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Preface to the Third Edition

It is now almost twenty years since the first edition of this book came out 
as a hardback. Four reprints, two editions, and a number of translations 
later, the book is badly in need of a revamp, owing to new theories and 
evidence as well as comments, suggestions, and criticisms that have come 
from so many different parts of the world. It was particularly fortuitous 
that while I was preparing the new edition of the book there appeared The 
Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook 
(edited by Victor Katz), on the history of mathematics of the named cul-
tures, published in 2007. My debt to this book will become evident from 
the references and acknowledgments that follow.

The readership of this book in the past has included mainly teachers 
and the general public, with the technical content of the mathematical 
material being accessible to anyone having a reasonable precalculus back-
ground. And since it is a similar readership that this edition addresses, 
the demands on the reader have been kept to a level not different from 
those of the earlier editions. However, it is hoped that the new edition will 
also attract greater interest among the historians of mathematics. Toward 
that end, and for other readers who wish to pursue their interests further, 
this edition contains a major innovation: the introduction of endnotes for 
each chapter. These endnotes will hopefully serve different objectives: to 
provide references for those who wish to pursue their own reading on spe-
cific subjects, to qualify and elaborate on points made in the main text, 
to respond to comments and criticisms on earlier editions, and occasion-
ally to make connections between different traditions and their “ways of 
doing mathematics.” It is hoped that the introduction of these endnotes 
will not disturb or distract the flow of the narrative in the main text. Yet 
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another innovation with this edition is a revised and enlarged reference 
list. Because of substantial additions, it was felt necessary to regroup the 
entries according to the mathematics of particular cultures, with a separate 
category for general items. It is hoped that these innovations will make this 
book a more effective resource for students and teachers of mathematics 
while remaining accessible to general readers. 

While researching for this edition, I also came across another book, A 
History of Mathematics: From Mesopotamia to Modernity, by Luke Hodg-
kin. In its introduction, there is a section on “Eurocentrism,” which I found 
both thought provoking and persuasive. Incidentally, Hodgkin’s book is 
the first history of mathematics I have come across that acknowledges the 
pervasiveness and durability of the Eurocentric version of history. The 
quotation below from his book encapsulates his view:

It would appear that the argument set out by Joseph [in the Crest of the 
Peacock] has not been won yet. . . . For what [Eurocentrism] might mean 
in mathematics, we should go back to Joseph who, at the time he began his 
project (in the 1980s), had a strong, passionate and undeniable point. . . . 
his book is important: it is the only book in the history of mathemat-
ics written from a strong personal conviction, and it is valuable for that 
reason alone. It stands as the single most influential work in changing at-
titudes to non-European mathematics. The sources, such as Neugebauer 
on the Egyptians and Babylonians, or Youschkevitch on the Islamic tradi-
tion, may have been available for some time before, but Joseph drew their 
findings into a forceful argument which since (like Kuhn’s work) its main 
thrust is easy to follow has made many converts. (pp. 12–13)

A number of “mainstream” historians of mathematics have in recent years 
taken up the task of casting a wider net in writing history and considering 
seriously the contributions of not only the ancient Egyptian and Mesopo-
tamian civilizations but also the Chinese, Indian, and Islamic civilizations. 
There are substantial and growing communities of mathematics historians 
of all these civilizations, a number of whom are engaged in the task of 
making new evidence accessible to everyone. Nevertheless, it is argued that 
change in historical perceptions is slow, and that a significant part of the 
new studies in the history of mathematics has failed to reach the broader 
community. 

A central theme of the earlier editions, seen by some as their principal 
strength and by others as either an irritating irrelevance or even a fatal 
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weakness, is their critique of the widespread acceptance of the hegemony 
of a Western version of mathematics, following from the assumption that 
mathematics was largely a Greek and European creation. I have argued 
elsewhere that in the past the two tactics used to propagate this view were 
(1) omission and appropriation and (2) exclusion by definition. The first is 
examined in some detail in chapter 1. The second needs clarification and 
elaboration here.

A Eurocentric approach to the history of mathematics is intimately con-
nected with the dominant view of mathematics, both as a sociohistorical 
practice and as an intellectual activity. Despite evidence to the contrary, 
a number of earlier histories viewed mathematics as a deductive system, 
ideally proceeding from axiomatic foundations and revealing, by the “nec-
essary” unfolding of its pure abstract forms, the eternal/universal laws of 
the “mind.”

The concept of mathematics found outside the Graeco‑European praxis 
was very different. The aim was not to build an imposing edifice on a few 
self‑evident axioms but to validate a result by any suitable method. Some of 
the most impressive work in Indian and Chinese mathematics examined in 
later chapters, such as the summations of mathematical series, or the use of 
Pascal’s triangle in solving higher-order numerical equations, or the deri-
vations of infinite series, or “proofs” of the so-called Pythagorean theorem, 
involve computations and visual demonstrations that were not formulated 
with reference to any formal deductive system. The view that mathematics 
is a system of axiomatic/deductive truths inherited from the Greeks, and 
enthroned by Descartes, has traditionally been accompanied by the follow-
ing cluster of values that reflect the social context in which it originated:

1. � An idealist rejection of any practical, material(ist) basis for math-
ematics: hence the tendency to view mathematics as value‑free and 
detached from social and political concerns

2.  �An elitist perspective that sees mathematical work as the exclusive 
preserve of a high‑minded and almost priestly caste, removed from 
mundane preoccupations and operating in a superior intellectual 
sphere

Mathematical traditions outside Europe did not generally conform to 
this cluster of values and have therefore been dismissed on the grounds 
that they were dictated by utilitarian concerns with little notion of rigor, 
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especially relating to proof. Any attempt at excavation and restoration of 
non‑European mathematics is a multifaceted task: confront historical bias, 
question the social and political values shaping the mathematics (and the 
writing of the history of mathematics), and search for different ways of 
“knowing” or establishing mathematical truths in various traditions. I have 
written elsewhere (Joseph 1994b, 1997a) on the same subject in relation 
to the Indian tradition. (Documentation can be found in the “India” and 
“General” sections of the reference list at the end of this book.) Because of 
the centrality of the issue of “proof ” in judging the quality of mathematics 
outside the European tradition, we will be returning to this subject at dif-
ferent points in this book.

The responses of some critics to the earlier versions of this book have 
helped to confirm my belief that words or labels in common use need care-
ful scrutiny. It has been pointed out that terms such as “Classical,” “Dark 
Ages,” and “Renaissance” are peculiarly European concepts of little rele-
vance to the rest of the world. Also, words such as “ancient,” “medieval,” 
and “modern” are of doubtful provenance when applied to other histo-
ries. It is, however, in the labeling of geographical areas that the distortions 
could, potentially, take on grotesque proportions.

Consider the term “Europe.” A Eurasian peninsula has been elevated 
to the status of a continent, equal in importance, if not superior, to the 
rest of the continent combined. The Mercator projection may have contrib-
uted to this perception, with its visually distorted image exaggerating the 
northward bounds to make “Europe” look larger than the whole of Africa, 
and enormous compared with the other Eurasian peninsula, India. The 
special status accorded to Europe in the standard histories of the world has 
strengthened the notion, shared by many Europeans and their overseas de-
scendants, that they played a starring role in the Eurasian theater of world 
history. The resulting categories such as European/non‑European, West/
East, Europe/Asia have tended to reinforce this Eurocentric illusion.

It is precisely because of this tendency to enhance Europe through the 
use of labels that any project involving the writing of a balanced history 
should carefully address the question of labels. Unfortunately, these labels 
have existed for so long that they have acquired legitimacy through us-
age. Fairly early in writing The Crest of the Peacock, I was faced with the 
problem of finding a subtitle for the book. In the hardback first edition, 
the publisher took the decision out of my hands and provided the sub-
title Non‑Western Roots of Mathematics. The paperback versions replaced 



Preface to the Third Edition  xv 

it with Non‑European Roots of Mathematics, which had at least the benefit 
of confronting the widely held view that mathematics began in Greece—a 
part of Europe. However, both subtitles fail to avoid the implication that 
a large part of the world’s population is defined by not being something.

A further problem was in the choice of labels to identify different math-
ematical traditions. Labeling traditions by names of regions such as India 
and China, or of historical cultures such as the Islamic cultures between 
AD 800 and 1500 or Greek/Hellenistic cultures between 600 BC and AD 
300, has both spatial and temporal justification. If we use the linguistic 
marker, descriptions of Greek, Chinese, and Arabic mathematics have le-
gitimacy, although there appears to be a certain inconsistency implied in 
the first, and incompleteness implied in the last, of the descriptive terms. In 
terms of content, historical legitimacy poses yet another problem. In ear-
lier editions, chapter 8 on ancient Indian mathematics contained sections 
on the so-called Vedic multiplication and on the “mathematics inherent 
in a meditation device, the sriyantra.” For this edition, it was decided to 
omit those sections, the first being of doubtful historical authenticity and 
the second because of the dubious assumption that it contained “hidden 
geometry.” 

Labeling has yet another dimension. When Alexander appointed his 
general Ptolemy I to rule Egypt, he also appointed Seleucus I to rule Meso-
potamia. Historians who tended to downplay the African influence called 
the science of Ptolemaic Egypt “Greek,” while they continued to label the 
science and mathematics of Seleucid period as “Mesopotamian.” For ex-
ample, Otto Neugebauer (1962, p. 97) writes: “Early Mesopotamian as-
tronomy appeared to be crude and merely qualitative, quite similar to its 
contemporary, Egyptian astronomy. . . . Only the last three centuries BC 
[have] furnished us with texts [from the former] . . . fully comparable to 
the corresponding Greek systems (of the latter).”

Outstanding among these so‑called Greek systems were those of Alex-
andria, which Neugebauer labels “Greek” rather than “Egyptian,” unlike 
the description of the Seleucid astronomy as “Mesopotamian,” although 
the Mesopotamia of that time was also under Greek rule. In this edition we 
will continue to retain the label “Greek” to describe all mathematical works 
written in Greek, irrespective of their geographical origins. However, a dis-
tinction is drawn between “Greek” and “Hellenistic” (or “Alexandrian”) in 
providing a geographical reference. Thus, Alexandrian mathematics would 
be firmly situated in Egyptian mathematics.



xvi  Preface to the Third Edition

The label “Arabic mathematics” is a clumsy and problematic construc-
tion that neglects the rich source of non‑Arabic mathematical texts, es-
pecially those written in Pahlavi, Syriac, and Hebrew. In place of “Arabic” 
other labels are available, such as “Middle Eastern” or “Semitic,” among 
others. However, the terms “Middle Eastern” and “Semitic” were quickly 
rejected for their geographical and conceptual imprecision. So it was 
decided, despite the limitations as a descriptive label, to use the term 
“Islamic” to refer to a civilization that contained a number of other ethnic 
and religious groups. This is a marked departure from the use of the term 
“Arab” as a descriptive label in the earlier editions. It is now recognized 
that the term “Arab” is too restrictive and imprecise, given that at its height 
the civilization referred to included “non-Arab” lands such as present-day 
Iran, Turkey, Afghanistan, and Pakistan, all of which have distinctive Is-
lamic cultures. By the same token, it should be emphasized that medieval 
Islamic civilization included non-Muslim populations such as communi-
ties of Christians, Jews, and Zoroastrians. 

There have been reservations expressed about the trajectories intro-
duced in chapter 1. Now, one of the main purposes of the three trajectories 
introduced in that chapter was to bring out differing perspectives on the 
origins of mathematics. No claims are made for completeness or balance in 
the marshaling of historical evidence underlying the discussion. Sicily, as a 
staging post in the spread of mathematical ideas from the East, was of less 
consequence than Spain, despite the appearance to the contrary in figure 
1.3. Knowledge regarding the role of Jund‑i‑shapur as a center of learning 
and scholarship remains speculative compared with the roles of Baghdad 
or Toledo. In the case of the alternative trajectory (see figure 1.3), the role 
of centers in the Maghreb from the beginning of the twelfth century to the 
end of the fifteenth century AD, discussed in the works of Djebbar (1981, 
1985, 1990, 1997), was ignored in the earlier editions. A brief treatment 
of the subject is now incorporated in chapter 11 of this book. However, it 
should be remembered that the main thrust of the argument in the case 
of the “alternative” trajectory was how mathematics spread into Europe 
through the intervention of the Islamic scientists. The role of the Maghreb 
in this dissemination process is, as yet, unclear.

Since the first edition of this book, we are not any closer to gathering 
further definitive evidence of direct transmission of mathematical knowl-
edge to Europe after the Islamic encounter. But direct written evidence 
is not the only evidence taken into account in establishing transmissions. 
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A number of historians of mathematics now admit that there were some 
remarkable mathematical ideas emanating from China, India, and the Is-
lamic world, but many would argue that Europeans in later centuries were 
unaware of this work and carried out their exploration of new ideas in-
dependent of these earlier efforts. It is interesting, in this context, that a 
strong point of contention has been the somewhat tentative suggestion, 
in the first edition, of possible transmission of seminal ideas in modern 
mathematics from India, China, and the Islamic world.

With hindsight, the author regrets not having expressed these ideas 
of transmission more clearly and forcefully. The area of greatest prom-
ise of new discoveries relates to the transmission from the Islamic world 
to Europe. Cumulating circumstantial evidence now strongly supports 
the thesis that significant ideas—notably in algebra, trigonometry, non‑
Euclidean geometry, number theory, and combinatorics—were transmit-
ted from Islamdom to Christendom, through Arabic and Hebrew texts, to 
contribute toward the development of modern mathematics. The absence 
of a tradition of attribution during this period makes our task of tracing 
the transmission more difficult. However, there are some intriguing pos-
sibilities raised by Katz (2007) worth further exploration.

In twelfth-century Muslim Spain, a book by Jabir ibn Aflah on spheri-
cal geometry was translated into Latin and Hebrew. A method of solving 
triangles on the surface of a sphere, discussed in Jabir’s book, appeared in 
a book by Regiomontanus (1436–1476), an influential European mathema-
tician of his time. The Italian algebraist Cardona (1501–1576) noted the 
close similarity between the passages in the two books. The trigonometry 
contained in Jabir’s book also makes an appearance in Copernicus’s semi-
nal text, De Revolutionibus. In the same text, according to Saliba (1994, 
2007), Copernicus resolved the problem of the “equant” with the help of 
two mathematical theorems discovered by the Islamic scientists Nasir al-
Din al-Tusi (1201–1274) and Muayyad al-Din al-Urdi (d. 1266) and named 
after them as the Tusi Couple and the Urdi Lemma respectively. In chapter 
11 (Islamic mathematics), other examples are quoted, notably the influ-
ence of Nasir al‑Din al‑Tusi’s geometry on the Italian Girolamo Saccheri’s 
(1667–1733) attempt to prove the parallel postulate, and Thabit ibn Qurra’s 
(826–901) formula for finding amicable numbers, which was proposed and 
used by the French mathematician Pierre Fermat (1601–1665), who may 
have come across a Latin translation of an Arabic or Hebrew text from the 
twelfth to the fourteenth centuries containing ibn Qurra’s formula.
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Katz also mentions another example of a possible transmission, starting 
from a Hebrew text of Levi ben Gerson (1288–1344), containing the basic 
formulas for finding permutations and combinations that reappear in one 
of Cardano’s manuscripts, and then an almost carbon copy in Mersenne’s 
(1588–1648) classic book on music theory. It is interesting, in this con-
text, that almost fifteen hundred years before Mersenne’s book, the basic 
formulas are found in Indian mathematics through the work of the Jaina 
school (c. 300 BC), with the link between combinatorics and music theory 
explored by Pingala around the same time.* A discussion of the Indian 
work is found in chapter 8. 

In our discussion of the transmission thesis in chapter 1, as exemplified 
by the second and third (or alternative) trajectories, we have to an extent 
subscribed to a view that Saliba (2007, pp. 3–25) describes as a “classical 
narrative.” The narrative starts with the assumption that initially the Islamic 
civilization was a desert civilization, which began to develop its scientific 
thought when it came into contact with other, more ancient civilizations—
mainly the Graeco-Hellenistic in the West and to a lesser extent the Persian 
(and by extension the Indian) in the East. An active appropriation of the 
sciences of these cultures took place, and translations of many texts ema-
nating from these cultures were undertaken during the early period of the 
Abbasid caliphates (AD 750–900), which would usher in a golden period 
of Islamic mathematics and science. But from around the eleventh to the 
twelfth centuries, this great enterprise, jeopardized externally by the Mon-
gol threat and internally by the conservative religious forces as exemplified 
by the work of the Islamic theologian al-Ghazali (d. 1111), was gradually 
abandoned. But before it was lost forever, Europe woke up from its slum-
ber and set in motion a translation movement that resulted in the start 
of the scientific revolution there. The European dependence on Islamic 
science was, however, short-lived, for soon European Renaissance think-
ers found a way of bypassing the Arabs and reconnecting themselves with 
their Graeco-Roman legacy, where (according to the classical narrative) all 
science and philosophy began. Saliba’s detailed critique, which points to 

*Even more remarkable is the little-known mathematical debt owed to the ancient Chinese 
for the “single most important development in Western European music in the last 400 years: 
the invention of Equal Temperament” (Goodall 2000, p. 111). A short discussion of the Chinese 
work on the subject will be found in chapter 7. I am grateful to Keekok Lee for bringing this to 
my attention.
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both the inconsistencies and distortions that underpin this narrative, is a 
useful corrective to oversimplification of what is a complex story.

An area signposted as worthy of further study in the second edition 
is the possible transmission westward of the remarkable work in Kerala, 
South India. A connecting link that needs further exploration is the one 
through the Islamic world. We know that the works of ibn al‑Haytham (fl. 
AD 1000), the great Islamic scientist, particularly on geometric series (dis-
cussed in chapter 11), was studied at certain madrassahs (Muslim “schools”) 
in close proximity to the epicenters of the Kerala School of Mathemat-
ics and Astronomy, notably at Ponnani and near present-day Kannur. So 
was it possible that, through the medium of the Islamic scholars, some of 
this work moved west? Or even, possibly, that influences (technological or 
otherwise) from Islamic astronomy reached Kerala, notably in the work of 
Paramesvara (c. 1360–1450) in his long-term observations of eclipses? An 
investigation to establish these transmissions would require an extensive 
study at the various centers of Muslim learning in Kerala and elsewhere.

However, a more important and better-known connection is the role of 
the Jesuits and the Portuguese: there is evidence that Matteo Ricci, the Je-
suit astronomer and mathematician who is generally credited with bring-
ing European sciences to the Chinese, spent almost two years in Cochin, 
South India, after being ordained in Goa in 1580. During that time he was 
in correspondence with the rector of Collegio Romano, the primary insti-
tution for the education of those who wished to become Jesuits. The Jesuits 
of that time were not merely priests but also scholars who were very knowl-
edgeable in science and mathematics. In fact, if you wanted to be trained 
as a mathematician in Italy at that time, you could not do better than go to 
a Jesuit seminary. For a number of Jesuits who followed Ricci, Cochin was 
a staging post on the way to China. Cochin was only seventy kilometers 
from the largest repository of astronomical manuscripts in Trissur, from 
where, two hundred years later, Whish and Heyne, two of the earliest Eu-
ropeans who reported on the work in Kerala, obtained their manuscripts. 
The Jesuits were expected to submit regularly a report to their headquar-
ters in Rome, and it is a reasonable conjecture that some of the reports 
may have contained appendixes of a technical nature that would then be 
passed on by Rome to those who would understand them, including no-
table mathematicians. Materials gathered by the Jesuits were scattered all 
over Europe: at Pisa, where Galileo, Cavalieri, and Wallis spent time; at 
Padua, where James Gregory was engaged on mathematical studies; and at 
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Paris, where Mersenne, through his correspondence with Galileo, Wallis, 
Fermat, and Pascal, acted as an agent for the transmission of mathematical 
ideas. We will examine some of these links more closely in chapter 10.

Now, in studying the mathematics of any ancient culture, three related 
questions arise:

1.  What was the content of the mathematics known to that culture?

2.  How was that mathematics thought about and discussed?

3.  Who was doing the mathematics?

In relation to (1) and (2) there are further subquestions relating to how 
the information about the mathematics is available to us. If the information 
requires translation from another language, long dead and esoteric, such a 
translation can be either “user-friendly,” in that the purpose is to make the 
ancient mathematics familiar and easily comprehensible, or “alienating,” 
whereby the translation that results is “literal” in that it tries to be as faith-
ful as possible to the structure, vocabulary, and syntax of the original. It is 
evident from the chapters that follow it is content rather than presentation 
that is seen as important in this book, so that the texts may be interpreted 
legitimately in our own terms. Indeed, the content may often be seen as in-
dependent of presentation. However, this approach has its dangers in that 
we may unintentionally distort ancient mathematical concepts and proce-
dures by imposing modern concepts and symbolic packages. It is hoped 
that a consciousness of this danger may help to make such qualifications as 
necessary in the discussions that follow.*

In preparing this edition, I have been particularly fortunate in receiving 
constructive comments from a number of scholars who have, depending 
on their expertise, read different sections of the book. In particular, I wish 
to thank Glen Van Brummelen, Jöran Friberg, Takao Hayashi, Victor Katz, 
and four other reviewers for their detailed and careful scrutiny of the man-

*This difference in approach highlighted here may be summed up as “historicism” versus “pre-
sentism.” The former asserts that works from the past can be interpreted only in the context of 
that past culture, while the latter attempts to understand such works on our own terms in the 
present. Whether one inclines to historicism or presentism in one’s own interpretation depends to 
an extent on whether one sees present-day mathematics as having evolved from older mathemat-
ics, so that the older mathematics has been absorbed into our own, or whether one sees different 
mathematical traditions as being to a significant extent incommensurable.
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uscript. I greatly appreciate the time and effort they put into their work. 
Glen Van Brummelen also provided most generously a copy of his manu-
script, now published as The Mathematics of the Heavens and the Earth: 
The Early History of Trigonometry, which has helped me immeasurably in 
composing the sections on trigonometry in various chapters of the book. 
Finally, at the stage of preparing the manuscript for publication, Vickie 
Kearn’s role has been invaluable. Not only has she provided meticulous 
editorial assistance in spotting ambiguities, omissions, and inconsisten-
cies in the text, but at various places she also suggested changes that have 
significantly improved the presentation. More important than anything 
else, she has been extremely supportive in guiding the product to its final 
stages. However, I assume all responsibility for any weaknesses in the final 
product. Finally, there is one person who has consistently encouraged me 
in all my endeavors and provided the necessary confidence and fortitude 
to complete the task, and that has been my wife, Leela. She has also been 
a wonderful traveling companion on the trips we have made together to 
different parts of the world to promote the ideas in this book. To her, my 
deepest gratitude and love.

George Gheverghese Joseph
University of Manchester

july 2009





Preface to the First Edition

In 1987 I visited the birthplace of the Indian mathematician Srinivasa 
Ramanujan. Exactly a hundred years had passed since his birth. Ramanu-
jan was born in a small town called Erode in southern India. At his death, 
aged thirty-two, he was recognized by some as a natural genius, the like of 
whom could be found only by going back two centuries to Euler and Gauss. 
Among his contemporaries, particularly his close collaborator G. H. Hardy, 
there was a sense of disappointment—the feeling that Ramanujan’s igno-
rance of modern mathematics, his strange ways of “doing” mathematics, 
and his premature death had diminished his achievements and therefore 
his influence on the future of the subject. Yet today few mathematicians 
would accept this assessment. In 1976, George Andrews, an American 
mathematician, was rummaging through some of Ramanujan’s papers in a 
library at Cambridge University and came across 130 pages of scrap paper 
filled with notes representing Ramanujan’s work during the last year of his 
life in Madras. This is what Richard Askey, a collaborator of Andrews, had 
to say about what has come to be known as Ramanujan’s “Lost Notebook”:

The work of that one year, while he was dying [and obviously in consid-
erable pain a lot of the time, according to his wife], was the equivalent of 
a lifetime of work of a very great mathematician. What he accomplished 
was unbelievable. If it were in a novel, nobody would believe it. (My 
comment in brackets.)

The riches contained in the “Lost Notebook” and his earlier works are 
being mined with increasing success and excitement by mathematicians 
today. He is believed to have contributed to the creation of one of the most 
revolutionary concepts of recent theoretical physics—superstring theory 
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in cosmology. A 1914 paper of Ramanujan, “Modular Equations and Ap-
proximations to p,” was used to program a computer some years ago to 
evaluate p to a level of accuracy (to millions of digits) never attained previ-
ously. But one should not make excessive claims for the practical applica-
tions of Ramanujan’s work. As Kanigel (1991, pp. 349–50) states, 

What makes Ramanujan’s work so seductive is not the prospect of use in 
the solution of real-world problems, but its richness, beauty, mystery—
its sheer mathematical loveliness.

However, for me the most intriguing aspect of Ramanujan’s mathemat-
ics work remains his method. Here was someone poorly educated in mod-
ern mathematics and isolated for most of his life from work going on at the 
frontiers of the subject, yet who produced work of a quality and durability 
that is increasingly tending to overshadow that of some of his more promi-
nent contemporaries, including Hardy. Ramanujan’s style of doing math-
ematics was very different from that of the conventional mathematician 
trained in the deductive axiomatic method of proof. From the accounts 
of his wife and close associates he made extensive use of a slate on which 
he was always jotting down and erasing what his wife described as “sums,” 
and then transferring some of the final results into his Notebook when he 
was satisfied with his conclusions. He felt no strong compulsion to prove 
that the results were true—what mattered were the results themselves. This 
has provided a growing number of mathematicians with a singular task: to 
prove the results that Ramanujan simply stated. And from the endeavors 
of these mathematicians have emerged a number of subdisciplines, pro-
moting gatherings and collaborations among their practitioners, whose 
approach stands in stark contrast to that taken by the original inspirer.

In writing this book, I found the life and work of Ramanujan instructive 
because it raises a number of interesting questions. First (and this is a ques-
tion that is rarely addressed by historians of mathematics, one for which 
there can in any case never be a fully satisfactory answer), how far did cul-
tural influences determine Ramanujan’s choice of subjects or his methods? 
It is interesting in this context that Ramanujan came from the Ayyangar 
Brahmans of Tamil Nadu in southern India, a group that enjoyed a high 
social status for their traditional learning and religious observances. Given 
this background, Ramanujan’s tendency to credit his discoveries to the in-
tervention of the family goddess, Namagiri, is understandable, though it 
must have been a source of embarrassment to some of his admirers, both 
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in India and in the West. But it is perfectly consistent with a culture that 
saw mathematics in part as an instrument of divine intervention and as-
trological prediction. The Western mathematical temperament finds it dif-
ficult to come to terms with the speculative, extrarational, and intuitive 
elements in Ramanujan’s makeup.

At another level, the example of Ramanujan is a sure indication that the 
highest level of mathematical achievement is well within the scope of those 
educated and brought up in traditions and environments far removed from 
Western society. However, a second question, an interesting and indeed a 
central one, is raised by Ramanujan’s work: is it possible to identify any fea-
tures in his own culture that were conducive to creative work in mathemat-
ics? Any attempt to answer this question should delve deeply into the role of 
Ayyangars as custodians of traditional knowledge of astronomy and math-
ematics. Ramanujan’s mother was a well-known local astrologer, and it is 
likely that his first exposure to mathematics, and in particular his special in-
terest in the theory of numbers, came about through his mother’s astrology. 
Mathematics and numbers had a special significance within the Brahmani-
cal tradition as extrarational instruments for controlling fate and nature. 

Ramanujan’s work also raises questions about what constitutes math-
ematics. Is there a need to conform to a particular method of presentation 
before something is recognizable as mathematics? His notebooks contain 
many jottings that do not conform to a conventional view of mathematical 
results, since there is no attempt at any demonstration or examination of 
the theory behind these results. Yet a number of mathematicians not only 
have found these jottings sufficiently worthwhile to devote years of their 
time to proving theorems Ramanujan knew to be true, but may even have 
gained more from the very act of deriving the formulas than the knowl-
edge of the formulas themselves. This is quite consistent with both the In-
dian and Chinese traditions, where great mathematicians merely state the 
results, leaving their students to provide oral demonstrations or written 
commentaries. The students are thus encouraged to allow both their criti-
cal and their creative faculties to develop at the same time.

An author is not expected to explain why he writes a book. But the mo-
tives are often quite revealing. If I am to explain why I have spent the last 
three years on this book, I would think my being a product of four different 
heritages is relevant. I was born in Kerala, southern India, and spent the 
first nine years of my life there and in the town of Madurai, the cultural 
capital of the neighboring state of Tamil Nadu. My early awareness of the 
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sheer diversity of Indian culture was helped by living close to the famous 
Meenakshi Temple at Madurai, a great center of pilgrimage, dance, music, 
and religious festivals. This exposure during my formative years contrib-
uted to my Indian heritage. I come from a family of Syrian Orthodox Chris-
tians that traces its descent directly to one of the families (the Sankarapuri) 
who were converted by Christ’s disciple St. Thomas in about AD 50. This 
is my Middle Eastern Christian heritage. My family moved to Mombasa in 
Kenya, where I was brought up in that rich mixture of African and Arab 
influences that makes the distinctive Swahili culture. My African heritage 
is a result of the time I spent there, first at school and then at work, both in 
Mombasa and in the neighboring country of Tanzania. The period I have 
spent in Britain, at the University of Leicester, where I did my first degree, 
and at the University of Manchester, where I continued my postgraduate 
studies and subsequently worked, now accounts for more than half my life. 
This is my Western heritage. To keep a balance between my four heritages 
and not allow any one to take over permanently is important to me. Hence 
my travels abroad, which have taken me to East and Central Africa, to 
India, to Papua New Guinea, and to South and Southeast Asia. And hence, 
in a different way, the driving passion behind this book, which emphasizes 
the global nature of mathematical pursuits and creations.

In writing this book, I am indebted to many who have over the years 
patiently and skillfully translated and interpreted the original sources of 
mathematics from different cultures so that they are now more accessible 
and comprehensible. I owe them more than I can acknowledge merely 
through entries in the bibliography at the back of this book. They have 
often had to work in environments that are not particularly sympathetic 
to their efforts and have rarely received sufficient academic recognition. In 
a number of cases their attempts at collecting and transliterating ancient 
manuscripts show a desperate sense of urgency, as the storage and preser-
vation of these documents often leave much to be desired.

During the time I have been working on this book, several people have 
given me advice, constructive criticism, and encouragement. Burjor Avari 
and I have shared a long and close association, which has taken the form, 
among other things, of a study of the nature and consequences of a Euro-
centric view of the history of knowledge. Our collaboration in this area 
is clearly reflected in some of the ideas found in the first chapter. In par-
ticular, the historic backgrounds to a number of chapters have benefited 
from his criticisms. David Nelson read the whole manuscript carefully and 
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suggested a number of changes to improve the clarity and balance of the 
book. I found his comments so useful and persuasive that I have tried in 
almost all cases to respond to them. Even so, I am conscious of having 
fallen short of the thoroughness that his detailed comments deserve. To 
Bill Farebrother I am grateful for having gone through the manuscript at 
various stages, making useful criticisms of the style and mathematical pre-
sentation. I should also like to acknowledge my debt to others in the De-
partment of Econometrics and Social Statistics, University of Manchester, 
who not only tolerated my project (as removed as it was from the usual 
concerns of the department) but in some cases went through chapters and 
provided constructive responses. Finally, at the stage of preparing the man-
uscript for publication, John Woodruff ’s role has been invaluable. Not only 
has he provided meticulous editorial assistance in spotting ambiguities, 
omissions, and inconsistencies in the text and bibliography, but at vari-
ous places he has suggested changes that have significantly improved the 
presentations. It is appropriate, given my insufficient response to some of 
the advice offered me, that I exclude all those mentioned above from re-
sponsibility for any errors of fact and interpretation present in this book.

George Gheverghese Joseph
University of Manchester

1991
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Chapter One

The History of Mathematics: Alternative Perspectives

A Justification for This Book

An interest in history marks us for life. How we see ourselves and others is 
shaped by the history we absorb, not only in the classroom but also from 
the Internet, films, newspapers, television programs, novels, and even strip 
cartoons. From the time we first become aware of the past, it can fire our 
imagination and excite our curiosity: we ask questions and then seek an-
swers from history. As our knowledge develops, differences in historical 
perspectives emerge. And, to the extent that different views of the past affect 
our perception of ourselves and of the outside world, history becomes an 
important point of reference in understanding the clash of cultures and of 
ideas. Not surprisingly, rulers throughout history have recognized that to 
control the past is to master the present and thereby consolidate their power.

During the last four hundred years, Europe and its cultural dependen-
cies1 have played a dominant role in world affairs. This is all too often 
reflected in the character of some of the historical writing produced by Eu-
ropeans in the past. Where other people appear, they do so in a transitory 
fashion whenever Europe has chanced in their direction. Thus the history 
of the Africans or the indigenous peoples of the Americas often appears to 
begin only after their encounter with Europe.

An important aspect of this Eurocentric approach to history is the man-
ner in which the history and potentialities of non-European societies were 
represented, particularly with respect to their creation and development of 
science and technology. The progress of Europe during the last four hun-
dred years is often inextricably—or even causally—linked with the rapid 
growth of science and technology during the period. In the minds of some, 
scientific progress becomes a uniquely European phenomenon, which can 
be emulated by other nations only if they follow a specifically European 
path of scientific and social development.
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Such a representation of societies outside the European cultural milieu 
raises a number of issues that are worth exploring, however briefly. First, 
these societies, many of them still in the grip of an intellectual dependence 
that is the legacy of European political domination, should ask themselves 
some questions. Was their indigenous scientific and technological base in-
novative and self-sufficient during their precolonial period? Case studies 
of India, China, and parts of Africa, contained, for example, in the work of 
Dharampal (1971), Needham (1954), and Van Sertima (1983) and summa-
rized by Teresi (2002), seem to indicate the existence of scientific creativity 
and technological achievements long before the incursions of Europe into 
these areas. If this is so, we need to understand the dynamics of precolo-
nial science and technology in these and other societies and to identify the 
material conditions that gave rise to these developments. This is essential if 
we are to see why modern science did not develop in these societies, only 
in Europe, and to find meaningful ways of adapting to present-day require-
ments the indigenous and technological forms that still remain.2

Second, there is the wider issue of who “makes” science and technol-
ogy. In a material and nonelitist sense, each society, impelled by the pres-
sures and demands of its environment, has found it necessary to create a 
scientific base to cater to its material requirements. Perceptions of what 
constitute the particular requirements of a society would vary according to 
time and place, but it would be wrong to argue that the capacity to “make” 
science and technology is a prerogative of one culture alone.

Third, if one attributes all significant historical developments in science 
and technology to Europe, then the rest of the world can impinge only 
marginally, either as an unchanging residual experience to be contrasted 
with the dynamism and creativity of Europe, or as a rationale for the cre-
ation of academic disciplines congealed in subjects such as development 
studies, anthropology, and oriental studies. These subjects in turn served 
as the basis from which more elaborate Eurocentric theories of social de-
velopment and history were developed and tested.3 

One of the more heartening aspects of academic research in the last four 
or five decades is that the shaky foundations of these “adjunct” disciplines 
are being increasingly exposed by scholars, a number of whom originate 
from countries that provide the subject matter of these disciplines. “Sub-
versive” analyses aimed at nothing less than the unpackaging of prevailing 
Eurocentric paradigms became the major preoccupation of many of these 
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scholars. Syed Husain Alatas (1976) studied intellectual dependence and 
imitative thinking among social scientists in developing countries. The 
growing movement toward promoting a form of indigenous anthropol-
ogy that sees its primary task as questioning, redefining, and if necessary 
rejecting particular concepts that grew out of colonial experience in West-
ern anthropology is thoroughly examined by Fahim (1982). Edward Said 
(1978) has brilliantly described the motives and methods of the so-called 
orientalists who set out to construct a fictitious entity called “the Orient” 
and then ascribe to it qualities that are a mixture of the exotic, the mys-
terious, and the otherworldly. The rationale for such constructs is being 
examined in terms of the recent history of Europe’s relations with the rest 
of the world.

In a similar vein, and in the earlier editions of this book, it was the inten-
tion to show that the standard treatment of the history of non‑European 
mathematics exhibited a deep‑rooted historiographical bias in the selection 
and interpretation of facts, and that mathematical activity outside Europe 
has as a consequence been ignored, devalued, or distorted. It is interesting 
in this context that since the first edition of this book there has been a grow-
ing recognition of the mathematics outside the European and Greek tradi-
tions, especially in the mainstream teaching of the history of mathematics. 
The Eurocentric argument has shifted its ground and now questions both 
the nature of the European debt to other mathematical traditions and the 
existence and quality of proofs and demonstrations in traditions outside 
Europe. A brief discussion of the shifting ground of Eurocentrism in the 
history of mathematics is found in the preface to this edition.4 

The Development of Mathematical Knowledge

A concise and meaningful definition of mathematics is difficult. In the 
context of this book, the following aspects of the subject are highlighted. 
Modern mathematics has developed into a worldwide language with a par-
ticular kind of logical structure. It contains a body of knowledge relating 
to number and space, and prescribes a set of methods for reaching con-
clusions about the physical world. And it is an intellectual activity which 
calls for both intuition and imagination in deriving “proofs” and reaching 
conclusions. Often it rewards the creator with a strong sense of aesthetic 
satisfaction. 
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The “Classical” Eurocentric Trajectory
Most histories of mathematics that have had a great influence on later work 
were written in the late nineteenth or early twentieth century. During that 
period, two contrasting developments were taking place that had an im-
pact on both the content and the balance of these books, especially those 
produced in Britain and the United States. Exciting discoveries of ancient 
mathematics on papyri in Egypt and clay tablets in Mesopotamia pushed 
back the origins of written mathematical records by at least fifteen hundred 
years. But a far stronger and countervailing influence was the culmination 
of European domination in the shape of political control of vast tracts of 
Africa and Asia. Out of this domination arose the ideology of European 
superiority that permeated a wide range of social and economic activities, 
with traces to be found in histories of science that emphasized the unique 
role of Europe in providing the soil and spirit for scientific discovery. The 
contributions of the colonized peoples were ignored or devalued as part 
of the rationale for subjugation and dominance. And the development of 
mathematics before the Greeks—notably in Egypt and Mesopotamia—
suffered a similar fate, dismissed as of little importance to the later his-
tory of the subject. In his book Black Athena (1987), Martin Bernal has 
shown how respect for ancient Egyptian science and civilization, shared 
by ancient Greece and pre-nineteenth-century Europe alike, was gradu-
ally eroded, leading eventually to a Eurocentric model with Greece as the 
source and Europe as the inheritor and guardian of the Greek heritage.

