
A SERIES REPRESENTATION OF THE COTANGENT

This writeup establishes an equality of meromorphic functions,

π cotπz =
1
z

+
∞∑
n=1

(
1

z − n
+

1
z + n

)

=
1
z

+ 2z
∞∑
n=1

1
z2 − n2

.

The function π cotπz (for nonintegers z ∈ C) is analytic and Z-periodic. Near
z = 0 we have

π cotπz ∼ π 1
πz

=
1
z
,

so that π cotπz is also meromorphic at 0, having a simple pole there with residue 1.
By Z-perodicity, the same holds at each integer n. Thus, a näıve first attempt to
imitate π cotπz by a series is ∑

n∈Z

1
z − n

.

However, the nth term of this series is O(1/n), so that the series is not even
summable. One can fix this problem by modifying the terms to obtain the series

1
z

+
∑
n6=0

(
1

z − n
+

1
n

)
.

Now the nth term is
1

z − n
+

1
n

=
z

(z − n)n
= O

( 1
n2

)
,

and so the new series is summable. In fact, this calculation shows that the new
series is absolutely summable, so that its terms can be rearranaged. In particular,
pairing the terms for n and −n gives

1
z − n

+
1
n

+
1

z + n
− 1
n

=
1

z − n
+

1
z + n

=
2z

z2 − n2
,

and these are the terms of the series that we began with, in both of its forms. So
at least that series converges absolutely for any noninteger z ∈ C.

All of this said, the series that we began with (in either of its forms) is not a
Laurent series, and so part of the task here is to show that it defines a meromorphic
function at all. And even if it does, the preceding calculation has exposed a problem.
The nth term-with-correction of the series, evaluated at z + m (where m is an
integer) rather than at z, is

1
z +m− n

− 1
n
.
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2 A SERIES REPRESENTATION OF THE COTANGENT

This is not any term whatsoever of the series evaluated at z. The corrections
required to make a convergent series also make a series that is not obviously Z-
periodic as a function of z, as it must be to represent the cotangent.

To show that the sum is meromorphic, recall a result from a previous writeup:
Let Ω be a region in C. Consider a sequence of differentiable functions on Ω,

{ϕ0, ϕ1, ϕ2, . . . } : Ω −→ C.

Suppose that the sequence converges on Ω to a limit function

ϕ : Ω −→ C

and that the convergence is uniform on compact subsets of Ω. Then

(1) The limit function ϕ is differentiable.
(2) The sequence {ϕ′n} of derivatives converges on Ω to the derivative ϕ′ of the

limit function.
(3) This convergence is also uniform on compact subsets of Ω.

To apply the result here, let Ω = C− Z, a region in C. Define

ϕn : Ω −→ C, ϕn(z) =
1
z

+
n∑
j=1

(
1

z − j
+

1
z + j

)
, n = 0, 1, 2, . . . .

This is the sequence of partial sums of

ϕ : Ω −→ C, ϕ(z) =
1
z

+
∞∑
j=1

(
1

z − j
+

1
z + j

)
.

Consider any z ∈ Ω. For all j >
√

2|z|, the reverse triangle inequality gives

|z2 − j2| ≥ j2 − |z|2 > j2 − j2/2 = j2/2,

and so ∣∣∣∣ 1
z2 − j2

∣∣∣∣ < 2
j2
.

This shows that the partial sums

ϕn(z) =
1
z

+ 2z
n∑
j=1

1
z2 − j2

converge absolutely. Consequently, they converge to the limit function

ϕ(z) =
1
z

+ 2z
∞∑
j=1

1
z2 − j2

.

We need to show that the convergence is uniform on compact subsets of Ω. Let
K be such a subset, and let ε > 0 be given. There is a uniform bound b > 0 on
the absolute values |z| for all z ∈ K. Also, there a starting index n0 such that for
any n > n0,

∞∑
j=n+1

1
j2

<
ε

4b
.
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Consider any n such that n > n0 and also n >
√

2b. For such n and for all z ∈ K,

|ϕ(z)− ϕn(z)| =

∣∣∣∣∣∣2z
∞∑

j=n+1

1
z2 − j2

∣∣∣∣∣∣ ≤ 2b
∞∑

j=n+1

∣∣∣∣ 1
z2 − j2

∣∣∣∣ ≤ 2b
∞∑

j=n+1

2
j2

< ε.

This shows that the convergence of {ϕn} to ϕ on Ω is uniform on compact subsets.
By the result, the limit function can be differentiated termwise. Now that we

no longer need the symbol n to index partial sums, we return to the more natural
notation of using it as sum-index,

ϕ(z) =
1
z

+
∞∑
n=1

(
1

z − n
+

1
z + n

)
=

1
z

+ 2z
∞∑
n=1

1
z2 − n2

,

and

ϕ′(z) = −
∑
n∈Z

1
(z − n)2

.

The second series for ϕ shows that it is odd, and the series for ϕ′ shows that it
is even. The convergence of ϕ′ is again absolute, and so ϕ′ is Z-periodic by a
calculation that rearranges terms,

ϕ′(z +m) = −
∑
n∈Z

1
(z +m− n)2

= −
∑
n′∈Z

1
(z − n′)2

where n′ = n−m.

