;a;Gra;ea;�a;m,a Á Z�a;a;Gra;ea;�a;Ba;ga;Na;tvea;na :pa;
a;F+.ta;a O;;va.~va;Ba;ga;Na;aH Á ta;Ta;a;
a;pa A;a;
a;d;tya;Bra;ma;Na;va;Za;a;de ;va dõ ;a;d;Za:=+a;a;Za;Sua ..a;a:=H .~ya;a;t,a, Z�a;a;Gra;vxa:�a;~yak+:[ya;a;ya;aH ma;h:�va;a;t,a Á Z�a;a;Gra;ea;�a;n�a;a;.a;vxa:�a;~ya;a;pyea;k+:Ba;a;ga;ga;mea;va .~va;Bra;ma;Na;vxa:�a;m,a Á ya;Ta;a ku +.ja;a;d� ;a-na;a;ma;
a;pa Z�a;a;Gra;ea;�Ma .~va;ma;nd;k+:[ya;a;ma;Nq+.l+.a;
a;d;k+:ma;a;k+:SRa;�a;ta O;;va;mea;ta;ya;ea:=+
a;pa Á A;na;ya;eaH :pua;naH
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The latitudinal motion is said to be due to that of the ś̄ıghrocca. How is this appropriate?
Isn’t the latitudinal motion of a body dependent on the motion of that body only, and not
on the motion of something else? The latitudinal motion of one body cannot be obtained
as being due to the motion of another. Hence [we should conclude that] Mercury goes
around its own orbit in 88 days . . . However this also is not appropriate because we see it
going around [the Earth] in one year and not in 88 days. True, the period in which Mercury
completes one full revolution around the bhagola (the celestial sphere) is one year only
[like the Sun] . . .

All this can be explained thus: Their [Mercury and Venus] orbits do not circumscribe the
Earth. The Earth is always outside their orbit. Since their orbit is always confined to one side
of the [geocentric] celestial sphere, in completing one revolution they do not go around the
twelve signs (rāśis). Even for them in reality the mean Sun is the ś̄ıghrocca. It is only their
own revolutions which are stated to be the revolutions of the ś̄ıghrocca [in Āryabhat.ı̄ya].
It is only due to the revolution of the Sun [around the Earth] that they (i.e. the interior plan-
ets, Mercury and Venus) complete their movement around the twelve signs [and complete
their revolution of the Earth]. Because the ś̄ıghra epicycle is larger than their orbit, their
orbit is completed on one side of the ś̄ıghra epicycle. Just as in the case of Jupiter etc. [the
exterior planets] the ś̄ıghrocca attracts [and drags around] the manda-orbits on which they
move (the manda-kaks.yā-man. d. ala), in the same way it does for these [interior] planets
also. And it is owing to this attraction that these [interior planets] move around the twelve
signs.

There is also a later work of unknown authorship, Viks.epagolavāsanā, which
confirms that it was indeed Nı̄lakan. t.ha who proposed that the manda correction
for the interior planets, Mercury and Venus, should be applied to the mean planets
themselves and not to their ś̄ıghrocca, in order to arrive at a coherent and unified
theory of planetary latitudes. The relevant verses of this work are the following::pUa;va;Ra;.a;a;yERa;~tua ma;a;nde A;
a;pa Ka;lu :pa;�a:=+D�a;a Ba;a;nua;k+:[ya;a;k+:l+.a;Æa;BaHma;a;tva;ea;�e .tea;na ma;a;nde Y;
a;pa ..a ;
a;d;na;k+.=+ma;DyMa .~va;ma;DyMa :pra;
a;d;�;m,a Áma;nd;ea;�a;ea;na;a;kR +:ma;Dya;a;du ;
a;d;ta;mxa;du ;P+.lM [ea;pa;n�a;a;ta;Ea ..a;l+.ea;�eaku +:vRa;ntyea;ta;�a yua;�M ta;d;k+.=+Na;ma;ta;ea ma;a;na;sea yua;�a;�+:ma;t,a .~ya;a;t,a Á Áku +:vRa;ntya;�/////////�a;sma;n,a ;
a;h :pa;[ea ta;
a;d;d;ma;nua;�a;.a;tMa ;Æa;Ba;�a:ja;a;�a;ta;tva;he ;ta;eaHta;sma;a;t,a ga;a;gyeRa;Na ma;a;nde Za;a;Za;sua;ta;Æa;sa;ta;ya;eaH ma;Dya;mMa .~v�a;a;ya;ma;Dya;m,a Á:pra;ea;�M ma;a;ndM ..a vxa:�Ma :pra;Æa;ma;ta;Æa;ma;h ta;ya;eaH .~v�a;a;ya;k+:[ya;a;k+:l+.a;Æa;BaHZEa;Grea .~va;a;n}å.a;Dya;vxa:�a;a;t,a ;
a;d;na;k+.=+va;l+.ya;~ya;a;�a;Da;k+:tvea;na yua;��+.a;a Áma;Dya;ea;�ea ta;dõx ;t�a;a ..a;a;
a;pa ..a ;
a;va;�a;na;ma;ya;taH k+:�//////�a;�pa;tea l+.a;Ga;va;a;TRa;m,a Á Á 30

Indeed by the earlier ācāryas, even in the manda procedure, orbits [for Mercury and
Venus] were stated by measuring them in terms of the orbit of the mean Sun, and hence for
them their own mean position would be that of the mean Sun. For obtaining the latitudi-
nal deflection (ks.epan̄ıtau) [of the planet] they were also applying the manda-correction
(mr. duphala)—obtained by subtracting the mandocca [of the planet] from the mean

29 {ABB 1957}, pp. 8-9.
30 Viks.epagola-vāsanā in {GVV 1979}, p. 52. As we shall see later, these verses closely follow
the verses of Nı̄lakan. t.ha’s Grahassphut.ānayane viks.epavāsanā, in {GVV 1979}, p. 58.
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Sun—to the ś̄ıghrocca. There is no rationale for this and that it was omitted in Mānasa
(Laghumānasa of Mañjulācārya) seems quite reasonable. This approach followed by
the earlier ācāryas is also inappropriate because the quantities [that which is used for find-
ing the mr. duphala and that to which mr. duphala is applied] belong to different classes
(bhinnajāti).

Therefore, it was proposed by Gārgya (Nı̄lakan. t.ha) that in the manda procedure it is
their own mean position [and not the mean Sun] that should be considered as the mean
position of Mercury and Venus. The dimension of mandavr. tta should also be taken to be
given in terms of the measure of their own orbits (sv̄ıyakaks.yā-kalābhih. ). In the ś̄ıghra
process, since the orbit of the Sun is larger than their own mean orbit (madhyavr. tta),
he also proposed that a simple way of formulating the correction would be by supposing
that the mean and the ucca (́s̄ıghrocca) and their corresponding orbits (kaks.yāvr. tta and
śighravr. tta) are indeed reversed.

F.5 Geometrical picture of planetary motion according to
Nı̄lakan. t.ha

In his Āryabhat. ı̄ya-bhās. ya, while commenting on verses 17–21 of the Kāla-
kriyāpāda, Nı̄lakan. t.ha explains that the orbits of the planets, and the locations
of various concentric and eccentric circles or epicycles associated with the manda
and ś̄ıghra processes, are to be inferred from the computational scheme for calcu-
lating the true geocentric longitude (sphut.a-graha) and the latitude of the planets
(viks.epa).ta:�a ta;a:=+a;g{a;h;a;Na;Ma :pua;na:�+:�a;dõ ;yMa :pa;�a:=+�a;Da;dõ ;yMa ..a :pra;d;a;ZRa;ta;m,a Á ta:�a kH :pa;�a:=+�a;DaH k+:[ya;a;ma;Nq+.l-:ke +:ndÒ +gaH k+:�/////////�a;sma;n,a :pra;de ;Zea :pua;na;�a:=+ta:=+~ya ;�//////�a;~Ta;�a;taH I+.tyea;ta;t,a ;
a;va;[ea;pa;a;na;ya;na;k+:mRa;Na;a .~å.Pu +.f;kÒ +:ma-va;Za;a;�a ;�a;na;NeRa;tMua Za;k�+.a;m,a Á

We have explained that in the case of the tārā-grahas (the five planets) there are two uccas
and two epicycles. There, issues such as which epicycle has a centre on the concentric and
where the other epicycle is located, can be settled by (analysing) the procedure for finding
out the true longitude and latitude of the planet.

F.5.1 Geometrical picture of the motion of the exterior planets

Nı̄lakan. t.ha first gives the following general outline of the geometrical picture of
planetary motion:A:�a;a;ya;ma;Æa;Ba;sa;�////�a;nDaH Á k+:[ya;a;ma;Nq+.l+.ke +:ndÒ O;;va Z�a;a;Gra;pa;�a:=+Dea:=+
a;pa :ke +:ndÒ +m,a Á ta;tpa;�a:=+Da;Ea Z�a;a;Gra;ea;�a;a-kÒ +:a;nta;pra;de ;Zea ma;nd;pa;�a:=+�a;Da;ke +:ndÒ M ..a Á O;;vMa :pa;�a:=+Da;Ea :pua;na;mRa;nd;ea;�a;pra;de ;Zea :pra;�a;ta;ma;Nq+.l+.ke +:ndÒ M ..a Á ta;�a:pra;�a;ta;ma;Nq+.l+.ma;a;k+:a;Za;k+:[ya;a;ya;aH .~va;Ba;ga;Na;a;va;a;�Ea;ya;eRa:ja;nEa;~tua;�ya;m,a Á ta;�/////////�a;sma;�ea;va g{a;h;
a;ba;}ba;Æa;ma;ta;=E H
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a;pa k+:NRa;ma;Nq+.lM ma;nd;k+:NRa;nya;a;yea;na A;
a;va;Zea;Sya :pa;�a:=+le +.Ka;n�a;a;ya;m,a Á 31

Here, what is intended to be conveyed is as follows: The centre of the kaks.yā-man. d. ala
(concentric) is also the centre of the ś̄ıghra epicycle; on that epicycle, at the location of the
ś̄ıghrocca, is the centre of the manda epicycle; in the same way, on that manda epicycle
at the location of mandocca is the centre of the pratiman. d. ala (eccentric). (The circum-
ference of) that pratiman. d. ala is equal to the circumference of the sky (ākāśa-kaks.yā)
divided by the revolution number of the planet. The planetary orb moves with the same
linear velocity, as that of the others, in that (pratiman. d. ala) only. The corresponding con-
centric (kaks.yā-man. d. ala) should be drawn with the same dimension with its centre on the
ś̄ıghra epicycle at the location of ś̄ıghrocca. There also the circle of the hypotenuse is to
be obtained by the process of iteration as per the rule for the manda-karn. a.

Later, while commenting on verse 3 of Golapāda, Nı̄lakan.t.ha explains how the
above picture needs to be modified when the latitudinal motion is also taken into
account. The main feature is that it is the manda epicycle together with the eccentric
which is inclined to the ecliptic and not the ś̄ıghra epicycle (which represents the
Earth–Sun relative motion):Ba;ga;ea;l+.ma;Dya;na;a;Æa;Ba;k+:~ya k+:a;t=+:ïîåéyeRa;na A;pa;ma;Nq+.l+.ma;a;gRa;ga;~ya Z�a;a;Gra;vxa:�a;~ya :pa;�a:=+Da;Ea yaH Z�a;a;Gra;ea;�a-.sa;ma;pra;de ;ZaH ta;�a:;dÄâ ma;nd;k+:mRa;a;Na k+:[ya;a;ma;Nq+.l+.ke +:ndÒ +Æa;ma;�a;ta k+:a;l+.
a;kÒ +:ya;a;pa;a;de O;;vea o+.�+:m,a Áta;de ;va ma;nd;ea;�a;n�a;a;.a;vxa:�a;~ya k+:NRa;ma;Nq+.l+.~ya ..a :ke +:ndÒ +m,a Á O;;va;mea;ta;�a;na ��a;a;a;Na ma;Nq+.l+.a;�a;naA;pa;ma;Nq+.l+.ma;a;gRa;ma;Æa;Ba;taH A;DRa;ZaH o+�a:=+ta;ea d;Æa;[a;Na;ta;(ãÉa ;
a;va;Æa;[a;�a;a;�a;na Á 32

It has already been stated in the Kālakriyāpāda that on the ś̄ıghra-vr. tta, which has its
centre at the centre of the celestial sphere and is in the plane of the ecliptic, the point which
corresponds to the ś̄ıghrocca is in fact the centre of the kaks.yā-man. d. ala (concentric) in
the manda process. The same (́s̄ıghrocca) is also the centre of the manda-nicocca-vr. tta
(the manda epicycle) and also of the (manda) karn. a-man. d. ala (the hypotenuse circle
or the orbit). In this way these three circles (manda concentric, epicycle and hypotenuse
circle) are inclined to the ecliptic towards both the north and the south.

Based on the description presented above, we arrive at the geometrical picture of
motion—for an exterior planet—as shown in Fig. F.8a. In this figure, O represents
the location of the observer and is considered to be the bhagola-madhya (the centre
of the celestial sphere). The circle centred around O, with radius equal to the tabu-
lated radius of the ś̄ıghra epicycle, rs, is called the ś̄ıghra-n̄ıcocca-vr. tta, on which
the ś̄ıghrocca or the mean Sun S is located.

It is said that the manda-n̄ıcocca-vr. tta (also called the mandaparidhi) is a circle
with the ś̄ıghrocca as the centre. The mandocca U is located on this circle, whose
radius is equal to the (variable) radius of the manda epicycle. The pratiman. d. ala on
which the planet P moves is centred at the mandocca. SP is the manda-karn. a de-
noted by K and Γ ŜP is the manda-sphut.a. Γ ÔP is the true geocentric planet known
as the ś̄ıghra-sphut.a. The distance of the planet from the centre of the bhagola is
denoted by Ks and it is also the ś̄ıghra-karn. a.

Among the various circles depicted in Fig. F.8a, it is said that the circles centred
around the ś̄ıghrocca S, namely the manda-n̄ıcocca-vr. tta, the manda-karn. a-vr. tta

31 {ABB 1931}, vol. II, p. 70.
32 {ABB 1957}, p. 5.
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Fig. F.8a Geometrical picture of the motion of an exterior planet given by Nı̄lakan. t.ha.

and the manda concentric (which is not indicated in the figure), are inclined to the
plane of the ecliptic towards the north and the south. The figure also depicts a section
of the ś̄ıghra-karn. a-vr. tta—centred around O—which represents the instantaneous
orbit (the orbit in which the planet moves at that instant) of the planet with respect
to the Earth.

F.5.2 Geometrical picture of the motion of the interior planets

Nı̄lakan. t.ha explains in the commentary on verse 3 of Golapāda that the above geo-
metrical picture of motion needs to be modified in the case of the interior planets. We
have earlier (in Section F.4.4) cited a part of this discussion where Nı̄lakan. t.ha had
noted that the interior planets go around the Sun in orbits that do not circumscribe
the Earth, in a period that corresponds to the period of their latitudinal motion, and
that they go around the zodiac in one year as they are dragged around the Earth by
the Sun. Having identified the special feature of the orbits of the interior planets that
they do not circumscribe the Earth, Nı̄lakan.t.ha explains that it is their own orbit,
which is smaller than the ś̄ıghra-n̄ıcocca-vr. tta, that is tabulated as the epicycle in a
measure where the latter is 360 degrees.
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These two circles (the concentric and the ś̄ıghra epicycle) are now to be imagined in the
contrary way. Of them, the concentric itself (being smaller than the epicycle) is given in
units where the ś̄ıghra epicycle is taken to be 360◦, and will now play the role of epicycle.
The manda epicycle is also taken to be tabulated in terms of this (concentric).

Nı̄lakan.t.ha then goes on to explain the process of computation of the true lon-
gitude of these planets in the same manner as outlined in Tantrasaṅgraha and one
that corresponds to the following geometrical picture of motion.
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Fig. F.8b Geometrical picture of the motion of an interior planet given by Nı̄lakan. t.ha.

The geometrical picture of the motion of the interior planets as presented by
Nı̄lakan. t.ha is shown in Fig. F.8b. Here, O is the observer, assumed to be at the
centre of the celestial sphere (the bhagola-madhya). S is the ś̄ıghrocca which is
taken to be the mean Sun for all the planets. P is the planet moving around the
mean Sun in an eccentric orbit. This eccentric orbit is centred at U , the mandocca.
The point U itself is conceived to be moving on the manda-n̄ıcocca-vr. tta centred
around S.

For interior planets the planet–Sun distance is smaller than the Earth–Sun dis-
tance. Hence, the radius of the planet’s eccentric orbit (UP) is taken to be the radius
of the ś̄ıghrocca-n̄ıca-vr. tta rs, and the radius of the mean Sun’s orbit (OS) is taken

33 {ABB 1957}, p. 9.
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to be the trijyā, R. Further, since the mandapratiman. d. ala, or the manda eccen-
tric on which the planet moves, is of dimension rs and not R, the (variable) manda
epicycle r itself is to be scaled by a factor rs

R and will be r̃ = r rs
R . Correspondingly

the (iterated) manda-karn. a K will also be scaled to K̃ = K rs
R .