Figure 1.1 presents the “classical” Eurocentric view of how mathematics 
developed over the ages. This development is seen as taking place in two 
sections, separated by a period of stagnation lasting for over a thousand 
years: Greece (from about 600 BC to AD 400), and post-Renaissance Eu-
rope from the sixteenth century to the present day. The intervening period 
of inactivity was the “Dark Ages”—a convenient label that expressed both 
post-Renaissance Europe’s prejudices about its immediate past and the in-
tellectual self-confidence of those who saw themselves as the true inheri-
tors of the “Greek miracle” of two thousand years earlier.

Two passages, one by a well-known historian of mathematics writing at 
the turn of the century and the other by a more recent writer whose books 
are still referred to on both sides of the Atlantic, show the durability of this 
Eurocentric view and its imperviousness to new evidence and sources:
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The history of mathematics cannot with certainty be traced back to any 
school or period before that of the Ionian Greeks. (Rouse Ball 1908, p. 1)

[Mathematics] finally secured a new grip on life in the highly congenial 
soil of Greece and waxed strongly for a short period. . . . With the de-
cline of Greek civilization the plant remained dormant for a thousand 
years . . . when the plant was transported to Europe proper and once 
more imbedded in fertile soil. (Kline 1953, pp. 9–10)

The first statement is a reasonable summary of what was popularly known 
and accepted as the origins of mathematics at that time, except for the ne-
glect of the early Indian mathematics contained in the Sulbasutras (The 
Rules of the Cord), belonging to the period between 800 and 500 BC, which 
would make it at least as old as the earliest-known Greek mathematics. 
Thibaut’s translations of these works, made around 1875, were known to 
historians of mathematics at the turn of the century. The mathematics con-
tained in the Sulbasutras is discussed in chapter 8.

The second statement, however, ignores a considerable body of research 
evidence pointing to the development of mathematics in Mesopotamia, 
Egypt, China, pre-Columbian America, India, and the Islamic world that 
had come to light in the intervening period. Subsequent chapters will bear 
testimony to the volume and quality of the mathematics developed in these 
areas. But in both these quotations mathematics is perceived as an exclu-
sive product of European civilization. And that is the central message of 
the Eurocentric trajectory depicted in figure 1.1.

This comforting rationale for European dominance became increas-
ingly untenable for a number of reasons. First, there is the full acknowl-
edgment given by the ancient Greeks themselves of the intellectual debt 
they owed the Egyptians. There are scattered references from Herodotus 
(c. 450 BC) to Proclus (c. AD 400) of the knowledge acquired from the 
Egyptians in fields such as astronomy, mathematics, and surveying, while 

Figure 1.1: The “classical” Eurocentric trajectory
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other commentators even considered the priests of Memphis to be the true 
founders of science. 

To Aristotle (c. 350 BC), Egypt was the cradle of mathematics. His 
teacher, Eudoxus, one of the notable mathematicians of the time, had stud-
ied in Egypt before teaching in Greece. Even earlier, Thales (d. 546 BC), 
the legendary founder of Greek mathematics, and Pythagoras (c. 500 BC), 
one of the earliest and greatest of Greek mathematicians, were reported 
to have traveled widely in Egypt and Mesopotamia and learned much of 
their mathematics from these areas. Some sources even credit Pythagoras 
with having traveled as far as India in search of knowledge, which could 
explain some of the parallels between Indian and Pythagorean philosophy 
and religion.5 

A second reason why the trajectory depicted in figure 1.1 was found to 
be wanting arose from the combined efforts of archaeologists, translators, 
and interpreters, who between them unearthed evidence of a high level of 
mathematics practiced in Mesopotamia and in Egypt at the beginning of 
the second millennium, providing further confirmation of Greek reports. 
In particular, the Mesopotamians had invented a place-value number sys-
tem, knew different methods of solving what today would be described as 
quadratic equations (methods that would not be improved upon until the 
sixteenth century AD), and understood (but had not proved) the relation-
ship between the sides of a right-angled triangle that came to be known 
as the Pythagorean theorem.6 Indeed, as we shall see in later chapters, this 
theorem was stated and demonstrated in different forms all over the world.

A four-thousand-year-old clay tablet, kept in a Berlin museum, gives the 
value of n n3 2+  for 1, 2, , 10, 20, 30, 40, 50n f= , from which it has been 
surmised that the Mesopotamians may have used these values in solving 
cubic equations after reducing them to the form x x c3 2+ = . A remark-
able solution in Egyptian geometry found in the Moscow Papyrus from the 
Middle Kingdom (c. 2000−1800 BC) follows from the correct use of the 
formula for the volume of a truncated square pyramid. These examples and 
other milestones will be discussed in the relevant chapters of this book.

The neglect of the Islamic contribution to the development of European 
intellectual life in general and mathematics in particular is another serious 
drawback of the “classical” view. The course of European cultural history 
and the history of European thought are inseparably tied up with the activ-
ities of Islamic scholars during the Middle Ages and their seminal contri-
butions to mathematics, the natural sciences, medicine, and philosophy.7 
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In particular, we owe to the Islamic world in the field of mathematics the 
bringing together of the technique of measurement, evolved from its Egyp-
tian roots to its final form in the hands of the Alexandrians, and the re-
markable instrument of computation (our number system) that originated 
in India. These strands were supplemented by a systematic and consistent 
language of calculation that came to be known by its Arabic name, algebra. 
An acknowledgment of this debt in more recent books contrasts sharply 
with the neglect of other Islamic contributions to science.8 

Finally, in discussing the Greek contribution, there is a need to recog-
nize the differences between the Classical period of Greek civilization (i.e., 
from about 600 to 300 BC) and the post-Alexandrian period (i.e., from 
about 300 BC to AD 400). In early European scholarship, the Greeks of the 
ancient world were perceived as an ethnically homogeneous group, origi-
nating from areas that were mainly within the geographical boundaries of 
present-day Greece. It was part of the Eurocentric mythology that from 
the mainland of Europe had emerged a group of people who had created, 
virtually out of nothing, the most impressive civilization of ancient times. 
And from that civilization had emerged not only the cherished institutions 
of present-day Western culture but also the mainspring of modern science. 
The reality, however, is different and more complex. The term “Greek,” 
when applied to times before the appearance of Alexander (356−323 BC), 
really refers to a number of independent city-states, often at war with one 
another but exhibiting close ethnic or cultural affinities and, above all, shar-
ing a common language. The conquests of Alexander changed the situation 
dramatically, for at his death his empire was divided among his generals, 
who established separate dynasties. The two notable dynasties from the 
point of view of mathematics were the Ptolemaic dynasty of Egypt and the 
Seleucid dynasty, which ruled over territories that included the earlier sites 
of the Mesopotamian civilization. The most famous center of learning and 
trade became Alexandria in Egypt, established in 332 BC and named after 
the conqueror. From its foundation, one of its most striking features was its 
cosmopolitanism—part Egyptian, part Greek, with a liberal sprinkling of 
Jews, Persians, Phoenicians, and Babylonians, and even attracting scholars 
and traders from as far away as India. A lively contact was maintained with 
the Seleucid dynasty. Alexandria thus became the meeting place for ideas 
and different traditions. The character of Greek mathematics began to 
change slowly, mainly as a result of continuing cross-fertilization between 
different mathematical traditions, notably the algebraic and empirical 
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basis of Mesopotamian and Egyptian mathematics interacting with the 
geometric and antiempirical traditions of Greek mathematics. And from 
this mixture came some of the greatest mathematicians of antiquity, no-
tably Archimedes and Diophantus. It is therefore important to recognize 
the Alexandrian dimension to Greek mathematics while noting that Greek 
intellectual and cultural traditions served as the main inspiration and the 
Greek language as the medium of instruction and writing in Alexandria. In 
a later chapter, based on some innovative work of Friberg (2005, 2007), we 
will examine the close and hitherto unexamined links between Egyptian, 
Mesopotamian, and Greek mathematics. 

A Modified Eurocentric Trajectory
Figure 1.2 takes on board some of the objections raised about the “classical” 
Eurocentric trajectory. The figure acknowledges that there is growing aware-
ness of the existence of mathematics before the Greeks, and of their debt to 
earlier mathematical traditions, notably those of Mesopotamia and Egypt. 
But this awareness was until recently tempered by a dismissive rejection of 
their importance in relation to Greek mathematics: the “scrawling of chil-
dren just learning to write as opposed to great literature” (Kline 1962, p. 14).

The differences in character of the Greek contribution before and af-
ter Alexander are also recognized to a limited extent in figure 1.2 by the 
separation of Greece from the Hellenistic world (in which the Ptolemaic 
and Seleucid dynasties became the crucial instruments of mathematical 
creation). There is also some acknowledgment of the “Arabs” but mainly as 
custodians of Greek learning during the Dark Ages in Europe. The role of 
the Islamic world as transmitter and creator of knowledge is often ignored; 
so are the contributions of other civilizations—notably China and India—
which have been perceived either as borrowers from Greek sources or as 
having made only minor contributions that played an insignificant role in 
mainstream mathematical development (i.e., the development eventually 
culminating in modern mathematics).

Figure 1.2 is therefore still a flawed representation of how mathematics 
developed: it contains a series of biases and remains quite impervious to 
new evidence and arguments. Until a couple of decades ago, and with minor 
modifications, it was the model to which a number of books on the history of 
mathematics conformed. But this has changed even during the twenty-odd 
years that this book has been in print. “Mainsteam” histories of mathematics 
are casting a wider net by seriously considering the contributions not only 
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of ancient Egyptian and Mesopotamian civilizations; they are punctilious 
in incorporating as well the contributions of Chinese, Indian, and Islamic 
civilizations. The recent sourcebook for the histories of mathematics of the 
five civilizations edited by Katz (2007) is a testimony to this change.

It is interesting that a similar Eurocentric bias had existed in other dis-
ciplines as well: for example, diffusion theories in anthropology and social 
geography implied that “civilization” has spread from the center (“greater” 
Europe) to the periphery (the rest of the world). And the theories of glo-
balization or evolution developed in recent years within some Marxist and 
neo-Marxist frameworks were characterized by a similar type of Eurocen-
trism. In all such conceptual schemes, the development of Europe is seen as 
a precedent for the way in which the rest of the world will follow—a trajec-
tory whose spirit is not dissimilar to the one suggested by figures 1.1 and 1.2.

An Alternative Trajectory for the Dark Ages
If we are to construct an unbiased alternative to figures 1.1 and 1.2, our 
guiding principle should be to recognize that different cultures in different 
periods of history have contributed to the world’s stock of mathematical 
knowledge. Figure 1.3 presents such a trajectory of mathematical devel-
opment but confines itself to the period between the fifth and fifteenth 
centuries AD—the period represented by the arrow labeled in figures 1.1 
and 1.2 as the “Dark Ages” in Europe. The choice of this trajectory as an 
illustration is deliberate: it serves to highlight the variety of mathematical 

Figure 1.2: A modified Eurocentric trajectory
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activity and exchange between a number of cultural areas that went on 
while Europe was in deep slumber. A trajectory for the fifteenth century 
onward would show that mathematical cross-fertilization and creativity 
were more or less confined to countries within Europe until the emer-
gence of the truly international character of modern mathematics during 
the twentieth century.

The role of the Islamic civilization is brought out in figure 1.3. Scien-
tific knowledge that originated in India, China, and the Hellenistic world 
was sought out by Islamic scholars and then translated, refined, synthe-
sized, and augmented at different centers of learning, starting at Jund-i-
Shapur9 in Persia around the sixth century (even before the coming of 
Islam) and then moving to Baghdad, Cairo, and finally to Toledo and 
Córdoba in Spain, from where this knowledge spread into western Eu-
rope. Considerable resources were made available to the scholars through 
the benevolent patronage of the caliphs, the Abbasids (the rulers of the 
eastern Arab empire, with its capital at Baghdad) and the Umayyads (the 
rulers of the western Arab empire, with its capital first at Damascus and 
later at Córdoba).

The role of the Abbasid caliphate was particularly important for the fu-
ture development of mathematics. The caliphs, notably al-Mansur (754− 
775), Harun al-Rashid (786−809), and al-Mamun (809−833), were in 
the forefront of promoting the study of astronomy and mathematics in 

Figure 1.3: An alternative trajectory for the “Dark Ages”
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Baghdad. Indian scientists were invited to Baghdad. When Plato’s Acad-
emy was closed in 529, some of its scholars found refuge at Jund-i-Shapur, 
which a century later became part of the Islamic world. Greek manuscripts 
from the Byzantine empire, the translations of the Syriac schools of An-
tioch and Damascus, and the remains of the Alexandrian library in the 
hands of the Nestorian Christians at Edessa were all eagerly sought by Is-
lamic scholars, aided by the rulers who had control over or access to men 
and materials from the Byzantine empire, Persia, Egypt, Mesopotamia, and 
places as far east as India and China.

Caliph al-Mansur built at Baghdad a Bait al-Hikma (House of Wisdom), 
which contained a large library for the manuscripts that had been collected 
from various sources; an observatory that became a meeting place of Indian, 
Babylonian, Hellenistic, and probably Chinese astronomical traditions; and a 
university where scientific research continued apace.10 A notable member of 
the institution, Muhammad ibn Musa al-Khwarizmi (fl. AD 825), wrote two 
books that were of crucial importance to the future development of mathe-
matics. One of them, the Arabic text of which is extant, is titled Hisab al-jabr 
w’al-muqabala (which may be loosely translated as Calculation by Reunion 
and Reduction). The title refers to the two main operations in solving equa-
tions: “reunion,” the transfer of negative terms from one side of the equation 
to the other, and “reduction,” the merging of like terms on the same side into 
a single term.11 In the twelfth century the book was translated into Latin un-
der the title Liber algebrae et almucabola, thus giving a name to a central area 
of mathematics. A traditional meaning of the Arabic word jabr is “the setting 
of a broken bone” (and hence “reunion” in the title of al-Khwarizmi’s book). 
Some decades ago it was not an uncommon sight on Spanish streets to come 
across a sign advertising “Algebrista y Sangrador” (i.e., someone dedicated to 
setting dislocated bones) at the entrance of barbers’ shops.12

Al-Khwarizmi wrote a second book, of which only a Latin translation is 
extant: Algorithmi de numero indorum, which explained the Indian num-
ber system. While al-Khwarizmi was at pains to point out the Indian ori-
gin of this number system, subsequent translations of the book attributed 
not only the book but the numerals to the author. Hence, in Europe any 
scheme using these numerals came to be known as an “algorism” or, later, 
“algorithm” (a corruption of the name al-Khwarizmi) and the numerals 
themselves as Arabic numerals.

Figure 1.3 shows the importance of two areas of southern Europe in 
the transmission of mathematical knowledge to western Europe. Spain and 
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Sicily were the nearest points of contact with Islamic science and had been 
under Arab hegemony, Córdoba succeeding Cairo as the center of learn-
ing during the ninth and tenth centuries. Scholars from different parts of 
western Europe congregated in Córdoba and Toledo in search of ancient 
and contemporary knowledge. It is reported that Gherardo of Cremona (c. 
1114–1187) went to Toledo, after its recapture by the Christians, in search 
of Ptolemy’s Almagest, an astronomical work of great importance produced 
in Alexandria during the second century AD. He was so taken by the in-
tellectual activity there that he stayed for twenty years, during which time 
he was reported to have copied or translated eighty-seven manuscripts of 
Islamic science or Greek classics, which were later disseminated across 
western Europe. Gherardo was just one of a number of European schol-
ars, including Plato of Tivoli, Adelard of Bath, and Robert of Chester, who 
flocked to Spain in search of knowledge.13

The main message of figure 1.3 is that it is dangerous to characterize  
the history of mathematics solely in terms of European developments. The 
darkness that was supposed to have descended over Europe for a thousand 
years before the illumination that came with the Renaissance did not inter-
rupt mathematical activity elsewhere. Indeed, as we shall see in later chap-
ters, the period saw not only a mathematical renaissance in the Islamic 
world but also high points of Indian and Chinese mathematics. 

Mathematical Signposts and Transmissions across the Ages

Alternative trajectories to the ones shown in figures 1.1 and 1.2 should 
highlight the following three features of the plurality of mathematical 
development:

1.  The global nature of mathematical pursuits of one kind or another 

2. � The possibility of independent mathematical development within 
each cultural tradition followed or not followed by cross-fertilization

3. � The crucial importance of diverse transmissions of mathematics 
across cultures, culminating in the creation of the unified discipline 
of modern mathematics

However, to construct a feasible diagram we must limit the number of 
geographical areas of mathematical activity we wish to include. Selection 
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inevitably introduces an element of arbitrariness, for some areas that may 
merit inclusion are excluded, while certain inclusions may be controversial. 
Two considerations have influenced the choice of the cultural areas repre-
sented in figure 1.4. First, a judgment was made, on the basis of existing 
evidence, as to which places saw significant developments in mathematics. 
Second, an assessment of the nature and direction of the transmission of 
mathematical knowledge also helped to identify the areas of interest.

On the basis of these two criteria, ancient Egypt and Mesopotamia, 
Greece (and the Hellenistic world), India, China, the Islamic (or “Arab”) 
world, and Europe were selected as being important in the historical devel-
opment of mathematics. For one cultural area, the application of the two 
selection criteria produced conflicting results: from existing evidence, the 
Maya of Central America were isolated from other centers of mathematical 
activity, yet their achievements in numeration and calendar construction 
were quite remarkable by any standards. I therefore decided to include the 
Maya in figure 1.4, and to examine their contributions briefly in chapter 2.

The limited scope of this book and the application of the above crite-
ria make it impossible to examine the mathematical experience of Africa, 
Korea, and Japan in greater detail. However, chapter 2 contains a discussion 
of the Ishango bone and the Yoruba numerals, and chapter 3 a detailed ex-
amination of Egyptian mathematics, all of which were products of Africa. 
Further information on the mathematical traditions of Korea and Japan is 
available in the second of the two chapters on Chinese mathematics (chap-
ter 7), since these traditions were both heavily influenced by China.

Figure 1.4, together with its detailed legend, emphasizes the following 
features of mathematical activity through the ages:

1. � The continuity of mathematical traditions until the last few centuries 
in most of the selected cultural areas

2. � The extent of transmissions between different cultural areas that 
were geographically or otherwise separated from one another 

3. � The relative ineffectiveness of cultural barriers (or “filters”) in inhib-
iting the transmission of mathematical knowledge (In a number of 
other areas of human knowledge, notably in philosophy and the arts, 
the barriers are often insurmountable unless filters can be devised to 
make foreign “products” more palatable.)
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16  Chapter 1

In both Egypt and Mesopotamia there existed well-developed written 
number systems as early as the third millennium BC. The peculiar char-
acter of the Egyptian hieroglyphic numerals led to the creation of special 
types of algorithms for basic arithmetic operations. Both these develop-
ments and subsequent work in the area of algebra and geometry, especially 
during the period between 1800 and 1600 BC, will form the subject matter 
of chapter 3. Figure 1.4 brings out another impressive aspect of Egyptian 
mathematics—the continuity of a tradition for over three thousand years, 
culminating in the great period of Alexandrian mathematics around the 
beginning of the Christian era. We shall not examine the content and per-
sonalities of this mature phase of Egyptian mathematics in any detail, since 
its coverage in standard histories of mathematics is more than adequate. 
There is, however, a widespread tendency in many of these texts to view 
Alexandrian mathematics as a mere extension of Greek mathematics, in 
spite of the distinctive character of the mathematics of Archimedes, Heron, 
Diophantus, and Pappus, to mention a few notable names of the Alexan-
drian period.

The other early contributor to mathematics was the civilization that 
grew around the twin rivers, the Tigris and the Euphrates, in Mesopota-
mia. There mathematical activity flourished, given impetus by the estab-
lishment of a place-value sexagesimal (i.e., base 60) system of numerals, 
which must surely rank as one of the most significant developments in 
the history of mathematics. However, the golden period of mathematics 
in this area (or at least the period for which considerable written evidence 
exists) came during the First Babylonian period (c. 1800–1600 BC), which 
saw not only the introduction of further refinements to the existing nu-
meral system but also the development of an algebra more advanced than 
that in use in Egypt. The period is so important that the mathematics that 
developed in Mesopotamia is often simply referred to as Babylonian math-
ematics. As with Egypt, the next period of significant advance followed 
Alexander’s conquest and the establishment of the Seleucid dynasty. Bab
ylonian mathematics (a term that will be used interchangeably with Meso-
potamian hereafter to describe the mathematics of this cultural area) is 
discussed in chapter 4.

There is growing evidence of mathematical links between Egypt and 
Mesopotamia before the Hellenistic period, which we would expect, given 
their proximity and the records we have of their economic and political 
contacts. Earlier, Parker (1972) had examined the evidence for a spread of 
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Mesopotamian algebra and geometry to Egypt. He pointed out that certain 
parallel developments in both geometry and algebra provided at least some 
support for links between the two cultural areas. This has now been re
inforced by Friberg (2005), who examined “Egyptian mathematics against 
an up-to-date background in the history of Mesopotamian mathematics.” 
We will discuss Friberg’s work in greater detail in chapter 5. However, given 
that there is more evidence than hitherto believed, we represent the con-
tacts between Egypt and Mesopotamia by a two-headed arrow in figure 1.4.

There is also evidence of the great debt that Greece owed to Egypt and 
Mesopotamia for its earlier mathematics and astronomy. We have men-
tioned the acknowledgment of this debt by the Greeks themselves, who be-
lieved that mathematics originated in Egypt. The travels of the early Greek 
mathematicians such as Thales, Pythagoras, and Eudoxus to Egypt and 
Mesopotamia in search of knowledge have been attested to both by their 
contemporaries and by later historians writing on the period. The period 
of greatest Egyptian influence on the Greeks may have been the first half 
of the first millennium BC. The Greek colonies scattered across the Medi-
terranean provided a wide channel of interchange. It is at the time of their 
heyday that we hear of Anaximander of Miletus (610–546 BC) introduc-
ing the gnomon (a geometric shape of both mathematical and astronomi-
cal significance)14 from Babylon. During the same period, contacts with 
the Greeks were maintained through the campaigns of the Assyrian king 
Sargon II (722–705 BC), and later through Ashurbanipal’s occupation of 
Egypt and his meeting with Gyges of Lydia toward the middle of the sev-
enth century BC. Even when Assyria ceased to exist, the Jewish captivity 
played a significant part in disseminating Babylonian learning. This was 
followed by the Persian invasion of Greece at the beginning of the fifth 
century and the final defeat of the Persians at the end of the fifth century. 
Thus continuous contacts were maintained throughout a period in which 
Greek mathematics was still in its infancy, as the foundations were being 
laid for the flowering of Greek creativity in a couple of centuries. In the 
next five hundred years, the pupil would learn and develop sufficiently to 
teach the teachers.

Adding to these historical conjectures, there is now stronger evidence 
of links between the mathematical traditions of Egypt, Mesopotamia, and 
Greece. In a recent book Friberg (2007b) has argued as a sequel to his ear-
lier thesis (Friberg 2005) of “unexpected links between Egyptian and Bab
ylonian mathematics” that there are “amazing traces of a Babylonian origin 
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in Greek mathematics.”15 These “traces” (discussed in chapter 5) are found 
in the fact that several of the famous Greek mathematicians showed an 
easy familiarity with what Friberg describes as Babylonian “metric alge-
bra,” that is, a characteristic approach that combines geometry, metrology, 
and the solution of quadratic equations.

The transmissions to Greece from the two areas are shown in figure 
1.4 by the arrows from 2 in Egypt and 2b in Mesopotamia to 1 in Greece. 
All three areas then became part of the Hellenistic world, and during the 
period between the third century BC and the third century AD, and partly 
due to the interaction between the three mathematical traditions, there 
emerged one of the most creative periods in mathematics. We usually as-
sociate this period with names such as Euclid, Archimedes, Apollonius and 
Diophantus. But if Friberg’s thesis is sustained, there was a ‘non-Euclidean 
lower level’ of mathematics present in these traditions. These links are 
represented by the double lines between 3 in Egypt, 2 in Greece and 3 in 
Mesopotamia.

The geographical location of India made it throughout history an im-
portant meeting place of nations and cultures. This enabled India from the 
very beginning to play an important role in the transmission and diffusion 
of ideas. The traffic was often two-way, with Indian ideas and achievements 
traveling abroad as easily as those from outside entered. Archaeological evi-
dence shows both cultural and commercial contacts between Mesopotamia 
and the Indus Valley. While there is no direct evidence of mathematical 
exchange between the two cultural areas, certain astronomical calculations 
of the longest and shortest day included in the Vedanga Jyotisa, the oldest 
extant Indian astronomical/astrological text, as well as the list of twenty-
eight nakshatras found in the early Vedic texts, have close parallels with 
those used in Mesopotamia. And hence the tentative link, shown by broken 
lines in figure 1.4, between 1 in Mesopotamia and 1 in India.16

The relative seclusion that India had enjoyed for centuries was broken 
by the invasion of the Persians under Darius around 513 BC. In the ensu-
ing six centuries, except for a century and a half of security under the Mau-
ryan dynasty, India was subjected to incursions by the Greeks, the Sakas, 
the Pahlavas, and the Kusanas. Despite the turbulence, the period offered 
an opportunity for a close and productive contact between India and the 
West. Beginning with the appearance of the vast Persian empire, which 
touched Greece at one extremity and India at the other, tributes from 
Greece and from the frontier hills of India found their way to the same 
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imperial treasure houses at Ecbatana or Susa. Soldiers from Mesopotamia, 
the Greek cities of Asia Minor, and India served in the same armies. The 
word indoi for Indians began to appear in Greek literature. Certain inter-
esting parallels between Indian and Pythagorean philosophy have already 
been pointed out. Indeed, according to some Greek sources, Pythagoras 
had ventured as far afield as India in his search for knowledge.

By the time Ptolemaic Egypt and Rome’s Eastern empire had established 
themselves just before the beginning of the Christian era, Indian civiliza-
tion was already well developed, having founded three great religions—
Hinduism, Buddhism, and Jainism—and expressed in writing some subtle 
currents of religious thought and speculation as well as fundamental theo-
ries in science and medicine. There are scattered references to Indian sci-
ence in literary sources from countries to the west of India after the time of 
Alexander. The Greeks had a high regard for Indian “gymnosophists” (i.e., 
philosophers) and Indian medicine. Indeed, there are various expressions 
of nervousness about the Indian use of poison in warfare. In a letter to his 
pupil Alexander in India, Aristotle warns of the danger posed by intimacy 
with a “poison-maiden,” who had been fed on poison from her infancy so 
that she could kill merely by her embrace!

There is little doubt that the Mesopotamian influence on Indian as-
tronomy continued into the Hellenistic period, when the astronomy and 
mathematics of the Ptolemaic and Seleucid dynasties became important 
forces in Indian science, readily detectable in the corpus of astronomical 
works known as Siddhantas, written around the beginning of the Chris-
tian era. Evidence of such contacts (especially in the field of medicine) has 
been found in places such as Jund-i-Shapur in Persia dating from between 
AD 300 and 600. As mentioned earlier, Jund-i-Shapur was an important 
meeting place of scholars from a number of different areas, including In-
dians and, later, Greeks who sought refuge there with the demise of Alex-
andria as a center of learning and the closure of Plato’s Academy. All such 
contacts are shown in figure 1.4 by lines linking 2 in India to 1 in Greece 
and 3 in India to the Hellenistic cultural areas.

By the second half of the first millennium AD, the most important con-
tacts for the future development of mathematics were those between India 
and the Islamic world. This is shown by the arrow from 3 in India to 1 in 
the “Arab” world. As we saw in figure 1.3, the other major influence on the 
Islamic world was from the Greek cultural areas, and the nature of these 
influences has been discussed in some detail. As far as Indian influence via 
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the Islamic world on the future development of mathematics is concerned, 
it is possible to identify three main areas:

1. � The spread of Indian numerals and their associated algorithms, first 
to the Islamic world and later to Europe

2. � The spread of Indian trigonometry,17 especially the use of the sine 
function

3. � The solutions of equations in general, and of indeterminate equa-
tions in particular18

These contributions will be discussed in chapters 8–10, which deal with 
Indian mathematics.

We have already looked briefly at the contributions of Islamic scholars 
as producers, transmitters, and custodians of mathematical learning. Their 
role as teachers of mathematics to Europe is not sufficiently acknowledged. 
The arrow from 1 in the “Arab” world to 1 in Europe represents the crucial 
role of the Islamic world in the creation and spread of mathematics, which 
culminated in the birth of modern mathematics. These contributions will 
be discussed in the final chapter of this book.

Figure 1.4 shows another important cross-cultural contact, between 
India and China. There is very fragmentary evidence (as shown by the 
broken line between 2 in India and 2 in China) of contacts between the 
two countries before the spread of Buddhism into China. After this, from 
around the first century AD, India became the center for pilgrimage of 
Chinese Buddhists, opening the way for a scientific and cultural exchange 
that lasted for several centuries. In a catalogue of publications during the 
Sui dynasty (c. 600), there appear Chinese translations of Indian works on 
astronomy, mathematics, and medicine. Records of the Tang dynasty in-
dicate that from 600 onward Indian astronomers were hired by the Astro-
nomical Board of Changan to teach the principles of Indian astronomy. The 
solution of indeterminate equations, using the method of kuttaka in India 
and of qiuyishu in China, was an abiding passion in both countries. The na-
ture and direction of transmission of mathematical ideas between the two 
areas is a complex but interesting problem, one to which we shall return in 
later chapters. The two-headed arrow linking 3 in India with 3 in China is 
a recognition of the existence of such transmission. Also, there is some evi-
dence of a direct transmission of mathematical (and astronomical) ideas 
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between China and the Islamic world, around the beginning of the second 
millennium AD.19 Numerical methods of solving equations of higher order 
such as quadratics and cubics, which attracted the interest of later Islamic 
mathematicians, notably al-Kashi (c. 1400), may have been influenced 
by Chinese work in this area. There is every likelihood that some of the 
important trigonometric concepts introduced into Chinese mathematics 
around this period may have an Islamic origin.

There are broken lines of transmission in figure 1.4 that need some ex-
planation. One of the conjectures posed and elaborated in chapter 10 is the 
possibility that mathematics from medieval India, particularly from the 
southern state of Kerala, may have had an impact on European mathemat-
ics of the sixteenth and seventeenth centuries. While this cannot be sub-
stantiated at present by existing direct evidence, the circumstantial evidence 
has become much stronger as a result of some recent archival research. The 
fact remains that around the beginning of the fifteenth century Madhava of 
Kerala derived infinite series for p and for certain trigonometric functions, 
thereby contributing to the beginnings of mathematical analysis about 250 
years before European mathematicians such as Leibniz, Newton, and Greg-
ory were to arrive at the same results from their work on infinitesimal cal-
culus. The possibility of medieval Indian mathematics influencing Europe is 
indicated by the arrow linking 4 in India with 1 in Europe.

During the medieval period in India, especially after the establishment 
of Mughal rule in North India, the Arab and Persian mathematical sources 
became better known there. From about the fifteenth century onward 
there were two independent mathematical developments taking place, 
one Sanskrit-derived and constituting the mainstream tradition of Indian 
mathematics, then best exemplified in the work of Kerala mathematicians 
in the South, and the other based in a number of Muslim schools (or ma‑
drassahs) located mainly in the North. We recognize this transmission by 
constructing an arrow linking 1 in the Arab world to 4 in India. A discus-
sion of the flourishing mathematical tradition introduced into India dur-
ing the medieval times, where the sources were Persian and Arabic texts, 
will be found in chapter 9.

The medieval period also saw a considerable transfer of technology and 
products from China to Europe, which has been thoroughly investigated 
by Lach (1965) and Needham (1954). The fifteenth and sixteenth centuries 
witnessed the culmination of a westward flow of technology from China 
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that had started as early as the first century AD. It included, from the list 
given by Needham (1954, pp. 240–41), the square-pallet chain pump, 
metallurgical blowing engines operated by water power, the wheelbarrow, 
the sailing carriage, the wagon mill, the crossbow, the technique of deep 
drilling, the so-called Cardan suspension for a compass, the segmental 
arch-bridge, canal lock-gates, numerous inventions in ship construction 
(including watertight compartments and aerodynamically efficient sails), 
gunpowder, the magnetic compass for navigation, paper and printing, and 
porcelain. The conjecture here is that with the transfer of technology went 
certain mathematical ideas, including different algorithms for extracting 
square and cube roots, the “Chinese remainder theorem,” solutions of cu-
bic and higher-order equations by what is known as Horner’s method, and 
indeterminate analysis. Such a transmission from China need not have 
been a direct one but may have taken place through India and the Islamic 
world. We shall return to the question of influences and transmission from 
China to the rest of the world in chapter 7.

During the first half of the first millennium of the Christian era, the 
Central American Mayan civilization attained great heights in a number 
of different fields including art, sculpture, architecture, mathematics, and 
astronomy. In the field of numeration, the Maya shared in two fundamen-
tal discoveries: the principle of place value and the use of zero. Present 
evidence indicates that the principle of place value was discovered in-
dependently four times in the history of mathematics. At the beginning 
of the second millennium BC, the Mesopotamians were working with a 
place-value notational system to base 60. Around the beginning of the 
Christian era, the Chinese were using positional principles in their rod 
numeral computations. Between the third and fifth centuries AD, Indian 
mathematicians and astronomers were using a place-value decimal system 
of numeration that would eventually be adopted by the whole world. And 
finally, the Maya—apparently cut off from the rest of the world—had de-
veloped a positional number system to base 20. As regards zero, there are 
only two original instances of its modern use in a number system: by the 
Maya and by the Indians around the beginning of the Christian era.

But mathematics is not the only area in which the Maya surprise us. 
With the most rudimentary instruments at their disposal they undertook 
astronomical observations and calendar construction with a precision that 
went beyond anything available in Europe at that time. They had accurate 
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estimates of the duration of solar, lunar, and planetary movements. They 
estimated the synodic period of Venus (i.e., the time between one appear-
ance at a given point in the sky and its next appearance at that point) to 
be 584 days, which is an underestimate of 0.08 days. They achieved these 
discoveries with no knowledge of glass or, consequently, of any sort of opti-
cal device. Neither did they apparently have any device for measuring the 
passage of time, such as clocks or sandglasses, without which it would now 
seem impossible to produce astronomical data.

Figure 1.5 shows the geographical areas whose mathematics form the 
subject matter of this book. I am conscious of not having examined in suf-
ficient detail the mathematical pursuits of other groups, notably the Af-
ricans south of the Sahara, the Amerindians of North America, and the 
indigenous Australasians, although the topics treated in chapter 2 should 
go some way in making up for this neglect.20 Much research still needs to 
be done on mathematical activities in these areas, despite some promising 
work on ethnomathematics in recent years, notably by Gerdes (1995, 1999, 
2002) and Zaslavsky (1973a) on African mathematics.21

Since the publication of the first edition of this book in 1991, there has 
been an increase in interest in ethnomathematics, or the study of math-
ematical concepts in their cultural context, often within socially cohesive 
and small‑scale indigenous groups. Within the definition of mathematics 
given earlier, the emphasis is on how structures and systems of ideas in-
volving number, pattern, logic, and spatial configuration arose in different 
cultures. This view has had to contend with the strongly entrenched notion 
that mathematics, having originated in some primitive unformed state, ad-
vanced in a linear direction to the current state of modern mathematics 
and will continue to grow in that direction. A mathematical system that 
emerges in a culture removed from this “mainstream” would then be per-
ceived as a mere distraction of little relevance to the ideas and activities 
supported by modern mathematics.

A telling criticism of the first edition of The Crest of the Peacock is that it 
implicitly subscribed to this “linear” view, being “epistemologically based 
on the idea of direct literal translations of non‑western mathematics to the 
western tradition” (Eglash 1997, p. 79). In response to this criticism and 
in subsequent editions, the coverage has been extended to include areas 
in the Pacific and elaborate further on the mathematical activities in the 
African and American continents.
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Notes

1. The term “cultural dependencies” is used here to describe those countries—notably 
the United States, Canada, Australia, and New Zealand—which are inhabited mainly 
by populations of European origin or which have historical and cultural roots similar to 
those of European peoples. For the sake of brevity, the term “Europe” is used hereafter 
to include these cultural dependencies as well.

2. This is a variation on the famous Needham question (named after Joseph Needham, 
the well-known twentieth-century British scientist and sinologist): Why did modern 
science develop in Europe when China with its momentous inventions like printing 
and gunpowder seemed so much better placed to achieve it? A similar question may be 
asked substituting instead of China the names of India or the Islamic world. For further 
discussion, see Bala (2006) and Bala and Joseph (2007).

3. See Brohman (1995a, 1995b) for further details.

4. The shift has occurred not only in the history of mathematics. The traditional Euro-
centric world history presupposed the existence of an imaginary line of “civilizational 
apartheid” between the European and the non-European world whereby the former 
had single-handedly propelled the whole world from tradition into modernity while 
the latter remained stagnant. In recent years, spurred by a non-Eurocentric global his-
tory focusing on the historical resource portfolios (i.e., ideas, institutions, and tech-
nologies) diffused from the East across to the West, one discerns the emergence of what 
may be described as a neo-Eurocentric approach: one that acknowledges the borrowing 
of non-Western resources in the rise of the West but recasts Europe as “cosmopoli-
tan, tolerant, open to others ideas, and highly adaptive insofar as it put all these non-
Western sources together in a unique way to produce modernity.” I am grateful to John 
Hobson for making this point in a private communication. It follows logically from his 
book The Eastern Origins of Western Civilisation (2004). 

5. These parallels include (a) a belief in the transmigration of souls; (b) the theory of 
four elements constituting matter; (c) the reasons for not eating beans; (d) the structure 
of the religio-philosophical character of the Pythagorean fraternity, which resembled 
Buddhist monastic orders; and (e) the contents of the mystical speculations of the Py-
thagorean schools, which bear a striking resemblance to the Hindu Upanishads. Ac-
cording to Greek tradition, Pythagoras, Thales, Empedocles, Anaxagoras, Democritus, 
and others undertook journeys to the East to study philosophy and science. While it 
is far-fetched to assume that all these individuals reached India, there is a strong pos-
sibility that some of them became aware of Indian thought and science through Persia.