It follows that(
ϕ(z + 1)− ϕ(z)

)′ = ϕ′(z + 1)− ϕ′(z) = ϕ′(z)− ϕ′(z) = 0,

so that
ϕ(z + 1)− ϕ(z) = c for some constant c.

To show that ϕ is Z-periodic, we need to show that c = 0. But in particular,

c = ϕ(1/2)− ϕ(−1/2) = 2ϕ(1/2) since ϕ is odd,

and so it suffices to show that ϕ(1/2) = 0. Inspect it,

ϕ(1/2) = 2 +
∞∑
n=1

1
1
4 − n2

= 2−
∞∑
n=1

(
1

n− 1
2

− 1
n+ 1

2

)
.

The sum telescopes to 2, giving the desired result.

The argument so far shows that the function ϕ(z)−1/z is also analytic at z = 0.
Therefore ϕ itself is meromorphic at 0, having a simple pole there with residue 1.
By the Z-periodicity, the same holds at each integer n. This matches the behavior
of π cotπz. Thus the difference π cotπz − ϕ(z) is entire. We want to show that it
is the zero function.

The first step is to show that the difference is bounded, making it constant by
Liouville’s theorem. Since the difference is Z-periodic in the x-direction, it suffices
to show that is bounded as |y| → ∞, and for this it suffices to show that each of
π cotπz and ϕ(z) is individually bounded as |y| → ∞. Compute first that

π cotπz = πi
eπiz + e−πiz

eπiz − e−πiz
= πi

e2πiz + 1
e2πiz − 1

= πi+
2πi

e2πiz − 1
.
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Also |e2πiz| = e−2πy, so limy→+∞ π cotπz = −πi and limy→−∞ π cotπz = πi. On
the other hand, suppose now that z = x + iy where 0 ≤ x < 1 and |y| > 1. Then
we have the inequalities |y| ≤ |z| ≤ |y|+ 1 and

|z2 − n2| = |x2 − y2 − n2 + 2ixy| ≥ y2 + n2 − x2 ≥ y2 + n2 − 1.

It follows that

|ϕ(z)| ≤ 1
|y|

+ 2(|y|+ 1)
∞∑
n=1

1
y2 + n2 − 1

.

Let η = b|y|c. Then
∞∑
n=1

1
y2 + n2 − 1

=
∞∑
m=0

η∑
r=1

1
y2 + (mη + r)2 − 1

,

and for each m ≥ 0,
η∑
r=1

1
y2 + (mη + r)2 − 1

≤ η

η2 + (mη)2
=

1
η(1 +m2)

.

This shows that

|ϕ(z)| ≤ 1
|y|

+ 2
|y|+ 1
b|y|c

∞∑
m=0

1
1 +m2

,

and so ϕ(z) is bounded as |y| → ∞ as well.
Thus π cotπz − ϕ(z) is constant. To see that the constant is 0, set z = 1/2.

From before, ϕ(1/2) = 0. But also π cotπ/2 = 0, giving the result.

As an application, we compare the power series expansions about z = 0 of the
two now-known-to-be-equal functions

zϕ(z) and πz cotπz.

For the first expansion, compute that for |z| < 1,

zϕ(z) = 1 + 2z2
∞∑
n=1

1
z2 − n2

= 1− 2z2
∞∑
n=1

1
n2
· 1

1− z2/n2

= 1− 2z2
∞∑
n=1

1
n2

∞∑
k=0

( z
n

)2k

= 1− 2
∞∑
k=0

z2k+2
∞∑
n=1

1
n2k+2

= 1− 2
∑

even k≥2

ζ(k)zk.

That is, zϕ(z) is a generating function for the Euler–Riemann zeta function ζ(k)
at positive even values of k. On the other hand, the second expansion is essentially
a generating function for the Bernoulli numbers. Again for |z| < 1,

πz cotπz = πiz +
2πiz

e2πiz − 1
= πiz +

∞∑
k=0

Bk
k!

(2πiz)k

= 1 +
∑

even k≥2

(2πi)kBk
k!

zk.

Comparing the two shows expansions gives Euler’s famous formula,

ζ(k) = −1
2
· (2πi)kBk

k!
for all even k ≥ 2.
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In particular, this formula combines with the values B2 = 1/6, B4 = −1/30,
B6 = 1/42 to give

ζ(2) =
π2

6
, ζ(4) =

π4

90
, ζ(6) =

π6

945
.

Euler’s formula for ζ(k) (even k ≥ 2) can also be obtained by contour integration
techniques, as in our text. The idea is that since

π cotπz =
1
z

+
∑

even k≥2

(2πi)kBk
k!

zk−1,

it follows that for any even k ≥ 2,

Resz=0

(
π cotπz
zk

)
=

(2πi)kBk
k!

.

By contour integration,
(2πi)kBk

k!
+ 2ζ(k) = 0,

and Euler’s formula follows immediately.,

Since π cotπz is Z-periodic it also has a Fourier series expansion. This is not
the same thing as is its Laurent series expansion. Instead, if z = x+ iy with y > 0
then |e2πiz| = e−2πy < 1, and so

π cotπz = πi+
2πi

e2πiz − 1

= πi− 2πi
∞∑
n=0

qn, where q = e2πiz.