Nı̄lakan.t.ha presents a clear and succinct statement of the geometrical picture
of planetary motion for both interior and exterior planets in both Golasāra and
Siddhānta-darpan. a. The verses from the latter are cited below:g{a;h;Bra;ma;Na;vxa:�a;a;�a;na ga;.C+.ntyua;�a;ga;t�a;a;nya;
a;pa Áma;nd;vxa:�ea ta;d;keR +:ndõ ;eaH ;Ga;na;BUa;ma;Dya;na;a;Æa;Ba;k+:m,a Á Áma;Dya;a;kR +:ga;�a;ta ..a;a;nyea;Sa;Ma ta;n}å.a;DyMa Z�a;a;Gra;vxa:�a;ga;m,a Á.tea;Sa;Ma ZEa;GryMa Ba;.a;kÒ +:a;�a ;
a;va;Æa;[a;�Ma ga;ea;l+.ma;Dya;ga;m,a Á ÁZEa;Grya;tvea;na ta;dM ;ZEaH .~vMa :pra;ma;a;ya;ea;�M :℄a;Zua;kÒ +:ya;eaH Áma;nd;vxa:�a;~ya ..Ea;va;a:�a [a;ya;vxa:;dÄâ � ;a .~va;k+:NRa;va;t,a Á Á 34

The [eccentric] orbits on which planets move (the graha-bhraman. a-vr. tta) themselves
move at the same rate as the apsides (the ucca-gati) on the manda-vr. tta [or the manda
epicycle drawn with its centre coinciding with the centre of the manda concentric]. In the
case of the Sun and the Moon, the centre of the Earth is the centre of this manda-vr. tta.

For the others [namely the planets Mercury, Venus, Mars, Jupiter and Saturn] the centre
of the manda-vr. tta moves at the same rate as the mean Sun (madhyārka-gati) on the
ś̄ıghra-vr. tta [or the ś̄ıghra epicycle drawn with its centre coinciding with the centre of the
ś̄ıghra concentric. The ś̄ıghra-vr. tta for these planets is not inclined with respect to the
ecliptic and has the centre of the celestial sphere as its centre.

In the case of Mercury and Venus, the dimension of the ś̄ıghra-vr. tta is taken to be that
of the concentric and the dimensions [of the epicycles] mentioned are of their own orbits.
The manda-vr. tta [and hence the manda epicycle of all the planets] undergoes increase
and decrease in size in the same way as the karn. a [or the hypotenuse or the distance of the
planet from the centre of the manda concentric].

As was noted earlier, the renowned Malayalam work Gan. ita-yukti-bhās. ā
(c. 1530) of Jyes.t.hadeva also gives a detailed exposition of the above geometri-
cal picture planetary motion. The expressions for the longitudes for the exterior and
interior planets obtained from the above pictures are essentially the same as the ones
in the Keplerian model in (F.46) and (F.50).

F.6 Nı̄lakan. t.ha’s cosmological model

While discussing the geometrical picture of planetary motion, Āryabhat. ı̄ya-bhās.ya
as well as Golasāra and Siddhānta-darpan. a consider the orbit of each of the plan-
ets individually, and they are not put together in a single cosmological model of the
planetary system.

There is of course a remarkable passage in Āryabhat. ı̄ya-bhās.ya (which we have
cited earlier (see Section F.4.4) while explaining Nı̄lakan. t.ha’s rationale for the re-
vision of the traditional planetary model) where Nı̄lakan. t.ha explains that the Earth

34 {SDA 1978}, p. 18.
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is not circumscribed by the orbit of the interior planets, Mercury and Venus; and that
the mean period of motion in longitude of these planets around the Earth is the same
as that of the Sun, precisely because they are being carried around the Earth by the
Sun. In fact, Nı̄lakan.t.ha seems to be the first savant in the history of astronomy to
clearly deduce from his computational scheme (and not from any speculative or cos-
mological argument) that the interior planets go around the Sun and that the period
of their motion around the Sun is also the period of their latitudinal motion.O;;ta;du ;�M Ba;va;�a;ta Á ta;ya;eaH Bra;ma;Na;vxa:�ea;na na BUaH k+:ba;l� +.a;
a;kÒ +:ya;tea Á ta;ta;ea ba;
a;h;=e +va .sa;d;a BUaH ÁBa;ga;ea;lE +.k+:pa;a:(õ;eRa O;;va ta;dõx :�a;~ya :pa;�a:=+sa;ma;a;�a:�va;a;t,a ta;;�ÂåÅ +ga;Nea;na na dõ ;a;d;Za:=+a;a;Za;Sua ..a;a:=H .~ya;a;t,a Áta;ya;ea:=+
a;pa va;~tua;taH A;a;
a;d;tya;ma;Dya;ma O;;va Z�a;a;Gra;ea;�a;m,a Á Z�a;a;Gra;ea;�a;Ba;ga;Na;tvea;na :pa;
a;F+.ta;a O;;va.~va;Ba;ga;Na;aH Á ta;Ta;a;
a;pa A;a;
a;d;tya;Bra;ma;Na;va;Za;a;de ;va dõ ;a;d;Za:=+a;a;Za;Sua ..a;a:=H .~ya;a;t,a, Z�a;a;Gra;vxa:�a;~yak+:[ya;a;ya;aH ma;h:�va;a;t,a Á Z�a;a;Gra;ea;�a;n�a;a;.a;vxa:�a;~ya;a;pyea;k+:Ba;a;ga;ga;mea;va .~va;Bra;ma;Na;vxa:�a;m,a Á ya;Ta;a ku +.ja;a-d� ;a;na;a;ma;
a;pa Z�a;a;Gra;ea;�Ma .~va;ma;nd;k+:[ya;a;ma;Nq+.l+.a;
a;d;k+:ma;a;k+:SRa;�a;ta O;;va;mea;ta;ya;ea:=+
a;pa Á A;na;ya;eaH :pua;naHta;d;a;k+:SRa;Na;va;Za;a;de ;va dõ ;a;d;Za:=+a;a;Za;Sua ..a;a:= I+.�a;ta Á

Nı̄lakan.t.ha presents his cosmological model very clearly in a remarkable short
tract called Grahasphut. ānayane viks.epavāsanā, which seems to have been written
after Āryabhat. ı̄ya-bhās. ya as it quotes extensively from it. Here he clearly integrates
the geometrical picture of motion of different planets into a single model of the plan-
etary system by identifying the ś̄ıghrocca, that each of the planets goes around, with
the physical ‘mean Sun moving on the orbit of the Sun’. Based on this identifica-
tion, Nı̄lakan. t.ha also states that the ratio of the radius of the ś̄ıghra epicycle to that
of the concentric is nothing but the ratio of the mean radius of the orbit of the Sun
around the Earth to the mean radius of the orbit of the planet itself, in the case of the
exterior planets, while it is the other way around in the case of the interior planets.
He further explains that this difference between the exterior and interior planets is
because, in the case of the interior planets, their orbit is smaller than the orbit of the
Sun around the Earth and the dimensions of the epicycle and concentric have to be
interchanged. In Nı̄lakan. t.ha’s own words:I+.ndõ ;a;de H .~va;~va;pa;a;ta;dõ ;ya;ta o+.d;ga;va;a;g,a A;DRa;ZaH kÒ +:a;�////�a;nta;vxa:�a;a;t,a;
a;va;Æa;[a;�a;a ma;a;nd;k+:[ya;a k+:�a;Ta;ta;�a;na:ja;l+.vEaH .sa;vRa;d;a tua;�ya;sa;*ñÍËÉ ùÁ+;aE H Áta:�ea;nd;ea;ma;Ra;nd;k+:[ya;a hùÅ:a;pa;ma;va;l+.ya;ma;Dya;~Ta;ke +:ndÒ +a ku +.ja;a;de -ma;Ra;nd;aH k+:[ya;a Ba;ga;ea;l+.�//////�a;~Ta;ta;
a;d;na;k+.=+k+:[ya;a;~Ta;ma;Dya;a;kR +:ke +:ndÒ +aH Á Á;
a;k+.úãÁ*.a;a:=e +q:�a;a;kR +.ja;a;na;Ma ;�a;na:ja;vxa;�a;ta;k+:l+.ya;a ma;a;pa;�a;ya;tva;a;kR +:k+:[ya;MaZEa;Gra;a;Nyua;�+:a;�a;na vxa:�a;a;�a;na ;
a;h bua;Da;Æa;sa;ta;ya;ea;~tva;kR +:k+:[ya;a;k+:l+.a;Æa;BaH Á.~va;Ma k+:[ya;Ma ma;a;pa;�a;ya;tva;a :pua;na;�a:=+h k+:�a;Ta;tea Z�a;a;Gra;vxa:�ea ya;ta;eaY;ta;eaBa;a;na;ea;mRa;DyMa .~va;ma;DyMa Ba;va;�a;ta ..a;l+.
a;va;Da;Ea .~v�a;a;ya;ma;DyMa ..a;l+.ea;�a;m,a Á Á:pUa;va;Ra;.a;a;yERa;~tua ma;a;nde A;
a;pa Ka;lu :pa;�a:=+D�a;a Ba;a;nua;k+:[ya;a;k+:l+.a;Æa;BaHma;a;tva;ea;�e .tea;na ma;a;nde Y;
a;pa ..a ;
a;d;na;k+.=+ma;DyMa .~va;ma;DyMa ta;ya;eaH .~ya;a;t,a Áma;nd;ea;�a;ea;na;a;kR +:ma;Dya;a;du ;
a;d;ta;mxa;du ;P+.lM [ea;pa;n�a;a;ta;Ea ..a;l+.ea;�ea
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a;h :pa;[ea ta;
a;d;d;ma;nua;�a;.a;tMa ;Æa;Ba;�a:ja;a;�a;ta;tva;he ;ta;eaH Á Áma;a;nde .~va;ma;Dya;mea;va;a;ta I+.h Bxa;gua;
a;va;Da;ea;mRa;Dya;mMa k+:�pa;n�a;a;yMag{a;a;hùÅ:aM ma;a;ndM ..a vxa:�Ma :pra;Æa;ma;ta;Æa;ma;h ta;ya;eaH .~v�a;a;ya;k+:[ya;a;k+:l+.a;Æa;BaH ÁZEa;Grea .~va;a;n}å.a;Dya;vxa:�a;a;t,a ;
a;d;na;k+.=+va;l+.ya;~ya;a;�a;Da;k+:tva;a;d;va;ZyMama;Dya;ea;�ea ta;dõx ;t�a;a ..a;a;
a;pa ..a ;
a;va;�a;na;ma;ya;taH k+:�pa;n�a;a;yea ;
a;h yua;��+.a;a Á Á 35

The manda-vr. ttas of the Moon and the others (the five planets) are deflected from the two
nodes of their own orbits, half-way towards the north and the south of the ecliptic (krānti-
vr. tta) by a measure that has been specified separately [for each planet] and which remains
the same for all times. There [again] the manda-vr. tta of the Moon is centred at the centre
of the ecliptic (apamavalaya), whereas the manda-vr. ttas of Mars etc. (the five planets)
are centred at the mean Sun which lies on the orbit of the Sun (dinkara-kaks.yāstha-
madhyārka) situated in the celestial sphere (bhagola).

Moreover, in the case of Mars, Jupiter and Saturn, the [dimensions of their] ś̄ıghra-vr. ttas
have been stated by measuring the orbit of the [mean] Sun (arka-kaks.yā) in terms of
minutes of (the dimensions of) their own orbits (nija-vr. ti-kalayā). However in the case
of Mercury and Venus, the [dimensions of their] ś̄ıghra-vr. ttas have indeed (punah. ) been
stated by measuring their own orbits in terms of the minutes of (the dimension of) the orbit
of the [mean] Sun (arka-kaks.hyā-kalābhih. ). Since it is done this way (yatah. ), (atah. )
the mean Sun becomes the mean planet in the ś̄ıghra procedure (calavidhi) and their own
mean positions become the ś̄ıghroccas (caloccas).

Indeed, by the earlier acāryas, even in the manda procedure [their own] orbits [for Mer-
cury and Venus] were stated by measuring them in terms of the orbit of the mean Sun, and
hence for them their own mean position would be that of the mean Sun. Even in this school
(asmin hi paks.e) for obtaining the latitudinal deflection (ks.epan̄ıtau) [of the planet] they
were applying the manda correction (mr. duphala) [which was] obtained by subtracting
the mandocca [of the planet] from the mean Sun, to the ś̄ıghrocca. This is however inap-
propriate because these (the quantity used for finding the mr. duphala and the quantity to
which the mr. duphala is applied) belong to different classes (bhinnajāti).

Therefore, even in the manda procedure it is their own mean position [and not the mean
Sun] that should be considered as the mean position of Mercury and Venus. The dimen-
sion of the manda-vr. tta should also be taken to be given in terms of the measure of
their own orbits (sv̄ıya-kaks.yā-kalābhih. ). In the ś̄ıghra process, since the orbit of the
Sun is larger than their own mean orbit (madhyavr. tta), one has to devise an intelligent
scheme (yuktyā), in which the mean and the ucca (́s̄ıghrocca) and their corresponding
orbits (kaks.yā-vr. tta and ś̄ıghra-vr. tta) are reversed.

The first verse clearly describes the cosmological model of Nı̄lakan.t.ha, which is
that the five planets, Mercury, Venus, Mars, Jupiter and Saturn, go around the mean
Sun in an eccentric orbit—inclined to the ecliptic (see Fig. F.9)—while the mean
Sun itself goes around the Earth36. It is in the second verse that Nı̄lakan. t.ha makes
the remarkable identification that

rs

R
=

mean Earth–Sun distance
mean Sun–planet distance

(for exterior planets) (F.29a)

35 {GVV 1979} 1979, p. 58. As we noted earlier, the initial verses of the anonymous tract
Viks.epagolavāsanā closely follow the above verses of Nı̄lakan. t.ha.
36 As we noted earlier, this cosmological model is the same as the one proposed by Tycho Brahe,
albeit on entirely different considerations, towards the end of sixteenth century.
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rs

R
=

mean Sun–planet distance
mean Earth–Sun distance

(for interior planets). (F.29b)

where rs is the radius of the ś̄ıghra epicycle and R is the radius of the concentric. We
had noted earlier in Section F.2 that the ś̄ıghra-process serves to transform the he-
liocentric longitudes to geocentric longitudes, precisely because the above relations
(F.29a) and (F.29b) are indeed satisfied (see Table F.3), even though the traditional
Indian astronomical texts did not conceive of any such relation between the radii
of the ś̄ıghra epicycles and the mean ratios of Earth–Sun and Sun–planet distances.
In fact, Nı̄lakan. t.ha seems to be the first Indian astronomer to explicitly state the
relations (F.29a and F.29b), which seems to follow clearly from his identification of
the ś̄ıghrocca of each planet with the physical ‘mean Sun lying on the orbit of the
Sun’ (dinakara-kaks.yāstha-madhyārka).37

Sun

O (Earth)

Venus

Jupiter

Saturn

Mercury

Mars

Fig. F.9 Nı̄lakan. t.ha’s cosmological model showing the five planets moving in eccentric orbits
around the mean Sun.

The last two verses above discuss the rationale behind the revised planetary
model proposed by Nı̄lakan. t.ha and have been dealt with already in Section
F.4.4. However, what is noteworthy in the context of the cosmological model of

37 As we noted earlier, Nicholas Copernicus also seems to have arrived at the same relation (per-
haps around the same time as Nı̄lakan. t.ha) by identifying the epicycle associated with the so-
called ‘solar anomaly’ in the Ptolemaic model with the orbit of the Earth around the Sun in the
case of the exterior planets and with the orbit of the planet itself in the case of the interior planets.
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Nı̄lakan. t.hais the clear statement that is found again in these verses that the orbits
of the interior planets are indeed smaller than the orbit of the Sun (dinakaravalaya).

F.7 The problem of planetary distances

F.7.1 Planetary distances in traditional Indian astronomy

Unlike the longitudes and latitudes of planets, the planetary distances were not di-
rectly amenable to observation in ancient astronomy and their discussion was of-
ten based upon some speculative hypothesis. In traditional Indian planetary theory,
at least from the time of Āryabhat.a, the mean planetary distances were obtained
based on the hypothesis that all the planets go around the Earth with the same linear
velocity—i.e. they all cover the same physical distance in a given period of time.

Āryabhat.a, indicates this principle in verse 6 of Gı̄tikāpāda of Āryabhat. ı̄ya,
where he also mentions that one minute of arc in the orbit of the Moon measures
10 yojanas (which is a distance measure used in Indian Astronomy). In verse 7 of
Gı̄tikāpāda he gives the diameters of the Earth, Moon and the Sun in yojanas. The
number of revolutions of the various planets (see Table F.1) are given in verses 3
and 4 of Gı̄tikāpāda. Based on these, we can work out the kaks.yā (mean orbital
circumference) and the kaks.yāvyāsārdha (orbital radii) of the Sun, Moon and the
various planets as given in Table F. 4.

Planet Diameter Revolutions in Kaks.yā Kaks.yāvyā- Radius/Earth-
(yojanas) a Mahāyuga (circumference) sārdha (radius) diameter

(in yojanas)

Earth 1050
Moon 315 57753336 216000 34380 65.5
Sun 4410 4320000 2887667 459620 875.5

Table F.4 Kaks.yāvyāsārdhas (orbital radii) of the Sun and the Moon given by Āryabhat.a.