6. It is interesting to note that the terminology used in modern mathematics has a 
mixed origin consisting mainly of Greek, Latin, and modern European languages. The 
terms used in both Egyptian and Mesopotamian texts date back to the period before 
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the Greeks. Given the nature and scope of this book, we will continue to use modern 
terminology and avoid literal translations of the technical terms given in the ancient 
texts. Thus, for example, we use the modern term “triangle” (three angles) rather than 
the Babylonian term translated as “wedge” (three sides). The concept of an “angle” came 
only with the Greeks. A right-angled triangle in Old Babylonian mathematics had no 
angle connotation and was literally transliterated as one of two triangles into which 
a rectangle was divided by the longer diagonal. Similarly, although we use a modern 
term such as a “square” in the presentation of the ancient mathematics of Egypt and 
Mesopotamia, it should be noted that the corresponding term in these texts is “equal 
side” (or “same side”). 

7. In terms of historical, geographical, as well as intellectual proximity, Islamic sci-
ence could be regarded as the most immediate predecessor of modern Western sci-
ence. Some of the more recent studies (Bala 2006; Saliba 2007) show the existence 
of epistemological links between the two sciences. The “mathematicization” of nature, 
the centrality of the empirical method in scientific methodology, and the rationality of 
scientific discourses are features of Islamic science inherited by founders of modern 
Western science.

8. They include (a) an early description of pulmonary circulation of the blood, by ibn 
al-Nafis, usually attributed to Harvey, though there are records of an even earlier ex-
planation in China; (b) the first known statement about the refraction of light, by ibn 
al-Hayatham, usually attributed to Newton; (c) the first known scientific discussion of 
gravity, by al-Khazin, again attributed to Newton; (d) the first clear statement of the idea 
of evolution, by ibn Miskawayh, usually attributed to Darwin; and (e) the first exposition 
of the rationale underlying the “scientific method,” found in the works of ibn Sina, ibn 
al-Hayatham, and al-Biruni but usually credited to Roger Bacon. A general discussion of 
the Western debt to the Middle East is given by Savory (1976), while detailed references 
to specific contributions of Islamic science are given by Gillespie (1969– ).

9. Jund-i-Shapur (or Guneshahpuhr) was founded around AD 260 by Shahpuhr I 
(241–272) to settle Roman prisoners captured in the war against Valerian and was lo-
cated in Khuzistan in southwestern Iran. Early settlers included Roman engineers and 
physicians, and doubtless others who may have been acquainted with Greek, Egyptian, 
and Mesopotamian mathematics. The Christian bishop Demetrianus from Antioch 
founded a bishopric there, and during the fifth and sixth centuries Nestorianism was 
the only form of Christianity permitted in Iran. This intolerance contrasted with the 
openness and tolerance exhibited toward other religious immigrants, for when Zeno 
closed the School of the Persians in Edessa (AD 489), its intellectual and spiritual cen-
ter moved to Persian Nisibis, where the exiles re-created their famous seat of learning. 
The Medical School of Jund-i-Shapur was founded on Greek medical knowledge (itself 
from Egyptian and Babylonian) by these Nestorian physicians. In the realms of phi-
losophy, it is often forgotten that the Sasanian king Khusro I welcomed the major seven 
Neoplatonist Greek philosophers who fled Athens in 529 when the Academy there was 
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closed on the orders of the Byzantine Justinian. Some of these scholars worked for some 
time at Jund-i-Shapur but became homesick; Khusro negotiated their safe conduct and 
pardon for their return to Athens. Indeed, it was said of the enlightened Khusro that 
he was “a disciple of Plato seated on the Persian throne.” The Jund-i-Shapur Medical 
School remained a center of excellence right through to Islamic times and indeed well 
past the mid-ninth century. While there are no extant records relating to mathemati-
cal activities in Jund-i-Shapur, we have evidence to indicate that during the reign of 
Shahpuhr I and later Khusro I, translations into Middle Persian (Pahlavi) were made 
in Iran from Greek and Sanskrit texts. It is more than likely that these included texts in 
astronomy, mathematics, and other sciences. After the downfall of the Sasanians, the 
Islamic regimes of the caliphs were by turns favorable or otherwise to the ancient learn-
ing enshrined at Jund-i-Shapur. Either way, Islamic knowledge was vastly increased 
through such deep and enduring exchanges.

10. This familiar story (or even some believe a caricature) about the role played by the 
House of Wisdom is now being reassessed. For further details see Gutas (1998) and 
Saliba (2007). See also endnote 2 of chapter 11.

11. But see the comment and reference given in endnote 24 of chapter 11 for further 
clarification.

12. A Spanish dictionary gives the following meanings: álgebra. 1. f. Parte de las ma-
temáticas en la cual las operaciones aritméticas son generalizadas empleando números, 
letras y signos. 2. f. desus. Arte de restituir a su lugar los huesos dislocados (translation: 
the art of restoring broken bones to their correct positions).

13. For further details of these transmissions, see Zaimeche (2003, p. 10). 

14. Gnomon is an ancient Greek word meaning “indicator” or “that which reveals.” 
There are references to the gnomon in other traditions, for example, the seminal Chi-
nese text Nine Chapters on the Mathematical Art, and it was referred to earlier by the 
Duke of Zhou (eleventh century BC). “Gnomon” also refers to the triangular part of a 
sundial that casts the shadow.

15. In the concluding paragraph Friberg (2005, p. 270) writes: “The observation that 
Greek ostraca [i.e., limestone chippings and pottery used as writing material] and pa-
pyri with Euclidean mathematics existed side by side with demotic and Greek papyri 
with Babylonian style mathematics is important for the reason that this surprising cir-
cumstance is an indication that when the Greeks themselves claimed that they got their 
mathematics from Egypt, they can really have meant that they got their mathematical 
inspiration from Egyptian texts with the mathematics of the Babylonian type. To make 
this thought more explicit would be a natural continuation of the present investigation.” 
Friberg (2007) is the continuation of the investigation alluded to and provides the ma-
terial for the Greek links with the two earlier civilizations. 
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16. In the case of Indian astronomy and the mathematics associated with it, the early 
influences from Mesopotamia came through the mediation of the Greeks. Probably 
in the fifth century BC, India acquired Babylonian astronomical period relations and 
arithmetic (e.g., representing continuously changing quantities with “zigzag” func-
tions). Around the early centuries AD, the Babylonian arithmetical procedures were 
combined with Greek geometrical methods to determine solar and lunar positions, as 
reported in the Indian astronomical treatises Romaka-siddhanta and Paulisa-siddhanta. 
For further details, see Pingree (1981).

17. Since this is the first time we use the term “trigonometry,” a word of caution is nec-
essary. Trigonometry (meaning “triangle measurement”) is a relatively modern term 
dating back to the sixteenth century. While today we have difficulty disentangling the 
concept of trigonometry from the ratio of sides in a right-angled triangle, for a long 
period of history the concept related only to circles and their arcs. And this was par-
ticularly so for the Greeks and the Indians. It was a search for a measure of the angle (or 
the inclination) of one line to another, an interest (and ability) to estimate the lengths 
of line segments, and a “systematic ability to convert back and forth between measures 
of angles and of lengths” that gave rise to modern trigonometry. I am grateful to Van 
Brummelen (2008) for this insight.

18. An example of an indeterminate equation in two unknowns (x and y) is 3x + 4y = 
50, which has a number of positive whole-number (or integer) solutions for (x, y). For 
example, x = 14, y = 2 satisfies the equation, as do the solution sets (10, 5), (6, 8) and 
(2, 11).

19. An exchange of astronomical knowledge took place between the Islamic world and 
the Yuan dynasty in China in the latter part of the thirteenth century, when both ter-
ritories were part of the Mongol empire. A few Chinese astronomers were employed at 
the observatory in Maragha (set up by Hulegu Khan in 1258) and probably helped in 
the construction of the Chinese-Uighur calendar (a type of a lunisolar calendar or a cal-
endar whose date indicates both the phase of the moon and the time of the solar year). 
This calendar was widely used in Iran from the late thirteenth century onward. There 
were at least ten Islamic astronomers working in the Islamic Astronomical Bureau in 
Beijing founded by the first Mongol emperor of China, Kublai Khan, in 1271. At this 
bureau, continuous observations were made and a zij (or astronomical handbook with 
tables) was compiled in Persian. This work was then translated into Chinese during 
the early Ming dynasty (1383) and, together with Kushayar’s influential Islamic text, 
Introduction to Astrology, served for a number of years as important sources for further 
research and study by Chinese scholars. For further details, see van Dalen (2002). 

20. It could be argued that in the examples discussed in chapter 2 there is undue em-
phasis on the role of number systems and insufficient attention paid to what Gerdes 
(1995) describes as “frozen geometry.” These would include geometric or logical re-
lationships embedded in diverse activities such as basket weaving, knitting, and sand 
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drawings highlighted by scholars such as Gerdes (1999) and Harris (1997). The prob-
lem in including such ethnomathematical activities is partly one of determining their 
historical origins and partly one of deciding what are to be included/excluded given the 
scope of this book. 

21. The burgeoning study of African mathematics in recent years has highlighted a 
variety of mathematics that goes under the blanket term “ethnomathematics.” Ram-
bane and Mashige (2007, 184–85) have constructed the following list, with references 
to those who have worked in these areas. 

1. Oral mathematics. The mathematical knowledge that is transmitted orally 
from one generation to another.

2. Oppressed mathematics. The mathematical elements in daily life that remain 
unrecognized by the dominant (colonial and neocolonial) ideologies (Gerdes 
1985b).

3. Indigenous mathematics. A mathematical curriculum that uses everyday in-
digenous mathematics as the starting point. The origin of this concept is found 
in Gay and Cole (1967), who criticized the teaching of Kpelle children in Liberia 
in Western-oriented schools “things that have no point or meaning within their 
culture.” 

4. Sociomathematics of Africa. “The applications of mathematics in the lives of 
African people, and, conversely, the influence that African institutions had upon the 
evolution of their mathematics” (Zaslavsky 1973b, 1991). 

5. Informal mathematics. Mathematics that is transmitted and learned outside 
the formal system of education, sometimes referred to as “street mathematics” (Pos-
ner 1982; Nunes et al. 1993). 

6. Nonstandard mathematics. A distinctive mathematics beyond the standard 
form, found outside the school and university (Gerdes 1985b). 

7. Hidden or frozen mathematics. Mathematics that has to be unfrozen from 
“hidden” or frozen objects or techniques, such as basket making, weaving, or tradi-
tional architecture (Gerdes 1985b).



Chapter Two

Mathematics from Bones, Strings,  
and Standing Stones

It is taking an unnecessarily restrictive view of the history of mathematics 
to confine our study to written evidence. Mathematics initially arose from 
a need to count and record numbers. As far as we know there has never 
been a society without some form of counting or tallying (i.e., matching a 
collection of objects with some easily handled set of markers, whether it 
be stones, knots, or inscriptions such as notches on wood or bone). If we 
define mathematics as any activity that arises out of, or directly generates, 
concepts relating to numbers or spatial configurations together with some 
form of logic, we can then legitimately include in our study protomath-
ematics, which existed when no written records were available.

Beginnings: The Ishango Bone

High in the mountains of central equatorial Africa, on the borders of 
Uganda and Congo, lies Lake Rutanzige (Edward), one of the furthest 
sources of the river Nile. It is a small lake by African standards, about 
eighty kilometers long and fifty wide. Though the area is remote and 
sparsely populated today, about twenty-five thousand years ago by the 
shores of the lake lived a small community that fished, gathered food, or 
grew crops, depending on the season of the year. The settlement had a 
relatively short life span of a few hundred years before being buried in a 
volcanic eruption. These Neolithic people have come to be known as the 
Ishango, after the place where their remains were found. There exists today 
a small village by that name.

Archaeological excavations at Ishango have unearthed human remains 
and tools for fishing, hunting, and food production (including grinding 
and pounding stones for grain). Harpoon heads made from bone may have 
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served as prototypes for tools discovered as far away as northern Sudan 
and West Africa. However, the most interesting find, from our point of 
view, is a bone tool handle (figure 2.1) which is now at the Musée d’Histoire 
Naturelle in Brussels.1 The original bone may have petrified or undergone 
chemical change through the action of water and other elements. What 
remains is a dark brown object on which some markings are clearly visible. 
At one end is a sharp, firmly fixed piece of quartz which may have been 
used for engraving, tattooing, or even writing of some kind.

The markings on the Ishango bone, as it is called, consist of series of 
notches arranged in three distinct rows. The asymmetrical grouping of 
these notches, as shown in figure 2.1, would make it unlikely that they were 
put there merely for decorative purposes. Row (a) contains four groups 
of notches with 9, 19, 21, and 11 markings. In row (b) there are also four 
groups, of 19, 17, 13, and 11 markings. Row (c) has eight groups of notches 
in the following order: 7, 5, 5, 10, 8, 4, 6, 3. The last two groups (6, 3) are 

Figure 2.1: The Ishango bone (Courtesy of Dr. J. de Heinzelin)
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spaced closer together, as are (8, 4) and (5, 5, 10), suggesting a deliberate 
arrangement in distinct subgroups.

If these groups of notches were not decorative, why were they put there? 
An obvious explanation is that they were simply tally marks. Permanent 
records of counts maintained by scratches on stones, knots on strings, or 
notches on sticks or bones have been found all over the world, some going 
back to the very early history of human habitation. During an excavation of 
a cave in the Lebembo Mountains on the borders of Swaziland in southern 
Africa, a small section of the fibula of a baboon was discovered, with 29 
clearly visible notches, dating to about 35,000 BC.2 This is one of the earliest 
artifacts we have that provide evidence of a numerical recording device. An 
interesting feature of this bone is its resemblance to the “calendar sticks” 
still used by some inhabitants of Namibia to record the passage of time. 
From about five thousand years later we have the shin-bone of a young wolf, 
found in Czechoslovakia, which contains 57 deeply cut notches arranged in 
S-shaped groups. It was probably a record kept by a hunter of the number 
of kills to his credit. Such artifacts represent a distinct advance, a first step 
toward constructing a numeration system, whereby the counting of objects 
in groups is supplemented by permanent records of these counts.

However, the Ishango bone appears to have been more than a simple 
tally. Certain underlying numerical patterns may be observed within each 
of the rows marked (a) to (c) in figure 2.1. The markings on rows (a) and 
(b) each add up to 60: 9 19 21 11 60+ + + = , and 19 17 13 11 60+ + + = , 
respectively. Row (b) contains the prime numbers between 10 and 20. Row 
(a) is quite consistent with a numeration system based on 10, since the 
notches are grouped as , ,20 1 20 1 10 1+ − + , and 10 1- . Finally, row (c), 
where subgroups (5, 5, 10), (8, 4), and (6, 3) are clearly demarcated, has 
been interpreted as showing some appreciation of the concept of duplica-
tion or multiplying by 2.

De Heinzelin (1962), the archaeologist who helped to excavate the 
Ishango bone, wrote that it “may represent an arithmetical game of some 
sort, devised by a people who had a number system based on 10 as well as 
a knowledge of duplication and of prime numbers” (p. 111). Further, from 
the existing evidence of the transmission of Ishango tools, notably har-
poon heads, northward up to the frontiers of Egypt, de Heinzelin consid-
ered the possibility that the Ishango numeration system may have traveled 
as far as Egypt and influenced the development of its number system, the 
earliest decimal-based system in the world.
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The African origins of Egyptian civilization are well attested to by ar-
chaeological and early written evidence. Herodotus wrote of the Egyptian 
people and culture having strong African roots, coming from the lands of 
the “long-lived Ethiopians,” which meant in those days the vast tract of in-
ner Africa inhabited by black people. However, de Heinzelin’s speculations 
about the state of mathematical knowledge of the Ishango, based as they 
are on the evidence of a single bone, seem far-fetched. A single bone with 
suggestive markings raises interesting possibilities of a highly developed 
sense of arithmetical awareness; it does not provide conclusive evidence.

There is, however, another answer, more firmly rooted in the cultural 
environment, to the puzzle of the Ishango bone. Rather than attribute the 
development of a numeration system to a small group of Neolithic set-
tlers living in relative isolation on the shores of a lake, apparently cut off 
from other traceable settlements of any size and permanence, a more plau-
sible hypothesis is that the bone markings constitute a system of sequential 
notation—for example, a record of different phases of the moon. Whether 
this is a convincing explanation would depend in part on establishing the 
importance of lunar observations in the Ishango culture, and in part on 
how closely the series of notches on the bone matches the number of days 
contained in successive phases of the moon.

Archaeological evidence of seasonal changes in the habitat and activity 
of the Ishango highlights how important it was to maintain an accurate lu-
nar calendar. At the beginning of the dry season, the Ishango moved down 
to the lake from the hills and valleys that formed their habitat during the 
rains. For those who were permanently settled along the shores of the lake, 
the onset of the dry season brought animals and birds to the lake in search 
of water. Now assume, for the sake of argument, that migration took place 
around the full moon or a few days before the full moon. About six months 
later the rainy season would begin, and the water levels of the lake would 
rise. Between the beginning of the dry season and the onset of the rainy 
season, there might be festivities that coincided with particular phases of 
the moon. And such events might very well be what is recorded notation-
ally on the bone. Activities such as gathering and processing of nuts and 
seeds, or hunting, both of which archaeological evidence suggests were im-
portant in the Ishango economy, could be incorporated sequentially into 
the lunar calendar represented by the Ishango bone. Similarly, religious 
rituals associated with seasonal and other festivities could be recorded on 
the bone. Such a scenario is still conjectural, but consistent with what we 
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know of present-day peoples who still follow the hunter-gatherer lifestyle 
of the Ishango.

A cursory examination of the pattern of notches on the Ishango bone 
shows no obvious regularity that one can associate with lunar phenomena. 
Two of the rows add up to 60, so that each of these rows may be said to rep-
resent two lunar months. The third row contains only 48 notches, which 
would account for only a month and a half. But a mere count of the notches 
would ignore the possible significance of the different sizes and shapes of 
the markings as well as the sequencing of the subgroups demarcated on 
the bone.

Marshack (1972) carried out a detailed microscopic examination of the 
Ishango bone and found markings of different indentations, shapes, and 
sizes. He concluded that there was evidence of a close fit between different 
phases of the moon and the sequential notation contained on the bone, 
once the additional markings—visible only through the microscope—were 
taken into account. Also, the different engravings represented by markings 
of various shapes and sizes may have been a calendar of events of a ceremo-
nial or ritual nature.

These conjectures about the Ishango bone highlight three important 
aspects of protomathematics. First, the close link between mathematics 
and astronomy has a long history and is tied up with the need felt even 
by early humans to record the passage of time, out of curiosity as well as 
practical necessity. Second, there is no reason to believe that early humans’ 
capacity to reason and conceptualize was any different from that of their 
modern counterparts. What has changed dramatically over the years is the 
nature of the facts and relationships with which human beings have had 
to operate. Thus the creation of a complicated system of sequential nota-
tion based on a lunar calendar was well within the capacity of prehistoric 
humans, whose desire to keep track of the passage of time and changes 
in seasons was translated into observations of the changing aspect of the 
moon. Finally, in the absence of records, conjectures about the mathemati-
cal pursuits of early human beings have to be examined in the light of their 
plausibility, the existence of convincing alternative explanations, and the 
quality of evidence available. A single bone may well collapse under the 
heavy weight of conjectures piled upon it.3

The notches of the Ishango bone open up other interesting conjectures. 
The epoch of the Ishango bone was around the same period when women 
were supposedly the temporal and spiritual leaders of their clans. Since a 
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woman’s menstrual cycle mimics the phases of the moon, would it be too 
fanciful to argue that the markings on the bone represent an early calendar 
of events of a ceremonial or ritual nature superimposed on a record of a 
lunar/menstrual cycle constructed by a woman? After all, among the Siaui 
of the Solomon Islands in the Pacific, a menstruating female is described 
as “going to the moon.”4

There is yet another interpretation.5 The Ishango bone may have been a 
precursor of writing. In that case, writing originated not in drawing figures 
or in attempting to record speech but in storing numerical information. The 
rows of notches became “graphically isomorphic” to the recorder’s counting 
numbers. In this and subsequent chapters, there are illustrations of count-
ing systems with forms of recording in which the iconic origin of the dash 
or stroke is the human digit (i.e., the finger or toe). These strokes are graphi-
cally isomorphic with the corresponding words used for counting. It makes 
little difference whether we “read” the sign pictorially, as standing for so 
many fingers held up, or in “script,” as standing for a certain numeral.

Counting Systems and Numeration: The Pacific Dimension
The study of worldwide systems of numeration as they occur in natural 
languages has had a checkered career. A rich source of information on “ex-
otic” languages and customs from the published literature of the explorers, 
administrators, and missionaries forms the core of the data now available 
on non-European counting systems. Initiated originally by those inter-
ested in linguistics and anthropology, the subject is now of only marginal 
interest to these groups. Yet no growth of interest on the part of historians 
or philosophers of mathematics has matched the waning interest on the 
part of the linguist or the ethnographer.

There are various reasons for this lack of interest. For the Western phi-
losopher, the study of natural-language number systems seems to have 
little or no relevance to understanding the nature of number—an abstract 
philosophical concept derived from ancient Greeks and independent of 
linguistics and cultural vagaries. Historians of mathematics tend to con-
centrate on the origins of written numbers because of their uneasiness 
about straying into territories where culture and language interpose. In 
any case, they prefer to work with written records, even if these records are 
mainly confined to those in European languages. The occurrence of ideas 
relating to numbers as existing among “primitive” tribes, if considered at 
all, is mentioned in a dismissive fashion.
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This lack of interest in societies outside the usual ambit of historians and 
philosophers has had some unfortunate consequences. Societies that lack 
a tradition of historical documentation constitute the majority of world 
languages. Hence, a great part of humanity’s numeration and counting 
practices is ignored. Also, those societies whose numerical practices are 
considered in historical writing tend to fall into a small range of count-
ing types, leading to an overwhelming bias in discussions on systems that 
concentrate on base 10. Allowance may sometimes be made for irregu-
larities introduced by vestiges of base 12 (English and German) or base 20 
(French and Dutch). An unfortunate consequence of this concentration is 
the susceptibility to the reductionist fallacy that sees humans’ response to 
the need for enumeration of their world as being unvarying across time 
and culture.

A renewed interest, since the 1960s, in documenting mathematical ideas 
from non-Western societies is reflected in histories of numbers, notably 
the works of Flegg (1983), Ifrah (1985), Menninger (1969), and Schmandt-
Besserat (1999). However, part of the material on which these studies were 
based came from nineteenth-century reports of the agents of European colo-
nization. Regions such as Melanesia, Polynesia, Micronesia, and Australasia, 
which account for more than one-quarter of the existing world languages, 
have been neglected. This situation has now changed dramatically with the 
monumental twenty-one-volume “Counting Systems of Papua New Guinea 
and Oceania” by Glendon Lean (1996). The study, which remains unpub-
lished,6 is a valuable guide to natural-language counting systems used by 
nine hundred out of twelve hundred linguistic groups in Papua New Guinea, 
Irian Jaya, Solomon Islands, Vanuata, New Caledonia, and parts of Polynesia 
and Micronesia. The study relating to Papua New Guinea and Irian Jaya, the 
other half of the island of New Guinea, is especially useful since nowhere 
in the world is the diversity of cultures and languages so marked as on this 
island. This study will form the main basis of the discussion here.

To present a coherent framework for a discussion of the large database 
available from Lean’s study, a system of classifying the number systems is 
required. The classification discussed later in this chapter under the head-
ing “Emergence of Written Number Systems” is found in the older litera-
ture and is built around the descriptive term “base.” This classification is 
unsatisfactory for various reasons. It is particularly inadequate for examin-
ing “mixed” systems of counting, which may, for example, have elements 
of base 2, base 5, and base 10 at the same time.7 Also, Lean’s study indicates 
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that groups within Papua New Guinea, sometimes in close proximity to 
one another, differ in significant ways in their counting practices according 
to the importance that they attribute to the enumeration of objects as well 
as the type of objects counted, and the circumstances in which the count-
ing takes place.

Laycock (1975) introduced a clearer fourfold classification of number 
systems. The first consists of a “body part” tally system whereby num-
ber representation is based on the body and entails counting body parts 
according to a conventionally defined order. Consider the Oksapmin, a 
group found in the West Sepik Province of Papua New Guinea, as an ex-
ample. Saxe (1982) describes their counting system in the following terms: 
starting with the thumb of a hand, counting proceeds along the fingers of 
that hand, so that the little finger would be 5; it further proceeds down that 
hand, so that 7 is the forearm along the upper periphery of the body; to the 
face, with 12 being the nearest ear to the hand that has been counted; to 
the nearest eye (13); the nose (14); the other eye (15); the other ear (16); and 
down along the other side of the body to the little finger on the other hand 
(27). If necessary, one could repeat the counting process again to reach 54 
on the second count. A specific number is referred to by its associated body 
part. (See figure 2.2) 

Such a system of number representation has been applied to a range of 
diverse activities, whether counting a set of objects (e.g., number of pigs), 
measuring the length of an object (e.g., a bow), or establishing the location 
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Figure 2.2: “Body numbers” based on Saxe’s 1982 drawing
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of a house in relation to other houses on a path. And the system alters to 
take account of changing socioeconomic circumstances. Saxe describes the 
ingenious modifications in counting made by the Oksapmin with the in-
troduction of the Australian “shilling and pound” currency (1 pound = 20 
shillings): rather than using all 27 parts of the body for enumeration, an 
individual stopped at the inner elbow of the other side of the hand (20) 
and called it one “round” or one pound. When the count continued, the 
individual began a new “round” starting with the thumb of the first hand. 
In 1975, when Papua New Guinea became independent, a new currency 
in the form of kina and toea (100 toea = 1 kina, 200 toea = 2-kina note) 
was introduced.8 This did not lead to an abandonment of the old system of 
counting money. Many older Oksapmin people resorted to a “translation” 
of kina and toea into pounds and shillings, and then continued the count 
by referring to a 10-toea coin as one shilling and one 2-kina note as one 
pound.

A second type of number system, according to Laycock, is one that has 
two to four discrete number-words and a matching “base” to carry out 
the tally. For example, in the case of an indigenous Australian group, the 
Cumulgal, counting proceeds as urapon (1), ukasar (2), ukasar-urapon (3), 
ukasar-ukasar (4), ukasar-ukasar-urapon (5), indicating counting by twos 
(or a base 2 system). 

A third type is the “quinary-vigesimal” system, which has a 5, 20 cyclic 
pattern and may employ fingers and toes as an aid to tallying. For example, 
in the Melanesian language Sesake, counting proceeds as sekai (1), dua (2), 
dolu (3), pati (4), lima (5), la-tesa (6), la-dua (7), . . . , dua-lima (10), . . . , 
dua-lima dua (20). The system has a cycle of 5, in which numbers six or 
seven use the roots for words one or two respectively, and a superordinate 
cycle of 20, in which 20 is two fives twice.

The final type is a decimal system, normally with no reference to 
“body parts” and having six to ten discrete number-words. In the Mi-
cronesian language Kiribati, counting proceeds as tenuana (1), uoua (2), 
tenua (3), aua (4), nimua (5), onoua (6), itiua (7), wanua (8), ruainua (9), 
tebwina (10), tebwina-ma-tenuana (11), . . . , vabui (20), vabui-ma-tenuana 
(21), . . . , tebubua (100), . . . , tenga (1000), . . . . , tebina-tenga (10,000), . . . , 
tebubuna-tenga (100,000). Here we have a straightforward base 10 count-
ing system with no association to body parts. In Kiribiti, number-words 
also vary according to the object being counted. Thus the number-word 
for nine is ruaman when counting animals, ruakai when counting plants, 
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ruai when counting knives, ruakora when counting baskets, and rauawa 
when counting boats.

Numeration relating to time has not been a significant influence on the 
development of counting systems in the Pacific. Time is usually reckoned 
in units determined by lunar and seasonal cycles. Precision of reckoning 
is not very important, and in only two activities would reckoning time be 
significant: agriculture and ceremonial events. The Mae Enga, a group in 
New Guinea, have a lunar “calendar of events” consisting of twelve kana 
(or “garden” months) with which they monitor agriculture and other ac-
tivities. The name of each kana is indicative of the activity undertaken that 
month. A month is allocated for each activity, such as planting of specific 
crops, harvesting, preparing the “garden” for planting, as well as under
taking trading trips or engaging in fighting. It is not clear whether the Mae 
Enga ever kept a record of the passage of time as measured by their calen-
dar, such as the Ishango bone from central Africa.

The recording of ceremonial events does not require anything as elabo-
rate as a calendar. Among the Kewa, the body-part system of counting 
is sufficient to track the occurrence of ceremonial dances. According to 
Johnson (1997, p. 659), if a cycle of dances were to begin in eleven months 
time, this would be counted as komane roba summa (elbow). If the next 
occurrence of the dance were three months later, this would be shown as 
pesame roba suma (shoulder). The third occurrence, six or seven months 
later, would be counted as rigame robasuna (between the eyes). This se-
quence of dances would continue until the climax of the feast, when pigs 
were killed. This happened on the month represented by the division of 
the wrist and the finger. A number of these festivals required a strong 
numerical sense on the part of the participants, since a person’s prestige 
was measured by the quantity of pigs, shells, or any other “currency” given 
away as gifts.

The Yoruba Counting System: The African Dimension
The origins of the Yoruba people of southwestern Nigeria are lost in the 
mists of time.9 Oral traditions indicate that they came from the east, and 
certain similarities between the customs and practices of ancient Egyptians 
and those of the Yoruba would support this. These include similarities in 
religious practices and institutions, in particular, the carved idols used in 
worship, the shape and design of sacrificial altars, and the role of a power-
ful priesthood. 
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Their more recent history began with the foundation of the Oyo state 
around the early centuries of the second millennium AD. Commercial and 
other contacts with the north provided an important stimulus to scientific 
and cultural activity in the region. Later centuries saw the establishment 
of the vast Benin empire, independent of the Oyo kingdom, both of which 
were finally dissolved by the British at the end of the nineteenth century.

The Yoruba system of numeration is essentially a base 20 counting sys-
tem, its most unusual feature being a heavy reliance on subtraction. The 
subtraction principle operates in the following way. As in our system, there 
are different names for the numbers one (okan) to ten (eewa). The numbers 
eleven (ookanla) to fourteen (eerinla) are expressed as compound words that 
may be translated as “one more than ten” to “four more than ten.” But once 
fifteen (aarundinlogun) is reached the convention changes, so that fifteen 
to nineteen (ookandinlogun) are expressed as “twenty less five” to “twenty 
less one,” respectively, where twenty is known as oogun. Similarly, the num-
bers twenty-one to twenty-four are expressed as additions to twenty, and 
twenty-five to twenty-nine as deductions from thirty (ogbon). At thirty-five 
(aarundinlogun), however, there is a change in the way the first multiple 
of twenty is referred to: forty is expressed as “two twenties” (ogoji), while 
higher multiples are named ogota (three twenties), ogerin (four twenties), 
and so on to “ten twenties,” for which a new word, igba, is used. It is in the 
naming of some of the intermediate numbers that the subtraction principle 
comes into its own. To take a few examples, the following numbers are given 
names that indicate the decomposition shown on the right: 

  45	 =	 (20 # 3) - 10 - 5,

  50	 =	 (20 # 3) - 10,

108	 =	 (20 # 6) - 10 - 2,

300	 =	 20 # (20 - 5),

318	 =	 400 - (20 # 4) - 2,

525	 =	 (200 # 3) - (20 # 4) + 5.

All the numbers from 200 to 2,000 (except those that can be directly re-
lated to 400, or irinwo) are reckoned as multiples of 200. From the name 
egbewa for two thousand, compound names are constructed for numbers 
in excess of this figure using subtraction and addition wherever appropri-
ate, in ways similar to those shown in the above examples.
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The origin of this unusual counting system is uncertain. One conjec-
ture is that it grew out of the widespread practice of using cowrie shells 
for counting and computation. A description of the cowrie-shell counting 
procedure given by Mann in 1887 is interesting. From a bag containing a 
large number of shells, the counter draws four lots of 5 to make 20. Five 20s 
are then combined to form a single pile of 100. The merging of two piles of 
100 shells gives the next important unit of Yoruba numeration, 200. As a 
direct result of counting in 5s, the subtraction principle comes into opera-
tion: taking 525 as an illustration, we begin with three piles of igba (200), 
remove four smaller piles of oogun (20), and then add 5 (aarun) cowrie 
shells to make up the necessary number.

This amazingly complicated system of numeration, in which the expres-
sion of certain numbers involves considerable feats of arithmetical ma-
nipulation, runs counter to the widespread view that indigenous African 
mathematics is primitive and unsophisticated. But does it have any intrin-
sic merit for computation? As an example of a calculation that exploits 
Yoruba numeration to the full, consider the multiplication 19 # 17. The 
cowry calculator begins with twenty piles of 20 shells each. From each pile, 
1 shell is removed (-20). Then three of the piles, now containing 19 shells 
each, are also removed. The three piles are adjusted by taking 2 shells from 
one of them and adding 1 each to the other two piles to bring them back to 
20: -20 # 2 - (20 - 3). At the end of these operations, we have

400 - 20 - (20 # 2) - (20 - 3) = 323.

While the Yoruba system shows what is possible in arithmetic without a 
written number system, it is clearly impractical for more difficult multi-
plications. It is a cumbersome method requiring a good deal of recall and 
mental arithmetic. Its peculiar characteristics, the base 20 and the subtrac-
tion principle of reckoning, seem to have had only a limited impact on 
other counting systems, even within West Africa.

Further Reflections on African Mathematics
Most books on the history of mathematics ignore Africa, especially areas 
south of the Sahara. After a cursory treatment of Egyptian mathematics, 
which in any case is not often considered African, Africa disappears from 
the reckoning. The publication of Claudia Zaslavsky’s Africa Counts: Num‑
ber and Pattern in African Cultures (1973a) seems to have made little 
impression on the dominant Eurocentrism of the practitioners. Yet a recog-
nition and evaluation of Africa’s contribution to mathematics is important, 
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and not only for reasons of restoring a historical balance to the subject. 
Consideration of African mathematics reminds us of what is often forgot-
ten: mathematics is a pancultural phenomenon that manifests itself in a 
number of different ways, in counting and numeration systems, in games 
and leisure pursuits, in art and design, in record keeping and metrology. 
Our very definition of mathematics has to be broadened to include activi-
ties such as counting, locating, measuring, designing, playing, explaining, 
classifying, sorting. Further, a search for the origins and nature of African 
mathematics takes us on an adventure of establishing interdisciplinary con-
nections: between mathematics and cosmology; between mathematics and 
philosophy; between mathematics and technology; between mathematics 
and linguistics; and between mathematics and cross-cultural psychology. 
Gerdes and Djebbar (2007) has a list of references to recent studies that at-
tempt to establish these connections.

In this book, we examine in a piecemeal and scattered fashion the math-
ematics of the African continent. Apart from Egyptian mathematics, ex-
amined in chapter 3, there are brief discussions of the Ishango bone, the 
Yoruba system of numeration, and a mention in passing of the counting 
system of the Zulus. The geometry of African art and design, the math-
ematical “ingredients” of games and puzzles, and the implicit mathematics 
of certain aspects of African astronomy are ignored. Some mention of the 
type of work done in this area over the last forty years may be instruc-
tive. Ascher (1988) discusses the cultural background and mathematical 
properties of the continuous graphs drawn by the Booshong and Tshokwe 
who live on the borders of the area adjoining Angola, Zaire, and Zambia. 
In a general discussion of archaeastronomy, Aveni (1981) draws parallels 
between cultures in the tropics that appear to have adopted a horizon and 
zenith approach to the sky, as opposed to the approach with the celestial 
pole (now Polaris) and the ecliptic/celestial equator, which is more famil-
iar to those from the temperate climates. As a result, navigators tended 
to use stars on the horizon instead of compass directions. The use of the 
star compass seemed a characteristic of cultures as geographically far re-
moved as the inhabitants of the Caroline Islands in the Pacific, the Maya 
of Central America, the Mursi of Ethiopia, and the Bambara of the Sudan. 
Crowe (1971, 1975, 1982a) discerns complex geometrical patterns from 
the designs on the smoking pipes of Begho (Ghana), on the textiles and 
wood carvings of the Bakuba (Tanzania) and in Benin art. Eglash (1995) 
considers an example of fractals (i.e., scaling in street branching, recursive 
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rectangular enclosures, circles of circular dwellings, etc.) in the layout of 
settlements of the Mokoulek in Cameroon. Gerdes (1990, 1991, 1995 and 
1999) has written voluminously on the “frozen” geometry found in the ma-
terial artifacts and games of different groups from southern Africa, and his 
1995 publication provides a good overview of the burgeoning literature in 
this area in recent years. Zaslavsky’s classic text, originally written in 1973, 
with a new edition that came out in 1999, still remains a valuable reference 
to the geometry implicit in African art and design.

There are two other aspects of African mathematics that are often 
neglected.

1. � The enforced diaspora of the Africans resulting from the slave trade 
was destructive of existing mathematical traditions, and yet games 
such as “mancala” (a board game based solely on strategy akin to 
mathematical reasoning, and found today with minor variations in 
many parts of Africa and elsewhere) were taken in their earlier forms 
to the Caribbean and the American continents.

2. � Skills in drawing and design, and a rich tradition of mental arithme-
tic, were also taken over in slave ships.

African Diaspora Mathematics: The Case of Thomas Fuller
In discussions of people with extraordinary powers of mental calculation, 
there is occasionally a mention of Thomas Fuller, an African, shipped to 
America in 1724 as a slave at the age of fourteen. He was born somewhere 
between present-day Liberia and Benin. Late in his life, his remarkable 
powers of calculation made him an example for the abolitionists to dem-
onstrate blacks are not mentally inferior to whites. After his death, Fuller 
became a source of interest for psychics and psychologists; the latter, even 
when denying mental abilities of blacks, supported the notion of Fuller 
as an idiot savant. This was not borne out by those who met him. They 
remarked on Fuller’s general self-taught intelligence and decried a system 
that prevented him from attaining formal education. 