From Table F.4, we can see that the mean distance of the Moon has been esti-
mated by the Indian astronomers fairly accurately (the modern value of the mean
distance of Moon is about 60 Earth radii), but the estimate of the distance of Sun
is short by a factor of around 30 (the modern value of the mean distance of Sun is
around 23500 Earth radii).38

38 The ancient astronomers’ estimates of the Earth–Sun distance were all greatly off the mark.
Ptolemy estimated the mean distance of the Sun to be 1210 Earth radii which is low by a factor of
20. The values given by Copernicus and Tycho were also of the same order. The value estimated by
Kepler was short by a factor of 6. In 1672 the French astronomer Cassini arrived at a value which
is within 10% of the actual mean distance.
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Planet Diameter Revolutions in a Kaks.yā (circum-
(yojanas) Mahāyuga ference (in yojanas))

Moon 5,77,53,336 2,16,000 34,380
Sun 43,20,000 28,87,667 4,59,620

Mercury 1,79,37,020 6,95,473 1,10,696
Venus 70,22,388 17,76,421 2,82,747
Mars 22,96,824 54,31,195 8,64,481

Jupiter 3,64,224 3,42,50,133 54,51,480
Saturn 1,46,564 8,51,14,493 1,35,47,390

Table F.5 Kaks.yāvyāsārdhas (orbital radii) of the planets given by Āryabhat.a.

The kaks.yāvyāsārdhas given in Table F.5 give the mean Earth–planet distance
as per the planetary model of Āryabhat.a. They essentially served the purpose
of fixing the order of the various planets,39 which is given by Āryabhat.a in the
Kālakriyāpāda of Āryabhat. ı̄ya:Ba;a;na;a;ma;DaH Za;nEa;(ãÉa:=+sua:=+gua:�+:Ba;Ea;ma;a;kR +:Zua;kÒ +:bua;Da;.a;ndÒ +aH ÁO;;Sa;a;ma;Da;(ãÉa BUa;Æa;ma;meRa;D�a;a;BUa;ta;a Ka;ma;Dya;~Ta;a Á Á 40

Below the stars [are the orbits of] Saturn, Jupiter, Mars, Sun, Venus, Mercury and Moon.
Below them is the solid Earth [suspended] in the middle of the space.

Āryabhat.a gives a prescription for the true Earth–planet distance towards the
end of Kālakriyāpāda:BUa;ta;a:=+a;g{a;h;
a;va;va:=M v.ya;a;sa;a;DRa;&+.taH .~va;k+:NRa;sMa;va;gRaH Á 41

The Earth–planet distance is given by the product of the [manda and ś̄ıghra] karn. as of
the planet divided by the radius (of the concentric).

Thus the prescription of Āryabhat.a is that

Earth–planet distance =
manda-karn. a× ś̄ıghra-karn. a

R
. (F.30)

Nı̄lakan. t.ha in his Āryabhat. ı̄ya-bhās. ya explains that, since usually the ś̄ıghra-
karn. a is evaluated with respect to a concentric of the standard radius, the above
prescription of Āryabhat.a implies that the Earth–planet distance is actually given
by the ś̄ıghra-karn. a which is evaluated with respect to a concentric circle whose
radius is given by the (iterated) manda-karn. a.42 This is in accordance with his ge-
ometrical picture of planetary motion as given, say, in Fig. F.6.

39 On the other hand, in the early Greco-European tradition, there was considerable ambiguity
concerning the order of planets. Neither does Ptolemy discuss the issue of planetary distances in
his Almagest. In his later work, Planetary Hypothesis, Ptolemy uses the principle that the orbit of
each planet fills the entire space between those of the neighbouring planets to arrive at estimates
of planetary distances.
40 {AB 1976}, p. 102.
41 {AB 1976}, p. 111.
42 {ABB 1931}, pp. 53–4.
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The above relation (F.30) gives the true Earth–planet distance in minutes, as usu-
ally the manda-karn. a and ś̄ıghra-karn. a are evaluated with respect to a concentric
circle whose radius is given by the trijyā, R ≈ 3438′. From this, the true Earth–
planet distance (sometimes called the sphut.a-kaks.yā) in yojanas is obtained by
using the relation

Sphut.a-kaks.yā (in yjn) =
Earth–planet distance (in min) × kaks.yā-vyāsārdha (in yjn)

Radius (in min)
.

(F.31)

The above relation is based on the hypothesis employed in the traditional Indian
planetary theory that the kaks.yāvyāsārdha given in Table F.5 represents the mean
Earth–planet distance in yojanas.

F.7.2 Nı̄lakan. t.ha on planetary distances

In the fourth chapter of Tantrasaṅgraha, dealing with lunar eclipses, Nı̄lakan.t.ha
gives the mean radius of the orbit of the Moon in yojanas to be the trijyā (radius)
in minutes multiplied by 10, i.e. 34380 yojanas. He also states that the radii of
the orbits of the Sun and the Moon are in inverse proportion to their bhagan. as, or
the number of revolutions in a Mahāyuga. He further gives the diameters of the
Moon and Sun in yojanas to be 315 and 4410, respectively, and also states that the
diameter of the Earth is to be found from the circumference of 3,300 yojanas given
in verse 1.29. Table F. 6 gives diameters and mean distances in yojanas.

Planet Diameter Revolutions in Kaks.yā Kaks.yā-vyā- Radius/Earth-
(yojanas) a Mahāyuga (circumference) sārdha (radius) diameter

(in yojanas)

Earth 1050.4
Moon 315 5,77,53,336 216,000 34,380 65.5
Sun 4410 43,20,000 28,87,667 4,59,620 875.5

Table F.6 Kaks.yāvyāsārdhas (orbital radii) of the Sun and the Moon given by Nı̄lakan. t.ha.

Nı̄lakan.t.ha then states that the sphut.a-yojana-karn. as, the first approximations
to the true distance of the centres of Sun and Moon from the centre of the Earth, are
given by their mean distances multiplied by the iterated manda-karn. a divided by
the radius. Finally he gives the dvit̄ıya-sphut.a-yojana-karn. as, the true distances
taking into account the second correction, corresponding to the so-called evection
term, for both Sun and Moon at times of conjunction and opposition. The general ex-
pression for dvit̄ıya-sphut.a-yojana-karn. a is given in the first two verses of Chapter
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8. Tantrasaṅgraha does not discuss the corresponding geometrical picture of lunar
motion, which is however dealt with in detail in Yuktibhās. ā

43.
Nı̄lakan.t.ha takes up the issue of planetary distances towards the very end of

the last chapter (Chapter 8) of Tantrasaṅgraha. Here, he first notes that the mean
radius of the orbit (kaks.yāvyāsārdha) of each planet is to be found in the same way
as was prescribed in the case of the Sun in Chapter 4, namely by multiplying the
kaks.yāvyāsārdha and the revolutions in a Mahāyuga of the Moon, and dividing the
product by the revolutions of the planet in a Mahāyuga..=+
a;va;va;�a;ndÒ +k+:[ya;a;ya;a nea;ya;a;nyea;Sa;Ma ;
a;h .sa;a ta;taH Á 44

This is essentially the principle of traditional Indian astronomy that all the planets
travel equal distances in their orbits in any given period of time, or that they all have
the same linear velocity. Nı̄lakan.t.ha in fact states this principle explicitly in his
Siddhānta-darpan. a as follows:g{a;h;ya;ea:ja;na;Bua;�a;�H .~ya;a;d, d;Za.Èåî ÁÁ*+e ;nd;eaH k+:l+.a;ga;�a;taH Á 45

The velocity in minutes [per unit time] (kalāgati) of the Moon multiplied by 10 is the
velocity of [each] planet in yojanas [per unit time] (yojanabhukti).

Based on the number of revolutions given in Chapter 1 of Tantrasaṅgraha we
can calculate the mean orbital radii (kaks.yāvyāsārdha) of all the planets as given in
Table F.7.

Planet Revolutions in a Kaks.yā (circum- Kaks.yāvyāsārdha
Mahāyuga ference in yojanas) (radius in yojanas)

Moon 57753320 216000 34380
Sun 4320000 2887666 459620

Mercury 17937048 695472 110696
Venus 7022268 1776451 282752
Mars 2296864 5431195 864465

Jupiter 364180 34254262 5452137
Saturn 146612 85086604 13542951

Table F.7 Kaks.yāvyāsārdhas (orbital radii) of the planets given by Nı̄lakan. t.ha.

While the values of the kaks.yāvyāsārdha given by Nı̄lakan.t.ha differ only
marginally from those given in Āryabhat. ı̄ya (see Table F.5), Nı̄lakan. t.ha’s inter-

43 {GYB 2008}, Section 11.36, pp. 584–7, 786–8, 975–80. It may be of interest to note that the
maximum variation in the distance of Moon due to the second correction in Nı̄lakan. t.ha’s model
is only of the order of 10% and not the ridiculous figure of around 50% found in the Ptolemaic
model of evection. Of course, the expression for the second correction given by Nı̄lakan. t.ha is
essentially the same as the one given by Mañjulācārya (c. 932) and is more accurate and elegant
than the Ptolemaic formulation of evection. See also M. S. Sriram, Planetary and Lunar Models in
Tantrasaṅgraha and Gan. ita-Yuktibhās.ā, in Studies in History of Indian Mathematics, ed. by
C. S. Seshadri, Hindustan Book Agency, New Delhi 2010, pp. 353–89.
44 {TS 1958}, p. 154.
45 {SDA 1976}, p. 13.
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pretation of this kaks.yāvyāsārdha and his prescription for the true Earth-planet dis-
tance in yojanas (the sphut.a-kaks.yā) are indeed very different from what we out-
lined earlier in connection with the traditional Indian planetary model. Nı̄lakan.t.ha
presents his prescription for sphut.a-kaks.yā rather tritely in just a single verse of
Tantrasaṅgraha:Z�a;a;Gra;k+:NRa.Èåî ÁÁ*+;k+:[ya;a;ya;a;~ta;dõx :�ea;na ;Æa;sa;ta::℄a;ya;eaH ÁA;a;�a;a ;
a;h .~å.Pu +.f;k+:[ya;a .~ya;a;t,a ta;dõ ;Za;a;�+:}ba;na;a;
a;d ..a Á Á 46

[In the case of Mars, Jupiter and Saturn], the mean radii of their orbits (kaks.yāvyāsārdhas)
multiplied by the ś̄ıghra-karn. a [and divided by the trijyā] give the true orbital radii
(sphut.a-kaks.yās). In the case of Mercury and Venus their mean orbital radii (kaks.yāvyāsārdha)
multiplied by the ś̄ıghra-karn. a and divided by the mean radii of their own orbits (tad-
vr. ttas), give the true values of their orbital radii (sphut.a-kaks.yās). And from that the
lambana etc. [must be calculated].

The above prescription has been clearly explained by Śaṅkara Vāriyar as fol-
lows:;Æa;sa;ta::℄a;ya;ea:�+:�+:va;d;a;n�a;a;tMa k+:[ya;a;v.ya;a;sa;a;DRa;ya;ea:ja;nMa .~va;Z�a;a;Gra;k+:NeRa;na ;�a;na;h;tya Z�a;a;Gra;vxa:�a;pra;Æa;ma;ta-.~va;vxa:�a;v.ya;a;sa;a;DeRa;na ;
a;va;Ba:jea;t,a Á ta:�a l+.b.Da;a .~å.Pu +.f;k+:[ya;a Ba;va;�a;ta Á A;nyea;Sa;Ma tua :pra;a;gva;�+:b.DMak+:[ya;a;v.ya;a;sa;a;D a .~va;Z�a;a;Gra;gua;a;Na;tMa ;
a:�a:$ya;ya;a ;
a;va;Ba;�+:Æa;ma;�a;ta ;
a;va;Zea;SaH Á 47

In the case of Mercury and Venus, the mean radii of their orbit in yojanas (kaks.yāvyāsārdha-
yojana) has to be multiplied by the ś̄ıghra-karn. a and divided by the radius of their own
orbit which is the indeed the ś̄ıghra-vr. tta. The result is the true radius of the orbit (sphut.a-
kaks.yā) [in yojanas]. For the other planets (Mars, Jupiter and Saturn) the difference is that
the mean radii (kaks.yāvyāsārdhas) [in yojanas] obtained as before and multiplied by
their own ś̄ıghra [karn. a] should be divided by the radius of the concentric (the trijyā) [in
order to obtain true radius of the orbit in yojanas].

There is a verse in Golasāra which seems to give a partially similar prescription
for the case of interior planets:.~va;Æa;[a;�a;ta;
a;va;va:=:Èåî ÁÁ*+M ta;dùÅ;a;ea:ja;na;ma;
a;pa :ke +:va;l+.a;ntya;P+.l+.Ba;a:$ya;m,a Á Á 48

[For Mercury and Venus] their distance from the Earth (their ś̄ıghra-karn. a) multiplied by
their (mean orbit radius in) yojanas is to be divided only by their last ś̄ıghra-phala (or the
radius of the ś̄ıghra epicycle).

Thus, Nı̄lakan.t.ha’s prescription for the sphut.a-kaks.yā or the true Earth–planet
distance in yojanas can be expressed as follows:

Sphut.a-kaks.yā =
kaks.yāvyāsārdha× ś̄ıghra-karn. a

Radius
[exterior] (F.32)

Sphut.a-kaks.yā =
kaks.yāvyāsārdha× ś̄ıghra-karn. a

Radius of ś̄ıghra epicycle
[interior]. (F.33)

46 {TS 1958}, chapter 8, verses 37b–38a.
47 {TS 1958}, p. 155.
48 {GS 1970}, p. 23.
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The expression for the sphut.a-kaks.yā for the exterior planets seems to be the same
as that given by (F.31) used in the traditional planetary models, while that for the
interior planets (F.33) differs by the fact that the radius (of the concentric) in the
denominator in (F.31) is replaced by the radius of the ś̄ıghra epicycle.49 In other
words, the kaks.yāvyāsārdha for Nı̄lakan. t.ha is a mean distance in yojanas which
corresponds to the radius of the concentric in the case of the exterior planets; and
it is a mean distance in yojanas corresponding to the radius of the ś̄ıghra epicycle
in the case of interior planets. If we take a careful look at the geometrical picture of
planetary motion given in Fig. F.8a and Fig. F.8b, we can easily see that, according
to Nı̄lakan. t.ha, the kaks.yāvyāsārdha in yojanas (given in Table F.7), following the
equal linear velocity principle, is not the mean Earth–planet distance, but is in fact
the ś̄ıghrocca–planet distance.

This fact that the kaks.yāvyāsārdha in yojanas, obtained based on the principle
that all the planets cover equal distances in equal times, should be understood as the
mean ś̄ıghrocca–planet distance (and not the mean Earth–planet distance) has been
clearly stated by Nı̄lakan. t.ha in the passage from Āryabhat. ı̄ya-bhās.ya that we cited
earlier while discussing the geometrical picture of planetary motion:k+:[ya;a;ma;Nq+.l+.ke +:ndÒ O;;va Z�a;a;Gra;pa;�a:=+Dea:=+
a;pa :ke +:ndÒ +m,a Á ta;tpa;�a:=+Da;Ea Z�a;a;Gra;ea;�a;a;kÒ +:a;nta;pra;de ;Zea ma;nd-:pa;�a:=+�a;Da;ke +:ndÒ M ..a Á O;;vMa :pa;�a:=+Da;Ea :pua;na;mRa;nd;ea;�a;pra;de ;Zea :pra;�a;ta;ma;Nq+.l+.ke +:ndÒ M ..a Á ta;�a :pra;�a;ta;ma;Nq+.l-ma;a;k+:a;Za;k+:[ya;a;ya;aH .~va;Ba;ga;Na;a;va;a;�Ea;ya;eRa:ja;nEa;~tua;�ya;m,a Á ta;�/////////�a;sma;�ea;va g{a;h;
a;ba;}ba;Æa;ma;ta;=E H .sa;ma-ya;ea:ja;na;ga;�a;ta;BrRa;ma;�a;ta Á

The centre of the kaks.yā-man. d. ala (concentric) is also the centre of the ś̄ıghra epicy-
cle; on that epicycle, at the location of the ś̄ıghrocca, is the centre of the manda epicy-
cle; in the same way, on that manda epicycle at the location of mandocca is the cen-
tre of the pratiman. d. ala (eccentric). (The circumference of) that pratiman. d. ala is equal
to the circumference of the sky (ākāśa-kaks.yā) divided by the revolution number of the
planet. The planetary orb moves with the same linear velocity as that of the others in that
(pratiman. d. ala) only.

In the above passage in Āryabhat. ı̄ya-bhās.ya, Nı̄lakan. t.ha states that the planets
are orbiting with equal linear velocity in eccentric orbits about the ś̄ıghrocca. In
other words, the kaks.yāvyāsārdhas in yojanas given in Table F.7 refer to the mean
ś̄ıghrocca–planet distances in Nı̄lakan. t.ha’s model. This seems to be a major de-
parture from the conventional identification of these kaks.yāvyāsārdhas (derived in
inverse ratio with bhagan. as) with mean Earth–planet distances.

Thus, both in his Tantrasaṅgraha (c. 1500 CE) and in the later work Āryabhat. ı̄ya-
bhās.ya, Nı̄lakan.t.ha seems to be clearly working towards an alternative cosmol-
ogy, where the planets—Mercury, Venus, Mars, Jupiter and Saturn—all go around
the ś̄ıghrocca. His attempt to modify the traditional prescription for the planetary
distances is also a step in this direction. However, even this modified prescrip-
tion for the planetary distances that Nı̄lakan.t.ha proposes in Tantrasaṅgraha and

49 This important difference between the sphut.a-kaks.yās for the exterior and interior planets, in
Nı̄lakan. t.ha’s theory, seems to have been overlooked by Pingree in his analysis of ‘Nı̄lakan. t.ha’s
Planetary Models’ (D. Pingree, Journal of Indian Philosophy 29, 187–95, 2001). Pingree uses the
Sphut.a-kaks.yā formula (F.32), as applicable to the exterior planets, to arrive at the upper and
lower limits of the Earth–planet distance in the case of Venus.
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Āryabhat. ı̄ya-bhās. ya is not really consistent with the cosmological model that he
clearly enunciates in his later tract Grahasphut. ānayane viks.epavāsanā. It is herein
that Nı̄lakan.t.ha identifies the ś̄ıghrocca with the physical mean Sun and also gives
the relations (F.29a) and (F.29b) between the ratio of the radii of the ś̄ıghra epicycle
and the concentric with the ratio of the Earth–planet and Earth–Sun distances. Since
the size of ś̄ıghra epicycles have already been fixed (see the tabulated values of radii
of ś̄ıghra epicycles both in traditional planetary theory and in Nı̄lakan.t.ha’s model
in Table F.3), there is no longer any freedom to introduce a separate new hypothesis
for the determination of the ś̄ıghrocca–planet distances.

Therefore, Nı̄lakan. t.ha’s relations (F.32) and (F.33) for the planetary distances
(however revolutionary they may be in relation to the traditional planetary models)
are not consistent with the cosmological model definitively stated by Nı̄lakan. t.ha in
Grahasphut.ānayane viks.epavāsanā. In fact, once the ś̄ıghrocca of all the planets
is identified with the physical mean Sun, the planetary distances get completely
determined by the dimensions of the ś̄ıghra epicycles which are related to the ratios
of the mean Sun–planet and Earth–Sun distances. The true Earth-planet distances in
yojanas would then be given by the following:

Sphut.a-kaks.yā =
kaks.yāvyāsārdha of the Sun× ś̄ıghra-karn. a

Radius of ś̄ıghra epicycle
[ext.] (F.34)

Sphut.a-kaks.yā =
kaks.yāvyāsārdha of the Sun× ś̄ıghra-karn. a

Radius
[int.]. (F.35)

The above relations follow from the fact that the mean orbit of the Sun is the
ś̄ıghra epicycle in the case of the exterior planet, while it would be the concentric in
the case of the interior planet.

It would be interesting to see whether any of the later works of Nı̄lakan.t.ha
(which are yet to be located) or any of the works of later Kerala astronomers deal
with these implications of the cosmological model of Nı̄lakan. t.ha for the calculation
of planetary distances.

F.8 Annexure: Keplerian model of planetary motion

The planetary models described above can be appreciated better if we understand
how the geocentric coordinates of a planet are calculated in Kepler’s model. The
three laws of planetary motion discovered by Kepler in the early seventeenth cen-
tury, which form the basis of our present understanding of planetary orbits, may be
expressed as follows:

1. Each planet moves around the Sun in an ellipse, with the Sun at one of the foci.
2. The areal velocity of a planet in its orbit is a constant.
3. The square of the orbital period of a planet is proportional to the cube of the

semi-major axis of the ellipse in which it moves.
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Kepler’s laws can be derived from Newton’s second law of motion and the law of
gravitation. It may be recalled that Kepler’s laws are essentially kinematical laws,
which do not make any reference to the concepts of ‘acceleration’ and ‘force’, as
we understand them today. Even then, they capture the very essence of the nature of
planetary orbits and can be used to calculate the planetary positions, once we know
the parameters of the ellipse and the initial coordinates. Since the planetary models
proposed in Indian astronomy are also kinematical in nature, it makes sense to com-
pare the two. So in what follows we will attempt to summarize the computation of
the geocentric longitude and latitude of a planet which follows from Kepler’s laws.
This will also help in understanding the similarity that exists between the Keplerian
model and the computational scheme adopted by the Indian astronomers.

F.8.1 Elliptic orbits and the equation of centre

A schematic sketch of the elliptic orbit of a planet P, moving around the Sun S
with the latter at one of its foci is shown in Fig. F.10. Here a and b represent the
semi-major and semi-minor axes of the ellipse. Γ refers to the first point of Aries.
θa = Γ ŜA denotes the longitude of the aphelion (A) and θh = Γ ŜP is the heliocentric
longitude of the planet.

θ

ΓS

A

θ

r a
b

P

h
a

Fig. F.10 Elliptic orbit of a planet around the Sun.

The equation of the ellipse (in polar coordinates, with the origin at one of the
foci), may be written as

l
r

= 1− ecos(θh −θa), (F.36)

where e is the eccentricity of the ellipse and l = a(1− e2). Therefore

r = l[1 + ecos(θh −θa)]+ O(e2),
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r2 = l2[1 +2ecos(θh −θa)]+ O(e2). (F.37)

As the area of an ellipse is πab, the areal velocity can also be written as πab
T = ωab

2 ,
where T is the time period and ω = 2π

T is the mean angular velocity of the planet.
Since the areal velocity of the planet at any instant is given by 1

2 r2θ̇h, and is a
constant according to Kepler’s second law, we have

r2θ̇h = ωab. (F.38)

Using the above expression for r2 in (F.37), we find

l2θ̇h[1 +2ecos(θh −θa)] = ωab +O(e2). (F.39)

Now l = a (1− e2) = a +O(e2) and ab = a2 +O(e2). Hence

θ̇h[1 + 2ecos(θh −θa)] ≈ ω , (F.40)

where the equation is correct to O(e). Integrating with respect to time, we obtain

θh + 2esin(θh −θa)] ≈ ωt,

or θh −ωt = −2esin(θh −θa). (F.41)

The argument of the sine function in the above equation involves θh, the actual he-
liocentric longitude of the planet, which is to be determined from the mean longitude
θ0. However, θh may be expressed in terms of θ0 to O(e2). On so doing, the above
equation reduces to

θh −ωt = θh −θ0 = −2esin(θ0 −θa)+ O(e2). (F.42)

It may be noted that in (F.42) we have written ωt as θ0, as the mean longitude
of the planet increases linearly with time, t. θ0 − θa, the difference between the
longitudes of the mean planet and the apogee/aphelion, is known as the ‘anomaly’. It
may be noted that this difference is termed the manda-kendra in Indian astronomy.
Thus (F.42) gives the equation of centre which is the difference between the true
heliocentric longitude θh and the mean longitude θ0, correct to O(e), in terms of
the anomaly. It is straightforward to see that the equation of centre correction arises
owing to the eccentricity of the orbit and that its magnitude depends upon the value
of the anomaly.

F.8.2 Geocentric longitude of an exterior planet

The orbits of all the planets are inclined at small angles to the plane of the Earth’s
orbit around the Sun, known as the ecliptic. We will ignore these inclinations and
assume that all the planetary orbits lie on the plane of the ecliptic while calculat-
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ing the planetary longitudes, as the corrections introduced by these inclinations are
known to be small. We will consider the longitude of an exterior planet, i.e. Mars,
Jupiter or Saturn, first and then proceed to discuss separately the same for an interior
planet, i.e. Mercury or Venus.
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θ h

θg θ h
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Fig. F.11 Heliocentric and geocentric longitudes of an exterior planet in Kepler’s model.

The elliptic orbit of an exterior planet P and that of the Earth E around the Sun
S are shown in Fig. F.11. Here, θh = Γ ŜP is the true heliocentric longitude of the
planet. θS = Γ ÊS and θg = Γ ÊP are the true geocentric longitudes of the Sun and
the planet respectively, while r and R are the distances of the Earth and the planet
from the Sun, which vary along their orbits.

We draw EP
′
= R parallel to SP. Then, by construction, P

′
P = r is parallel to

ES. In the previous section (see (F.42)) it was described how θh is computed from
the mean longitude θ0, by applying the equation of centre. Now we need to obtain
the true geocentric longitude θg from the heliolcentric longitude θh. It may be noted
that

EP̂S = PÊP
′
= θg −θh and EŜP = 180◦− (θs −θh). (F.43)

In the triangle ESP,

EP2 = R2 + r2 − 2rRcos[180◦− (θs −θh)],

or EP = [(R+ rcos(θs −θh))
2 + r2 sin2(θs −θh)]

1
2 . (F.44)
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Also,
sin(EP̂S)

ES
=

sin(EŜP)

EP
. (F.45)

Using (F.43)–(F.44), we have

sin(θg −θh) =
r sin(θs −θh)

[(R+ rcos(θs −θh))2 + r2 sin2(θs −θh)]
1
2

. (F.46)

Here (θs−θh), the difference between the longitude of the Sun and that of the helio-
centric planet, is known as the ‘solar anomaly’ or ‘anomaly of conjunction’.50 Thus
(F.46) gives (θg − θh) in terms of the solar anomaly. Adding this to θh, we get the
true geocentric longitude θg of the planet.

F.8.3 Geocentric longitude of an interior planet

θs
θ g

θ h

R
S Γ

Γ

P

r

E

Fig. F.12 Heliocentric and geocentric longitudes of an interior planet in Kepler’s model.

The elliptic orbit of an interior planet P and that of the Earth E around the Sun are
shown in Fig. F.12. Here, θh = Γ ŜP is the true heliocentric longitude of the planet,
which can be computed from the mean heliocentric longitude and the equation of
centre (see (F.42)). θs = Γ ÊS and θg = Γ ÊP are the true geocentric longitudes of
the Sun and the planet respectively. As in the case of exterior planets, here too r

50 The equivalent of this in Indian astronomy is the difference between the longitude of the manda-
sphut.a θms and that of the ś̄ıghrocca θs, known as the ś̄ıghra-kendra.
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and R represent the variable distances of the planet and the Earth from the Sun
respectively.

It can easily be seen that

SÊP = θg −θs and EŜP = 180◦− (θh −θs). (F.47)

Now considering the triangle ESP, we have

EP = [(R+ rcos(θh −θs))
2 + r2 sin2(θh −θs)]

1
2 . (F.48)

Also,
sin(SÊP)

SP
=

sin(EŜP)

EP
. (F.49)

Using (F.47)–(F.49), we get

sin(θg −θs) =
r sin(θh −θs)

[(R + r cos(θh −θs))2 + r2 sin2(θh −θs)]
1
2

. (F.50)

Since all the parameters in the RHS of the above equation are known, the dif-
ference (θg − θs) can be determined from this equation. Adding θs to this, we get
the true geocentric longitude, θg of the planet. We now proceed to explain how the
latitude of a planet is obtained in the Keplerian model.

F.8.4 Heliocentric and geocentric latitudes of a planet

βg
P

  Q

E

N’

S βh

N

ecliptic 

ih

orbit of the planet 

Fig. F.13 Heliocentric and geocentric latitudes of a planet in Kepler’s model.
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In Fig. F.13, the orbit of the planet P is shown to be inclined at an angle ih to
the ecliptic. N and N

′
are the nodes of the planetary orbit. PQ is the circular arc

perpendicular to the ecliptic. Then the heliocentric latitude βh is given by

βh =
PQ

SP
. (F.51)

If λP and λN are the heliocentric longitudes of the planet and the node, it can easily
be seen that

sin βh = sin ih sin(λP −λN) or βh ≈ ih sin(λP −λN), (F.52)

as ih and βs are small. In the figure we have also shown the location of the Earth E.
The latitude βg (geocentric latitude) as measured from E would be different from
the one measured from the Sun and is given by

βg =
PQ
EP

. (F.53)

From (F.51)–(F.53), we find that

βg = βh
SP
EP

=
ih SP sin(λP −λN)

EP
, (F.54)

where EP, the true distance of the planet from the Earth, can be found from (F.44)
or (F.48).
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adhika Excess; additive.

adhikamāsa,
adhi-māsa

Intercalary month: a lunar month in which no saṅkrānti (so-
lar transit across zodiacal signs) occurs; considered to be ex-
cess and is not counted as a part of the lunar year.

ād. hya Quantity that is to be added.

ādi Beginning, starting point.

ādityamadhyama (1) The mean Sun. (2) The mean longitude of the Sun.

agrā Amplitude at rising, that is, the perpendicular distance of the
rising point from the east–west line; the Rsine thereof.

agrāṅgula agrā specified in aṅgulas.

Ahargan. a Count of days; number of civil days elapsed since the com-
mencement of a chosen epoch.

āhatya Having multiplied (same as hatvā).

ahorātra Day (day + night); civil day.

ahorātravr. tta,
dyuvr. tta

Diurnal circle: a small circle parallel to the celestial equator
corresponding to a definite declination, along which a celes-
tial body moves during the course of a day.

ākāśa (1) Sky. (2) Number zero in the Bhūtasaṅkhyā system.

ākāśakaks. yā,
ambarakaks.yā

Boundary circle of the sky, the circumference of which is
the linear distance traversed by a planet in a yuga, equal to
12474720576000 yojanas.

aks.a Terrestrial latitude (see also viks.epa); Rsine of terrestrial lat-
itude.

āks.a Relating to (terrestrial) latitude.

aks.acāpa The arc corresponding to the terrestrial latitude.

aks.adr. kkarma Correction to quantities due to the latitude of the observer.

537
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aks.aj̄ıvā, aks.ajyā Rsine of the terrestrial latitude.

aks.aks.etra Latitudinal triangle: right-angled triangle in which one of the
angles is the latitude of the observer.

aks.amaurvikā Same as aks.ajyā.

aks.avalana Deflection due to the latitude of the observer. Part of the in-
clination of the ecliptic to the local vertical, due to the ob-
server’s latitude.

amāvās̄ı, amāvāsyā New Moon day, the end of which marks the commencement
of a lunar month in the amānta system.

am. haspati Name of the adhimāsa (lunar month without a solar transit)
that is succeeded by a ks.ayamāsa (lunar month with two so-
lar transits), both of which are considered to be an integral
part of the lunar year.

am. śa (1) Part. (2) Numerator. (3) Degree, 1
360 th of a circle. (4) Frac-

tion.

aṅgula A unit of measurement used to measure linear distances,
taken to be approximately an inch.

antarāla (1) Difference. (2) The perpendicular distance from a point
to a straight line or plane. (3) Divergence. (4) Intervening.

antya (1) 1015 (Place and number). (2) The digit of highest denom-
ination. (3) The last term in a series.

antyakarn. a The last hypotenuse in the iterative process for the compu-
tation of the manda-hypotenuse K, such that the relation
r0
R = r

K is satisfied.

antyakrānti Maximum declination, taken to be 24 degrees, which is the
same as the inclination of the ecliptic to the celestial equator.

antyaśravan. a See antyakarn. a.

apakrama Declination of a celestial body measured along the meridian
circle from the equator towards the north/south pole; Rsine
of the declination.

apakramajyā Rsine of the declination.

apakramaman. d. ala,
apakramavr. tta,
apaman. d. ala

Ecliptic: the great circle in the celestial sphere along which
the Sun moves in the background of stars, during the course
of a year. This is the reference circle for the measurement of
the celestial longitude.

aparapaks. a The part of the lunar month from full moon to new moon,
during which the Moon’s phase wanes.

aparavis.uvat Autumnal equinox: the point at which the Sun coursing along
the ecliptic crosses the celestial equator from the north to the
south.
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ardhajyā (jyā) Rsine of an arc, which of half of the chord.

arkāgrā (1) Measure of the amplitude in the arc of the celestial hori-
zon lying between the east point and point where the heav-
enly body concerned rises. (2) The distance from the extrem-
ity of the gnomonic shadow and the equinoctial shadow.

arkāgrāṅgula Measure of the arkāgrā in aṅgulas.

ārks.a, nāks.atra Related to a star, i.e. sidereal.

ārttavatsara Tropical year, from vis.uvat (equinox) to vis.uvat; also re-
ferred to as sāyanavatsara.

āśāgrā Amplitude: angle between the vertical passing through the
celestial object and the prime vertical; Rsine thereof.