On his death in 1790, an obituary contained the following passage:

Though he could never read or write, he had perfectly acquired the art 
of enumeration. . . . He could multiply seven into itself, that product by 
seven, and the products, so produced, by seven, for seven times. He could 
give the number of months, days, weeks, hours, minutes, and seconds in 
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any period of time that any person chose to mention, allowing in his 
calculation for all leap years that happened in the time; he could give the 
number of poles, yards, feet, inches, and barley-corns in any distance, say 
the diameter of the earth’s orbit; and in every calculation he would pro-
duce the true answer in less time than ninety-nine men out of a hundred 
would produce with their pens. . . . He drew just conclusions from facts, 
surprisingly so, for his (limited) opportunities. . . . Had his opportunity 
been equal to those of thousands of his fellow-men . . . even a Newton 
himself, need not have been ashamed to acknowledge him a Brother in 
Science. (Columbian Centennial, December 29, 1790)

Our new understanding of the ethnomathematics of his birthplace al-
lows us to claim that when Thomas Fuller arrived in 1724 Virginia, he had 
already developed his calculation abilities based on his indigenous tradi-
tions. The existing evidence for this claim is not conclusive. However, Bar-
dot’s 1732 account of the numerical abilities of the inhabitants of Fida (on 
the coast of Benin) may be of relevance:

The Fidasians are so expert in keeping their accounts, that they easily 
reckon as exact, and as quick by memory, as we can do with pen and ink. . . . 
[This] very much facilitates the trade the Europeans have with them.

Thomas Clarkson backed this up in 1788, writing:

It is astonishing with what facility the African brokers reckon up the ex-
change of European goods for slaves. One of these brokers has perhaps 
ten slaves to sell, and for each of these he demands ten different articles. 
He reduces them immediately by the head to bars, coppers ounces . . . 
and immediately strikes the balance. The European, on the other hand, 
takes his pen, and with great deliberation, and with all the advantage of 
the arithmetic and letters, begins to estimate also. He is so unfortunate 
often, as to make a mistake; but he no sooner errs, than he is detected by 
this man of inferior capacity, whom he can neither deceive in the name 
or quality of his goods, nor in the balance of his account.

Gerdes and Fauvel (1990) wrote an interesting account of Thomas Fuller 
(1710–1790). Shirley (1988) shows the survival of a numerate tradition, 
placing high value on mental calculations, among a mainly illiterate popu-
lation, from whose ancestors captive slaves such as Fuller were transported 
to the American continents. 
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Native Americans and Their Mathematics

It is difficult to estimate precisely how many Native Americans were pres-
ent on the two continents when the Europeans “discovered” them in 1492. 
An estimate (Denevan 1992, p. 244) puts the number at fifty-four mil-
lion. The question as to where they came from has fascinated scholars 
since Columbus’s time. It is now generally agreed that the distribution 
of their population in the Americas, together with their physical appear-
ance and the underlying unity in some aspects of their cultures across 
the Americas, implies a common Asian origin. An interesting lacuna in 
all Native American cultures may help to establish a lower bound for the 
date of their migration from Asia to the Americas. In no culture in the 
pre-Columbian Americas is there any evidence of the use of the wheel for 
transport. A probable date for the first use of the wheel for this purpose 
in central Eurasia is the beginning of the sixth millennium BC. Further, 
the early Native Americans and the Asians had certain technologies in 
common: these included the smelting of bronze, the casting of gold, silver, 
and copper, as well as the arts of weaving and dyeing. These facts together 
would indicate that the migration was likely to have occurred not long 
before 12,000 BC.

There is yet another singular feature in the early history of the Native 
Americans: of all the Americans, the Maya of Central America seem to 
exhibit in their arts, folklore, and myths a clearer historical memory of 
their Asian origins. Among them one finds sculptures of elephants, a spe-
cies not found on the American continents. The Mayan is perceived as be-
ing among the most “advanced” of all Native American cultures in terms 
of its mathematics, astronomy, and technology, and is one of the few cul-
tures that possessed a written language. This leads to the conjecture that 
the Mayan may have been the prototype of the culture that was transferred 
from Asia to America during the migration. Other groups, as they roamed 
across the Americas, splintered away and forgot their origins, whereas the 
Maya remained closer to their roots.

Knotted Strings from South America

Knots as Aids to Memory
Human memory is remarkable for both its capacity and its complexity. It 
can store an incredible amount of information, but as a storage device it is 
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often unreliable and not particularly well organized. Therefore from early 
times all types of mnemonic devices, including notches and knots, have 
been used as aids to memory. Compared with writing, the use of knots is 
a clumsy device, though for a preliterate culture it would have had its ad-
vantages. Knots were easy to use, convenient to carry around, and they had 
familiar associations with everyday pursuits such as sewing or fishing. In 
fact, Niles (2007) reports that recent work by anthropologists has concen-
trated on the users and uses of knots and how the codes implied in them 
functioned to validate authority. The knots served one primary purpose: to 
record and preserve information.

There are a host of anecdotes and legends about knots used for record-
ing the passage of time. To take just one story: at the turn of the twentieth 
century a German, Karl Weule, reported a conversation he had had with 
an old inhabitant of the Makonde Plateau in East Africa. At the beginning 
of a journey the old man would present his wife a piece of bark string 
with eleven knots. She would be asked to untie a knot each day. The first 
knot represented the day of his departure, the next three knots the period 
of his journey, the fifth knot the day he reached his destination, the sixth 
and seventh knots the days he spent conducting his business, and the next 
three knots the period of his return journey. So when she had untied the 
tenth knot, she would know that he was returning home the next day.

It is important not to confuse the purpose of these simple mnemonic 
knots with that of the quipu, to which we shall now turn. Such confusion 
may arise from failure to distinguish a straightforward numerical magni-
tude represented by tally marks or knots from the ordinal representation 
possible on a quipu or with a written number system. The fact that the 
quipu cannot be manipulated for calculations, while a written number sys-
tem can, does not affect the argument. Tying knots in a cord to show a 
certain numerical quantity is no different from writing the same number 
on a piece of paper using some widely accepted symbols. This point will 
become clearer as we proceed

The Inca Quipu : Appearance and History
Quipu is a Quechua (the language of the Incas) word meaning “knot.” A 
quipu resembles a mop that has seen better days. It consists of a collection 
of cords, often dyed in one or more colors and containing knots of different 
types but not, apparently, arranged in any systematic fashion. Quipus, of 
which there are about four hundred authenticated examples, are to be found 
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in the museums of western Europe and the Americas. They were initially 
thought of as primitive artifacts with little aesthetic appeal. About fifty of 
these objects have now been carefully studied, the credit for unraveling part 
of their mystery going to Leyland Locke (1912, 1923). From a close study 
of statements made by Spanish chroniclers of the sixteenth century and a 
detailed examination of some of the quipus, Locke concluded that the quipu 
was basically a device for recording numbers in a decimal base system.

At its height during the last decades of the fifteenth century AD, the 
Inca empire occupied an area that today would include all of Peru and 
parts of Bolivia, Chile, Ecuador, and Argentina. In this vast and difficult 
terrain lived a culturally diverse population of about six million. It was 
a well-organized society, cooperative in character, its material culture the 
creation of a number of different groups that the Inca state was able to 
organize and control during its short 150-year period of dominance. Yet, 
despite the level of their material culture, the Incas seem to have lacked 
the three widely accepted basics of early civilizations: the wheel, beasts of 
burden, and a written language. Yet the high level of organization required 
the keeping of detailed accounts and records. In the absence of a system of 
writing, they used quipus.

There is, of course, no contemporary written evidence on the nature 
and uses of a quipu from the society that used it. There are, however, the 
chronicles of Spanish soldiers, priests, and administrators. The most reli-
able and unbiased of these chroniclers was a soldier, Cieza de León, who 
began keeping a record in 1547—fifteen years after the Spanish conquest—
and stopped writing three years later. It provides a fascinating account, 
both of the flora and fauna of the vast territory and of the society there.

There was one aspect of the former Inca state that Cieza found impres-
sive. Across the imperial highways, many of them more substantial than 
the Roman roads of his native land, were to be found small post houses, 
the staging posts for runners who carried messages across the difficult 
mountainous terrain, impossible for any animal to negotiate. These trained 
runners, called chasquis, were stationed in pairs at intervals of about a 
mile along the highways. Running at top speed and handing their quipus 
on from one runner to the next, as in a relay race, they could transmit 
a message to the imperial capital Cuzco from three hundred miles away 
in twenty-four hours. Given the terrain, Cieza noted that this method of 
carrying messages was superior to using horses and mules, with which he 
was more familiar.
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In two words, Cieza summed up the strengths of the former Inca empire 
and its ability later to withstand to some degree the havoc brought about by 
Spanish plunder: order and organization. And the essential prerequisite for 
maintaining good order and efficient organization was the existence of de-
tailed and up-to-date information (or government statistics, as we would 
describe such information today) that the state could call upon whenever 
necessary. Records of all such information were kept on quipus.

A whole inventory of resources that included agricultural produce, live-
stock, and weaponry—as well as people—was maintained and updated 
regularly by a group of special officials known as quipucamayus (quipu 
keepers). Each district under the rule of the Incas had its own specially 
trained quipucamayu, and larger villages had as many as thirty. For infor-
mation on the role and status of the quipucamayus we have a set of remark-
able drawings by one Guaman Pomade Ayala, a Peruvian, which form part 
of a 1,179-page letter to the king of Spain sent in about 1600, some eighty 
years after the Spanish conquest. Apart from being one of the most searing 
indictments of Spanish rule, it contains a series of illustrations in which 
the Inca bureaucracy figures prominently. Seven of these drawings show 
people carrying quipus; two of them are reproduced in figure 2.3. 

The inscription in figure 2.3a indicates that the figure holding the quipu 
is none other than the secretary to the Inca (emperor) and his Council. 
Figure 2.3b shows the chief treasurer to the Inca. There is little doubt that 
“quipu literacy” was widespread among government officials, of whom the 
quipucamayus were important members enjoying high social status.

Figure 2.3b contains another interesting feature, apart from the blank 
(i.e., unknotted) quipu held by the Inca’s treasurer. At the bottom left of the 
drawing is a rectangle divided into twenty cells, in each of which there is 
a systematic arrangement of small circles and dots probably representing 
seeds, stones, or similar objects. The Inca abacus, as it has been nicknamed, 
may have been the device on which computations were worked out before 
the results were recorded on the quipu. We shall return to an explanation 
of how computations may have been carried out on this “abacus” in a later 
section. But we begin by looking at how a quipu was constructed and used 
for storing numerical data.

The Construction and Interpretation of a Quipu
A quipu is constructed by joining together different types of cord. Each 
cord is at least two-ply, with one end looped and the other tapered and 
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tied with a small knot. Four different kinds of cord can be distinguished. 
The first type, which is thicker than the rest, is termed the main cord. From 
it are attached like a fringe a number of other cords, most of which hang 
down and are known as the pendant cords, but a few have knotted ends 
that are directed upward, the top cords. In some quipus there may be an ad-
ditional cord whose looped end is connected to the looped end of the main 
cord and tightened, which explains its name—the dangle end cord. To any 
of these cords suspended from the main cord there may be attached subsid‑
iary cords. And this process of attachment may be carried further, so that 
a subsidiary may be connected to a subsidiary of a subsidiary, and so on. 
Also, it is possible that some of the pendant cords may be drawn together 
by means of a single top cord to form a distinct group. What we have after 
the process is complete is a blank quipu, rather like the one in figure 2.3b, 
which apparently has no top cords. A blank quipu can have as few as three 
cords or as many as two thousand.

There is a further dimension to the construction of a quipu—color. The 
predominant colors of the cords in the quipus that have survived are dull 
white and varying shades of brown. It is not clear whether the small dif-
ferences in the shades of brown are simply a reflection of the age of the 
quipus rather than real color differences. However, early chroniclers of the 
Inca culture refer to the use of symbolic color representation for different 
things: white for silver, yellow for gold, red for soldiers, and so on. The 
symbolic use of colors is common in many societies. The use of red and 
green in traffic lights, for example, conveys a meaning that cuts across cul-
tural barriers. Even in those societies where red is not traditionally associ-
ated with danger, its appearance in a traffic signal is sufficient to produce 
a rapid response, much more readily than if the warning were in the form 
of printed words. And in any case, color being more recognizable than 
print over a longer distance would clinch the argument for its adoption. 
But the use of color codes to distinguish between mathematical quantities 
or operations is unusual in modern mathematics (though not in modern 
bookkeeping). Yet, as we shall see later, the ancient Egyptians used red 
ink to represent “auxiliaries,” which they calculated as part of arithmeti-
cal operations with fractions; the Chinese distinguished between positive 
and negative numbers by using red and black rods, respectively; and the 
Indians called algebraic unknowns by the names of different colors. In a 
quipu, color was used primarily to distinguish between different attributes. 
Each quipu had a color coding system to relate some of the cords to one 
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Figure 2.3: Two Inca officials holding quipus. An “Inca abacus” can be seen in (b) at the 
bottom left. (Poma de Ayala 1936, pp. 358 and 360. Reproduced with permission.)
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another and at the same time to distinguish them from other cords. The 
range and subtlety of color coding was extended by using different combi-
nations of colored yarns.

There have been suggestions that the colors had some numerical sig-
nificance, but we cannot be certain. What we do know is that numerical 
representation on a quipu was achieved by means of knots. Contemporary 
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records clearly indicate that the Incas used a decimal system of numera-
tion. According to Garcilaso de la Vega (b. 1539), whose mother was the 
niece of the last king of the Incas (Inca Huayna Capac) and whose father 
was a Spaniard, the knots indicated a system of notation by position:

According to their position, the knots signified units, tens, hundreds, 
thousands, ten thousands and, exceptionally, hundred thousands, and 
they are all as well aligned on their different cords as the figures that an 
accountant sets down, column by column, in his ledger.

On each cord except the main cord, clusters of knots were used to represent 
a certain number. A number shown on one of the pendant cords could be 
read by counting the number of knots in the cluster of knots closest to the 
main cord, which represented the highest-value digit, and proceeding along 
the cord to the next cluster of knots, representing the next positional digit 
(i.e., the next-lowest power of 10) as far as the “units” cluster, at the other end 
of the pendant cord. To distinguish the units cluster of knots from the other 
clusters representing higher positional digits, a different knot was used. 
Generally a long knot with four turns indicated the units position unless a 1 
occurred in the units position, in which case a figure-of-eight (or Flemish) 
knot was used instead. For all other positions single (or short) knots were 
used. The absence of a knot indicated zero in any of the positions.

An illustration will be useful at this point. Figure 2.4 shows how the 
numbers 1,351, 258, and 807 may be represented on a quipu, with L, S, 
and F denoting long, single, and Flemish knots respectively. The left-hand 
pendant cord contains four knot clusters, of one single knot (1S), three 
single knots (3S), five single knots (5S), and one Flemish knot (IF), reading 
downward from the main cord. This may be read as

(1 , ) ( ) ( ) ( ) , .1 000 3 100 5 10 1 1 1 351# # # #+ + + =

In a similar manner, the other two pendant cords may be read as

(2 ) ( ) ( ) 258,
( ) ( ) ( ) .

100 5 10 8 1
8 100 0 10 7 1 807
# # #

# # #

+ + =

+ + =

The spacing of the knot clusters is crucial here. For example, the pendant 
cord on the right is read as representing 807 because of the considerable 
space without any knots that exists between the cluster of eight knots (or 
eight 100s, shown as 8S in figure 2.4) and the cluster of seven knots (or 
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seven 1s, shown as 7L). If there were the usual space between the two clus-
ters of knots, this pendant cord would read as 87.

The knot clusters on a top cord usually represent the sum of the num-
bers of the pendant cords. So in figure 2.4 the knots on the top cord may 
be interpreted as

(2 1,000) (4 100) (1 10) (6 1) 2,416 1,351 258 807.# # # #+ + + == + +

The same principles apply to interpreting numbers on subsidiary cords, of 
which there is only one (with knots representing 302) in figure 2.4. This 
example is only a simple illustration of one way of using a quipu. There 
are other ways of forming cord groups, by using different colors or by 

Figure 2.4: Recording numbers on a quipu
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distinguishing between different subgroups of pendant cords to extend the 
versatility of the quipu.

As an illustration of another use10 of the quipu, we have the report of the 
early chronicler Garcilaso de la Vega:

The ordinary judges gave a monthly account of the sentences they im-
posed to their superiors, and they in turn reported to their immediate 
superiors, and so on finally to the Inca or those of his Supreme Council. 
The method of making these reports was by means of knots, made of 
various colors, where knots of such and such colors denote that such 
and such crimes had been punished. Smaller threads attached to thicker 
cords were of different colors to signify the precise nature of the punish-
ment that had been inflicted. By such a device was information stored 
in the absence of writing.

The Mathematics of the Quipu
The quipu served as a device for storing ordered information, cross-
referenced and summed within and between categories. One of the few 
real-life examples known to us is a quipu that was used to record data from 
a household census of an Andean population in 1567 (Ascher and Ascher 
1981; Murra 1968). We shall look at this example in some detail, for it 
serves to bring out clearly the versatility of the quipu as a recording device.

Data for the Andean population of Lupaqa are given for seven prov-
inces whose households were classified into two ethnic groups (Alasaa and 
Maasaa). Each of the two groups is further divided into two subgroups 
(Uru and Aymara). However, for two of the seven provinces the only in-
formation available is the total number of Uru and Aymara households. 
How was this information fitted into a logical structure, involving cross-
categorization and summation, so that it could be recorded on a quipu?

We can see from the above information that the household census data 
contains 26 independent items of information consisting of: 

1. � The populations of the five provinces for which complete information 
is available, divided into Alasaa and Maasaa groups and further sub
divided into Uru and Aymara (making a total of 20 items of information)

2. � The populations of the two provinces for which the only information 
available is the number of Uru and Aymara households in each (4 
items of information) 
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3. � The total population of households in the two provinces for which 
information is incomplete (2 items of information).

From the same data it is possible to obtain 20 derived items of 
information:

1. � The grand total of all households: 1 item of information

2. � The total number of Uru and Aymara households: 2 items of 
information

3. � The number of households in each province: 7 items of information

4. � The number of Alasaa and Maasaa households in each province: 10 
items of information

These are the 26 20 46+ =  items of information—a mixture of given 
and derived values, and partial and total summations—represented on this 
household census quipu.

The simplest way would be to represent each item of information along 
the main cord on a pendant cord, equally spaced, using different colors 
to distinguish categories. But this is a most uneconomical method of for-
matting information, for it takes no account of the relationships that exist 
among a number of these items. A more efficient construction, but not 
optimal in any sense, is to proceed as follows. The information is arranged 
in seven groups, each group having seven pendant cords. The first four 
groups relate to the number of Uru and Aymara households in Alasaa and 
Maasaa for the seven provinces. The first eight pendant cords are blank 
(i.e., unknotted) since they represent the two provinces for which informa-
tion is not available separately for Alasaa and Maasaa. The other twenty 
pendant cords have all the relevant information in the form of clusters of 
knots. Partial sums and total sums—the 20 items of derived information 
listed above—can be shown by proper positioning of top cords.

This is one of a number of possible arrangements of cords on a quipu. 
The more the quipucamayu considers the pattern of distribution by tak-
ing account of the relative sizes and positions of different cords, the better 
the logical structure of the final representation. Cord placement, color 
coding, and number representation are the basic constructional features, 
repeated and recombined to define a format and convey a logical struc-
ture. This search for a coherent numerical/logical structure is mathemati-
cal thinking.
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An Inca Abacus?
The quipu could not have been used as a calculating device. While results 
of summations and other simple arithmetical operations were recorded on 
the quipu, the computations were worked out elsewhere. How did the In-
cas carry out these calculations? The clue may lie in a passage from a book 
written by Father Jose de Acosta, a Spanish priest, who lived in Peru from 
1571 to 1586:11

To see them use another kind of quipu with maize kernels, is a perfect 
joy. In order to carry out a very difficult computation for which an able 
computer would require paper and pen, these Indians make use of their 
kernels. They place one here, three somewhere else and eight, I know 
not where. They move one kernel here and there and the fact is that they 
are able to complete their computation without making the smallest 
mistake. As a matter of fact, they are better at practical arithmetic than 
we are with pen and ink. Whether this is not ingenious and whether 
these people are wild animals, let those judge who will! What I consider 
as certain is that in what they undertake to do they are superior to us. 
(de Acosta 1596)

Is the priest here describing a form of counting board (yupanu) simi-
lar in appearance to Poma’s drawing shown in figure 2.3b and reproduced 
in figure 2.5a? There can of course be no conclusive answer. But Wassen 
(1931), who was among the first to describe and interpret Guarnan Poma’s 
drawings, had an interesting explanation. He interpreted the row values of 
figure 2.5a, from bottom to top, as successive powers of 10. More contro-
versial is his explanation of the column values of the counting board: that, 
from left to right, they represent the values 1, 5, 15, and 30.12 According 
to this interpretation, the number represented by the dark circles on the 
counting board, worked out in figure 2.5b, is

47 21(10) 20(100) 36(1,000) 37(10,000) 408,257.+ + + + =

This is determined in the following way. In the bottom row, there is one 
black dot in the column marked 30, three in the column marked 5, and 
2 in the column marked 1. This gives you 30 15 2+ + , or 47. The other 
numbers in the equation above are derived in a similar manner.

There is no other evidence to substantiate this idiosyncratic interpre-
tation of the columns of the counting board. Indeed, it would appear a 
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strange choice given the use of a decimal base. A more plausible explana-
tion would be that all column values are equal to 1, as in figure 2.5c, so that 
the number represented is

6 3(10) 6(100) 3(1,000) 5(10,000) 53,636.+ + + + =

How might the Incas have used this counting board for computations? 
Addition and subtraction present few problems. We can only conjecture as 
to how multiplications may have been carried out before the results were 
recorded on a quipu. Suppose an astronomer-priest were faced with the 
need to multiply 116 days (to the nearest whole number, the synodic pe-
riod of the planet Mercury) by 52 (a number of considerable astronomi-
cal significance to both the Maya and the Incas). The multiplication could 
have proceeded as in figure 2.6. Figure 2.6a shows the number 1,160 (i.e., 
116 10# ). A successive process of repeatedly adding 1,160 to itself five 
times will give the result 5,800 (i.e., 1,160 5# ), as shown in figure 2.6b. To 
complete the multiplication we need only add twice 116 to 5,800 to obtain 
6,032, shown in figure 2.6c).13

It is not part of my argument that the Incas used this precise method 
of multiplication (i.e., the yupanu, or counting board), or even that this 
representation on the board is the correct one.14 What is clear, however, is 
that before a quipu could be used for storing information, some calcula-
tions had to be made, and these may have been done on a device like the 
Inca abacus.

The decimal system found in quipus is just a way of recording numbers 
before writing words. But sometimes humans use a system for arithmetic 
and a different system for putting their results on paper, papyrus, or cords. 
There are other intriguing aspects of Inca arithmetic that merit further in-
vestigation. Did the Inca use a base 4 or base 5 system of numeration? How 
would one explain the absence of fractions in Inca numeration? Does their 
likely use of remainders instead indicate that they had one of the earliest 
examples of a modular arithmetic system?

The Emergence of Written Number Systems: A Digression

It is possible to view the appearance of a written number (or numeral) 
system as a culmination of earlier developments. First was the recogni-
tion of the distinction between more and less (a capacity we share with 
certain other animals). From this developed first simple counting, then 
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the different methods of recording the counts as tally marks, of which 
the Ishango bone is one example. This progression continued with the 
emergence of more and more complex means of recording information, 
culminating in the construction of devices such as the quipu. Before the 
appearance of such devices, there must have emerged an efficient system 
of spoken numbers founded on the idea of a base to enable numbers to be 
arranged into convenient groups. It was then only a matter of time before a 
system of symbols was invented to represent different numbers.

There is ample historical and anthropological evidence indicating that 
a variety of bases have been used over the ages and around the world. The 
numbers 2, 3, and 4 may have served as the earliest and simplest bases. An-
thropologists have drawn our attention to certain groups in central Africa 
who operated until recently with a rudimentary binary base, so that their 
spoken numbers would proceed thus: one, two, two and one, two twos, 
many. Similar systems using base 3 or 4 have been reported to be used by 
remote communities in South America.

The sheer variety of counting systems that have existed at some time is 
brought out in figure 2.7. The main systems included counting by twos, 
fives, and tens.

Counting by Twos
A typical example, discussed earlier, was found among an indigenous Aus-
tralian group, the Gumulgal. Their counting proceeded as follows:

1	 =	 urapon

2	 =	 ukasar

3	 =	 ukasar-urapon

4	 =	 ukasar-ukasar

5	 =	 ukasar-ukasar-urapon

6	 =	 ukasar-ukasar-ukasar

7	 =	 ukasar-ukasar-ukasar-urapon

Clearly, this system becomes increasingly inefficient as the number-words 
become longer. A version of the two-count system modified to take ac-
count of longer word-numbers uses special words for three and four, so 
six and eight become “twice three” and “twice four.” Both versions of the 
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two-count system were found to coexist in adjacent areas in Africa, in 
southern Australia, and in South America, probably indicating a form of 
evolution from the less to the more efficient version.

Counting by Fives
This suggests the use of finger counting, and proved a more efficient 
method since it avoided the repetitions of the two-count systems. It was 
also a more productive procedure since it could be more easily extended 
to include the use of “two hands,” “three hands,” and so on for increasing 
multiples of five. It was only a matter of time before this counting system 
gave way to counting by tens.

Counting by Tens
It is clear from figure 2.7 that this counting system has been the most wide-
spread, probably because it is associated with the use of fingers on both 
hands. It was, according to the accounts of the Spaniards, the base used by 
the Incas in their numeration. The etymology of number-words in the ten-
count system may bring out its close association with finger counting. As 
an illustration, the meanings of the words for the numbers from one to ten 
in the Zulu language are given in table 2.1. Note the use of the subtraction 
principle in forming the words for eight and nine: the word for nine, for 
example, means “leave out one finger” (from ten fingers).

Two other bases have been either popular or mathematically important. 
The vigesimal scale (i.e., base 20) had its most celebrated development as 
a number system during the first millennium of the present era among 
the Maya of Central America. There have also been other base 20 number 
systems, of which the Yoruba system from West Africa, discussed earlier, 
is one of the better-known examples. Base 20 systems may have originated 
from finger and toe counting among early societies.

The origins of the sexagesimal scale (i.e., base 60), first developed in 
Mesopotamia about five thousand years ago, cannot be directly traced to 
human physiology. This scale has certain computational advantages arising 
from the number of integral fractional parts, and survives in certain time 
and angular measurements even today. There was also another scale (duo-
decimal, or base 12), which must have enjoyed some popularity in the past 
because it survives in astronomical quantities such as (twice) the number 
of hours in a day or the approximate number of lunar months in a year. 
Other remnants of its usage are found in British units of measurement (12 
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inches = 1 foot), old money (12 pence = 1 shilling), and also in terms such 
as “dozen” and “gross” (12 dozen).15 It had some powerful advocates in the 
past. So convinced was Charles XII of Sweden (1682–1718) of the superior-
ity of this scale over the decimal that he tried—though unsuccessfully—to 
ban the latter.

Constructing a Written Number System
Once a base (say b) has been chosen, one of the simpler ways of construct-
ing a number system is to introduce separate symbols to represent b0, b1, 
b2, . . . , whereby these symbols, repeated if necessary, may be used addi-
tively to represent any number. Possibly the earliest and certainly the best-
known example of such a system with 10b =  is the Egyptian hieroglyphic 
number system, dating back to 3500 BC. (We shall be discussing the princi-
ples underlying the construction and arithmetical operations with these nu-
merals in the next chapter.) The Aztecs of Central America later developed 
a system of numerals similar in principle to the Egyptian number system. 

The Aztecs were a people who migrated to Mexico from the north in 
the early thirteenth century AD and founded a large tribute-based empire, 
ruled from their capital city Tenochtitlán, which reached the height of its 
power in the fifteenth and early sixteenth centuries. The empire’s prosper-
ity was founded on a highly centralized agricultural system in which ex-
isting land was intensively cultivated, irrigation systems were built, and 
swampland was reclaimed. The staple crop, maize, figures prominently in 
the Aztec number system.

Table 2.1:  Zulu Words for One to Ten

Number	 Zulu word	 Meaning

  1	 Nyi	 State of being alone
  2	 Bili	 Raise a separate finger
  3	 Tatu	 To pick up
  4	 Ne	 ?
  5	 Hlanu	 (All fingers) together
  6	 Tatisitupa	 Take the right thumb
  7	 Ikombile	 Point with forefinger of right hand
  8	 Shiya’ ngalombi/e	 Leave out two fingers
  9	 Shiya’ngalolunye	 Leave out one finger
10	 Shumi	 Make all (fingers) stand
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This number system was vigesimal (base 20) and used four different 
symbols. The unit symbol was a “blob” representing a maize seedpod; the 
symbol for 20 was a flag, commonly used to mark land boundaries; 400 
was represented by a schematic maize plant; and the symbol for 8,000 is 
thought to be a “maize dolly,” similar to the decorative figures traditionally 
woven from straw in some European countries. The four symbols were

The Aztecs would represent the number 9,287 as

They also developed an intricate system of counting in which the bases 
depended on the type of objects being counted. Cloths or tortillas would 
be counted in twenties, while round objects such as eggs or oranges would 
be counted in tens.

Often an additive grouping system may evolve into a “ciphered” number 
system. Here new symbols are introduced not only for the powers of the 
base b but also for

1, 2, 3, , 1; 2 , 3 , , ( 1); , 2 , 3 , , ( 1);b b b b b b b b b b2 2 2 2f f f f- - -

While such a system calls for a greater effort to memorize many more sym-
bols, the representation of numbers is obviously more compact and compu-
tation more efficient than with a simple additive system. Examples of such 
systems include later Egyptian numerals (i.e., hieratic and demotic), Ionic (or 
Greek) alphabetic numerals, early Arabic numerals, and the Indian Brahmi 
numerals. Some of these number systems will be discussed in later chapters.

There are a few instances of a simple additive grouping system develop-
ing into a multiplicative system. In such a system, after a base b has been 
selected, separate sets of symbols are used for

1, 2, , ( 1); , , , .b b b b2 3f f-

To represent any number greater than b, the symbols of both sets are used 
together. One of the best-known of the multiplicative number systems is 
the standard Chinese system, discussed in chapter 6.
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It is likely that a positional or place-value number system such as ours, 
which evolved from the Indian number system, may have its origin in an 
earlier multiplicative or even a ciphered number system. In a positional 
system, after the base b has been selected, any number can be represented 
by b different symbols. For example, our decimal numeral system requires 
symbols (or digits) to represent the numbers from 0 to 9: 0, 1, 2, . . . , 9. 
With these symbols we can represent any integer N uniquely as 

,N c b c b c b c b c1
1

2
2

1 0n
n

n
n f= + + + + +−
−

where , , , ,c c c c0 1 1n nf -  represent the basic symbols (in our number system, 
0, 1, 2, . . . , 9). (Note that 0 c bi 1#  for 0, 1, 2, ,i nf= ) For example,

1,385 (1 10 ) ( 10 ) ( 10) ( 1) .3 8 53 2# # # #= + + +

This is a number system that is both economical in representation, 
given the requirement of only ten symbols to write any number, and less 
taxing on memory than a ciphered system. But its chief advantage is its im-
mense computational efficiency when it comes to working with paper and 
pencil. It is not that arithmetic was impossible in nonpositional number 
systems, as we shall soon see when we discuss arithmetical operations with 
Egyptian numerals, but rather that computations were often cumbersome 
or relied on a mechanical device such as an abacus or a counting board, or 
even cowrie shells. The crucial advantage of our number system is that it 
gave birth to an arithmetic that could be done by people of average ability, 
not just an elite.

There are historical records of only three other number systems that 
were based on the positional principle. Predating all other systems was the 
Mesopotamian, which must have evolved during the third millennium BC. 
A sexagesimal scale was employed, with a simple collection of the correct 
number of symbols employed to write numbers less than 60. Numbers in 
excess of 60 were written according to the positional principle, though the 
absence of a symbol for zero until the early Hellenistic period limited the 
usefulness of the system for computational and representational purposes. 
The Chinese rod numeral system is essentially a base 10 system. The num-
bers 1, 2, . . . , 9 are represented by rods whose orientation and location de-
termine the place value of the number represented and whose color shows 
whether the quantity is positive or negative. We shall be discussing this 
system in detail in chapter 6. The third positional system was the Mayan, 
essentially a vigesimal (b = 20) system incorporating a symbol for zero. It 
is to the details of this system that we now turn.
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Mayan Numeration

There is an area of Central America whose history and culture were shaped 
by the Mayan civilization. On the eve of the Spanish conquest of 1519−1520, 
it occupied over 300,000 square kilometers (approximately the area of the 
British Isles) and covered present-day Belize, central and southern Mexico, 
Guatemala, El Salvador, and parts of Honduras. Some cultural similari-
ties helped to unite this vast territory: hieroglyphic writing, lip ornaments, 
positional numeration, and a calendar built around a year consisting of 
eighteen months of twenty days and a final month of five extra days. The 
main agency for the spread of this distinctive culture and retention of cul-
tural links between different regions of Central America was the remark-
able civilization of the Maya, which reached its classical phase between the 
third and tenth centuries AD. 

Evidence relating to pre-Columbian Mayan civilization comes from fol-
lowing main sources:

1. � Hieroglyphic inscriptions cover the stelae (upright pillars or slabs) 
found scattered around the region. They were constructed by the 
Maya every twenty years and span at least fifteen centuries. These 
stone monuments generally recorded the exact day of their erection, 
the principal events of the previous twenty years, and the names of 
prominent nobles and priests.

2. � The walls of some Mayan ruins and caves contain paintings and hi-
eroglyphs that provide valuable evidence of not only their everyday 
life but also their scientific activities.

3. � A few manuscripts escaped the destruction of the Spanish conquerors. 
The most notable are five screen-fold books called codices, namely 
the Dresden Codex, the Paris (or Peresianus) Codex, the Madrix 
Codex, the Grolier Codex, and the Troano-Cortesian Codex. These 
books were made of durable paper from the fiber of the plant Agave 
americana and then covered with size (a gelatinous solution used to 
glaze paper) before the hieroglyphs were recorded in various colors. 
There are also thousands of ceramic vessels scattered around in vari-
ous museums across the world that may supply useful information. 

Many hieroglyphs remain undeciphered even today, though some nota-
ble investigative work toward the end of the nineteenth century shed some 
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light on part of the mysteries, especially those inscriptions relating to astro-
nomical or calendar data. It was in the course of this work that the remark-
able achievement of the Maya in the field of numeration was discovered.

Mayan Numerals
The Mayan system of number notation was one of the most economical 
systems ever devised. In the form that was used mainly by the priests for 
calendar computation from as early as 400 BC, it required only three sym-
bols. A dot was used for 1, and a bar for 5; these symbols are thought to 
represent a pebble and a stick. Larger numbers were represented by a com-
bination of these symbols up to 19. To write 20, the Maya introduced a 
symbol for zero that resembled a snail’s shell. A few examples are

The Dresden Codex, an important source of written evidence on Mayan 
numerals, contains a representation of the “snake numbers,” which were of 
great significance in Mayan cosmology; it is reproduced here in figure 2.8. 
There are two sets of numerals represented on the coils: one represented by 
solid black circles and bars and the other represented by open circles and 
bars. Reading from bottom to top, the Mayan numerals can be transliter-
ated as in table 2.2. In the table, a departure from a strictly vigesimal sys-
tem occurs at the second number group, where instead of b2 = 202 = 400 
we have 18b = 360. Subsequent groups are of the form 18bi, where i = 2, 

Table 2.2:  Numbers Represented in Figure 2.8

Black number		 Red (white) number

4 # 18(20)4	 =	 11,520,000	 4 # 18(20)4	 =	 11,520,000
6 # 18(20)3	 =	 864,000	 6 # 18(20)3	 =	 864,000
9 # 18(20)2	 =	 64,800	 1 # 18(20)2	 =	 7,200
15 # 18(20)	 =	 5,400	 9 # 18(20)	 =	 3,240
12 # 20	 =	 240	 15 # 20	 =	 300
19 # 1	 =	 19	 0 # 1	 =	

		  12,454,459			   12,394,740

( 7,200) (18 360) (5 20) 0 13,780.1 # # #= + + + =
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3, . . . . This anomaly reduces efficiency in ar-
ithmetical calculation in that the Mayan zero 
does not work as an operator, as it should in 
a true place-value system. For example, one 
of the most useful facilities with our number 
system is the ability to multiply a given num-
ber by 10 by adding a zero to the end of it. An 
addition of a Mayan zero to the end of a num-
ber would not in general multiply the num-
ber by 20, because of the mixed base system 
employed.

What is the reason for the presence of this 
curious irregularity in Mayan numeration? 
To understand the anomaly, we need to ap-
preciate the social context in which the num-
ber system was used. As far as we know, this 
form of writing numbers was used only by a 
tiny elite, the priests who were responsible for 
carrying out astronomical calculations and 
constructing calendars, and the exigencies 
of these tasks are what lie at the root of the 
explanation. In other words, the rationale be-
hind the Mayan numeration system was not 
its effectiveness as a system for calculation but 
the calendrical requirement of counting the 
days of eighteen months, each of twenty days.

Before we examine the Mayan calendars, it 
is worth noting that the Maya had an alterna-
tive notation, shown in figure 2.9, which often 
occurred in inscriptions alongside the “dot 
and dash” numerals. This was the “head vari-
ant” system, relying on a series of distinct an-
thropomorphic deity-head glyphs to represent 
zero and 1 to 19. The heads are those of the thirteen deities of the Superior 
World, with six variants, whose significance is revealed in the next section.