āśāgrākot. i Rcosine of amplitude.

asita Not bright/white, generally used to refer to (1) the dark fort-
night, (2) the non-illuminated portion of the moon during an
eclipse.

aśra (1) A side of a polygon. (2) An edge.

asta, astamaya Setting, diurnal as well as heliacal.

astalagna (1) Lagna (orient ecliptic point) at the time of a planet’s set-
ting. (2) Setting or occident ecliptic point.

asu, prān. a 21600th part of a sidereal day, or 4 sidereal seconds, which is
presumed to correspond to the time taken by a healthy human
being to inhale and exhale once.

avalambaka Plumb-line that marks the perpendicular to the horizon.

avama, tithiks.aya Omitted/declined tithi: a tithi that commences after sun-
rise and ends before the next sunrise, during which spe-
cial/auspicious events are not performed.

avāntarayuga (yuga) Unit of time, viz. 576 years (210389 days) adopted by some
Hindu astronomers (referred to simply as a yuga).

avíses. a, avísis. t.a Literally, ‘no distinction’; Generally employed to qualify a
quantity obtained using an iterative process.

avíses. a-karn. a,
avísis. t.a-manda-
karn. a

Hypotenuse obtained by using an iterative process prescribed
in connection with the manda-sam. skāra or the equation of
centre correction.

ayana (1) The solsticial points. (2) Northward and/or southward
motion of the Sun or other planets towards these points.

ayanacalana Motion of the equinoxes as well as solsticial points.

ayanadr. kkarma Correction due to the obliquity of the ecliptic.

ayanāntonnati Elevation of the solstices.

ayanasandhi,
ayanānta

Solstices (summer/winter), where the northward and south-
ward motions intersect.
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ayanavalana Part of the inclination of the ecliptic to the local vertical, due
to its obliquity.

ayuta 104 (both number and place).

bāhu (1) Rsine. (2) Number two in the Bhūtasaṅkhyā system.
(3) Side of a geometrical figure (employed in the texts deal-
ing with geometry).

bāhujyā Rsine.

bān. a (1) Literally, arrow. (2) Rversed sine: R(1− cosθ ). (3) Num-
ber five in the Bhūtasaṅkhyā.

bha Asterism: star.

bhacakra Circle of asterisms; also called a bhapañjara.

bhāga See am. śa.

bhagan. a See paryaya.

bhagola (1) Sphere of asterisms. (2) Zodiacal sphere, with its centre
at the Earth’s centre.

bhagola-madhya Centre of the zodiacal sphere.

bhagola-śaṅku Gnomon with reference to the centre of the bhagola (zodiacal
sphere).

bhājaka Divisor.

bhājya Dividend.

bhakaks.yā Path of the asterisms.

bhakūt.a The poles of the ecliptic. Same as rāśikūt.a.

bhatraya Three rāśis, that is, 90 degrees.

bhoga See bhukti.

bhū, bhūmi (1) Earth. (2) One side of a triangle or quadrilateral taken as
reference/base that is placed on the Earth.

bhū-bhraman. a Earth’s rotation.

bhūcchāyā Earth’s shadow.

bhūdina (1) Terrestrial/civil day, the average time interval between
two successive sunrises. (2) The number of civil days in a
yuga/kalpa.

bhūgola Earth-sphere.

bhūgola-madhya Centre of the earth-sphere.

bhujā (1) Opposite side of a right-angled triangle. (2) The bhujā of
an angle is obtained from the degrees gone in the odd quad-
rants and to go in the even quadrants.

bhujājyā Rsine of an angle, or the usual sine multiplied by the trijyā
whose value is very close to 3438.
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bhujāntaraphala Correction for the equation of time due to the obliquity of the
ecliptic.

bhujāphala Equation of centre correction.

bhūjyā See ks. itijyā.

bhukti Motion; daily motion.

bhūmadhya Centre of the Earth.

bhūmadhya-rekhā Terrestrial equator.

bhūparidhi Circumference of the Earth.

bhū-tārāgraha-
vivara

Distance of separation between the Earth and a planet.

bhūvyāsārdha Radius of the Earth.

bimba Disc of a planet.

bimba-ghana-
madhyāntara

Distance of separation between the centres of the discs of any
two planets, especially the Sun and Moon.

bimbamāna Measure of a planet’s disc.

bimbāntara See bimbaghana-madhyāntara; angular separation between
the discs.

cakra (1) Circle. (2) Cycle.

cakrakalā,
cakraliptā

Minutes of arc contained in a circle which is equal to 360×
60 = 21600.

cakrām. śa 360 (number of degrees in a circle).

candragrahan. a Lunar eclipse.

cāndramāsa (1) Lunar month. (2) The time interval between two succes-
sive new moons whose average value is ≈ 29.54 civil days.

candra-śr. ṅgonnati Elevation of Moon’s cusps.

cāpa (1) Arc of a circle. (2) Constellation Dhanus.

cāpabhujā Rsine of an arc; as the argument of an Rsine is always less
than 90 degrees in the Indian texts, the angle corresponding
to the arc is measured from Mes.ādi and Tulādi in the anti-
clockwise direction in the first and third quadrants and in the
clockwise direction in the second and fourth quadrants.

cāpakhan. d. a Segment of cāpa.

cāpakot. i Complementary arc of bhujācāpa.

cāp̄ıkaran. a Calculating the arc of a circle from its Rsine or semichord.

cara Ascensional difference: equal to the arc of the celestial equa-
tor lying between the 6 o’clock circle for a place with a spec-
ified latitude, and the horizon; usually expressed in nād. ikās.

cāra Motion; same as gati.
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cārabhoga Direct daily motion.

caradala, carārdha Half of a cara.

carajyā Rsine of a cara.

carakalā Minutes corresponding to a cara.

carakhan. d. a Segment of ascensional difference.

caraprān. a cara (ascensional difference) expressed in prān. as (sidereal
seconds).

carasam. skāra The correction due to the ascensional difference.

carāsava See caraprān. a.

caturyuga Group of four yugas (see yuga).

chādaka See grāhaka.

chādya See grāhya.

chāyā (1) Shadow. (2) Rsine of zenith distance.

chāyābāhu,
chāyābhujā

Rsine of the gnomonic shadow; Rsinzsina, where z is the
zenith distance and a is the āśāgrā.

chāyāgrā Tip of the shadow cast by a gnomon.

chāyākarn. a Hypotenuse of a right-angled triangle one of whose sides is
the gnomon and the other is the shadow.

chāyākot. i Rcosine of the shadow of a gnomon.

chāyākot. i-vr. tta Circle described by the Rcosine of the shadow of a gnomon.

cheda Denominator.

chedaka, chedya (1) Figure. (2) Diagram. (3) Drawing.

daks. in. a Southern.

daks. in. āyana Southward motion (of the Sun) from the summer solstice to
winter solstice.

daks. in. ottaraman. -
d. ala, (-vr. tta)

Prime meridian – great circle passing through the poles of the
equator and the zenith of the observer.

daks. in. ottara-
natavr. tta

See ghat.ikā-natavr. tta.

daks. in. ottararekhā North–south line; Meridian-circle.

dala Half of any quantity (see for instance, vis.kambhadala).

darśana-sam. skāra Visibility correction of planets.

daśa 10 (both number and place).

daśapraśna Ten problems related to finding any two out of the five quan-
tities: zenith distance, declination, hour angle, amplitude and
the latitude, given the other three, from spherical trigonome-
try.
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deśāntara (1) Longitude. (2) Difference in terrestrial longitude. (3) Cor-
rection to the celestial longitude due to the observer’s terres-
trial longitude.

deśāntara-kāla Time difference corresponding to the difference in terrestrial
longitude.

deśāntara-sam. skāra Correction related to the difference in longitude.

dhana (1) Positive. (2) Additive.

dhanus Arc of a circle.

dhruva (1) Celestial pole (north or south). (2) Fixed initial positions
or longitudes of planets at a chosen epoch.

dhruvanaks.atra Pole star.

dhruvonnati Elevation of the celestial pole.

digagrā See aśāgrā.

digvaipar̄ıtya Reversal of direction; perpendicularity.

dik Direction, generally the four cardinal ones.

dikjñāna Knowledge of the directions.

diksūtra Straight lines indicating directions.

dinabhukti The angle traversed (by any planet) per day.

divyābda Divine year, equal to 360 ordinary years.

divyadina Divine day, equal to one year.

doh. Literally, hand. See bhujā/bāhu.

doh. phala Opposite side of a right–angled triangle conceived inside an
epicycle of specified radius with one of the vertices coincid-
ing with the centre of the epicycle, and the angle subtended
at that vertex being the manda-kendra or ś̄ıghra-kendra.

dorjyā Rsine.

dr. ggati Arc of the ecliptic measured from the central ecliptic point or
its Rsine; Rsine altitude of the nonagesimal.

dr. ggatijyā Rsine dr. kks.epa.

dr. ggola (1) Visible celestial sphere for an observer – the observer-
centred celestial sphere. (2) The khagola and bhagola to-
gether.

dr. ggolacchāyā Shadow corresponding to the dr. ggola.

dr. ggolaśaṅku Gnomon corresponding to the dr. ggola.

dr. gjyā Rsine of the apparent zenith distance (Rsinz′, where z′ is the
zenith distance corresponding to the observer).

dr. gvr. tta Vertical circle passing through the zenith and the planet.

dr. kchāyā Parallax.
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dr. kkarma Reduction of observations to the visible sphere.

dr. kkarn. a Hypotenuse with the dr. ggolaśaṅku and dr. ggolacchāyā as
sides.

dr. kks.epa (1) Ecliptic zenith distance. (2) Zenith distance of the non-
agesimal (point on the ecliptic whose longitude is less than
that of the lagna (ascendant) by 90 degrees) or its Rsine.

dr. kks.epajyā Rsine dr. kks.epa.

dr. kks.epakot.i Rcosine of dr. kks.epa.

dr. kks.epa-lagna Central ecliptic point or nonagesimal—point on the ecliptic
whose longitude is less than that of the lagna (ascendant or
the ecliptic point on the eastern horizon) by 90 degrees.

dr. kks.epa-vr. tta (1) Vertical circle through the central ecliptic point. (2) Sec-
ondary to the ecliptic passing through the zenith.

dr. ksiddha That which is obtained by the observation.

dr. ṅman. d. ala See dr. gvr. tta.

dvādaśāṅgula-śaṅku A gnomon 12 aṅgulas in length used in the measurement of
shadows.

dvādaśāṅgula-
śaṅkucchāyā

Shadow of a 12-aṅgula gnomon.

dvit̄ıya-sphut.a Second correction (generally associated with evection term
for Moon).

dvit̄ıya-sphut.a-
bhukti

True rate of motion (of the Moon) obtained by employing the
second correction.

dyugan. a See Ahargan. a.

dyujyā Day-radius—radius of the diurnal circle, whose magnitude is
Rcosδ , δ being the declination of the celestial object

dyuvr. tta See Ahorātravr. tta.

eka (1) Unit. (2) Unit’s position. (3) One.

ekadeśa A portion of some quantity; for instance the segment of a
straight line or an area and so on.

es.ya That which is to be traversed.

gata Elapsed quantity (days, time etc.).

gatacāpa The arc already traversed.

gatagantavyaprān. a The prān. as elapsed and yet to elapse.

gata-kali Elapsed Kali years: number of years elapsed since the begin-
ning of the Kaliyuga as the epoch.

gati (1) Motion. (2) Rate of motion (of celestial bodies).

gatibheda Difference in motions or rates of motion.

gatikalā Motion expressed in minutes of arc.
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ghana (1) Cube of a number. (2) A solid object.

ghāta Product of numbers.

ghat.ikā or nād. ikā Unit of time which is equal to one-sixtieth of a sidereal day,
approximately 24 minutes.

ghat.ikā-man. d. ala,
ghat.ikā-vr. tta

Celestial equator, which is the same as the path traced by the
star rising exactly in the east and setting exactly in the west.

ghat.ikā-natavr. tta A great circle passing through the poles and perpendicular to
the celestial equator. Also see natavr. tta.

golā A sphere; generally used with prefixes such as ’bhū, bhā’ etc.
For instance see bhūgola, bhagola.

golādi Vernal equinox: the point of contact of the ghat.ikāvr. tta
(equator) and the apakramavr. tta (ecliptic).

golakendra Centre of gola.

golamadhya Centre of the sphere.

graha That which is in motion (gacchat̄ıti grahah. ), which includes
the Sun, Moon, planets, the uccas (higher apsides) and the
pātas (nodes).

graha-bhraman. a-
vr. tta

Literally, circle of motion of a planet. This is generally iden-
tified with the pratiman. d. ala.

grahabhukti See grahagati.

grahagati Daily motion of a planet.

grāhaka Eclipsing body; also called grāhakabimba.

grahan. a Eclipse.

grahan. a-kāla Time or duration of an eclipse.

grahan. a-madhya Middle of an eclipse.

grahan. a-pari-
lekhana

Geometrical or graphical representation of the course of an
eclipse.

graha-sphut.a True longitude of a planet.

grahāstodaya Rising and setting of a planet.

grahayuti/yoga Conjunction of planets.

grāhya Eclipsed body; also called grāhyabimba.

grāsa Obscuration—the maximum width of the overlap of two in-
tersecting circles in an eclipse and the measure thereof.

grāsonavyāsa The difference between the diameter and the eclipsed portion
in an eclipse.

gun. a (1) Multiplication. (2) Multiplier. (3) Rsine.

gun. aka, gun. akāra Multiplier.
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gurvaks.ara A time unit which is equal to one-sixtieth of a vinād. ı̄ or 24
60

of a sidereal second.

hanana Multiplication.

hāra, hāraka Divisor.

haran. a Division.

haran. aphala Result of division, quotient.

hata That which is multiplied.

hr. ta That which is divided.

icchā Literally, desire; generally used to refer to the third of the
three quantities, whose corresponding phala is to be deter-
mined by employing the rule of three.

icchāphala The desired consequent; the fourth quantity, corresponding to
icchā to be obtained by the rule of three.

indūcca Higher apsis of the Moon.

indupāta Node of the Moon.

is. t.a Desired quantity.

is. t.abhujācāpa Arc corresponding to the desired Rsine.

is. t.adigvr. tta Vertical circle passing through the zenith and the planet.

is. t.adikchāyā Shadow in the desired direction.

is. t.adoh. kot.idhanus The complementary arc of any chosen arc.

is. t.adyujyā Desired dyujyā (Rcosine of declination).

is. t.agrahan. akāla Desired moment during an eclipse/occultation.

is. t.ajyā Rsine at the desired point on the circumference of a circle.

is. t.āpakrama Desired declination.

is. t.āpakramakot. i Rcosine of the desired declination.

is. t.asaṅkhyā The desired number.

itarajyā The other Rsine (ordinate).

itaretarakot.i The Rcosine (ordinate) of each other.

jaladhi The number 4 in the Bhūtasaṅkhyā system; also 1014 (both
number and place).

jhas.a (matsya) Figure in the form of a fish in geometrical construction such
as intersecting circles.

j̄ıvā Rsine of an arc; Rsinθ where θ is the angle corresponding
to the arc and R is the trijyā, which is the radius of a circle
whose circumference is 21600 units; R ≈ 3438.
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j̄ıve-paraspara-
nyāya

Rule for obtaining the Rsine of the sum or difference of two
angles, wherein the Rsine of one angle is multiplied by the
Rcosine of the other and vice-versa. That is, Rsin(A±B) =
R sinARcosB±RcosAR sinB

R .

Jūka The sign Tulā (Libra).

jyā See j̄ıvā; Perhaps earlier jyā referred to the chord correspond-
ing to an arc, that is 2Rsin θ

2 , where θ is the angle corre-
sponding to the arc. But later, as in Tantrasaṅgraha, the jyā
refers to Rsinθ .

jyācāpāntara Difference between an arc and its Rsine.

jyākhan. d. a Rsine difference.

jyāpin. d. a The Rsines of one, two etc. parts of a quadrant which is di-
vided into a certain number of equal parts, generally 24.

jyārdha Same as what came to be termed the jyā, that is, Rsinθ ; (see
jyā).

jyāsaṅkalita The summation of Rsines.

jyāvarga Square of the Rsine.

jyotirgola Sphere of celestial bodies.

jyotíscakra Circle of asterisms.

kaks.yā Orbit of a planet.

kaks.yāman. d. ala,
kaks.yāvr. tta

Deferent or concentric circle, on which the mean planet
moves.

kaks.yā-vyāsārdha Mean radius of the planetary orbit.

kalā Minute of an arc (angular measure); also referred to as liptā,
liptikā; 1

21600 th part of the circumference of a circle.

kalāgati Motion expressed in minutes of arc.

kālalagna (1) Time elapsed after the rise of the vernal equinox at any in-
stant. (2) Time interval between the rise of the vernal equinox
and the sunrise.

kalāvyāsa Angular diameter (for instance, of Sun, Moon etc.) expressed
in minutes.

Kaliyuga The yuga (aeon) which commenced on February 18, 3102
BCE at sunrise at Laṅkā.

kalyādi Beginning of the Kali epoch.

kalyādi-dhruva Initial positions (longitudes) of planets at the beginning of the
Kali epoch.

kalyahargan. a Number of civil days elapsed since the beginning of the
Kaliyuga.
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kapāla Hemisphere, usually employed with an adjective like prāk
(east), paścima (west), etc.

karan. a (1) Period corresponding to half a tithi. (2) Also used to refer
to a class of astronomical texts that choose a recent epoch in
contrast to the siddhantic works that choose the begining of
the kalpa or the kaliyuga as the epoch.

Karka, Karki Cancer.

Karkyādi Six signs commencing from the sign Cancer.

kārmuka Arc of a circle.

karn. a (1) Hypotenuse of a right-angled triangle. (2) Radius vector.

karn. a-vr. tta Hypotenuse circle: a circle drawn with hypotenuse as the ra-
dius in either the manda or the ś̄ıghra correction.

karn. a-vr. tta-jyā Rsine in the hypotenuse circle.

kendra (1) Centre of a circle (2) Anomaly–The angular separation of
a planet from the mandocca or ś̄ıghrocca.

kendrabhraman. a Movement (rotational) of the kendra.

kendrabhukti Daily motion of the anomaly.

khagola Celestial sphere or globe.

khakaks.yā See ākāśakaks. yā.

khamadhya The centre of the sky; the zenith.

khan. d. agrahan. a Partial eclipse.

khan. d. ajyā The difference between two successive ordinates or Rsines;
essentially the first differential of the jyā.

khan. d. ajyāntara The difference of the differences, or the second differential
of the jyā.

khan. d. ajyāyoga Sum of Rsine differences.

khet.a That which wanders in space (planet).

kon. a (1) Corner. (2) Direction in between any two cardinal direc-
tions (north-east, south-west etc.). (3) Angle.

kon. acchāyā Corner shadow: shadow corresponding to the instant at which
the planet intersects the kon. avr. tta (see kon. avr. tta).

kon. aśaṅku śaṅku considered at the instant at which the planet passes
through the kon. avr. tta (see kon. avr. tta).

kon. avr. tta Vertical circle passing through the north-east and the south-
west points, or south-east and north-west points of the hori-
zon.

kot.i (1) Adjacent side of a right-angled triangle. complement of
bhujā that is Rcosine. (2) 107 (both number and place).
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kot.icāpa Arc corresponding to Rcosine of an arc; 90 degrees minus
cāpa.

kot.ijyā Rcosine of an arc.

kot.ikhan. d. a (1) Portion of kot.i. (2) The difference between two successive
values: essentially, the first differential of the kot.ijyā.

kot.imūla, kot.yagra The points corresponding to the base, tip of the kot.i.

kot.iphala Adjacent side of a right-angled triangle conceived inside an
epicycle of specified radius with one of the vertices coincid-
ing with the centre of the epicycle, and the angle subtended
at that vertex being the manda-kendra or ś̄ıghrakendra.

kot.ivr. tta Rcosine circle – circle whose radius is the kot.i.

kramajyā Rsine segments taken in order.

kramaśaṅku Gnomon formed at the moment of passing the kon. avr. tta.

krānti See apakrama.

krāntijyā Rsine of the declination.

krāntikot.i Rcosine of the declination.

krāntiman. d. ala See apakramaman. d. ala.

Kriyā The sign Mes.a (Aries).

kr. s.n. apaks.a Dark half of the lunar month; (see also aparapaks.a).

kr. ti (1) Square. (2) Composition.

ks.ayatithi Unreckoned tithi.

ks.epa (1) Celestial latitude. (2) Additive quantity.

ks.etra Planar geometrical figure.

ks. ipti See ks.epa.

ks. itija Horizon–the tangential plane drawn at the location of the ob-
server, passing through the four cardinal directions.

ks. itijyā,
ks. itimaurvikā

Product of carajyā (ascensional difference) and dyujyā (Rco-
sine of declination)—which corresponds to the Rsine of
carāsus (arc of the ascensional difference) on the diurnal cir-
cle whose separation from the equator is δ : R sinφ sinδ

cosφ .

Kul̄ıra See Karki.

lagna Orient ecliptic point, that is, the longitude of the ecliptic point
at the eastern horizon.

lagnasamaman. d. ala Vertical circle passing through the orient ecliptic point.

lambaka, lambana (1) Plumb-line. (2) Rsine of co-latitude, i.e., Rcosine of lati-
tude (3) Parallax. (4) Parallax in longitude.

lambana-nād. ikā Parallax in longitude in nād. ikās (24 sidereal minutes).

lambana-yojana Parallax in terms of yojanas
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Laṅkā A fictitious place located on the earth’s equator and on the
reference meridian (passing through Ujjayin̄ı) and defined to
have zero terrestrial longitude.

laṅkāks. itija Horizon at Laṅkā: equatorial horizon.

laṅkodaya [Time of the] rising at Laṅkā.

laṅkodayajyā Rsine corresponding to Laṅkodaya.

lāt.a A type of vyat̄ıpāta, which occurs when the longitudes of the
Sun plus the Moon are equal to 180 degrees.

liptā See kalā.

liptāvyāsa Angular diameter in minutes.

madhya (1) Literally, mean or middle portion. (2) 1016 (both number
and place).

madhyabhukti,
madhyagati

The mean rate of motion of planet obtained from the number
of revolutions given for a Mahāyuga.

madhyagraha Mean longitude of the planet.

madhyagrahan. a Mid-eclipse.

madhyāhna Midday.

madhyāhnacchāyā Midday-shadow.

madhyāhnāgrāṅgula Measure of amplitude at noon in terms of aṅgula.

madhyajyā Meridian sine, i.e. Rsine of the zenith distance when the
planet crosses the prime meridian.

madhyakāla Mean time, middle of an eclipse etc.

madhyalagna Meridian ecliptic point—the point of the ecliptic on the prime
meridian.

madhyalambana Parallax in longitude in the middle.

madhyama Mean longitude of a planet.

mahābāhu Literally, great arm, which refers to Rsinz where z is the
zenith distance.

mahācchāyā Literally, great shadow, which actually refers to the distance
from the foot of the mahāśaṅku to the centre of the Earth;
Rsine zenith distance.

mahājyā The 24 Rsines used for computation.

mahāmeru (1) The big mount Meru, taken to mark the terrestrial pole in
the north, where the north polar star is right above; (2) Loca-
tion situated 90 degrees north of Laṅkā.

mahāśaṅku (1) Great gnomon. (2) The perpendicular dropped from the
Sun to the horizon (when the radius of the celestial sphere is
taken to be R), which is equal to Rsine altitude or Rcosine of
zenith distance.
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Makara Capricorn.

Makarādi The six signs commencing from Makara (Capricorn).

māna (1) Measure (2) An arbitrary unit of measurement.

manda (1) Slow (2) Associated with the equation of centre;
(3) mandocca—apogee of slow motion. (4) Saturn.

manda-karma manda correction in planetary computation; procedure for
obtaining the equation of centre.

manda-karn. a Hypotenuse associated with manda correction.

manda-karn. a-vr. tta Circle with a radius equal to that of manda-karn. a.

manda-kendra manda anomaly, that is the difference in the longitude be-
tween the mandocca (apogee or apsis) and the mean planet;
mean anomaly.

man. d. ala (1) Circle (2) Orb.

manda-paridhi Circumference of the manda-vr. tta (epicycle associated with
the equation of centre).

manda-phala The equation of centre correction to be applied to the mean
planet.

manda-sam. skāra See manda-karma.

manda-sphut.a,
manda-sphut.a-
graha

The longitude of a planet obtained after applying the manda
correction (equation of centre) to the mean longitude (known
as madhyagraha).

manda-vr. tta manda epicycle, that is, the epicycle associated with the
equation of centre.

mandocca Uppermost point in the manda epicycle; apogee; apsis.

mandoccan̄ıca-vr. tta See manda-vr. tta and ucca-n̄ıca-vr. tta.

maṅgalācaran. a Invocation.

marut See pravahamāruta.

māsa Month.

matsya (jhas.a) Fish, fish-figure; see jhas.a.

maud. hya Invisibility of a planet due to its direction/longitude being
close to that of the Sun.

maurvikā See jyā.

Meru See Mahāmeru.

Mes.a Aries.

Mes. ādi (1) First point of Aries. (2) Commencing point of the ecliptic.
(3) Six signs beginning with Mes.a.

Mı̄na Pisces.

Mithuna Gemini.
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moks.a Literally freedom, which actually refers to the process of
emergence in an eclipse.

moks.akāla Instant of moks.a (last contact).

moks.alambana Parallax in longitude at release.

Mr. ga The 10th sign: Makara (Capricorn).

Mr. gādi The six signs beginning with Capricorn.

mūla (1) The base or starting point of a line or arc. (2) Square root,
cube root etc.

nabhomadhya See khamadhya.

nābhyucchraya Elevation of the nābhi.

nād. ikā See ghat.ikā.

nād. ı̄-vr. tta Celestial equator (see ghatikāman. d. ala).

Nakra Capricorn (generally refered to as Makara).

naks.atra Star; asterism; constellation.

nāks.atradina Sidereal day, which is equal to the time interval between two
successive transits of a particular star across the horizon or
the meridian (≈ 23h56m of a civil day).

naks.atragola The starry sphere.

naks.atrakaks.yā,
bhakaks. yā

Orbit of the asterisms, equal to 173260008 yojanas, denoted
by the expression janānun̄ıtiraṅgasarpa, being 50 times the
orbit of the Sun.

nāks.atravars.a Sidereal year, which is equal to the time interval between
two successive transits of the Sun across the same star say
nirayan. ames. ādi; also called a nirayan. a year.

nata (1) Hour angle, which gives the time interval between midday
and current time. (2) Meridian zenith distance.

natabhāga Zenith distance in degrees.

nata-dr. kks.epavr. tta Circle touching the zenith and prime vertical.

natajyā Rsine of hour angle; occasionally, Rsine of zenith distance.

natakot.ijyā Rcosine of the hour angle.

nataman. d. ala See natavr. tta.

nataprān. a Hour angle in prān. as.

natasamaman. d. ala Prime vertical.

natavr. tta Great circle which intersects another great circle perpendicu-
larly; for instance a ghat.ikānatavr. tta which is perpendicular
to the ghat.ikāvr. tta (equator).

nati Parallax in celestial latitude; deflection from (perpendicular
to) the ecliptic.
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natikalā nati in minutes.

natilambanaliptā Rcosine of parallax in celestial longitudes in terms of minutes
of arc.

natiyoga Sum of two parallaxes in celestial latitude.

natyantara Difference between parallaxes in celestial latitude.

nemi Circumference (of a circle).

n̄ıca The closest point in the pratiman. d. ala from the centre of the
kaks.yāman. d. ala.

n̄ıcoccaman. d. ala See ucca-n̄ıca-vr. tta.

nimı̄lana Immersion (in eclipse).

niraks.a-deśa (Place having) zero latitude; equatorial region.

niraks.a-ks.itija Equatorial horizon.

niraks.a-rekhā Terrestrial Equator.

niraks.odaya Rise of an object for an equatorial observer.

nirayan. a Without motion; sidereal or with respect to a fixed stars in
‘nirayan. a longitude’.

nr. cchāyā See śaṅkucchāyā.

ojapada Odd quadrants (the first and the third).

pada (1) Square root (2) Terms of a series (3) Quarter (4) Quadrant
of a circle.

pad̄ıkr. ta When the square root is obtained.

paks.a Fortnight (bright or dark half of the lunar month consisting
of 15 tithis).

palaprabhā/palabha Equinoctial shadow.

paṅkti Column; ten (number and place).

paramagrāsa Maximum in an eclipse obscuration.

paramagrāsakāla Instant of maximum obscuration in an eclipse.

para/parama-krānti See antyakrānti.

paramāntarāla Maximum distance of separation.

paramāpakrama Greatest declination.

para/paramaśaṅku Rsine of greatest altitude, that is, Rsine of meridian altitude.

paramasvāhorātra Longest day in the year.

paribhraman. a A complete revolution of a planet along the zodiac with ref-
erence to a fixed star.

paridhi See nemi.

pari-lekha/lekhana Graphical or diagrammatic representation.

pārśva Side; surface.
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parvānta Middle of the eclipse, that is, the instant when Moon is in
conjunction with or in opposition to the Sun; ending moment
of the new or full moon.

paryaya (1) Count of a certain repeated process. (2) Number of revo-
lutions of a planet in a yuga.

pāta Node (generally ascending node).

pat.hitajyā Tabulated Rsines (generally 24).

phala (1) Fruit or Result. (2) The outcome of any calculation; most
commonly employed in the rule of three.

pin. d. ajyā Whole Rsine.

pitr. dina Day of the pitr. s, which is a lunar month.

prāglagna Orient ecliptic point; longitude of the ecliptic point on the
eastern horizon.

prākkapāla The eastern hemisphere.

pramān. a (1) A measure. (2) Means of evidence. (3) Antecedent–the
first term of a proportion (rule of three).

pramān. aphala The consequent: (see the second term in a proportion).

prān. a 4 sidereal seconds; See asu.

prān. akalāntara Difference between the longitude and right ascension of the
Sun in the prān. a unit.

pratiman. d. ala Eccentric circle, with a radius equal to the trijyā, R, but
whose centre is shifted from the centre of the kaks.yāman. d. ala
along the direction of mandocca, by a certain measure that is
specified for each planet.

pratipat The first day of a lunar fortnight, also called prathamā.

pratyakkapāla The (western) hemisphere other than the one (eastern) that is
being considered.

pravahabhraman. a Revolution of the wind called pravaha or that of the planets
due to pravaha.

pravahamāruta,
pravahavāyu

Wind named pravaha (prakars.en. a vahat̄ıti pravahah. ), re-
sponsible for the diurnal motion of all the celestial bodies.

pr. s. t.ha Surface of some object; for instance, the surface of Earth is
referred as bhūpr. s. t.ha.

pūrn. imā Full Moon day.

pūrvāpara-rekhā East–west line.

pūrvāpara-vr. tta Prime vertical (the circle passing through the zenith and the
east and west points of the horizon).

pūrvavis.uvat Vernal equinox.

Rāhu The ascending node of the Moon.



Glossary 555

rāśi Literally, a group. It refers to: (1) A number (which is a mem-
ber of a group). (2) A zodiacal sign equal to 30 degrees in
angular measure.

rāśicakra Ecliptic.

rāśikūt.a The place where all the rāśis meet (poles of the ecliptic).

rāśikūt.avr. tta The circle passing through the rāśikūt.as and intersecting the
ecliptic at intervals of one rāśi.

rāśipramān. a Measure of the rāśi.

rāśyudaya Rising of the rāśi.

r. ks.a, naks.atra Asterism, star-group.

r. n. a Negative or quantity to be subtracted.

rūpa Unity or number one in the Bhūtasaṅkhyā system (literally,
form, which is unique to every entity).

sadr. śa (1) Of the same denomination or kind. (2) Similar.

sahasra Thousand (both number and place).

sakr. tkarn. a One-step hypotenuse.

śalākā Thin, pointed stick.

samaghāta Product of like terms.

samaman. d. ala Prime vertical (circle passing through the zenith and the east
and west points of the horizon).

samaman. d. alachāyā Rsine of zenith distance of a celestial body when it is on the
prime vertical.

samasaṅkhyā Even number.

sama-śaṅku, sama-
man. d. ala-śaṅku

Rsine of altitude of a celestial body when it lies on the prime
vertical.

samastajyā Rsine of a full arc.

samparkārdha Half the sum of the diameters of the eclipsed and eclipsing
bodies; line of contact.

sampāta Point of intersection

sam. sarpa The lunar month preceding/succeeding a lunar month called
Am. haspati.

sam. skāra A correction to be applied (additive or subtractive) to get the
desired/corrected value.

sam. varga Product.

sam. vatsara,
saurasam. vatsara

Tropical year, which is the time interval between two succes-
sive transits of the Sun across the vernal equinox.

saṅkraman. a,
saṅkrānti

Sun’s transit from one rāśi to the next (refers to both the in-
stant as well as the process).
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śaṅku (1) Gnomon (usually of 12 units). (2) Sometimes mahāśaṅku
(great gnomon), the perpendicular dropped from the Sun to
the horizon ( = Rsine of altitude). (3) The number 1013.

śaṅkucchāyā Shadow of the gnomon.

śaṅkukot.i Compliment of altitude or zenith distance.

śaṅkvagrā North-south distance of the rising or setting point from the
tip of the shadow, i.e. the distance on the plane of the horizon
from the rising–setting line.

śara (1) Arrow. (2) Rversed sine, R(1− cosθ ).

śarabheda Difference between two śaras.

śaronavyāsa Diameter minus śara.

sārpamastaka vyat̄ıpāta when the Sun plus Moon is equal to 7◦16′.

saumya Northern, literally, that which is related to soma, which also
has the meaning of ‘heaven’ among others.

saumyagola Northern hemisphere.

saura Related to Sun; solar.

saurābda Solar year.

sāvanadina (1) Civil day. (2) Mean time interval between two successive
sunrises.

sāyana With motion; tropical or with respect to the vernal equinox,
as in sāyana longitude.

śes.a (śis. t.a) Remainder in an operation.

ś̄ıghra-bhujā-jyā Rsine of the ś̄ıghra anomaly.

ś̄ıghra-karma ś̄ıghra correction in planetary computation; procedure for ob-
taining the correction associated with the anomaly of con-
junction.

ś̄ıghra-karn. a (1) Hypotenuse associated with ś̄ıghra correction. (2) Geo-
centric radius vector.

ś̄ıghra-kendra Anomaly of conjunction; ngular separation between
ś̄ıghrocca and manda-sphut.a (planet corrected for equation
of centre) of a tārāgraha (actual planet) used to compute
ś̄ıghra-phala.

ś̄ıghra-kendra-jyā Rsine of the ś̄ıghra anomaly.

ś̄ıghra-paridhi Circumference of the śighra epicycle.

ś̄ıghra-phala The correction to be applied to the manda-sphut.a (a planet
corrected for the equation of centre) to obtain the geocentric
longitude of the planet.

ś̄ıghra-sam. skāra See ś̄ıghra-karma.
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ś̄ıghra-sphut.a The longitude of a planet obtained by applying the ś̄ıghra
correction.

ś̄ıghra-vr. tta The ś̄ıghra epicycle, that is, the epicycle associated with the
anomaly of conjunction.

ś̄ıghrocca (1) Higher apsis (or the uppermost point) of the epicycle em-
ployed in the ś̄ıghra correction which represents the direction
of the mean Sun for all planets (as per the geometrical picture
of planetary motion described by Nı̄lakan. t.ha). (2) Apex of
the planet moving faster.

ś̄ıghroccan̄ıca-vr. tta See ś̄ıghra-vr. tta.

śiñjin̄ı See jyā.

śis. t.a Remainder in an operation.

śis. t.acāpa The difference between the given cāpa and the nearest
mahājyācāpa (arc whose Rsine is tabulated).

sita (1) Bright. (2) Illuminated part of the Moon. (3) Venus.

sitapaks. a Bright half of the lunar month.

śodhya That which is to be subtracted.

sparśa Literally, touch; first contact in an eclipse.

sparśakāla Instant of first contact.

sparśalambana Parallax in longitude at first contact.

sphut.a-(graha) True; actual/true position (of a planet).

sphut.a-gati True daily motion of a planet.

sphut.a-graha True longitude of a planet.

sphut.a-kaks.yā True value of the orbital radius.

sphut.a-kriyā Procedure for the computation of the true (geocentric) posi-
tion/longitude of a planet.

sphut.a-
madhyāntarāla

Difference between the true and the mean longitudes of a
planet.

sphut.a-nati True parallax in latitude; true deflection perpendicular to the
ecliptic.

sphut.āntara Difference between the true longitudes.

sphut.anyāya Rationale behind the procedure employed in obtaining the
true position of a planet.

sphut.a-viks.epa Corrected celestial latitude.

śr. ṅgonnati Elevation of the lunar horns (cusps).