Mayan Calendars
The Maya had three kinds of calendar. The first, known as the tzolkin or “sa-
cred year,” was specially devised for carrying out certain religious rituals. It 
contained 260 days, in twenty cycles of thirteen days each. Superimposed 

Figure 2.8: Mayan “snake num-
bers” (After Spinden 1924, p. 27)



Bones, Strings, and Stones  69 

on each of the cycles was an unchanging series of twenty days, each of 
which was considered a god to whom prayers and other supplications were 
to be made. For example, the first of these was known as Imix, which rep-
resented the god associated with a crocodile or a water lily. One of the 

Figure 2.9: Mayan “head variant” numerials (Closs 1986, p. 335. Reproduced 
with permission)
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most auspicious days was the last of the twenty days (or gods), known as 
Ahau and associated with the sun. To complicate matters still further, each 
of the twenty days was in turn assigned a number from 1 to 13. So once 
the fourteenth day of a series of twenty was reached, it was allocated the 
number 1 in a new cycle; thus the twentieth day became 7 Ahau. This pro-
cedure for assigning the basic twenty days to the thirteen numbers contin-
ued indefinitely. Now, after the date 1 Imix, 260 days would have to pass 
before it recurred (as there are 13 # 20 = 260 possible combinations of the 
twenty basic days and the first thirteen numbers). Thus a particular day 
in the religious year of 260 days could be indicated uniquely by adding to 
the hieroglyph associated with one of the twenty basic days a number cor-
responding to it from the series of thirteen numbers. Each of the thirteen 
numbers could represent one of the thirteen gods of the Superior World or 
one of the thirteen gods of the Inferior World. Even today, among certain 
descendants of the Maya in Guatemala, a child takes the name and persona 
of the god associated with its date of birth.

This religious calendar was of limited utility to people like farmers who 
needed to keep track of the passing seasons for their livelihood. For them 
there was a second calendar, a true solar calendar known variously as the 
civil, secular, or vague calendar. This calendar had 360 days, grouped into 
eighteen monthly periods of twenty days and an extra “month” consisting 
of five days. The regular months were known as uinals, and the additional 
period was called uayeb (which means a period without a name; it was 
shown by a hieroglyph that represented chaos, corruption, and disorder). 
Anyone born during this most unlucky period of the civil year was sup-
posed to have been cursed for life.

There was yet a third calendar, known as the tun, mainly used for 
“long” counts and with a unit of 360 days. This calendar was also based 
on a vigesimal system but the third order, as we saw earlier, was irregular 
since it consisted of 18 # 20 = 360 kins (days). The calendar took the fol-
lowing form:

	 20 kins	 =	 1 uinal or 20 days,

	 18 uinals	 =	 1 tun or 20 # 18 = 360 days,

	 20 tuns	 =	 1 katun or 202 # 18 = 7,200 days,

	 20 katuns	 =	 1 baktun or 203 # 18 = 144,000 days,

	 20 baktuns	 =	 1 piktun or 204 # 18 = 2,880,000 days,
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	 20 piktuns	 =	 1 calabtun or 205 # 18 = 57,600,000 days,

	 20 calabtuns	 =	 1 kinchiltun or 206 # 18 = 1,152,000,000 days,

	20 kinchiltuns	 =	 1 alautin or 207 # 18 = 23,040,000,000 days.

For each of these units there was a special head-variant hieroglyph, the 
head taking one of various forms—man, animal, bird, deity, or some myth-
ological creature. These hieroglyphs were accompanied by the bars and 
dots standing for the numerals we discussed earlier. On a stela at Quirigua 
in Guatemala, shown in figure 2.10, is inscribed the date on which it was 
built, using a calendar system of “long counts.”16 The number represented 
in figure 2.10 reads:

Figure 2.10: The upper section of the stela at Quirigua in Guatemala, showing dat-
ing according to the “long count” calendar (Midonick 1965, p. 143. Reproduced with 
permission)
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9 baktuns	 17 katuns

0 tuns	   0 uinals

0 kins

This corresponds to

[9 18(20) ] [ 18(20) ]17 1,418,400 days.3 2# #+ =

One of the oldest stelae found in Ires Zapotes bears the numbers 8 + 
[16 # 20] + [6 # 18(20)2] + [16 # (20)3] + [7 # 18(20)4], which corre-
sponds to 31 BC (Closs 1986, p. 327).17 

The presence of the irregularity in the operation of the place-value 
system arose from the need to make all three calendars compatible with 
one another. Given the central importance in Mayan culture of the mea-
surement of time, the curious anomaly in the third place-value position 
becomes more comprehensible. But this inconsistency inhibited the de-
velopment of further arithmetical operations, particularly those involving 
fractions. Yet one of the more amazing aspects of Mayan astronomy was 
the high degree of accuracy that was obtained without ever working with 
fractions, rational or decimal. The Mayan estimate of the duration of a so-
lar year (i.e., the time that it takes the sun to travel from one vernal equinox 
to the next), expressed in modern terms, is 365.242 days; the currently 
accepted value is 365.242198 days.18 A similar degree of accuracy was ob-
tained for the average duration of a lunar month. According to the Mayan 
astronomers, 149 lunar months lasted 4,400 days. This is equivalent to an 
average lunar month of 29.5302 days—with all our present-day knowledge 
and technology, the figure we get is 29.53059 days! 

Social Context of Mayan Mathematics
The best account of the Mayan culture around the time of the Spanish 
conquest comes from a Franciscan priest, Diego de Landa, who recorded 
the history and traditions of the Mayan people around 1566. Piecing to-
gether these different strands of evidence, Closs (1995) and others have 
constructed an account of the social context in which mathematical sci-
ences flourished during the period between the fourth and tenth centuries 
AD. This note is based on their findings.

At the top of the educational pyramid was a hereditary leader who was 
both a high priest (Ahaucan) and a Mayan noble. Under him were the mas-
ter scribes, priests as well as teachers and writers (“engaged in teaching 
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their sciences as well as in writing books about them”). Mathematics was 
recognized as such an important discipline that depictions of scribes who 
were adept at that discipline appear in the iconography of Mayan artists. 
Their mathematical identity was signified in the manner in which they were 
depicted: either with the Maya bar and dot numerals coming out of their 
mouths, or with a number scroll being carried under their armpit. Closs 
(1995, pp. 8–9) discusses a Mayan vase that portrays two seated scribes 
with opened codices bound in jaguar skin. One of the scribes has, under 
his armpit, a scroll containing numerical data. The location of the scroll 
with numerical data under the armpit would indicate that it was a status 
symbol. It supports Landau’s observation that not all the scribes under
stood the katuns (calendrical computation) and those who did enjoyed 
special prestige. There is an interesting illustration on another Mayan vase 
of about the same period: at the center of the illustration is seated a super-
natural figure with the ears and hooves of a deer, attended by a number 
of human figures, including a kneeling scribe-mathematician from whose 
armpit emanates a scroll containing the sequence of numbers 13, 1, 3, 3, 
4, 5, 6, 7, 8, and 9. At the top right-hand corner of this illustration there is 
the small figure of a scribe who looks female, with a number scroll under 
her armpit indicating that she is a mathematician and, possibly, the one 
who painted the scene and wrote the text on the vase. She is described as 
Ah T’sib (the scribe). Preceding this text is a glyph that has not been de
ciphered but which could be her name. Once the name is deciphered, and 
if the scribe is female, we may have the name of one of the earliest-known 
female mathematicians. The existence of female mathematician-scribes 
among the Maya is further supported by another depiction found on a 
ceramic vase examined by Closs (1992). The text on this vessel contains 
the statement of the parentage of the scribe in question: “Lady Scribe Sky, 
Lady Jaguar Lord, the Scribe.” Closs (1995, p. 10) adds: “Not only does she 
carry the scribal title at the end of her name phrase but she incorporates it 
into one of her proper names, an indication of the importance she herself 
places on that reality.”

•  •  •

In this chapter we have traveled three continents in search of protomath-
ematics. The intellectual bases of the examples given are mathematical in 
that they all consist of manipulating numerical systems in order to create 
some form of number record. Objections to considering these examples as 
mathematical are mainly on the following grounds.
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1. � The nature and scope of the mathematical ideas contained in these 
examples are perceived as fairly trivial, or unimportant in the long-
term development of mainstream mathematics. The first part of this 
argument, dismissing something as trivial, is to ignore the socio
economic environment in which it developed—a reflection of an 
ahistorical bias that cannot be taken too seriously. The second part, 
the charge of insignificance, is valid only if one perceives mathemati-
cal development as an essentially linear or autonomous process. It is 
not, as we have sought to show in the previous chapter.

2. � A more serious point relates devices such as quipus. While quipus 
were important to the Inca state, they were little more than mnemon-
ics and therefore, it is argued, hardly fruitful in generating mathemat-
ical concepts or algorithms. How valid is this argument? From our 
earlier discussion, it is clear that a quipu is more than a set of knots to 
jog the memory: it is a unique device in which numerical, logical, and 
spatial relationships are brought together for the purpose of recording 
information and showing correlations between data. As such it throws 
an interesting light on the nature of different types of categorizations 
and summations as well as providing elementary exercises in combi-
natorials. A quipu to whose top cord are attached pendant cords from 
which are suspended subsidiary cords resembles an inverted tree. 
Questions of mathematical interest then arise: both specific ones, such 
as how many paths are possible along a particular tree, and general 
ones, such as how many trees can be constructed with a given num-
ber of cords. In modern mathematics the concept of a “tree” is first 
found in the work of Gustav Kirchhoff, who in 1847 applied it to the 
study of electrical networks. Arthur Cayley used the same concept in 
his study of chemical isomers in 1857. From these attempts to answer 
questions that were essentially similar to those that confronted the 
makers of the quipu emerged a field of modern mathematics known 
as graph theory. Gerdes (1988a) has another illustration: traditional 
Angolan sand drawings, wherein the skill lies in constructing figures 
without retracing a line or removing one’s finger from the sand. It was 
a similar problem about the bridges of Konigsberg that led the Swiss 
mathematician Leonhard Euler to achieve his breakthrough in graph 
theory around the middle of the eighteenth century.

3. � There is also the argument that the term “mathematics” should be 
used only for the study of numerical and spatial concepts for their 
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own sake, rather than for their applications. This is a highly restric-
tive view of mathematics, often attributed to the Greeks—that math-
ematics devoid of a utilitarian bent is in some sense a nobler or better 
mathematics.19 Where this attitude has percolated into the mathe-
matics curriculum in schools and colleges, it engenders a sense of 
remoteness and irrelevance associated with the subject in many who 
study it, and an ingrained elitism in many who teach it.

4. � Finally, the most substantive criticism of protomathematics points 
to a danger that inferences about mathematical activities of the past, 
especially from artifacts, may be unsound because of a natural ten-
dency to attribute to the ancients our modern modes of thought and 
knowledge. This is a legitimate concern, and in the course of this 
chapter I have pointed out the need for caution and for a search for 
corroborative evidence before any definitive conclusions are drawn.

Notes

1. Since the earlier editions of this book, a second Ishango bone has been found lying 
in a drawer in the Musée unnoticed for about fifty years. Exhaustive tests indicate that 
the two bones are 22,000 years old, and not 8,500 nor 11,000 as previously thought. For 
further details about the latest discovery, see Huylebrouck 2008.

2. For further details, see Bogoshi et al. 1987.

3. Although we shall not be discussing in this book the inferences that have been made 
by Thom (1967), van der Waerden (1983), and others on the mathematical attainments 
of the constructors of megalithic monuments, such as Stonehenge in England, it is 
worth sounding the same note of caution: it is extremely unlikely that the Neolithic 
lifestyle of the builders of these monuments would have generated the demands or sup-
plied the resources required for developing the “advanced” mathematics attributed to 
them by such writers.

4. This possibility prompted Zaslavsky (1991) to ask: “Who but a woman keeping track 
of her cycles would need a lunar calendar?” This led her to conclude: “[African] women 
were undoubtedly the first mathematicians!” (p. 4).

5. The latest conjecture about the Ishango bone rejects it as a “prime number” recorder 
or a “moon-month” calendar. Pletser and Huylebrouck (1999) sees the Ishango bone as 
a “slide ruler.” They propose that the counting methods in present-day Africa as well 
as de Heinzelin’s archaeological evidence about the relationship between Egypt, West 
Africa, and Ishango provide circumstantial evidence supporting their hypothesis.
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6. However, a keynote address by Alan Bishop (1995) gives a useful summary of Glen-
don Lean’s work on counting systems. 

7. This point will be taken up when we discuss the numeration systems in Mesopotamia 
in Chapter 4.

8. The names kina and toea come from the kina shell, which was traditionally used as 
currency in the Papuan region of the country.

9. Africa is a storehouse of different counting practices. Lagercrantz (1973) provides 
an interesting survey of African counting practices using strings, counting sticks, and 
tattoos on the body. He draws attention to ancient practices that involved counting by 
lines drawn on the ground or painted on doors and walls. Zaslavsky (1973a) points 
to the practice among the Fulani of northern Nigeria, who indicate the fact that they 
have 100 animals by placing two sticks on the ground to form a V. Sticks forming a 
cross (X) show 50; and with horizontal sticks indicating tens and vertical sticks units, 
23 is denoted by = |||, a written system is already in place. Going farther south, the 
Bashongo of Congo showed 10 by drawing lines in the sand with three fingers of one 
hand, completing three groups of lines and then one line: ||| ||| ||| | (Mubumbila 1988). 
The Bambala count to 5, but the Bangongo, Bohindu, and Sungu to 4. Recent reports 
show base 10 or 12 were far from being the only ones: as linguists showed, local lan-
guages still reveal the use of bases 2, 5, 6, 12, 16, 20, or even 32. Some people do not say 
“seventeen or seven and teen” but “three less than twenty” or “five and twelve,” or use 
expressions such as “three less than two twenties” or “thirty-two plus five” instead of 
thirty-seven. For further details and references, see the publications mentioned above.

10. In a recent paper, there is discussion of the discovery of a quipu used to store astro-
nomical data. For further details, see Laurencich-Minelli and Magli (2008).

11. In the book, Acosta points to similarities between the customs of the Incas and those 
of the peoples of Siberia, but then proceeds to make the incorrect inference that the 
Incas came from Asia about two thousand years before the Spanish conquest of Mexico.

12. In fairness to Wassen, his choice of the values 1, 5, 15, and 30 are not entirely ran-
dom; they come out from the number of slots in each square in the board. 

13. Note that the assumption here is that the three parts of figure 2.6 record the three 
different stages of the multiplication process. Thus, to find the product of 116 and 52, 

116 # 10 = 1,160 (figure 2.6a);

1,160 # 5 = 5,800 (figure 2.6b);

5,800 + (2 # 116) = 6,032 (figure 2.6c).

I am grateful to Ramón Glez-Regueral of Madrid for an alternative interpretation of the 
passage quoted earlier from Acosta, as well as the drawing of the abacus given in figure 
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2.3b. In the drawing (if we count only the black dots in each cell of the abacus), the se-
ries of numbers given may be arranged as a Fibonacci series of the form 0, 1, 1, 2, 3, 5, 8, 
13, 21, . . . . Let me quote from a personal communication from Ramón Glez-Regueral:

Don’t you see here a trace of Fibonacci before Fibonacci? It has been mathemati-
cally proven that Fibonacci, Lucas and Golden Mean number systems are possible. 
All of them use a binary alphabet (0, 1). . . . The Inca minds had not yet been “con-
taminated” by any pre-conceived algorithmic ideas. Just as you observed (in the 
Crest of the Peacock) the mental algorithms developed in the most varied manner 
by ancient civilizations, and then adopted generation after generation. Maybe the 
Inca brain jingled some little Fibonacci bells. . . . Maybe the Fibonacci approach 
could help in solving the Inca Abacus riddle.

14. There are opposing opinions on whether the yupanu was a calculating device. 
Ascher and Ascher (1997) argue that on the basis of Poma’s drawing, “the interpretation 
of the configuration and the meaning of the unfilled and filled holes (is) highly specula-
tive.” On the other hand, Pareja (1986) maintains that it is a calculating device. From 
the existing information, it is a difficult task to decide whether the yupanu provides 
fresh insight into the computational methods of the Incas.

15. Other historical examples of duodecimal systems include the British units of length: 
12 lines = 1 inch, 12 inches = 1 foot, 6 feet = 1 fathom; and the French (ancien ré-
gime): 12 lignes = 1 pouce, 12 pouces = 1 pied, 6 pieds = 1 toise, augmented in geodesy 
by 12 pieds = 1 regle (de Perou).

16. A recent item in the newspapers states that on December 21, 2012, the “long count” 
calendar of the Mayan people clicks over to year zero, marking the end of a five-
thousand-year era. This has led to a minor panic in the Netherlands, where, despite 
the country’s “enlightened” image, thousands of Dutch people are convinced the date 
coincides with a world catastrophe.

17. According to the calendar of “long counts,” this corresponds to a total of 22,507,528 
days. The start date of the Mayan “long count” calendars expressed in terms of our 
calendar was August 13 in the year 3114 BC. Their calendar had an end date of Decem-
ber 21 of AD 2012, when there was supposedly some enormous catastrophe that might 
even mark the end of the world.

18. Or more precisely, as Kelley (2000) notes, the duration of the solar year at the height 
of the Mayan civilization was 365.24258 days; the Maya gave dates indicating that 
twenty-nine periods of 18,980 days equaled 1,508 Mayan years of 365 days, which cor-
responded to 1,507 solar years. With the Mayan calculation, it would take a magnitude 
of 70,000 years to accumulate one full day of error! 

19. This is brought out well in a passage from Plutarch’s description of the Roman siege 
of Syracuse in 214 BC, at which Archimedes lost his life. After stating that Eudoxus and 
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Archytas had shown considerable ingenuity in devising mechanical demonstrations of 
some of the more difficult geometric theorems, Plutarch adds: “Plato was indignant at 
these developments, and attacked both men for having corrupted and destroyed the 
ideal purity of geometry. He complained that they had caused [geometry] to forsake the 
realm of disembodied and abstract thought for that of material objects and to employ 
instruments which required much base and manual labor” (quoted by Fauvel and Gray 
1987, p. 173).



Chapter Three

The Beginnings of Written Mathematics: Egypt

The Urban Revolution and Its African Origins

In the previous chapter we began our examination of early evidence of 
mathematical activity with an artifact found in the middle of Africa. For 
the next stage of our journey we remain on the same continent but move 
north to Egypt. Egypt is generally recognized as the homeland of one of the 
four early civilizations that grew up along the great river valleys of Africa 
and Asia over five thousand years ago, the other three being in Mesopota-
mia, India, and China. Egyptian civilization did not emerge out of the blue 
as a full-blown civilization without any African roots. This is supported by 
evidence of large concentrations of agricultural implements carbon-dated 
to around 13,000 BC, found during the UNESCO-led operations to salvage 
the ancient monuments of Nubia.

Although there are no tangible traces of the origins of these Neolithic 
communities, recent archaeological discoveries indicate that they may have 
belonged to groups from the once-fertile Sahara region who were forced to 
migrate, initially to the areas south and east, as the desert spread. So, just as 
Egypt was a “gift of the Nile” (in the words of Herodotus), the culture and 
people of Egypt were at least initially a “gift” of the heartlands of Africa, 
the inhabitants of which were referred to at times as “Ethiopians.” This is 
borne out by the historian Diodorus Siculus, who wrote around 50 BC that 
the Egyptians “are colonists sent out by the Ethiopians. . . . And the large 
part of the customs of the Egyptians . . . are Ethiopian, the colonists still 
preserving their ancient manners” (Davidson 1987, p. 7).1

It is important that the African roots of the Egyptian civilization be em-
phasized so as to counter the still deeply entrenched view that the ancient 
Egyptians were racially, linguistically, and even geographically separated 
from Africa.2 The work during the last fifty years, well summarized by 
Bernal (1987) and Davidson (1987), lays bare the flimsy scholarship and 
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ideological bias of those who persist in regarding ancient Egypt as a sepa-
rate entity, plucked out of Africa and replanted in the middle of the Medi-
terranean Sea.

What were the origins of the urban revolution that transformed Egypt 
into one of the great ancient civilizations? It is not possible to give a de-
finitive answer. All we can do is surmise that the gradual development of 
effective methods of flood control, irrigation, and marsh drainage con-
tributed to a significant increase in agricultural yield. But each of these 
innovations required organization. An irrigation system calls for digging 
canals and constructing reservoirs and dams. Marsh drainage and flood 
control require substantial cooperation among what may have been quite 
scattered settlements. Would it be too fanciful to conjecture that, before 
the emergence of the highly centralized government of pharaonic Egypt, 
a form of ujamaa (self-help communities)3 may have come into existence 
as an institutional backup for these agricultural innovations? This may 
eventually have led to the establishment of administrative centers that 
grew into cities.4

Between 3500 and 3000 BC the separate agricultural communities 
along the banks of the Nile were gradually united, first to form two king-
doms—Upper and Lower Egypt—which were then brought together, in 
about 3100 BC, as a single unit by a legendary figure called Menes, who 
came from Nubia (part of present-day Sudan). Menes was believed to have 
founded a long line of pharaohs, thirty-two dynasties in all, who ruled over 
a stable but relatively isolated society for the next three thousand years. 
With the discovery of the Narmer Palette (dating back to the thirty-first 
century BC), some archaelogists have raised the possibility that Pharaoh 
Narmer predates Menes, which would then cast doubts on the traditional 
accounts. However, there are others who believe that Narmer and Menes 
are in fact the same person. 

It is worth remembering that up to 1350 BC the territory of Egypt cov-
ered not only the Nile Valley but also parts of modern Israel and Syria. 
Control over such a wide expanse of land required an efficient and ex-
tensive administrative system. Censuses had to be taken, taxes collected, 
and large armies maintained. Agricultural requirements included not only 
drainage, irrigation, and flood control but also the parceling out of scarce 
arable land among the peasantry and the construction of silos for storing 
grain and other produce. Herodotus, the Greek historian who lived in the 
fifth century BC, wrote that
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Sesostris [Pharaoh Ramses II, c. 1300 BC] divided the land into lots and 
gave a square piece of equal size, from the produce of which he exacted 
an annual tax. [If] any man’s holding was damaged by the encroach-
ment of the river. . . . The King . . . would send inspectors to measure the 
extent of the loss, in order that he might pay in future a fair proportion 
of the tax at which his property had been assessed. Perhaps this was 
the way in which geometry was invented, and passed afterwards into 
Greece. (Herodotus 1984, p. 169)

He also tells of the obliteration of the boundaries of these divisions by 
the overflowing Nile, regularly requiring the services of surveyors known 
as harpedonaptai (literally “rope stretchers”). Their skills must have im-
pressed the Greeks, for Democritus (c. 410 BC) wrote that “no one sur-
passes me in the construction of lines with proofs, not even the so-called 
rope-stretchers among the Egyptians.” One can only suppose that “lines 
with proofs” in this context refers to constructing lines with the help of a 
ruler and a compass.

There were other pursuits requiring practical arithmetic and mensu-
ration. As the Egyptian civilization matured, there evolved financial and 
commercial practices demanding numerical facility. The construction of 
calendars and the creation of a standard system of weights and measures 
were also products of an evolving numerate culture serviced by a growing 
class of scribes and clerks. And the high point of this practical culture is 
well exemplified in the construction of ancient Egypt’s longest-lasting and 
best-known legacy—the pyramids.

Sources of Egyptian Mathematics

Time has been less kind to Egyptian mathematical sources recorded on 
papyri than to the hard clay tablets from Mesopotamia. The exceptional 
nature of the climate and the topography along the Nile made the Egyp-
tian civilization one of the more agreeable and peaceful of the ancient 
world. In this it contrasted sharply with its Mesopotamian neighbors, who 
not only had a harsher natural environment to contend with but were 
often at the mercy of invaders from surrounding lands. Yet the very dry-
ness of most of Mesopotamia, as well as the unavailability of any natural 
writing material, resulted in the creation of a writing medium that has 
stood the test of time far better than the Egyptian papyrus. However, it 
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must be remembered that papyrus is quite a bit more durable than the 
palm leaves, bark, or bamboo used as writing materials by the ancient 
Chinese and Indians. It is interesting in this context to note that, owing 
to climatic conditions, almost all the papyri that survive are from Egypt 
and, even among these papyri, the ones that are best preserved belong to 
certain favored texts. It would therefore follow that basing one’s impres-
sions of ancient Egypt on these records could result in a skewed image of 
the society of that time.

There are two major sources and a few minor ones on early Egyptian 
mathematics. Most minor sources relate to the mathematics of a later pe-
riod, the Hellenistic (332 BC to 30 BC) or Roman (30 BC to AD 395) pe-
riods of Egyptian history. The most important major source is the Ahmes 
(or Ahmose) Papyrus, named after the scribe who copied it around 1650 
BC from an older document. It is also known as the Rhind Mathemati-
cal Papyrus, after the British collector who acquired it in 1858 and subse-
quently donated it to the British Museum. (Since we know in this instance 
who penned the document, it would be more proper to name it after the 
writer than the collector.) The second major source is the Moscow Papyrus, 
written in about 1850 BC; it was brought to Russia in the middle of the last 
century, finding its way to the Museum of Fine Arts in Moscow. Between 
them, the Ahmes and Moscow papyri contain a collection of 112 prob-
lems with solutions. At the time of the receipt of the Ahmes Papyrus by 
the British Museum in 1864, it was highly brittle with sections missing. A 
fortunate discovery of the missing fragments in the possession of the New 
York Historical Association in 1922 helped to restore it to its original form, 
although the two parts still remain with their separate owners.5 

Other sources include the Egyptian Mathematical Leather Roll, from 
the same period as the Ahmes Papyrus, which is a table text consisting of 
twenty-six decompositions into unit fractions; the Berlin Papyrus, which 
contains two problems involving what we would describe today as simul-
taneous equations, one of second degree; the Reisner Papyri containing ad-
ministrative texts from around 1900 BC, consisting of accounts of building 
construction and carpentry, including a list of workers arranged in groups 
needed for these activities; the Lahun mathematical fragments, formerly 
known as the Kahun Papyrus, also from around 1800 BC, containing six 
scattered mathematical fragments, all of which have now been deciphered;6 
and the Cairo Wooden Boards from the Middle Kingdom period. From 
a later period, there are the two ostraca texts (i.e., texts written on tiles/



The Beginnings: Egypt  83 

potteries) from the New Kingdom and demotic texts from the Greek and 
Roman periods. The latter consists of one large papyrus, the Cairo Papyrus, 
plus six smaller texts plus several ostraca. 

There is a third group of Egyptian mathematical texts that come from 
the last few centuries of the first millennium BC and the first half of the 
first millennium AD, all of which are written in Greek. A small subsection 
of texts in this group containing six ostraca, one papyrus roll, and three pa-
pyrus fragments are in some way related to Euclid’s Elements. However, the 
majority in this group show little or no sign of having been influenced by 
Greek mathematics. Friberg (2005, p. vii) describes the manuscripts from 
this group as “non-Euclidean” mathematical texts.7 And they constitute 
important evidence, as we shall see later, for tracing possible links between 
Egyptian, Babylonian, and Greek mathematics. 

Ahmes tells us that his material is derived from an earlier document 
belonging to the Middle Kingdom (2025–1773 BC). There is even the 
possibility that this knowledge may ultimately have been derived from 
Imhotep (c. 2650 BC), the legendary architect and physician to Pharaoh 
Zoser of the Third Dynasty. The opening sentence claims that the Papyrus 
contains “rules for enquiring into nature, and for knowing all that exists, 
[every] mystery, . . . every secret.” While an examination of the Ahmes Pa-
pyrus does not bear this out, it remains, with the tables and eighty-seven 
problems and their solutions, the most comprehensive source of early 
Egyptian mathematics, and it was more likely than not a teacher’s man-
ual. The Moscow Papyrus was composed (or copied) by a less competent 
scribe, who remains unknown. It shows little order in the arrangement 
of topics covered, which are not very different from those in the Ahmes 
Papyrus. It contains twenty-five problems, among them two notable re-
sults of Egyptian mathematics: the formula for the volume of a truncated 
square pyramid (or frustum), and a remarkable solution to the problem 
of finding what some interpreters consider to be the curved surface area 
of a hemisphere. Before looking in detail at the mathematics in these and 
other sources, we begin the next section with a discussion of the Egyptian 
system of numeration.

Three types of source materials on Egyptian mathematics can be dis-
tinguished: table texts, problem texts, and administrative texts. These texts 
were the product of a group of scribes, with their clearly defined hierarchy. 
An interesting glimpse into professional rivalry is shown in the Papyrus 
Anatasi from the New Kingdom in which one scribe taunts another:8 
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You come here and [try] to impress me with your official status as “the 
scribe and commander of a work gang.” Your arrogance and boastful 
behavior will be shown up by (how you tackle) the following problem: 
“A ramp, 730 cubits [long] and 55 cubits wide, must be built, with 120 
compartments filled with reeds and beams.9 It should be at a height of 
60 cubits at its peak, 30 cubits in the middle, a slope of 15 cubits with a 
base of 5 cubits. The quantity of bricks required can be obtained from 
the troop commander.” The scribes are all assembled but no one knows 
how to solve the problem. They put their faith in you and say: “You are 
a clever scribe, my friend! Solve [the problem] quickly for your name is 
famous. . . . Let it not be said: ‘There is something he does not know.’ Give 
us the quantity of bricks required. Behold, its measurements are before 
you; each of its compartments is 30 cubits [long] and 7 cubits [wide].”

It would seem that the problem set deals with four situations that re-
quire different calculations: (1) calculating the number of bricks needed 
to build a ramp; (2) calculating the number of persons needed to move 
an obelisk; (3) calculating the number of persons needed to erect a colos-
sal statue; and (4) calculating the rations of a group of soldiers of a given 
size. It is not known whether the “arrogant” scribe solved the problem. 
However, for a modern reader, the data provided are insufficient to solve 
the problem, and hence a variety of interpretations have been suggested.10

It is clear in this instance that the task set for the scribe was a problem in 
practical mathematics. A number of other problems had little connection 
with real life. The teacher scribes were simply showing their student scribes 
how to apply certain procedures correctly. A scribe was either an instruc-
tor or an accountant. If he was an instructor, he was expected to teach 
“advanced” calculations to his students. If he was an accountant, he had to 
work out labor requirements, food rations, land allocation, grain distribu-
tions, and similar matters for his employers, who were either government 
officials or wealthy private individuals. It is usually an accountant scribe 
who is depicted on wall frescoes walking a few paces behind his master.

Number Recording among the Egyptians

From the beginning of the third millennium BC, there are records of names 
of persons and places as well as those of commodities and their quantities. 
An example of this is a mace head containing a list of tributes received by 
the pharaoh Narmer: 120,000 men, 400,000 oxen, and 1,422,000 goats.11 
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To record such large numbers would require a system of numerals that 
allowed counting to continue almost indefinitely by the introduction of a 
new symbol wherever necessary.

There is an impression, fostered (no doubt inadvertently) by many text-
books on the history of mathematics, that only one scheme of numera-
tion was used in ancient Egypt: the hieroglyphic. This impression is quite 
consistent with a view of Egyptian civilization as stable and unchanging, 
with mathematics primitive yet sufficient to serve the economic and tech-
nological needs of the time. The truth is very different from this view. It 
is possible to distinguish three different notational systems—hieroglyphic 
(pictorial), hieratic (symbolic), and demotic (from the Greek word mean-
ing “popular”)—the first two of which made their appearance quite early in 
Egyptian history. The hieratic notation was employed in both the Ahmes 
and the Moscow papyri. It evolved into a script written with ink and a reed 
pen or other implements on papyrus, ostracon (tile/pottery), leather, or 
wood, changing from what earlier resembled the hieroglyphic script to a 
more cursive and variable style suiting the handwriting of the individual 
scribe. The demotic variant was a popular adaptation of the hieratic nota-
tion and became important during the Greek and Roman periods of Egyp-
tian history.

The hieroglyphic system of writing was a pictorial script in which each 
character represented an object, some easily recognizable. Special symbols 
were used to represent each power of 10 from 1 to 107. Thus a unit was 
commonly written as a single vertical stroke, though when rendered in 
detail it resembled a short piece of rope. The symbol for 10 was in the 
shape of a horseshoe. One hundred was a coil of rope. The pictograph for 
1,000 resembled a lotus flower, though the plant sign formed the initial 
khaa, the beginning of the Egyptian word “to measure.” Ten thousand was 
shaped like a crooked finger which probably had some obscure phonetic or 
allegorical connotation. The stylized tadpole for 100,000 may have been a 
general symbol of large numbers. One million was shown by a figure with 
arms upraised, representing the god Heh supporting the sky. On rare occa-
sions, 10 million was represented by the rising sun and possibly associated 
with Ra, the sun-god, one of the more powerful of the Egyptian deities.12

Thus the earliest Egyptian number system was based on the following 
symbols:

1	 10	 102	 103	 104	 105	 106	 107 
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Any reasonably large number can be written using the above symbols ad-
ditively, for example:

12,013 3 1(10) 2(10 ) 1(10 )2 4= + + + = 

No difficulties arose from not having a zero or placeholder in this number 
system. It is of little consequence in what order the hieroglyphs appeared, 
though the practice was generally to arrange them from right to left in de-
scending order of magnitude, as in the example above. While there were 
exceptions regarding the orientation of the number symbols in the case of 
the hieroglyphic numbers, the hieratic was invariably written from right 
to left.

Addition and subtraction posed few problems. In adding two num-
bers, one made a collection of each set of symbols that appeared in both 
numbers, replacing them with the next higher symbol as necessary. Sub-
traction was merely the reversal of the process for addition, with decompo-
sition achieved by replacing a larger hieroglyph with ten of the next-lower 
symbol. 

The absence of zero is a shortcoming of Egyptian numeration that is 
often referred to in histories of mathematics. It is clear that an absence of 
zero as a placeholder is perfectly consistent with a number system such as 
the Egyptian system. However, in two other senses it may be argued, as 
Lumpkin (2002, pp. 161–67) has done, that the concept of zero was present 
in Egyptian mathematics. First, there is zero as a number. Scharff (1922, 
pp. 58–59) contains a monthly balance sheet of the accounts of a traveling 
royal party, dating back to around 1770 BC, which shows the expenditure 
and the income allocated for each type of good in a separate column. The 
balance of zero, recorded in the case of four goods, is shown by the nfr 
symbol that corresponds to the Egyptian word for “good,” “complete,” or 
“beautiful.” It is interesting, in this context, that the concept of zero has a 
positive association in other cultures as well, such as in India (sunya) and 
among the Maya (the shell symbol). 

The same nfr symbol appears in a series of drawings of some Old King-
dom constructions. For example, in the construction of Meidun Pyramid, 
it appears as a ground reference point for integral values of cubits given as 
“above zero” (going up) and “below zero” (going down). There are other 
examples of these number lines at pyramid sites, known and referred to by 
Egyptologists early in the century, including Borchardt, Petrie, and Reiner, 
but not mentioned by historians of mathematics, not even Gillings (1972), 



The Beginnings: Egypt  87 

who played such an important role in revealing the treasures of Egyptian 
mathematics to a wider public. About fifteen hundred years after Ahmes, 
in a deed from Edfu, there is a use of the “zero concept as a replacement to 
a magnitude in geometry,” according to Boyer (1968, p. 18). Perhaps there 
are other examples waiting to be found in Egypt.

The hieratic representation was similar to the hieroglyphic system in 
that it was additive and based on powers of 10. But it was far more eco-
nomical, as a number of identical hieroglyphs were replaced with fewer 
symbols, or just one symbol. For example, the number 57 was written in 
hieroglyphic notation as

But the same number would be written in hieratic notation as  where 
 and  represent 7 and 50 respectively. It is clear that the idea of a 

ciphered number system, which we discussed in the previous chapter, is 
already present here.

While the hieratic notation was no doubt more taxing on memory, its 
economy, speed, conciseness, and greater suitability for writing with pen 
and ink must have been the main reasons for its fairly early adoption in 
ancient Egypt. For example, to represent the number 999 would take al-
together twenty-seven symbols in hieroglyphics, compared with three 
number signs in hieratic representation! And from the point of view of the 
history of mathematics, the hieratic notation may have inspired, at least 
in its formative stages, the development of the alphabetic Greek number 
system around the middle of the first millennium BC. Over the years the 
hieratic was replaced by an “abnormal hieratic”13 and demotic, while the 
hieroglyphic script remained in use throughout.

From as early as the First Dynasty in the Archaic period (3000–
2686 BC), thin sheets of whitish “paper” were produced from the interior 
of the stem of a reedlike plant that grew in the swamps along the banks of 
the Nile. Fresh stems were cut, the hard outer parts removed, and the soft 
inner pith was laid out and beaten until it formed into sheets, the natural 
juice of the plant acting as the adhesive. Once dried in the sun, the writing 
surface was scraped smooth and gummed into rolls, of which the longest 
known measures over 40 meters. On these rolls the Egyptians wrote with a 
brushlike pen, using for ink either a black substance made from soot or a 
red substance made from ocher.
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Egyptian Arithmetic

The Method of Duplation and Mediation
One of the great merits of the Egyptian method of multiplication or division 
is that it requires prior knowledge of only addition and the 2-times table. A 
few simple examples will illustrate how the Egyptians would have done their 
multiplication and division. Only in the first example will the operation be 
explained in terms of both the hieroglyphic and present-day notation.

Example 3.1  Multiply 17 by 13.

Solution

The scribe had first to decide which of the two numbers was the multi-
plicand—the one he would multiply by the other. Suppose he chose 17. 
He would proceed by successively multiplying 17 by 2 (i.e., continuing 
to double each result) and stopping before he got to a number on the 
left-hand side of the “translated” version below that exceeded the mul-
tiplier, 13( 1 4 8)= + + :

The hieroglyph , resembling a papyrus roll, meant “total.” The num-
bers to be added to obtain the multiplier 13 are arrowed.

If this method is to be used for the multiplication of any two integers, 
the following rule must apply: Every integer can be expressed as the sum of 
integral powers of 2. Thus
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15 2 2 2 2 ;
23 2 2 2 2 .

0 1 2 3

0 1 2 4

= + + +

= + + +

It is not known whether the Egyptians were aware of this general rule, 
though the confidence with which they approached all forms of multipli-
cation by this process suggests that they had an inkling.

This ancient method of multiplication provides the foundation for 
Egyptian calculation. It was widely used, with some modifications, by the 
Greeks and continued well into the Middle Ages in Europe. In a modern 
variation of this method, still popular among rural communities in Rus-
sia, Ethiopia, and the Near East, there are no multiplication tables, and the 
ability to double and halve numbers (and to distinguish odd from even) is 
all that is required.

Example 3.2  Multiply 225 by 17.

Solution

r	 225	  17

	 112	 34

	 56	  68

	 28	 136

	 14	 272

r	 7 	 544

r	 3	 1,088

r	 1	 2,176

17 + 544 + 1,088 + 2,176 = 3,825.