śruti Hypotenuse; more commonly referred to as karn. a.

sthityardha Half-duration of an eclipse.

śūnya Zero (literally void/emptiness).
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sūryagrahan. a Solar eclipse.

sūtra (1) Line. (2) Direction. (3) Formula. (4) Aphorism.

sva(m) (1) Addition. (2) Additive quantity.

svadeśaks. itija Horizon at one’s place.

svadeśanata Meridian zenith distance at one’s place.

svadeśanatakot. i Rcosine of svadeśanata.

svāhorātravr. tta Diurnal circle.

svarn. a (sva + r. n. a) When added or subtracted.

svastika Observer’s zenith.

tād. ana Multiplication.

tamas (1) Shadow cone of the Earth at the Moon’s distance.
(2) Moon’s nodes.

tārāgraha Star planets, that is, the actual planets: Mercury, Venus, Mars,
Jupiter and Saturn.

tatpara Angular measure corresponding to one-sixtieth of a second
(vikalā).

tiryagvr. tta Oblique or transverse circle; for example, a great circle
passing through the north and south celestial poles is a
tiryagvr. tta of the ghat.ikāman. d. ala (celestial equator).

tithi Lunar day, a thirtieth part of a synodic lunar month, or the
time interval during which the difference in the longitudes of
the Moon and the Sun increases by 12 degrees.

tithiks.aya See avama.

tithyanta End of a tithi.

trairāśika (1) Rule of three. (2) Direct proportion.

tribhajyā Rsine of three rāśis, same as trijyā.

tribhuja A three-sided figure; triangle.

trijyā, trirāśijyā Rsine 90 degrees. The radius of the circle whose circumfer-
ence is 21600 units, whose value is very nearly 3438 units
(number of minutes in a radian).

trimaurvikā See trijyā.

trísarādi Set of odd numbers 3, 5, 7, etc.

Tulā Libra.

Tulādi The six signs commencing from Tulā.

tuṅga Apogee or aphelion (literally, ‘peak’, ucca).
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ucca (1) Higher apsis pertaining to the epicycle (manda or ś̄ıghra).
Equivalently, the farthest point in the pratiman. d. ala from the
centre of the kaks.yāman. d. ala. (2) The apogee of the Sun and
the Moon, and the aphelion of the planets.

ucca-n̄ıca-sūtra The line joining the higher and lower apsides.

ucca-n̄ıca-vr. tta Epicycle: the circle moving up and down with its centre on
the deferent circle (kaks.yāman. d. ala) and which touches the
ucca and the n̄ıca points on the pratiman. d. ala during the
course of its motion.

udaya Rising; heliacal rising; rising point of a star or constellation
at the horizon.

udayajyā (1) Rsine of the amplitude of the rising point of the ecliptic.
(2) Oriental sine. (3) Rsine of the amplitude of lagna in the
east.

udayakāla The moment of rising of a celestial body.

udayalagna Rising sign; the orient ecliptic point.

udayasūtra The line joining the rising and setting points.

Ujjayin̄ı City in central India, the meridian passing through which is
taken to be the standard meridian (zero terrestrial longitude)
in Indian texts.

ujjhitvā Having subtracted.

unman. d. ala (1) Six o’clock circle; east-west hour circle; equinoctial
colure; great circle passing through the north and south poles
and the two east-west svastika. (2) Laṅkāks. itija: horizon at
Laṅkā (equatorial horizon).

unmı̄lana Opening, emersion in eclipse.

unnatajyā Altitude of a planet: Rsine of 90 degrees minus zenith dis-
tance.

unnataprān. a The time in prān. as yet to elapse for a planet to set.

upādhi Assumption; limiting agent.

upāntya Close to the end; penultimate (term).

upapatti (yukti) Proof; rationale; demonstration; justification.

ūrdhva The topmost, earlier or preceding.

ūrdhvādhorekhā Line through the upper and lower points, the vertical.

utkramajyā Rversed sine (R(1− cosθ), where θ is the angle correspond-
ing to the arc).

uttara Northern.

uttarāyan. a Northward motion (of the Sun) from winter solstice to sum-
mer solstice.
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vaidhr. ta A type of vyat̄ıpāta that occurs when the sum of the longi-
tudes of the Sun and the Moon equals 360 degrees.

vakragati/bhoga, Retrograde motion of a planet.

valana Deflection of a planet from the vertical due to aks.a or ayana.

varga Square.

vihr. ta That which is divided.

vikalā Second = 1
60 th of a minute of angular measure.

viks.epa (1) Latitudinal deflection (Rsine of celestial latitude). (2) Ce-
lestial latitude. (3) Polar latitude.

viks.epacalana Related to ayanacalana.

viks.epakot.ivr. tta Small circle corresponding to a specific celestial latitude par-
allel to the ecliptic.

viks.epaman. d. ala Orbit of a planet (inclined to the ecliptic).

viks. ipta Deviated (from the ecliptic).

viks. iptagrahakrānti Declination of a planet with a latitudinal deflection.

viliptā See vikalā.

vimardārdha Half of total obscuration in an eclipse.

vinād. ikā, vinād. ı̄
1

60 th of nād. ikā = 24 sidereal seconds.

vinimaya Interchange.

vipar̄ıtacchāyā Reverse computation (of time) from gnomonic shadow.

vipar̄ıtakarn. a Reverse or inverse hypotenuse: R2

K , where K is the avísis. t.a-
karn. a (iterated hypotenuse).

viparyaya Inverse or reverse; also called viparyāsa.

vis.ama (1) Odd number or quadrant. (2) Difficult.

víses.a Speciality, Difference.

vis.kambha (1) Diameter. (2) The first of 27 daily yogas.

vis.kambhadala Semi-diameter.

vísles.a Subtraction, difference.

vistarārdha Semi-diameter or radius.

vistr. tidala Semi-diameter (vistr. ti is diameter).

vis.uvacchāyā Equinoctial midday shadow, that is, the shadow of a gnomon
measured at the meridian transit, when the Sun is at the
equinox.

vis.uvadbhā See vis.uvacchāyā.

vis.uvadbhāgra Tip of the shadow on the equinoctial day.

vis.uvanman. d. ala See ghat.ikāman. d. ala.

vis.uvat Vernal or autumnal equinox.
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vis.uvatkarn. a Hypotenuse of equinoctial shadow.

vitribhalagna See dr. kks.epa-lagna.

vivara Difference; gap, space in between.

viyoga Subtraction.

vr. tta Circle.

vr. ttakendra Centre of a circle.

vr. ttanemi(-paridhi) Circumference of a circle.

vr. ttapāda One-fourth of a circle, quadrant; 90 degrees.

vr. ttapārśva Pole: on of the ends of the axis around which a sphere is made
to rotate.

vr. ttapāta The two points at which two great circles intersect.

vyāsa Diameter of a circle.

vyāsa-dala/ardha Semi-diameter, radius.

vyasta-karn. a See vipar̄ıta-karn. a.

vyat̄ıpāta (1) The phenomenon when the magnitudes of the declina-
tions (|δ |) of the Sun and Moon are equal but the rates of
change of |δ | are opposite in sign. (2) The time when the
sum of the longitudes of the Sun and the Moon equals 180
degrees.

vyat̄ıpāta-kāla The time of occurrence of vyat̄ıpāta.

yāmya Southern (related to Yama).

yāmyagola Southern half of celestial sphere.

yāmyottara-rekhā See daks. in. ottara-rekhā.

yoga (1) Conjuction of two planets. (2) Sum. (3) Daily yoga
(nityayoga): which are 27 in number and named Vis.kambha,
Pr̄ıti, Ayus.mān, etc. being the sum of the longitudes of the
Sun and the Moon.

yogacāpa Arc corresponding to the sum of two given semi-chords
(Rsines).

yogakāla (1) The time of conjunction of the Moon and the Sun/Earth’s
shadow. (2) The time needed for/elapsed after conjunction.

yojana Unit of linear measure, equal to a few miles, which has
not been standardized and varies from text to text. In
Tantrasaṅgraha, the circumference of the Earth is specified
to be 3300 yojanas.

yojanagati Daily motion in terms of yojanas.

yojanavyāsa Diameter in yojanas.
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yuga Aeon; a large unit of time, for instance, Kaliyuga whose
duration is 432000 years or Mahāyuga made of 4320000
years; could also refer to a short unit like 576 years as in
Tantrasaṅgraha.

yugabhagan. a Number of revolutions made by a planet in the course of a
Mahāyuga (4320000 years).

yugma (1) Even. (2) The second and fourth quadrants in a circle.

yukti Proof; rationale; reasoned justification.
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{BG 1817} Bı̄jagan. ita of Bhāskarācārya II, tr. by H. T. Colebrooke, in Alge-
bra with Arithmetic and Mensuration from the Sanskrit of Brahmagupta and
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Madras 1957.
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avísis.t.a-manda-karn. a xxxix, 104, 106, 114,
124, 125, 128, 261, 262, 494–497

ayana 11, 173
in evection 402
longitude of the Sun corrected for, 238

ayanacalana xlii, 15, 363, 364, 369
ayanadr. kkarma 388–390
ayanām. śa 77, 240, 463
ayanānta 371
ayanasandhi 372, 373
āyanavalana xliii, xlv, 298–301
azimuth 455, 456

in śr. ṅgonnati 426–427
of the Sun 135

Azvānceri Tamparkāl xxxv

Bādarāyan. a 22, 23
bāhu 49, 50–53

of chāyā 179
bāhucāpa 50, 51
bāhujyā 50–51
bāhuphala 113–115

in angular separation between the Sun and
the Moon 418

in evection 402
Balachandra Rao S. 490
bān. a 336–338
bhagan. a

nānātvopapattih. , pariks.an. am in
Yuktid̄ıpikā 29

Bhagavadḡıtā 3
bhagavān 3
bhagola 8, 269, 403, 406, 407, 521
bhagola-candra-karn.a 269
bhagolamadhya 122, 263, 264, 406
bhās.ā xxxiv
Bhāskara I xxxiii, 384, 494, 504, 505
Bhāskara II xxxiii, xxxiv, xl
Bhāskarācārya xxxi, 135, 505
Bhat.ad̄ıpikā xxxiii
bhūgola 264, 403, 406, 407
bhūgola-candra-karn. a 269
bhūgolamadhya 264, 406, 407
bhujājyā

in finding distance between the Earth and
the Moon 401

bhujā-phala
in the context of the declination of the Moon

483, 485
bhūjyā 216, 217
bhūpr. s.t.ha-viks.epa 407
bhū-tārāgraha-vivara

in Nı̄lakan. t.ha’s revised planetary model
511
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Bhūta-saṅkhyā 25, 441–445
list of 442–445

bhūvyāsārdha 335, 340
B̄ıjagan. ita xxxiii
bim. bamāna 419
bimbāntara xliii, 291, 294, 295, 300, 301

through coordinate geometry 416, 417
between the Sun and Moon 349, 410, 413,

428, 429
bim. bāntara-bhujā 423, 428
Brahmasiddhānta 22

cakra 14
cakravāla algorithm xxxiii
calendars

lunar, luni-solar, solar 17
candrabāhu 378
Candracchāyāgan. ita xxxvi
candragrahan.a, xlii
candrocca 403
cāpa 50

in lunar eclipse 290, 294
cara 83, 84, 89, 196, 197

application of 159
arc corresponding to 90, 91
in lunar eclipse 259

carakhan. d. a 159
caraprān. a xlv, 83, 84, 89, 157
carāsava, carāsus 77, 88

expression for 80
cardinal directions 138
caturyuga 24
celestial equator 133, 136, 186, 188, 199, 202,

456, 457, 479–483
celestial sphere 8

for an equatorial observer 133
chāyā xl, 135, 178–180, 207, 211, 212, 215,

217, 218 228–231, 477
bāhu or bhujā of 178–180
in dr. kkarn. a of the Sun 334
(Earth’s shadow) 256, 257, 290
in śr. ṅgonnati 426

chāyābāhu, chāyābhujā 135, 136, 140, 177,
178, 186–189, 218, 221

in śr. ṅgonnati 422–426
chāyāgan. ita 87
chāyākarn. a 135, 186, 194, 229, 230
chāyākhan. d. a 231
chāyākot.i 178, 215, 218, 223, 472, 473
chronogram 1
citrabhānu xxxiv
civil day 4–6, 9

mean xxxviii
number elapsed since an epoch 30–32

number in a Mahāyuga 26–28
Comātiri xxxv
conjunction

exact moment by iteration (in lunar eclipse)
258, 259

contact
first xlii
last xliii

Copernicus 489, 522, 523
corrections

to obtain longitude at true sunrise 82
cosine 51–53
cosines of kendra (anomaly) 49

daily motion of planets 129
daks.in. āyana 16
daks.in. ottara-man. d. ala, (-vr. tta) 133
Dāmodara 116, 488
daśapraśna 200, 201
day(s)

count of 31
duration of 83
of the Gods (devās) 23
of the pitr. s 23

declination(s) xli, 456–458
in the context of daśapraśna (ten problems)

200–228
of the Moon xliv
of the Moon by another method 362–369
of the Sun xlv, 77, 134
of the Sun and the Moon xliv, 359, 360

deferent circle
radius of 90, 97

deśāntara 89
deśāntara-kāla 40–42
deśāntara-karma 38
deśāntara-sam. skāra xxxviii, 38, 39
Dharmaśāstra xxxv
dhruva xxxviii

need for changing 44, 45
of planets at the beginning of Kaliyuga

43–45
given in Tantrasaṅgraha 44–45

celestial pole 133
digagrā

in the context of daśapraśna (ten problems)
200, 201

digvr. tta 469, 470, 473–475, 477
dinakaravalaya 523
directions

determining the east 137
fixing in ones own place 138

diurnal
circle, Sun’s 136, 186–188, 196, 202, 214
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motion 4–7
path 4
path of Sun with northern declination 162

divyadina 23
dohphala 75, 97, 101–103, 496

in dr. kkarn. a of the Moon 340
for Mars, Jupiter, Saturn 120, 121
for Mercury 125–127
of the Moon 89
for Venus 128
in vyat̄ıpāta 362–364

dorjyā 65, 99–101, 109–112
obtaining the value for the desired arc 65–68
of the manda-kendra of the Sun 75
pertaining to Mars, Jupiter and Saturn 121
pertaining to Mercury 125
of the Moon 89
for a small arc 73, 74
of the sum or difference of arc lengths 72
pertaining to Venus 128

Dreyer, J. L. E. 512
Dr. ggan. ita 487
dr. ggati 309–312

in dr. kkarn. a of the Sun 333, 334
of the Sun and the Moon 346, 347

dr. ggola 341, 347–349
in determination of the middle of the eclipse

346
transformation to, in a solar eclipse 340–345

dr. gjyā 311
in dr. kkarn. a of the Moon 337,339, 340
in śr. ṅgonnati 423

dr. kkarma xlv
alternative method for planets 394–396
for planets 390, 394

dr. kkarn. a xliii, xliv
in determination of the middle of a solar

eclipse 347
of the Moon 336–340, 418
in śr. ṅgonnati 424–427
of the Sun 333–336, 418

dr. kks.epa xli, xlv, 243–246
in a lunar eclipse 281
in dr. kkarn. a of the Moon 336, 337
in dr. kkarma of a planet 395, 396
in a solar eclipse 309–311, 315, 316, 341,

344
in dr. kkarn. a of the Sun 333, 334

dr. kks.epajyā 310, 311
dr. kks.epakot.i, dr. kks.epakot.ikā 245, 246, 338
dr. kks.epalagna 248, 305–307
dr. kks.epaman. d. ala, dr. kks.epavr. tta 307
dvādaśāṅgulaśaṅku 193
dvisaṅkrama 21

dvit̄ıya-sam. skāra xliii, xlv
dvit̄ıya-sphut.a 403
dvit̄ıya-sphut.a-bhukti 281, 290, 291, 341,

343
dvit̄ıya-sphut.a-karn. a 263, 264, 267, 342

401, 404, 407
in śr. ṅgonnati 422–427

dvit̄ıya-sphut.ayojana-karn. a xlii, xliii, xlv,
263, 265, 340, 402, 525

dvit̄ıya-sphut.̄ıkaran. a 263
dyujyā 76–78, 196–198, 203, 207, 211–218,

223–228, 253, 281, 477
in vyat̄ıpāta 360, 362

dyuvr. ttajyā 196

Earth xxxi, xxxix, 5
Moon distance xlv, 407
planet and Sun–planet distance, ratio of 435,

436
radius xliv, 260
rotation of 7
Sun distance 123, 127–129

Earth’s shadow xlii, 255–259
angular diameter of 267–268
length of 266
śaṅku of 281

Earth–planet distance
prescription of Āryabhat.a 524
relation given by Nı̄lakan. t.ha 527

eastward motion 5
of planets 7
of Sun, Moon and planets 8

east–west line
true 137

east–west points
correcting 134–137
finding 134

eccentric model 491
eccentricity

correction xlv
of orbits xliii
of planetary orbits xxxix, 50

eclipse xlii, xliii
annular xliv
condition for total eclipse 271, 272
first half duration xlii
occurence and non-occurence of 270
partial xlii, xliv
second half duration xlii
total xlii, xliv

ecliptic xli, 14, 133, 455, 456, 459, 480–482
in the context of lunar eclipse 256, 282–284
effective deflection from, in a solar eclipse