This method, known in the West as the “Russian peasant method,” works 
by expressing the multiplicand, 225, as the sum of integral powers of 2:

225 1 32 64 128 1(2 ) 0(2 ) 0(2 ) 0(2 ) 0(2 ) 1(2 ) 1(2 ) 1(2 ) .0 1 2 3 4 5 6 7= + + + = + + + + + + +

Continued . . .

Inspect the left-hand column for odd numbers 
or “potent” terms (ancient lore in many 
societies imputed “potency” to odd numbers). 
Add the corresponding terms in the right-
hand column to get the answer.



90  Chapter 3

Continued . . .
Adding the results of multiplying each of these components by 17 gives

(17 2 ) (17 2 ) (17 2 ) (17 2 ) 17 544 1,088 2,176 3,825.0 5 6 7# # # #+ + + = + + + =

In Egyptian arithmetic, the process of division was closely related to 
the method of multiplication. In the Ahmes Papyrus a division x/y is in-
troduced by the words “reckon with y so as to obtain x.” So an Egyptian 
scribe, rather than thinking of “dividing 696 by 29,” would say to himself, 
“Starting with 29, how many times should I add it to itself to get 696?” 
The procedure he would set up to solve this problem would be similar to a 
multiplication exercise:

Example 3.3  Divide 696 by 29.

Solution

	 1	 29

	 2	 58

	 4	 116

	 8	 r  232

	 16	 r  464
		

	16 + 8 = 24  232 + 464 = 696

Where a scribe was faced with the problem of not being able to get any 
combination of the numbers in the right-hand column to add up to the 
value of the dividend, fractions had to be introduced. And here the Egyp-
tians faced constraints arising directly from their system of numeration: 
their method of writing numerals did not allow any unambiguous way 
of expressing fractions. But the way they tackled the problem was quite 
ingenious.

The scribe would stop at 16, for 
the next doubling would take 
him past the dividend, 696. Some 
quick mental arithmetic on the 
numbers in the right-hand column 
shows the sum of 232 and 464 
would give the exact value of the 
dividend 696. Taking the sum of 
the corresponding numbers in the 
left-hand column gives the answer 
16 + 8 = 24.
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Egyptian Representation of Fractions
Nowadays, we would write a noninteger number as either a fraction (2/7) 
or a decimal (0.285714). From very early times, the ancient Egyptians (as 
far as we can tell from surviving documents) wrote nonintegers as a sum 
of unit fractions. So that while a number like 1/7 in hieroglyphic nota-
tion consisted of seven vertical lines crowned by the hieroglyphic sign for 
mouth, the number 2/7 was written as a sum of unit fractions or 2/7 = 
1/4 + 1/28. Note that the same unit fraction was not used twice in one rep-
resentation (i.e., 2/7 = 1/7 + 1/7 was not allowed); and there is no known 
explanation for the adoption of this convention. This system of represent-
ing fractions became known as the Egyptian system.

There have been different views as to why Egyptians followed this style 
of fractional representation. A traditional view, widely accepted even to-
day, is that the representation reflected the notational, or conceptual, limi-
tation of their number system. To many of us brought up on fixed‑base 
representations of numbers, it is difficult to imagine a situation that fa-
vored the Egyptian usage. One could, of course, contrast the “exactness” 
of the Egyptian representation with the “approximate” nature of fixed‑base 
expansions of the neighboring Mesopotamians, whose system is discussed 
in chapter 4. We could marvel at the way that Egyptian scribes performed 
complicated arithmetical operations. They would take 16 + 1/56 + 1/679 
+ 1/776, find 2/3 of it as 10 + 2/3 + 1/84 + 1/1,358 + 1/4,074 + 1/1,164, 
then add 1/2 of it and 1/7 of it and show that it all adds up to 37!

The Egyptian preference for “exactness” has some interesting historical 
parallels with the preference of their students, the Greeks, for geometry 
over symbolic arithmetic. The Egyptian style may have contributed to the 
Pythagorean number mysticism and the number theory that grew out of it. 
For example, the notion of a “perfect number,” which is equal to the sum 
of its proper divisors, would now seem to many as esoteric. But perfect 
numbers have certain practical uses in working with Egyptian fractions. 
And the subject provides, even today, a source of mathematical puzzles 
and problems in abstract number theory.

The puzzle still remains: what practical purpose was served by the 
Egyptian unit fractions? One reason for expanding rational fractions is to 
facilitate easy comparison of different quantities. For example, if you had 
to choose between being paid 1/7 of a bushel of corn or 13/89 of a bushel, 
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which should you take? In terms of the Babylonian arithmetic the two 
quantities could be expressed in base 60 as

,

.

7
1

60
8

60
34

60
17

89
13

60
8

60
45

60
50

2 3

2 3

.

.

+ +

+ +

It is clear from inspection that while the first terms on the right of both 
quantities are identical, the second term of 13/89 is larger than the second 
term of 1/7.

An estimate of the relative magnitude of the two fractions using the 
Egyptian approach is cumbersome. For example, the decomposition of 
13/89 is impossibly complicated, as shown below:

( )
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8
13

89
1 4 8

89
1

30
1

178
1

267
1

445
1

15
1

89
1

267
2

445
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1
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1

60
1

178
1

267
1

356
1

445
1

534
1

890
1

267
2

445
2

9 =
+ +

= + + + + + + + +

= + + + + + + + + + +

d dn n

Note that the last two terms in the expansion for 13/89 can be converted to 
unit fractions if we had a 2/n table extending up to n = 445. (The 2/n table 
given in the Ahmes Papyrus and shown in table 3.1 later in this chapter 
provides only odd values of n up to 101). At some point, the quantities 
have to be reduced to expansions that have a common denominator for a 
comparison to be made.

Operations with Unit Fractions
Operating with unit fractions is a singular feature of Egyptian mathemat-
ics and is absent from almost every other mathematical tradition. A sub-
stantial proportion of surviving ancient Egyptian calculations make use 
of such operations—of the eighty-seven problems in the Ahmes Papyrus, 
only six do not. Two reasons may be suggested for this great emphasis on 
fractions. In a society that did not use money, where transactions were car-
ried out in kind, there was a need for accurate calculations with fractions, 
particularly in practical problems such as division of food, parceling out 
land, and mixing different ingredients for beer or bread. We shall see later 
that a number of problems in the Ahmes Papyrus deal with such practical 
concerns.
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A second reason arose from the peculiar character of Egyptian arith-
metic. The process of halving in division often led to fractions. Consider 
how the Egyptians solved the following problem (no. 25) from the Ahmes 
Papyrus.

Example 3.4  Divide 16 by 3.

Solution

	 1	 →	 3

	 2		  6

	 4	 →	 12

	 2/3		  2

	 1/3	 →	 1

	1 + 4 + 1/3 = 5 + 1/3		 16

As 12 + 3 = 15 falls one short of 16, the Egyptian scribe would proceed 
by working out 2/3 of 1 and then halving the result (i.e., 1/2 # 2/3 = 1/3). 
These steps are shown on the left. Now, 3 + 12 + 1 = 16. The sum of 
the corresponding figures in the left-hand column gives the answer 5 3

1 .

Two important features of Egyptian calculations with fractions are high
lighted here:

1. � Perverse as it may seem to us today, to calculate a third of a number 
a scribe would first find two-thirds of that number and then halve 
the result. This was standard practice in all Egyptian computations.

2. � Apart from two-thirds (represented by its own hieroglyph, either  
or ), Egyptian mathematics had no compound fractions: all frac-
tions were decomposed into a sum of unit fractions (fractions such 
as 1/4 and 1/5).

To represent a unit fraction, the Egyptians used the symbol , meaning 
“part,” with the denominator underneath. Thus 1/5 and 1/40 would appear 
as  and  respectively.
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The 2/n Table: Its Construction
The dependence on unit fractions in arithmetical operations, together with 
the peculiar system of multiplication, led to a third aspect of Egyptian com-
putation. Every multiplication and division involving unit fractions would 
invariably lead to the problem of how to double unit fractions. Now, dou-
bling a unit fraction with an even denominator is a simple matter of halving 
the denominator. Thus doubling 1/2, 1/4, 1/6, and 1/8 yields 1, 1/2, 1/3, and 
1/4. Doubling 1/3 raised no difficulty, for 2/3 had its own hieroglyphic or 
hieratic symbol. But it was in doubling unit fractions with other odd de-
nominators that difficulties arose. For some reason unknown to us, it was 
not permissible in Egyptian computation to write 2 times 1/n as 1/n + 1/n. 
Thus the need arose for some form of ready reckoner that would provide 
the appropriate unit fractions that summed to 2/n, where n = 5, 7, 9, . . . . 

At the beginning of the Ahmes Papyrus there is a table of decomposi-
tion of 2/n into unit fractions for all odd values of n from 3 to 101. In the 
papyrus, the decomposed unit fractions are marked in red ink. A few of its 
entries are given in table 3.1.

The usefulness of this table for computations cannot be overempha-
sized: it may quite legitimately be compared in importance to the logarith-
mic tables that were used before the advent of electronic calculators. The 
table is interesting for a number of reasons. For one, it does not contain a 
single arithmetical error, in spite of the long and highly involved calcula-
tions that its construction must have entailed; it may be a final corrected 
version of a number of earlier attempts that have not survived.

There is an even more remarkable aspect to this table. With the help of 
a computer, it has been worked out that there are about twenty-eight thou-
sand different combinations of unit fraction sums that can be generated for 
2/n, n = 3, 5, . . . , 101. The constructor of this table arrived at a particular 
subset of fifty unit-fraction expressions, one for each value of n. According 
to Gillings (1972), it is possible to discern certain guidelines for the sets of 
values chosen. There is

1. � a preference for small denominators, and none greater than 900;

2. � a preference for combinations with only a few unit fractions (no ex-
pression contains more than four);

3. � a preference for even numbers as denominators, especially as the 
denominator of the first unit-fraction in each expression, even 
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though they are large or might increase the number of terms in the 
expression. 

To take an example, according to Gillings’s calculations the fraction 2/17 
can be decomposed into unit-fraction summations in just one way if there 
are two unit-fraction terms, 11 ways with three unit-fraction terms, and 
467 ways with four unit-fraction terms. Table 3.1 shows that the construc-
tor opted for one of the three-unit-fraction groups, 2/17 = 1/12 + 1/51 + 
1/68, rather than the solitary two-unit-fraction group, 2/17 = 1/9 + 1/153. 
It would seem that criteria (1) and (3) prevailed in this instance.14

Multiplication and Division with Unit Fractions
The main purpose of constructing the table was to use it for multiplication 
and division. Let us consider one example of each to illustrate its use. First, 
multiplication.

Table 3.1:  Some Entries from the Ahmes Papyrus 2/n Table

2/n	 Unit fractions

2/5	 1/3 + 1/15
2/7	 1/4 + 1/28
2/9	 1/6 + 1/18

2/15	 1/10 + 1/30
2/17	 1/12 + 1/51 + 1/68
2/19	 1/12 + 1/76 + 1/114

2/45	 1/30 + 1/90
2/47	 1/30 + 1/141 + 1/470
2/49	 1/28 + 1/196
2/51	 1/34 + 1/102

2/55	 1/30 + 1/330
2/57	 1/38 + 1/114
2/59	 1/36 + 1/236 + 1/531

2/95	 1/60 + 1/380 + 1/570
2/97	 1/56 + 1/679 + 1/776
2/99	 1/66 + 1/198
2/101	 1/101 + 1/202 + 1/303 + 1/606
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Example 3.5 

Multiply 1 8
15 by 301

3 (or 1 + 1
3 + 1

5 by 30 + 1
3).

Solution

		  1	 1 + 1/3 + 1/5

	 r	 2	 2 + 2/3 + 2/5 = 2 + 2/3 + 1/3 + 1/15

	 r	 4	 6  + 2/15 = 6 + 1/10 + 1/30

	 r	 8	 12 + 1/5 + 1/15

	 r	 16	 24 +  2/5 + 2/15 = 24 + 1/3 + 1/15 + 1/10 + 1/30

		  2/3	 2/3 + 2/9 + 2/15 = 2/3 + 1/6 + 1/18 + 1/10 + 1/30

	 r	 1/3	 1/3 + 1/12 + 1/36 + 1/20 + 1/60

2 + 4 + 8 + 16  + 1/3 = 30 + 1/3	 46 + 1/5 + 1/10 + 1/12 + 1/15 + 1/30 + 1/36     

The product of the two numbers using modern multiplication would 
be 46 23

45, which is exactly equivalent to the Egyptian result given in the 
last row. In the course of multiplication we have taken the unit frac-
tion terms of 2/5, 2/15, and 2/9 from table 3.1. And because Egyptian 
multiplication was based on doubling, only table 3.1 was required. The 
sheer labor and tedium of this form of multiplication should not make 
us forget how modest is the “tool kit” required. The ability to double, 
halve, and work with the fraction “two-thirds,” together with the 2/n 
table, is sufficient.

To illustrate division with fractions, we take one of the more difficult 
problems of its kind from the Ahmes Papyrus, problem 33, which may be 
restated in modern language as follows.

Example 3.6  The sum of a certain quantity together with its two-
thirds, its half, and its one-seventh becomes 37. What is the quantity? 

Continued . . . 
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Egyptian Division: The Use of “Red Auxiliaries”
The real question remains: How would the Egyptians, working within the 
constraints of their arithmetic, have dealt with the problems raised by 

Continued . . . 

Solution

In the language of modern algebra, this problem is solved by setting up 
an equation of the first degree in one unknown. Let the quantity be x. 
The problem is then to solve

x 371 3
2

2
1

7
1

=+ + +d n

to give

.x 37 1 3
2

2
1

7
1 16 97

2
'= + + + =d n

The problem restated: Divide 37 by (1 + 2/3 + 1/2 + 1/7).

	 1	 1 + 2/3 + 1/2 + 1/7

	 2	 4 + 1/3 + 1/4 + 1/28 (2/7 = 1/4 + 1/28 from the 2/n table)

	 4	 8 + 2/3 + 1/2 + 1/14

	 8	 18 + 1/3 + 1/7

→	 16	 36 + 2/3 + 1/4 + 1/28

At this point in the procedure, two questions arise:

1. � The right-hand side of the last row is close to 37, which is the 
dividend. What must be added to 2/3 + 1/4 + 1/28 to make up 1? 
With our present method, we find the answer, 1/21.

2. � The next question is: By what must the divisor 1 + 2/3 + 1/2 + 
1/7 be multiplied to get 1/21? The answer is 2/97, or in unit frac-
tions 1/56 + 1/679 + 1/776, from table 3.1.

So the solution is

.37 1 3
2

2
1

7
1 16 56

1
679

1
776

1 16 97
2

' + + + = + + + =d n
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questions 1 and 2 in example 3.6? A study of some of the problems in the 
Ahmes Papyrus provides us with the answer. Problems 21 to 23 are com-
monly known as “problems in completion,” since they are expressed as

Complete 2/3 1/15 to 1.	 (Problem 21) 

Complete 1/4 1/8 1/10 1/35 1/45 to 3.	 (Problem 23)

These problems are similar to the one in question 1 above, which may also 
be expressed in this way:

Complete 2/3 1/4 1/28 to 1.

The Egyptians adopted a method of solution that is analogous (but not 
equivalent) to the present-day method of least common denominator. First 
they took the denominator of the smallest unit-fraction as a reference num-
ber, and then they multiplied each of the fractions by this number to ob-
tain “red auxiliaries” (so named because the scribe wrote these numbers 
in red ink). They proceeded to calculate by how much the sum of these 
auxiliaries fell short of the reference number. This shortfall quantity was 
then expressed as a fraction of the reference number to obtain the desired 
complement. If the shortfall quantity turned out to be an awkward fraction, 
a further search was made for a reference number that would result in more 
manageable auxiliaries. So, how was question 1 tackled the Egyptian way?

Example 3.7  Complete 2/3 1/4 1/28 to 1. 

Solution

1;

28 .

3
2

4
1

28
1

10 2
1 1 2

1 2 42

(some fraction)+ + + =

+ + + + + =d dn n

The denominator of the smallest fraction, 28, is not a suitable reference 
number given the auxiliaries that result. Instead, 42 is chosen for ease 
of calculation because it is important that the sum of the auxiliaries be-
longing to the divisor in example 3.6 is an integer. Thus 42 is the lowest 
common multiple of the numbers 1, 3, 2, and 7. However, the reference 
number chosen in Egyptian computation was not necessarily the lowest 
common multiple. So what fraction(s) of 42 will give 2? The answer is 1/21.

Continued . . . 
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Continued . . . 

The next step is to find by what fraction the divisor 1 + 2/3 + 1/2 + 
1/7 (from example 3.6) must be multiplied to get 1/21. In other words, 
we have to divide 1/21 by 1 + 2/3 + 1/2 + 1/7:

→	 1			   21

→	 2/3			   14

→	 1/2		  10 + 1/2

→	 1/7			   3

	
	1 + 2/3 + 1/2 + 1/7	 48 + 1/2

Now, 1 ÷ (48 + 1/2) = 2/97 = 1/56 + 1/679 + 1/776 (obtained from 
the 2/n table).

Hence 37 ÷ (1 + 2/3 + 1/2 + 1/7) = 16 + 1/56 + 1/679 + 1/776.

We have not followed the scribe all the way in his solution to the prob-
lem, for the reason that at one stage his approach requires an addition of 
sixteen unit-fractions, the last six of which are 1/1,164, 1/1,358, 1/1,552, 
1/4,074, 1/4,753, and 1/5,432! We can only assume that the scribe was 
either an incredible calculator or that he had a battery of tables that he 
could consult when called upon to add different combinations of unit frac-
tions. However, the more likely but mundane explanation is that the scribe 
“cheated,” since he knew what the answer should be! The fact remains: the 
Egyptians were inveterate table makers, and the summation table of unit 
fractions contained in the Leather Roll and the decomposition table of 2/n 
in the Ahmes Papyrus are prime examples.15

It is unlikely that the original problem (example 3.6) had any practi-
cal import. In an attempt probably to illustrate, for the benefit of trainee 
scribes, the solution of simple equations of this type, an unfortunate choice 
of numbers led to difficult sets of unit fractions with the attendant cumber-
some operations, which the scribe accomplished without faltering. One is 
again struck by the mental agility of the scribes who could perform such 
feats with a minimum of mathematical tools to call upon. The use of red 
auxiliaries is further evidence of the high level of Egyptian achievement in 
computation, since they enabled any division, however complicated, to be 
performed.
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Applications of Unit Fractions: Distribution of Loaves
As has been suggested, the exclusive use of unit fractions in Egyptian 
mathematics also had a practical rationale. This is brought out quite clearly 
in the first six problems of the Ahmes Papyrus, which are concerned with 
sharing out n loaves among ten men, where n = 1, 2, 6, 7, 8, 9. As an illus-
tration let us consider problem 6, which relates to the division of 9 loaves 
among ten men. A present-day approach would be to work out the share 
of each man, i.e., 9/10 of a loaf, and then divide the loaves so that the first 
nine men would each get 9/10 cut from one of the 9 loaves. The last man, 
however, left with the 9 pieces of 1/10 remaining from each loaf, might well 
regard this method of distribution as less than satisfactory. The Egyptian 
method of division avoids such a difficulty. It consists of first looking up 
the decomposition table for n/10 and discovering that 9/10 = 2/3 + 1/5 + 
1/30. The division would then proceed as shown in figure 3.1: seven men 
would each receive 3 pieces of bread, consisting of 2/3, 1/5, and 1/30 of a 
loaf. The other three men would each receive 4 pieces consisting of two 
1/3 pieces, a single 1/5 piece, and a single 1/30 of a loaf. Justice is not only 
done, but seen to be done!

Applications of Unit Fractions: Remuneration of Temple Personnel
In a nonmonetary economy, payment for both goods and labor is made 
in kind. Often the choice of the goods that act as measures or standards 

Figure 3.1: Problem 6 from the Ahmes Papyrus: sharing 9 loaves among 10 men (After 
Gillings 1962, p. 67)
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of value provides interesting insights into the character of the society. In 
Egypt, bread and beer were the most common standards of value for ex-
change. A number of problems in the Ahmes Papyrus concern these goods, 
dealing with their distribution among a given number of workers, and also 
with strength (pesu) of different types of these two commodities. We shall 
be examining one of the pesu problems later in this chapter. But first we 
look at an example, brought to our attention by Gillings (1972), that sheds 
some interesting light.

Table 3.2, adapted from Gillings’s book, is a record of payments to vari-
ous temple personnel at Illahun around 2000 BC. The payments were made 
in loaves of bread and two different types of beer (referred to here as beer 
A and beer B). The temple employed 21 persons and had 70 loaves, 35 jugs 
of beer A, and 1151

2 jugs of beer B available for distribution every day. The 
unit of distribution was taken to be 1/42 of a portion of each of these items, 
which worked out as 1 + 2/3 loaves of bread, 2/3 + 1/6 jug of beer A, and 
2 + 2/3 + 1/10 jugs of beer B.

The table is interesting for a number of reasons. It contains an interest-
ing example of an arithmetical error on the part of a scribe: the unit of dis-
tribution of beer B was wrongly worked out as 2 + 2/3 + 1/10 (the correct 

Table 3.2:  Remuneration of the Personnel of Illahun Temple (Units of 
Distribution per Person)

	
Number of

	 Commodity

	 portions	 Bread	 Beer A	 Beer B* 
Status of personnel	 received	 (1 + 2/3 loaves)	 (2/3 + 1/6 jugs)	 (2 + 1/2 + 1/4 jugs)

Temple director	 10	 16 + 2/3	 8 + 1/3	 27 + 1/2
Head reader	 6	 10	 5	 16 + 1/2
Usual reader	 4	 6 + 2/3	 3 + 1/3	 11
Head lay priest	 3	 5	 2 + 1/2	 8 + 1/4
Priests, various (7)	 14	 23 + 1/3	 11 + 1/3	 37 + 1/2
Temple scribe	 1 + 1/3	 2 + 1/6 + 1/18	 1 + 1/9	 3 + 2/3
Clerk	 1	 1 + 2/3	 2/3 + 1/6	 2 + 1/2 + 1/4
Other workers (8)	 2 + 2/3	 4 + 1/3 + 1/9	 2 + 1/6 + 1/18	 7 + 1/3
  Totals	 42	 70	 35	 115 + 1/2

Note: Adapted from table 11.2 in Gillings (1972)
*The scribe made an error in working out the amount in one portion of beer b, 1/42 of 115 + 1/2, 

which he estimated as 2 + 2/3 + 1/10 instead of 2 + 1/2 + 1/4. This mistake has been rectified along 
the lines indicated by Gillings.
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value is 2 + 1/2 + 1/4) . The scribe proceeded to use the incorrect figure in 
working out the shares of different personnel, but did not apparently check 
his calculations by adding all the shares. He wrote total as 1151

2 jugs, which 
is what it should have been, whereas the table adds up to 1141

2 jugs. Also, 
the table bears ample testimony to the facility with which the Egyptians 
could handle fractions. Given all the limitations of their number system, 
they proved to be extremely adept at computations. Further, the minute 
fractional division of both beer and bread suggests a highly developed sys-
tem of weights and measures: it is intriguing how 2 + 1/6 + 1/18 jugs of 
beer A were shared equally among eight “other workers.”

From the table we have some indication of the relative status of the 
personnel at the temple. At the top was the high priest, or temple direc-
tor, often a member of the royal family. Among his duties was to pour 
out the drink-offering to the gods and to examine the purity of the sac-
rificial animals. It was only after he had “smelt” the blood and declared 
it pure that pieces of flesh could be laid on the table of offerings. Hence 
Ue’b, meaning “pure,” was the name by which he was known. Perhaps more 
important than the Ue’b, from a ritual point of view, was the head reader 
(or reciter-priest), whose duty it was to recite from the holy books. Since 
magical powers were attributed to these texts, it was generally believed that 
the reciter-priest was a magician, making him in status and remuneration 
second only to the high priest. After him came other classes of the priest-
hood, the largest of which was known as the “servants of God.” Some of 
them were prominent in civil life; others were appointed to serve particular 
gods. Their job included washing and dressing statues of assigned deities 
and making offerings of food and drink to them at certain times of the 
day. The scribes came quite low on the list, though this was not the case 
in other walks of life—most scribes, particularly those associated with the 
royal court, enjoyed considerable status and power.

Egyptian Algebra: The Beginnings of Rhetorical Algebra

It is sometimes claimed that Egyptian mathematics consisted of little more 
than applied arithmetic, and that one cannot therefore talk of Egyptian 
algebra or geometry. We shall come to the question of Egyptian geometry, 
but first we consider the existence or otherwise of an entity called Egyptian 
algebra. Algebra may be defined as a branch of mathematics of generalized 
arithmetical operations, often involving today the substitution of letters for 
numbers to express mathematical relationships.
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The rules devised by mathematicians for solving problems about num-
bers of one kind or another may be classified into three types. In the early 
stages of mathematical development these rules were expressed verbally 
and consisted of detailed instructions, without the use of any mathemati-
cal symbols (such as +, -, , √ ), about what was to be done to obtain 
the solution to a problem. For this reason this approach is referred to as 
“rhetorical algebra.” In time, the prose form of rhetorical algebra gave way 
to the use of abbreviations for recurring quantities and operations, her-
alding the appearance of “syncopated algebra.” Traces of such algebra are 
to be found in the works of the Alexandrian mathematician Diophantus 
(c. AD 250), but it achieved its fullest development—as we shall see in later 
chapters—in the work of Indian and Islamic mathematicians during the 
first millennium AD. During the past five hundred years “symbolic alge-
bra” has developed. In this type of algebra, with the aid of letters and signs 
of operation and relation (+, -, , √ ), problems are stated in such a form 
that the rules of solution may be applied consistently and systematically. 
The transformation from rhetorical to symbolic algebra marks one of the 
most important advances in mathematics. It had to await

1. � the development of a positional number system, which allowed 
numbers to be expressed concisely and with which operations could 
be carried out efficiently;

2. � the emergence of administrative and commercial practices which 
helped to speed the adoption, not only of such a number system, but 
also of symbols representing operators.

It is taking too narrow a view to equate the term “algebra” just with 
symbolic algebra. If one examines the hundred-odd problems in the exist-
ing Egyptian mathematical texts, of which most are found in the Ahmes 
Papyrus, one finds that they are framed in a manner that may be described 
as “rhetorical” and “algorithmic” or procedure-based. Further, in the case 
of examples from the Ahmes Papyrus, one can discern distinct stages in 
laying out a problem and its solution: statement of the problem, the proce-
dure for its solution, and verification of the result. It is interesting to note 
that the examples in the Moscow Papyrus contain just the statement of the 
problem (or a diagram) and cryptic instructions for its solution. 

As an illustration let us look at problem 72 of the Ahmes Papyrus, re-
stated in modern terminology. It should be noted here that since the Egyp-
tian system of rationing involved the two staple commodities of grain and 
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beer, a frequent task set for the scribes was to record and calculate the 
amounts and types of these commodities that had to be allocated to vari-
ous employees and beneficiaries.

Example 3.8  100 loaves of pesu 10 are to be exchanged for a certain 
number of loaves of pesu 45. What is this certain number?

(Note: The word pesu (or psw) may be defined as a measure of the 
“weakness” of a commodity. Here it can be taken to be the ratio of the 
number of loaves produced to the amount of grain used in their pro-
duction so that the higher the pesu, the weaker the bread.)

Solution

We would tackle the above problem today as one of simple proportions, 
obtaining the number of loaves as 45/10 # 100 = 450. The solution 
prescribed in the Egyptian text is quite involved. It is interesting from 
our point of view because it contains the germs of algebraic reasoning. 
Below are the Egyptian solution and a restatement of the same steps in 
modern symbolic terms.

Egyptian Explanation	 Modern Explanation
		�  Let x and y be the loaves of p and 

q pesu, respectively. Find y if x, p, q 
are known.

1.	 Find excess of 45 over 10: 	 (q - p)/p
	 result 35. 
	 Divide this 35 by 10: result  
	 3 + 1/2.

2.	 Multiply this (3 + 1/2) by 100: 	 [(q - p)/p]x + x
	 result 350.
	 Add 100 to 350: result 450.

3.	 Then the exchange is 100 	 y = [(q - p)/p]x + x = (q/p)x
	 loaves of 10 pesu for 450 
	 loaves of 45 pesu.

What is important here is not whether the scribe arrived at this method 
of solution by any thought process akin to ours, but that what we have 
here from four thousand years ago is a form of algebra, dependent on 
knowing that y/x = q/p and (y - x)/x = (q - p)/p.



The Beginnings: Egypt  105 

Solving Simple and Simultaneous Equations:  
The Egyptian Approach 
To find topics that are represented in modern elementary algebra, we have 
to turn to problems 24–34 of the Ahmes Papyrus. One of these problems, 
problem 26, will serve as an illustration.

Example 3.9  A quantity, its 1/4 added to it so that 15 results. [I.e., a 
quantity and its quarter added become 15. What is the quantity?]

Solution 

In terms of modern algebra, the solution is straightforward and in-
volves finding the value of x, the unknown quantity, from an equation:

15, .x x x4
1 12so+ = =

The scribe, however, reasoned as follows: If the answer were 4, then 1 + 
1/4 of 4 would be 5. The number that 5 must be multiplied by to get 15 is 
3. If 3 is now multiplied by the assumed answer (which is clearly false), 
the correct answer will result: 4 # 3 = 12.

This problem belongs to a set of problems that are described as “quantity” 
or “number” problems and are basically concerned with showing how to de-
termine an unknown quantity from a given relationship. The scribe was us-
ing the oldest and probably the most popular way of solving linear equations 
before the emergence of symbolic algebra—the method of false assumption 
(or false position). Variants of “quantity” problems of this kind included 
adding a multiple of an unknown quantity instead of a fraction of the un-
known quantity. For example, problem 25 of the Moscow Papyrus asks for 
a method of calculating an unknown quantity such that twice that quantity 
together with the quantity itself adds up to 9. The instruction for its solution 
suggests assuming the quantity as 1 and that together with twice the assumed 
quantity gives 3. The number that 3 must be multiplied by to get 9 is 3. So the 
unknown quantity is 3. It is interesting to reflect that such an approach was 
still in common use in Europe and elsewhere until about a hundred years ago.

The Berlin Papyrus contains two problems that would appear to us to-
day to involve second-degree simultaneous equations (i.e., equations with 
terms like x2 and xy). It is badly mutilated in places, so the solution offered 
below is both conjectural and a reconstructed one.
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Example 3.10  It is said to thee [that] the area of a square of 100 [square 
cubits] is equal to that of two smaller squares. The side of one is 1/2 + 
1/4 of the other. Let me know the sides of the two unknown squares.

Solution 1: The Symbolic Algebraic Approach 

Let x and y be the sides of the two smaller squares. From the informa-
tion given above, we can derive the following set of equations:

100;
.

x y
x y4 3 0

2 2+ =

− =

The solution set, x = 6 and y = 8, is obtained by substituting x = (3/4)y 
into x2 + y2 = 100. 

Solution 2: The Egyptian Rhetorical Algebraic Approach 

Take a square of side 1 cubit (i.e., a false value of y equal to 1 cubit). 
Then the other square will have side 1/2 + 1/4 cubits (i.e., x = 1/2 + 
1/4). The areas of the squares are 1 and (1/2 + 1/16) square cubits re-
spectively. Adding the areas of the two squares will give 1 + 1/2 + 1/16 
square cubits. Take the square root of this sum: 1 + 1/4. Take the square 
root of 100 square cubits: 10. Divide 10 by 1 + 1/4. This gives 8 cubits, 
the side of one square. (So from the false assumption y = 1, we have 
deduced that y = 8.) At this point, the papyrus is so badly damaged that 
the rest of the solution has to he reconstructed. One can only assume 
that the side of the smaller square was calculated as 1/2 + 1/4 of the 
side of the larger square, which was 8 cubits. So the side of the smaller 
square is 6 cubits.

Geometric and Arithmetic Series
A series is the sum of a sequence of terms. The most common types are the 
arithmetic and geometric series. The terms of the former are an arithmetic 
progression, a sequence in which each term after the first (usually denoted 
by a) is obtained by adding a fixed number, called the common difference 
(usually denoted by d), to the preceding term. For example, 1, 3, 5, 7, 9, . . . 
is an arithmetic progression with a = 1 and d = 2. In a geometric progres-
sion, each term after the first (a) is formed from the preceding term by 
multiplying by a fixed number called the common ratio (usually denoted 
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by r). For example, 1, 2, 4, 8, 16, . . . is a geometric progression with a = 1 
and r = 2. 

The Egyptian method of multiplication leads naturally to an interest in 
such series, since it is based on operations with the basic geometric progres-
sion 1, 2, 4, 8, . . . and an understanding that any multiplier may be expressed 
as the sum of elements of this sequence. It would follow that Egyptian in-
terest would focus on finding rules that made it easier to add up certain 
elements of such sequences. Here is problem 79 from the Ahmes Papyrus.

Example 3.11  The actual statement of the problem in the Ahmes Pa-
pyrus is uncharacteristically ambiguous. It presents the following infor-
mation, and nothing else:

Houses	 7

Cats	 49

Mice	 343 

Emmer wheat	 2,40116

Hekats of grain	 16,807

Total	 19,607

There is no algorithm nor any instruction for solution, except for what 
can be inferred from the calculations. The presentation of this curious 
data has led to some interesting suggestions. It was first believed that the 
problem was merely a statement of the first five powers of 7, along with 
their sum; and that the words “houses,” “cats,” and so on were really a 
symbolic terminology for the second and third powers, and so on. Since 
no such terminology occurs elsewhere, this explanation is unconvinc-
ing. Moreover, it does not account for the other set of data on the right.

A more plausible interpretation is that we have here an example of 
a geometric series, where the first term (a) and common ratio (r) are 
both 7, which shows that the sum of the first five terms of the series is 
obtained as 7[1 + (7 + 49 + 343 + 2,401)] = 7 # 2,801. We now see 
that the second set of data in the problem is merely the multiplication 
of 7 by 2,801 in the Egyptian way.

1	 2,801 

2	 5,602

4	 11,204

Total	 19,607



108  Chapter 3

A precursor to this Egyptian example of geometric progression may 
have been a mathematical text from the Old Babylonian period dealing 
with the same subject. It was discovered at Mari, a small kingdom in the 
northwest corner of Mesopotamia, which was conquered by Hammurabi 
in 1757 BC. A reconstruction of this example, which Friberg (2005, p. 5) 
describes as a “whimsical story,” reads as follows: “There were 645,539 bar-
leycorns, 9 barleycorns on each ear of barley, 9 ears of barley eaten by each 
ant, 9 ants swallowed by each bird, 9 birds caught by each of 99 men. How 
many were there altogether?” [Answer: 730,719 different items.]

In the next chapter, in the section dealing with geometric series in 
Mesopotamian mathematics, we return to this problem. But what is being 
strongly suggested here is the existence of links between the two math-
ematical traditions, long considered to have been independent of one an-
other. We will return to this theme in chapter 5.

A detailed solution to another problem in the Ahmes Papyrus gives 
some support to the view that the Egyptians had an intuitive rule for sum-
ming n terms of an arithmetic progression. Problem 64 may be restated as 
follows: 

Example 3.12  Divide 10 hekats of barley among 10 men so that the 
common difference is one-eighth of a hekat of barley.

Solution 

The solution of the problem as it appears in the Papyrus is given on 
the left-hand side. On the right-hand side the algorithm is stated 
symbolically.

Egyptian Method	 Symbolic Expression
		�  Let a be the first term, f the last 

term,  d the difference, n the 
number of  terms, and S the sum of 
n terms.

1.	 Average value: 10/10 = 1.	 1.	 Average value of n terms = S/n.

2.	 Total number of common	 2.	 Number of common differences  
	 differences: 10 - 1 = 9. 	 	   = n - 1

Continued . . .
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Continued . . .

3.	 Find half the common	 3.	 Half the common difference  
	 difference: 1/2 # 1/8 = 1/16.		  = d/2.

4.	 Multiply 9 by 1/16: 1/2 + 1/16.	 4.	� Multiply n - 1 by d/2: (n - 1)
d/2.

5. Add this to the average value 	 5.	 f = S/n + (n - 1)d/2.
	 to get the largest share:  
	 1 + 1/2 + 1/16. 	

6.	 Subtract the common	 6.	 a = f - (n - 1)d.
	 difference (1/8) nine times  
	 to get the lowest share:  
	 1/4 + 1/8 + 1/16.

7.	 Other shares are obtained	 7.	 Now form a, a + d, a + 
	 by adding the common 		  2d . . . , a + (n - 1)d.
	 difference to each successive 		  So S = an + (1/2) n(n - 1)d,  
	 share, starting with the 		  or S/n = a + (1/2) (n –1)d.
	 lowest. The total is 10 hekats		
	 of barley.		

The correspondence between the rhetorical algebra of the Egyptians 
and our symbolic algebra is quite close, though a word of caution is 
necessary here. It would not be reasonable to infer, on the basis of this 
correspondence, that the ancient Egyptians used anything like the alge-
braic reasoning on the right-hand side. It is more likely that they took 
a common-sense approach, listing the following sequence on the basis 
that the terms added to 10:

, , , , .a a a a8
1

8 8
2 9
f+ + +

Each successive term gives the rising share of barley received by the 
10 men.

Egyptian Geometry

The practical character of Egyptian geometry has led a number of com-
mentators to question whether it can properly be described as geometry, 
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but that is to take too restrictive a view. The word itself comes from two 
Greek words meaning “earth” and “measure,” indicating that the subject 
had its origin in land surveying and other practical applications, and it 
was from the need to compute land areas and the volumes of granaries 
and pyramids that Egyptian geometry emerged with its peculiarly practi-
cal character. If there was any theoretical motivation, it was well hidden 
behind rules for computation.

If there is an abiding icon to characterize ancient Egypt, it would have 
to be the pyramid. The Ahmes Papyrus contains six problems referring to 
pyramids, in particular the relation between their base, height, and inclina-
tion. Consider problem 56, which is illustrated by a diagram of a pyramid 
whose numerical values of base and height are written next to the drawing. 
What is to be determined is the inclination of its walls (or the seked of the 
pyramid). A seked is measured by taking the number of “palms” that an 
inclined plane falls per cubit of height.17

Example 3.13  A pyramid has base 360 cubits and height 250 cubits. 
Find its seked. 

Solution 

Take half of 360: result 180.

Divide 180 by 250 : result 1/2 + 1/5 + 1/50.

One cubit is 7 palms. So multiply the result by 7.

Therefore, ( / / / ) /1 2 1 5 1 50 7 5 1 25 5 25
1#+ + = + =  palms.

This is equivalent to the application of the formula

1 seked (in palms) = 2
1   base (in cubits) divided by height (in cubits).

When it is asked what the three major achievements of Egyptian geom-
etry were, there is general agreement on two—the approximation to the 
area of the circle, and the derivation of the rule for calculating the volume 
of a truncated pyramid—but some disagreement over the third: did they 
indeed find the correct formula for the surface area of a hemisphere?

The Area of a Circle: The Implicit Value for 
Problem 50 from the Ahmes Papyrus reads:
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Example 3.14  A circular field has diameter 9 chet. What is its area?

(Note: One chet is equal to 100 cubits, or approximately 50 meters. It 
is interesting that this problem is hardly a practical one, since the area 
works out to be about 16 hectares (0.16 square kilometers) and the cir-
cumference of the field is nearly a kilometer and a half!)

The Ahmes Solution

Subtract 1/9 of the diameter, namely 1 chet. The remainder is 8 chet. 
Multiply 8 by 8; it makes 64. Therefore, it contains 64 cha-ta (square 
chet) of land.

In symbolic algebra this amounts to AE = [d - (d/9)]2 = (8d/9)2, 
where d is the diameter and AE is the area calculated the Egyptian way. 
Worked out the modern way (involving the ratio of circumference over 
the diameter, or π correct to three decimal places) the result is

(3.142)(4.5) 63.63,A r2 2π= = =

which is close to the value estimated by the scribe.

The implicit estimate of  contained in the Egyptian method of cal-
culating the area of a circle can be worked out quite easily by equating A 
with AE:

,d d
4 9

8 2π
= d n

from which we get

. .4 9
8

81
256

9
16 3 1605

2 2
.π = = =d dn n

It is important to note that the Egyptian method is not based on recog-
nizing the dependence of the circumference on the diameter (i.e., on the 
value of ). 

How was this rule derived by the Egyptians? Problem 48 may provide us 
with a clue. This is a problem expressed in the form of an “idealized” dia-
gram, reproduced here as figure 3.2a, together with two calculations that 
can be identified as multiplications. It shows a square with four isosceles 
triangles in the corners. In the middle of the square is the normal hieratic 
symbol for 9, written as . The removal of the triangles, each of area 9/2 
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square chet, would leave a regular octagon with side 3 chet, as in figure 3.2b. 
It is easily seen that the area of the octagon equals the area of the square 
minus the total area of the triangles cut off from the corners of the square:

.A 9 4 2
9 81 18 632= − = − =d n

This is nearly the value that is obtained by taking d = 9 in the expression 
AE = (8d/9)2. So the octagon is a reasonable approximation to the circle 
inscribed in the square, as illustrated by figure 3.2c.

There is something rather contrived and unconvincing about this expla-
nation, for it assumes an algebraic mode of reasoning that is not immedi-
ately apparent in Egyptian mathematics. For a more plausible explanation, 
we turn to the geometric designs that were popular in ancient Egypt. A 
common motif found in burial chambers is the “snake curve,” which looks 
like a snake coiled around itself several times. (It is found today in areas 
of Africa as far apart as Mozambique and Nigeria.) This spiral motif also 
appeared in the design of objects. We are told that at the time of Ramses III 
(c. 1200 BC) the royal bread was baked in the shape of a spiral. Sisal mats 
were shaped in the form of a snake curve, and are not uncommon objects 
in Africa even today.

If one of these spiral mats (whose presence in ancient Egypt is well at-
tested to in the drawings of the period), of diameter 9 units, were uncoiled 
and a square formed of side 8 units, the close correspondence in the areas 
of the two shapes would be easy to establish experimentally.

Yet another explanation (Gerdes 1985a), also based on material evi-
dence, is related to a board game that is still widely played in many parts 
of Africa. In ancient Egypt it was played on a board with three rows of 

Figure 3.2: Problem from the Ahmes Papyrus: measuring a circle
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fourteen hollows with counters that were, as they are today, round objects 
such as seeds, beans, or pebbles. Perhaps, then, the exigencies of the game 
prompted experimentation to find a square and a circle such that the same 
number of spherical counters could be packed into each as tightly as pos-
sible. Figure 3.3 shows that for both the circle of diameter 9 units and the 
square of side 8 units it is possible to pack in 64 small circles (or spherical 
counters). Thus the area of a circle with diameter 9 units is approximately 
equal to the area of a square of side 8 units, where the area is expressed as 64 
small circles. An implicit value of , given earlier, can easily be calculated 
from this approximate equivalence of the areas of the square and the circle.18

The Egyptian rule for obtaining the area of a circle is applied in a few ex-
amples from the Ahmes and Moscow papyri. In problem 41 of the Ahmes 
Papyrus, the volume of a granary with a circular base of diameter 9 cubits 
and height 10 cubits is calculated. From archaeological evidence, two types 
of granaries were commonly in use: one with a circular base that resembled 
a cone and one with a rectangular base. In the case of the circular one, the 
volume was calculated by determining the area of the base and multiply-
ing this area by the height. The solution offered to problem 41 may be ex-
pressed symbolically as

A h d h9
8Volume 640 cubic cubits.E

2
= = =d n

However, this is not the end of the calculations. A transformation from 
cubic cubits into more appropriate units for measuring large amounts of 

Figure 3.3: An alternative Egyptian way of measuring a circle, suggested by Gerdes 
(1985a, p. 267. Reproduced with permission)
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grain involves conversion into hekats (3/2 of 640 = 960), and then cubic 
hekats (1/20 of 960 = 48) gives the final answer.

Volume of a Truncated Square Pyramid
It is generally agreed that the Egyptian knowledge of the correct formula 
for the volume of a truncated square pyramid is the zenith of Egyptian ge-
ometry. Bell (1940) referred to this achievement as the “greatest Egyptian 
pyramid.” A restatement of problem 14 of the Moscow Papyrus is as follows:

Example 3.15  Example of calculating a truncated pyramid. You are 
told: a truncated pyramid of 6 cubits for vertical height by 4 cubits on 
the base by 2 cubits on the top. [Calculate the volume of this pyramid.] 

Solution

The solution, as it appears in the Papyrus, is given on the left-hand side 
below; on the right-hand side the algorithm is stated in symbolic terms 
(see figure 3.4a).

Egyptian Method	 Symbolic Expression
		�  Let h be the vertical height, a and b 

the sides of the two squares which 
bound the solid above and below, 
and V the volume of the solid.

1.	 Square this 4: result 16.	 1.	� Find the area of the square base: 
a2.

2.	 Square this 2: result 4.	 2.	� Find the area of the square top: 
b2.

3.	 Take 4 twice: result 8.	 3.	 Find the product of a and b: ab.

4.	 Add together this 16, this 8, 	 4.	 Find a2 + ab + b2.
	 and this 4: result 28.

5.	 Take 1/3 of 6: result 2.	 5.	 Find 1/3 of the height: h/3.

6.	 Take 28 twice: result 56.	 6.	 (a2 + ab + b2)h/3.

7.	 Behold it is 56!	 7.	 V = (a2 + ab + b2)h/3.

What has been found by you is correct.
Continued . . .
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Continued . . . 

At the end of the calculations in the Moscow Papyrus is a drawing 
of the trapezoid (see figure 3.4b). Only this “idealized” drawing of the 
shape is given, without any Egyptian name for it. The sketch contains, 
exceptionally for the Moscow Papyrus, both the data and the results of 
the different arithmetical operations. The upper side of the drawing is 
labeled 2 and its square 4, the lower side is labeled 4 and its square 16, 
and its height labeled 6 and its third 2.

A number of attempts have been made to explain how the Egyptians 
may have arrived at the correct formula for the volume of a truncated pyra-
mid. All explanations start with the assumption that they were aware of 
the formula for the volume of the complete pyramid, for otherwise it is 
difficult to explain the appearance of the factor 1/3 in the expression for the 
volume of a truncated pyramid. (The formula for the volume of the whole 
pyramid is in fact a special case of the more general formula for the trun-
cated pyramid, since a substitution of b = 0 into the latter gives V = a2h/3. 
Putting a = b gives V = a2h, the volume of a square prism).

Figure 3.4: Problem 14 from the Moscow Papyrus: the truncated pyramid (a) in its modern 
version, and (b) the solution as given in the papyrus (Eves 1983, p. 42)
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There are three main explanations. The first suggests that the truncated 
pyramid was cut up into smaller and simpler solids whose volumes were 
then estimated before putting them back together again. It is with the last 
part of this explanation that difficulties arise, since the reduction of the 
sum of the volumes of all the component solids to the final formula would 
require a degree of algebraic knowledge and sophistication that few would 
concede to the Egyptians.

The second explanation is that the Egyptians had discovered empirically 
that the volume of a truncated pyramid can be obtained as the product 
of the height of the frustum, h, and the Heronian mean19 of the areas of 
the bases, a2 and b2. The only evidence to support this viewpoint is pro-
vided by Heron (or Hero), an Alexandrian mathematician of the first cen-
tury AD, whose work contains a useful synthesis of Egyptian, Greek, and 
Babylonian traditions. Book II of his Metrica has a detailed treatment of 
the volume mensuration of prisms, pyramids, cones, parallelepipeds, and 
other solids. The inference is that his method for estimating the volume of 
a truncated pyramid, using the “mean” named after him, derived directly 
from the Egyptian mathematical tradition.

Finally, there is the view that the volume was calculated as the difference 
between an original complete pyramid and a smaller one removed from its 
top. Gillings (1964) gives a detailed discussion of this explanation, which 
sounds the most plausible of the three, given the “concrete” approach to ge-
ometry that the Egyptians favored. Irrespective of how the Egyptians came to 
the discovery, the formula remains a lasting testimony to their mathematics.

The Area of a Curved Surface: A Semicylinder or a Hemisphere?
Problem 10 of the Moscow Papyrus is also concerned with calculation of 
areas. But unlike other examples of such calculations, there is no “ideal-
ized” drawing to help us to discern the shape of the figure in question. The 
problem reads as follows: 

Example 3.16  If you are told that an object [nbet] has diameter 4 1
2+  

and dimension (adge) [height?]. Let me know the area [of its surface].

Suggested Solution

1. � Take 1/9 of 9 since the object is half a nbet [i.e., a hemisphere]: 
result 1. 	

Continued . . . 
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Continued . . . 

2.  Take the remainder, which is 8. 

3.  Take 1/9 of 8: result 2/3 + 1/6 + 1/18.

4. � Find the remainder of this 8 after [the subtraction of] 2/3 + 1/6 
+ 1/18: result 7 + 1/9.

5.  Multiply 7 + 1/9 by 4 + 1/2: result 32.

Behold this is its area! You have found it correctly.

A critical problem in interpretation is the shape of the object (nbet) 
under discussion. This term unfortunately appears only in this prob-
lem. In modern mathematical terms, the problem has been interpreted 
as either calculating the surface area of a hemisphere of diameter of 41

2 
or finding the area of a curved semicylinder whose height is half its 
diameter (see figure 3.5a and b). 

If the first interpretation is valid, the problem may be restated as
Find the surface area of a hemisphere of diameter 41

2

The suggested solution above may be expressed symbolically as

2 2 ,A d d d r9
8

9
8

9
8 22

2
2# # # π= = =d d dn n n

where the Egyptian (implict) value of  was given earlier as 256/81. This 
is identical to the modern formula for the curved surface of a hemi-
sphere, A d21

2π= , with a different value for .

Figure 3.5: Problem 10 from the Moscow Papyrus. It may be asking for (a) the area of a 
hemisphere, or (b) the area of a semicylinder



118  Chapter 3

If this interpretation is valid, then here is an even more remarkable 
achievement than the application of the correct formula for the volume of 
a truncated pyramid, for the very idea of a curved surface (not simply one 
that can be obtained by rolling up a plane surface) is quite an advanced 
mathematical concept. It would predate the innovative work of Archime-
des (c. 250 BC) by about fifteen hundred years. 

However, doubts have been raised over this particular interpretation of 
the term nbet. Peet (1931) has argued that this term could also be taken 
in this context to mean a semicylinder (see figure 3.5b), in which case the 
suggested solution above, expressed symbolically, would become

2 ,A rh h d81
256

2
1where and is the height.π π= = =

This would be the Egyptian counterpart of the modern formula for the 
area of the curved surface of a semicylinder.

Peet’s translation and interpretation of the text has had its own critics. 
Gillings (1972) has argued that if the original interpretation of the basket 
as a hemisphere is accepted, the rule could have arisen from the empirical 
observation that, in weaving a hemispherical basket whose radius is ap-
proximately equal to its height, the quantity of material required to make 
a circular lid is approximately half that required for the basket itself. If so, 
then the rule was a matter of simple deduction, and the Egyptians’ “greatest 
pyramid” remains the correct application of the formula for the volume of 
a truncated pyramid.

Other Exemplars of Egyptian Mathematics
Our discussion of problem texts of Egyptian mathematics has so far been 
confined to the contents of Ahmes and Moscow papyri. During the long 
period of the New Kingdom and subsequently (1550–650 BC) there are 
no extant mathematical texts, but a number of administrative texts con-
taining applications of mathematics are available, notably those recorded 
on ostraca (pottery or tile). In the Valley of the Kings near Luxor, and 
particularly in the village of Deir-el-Medina, many documents of a legal 
and administrative nature have been found. These include data relating 
to the construction of tombs, such as estimation of volumes from quar-
rying tombs, and the numbers of different personnel employed to do so, 
their working schedules, and their remuneration. While these documents 
do illustrate the computing and organizational skills of the scribes, their 
mathematical content is quite limited.
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The next corpus of extant mathematical documents appeared after 
Egypt came under Persian rule (525–404 BC and 343–332 BC) and then 
became part of the Hellenistic world (332 BC), finally ending as a prov-
ince of the Roman empire (30 BC). The texts were recorded in the demotic 
script. It was during this period that Egyptian mathematics came under the 
increasing influence of Mesopotamia and Greece. We conclude our discus-
sion of Egyptian mathematics with an example found in Parker (1972, pp. 
35–37) taken from a text dated to around the fourth century BC. Similar 
problems exist in Mesopotamian mathematics and later in Chinese math-
ematics. Whether this indicates transmissions farther afield is an intrigu-
ing question for which no definitive evidence exists.

Example 3.17  The foot of a pole [length] 10 cubits is moved outward 
so that its top is [resting] 8 cubits vertically. By how much has the top 
of the pole been lowered? 

Egyptian Explanation	 Modern Explanation 
1.	 You should reckon 10, 10	 Let a = length of the pole.
	 times: result 100.

2.	 You should reckon 8, 8 times:	 Let c = height of the pole once it is 
	 result 64. 		 moved out.

3.	 Take it from 100: result 36.	� Let b = the distance that the foot 
of the pole has moved out.

4.	 Reduce to its square root: 	 c2 = a2 - b2 = 102 - 82 = 36 → c = 6 
	 result 6. 	 a - c = 4.

5.	 Take it from 10: remainder 4.

You shall say: “Four cubits is the answer.”

It would seem that the Pythagorean theorem was applied in arriving at 
this solution.

Egyptian Mathematics: A General Assessment

Egyptian mathematics has been discussed here in more detail than in some 
of the past textbooks on the early history of mathematics.The treatment of 
Egyptian mathematics in many of these texts tends to be rather lopsided: 
Egyptian numeration is overemphasized, and consequently the rest of the 
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mathematics receives less attention than it should. Where comparisons are 
made with contemporary or later mathematical traditions, the quality of 
Mesopotamian mathematics is stressed, but both the Egyptian and Meso-
potamian contributions are judged to be meager, or—more charitably—
seen merely as a prelude to the “Greek miracle.” However, it should be 
pointed out that the amount of space devoted to Egyptian mathematics by 
some of the recent texts such as Burton (2005), Cooke (1997), Katz (1998), 
and Suzuki (2001) has increased considerably over the years.

Over several years, both on the Internet and in academic journals, there 
has been a lively debate on the historical relationship of Greek to Egyptian 
science in general, and mathematics in particular. The start of this debate 
in recent years may be traced to Martin Bernal’s (1987, 1992, 1994) claim 
that Classical Greek culture was significantly influenced by ancient Egyp-
tian civilization, partly through Egyptian colonization of parts of Greece. 
And this influence was also reflected in the debt that Greek science owed to 
its Egyptian counterpart. A debate that began between Bernal (1992, 1994) 
and Palter (1993) has spilled over to journals and popular magazines. In-
teresting interventions by Victor Katz and Beatrice Lumpkin have been 
published in a newsletter in July 1995. The discussion that follows has been 
influenced by their contributions.

The arguments marshaled by Katz relate to two claims made by Bernal 
and rejected by Palter:

1. � There were scientific elements in Egyptian medicine, mathematics, 
and astronomy long before there was any Greek science at all.

2. � Egyptian medicine, mathematics, and astronomy significantly influ-
enced the development of corresponding Greek disciplines.

In relation to mathematics, we know from the evidence contained in 
this chapter that the Egyptians certainly knew how to solve various kinds 
of problems, from solving what we would now describe as linear equa-
tions to calculating the volumes and areas of different geometrical objects, 
including possibly the surface of a hemisphere. Lumpkin (2000) has sum-
marized the nature and extent of the Egyptian contribution to science (and 
in particular mathematics long before the appearance of Greek science). 
What we are uncertain about is how the Egyptians discovered the methods 
they used in solving the problems. Presumably, at the very least, there was 
some “scientific” underpinning to their methods, although not necessarily 
based on reasoning from explicit axioms. On the other issue of whether 
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Egyptian mathematics influenced Greek mathematics, it may be possible 
to give a more definitive “yes.” We have pointed out a similarity between 
the mathematical thinking of the Egyptians and the Greeks when it came 
to number theory. After all, many of the ancient Greek sources acknowl-
edge this influence. As Katz (1995, pp. 10–11) stated: 

Not only is Pythagoras supposed to have studied in Egypt, but so is Tha-
les, the supposed father of Greek geometry. Also, Oenopides. Herodo-
tus, Heron of Alexandria, Diodorus Siculus, Strabo, Socrates (through 
Plato) and Aristotle—all say that geometry was first invented by the 
Egyptians and then passed on to the Greeks. The question always seems 
to be, in this regard, what we mean by geometry. If, by geometry, we 
mean an axiomatic treatment with theorems and proofs in the style of 
Euclid, then it is clear that this was a Greek invention. But mathemati-
cians have always known that, in general, one does not discover theo-
rems by the axiomatic method. One discovers theorems by experiment, 
by trial and error, by induction, etc. Only after the discovery is there a 
search for a rigorous “proof.” 

Srinivas Ramanujan’s mathematics, discussed in the preface to the first 
edition of this book, is a good example of the discovery and the “proof ” 
being undertaken by different persons and at different times. And it would 
seem clear that when the Greeks declare that the Egyptians invented (or 
discovered) geometry, it is the results that they have in mind and not nec-
essarily the method of proof. Conceding that the Greeks learned various 
geometrical results from the Egyptians takes nothing away from Greek 
creativity. They were simply doing what mathematicians have always done, 
building on the results of their predecessors.

In chapter 1, we examined the issue of transmission between differ-
ent mathematical traditions, concentrating mainly on the connections 
that arose during and after the Dark Ages in Europe. Some of the most 
promising recent research, notably that of Friberg (2005, 2007b), relates 
to discovering the three-way links that have been neglected so far: those 
between the Egyptian, Mesopotamian, and Greek mathematics. Past re-
searchers have usually considered Egyptian and Mesopotamian mathe-
matics as completely independent mathematical traditions despite their 
proximity to each other in time and space. Their differences, notably in 
the development of a decimal, nonpositional number system in Egypt 
compared with a sexagesimal positional number system in Mesopotamia, 
have been emphasized. Further, the persistence of a belief in the “Greek 
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miracle” in some guise or other, alluded to in chapter 1, has underpinned 
the view of Greek mathematics as being unique and independent of the 
earlier mathematical traditions of Egypt and Mesopotamia. However, to-
day there is far greater attention paid to the methodology of establishing 
transmission as well as a growing recognition that the cultural context in 
which a mathematical document arises is a crucial consideration as to its 
interpretation. In chapter 5, in the assessment of Egyptian and Mesopo-
tamian mathematics, the linkages between these two mathematical tradi-
tions as well as the traces of these traditions in Greek mathematics will be 
examined in greater detail. 

We have said little about the later phase of Egyptian mathematics, when 
Alexandria became the center of mathematical activity. It was the creative 
synthesis of Classical Greek mathematics, with its strong geometric and de-
ductive tradition, and the algebraic and empirical traditions of Egypt and 
Mesopotamia that produced some of the greatest mathematics and astron-
omy of antiquity, best exemplified in the works of Archimedes, Ptolemy, 
Diophantus, Pappus, and Heron. We shall not take up the story of Hellenis-
tic mathematics, which has been extensively explored in general histories, 
such as those by Boyer (1968), Eves (1983), Katz (1998), and Kline (1972), 
as well as in specialized works on Greek mathematics by Cuomo (2001), 
Fowler (1987), Heath (1921), van der Waerden (1961), and others.

Notes

1. Diodorus has been criticized as exhibiting “none of the critical faculties of the his-
torian (but) merely setting down a number of unconnected details.” But his English 
translator, Oldfather (1989), reminds us that of all the forty volumes of his Universal 
History, the first volume on Egypt (published in 1960) is the “fullest literary account of 
the history and customs of that country after Herodotus.” 

2. Davidson (1987, pp. 1–2), writing about public reactions to a television series that 
he presented on the history of the Africans, points out that what a number of viewers 
in Europe and North America found particularly difficult to accept was the “black” 
origins of the ancient Egyptians: “To affirm this, of course, is to offend nearly all estab-
lished historiographical orthodoxy.”

3. Ujamaa is a Swahili word meaning “brotherhood” that was used to describe a Tan-
zanian government initiative in the late 1960s and early 1970s to encourage scattered 
rural homesteads to form villages, which would then serve both as pools of labor for 
communal activities and as units for meeting social needs in health, education, com-
munication, and water supply.
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4. In fairness, it should be added that this is perceived as a fanciful story by some schol-
ars of predynastic Egypt. For a useful review of evidence, see Bard (1994, pp. 265–88).

5. The New York fragments consist only of a small table and the early section of the 
problems (nos. 1–6), which helped to complete the whole text. 

6. For the contents of these deciphered fragments, see Imhausen and Ritter (2004) and 
Imhausen (2006).

7. Friberg identfies a codex of six papyrus leaves and a small corpus of “non-Euclidean” 
Greek mathematical texts. 

8. For further details, see Imhausen (2007, pp. 10–11).

9. One cubit is equal to approximately 52.5 cm.

10. See Fischer-Elfert (1986, pp. 118–57) for a discussion of the different interpretations.

11. There are different interpretations of the numbers shown on the mace head. Petrie, 
an early Egyptologist, suggested that the mace head depicted scenes of a political mar-
riage of Narmer to a princess from the north at which he received tributes from differ-
ent people. Others have interpreted it as recording the spoils of war of Narmer after his 
conquest of the north. A third interpretation suggests a census of the male population 
and their livestock taken during his reign.

12. For further details, see Resnikoff amd Wells (1984, p. 23). 

13. A highly cursive form of hieratic known as “abnormal hieratic,” derived from the 
script of Upper Egyptian administrative documents, was used primarily for legal texts, 
land leases, letters, and other texts. This type of writing was superseded by demotic—
a Lower Egyptian scribal tradition—and became the standard administrative script 
throughout a reunified Egypt.

14. However, Bruckheimer and Salamon (1977) have argued that in a number of cases 
the selection criteria put forward by Gillings are inappropriate. A more recent critique 
of Gillings’s procedure is found in Abdulaziz (2008). 

15. Apart from table texts for computing unit fractions, other tables to convert different 
measuring units (including measures of volume) and tables used as aids to calculation 
have been discovered. 

16. The figure given in the text is 2,301, which is incorrect.

17. The following were the units of measurement of length in ancient Egypt: 1 chet = 
100 cubits; 1 cubit = 7 palms; 1 palm = 4 digits. In terms of modern measurement, 1 
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cubit ≈ 52.5 cm; 1 palm ≈ 7.5 cm, and 1 digit ≈ 19 mm. A “trigonometric” interpreta-
tion of the seked has been offered on the basis of its being a ratio of width to height, 
which is therefore equivalent to the cotangent of the relevant angle. Since there is no 
notion of measurement of an angle in Egyptian mathematics (see endnote 17, chapter 
1), such an interpretation would seem somewhat far-fetched.

18. It may be argued that the explanations given are contrived, unconvincing, and lack-
ing in any real evidence to back them. To the author, however, their merit lies in the fact 
that there is an underlying materialistic basis to these conjectures.

19. The Heronian mean of two positive numbers x and y is given by (1/3)(x + y + xy). 
For further details, see Bullen (2003). 



Chapter Four

The Beginnings of Written Mathematics: 
Mesopotamia

Fleshing Out the History

Studying ancient Mesopotamian history is rather like going on a long and 
unfamiliar journey: we are not sure whether we are on the right road un-
til we reach our destination. The abridged chronology given in table 4.1 
will be of some help in plotting our course across this difficult terrain; the 
places mentioned in the table are shown in the accompanying map (figure 
4.1). The earliest protocuneiform written records are from around the last 
few centuries of the fourth millennium BC, and the last cuneiform records 
are from around the end of the first millennium BC. With the Persian con-
quest in 539 BC, Mesopotamia ceased to exist as an independent entity. 
The subsequent history of this region cannot be separated from the histo-
ries of other countries such as Persia, Greece, Arabia, and, more recently, 
Turkey.

Along the fertile crescent between the Tigris and Euphrates rivers 
emerged the first cities occupied by the people who had originally migrated 
from the present-day Armenian region of the Black and Caspian seas. By 
3500 BC, the population pressure was such that the naturally irrigated 
floodplains could no longer sustain the basic needs of the inhabitants, es-
pecially since, unlike the case of Egypt, the flooding occurred somewhat 
erratically. The rivers were not navigable, making the city-states culturally 
and economically isolated from one another. The whole region was wide 
open and flat, lacking in natural defenses, making it vulnerable to external 
invasions. Thus the physical environment of Mesopotamia influenced both 
the economy and the habitat of its inhabitants. 

It has been suggested by certain historians, notably Wittfogel (1957) 
that, just as in the case of Egypt, a society that had mastered the principles 
of hydraulics (irrigation) was well equipped to initiate the beginnings of 
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Table 4.1:  Chronology of Ancient Mesopotamia from 4000 bc to 
64 bc

	 Historical/socioeconomic 	  
Dates	 background	 Mathematical developments

4000–3500 	 Early urbanization in the south.	 Early accounting practices based on 
		�  tokens. Development of separate 

systems of notations for (1) counting 
numbers on base 60 (sexagesimal), 
(2) area numbers, (3) weight num-
bers, (4) grain capacity numbers. 
The earliest school texts from Uruk.

3500–2500 	� Early Bronze Age. Emergence 	 Discovery of earliest school texts 
of city-states of Sumeria with 	 from Fara (Shuruppak). Develop- 
centers of power at Ur, Nippur,	 ment of sexagesimal numerals and 
Eridu, and Lagash.	� phonetic writing, more advanced 

accounting practices.
2500–2000 	� Establishment of the empires of	 Old Akkadian school texts. About 

Sumer and Akkad (centers of	 2000: tables of reciprocals and use of 
power: Ur, Agade). Notable 	 sexagesimal place-value notation. 
rulers: Sargon I (c. 2350) and  
Shulgi (2100).

2000–1500 	� Conflicts and wars; rule by city-	 Widespread evidence of early 
state; establishment of the Old	 concrete algebra and geometry, 
Babylonian empire (center of	 quantity surveying, often found as 
power: Babylon). Notable ruler: 	 adjuncts to scribal training. 
Hammurabi (1792–1752).	� Sophisticated Babylonian math-

ematical texts.
1500–1000	 Late Bronze Age. International	 Spread of sexagesimal numeracy. 
	 contacts.	 Development of astronomy.
1000–600 	 Iron Age. Assyrian empire. 	 Computational and astronomical 
	 Development of Aramaic 	 developments continue.
	 language (center of power:  
	 Nineveh). Notable rulers:  
	 Sennacherib (705–681) and  
	 Ashurbanipal (668–627).
612–539 	 Second or New Babylonian 	 Astronomical observations. 
	 empire (Chaldeans) (center of  
	 power: Babylon). Notable ruler:  
	 Nebuchadnezzer (605–562).
539–311	 Persian invasion (539): end of 	 Revival of education in mathematics. 
	 ancient Mesopotamia (centers 	 Great advances in mathematical 
	 of power: Babylon and Susa). 	 astronomy. 
	 Notable rulers: Cyrus the Great  
	 (c. 525) and Darius (521–485).	
312–64	 Seleucid dynasty, Late Baby-	 Work on astronomy and algebra 
	 lonian period (center of power: 	 continues: construction of extensive 
	 Antioch).	� mathematical and astronomical 

tables.
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two major and interrelated sciences: mathematics and astronomy. And, the 
argument continues, the pursuit of intensive agriculture and large-scale 
breeding of livestock, concentrated in the hands of a central power, ne-
cessitated a meticulous control of movements of the goods produced and 
exchanged. In an attempt to accomplish this task efficiently, writing first 
developed and was to remain for several centuries its only use. While this 
argument would seem to be somewhat simplistic today, there is the related 
point concerning the similarities between ancient Egypt and Mesopotamia 
in the emergence of priestly bureaucratic structures with both writing and 
mathematics developed to serve their ends. From the evidence we have so 
far, “mathematics” preceded writing, in that the earliest records that we 
have for both Egypt and Mesopotamia relate to inventories (or counting) 
of objects.1 It would seem that the bureaucrats in both cultures needed ac-
countants before writers or scribes.

The first city‑states, such as Uruk Lagash, Ur, and Eridu, developed in 
Sumer, the most fertile region of Mesopotamia. They competed vigorously 
with one another for land, resorting to war at the slightest provocation. 
As a result, for the first time, there emerged empires, unions of city-states 
achieved through coercion or persuasion or both, often with a single city 
dominating the others. The history of Mesopotamia after 3000 BC is the 
history of one empire or dynasty succeeding another, with each developing 
its own “style” of dominance and survival.

The Akkadian empire (c. 2375–2225 BC) was the creation of Sargon 
(2371–2316 BC), who, initially taking advantage of internal dissension in 
Sumer, conquered most of the Mesopotamian river valley during his reign 
of fifty‑six years. To retain his hold, Sargon arranged the marriage of his 
daughter, Enheduanna, the high priestess of the Akkadian religion, to the 
former king of Sumer (the high priest of the Sumerian religion). It was 
hoped that if two peoples worshipped the same gods, they were unlikely 
to go to war with one another. Enheduanna set herself the task of writing 
a text containing the liturgy and rituals from both religions. This text be-
came the earliest-known writing by a woman anywhere in the world.

About 2000 BC, the Akkadian empire was overrun by the Amorites (or 
Babylonians), who swept down into Mesopotamia from the northern land 
of Nimrod (present‑day upper Iraq). Hammurabi built the city of Babylon 
as his capital. He arranged for a written legal code, which was among the 
first in history. His approach to safeguarding his power was two‑pronged: 
increase the prestige of the king and promote the use of organized law.
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The royal prestige was safeguarded by centralizing the seat of power: lo-
cating the palace and temple within the same group of buildings and so en-
abling the ruler to perform similar rituals to underpin temporal and secular 
power. An audience with the king was no different from an audience with 
a god in a temple. To create an organized system of law, Hammurabi em-
ployed legal experts to collect, codify, and disseminate laws across his king-
dom. His new Code of Law was carved onto pillars, situated in every city 
of his empire. All citizens could call upon the protection of Hammurabi’s 
justice; the unity and stability of the empire would thereby be assured by 
popular support. Hammurabi’s dynasty was a high point in Mesopotamian 
history and a period of flowering of mathematical achievements. Indeed, 
as indicated later in the chapter, much of the evidence on accomplishment 
within both disciplines, mathematics as well as law, belongs to this period. 
The Old Babylonian empire lasted about seven hundred years, finally break-
ing down as a result of internal disorder and weakness of later rulers.

The Assyrian rulers (c. 900–600 BC) that followed held their empire to-
gether through terror, proudly displaying the severed heads and flayed skin 
of conquered enemies. Like many tyrannies, they were adept in introduc-
ing new technology of war, such as iron weapons and horse‑drawn chari-
ots. Their power was therefore based on fear, terror, and superior military 
skill. But once the conquered peoples got over their fears and gained the 
new technology, they rebelled. The Assyrian capital, Nineveh, was finally 
destroyed in 612 BC. The Assyrian epoch is marked by relative stagnation in 
practically all scientific activities with the possible exception of astronomy.

The Chaldean empire (c. 600–550 BC) tried the “restoration” approach. 
Nebuchadnezzar (630–562 BC) conquered a little, but built a little and 
spent a lot. He conquered Israel and brought a substantial section of the 
population back to Babylon as slaves. He developed Babylon, which had 
fallen into bad times under the Assyrians, including restoring the famous 
Hanging Gardens. The New Babylonian empire came into existence, and 
there was a revival of what we would now call algebra. Nebuchadnezzar’s 
approach was, on the whole, successful until the arrival of the Persians.

In his campaigns between 550 and 530 BC, Cyrus united the Persians 
and the Medes, then moved his show on the road to Mesopotamia. The 
Persian “style” was tolerance and benevolence to all. They respected lo-
cal customs and traditions, thereby gaining many supporters. The Jews 
were allowed to go home; Cyrus even gave them money to rebuild their 
smashed temple. Many cities just opened their gates to Cyrus and asked to 
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be part of his empire. The Persians gave the region uniform coinage, shared 
technology, trade, and roads, and asked only for allegiance and taxes in re-
turn. There was considerable work on astronomy during this period. Cyrus 
and his successors ruled in peace for over two hundred years, until they 
were conquered by the Macedonian Alexander and, in 311 BC, the Seleu-
cid dynasty was established. This was a period when the temples dedicated 
to the god Marduk in Babylon and the sky god Anu served as the pro-
tectors of the Babylonian religion and culture. Babylonian mathematical 
activity continued, especially the mathematical astronomy relating to the 
timings of eclipses based on observational data collected in these temples 
over centuries, and with realization of the full potential for calculation us-
ing the sexagesimal (base 60) system. But this is another story that we will 
not pursue further, except to add that work on astronomy and geometrical 
algebra continued apace to merge into the swelling stream of Hellenistic 
mathematics and astronomy.

In discussing the mathematics of Mesopotamia, it is worth raising the 
same questions we did in the preface to this new (third) edition: 

1.  What was the content of the mathematics known to that culture?

2.  How was that mathematics thought about and discussed?

3.  Who was doing the mathematics?

The Material Basis of Mesopotamian Mathematical Culture
The empires that grew out of the city‑states of Sumer required a large bu-
reaucracy to carry out their wishes. From the middle of the third millen-
nium this bureaucracy began recruiting scribes. A scribe was a member of 
a specialized profession, trained in special schools where, increasingly, the 
curriculum was dominated by applied mathematics.2 Even when empires 
collapsed, the two lasting legacies that the scribes had helped to create over 
the centuries remained: a method of systematic accounting and the intro-
duction of a place-value number system. Both innovations were a result 
of the ability of scribal schools to respond effectively to the increasingly 
sophisticated demands made by the administrative apparatus engaged in 
collecting taxes, conducting land surveys, supervising large-scale building 
programs, and ensuring the supply of young men for wars.

The centralized Sumerian states collapsed, in part at least, because of 
the weight of their top‑heavy bureaucracy. This led to the emergence of 



The Beginnings: Mesopotamia  131 

Hammurabi and the Old Babylonian period. A new economic, social, and 
ideological order asserted itself. Instead of large-scale agriculture or craft 
workshops, often owned by the ruler, the emphasis changed to small-scale 
enterprises owned by private individuals. This decentralization spread into 
many spheres, including the occupations of scribes. Scribes were no longer 
small cogs in the large wheel of government. They could be found writ-
ing letters for private individuals or tutoring children in private homes. 
The school for scribes probably continued with the old curriculum for a 
long time, teaching the student scribes accounting, surveying, and other 
administratively useful pursuits. The high-status jobs were still to be found 
in the state bureaucracy. However, one begins to discern from the clay tab-
lets of the period that a new mathematics was developing: a mathematics 
that was no longer purely utilitarian. This was a period of great interest in 
what we would describe today as “second- and higher-degree equations” 
discussed later in this chapter. The Plimpton Tablet (also discussed later in 
this chapter) belongs to this period. Even the scribal schools were caught 
up in this wave of new thinking. There are signs that mathematics was 
developing as a separate discipline, loosened from the coattails of narrow 
utilitarian preoccupations.

This period of Mesopotamian history, however, came to an end. For 
about one thousand years, “pure” mathematics took a backseat, to be re-
established during the Chaldean period, when there was once again a re-
surgence of mathematics. But that is another story. However, what we seek 
to establish in a limited fashion is that mathematical development, how-
soever defined, was shaped by institutions such as scribal schools, which 
in turn were products of the material and social forces driving the society. 

To illustrate, consider the evidence in the form of clay tablets of the 
activities of a scribal school in Nippur (c. 1740 BC) run by a priest in the 
front courtyard of his house.3 He had no more than one or two students 
(possibly his own sons), who began their education by learning how to 
make wedge-shaped marks in clay with a reed stylus, learning by copy-
ing and repetition a set of simple cuneiform signs. The education of the 
student scribes progressed to writing Sumerian words for different ob-
jects, followed by more complex exercises that involved writing and learn-
ing multiplication tables and lists of metrological terms. Only after this 
was the student introduced to writing sentences in Sumerian and learn-
ing Sumerian literature. The method of instruction was rote learning, so 
that where an opportunity to do mathematical calculation was offered, this 
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may have come as a relief even if mistakes were not uncommon. Soon af-
ter 1739 BC, the fifteen hundred school tablets that had accumulated were 
used as bricks and building material to repair the priest’s house. However, 
this mode of instruction continued for a long time, as shown by the discov-
ery of clay tablets in large terra-cotta jars at the home of a family of healers 
and diviners in Uruk (420 BC), where younger males were taught by their 
elders to write and calculate in Sumerian and Akkadian. What these tablets 
and other evidence indicate is that mathematics was rarely pursued in an-
cient Mesopotamia as a leisure activity, nor was it generally supported by 
institutional patronage. It was part of the process of providing training in 
literacy and numeracy, necessary requirements for a future priest or healer 
or accountant or teacher. 