319–321
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rāśi division 14, 15
total deflection of the Moon from, in a solar

eclipse 319
ecliptic system 455, 459, 460
ekādaś̄ı 12
elliptic orbits

in Kepler’s model 530
epicycle

model xxxix, 491
radius xxxix, 90, 97

epoch xxxviii
equation of centre xxxix, 50, 75, 90, 125, 127,

259, 263, 490, 499, 502, 508, 512
for interior planets 488, 490, 502
in Kepler’s model 530–531

equation of time xl, 79, 81, 82, 259, 433,
464–465

variation in, over an year 465
equinoctial

criterion for noon-shadow to be declared
141

mid-day shadow xl
points 16, 173
shadow 140

equinox(es) xli, 15, 16, 133, 140, 172–174
motion 15, 172, 173
precession 15, 76, 173, 174
trepidation 173

evection xlii, xliii, xlv, 401–403

fortnight 12, 13
full Moon day 12

Gan. ita-yukti-bhās.ā 519
Garga-gotra xxxiv
Gārgya-Kerala xxxiv
gata-kali xxxviii, 2
geocentric latitude

of a planet in Kepler’s model 534, 535
geocentric longitude 501, 502

of an exterior planet in Kepler’s model
531–533

of an interior planet in Kepler’s model 533,
534

of Mars, Jupiter and Saturn 122, 123
of Mercury 127
of Venus 128

geocentric position xxxix
geometrical model

of planetary motion xxxiii, xxxix
ghat.ikā 9, 257

duration corresponding to difference in
(terrestrial) longitude in 40–42

ghat.ikāman. d. ala, ghat.ikāvr. tta 133

gnomon 131,132
big and gnomonic shadow at a desired time

161
positioning of 131
shadow of xl
shadow and hypotenuse 141, 142
true Sun from the shadow of 170–171

Golad̄ıpikā xxxiii
gola-sandhi 371
Gola-sāra xxxi, xxxv, 488, 489, 519, 527
Govinda-svāmin xxxiii
Grahacāra-nibandhana xxxiii
grahan. aman. d. ana xxxiii
grahan. anirn. aya xxxvi, 276
Grahasphut.ānayane viks.epavāsanā 123,

508
heliocentric picture in 489, 520–522
identification of ś̄ıghrocca with the physical

mean Sun 522
grahavr. tta 99
grāsa 295, 296
Greco-European

equation of centre of interior planets in 127
tradition of astronomy xxxi, 488, 524

Gregorian calendar xxxv, xxxviii
gurvaks.ara 8–10

half durations xlii, xliii
Haridatta xxxiii
heliocentric latitude 504

of a planet in Kepler’s model 534, 535
heliocentric longitude 501, 503, 504

of the node 503
heliocentric position xxxix
horizon 133–136, 453–456
horizontal system 455–457

advantages in using
hour angle (H.A.) xli, 456–458

in the context of darśapraśna (ten
problems), 200–228

hour angle of mean Sun 82

Ibn ash-Shatir 512
inclination

of ecliptic with equator 14
of planetary orbit 392–394
of Moon’s orbit 256, 277, 373, 374

Indian xxxi
Indian calendar 11
Indian Journal of History of Science xxxii
instant of

computation of, in lunar eclipse 257–258
conjunction xliii, xliv
conjunction of the Sun and the Moon xliv
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maximum obscuration xlii
opposition xlii

instantaneous inclination
of Moon’s orbit with the ecliptic xliv
of Moon’s orbit with the equator xliv

instantaneous velocity xl
of a planet 115, 116

intercalary month 17, 18, 22
nature of 21

interpolation
first order xxxix

invocation 1–3
Islamic tradition of astronomy xxxi
is. t.a-digvr. tta 468, 469, 472–474
is. t.akrānti

of the Moon in vyat̄ıpāta 364, 368
is. t.aviks.epa of a planet 391, 392
iterated hypotenuse 101–104

another method 104–106
correcting the Sun using 107–108

iterative process
for vyat̄ıpāta xlv

Īśvara 3

Jayadeva xxxiii
j̄ıvā
Joseph, G. G. 487
Julian day xxxviii
Jupiter xxxix

correction (manda and ś̄ıghra) for 119–124
inclination 394
maximum deflection of 392, 394

jyā 50
and sine/cosine functions, relation between

51
arc corresponding to 90–91
arc corresponding to a given jyā 68–70
computation of tabular values 56–60
finding more accurate value of 70–72
illustrative example 55
interpolation formula for 54
of sum or difference of arcs 72
table of jyās in Āryabhat.̄ıya,

Sūryasiddhānta, Tantasaṅgraha,
Laghuvivr. ti and Madhavā’s values
63–64

value for the desired arc 65–68
jyārdha 50
Jyes.t.hadeva xxxi, xxxii, xxxiv, xxxvii, xli,

519
Jyotirmı̄mām. sā xxxiii, xxxv, xxxvi, 116
Jyotis.a xxxv
jyotíscakra 14

kaks.yā-man. d. ala 103, 104, 491, 493, 495
kaks.yāvr. tta 99–101, 105–106, 496
kaks.yā-vyāsārdha (orbital radius)

of the Moon and the Sun 262
of the planets given by Āryabhat.a 524
of the planets given by Nı̄lakan. t.ha

526–529
of the Sun and the Moon given by

Āryabhat.a 523
of the Sun and the Moon given by

Nı̄lakan. t.ha 525
kaks.yā-vyāsārdha-yojana

of Mars, Jupiter, Saturn, Mercury and Venus
435, 436

kālakarn. a 261
kālalagna xli, xlv, 240–242, 249

determination of 241–243
at the rising of Sun, Moon and other planets

398
kālapramān. ādhārah.

in Yukti-d̄ıpikā 29
kalāsavah. 253
kali xxxv, xxxviii, 2, 33
Kaliyuga xxxv, xxxviii, 1, 2, 24, 33

beginning of 43–46
mandoccas at the beginning of 46

kalpa xxxvii
Kalyahargan. a xxxv, 1, 2

of date of completion of Tantrasaṅgraha
438

examples of computation 33–36
karan. a xxxiv, xxxvii, 117

names of 118
kāran. a 3
Karan. āmr. ta xxxiv
Karan. apaddhati xxxiv
Karan. asāra xxxiv
Karka, Karki 105, 113, 243, 496
karn. a 97, 101–104, 107, 113, 193
karn. aman. d. ala 99
karn. avr. tta 99, 106, 112, 496
kās. t.ha 9, 10
Kat.apayādi xxxv, 2

examples of 441
system 440, 441

Kaus̄ıtaki Ād. hya Netranārāyan. a xxxv
Kelallūr xxxv
kendra 49–52, 105, 113–115
kendrabhukti 115
Kepler xxxi, 488, 513

elliptic orbits in 530–531
equation of centre in 531
laws 529
model 529–535
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Kerala xxxi, xxxiii, xxxiv
school of astronomy and mathematics

xxxiii, 487
tradition xxxiii, xxxiv

Ketu 479
khamadhya 309
khan. d. ajyā 56–61

recursion relation for 62–63
kon. acchāyā 235–237
kon. aśaṅku 233–237
kot.i 49, 50–53

of chāyā 178–180
kot.icāpa 50, 51
kot.ijyā 50, 51, 99, 110–112

distance between the Earth and the Moon
401, 402

of the manda-kendra of the Sun 75
obtaining the value for the desired arc 65–68
pertaining to Mars, Jupiter and Saturn 120
pertaining to Mercury 125
of the Moon 89
pertaining to Venus 128

kot.ikā 76, 78
kot.iphala 75, 97, 101–105, 113–115, 496

in angular separation between the Sun and
the Moon 418

in the context of the declination of the Moon
483, 485

in dr. kkarn. a of the Moon 339, 340
in evection 402, 404
for Mars, Jupiter and Saturn 120
for Mercury 125, 127
of the Moon 89
for Venus 128
in vyat̄ıpāta 362–364

kramacchāyā xxxvi
kramajyā

of angular separation between the solar and
lunar discs 419

krānti 77, 199, 229
in the context of daśapraśna (ten problems)

200–228
krāntij̄ıvā 193
krāntijyā 204, 359
krāntikot.i 210
krāntiman. d. ala 133
Kriyākramakar̄ı xxxiv
kr. s.n. apaks.a 13
Kr. s.n. a-yajurveda 439

representation of numbers in 439
ks.ayamāsa xxxviii
ks.ayatithi

error in the computation of (in ahargan. a)
32, 33

number in a mahāyuga 27, 28
ks.epa 281
ks.epakot.ivr. tta 305, 308
ks.epavr. tta 362
ks.itija 83, 133

in śr. ṅgonnati 423
ks.itijyā 199, 200, 217
ks.itimaurvikā 77

lagna xxxvii, xli, xlv, 238–240, 245–248
at the instant when the planet is rising or

setting 385–386
in solar eclipse 310

Laghumānasa 515
Laghuvivr. ti xxxi–xxxvii, 1–3, 9

absence of correction to tithi, naks.atra,
yoga etc., due to the evection term 406

accurate values of the 24 Rsines in
Kat.apayādi notation 63

avíses.akarma (iterative procedure) for
finding the arc corresponding to jyā
92–93

complementarity between sine and cosine
53

continuous variation of motions of the Sun
and the Moon 259

criterion for vyat̄ıpāta 370
deflection (latitude) of a planet, 391, 392
discussion on ascensional difference 87
discussion on half-durations of day and

night 84, 85
discussion on path traced by the Sun and the

Moon in a solar eclipse 355
discussion on planet day 87
discussion on prān. akalāntara 79
discussion about the ś̄ıghrocca of planets

46, 47
discussion on finding arc-length from the

look-up table 95–96
dvit̄ıya-sphut.a-karn. a 404
example of procedure for finding zenith

distance and hour angle from declination,
amplitude and latitude, 208–211

explanation of finding arc from Rsine 70
explanation of manda-kendra and

ś̄ıghra-kendra 53
expression for right ascension (R.A.) 154
instant of maximum obscuration (para-

magrāsakāla) in a lunar eclipse
276

iterative procedure for instant of conjunction
in a solar eclipse 315

Mādhava’s formula for Rsine of sum or
difference 71, 72
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preparation for positioning the śaṅku 131,
132

prescription for sphut.a-kaks.yā 435
procedure for finding the dorjyā and

kot.ijyā 67
procedure for the true longitude of the Moon

90
relation between radius of the orbit of a

planet in yojanas, ś̄ıghra-karn. a and
true radius of the orbit 435, 436

table of 24 jyās 63, 64
variation of sphut.a-yojana-karn. a from

instant to instant 261
use of the word ‘svaparyaya’ in 26

lamba 72, 73
lambajyā 193
lambaka 134, 142, 143, 185, 187, 196, 200,

209, 216, 217, 221, 243, 281
Laṅkā xxxviii, 7, 38
laṅkodayāsava 159
lāt.a 357, 358, 384
latitude 459

in the context of daśapraśna (ten problems)
200–228

from the equinoctial shadow 142, 143
geocentric of a planet 393
heliocentric of a planet 393, 504
of the Moon, correction to 342, 343
of a place xl, xli
of a planet xlv
of planets 393, 503, 504
terrestrial xlv
from zenith distance and declination 175

L̄ılāvat̄ı xxxiv
line of cusps xlv
liptā 37
longitude 459

geocentric xxxix, 500–502
heliocentric xxxix, 499, 500
heliocentric of the node 503
(mean) at the beginning of an epoch 43
(mean), of planets from ahargan. a 49
nirayan. a xlii, 462, 463
of the node of a planet, in finding its latitude

392
of planets xlii
of planets at sunrise at the observer’s

location 80
sāyana xli, 171, 462, 463
sāyana from the mid-day shadow of the

śaṅku 171
of the Sun xli
of the Sun from samaśaṅku 192

of the Sun, the Moon and its apogee in the
context of ‘evection’ 403–405

tropical xli
true, of planets 49

longitude (terrestrial)
correction due to difference in 38–39
duration corresponding to difference in

40–42
lunar calendar 17
lunar day 85, 87
lunar eclipse xlii, 255

condition for total eclipse 271–272
graphical representation of 302–303
occurrence and non-occurrence of 270, 271
time of half-duration first and last contact

and iteration 272–275
visibility or otherwise of the first and last

contact 280–289
lunar month 11–13, 17

names of 13
number in a Mahāyuga 27, 28
‘nija’ (true) 19
with two saṅkrama 20

lunar year
with an adhimāsa 19
normal of 18
with sam. sarpa and am. haspati 20

luni solar 11
calendar 17–20

Mādhava xxxiii, xxxix, 487, 496
procedure for finding Rsine and arc 71
values of jyās 63–64

madhyajyā 309–311
madhyakāla 249, 252
madhyalagna 249–253, 385

in a solar eclipse 309, 310
madhyama 75, 110, 111, 493
madhyamādhikāra xxxviii
madhyama-graha 49, 75, 490–493, 498,

499, 501
of Mercury 125
of Venus 128

Mahābhāskar̄ıya xxxiii, 494, 505
bhās.yā xxxiii

mahābāhu 186–189
mahācchāyā 161, 162, 187

corrections to 164–167
mahāśaṅku 161–163, 186, 187

corrections to 164–167
time elapsed or to be elapsed from 167–170

mahāyuga xxxviii, 498
four yugas constituting 24, 25
number of revolutions of planets in 24–25
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number of adhimāsās, civil days (sāvana
dina), ks.yatithis, lunar months, risings
and settings of planets, sidereal days,
solar months, tithis in 27, 28

Makara-saṅkrānti 11
Malabar xxxiv
malamāsa 22
Malayalam xxxi, xxxiv
manda xxxix

anomaly 49
hypotenuse 97–104
hypotenuse, another method for 114

manda-correction xxxix, xlv, 119, 124, 125,
490, 495, 497, 498, 501, 502

for interior planets 488
manda epicycle 494, 495
manda-karn. a xxxix, 97–106, 111, 122–124,

127, 261, 493–496
in Āryabhat.a’s prescription for Earth–

planet distance 524
in evection 402–404, 407

manda-karn. a-vr. tta 76, 120, 122
manda-kendra xl, 49,50, 53, 97, 99, 101,

114, 115, 120, 121, 124, 127, 262, 493,
531

explanation in Laghuvivr. ti 53
of Mercury 125
of the Sun 75
of Venus 128

manda-kendrajyā 75
manda-n̄ıcocca-vr. tta 102, 492–494, 516,

518
manda-phala 75, 124

for Mars, Jupiter and Saturn 120, 124
manda process 494
manda-sam. skāra xliii, 49, 50, 97, 102, 125,

128, 490–492, 499
manda-sphut.a xxxix, 107, 120–124,

490–493, 501, 502, 533
in the context of evection 403, 405
for exterior planets 497, 498
for interior planets 499–500
of planets in finding latitude 392

manda-sphut.a-graha xxxix, 50, 97,
121–123, 490–492, 498–502

of Mercury 125, 126
of planets 392
of Venus 128

mandocca/s xxxviii, 50, 75, 97, 99, 114, 115,
116, 120, 492, 493

in the context of evection 402, 403
of Mercury 125
of planets at the beginning of Kali 46

maṅgalācaran. a 1, 2

Mañjulācārya xlii, 116, 402, 515
Maragha school of astronomy 512
Mars xxxviii, xxxix, 46

correction (manda and ś̄ıghra) for 119–124
inclination 394
maximum deflection of 392–394

Māsa
cāndra 11, 13
ks.aya xxxviii
Madhvādi (listed in Vedas) 22, 23
mala 22
saura 16

matsya (jhas.a) 138, 139
maximum deflection of planets 392–394
mean anomaly 49
mean longitude

of planets xxxviii
mean planet xxxvi, 50, 75, 90, 113

from true planet, another method 112
Mercury xxxi, xxxviii, xxxix, 46

correction for 124–127
inclination 394
maximum deflection of 393, 394
Sun distance 127

meridian 457
Meru 38
Mes.a 2, 15
Mes.ādi 14, 15
Mı̄mām. sā xxxv, xxxvii
Mı̄na xxxviii, 2
Mithuna 15
moks.a xlii

criterion for the visibility of 289
time of, by iterative process in a solar eclipse

330–331
moks.akāla

in a lunar eclipse 275
moks.atithyardha

in a solar eclipse 330
month

intercalary xxxviii, 17
lunar xxxviii,11–13, 17
‘mala’ and ‘́suddha’ 19
solar xxxvii, 16, 17

Moon xxxvi, xxxviii, xxxix, xlii, xliii, xlv,
5,10–13

angular diameter of the orb 265
correction to the latitude of 342, 343
declination xliv
distance of xliv, 261, 262
inclination of Moon’s orbit 256
latitude xliii, xliv, 268–270
longitude of, in the middle of vyat̄ıpāta 380
nodes (ascending and descending) 256
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obtaining the true Moon xlii 89, 90
orbit of 256
orbit in vyat̄ıpāta 360, 361, 365, 368, 370,

373, 374, 376, 379
parallax xliii, xliv
radius of the orbit in yojanas 260
representation of the illuminated portion of
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511–513

planetary longitudes
computation of, for Mars, Jupiter and Saturn

509, 510
computation of, for Mercury and Venus 510,

511
four-step process for, in Tantrasaṅgraha
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samaśaṅku 192
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in the context of Āryabhat.a’s prescription
for Earth–planet distance 524

in the context of latitude of a planet 391–393
Nı̄lakan. t.ha’s explanation 524, 527, 529
in radius of orbits of planets in yojanas

435, 436
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ś̄ıghrakendra-dorjyā 123
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vipar̄ıta-digvr. tta 468, 469
vipar̄ıtakarn. a 105–107, 112, 113, 262, 496
vipar̄ıtaprabhā-vidhi 168
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yāmya 174
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