The Persian and Hellenistic periods saw the dethroning of the bureau-
cratic scribal class, with administration now being carried out by another 
class in the language of Aramaic or Greek. The place of the scribes was 
taken by a class of mathematically trained priests known as the kalu, lo-
cated mainly in the temples dedicated to the gods Marduk and Anu, whose 
ceremonial function was to weep and wail and beat drums during the solar 
and lunar eclipses. This was to placate the gods and drive away the evil that 
followed the eclipses. It was the search for accurate methods of predicting 
these ominous events that led to significant work in mathematical astron-
omy, which combined observations and calculations. Archaeological evi-
dence (Rocherg 1993 and Robson 2005) indicates that the role of the scribe 
was taken over by the priest in promoting and preserving mathematical 
knowledge in general. 

Sources of Mesopotamian Mathematics

Of the half a million inscribed clay tablets that have been excavated, fewer 
than five hundred are of direct mathematical interest. Apart from those in 
the hands of private collectors, collections of these mathematical tablets 
are scattered among the museums of Europe in Berlin, London, Paris, and 
Strasbourg and the universities of Yale, Columbia, Chicago, and Pennsyl-
vania in the United States. Some of the more recent finds, notably from 
Tell Harmal, Tell Hadad, and Tell Dhibayi in Iraq, were kept in the Iraqi 
Museum in Baghdad, although the ravages of the recent war have resulted 
in a number being destroyed or stolen.4 The tablets vary in size, from as 
small as a postage stamp to as large as a pillow. Some are inscribed only on 
one side, others on both sides, and a few even on their edges.
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To make a tablet, clay that may have come from the banks of the Tigris 
or Euphrates was collected and kneaded into shape. It was then ready for 
recording. The scribe used a piece of reed about the size of a pencil, shaped 
at one end so that it made wedgelike impressions in the soft, damp clay. He 
had to work fast, for the clay dried out and hardened quickly, making cor-
rections or additions difficult. Having completed one side, he might turn 
the tablet over and continue. When he had finished, the tablet was dried in 
the sun or baked in a kiln, leaving a permanent record for posterity.

The wedge-shaped cuneiform script of the Sumerians was deciphered 
as early as the middle of the nineteenth century through the pioneering 
efforts of George Frederick Grotefend (1775–1853) and Henry Creswicke 
Rawlinson (1810–1895), but only since the 1930s have the mathematical 
texts been studied seriously.5 This delay may be partly explained by the dif-
ferent ways in which a mathematician and a philologist approach early lit-
erature. The average mathematician, unless presented with a text that falls 
within the limits of what “mathematics” is perceived to be, has little time 
for the past; rarely is historical curiosity aroused by mathematical teaching. 
The philologist seeks to revive the past in order to explore the growth and 
decline of ancient civilizations; but, probably because of a lack of math-
ematical training, the philologist rarely takes an interest in ancient math-
ematics. So the Mesopotamian mathematical texts lay undeciphered and 
ignored until the pioneering work by Otto Neugebauer, who published his 
Mathematische Keilschrift-Texte in three volumes from 1935 to 1937, and 
by Francois Thureau-Dangin, whose complete works, titled Textes mathé‑
matiques Babyloniens, were brought out in 1938. Since then new evidence 
and interpretations have continued to appear, even in recent years.

There are three main sources for Mesopotamian mathematics. Some of 
the oldest records, written in Sumerian cuneiform, date back to the last 
quarter of the fourth millennium BC. From that period, in the temple pre-
cincts of the city of Uruk, a single tablet has been discovered of the oldest 
recorded mathematics. This consists of two exercises on calculating the 
area of fields. However, much of the information on this period is of a 
commercial and legal nature, as would now be found on invoices, receipts, 
and mortgage statements, and details about weights and measures. There 
are some but not many mathematical records until we come to the Old 
Babylonian period, during the first half of the second millennium BC. It 
has been estimated that between two-thirds and three-quarters of all the 
Mesopotamian mathematical texts that have been found belong to this 
period; in our subsequent discussion of Mesopotamian mathematics we 
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shall concentrate on the evidence from this period. A very large portion of 
the remaining texts belong to a period beginning with the establishment 
of the New Babylonian empire of the Chaldeans, around 600 BC, after the 
destruction of Nineveh, and continuing well into the Seleucid era. This was 
also a period of considerable accomplishments in astronomy.

The Origins of Mesopotamian Numeration
From about 8000 BC, a system of recording involving small clay tokens 
was prevalent in the Near and Middle East. Tokens were small geomet-
ric objects, usually in the shape of cylinders, cones, and spheres. They 
were first identified in societies evolved from a life based on hunting and 
gathering to one based on agriculture, like the Ishango in central Africa. 
The earliest tokens were simple in design: they stood for basic agricultural 
commodities such as grain and cattle. A specific shape of token always 
represented a specific quantity of a particular item. For example, “the cone 
. . . stood for a small measure of grain, the sphere represented a large mea-
sure of grain, the ovoid (a rough egg‑shaped solid with one end being 
more pointed) stood for a jar of oil” (Schmandt‑Besserat 1992, p. 161). 
Two jars of oil would be represented by two ovoids, three jars by three 
ovoids, and so on. Thus, the tokens became not only an abstraction for 
the things being counted but also constituted a system of great specificity 
and precision.

With the development of city‑states and the emergence of empires came 
a more complex economic and social structure, reflected in both the diver-
sity and the standardization of tokens. This increased the scope for record 
keeping and commercial contracts in a way that counting using pebbles or 
twigs could not do. A collection of tokens could represent a future prom-
ised transaction or, stored in a temple or palace, a record of a past trans
action. Both contracts and archives required secure methods of preserving 
groups of tokens. The Sumerians devised two main systems of storage: 
stringing the tokens on a piece of cord and attaching the ends of the strings 
to a solid lump of clay marked with a security seal called a bulla; or stor-
ing the tokens inside a clay envelope bearing impressions of the enclosed 
tokens for identification purposes. “For reasons we do not know, plain to-
kens were most often secured by envelopes and complex tokens by bullae” 
(Schmandt‑Besserat 1992, p. 110).

Of the two systems, the practice of storing tokens in clay envelopes was 
more significant for the development of mathematics. The last step in the 
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evolution of tokens was a merging of the two systems of bullae and enve-
lopes. Simple tokens were pressed to make marks on a solid lump or tablet 
of clay. Only the clay tablet was then kept. Within a couple of hundred 
years, this new system was also being used for the complex tokens, but 
here, because of their complicated shapes and designs, the image of the 
token did not transfer satisfactorily onto the clay. This new system, in place 
by about 3000 BC, afforded greater ease of use and storage, at the price of 
a certain loss of security. These pressed or drawn marks on the clay tablets 
were the beginnings of the Babylonian numeration system.

From about 3000 BC, among the Sumerians, tokens for different goods 
began appearing as impressions on clay tablets, represented by different 
symbols and multiple quantities represented by repetition. Thus three units 
of grain were denoted by three “grain marks,” five jars of oil by five “oil 
marks,” and so on. The limitations of such a system became evident with 
the increasing complexity of Sumerian economic life: a confusing prolif-
eration of different-style tokens to be learned and the tedium of represent-
ing large magnitudes. Recording the sale of five jars of oil or of a limited 
range of commodities was a simple affair, but an increase in the quantity 
and range of commodities was a different matter. Temple complexes, such 
as the temple of the goddess Inanna at Eana in Uruk (3200 BC), were large-
scale enterprises, dealing in considerable quantities of goods and labor. A 
new system of recording and accounting needed to be devised. The ac-
countants at the temple adapted a long-used system of accounting with 
clay tokens by impressing stylized outlines of tokens to denote numbers, 
with pictograms and other symbols to denote the objects that were being 
counted. A number of different numeration and metrological systems were 
used depending on the objects counted. 

The first great innovation, as we saw earlier in chapter 2, was the separa-
tion of the quantity of the goods from the symbol for the goods. That is, to 
represent three units of grain by a symbol for “three” followed by a symbol 
for “grain unit” in the same way that we would write three goats or three 
cows or, even more generally, three liters or three kilometers.

Whereas we use the same number signs regardless of their metrological 
meaning (the “three” for sheep is the same sign as the “three” for kilome-
ters or jars of oil), the Sumerians resorted to a wide variety of different 
symbols. Nissen et al. (1993) have identified around 60 different number 
signs, which they group into a dozen or so systems of measurement. For 
example, the Sumerians used one system for counting discrete objects, 
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such as people, animals, or jars, and other systems for measuring areas. 
Each system had a collection of signs denoting various quantities.6

In each Sumerian metrological system there were a number of different 
size-units with fixed conversion factors between them, similar to our sys-
tem, for example, where there are 12 inches in a foot and 3 feet in a yard, 
and so on. And just as in our old weight and measure systems, Sumerian 
metrology featured all sorts of conversion factors, although it is notable 
that they were all simple fractions of 60.7

In the early stages, however, there were different systems of numerical 
representation in Mesopotamia, depending on what was being measured. 
For a short period, a “bisexagesimal” system (i.e., a system with the units in 
the ratios 1:10:60:120:1,200:7,200) was used to count products relating to 
grain and certain other commodities. It operated with conversion factors 
10, 6, and 2, so that the symbol for the largest quantity, this time a large 
circle containing two small circles, represented 7,200 base units. Yet an-
other system was used for measuring grain capacity: the conversion factors 
were 5, 10, and 3, so that the largest unit, a large cone containing a small 
circle, was worth 900 base units. To add to the confusion, a single sign 
could be used in several systems to denote different multiples of the base 
unit. In particular, the small circle could mean 6, 10, or 18 small cones, 
depending on context and the system in use.

Gradually, over the course of the third millennium, the round number-
signs were replaced by cuneiform equivalents so that numbers could be 
written with the same sharp stylus that was being used for the words in the 
text. A detailed account of this innovative system follows in the next section.

The Mesopotamian Number System

Early clay tablets (c. 3000 BC) show that the Sumerians did not have a 
systematic positional system for all powers of 60 and their multiples. They 
used the following symbols:
1	 10	 60	 600	 3,600

The symbols for the first three numbers were written with the lower end of 
a cylindrical stylus, held obliquely for 1 and 60 and vertically for 10. The 
symbol for 600 was a combination of those for 10 and 60; the large circle 
for 3,600 was written with an extra large round stylus. 
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One of the most outstanding achievements of Mesopotamian math-
ematics, and one that helped to shape subsequent developments, was the 
invention of a place-value number system. From around 2000 BC there 
evolved a sexagesimal place-value system using only two symbols:  for 1 
and  for 10. In this system, the representation of numbers smaller than 60 
was as straightforward as it was in the Egyptian notation. Thus

	 4:	 28:	 59:

If the Mesopotamians had merely used these symbols on an additive basis 
(which they did not), their numeration and computations would probably 
have developed along Egyptian lines. But, from as early as 2500 BC, we find 
indications that they realized they could double, triple, quadruple (and so 
on) the two symbols for 1 and 10 by giving them values that depended on 
their relative positions. Thus the two symbols could be used to form num-
bers greater than 59:

    60  =  60(1):  

    95  =  60(1) + 35:

  120  =  60(2):

4,002  =  602(1) + 60(6) + 42:

It was a relatively simple matter, though one of momentous significance, 
to extend this principle of positional notation to allow fractions to be 
represented:

1/2  =  60–1(30)  =  30/60:  

1/4  =  60–1(15)  =  15/60:
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1/8  =  60–1(7)  +  60–2(30):  

5323
4  =  60(8)  +  52  +  60–1(45): 

Two important features of Mesopotamian positional notation are high-
lighted by these examples: unlike our present-day system, there is no symbol 
for zero, and neither is there a symbol corresponding to our decimal point 
to distinguish between the integer and fractional parts of a number. There is 
also the more fundamental question of why the Mesopotamians should have 
constructed a number system on base 60 rather than the more “natural” base 
10 (i.e., the decimal system). However, they used base 10 notation up to 59.

The absence of a symbol for a placeholder could lead to confusion over 
what number was being recorded. For example, 

could be 60(2) + 40 = 160, or 602(2) + 60(0) + 40 = 7,240, or it could 
be 2 + 60–1(40) = 22

3, or even 60–1(2) + 60–2(40) = 2/45, since there is no 
“sexagesimal point” placeholder to indicate that the number is a fraction. In 
the absence of a special symbol for zero, the number might be identifiable 
from the context in which it appeared, or a space might be left to indicate a 
missing sexagesimal place. There again, it could have been that the lack of 
a zero symbol in ancient Mesopotamia was of little practical consequence, 
for the existence of a large base, 60, would ensure that most numbers of 
everyday concern could be represented unambiguously. For example, it is 
unlikely that the prices of commodities in ordinary use would have ex-
ceeded 59 “units” (discounting inflation of course!). Moreover, the relative 
positions of the two  symbols and the four  symbols in the example 
above would indicate that, if the number were an integer, it would not be 
less than 160. This was because the Mesopotamians, unlike the Egyptians, 
wrote their numerals the same way as we do, from left to right.

It was not until the Seleucid period that a separate placeholder sym-
bol was introduced to indicate an empty space between two digits inside a 
number. Thus the number 7,240 would be written as 
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where  serves as the placeholder symbol. The problem still remained of 
how to represent the absence of any units at the end of a number. Nowa-
days we use the symbol for zero in the terminal position. Without some-
thing like that, it is difficult to know whether the number 

is 60(3) + 30 = 210, or 602(3) + 60(30) = 12,600, or even 3 + 60–1(30) 
= 31

2. It is therefore clear that while the Mesopotamians were consistent 
in their use of place-value notation, they never operated with an absolute 
positional system. When, in the second century AD, Claudius Ptolemy of 
Alexandria began to use the Greek letter ο (omicron) to represent zero, 
even in the terminal position of a number, there was still no awareness 
that zero was as much a number as any other and so, just like any other, 
could enter into any computation. Recognition of this fact—“giving to airy 
nothing, not merely a local inhabitation and a name, a picture, a symbol 
but also a helpful power” (Halstead 1912)—was not to occur for another 
thousand years, in India and Central America.

If we are to make any further headway, we need a way of transliterating 
the Mesopotamian numerical representation into a notation more conve-
nient for us. We shall adopt Neugebauer’s convention of using a semicolon 
(;) to separate the integral part of a number from its fractional part, just 
as we use the decimal point today—the semicolon is in effect the “sexa
gesimal point.” All other sexagesimal places are separated by a comma (,). 
Some examples, of numbers whose cuneiform representations have been 
given above, will make this convention clear:

	 60	 =	 60(1):	 1,00

	 95	 =	 60(1) + 35:	 1,35

	 120	 =	 60(2):	 2,00

	4,002	 =	 602(1) + 60(6) + 42:	 1,06,42

	 1/2	 =	 60–1(30) = 30/60:	 0;30

	 1/8	 =	 60–1(7) + 60–2(30):	 0;07,30

	 5323
4	 =	 60(8) + 52 + 60–1(45):	 8,52;45
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With this scheme, the ambiguity in the representation of 7,240 in the Mes-
opotamian notation disappears: this number is now written as 2,00,40.

Different explanations have been offered for the origins of the sexagesi-
mal system, which, unlike base 10 or even base 20, has no obviously ana-
tomical basis. Theon of Alexandria, in the fourth century AD, pointed to 
the computational convenience of using the base 60. Since 60 is exactly di-
visible by 2, 3, 4, 5, 6, 10, 15, 20, and 30, it becomes possible to represent a 
number of common fractions by integers, thus simplifying calculations: the 
integers that correspond to the unit fractions 1/2, 1/3, 1/4, 1/5, 1/6, 1/10, 
1/15, 1/20, and 1/30 are 30, 20, 15, 12, 10, 6, 4, 3, and 2, respectively. Of the 
unit fractions with denominators from 2 to 9, only 1/7 is not “regular” (i.e., 
60/7 gives a nonterminating number). It is therefore quite a simple matter 
to work with fractions in base 60. In a decimal base, though, only three of 
the nine fractions above produce integers, and none of 1/3, 1/6, 1/7, and 1/9 
is regular. Indeed, while base 10 may be more “natural,” since we have ten 
fingers, it is computationally more inefficient than base 60, or even base 12.

However, this explanation for the use of base 60 is unconvincing because 
of its “hindsight” character. It is highly unlikely that such considerations 
were taken into account when the base was chosen. A second explanation 
emphasizes the relationship that exists between base 60 and numbers that 
occur in important astronomical quantities. The length of a lunar month 
is 30 days. The Mesopotamian estimate of the number of days in a year 
was 360, based on the zodiacal circle of 360°, divided into twelve signs of 
the zodiac of 30° each. The argument goes that either 30 or 360 was first 
chosen as the base, later to be modified to 60 when the advantages of such 
a change were recognized. Here again, there is a suggestion of deliberate, 
rational calculation in the choice of the base that is not totally convincing. 
A more plausible explanation is that the sexagesimal system evolved from 
metrological systems that used two alternating bases of 10 and 6, favored 
perhaps by two different groups, which gradually merged, and that the ad-
vantages of base 60 for astronomical and computational work then came 
to be recognized.8

The sexagesimal system was used in Mesopotamia in 1800 BC and con-
tinued to be used well into the fifteenth century AD. Sexagesimal frac-
tions appeared in Ptolemy’s Almagest in AD 150. The Alfonsine Tables, 
astronomical tables prepared from Islamic sources on the instruction 
of Alfonso X of Castile and written in Latin at the end of the thirteenth 
century AD, used a consistent sexagesimal place-value system. The Is-
lamic astronomer al-Kashi (d. AD 1429) determined 2 sexagesimally as 
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6;16,59,28,01,34,51,46,15,50—the decimal equivalent of which is accurate 
to sixteen places. And Copernicus’s influential work in mathematical as-
tronomy during the sixteenth century contained sexagesimal fractions. 
The current use of the sexagesimal scale in measuring time and angles in 
minutes and seconds is part of the Mesopotamian legacy.

Before going on to look at operations with Mesopotamian numerals, let 
us pause to compare the Mesopotamian way of representing numbers with 
other systems. In assessing a notational system, the following questions are 
pertinent:

1.  Is the system easy to learn and write?

2.  Is the system unambiguous?

3.  Does the system lend itself readily to computation?

The Mesopotamian system scores well on questions 1 and 3. It is easily 
learned, being one of the most economical systems in terms of the symbols 
used. The only other number system that operated with just two symbols 
(a dot and a dash) was the Mayan, though unlike the Mesopotamian sys-
tem there was also a special sign for zero. If we compare the Mesopota-
mian with the Greek number system, which used twenty-seven symbols, 
the simplicity of the former notation is obvious. But one must contrast 
this simplicity with the awkwardness of representing a number such as 59, 
which in the unabridged Mesopotamian notation would require fourteen 
signs (though some would argue that they together represent a single cune-
iform sign), as against just two in the Greek notation.9 The Mesopotamian 
system is also remarkable for its computational ease, which arises from its 
place-value principle and its base of 60. Calculating in this base proved 
a distinct advantage when dealing with fractions. Until the emergence of 
decimal fraction representation, the Mesopotamian treatment of fractions 
remained the most powerful computational method available.

But the great disadvantage of Mesopotamian notation was its ambiguity, 
the consequence of having neither a symbol for zero nor a suitable device 
for separating the integral part of a number from its fractional part. It was 
not that the system of notation precluded the incorporation of these ad-
ditional features, but that the Mesopotamians simply did not use them. (In 
the time of the New Babylonian empire, though, the placeholder symbol  
appeared.) All in all, compared with the Egyptian system, the Babylonian 
notation was computationally more “productive” and symbolically more 
economical (since the place-value principle made it unnecessary to invent 



142  Chapter 4

new symbols for large numbers), but it had the disadvantage of being am-
biguous. The Egyptian system had another advantage over the Babylonian: 
the order in which the symbols representing a number are written is of no 
consequence in Egyptian notation.

Operations with Mesopotamian Numerals
With a positional system of numeration available, ordinary arithmetical 
operations with Mesopotamian numerals would follow along the same 
lines as modern arithmetic. To relieve the tedium of long calculations, 
the Mesopotamians made extensive use of mathematical tables. These in-
cluded tables for finding reciprocals, squares, cubes, and square and cube 
roots, as well as exponential tables and even tables of values of n3 + n2, for 
which there is no modern equivalent. These tables account for a substantial 
portion of the sources of Mesopotamian mathematics available to us.

Multiplication and division were carried out largely as we would to-
day. Division was treated as multiplication of the dividend by the recipro-
cal of the divisor (obtained from a table of reciprocals). To take a simple 
example:

Example 4.1  Divide 1,029 by 64.

Solution

In Neugebauer’s notation, 1,029 = 601(17) + 600(9) is written as 17,09. 
Also, 1/64 becomes 0;00,56,15, since 1/64 = 60–2(56) + 60–3(15), found 
from a table of reciprocals.

Therefore

17,09 multiplied by 0;00,56,15 equals 16;04,41,15.

The long multiplication may have been carried out in the same way as 
we would today, apart from the sexagesimal base:

		  0;00,56,15

		  17,09

		  8,26,15

	 15;56,15

	 16;04,41,15

Continued . . . 
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The answer 16;04,41,15 can be converted to the decimal base:

16 + 60–1(4) + 602(41) + 60–3(15)  16.0781.

A complete set of sexagesimal multiplication tables was available not 
only for each number from 2 to 20, and for 30, 40, and 50, but also for many 
other numbers. This would be sufficient to carry out all possible sexagesimal 
multiplications, just as present-day multiplication tables for numbers from 
2 to 10 are sufficient for all decimal products. Often, the tables of reciprocals 
were available only for those “regular” integers up to 81 that are multiples of 
2, 3, or 5. The reciprocals of “irregular” numbers, or those containing prime 
numbers that are not factors of 60 (i.e., all prime numbers except 2, 3, and 
5), would, in effect, have been nonterminating sexagesimal fractions. For 
example, the reciprocals of the “regular” numbers 15, 40, and 81 are

.15
1

40
1

81
1 00;04, 0;01,30, 0;00,44,26,4= = =

The reciprocals of the “irregular” numbers 7 and 11 are

, .7
1

11
10;08,34,17,08,34,17, 0;05,27,16,21,49,f f= =

The tables of reciprocals found on the older tablets are all for “regular” 
numbers. There is one tablet, from the period just before the Old Babylo-
nian empire, which contains the following problem:

Example 4.2  Divide 5,20,00,00 by 7.

Suggested Solution

Multiply 5,20,00,00 by the approximate reciprocal of 7 (i.e., 0;08,34,17,08) 
to get the answer: 45,42,51;22,40.

A later tablet from the Seleucid period gives the upper and lower limits 
on the magnitude of 1/7 as

7
10;08,34,16,59 0;08,34,18< <

Statements such as “approximation given since 7 does not divide” from 
the earlier periods, and the later estimates of bounds, give us a tantalizing 
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glimpse of the Mesopotamians taking the first step (though it is not clear 
whether they were fully aware of the implications) in coming to grips with 
the incommensurability of certain numbers.

A Babylonian Masterpiece
Evidence that the Mesopotamians had no difficulty working with what we 
now know as irrational numbers is found on a small tablet, belonging to 
the Old Babylonian period, that forms part of the Yale collection.10 It con-
tains the diagram shown in figure 4.2a and “translated” in figure 4.2b. The 
number 30 indicates the length of the side of the square. Of the other two 
numbers, the upper one (if we assume that the “sexagesimal point” (;) oc-
curs between 1 and 24) is 1;24,51,10, which in decimal notation is

1 + 60–1(24) + 60–2(51) + 60–3(10)  1 + 0.4 + 0.01416667 + 0.0000463
	 = 1.41421297.

To the same number of decimal places, the square root of 2 is 1.41421356, 
so the Babylonian estimate is correct to five places of decimals. The lower 
number is easily seen to be the product of 30 (the side of the square) and 
the estimate of the square root of 2.

The interpretation is now clear, particularly if one notes that on the back 
of this clay tablet there remains a partly erased solution to a problem in-
volving the diagonal of a rectangle of length 4 and width 3. Let d be the 
diagonal of the square; applying the Pythagorean theorem then gives

;
( ) ( ; , , )( ; ) ; , .

d
d

30 30
2 30 1 24 51 10 30 00 42 25 35

2 2 2

.

= +

= =

The number below the diagonal is therefore the length of the diagonal of a 
square whose side is 30.

The solution to this problem highlights two important features of Meso-
potamian mathematics. First, over a thousand years before Pythagoras, the 
Mesopotamians knew and used the result now known under his name.11 
(In a later section we discuss further applications of this result, as well as 
evidence that the Mesopotamians may have known the rules for generat-
ing Pythagorean triples a, b, c, where a2 + b2 = c2.) Second, there is the 
intriguing question of how the Mesopotamians arrived at their remarkable 
estimate of the square root of 2, an estimate that would still be in use two 
thousand years later when Ptolemy constructed his table of chords.
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One conjecture is that the method they used to extract square roots 
resembles the iterative procedure used by digital computers today. This 
procedure is as follows. Let x be the number whose square root you want 
to find, and the positive number a your rough guess of the answer. Then 
x = a2 + e, where the difference (or “error”) e can be positive or negative. 
We now try to find a better approximation for the square root of x, which 
we denote by a + c. It is obvious that the smaller the error e, the smaller is 
c relative to e. Thus we impose the following condition on c:

x = (a + c)2 = a2 + e,	 (4.1)

from which

2ac + c2 = e.

Now, if you make a sensible guess for a in the first place, c2 will be much 
smaller than 2ac and can therefore be ignored. So equation (4.1) may be 
written as

.c a
e

2. 	 (4.2)

Hence, from (4.1) and (4.2), an approximation for the square root of x is 

.a c a a
e a2 1.+ + =a k

Now, taking a1 = a + (e/2a) as the new “guesstimate,” the process 
can be repeated over and over again to get a2, a3, . . . as better and better 
approximations.

Let us illustrate this approximation procedure with the example we 
started with—how did the Mesopotamians obtain their estimate for 2 as 
1;24,51,10?

Example 4.3  Find the square root of 2 up to the fourth approximation 
(i.e., a3), starting with a0 = 1.

Solution

The steps of the solution are summarized in table 4.2.

Continued . . . 
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i	 ai	 ei	 ci	 ai+1

				    Modern	 Babylonian

0	 1	 1	 1	 1.5	 1;30
1	 1.5	 –0.25	 –0.0833	 1.41667	 1;28,0,7,12
2	 1.41667	 –0.00695	 –0.00246	 1.41421	 1;24,51,10

The value obtained after two steps is exactly the value in figure 4.2b!

This procedure for calculating square roots is widely known as Heron’s 
method, after the Alexandrian mathematician who lived in the first cen-
tury AD. A similar procedure could have been used to evaluate 2 in the 
earliest extant mathematical writings of the Indians, the Sulbasutras, which 
have been variously dated from 800 BC to 500 BC, although it is more 
likely that a protogeometric procedure involving “dissection and reas-
sembly” may have been used. The Indian approximation procedure is dis-
cussed in chapter 7.

Other Tables and Their Uses
Like the Egyptians, the Mesopotamians were inveterate table makers. 
Apart from the multiplication and reciprocal tables already mentioned, 
there are two sets of tables that are worth examining. One contains the 
values of n3 + n2 for integers n from 1 to 20 and 30, 40, and 50. Stated in 
modern notation and terminology, the tables could be for solving mixed 
cubics of the form

ax3 + bx2 = c,	 (4.3)

for if you multiply equation (4.3) through by a2/b3 you get 

,b
ax

b
ax

b
ca3 2

3

2

+ =a ak k

from which

,y y
b
a c3 2

3

2

+ = d n 	 (4.4)
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where y = ax/b. Equation (4.4) can be solved for y using the n3 + n2 table, 
and x obtained from y by using x = by/a. To illustrate:

Example 4.4  Solve 144x3 + 12x2 = 21.

Solution

Multiply both sides of the equation by 12 and substitute y = 12x:

(12x)(12x)(12x) + (12x)(12x) = (12)(21);

y3 + y2 = 252.

From the table y = 6, so x = 0.5 (or 0;30).

A solution involving cubics is a remarkable achievement in view of the 
high level of technical skill necessary to handle the algebraic concepts in 
the absence of a symbolic notation. With the benefit of modern symbolic 
algebra, it is easy to see that (ax)3 + (ax)2 = c is equivalent to the equation 
y3 + y2 = c. Try to imagine the difficulties in recognizing this equivalence 
without the algebraic notation available to us, and you will appreciate the 
measure of the Mesopotamian achievement.

A number of tables in the collections at Berlin, Istanbul, the Louvre, and 
Yale contain values for exponents an, where n is an integer taking values 
1, 2, . . . , 10, and a = 9, 16, 100, and 225—all perfect squares. What were 
these tables used for? The following problem, taken from a Louvre tablet of 
the Old Babylonian period, may provide the answer.

Example 4.5  Calculate how long it would take for a certain amount 
of money to double if it has been loaned at a compound annual rate of 
0;12 [20%].

Solution

Using modern symbolic notation, let P be the amount of the loan (the 
principal) and r (= 0;12 = 1/5) the interest rate. The question may then 
be restated as follows: Find n, given 2P = P(1 + r)n. The problem is 
solved by first identifying from an exponential table that n must lie be-
tween 3 and 4 in order to satisfy the equation (1;12)n = 2 [or in modern 
terms (1.2)n = 2]. From the table, 	

Continued . . . 
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(1;12)3 = 1;43,40,48 (or 1.7280), and (1;12)4 = 2;04,25 (or 2.0736). 

Applying linear interpolation and working in modern notation would 
give

. .
. .3 2 0736 1 7280

2 1 7820 3 7870+
−

−
=

or, in Mesopotamian notation, 3;47,13,20 years—exactly the answer 
shown on the Louvre tablet!

Geometric Series
In the previous chapter on Egyptian mathematics, an example of a geo-
metric series from an Old Babylonian text from Mari was mentioned. 
The problem was initially described as “an account of ants,” and what it 
contained was the computation of five terms of a geometric progression, 
with the first term 99 and the common ratio 9. The standard translitera-
tion of the text (on the obverse, or front, side of the tablet) by Friberg 
(2005, p. 4) gives the following data and computations (expressed both in 
sexagesimal and decimal bases).The computations are carried out twice, 
first in sexagesimal place-value numbers and then in “mixed decimal-
sexagesimal” numbers, both being recorded on the obverse side of the 
tablet. On the reverse, the solution is offered in a “centesimal” number 
system peculiar to the Mari region.12 The obverse side contains the terms 
of geometric progression increasing from 99 to 94  99 = 649,539 shown 
in table 4.3.

Table 4.3

Sexagesimal	 Decimal	 Items	 Computation

1,39	 99	 people	 —
14,51	 891	 birds	 9	 	 99	 =	 891
2,13,39	 8019	 ants	 9	 	 891	 =	 8019
20,02,51	 72171	 barley ears	 9	 	 8019	 =	 72171
3,00,25,39	 649539	 barley corns	 9	 	 72171	=	 649539
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The reverse side contains the same geometric series decreasing from 
649,539 to 99 but also a sixth line that is the sum of the different items:  
649,539 + 72,171 + 8,019 + 891 + 99 = 73,0719.

This would lead naturally to the interpretation that Friberg (2005, p. 5) 
described as a “whimsical story” given in example 3.11 in chapter 3. A simi-
lar problem appears in Fibonacci’s thirteenth-century text Liber abaci, where 
the problem starts with “7 women go to Rome and ends asking for the sum 
of old women, mules, sacks, breads, knives and sheaths.” And the problem 
reappears in a different guise almost four thousand years after the Mari ver-
sion in the modern Mother Goose riddle: “As I was going to St. Ives, I met a 
man with seven wives, each wife had seven sacks, each sack had seven cats, 
each cat had seven kittens. Kittens, cats, sacks, wives, how many were go-
ing to St Ives?” In the examples from the Ahmes Papyrus, Fibonacci’s Liber 
Abaci, and the Mother Goose riddle, both the first term (a) and the common 
ratio (r) are seven, although the numbers of terms are different. 

The Mari text seems to be the culmination of a number of Old Baby-
lonian and later texts that are applications of doubling and halving algo-
rithms. A table of doublings found in Mari (M 8631) has been interpreted 
as the growth of an initial capital (1 barleycorn) over a month of thirty 
days with a doubling every day. This has links with later stories (or legends) 
regarding the reward given to the inventor of chess in India, who asked the 
local ruler for one grain of rice on the first square of a chessboard and twice 
as much on each consecutive square, which would have wiped out the total 
stock of rice in the granary. A variant of this legend is later found in Eu-
rope, wherein a clever blacksmith who is offered the job of fitting a shoe for 
the king’s horse asks a penny for the first nail and twice as much for each 
of the subsequent twenty-eight nails! These examples offer some intriguing 
possibilities of a chain of links that may have started with an Egyptian or 
Mesopotamian example thousands of years earlier.

Babylonian Algebra

Unlike the Egyptians, who had been constrained by the absence of an ef-
ficient number system, basic computations posed few difficulties for the 
Mesopotamians with their place-value number system and their imaginative 
use of various tables. As a result, even as early as the Old Babylonian pe-
riod they had developed sophisticated numerical methods of solving equa-
tions and systems of equations, within the framework of a rhetorical algebra. 
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However, we should not be fooled by the general rhetorical nature of their 
algebra into overlooking traces of syncopated algebra present even then, and 
best exemplified by the use of certain geometric terms to denote unknown 
quantities. Analogous to the modern symbol x was the term “length” (of a 
square or rectangle); the square of this unknown quantity was referred to 
by the term “square.” Where there was need to refer to two unknowns, they 
were called “length” and “breadth,” their product being described as “area.” 
Three unknowns became “length,” “breadth,” and “height,” and their product 
“volume.” Table 4.4 lists these terms and their modern equivalents.13

It is this peculiar form of reference to unknown quantities in Meso-
potamian algebra that led some earlier commentators to be dismissive of 
statements such as “I have subtracted the side of the square from the area, 
and the result is 14,30,” which we would now interpret as

x2 - x = (14  60) + (30  1) = 870.

Here, if anywhere, appears for the first time the idea of an unknown quan-
tity to be “found.” And such problems were not necessarily ones that arose 
out of practical applications: they were, it seemed, exercises in “mental 
gymnastics.” For example, consider the following example from the Old 
Babylonian period (c. 1800 BC), which is inscribed on a clay tablet belong-
ing to the Yale collection:

Example 4.6  I found a stone [but] did not weigh it; [after] I weighed 
[out] 8 times its weight, added 3 gin one-third of one-thirteenth I mul-
tiplied by 21, added [it], and then I weighed [it]: Result 1 mana. What 
was the [original] weight of the stone. [Answer]The (original) weight of 
the stone was 41

2 gin. 	
Continued . . . 

Table 4.4:  Symbolic Notation in Mesopotamian Algebra

Modern symbol	 Geometric term	 Mesopotamian quantity

x	 length	 ush
y	 breadth	 sag
x2	 square	 lagab
z	 height	 sukud
xy	 area	 asha
xyz	 volume	 sahar 
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Continued . . . 

(Note: Words in brackets are not in the original text. Also, 1 mana = 60 
gin ≈ 0.5 kg.)

The modern algebraic approach would start by assuming that the 
original weight of the stone is x gin. Multiply the weight x by 8 and add 
3 to get 8x + 3. Now do a separate calculation: “multiply one-third of 
one-thirteenth by 21” to get (1/3)(1/13) = 21/39. Multiply this result by 
(8x + 3). Finally, add this product to the original (8x + 3) and equate 
to 60. Thus

( )x x8 3 39
21 8 3 60+ + + =

Solving for x gives the answer of 41
2 gin as given in the text.

This is clearly not a practical problem of weighing stones! It resembles the 
rather contrived and artificial problems that one comes across in school 
arithmetic texts even today. And for that reason we would infer that it was 
a problem inflicted on scribe trainees as an exercise in mental gymnastics. 
What is more intriguing is how a Babylonian student would have pro-
ceeded to solve the problem without our knowledge of algebra. The tablet 
does not give us a clue, and so we are not any the wiser. But there are some 
inferences that we can make. It would be reasonable to suppose that the 
person who set the problem was aware of the fact that 39 + 21 = 60, 
though the “language” of the problem setter would not be sufficient, in 
terms of our algebra, to conceive of the possibility of the original equation 
being reduced to (8x + 3)(39 + 21)/39 = 60. As mentioned in the previ-
ous chapter, the Egyptians and the others who followed them solved simple 
equations by guessing at a likely answer for x, finding it wrong, and scaling 
it to get the right one. This does not seem to work easily with the present 
problem. So we are left with the interesting question as to how the Babylo-
nian scribe proceeded to solve this and similar problems. Fortunately, we 
have texts that throw some light on the procedures adopted.

The problems in Babylonian mathematics were mainly of three kinds: 
(1) problems that related to shape, area, and volume, which would be de-
scribed today as geometry; (2) problems involving unknowns that were 
solved by methods that were a combination of algorithmic procedures and 
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geometrical algebra, such as completing the squares; and (3) applied arith-
metic involving problems in surveying, labor allocation, and construction. 

Linear and Nonlinear Equations in One Unknown
The Mesopotamian solution to equations of the form ax = c was no differ-
ent from ours, which is x = (1/a)c. They would have taken 1/a from a table 
of reciprocals and obtained the product by referring to a multiplication 
table. If 1/a was not a regular sexagesimal fraction, they would have used 
a suitable approximation. An example from a mathematical text, found 
during excavations at Tell Harmal in 1949 and belonging to the Old Baby-
lonian period, illustrates the approach. The statement of the problem and 
its solution are based on Taha Baqir’s (1951) translation.

Example 4.7  If somebody asks you thus: If I add to the two-thirds of 
my two-thirds a hundred qa of barley, the original quantity is summed 
up. How much is the original quantity?

Suggested Solution

1.  First multiply two-thirds by two-thirds: result 0;26,40 (i.e., 4/9).

2.  Subtract 0;26,40 from 1: result 0:33,20 (i.e., 5/9).

3.  Take the reciprocal of 0;33,20: result 1;48 (i.e., 1 + 4/5).

4.  Multiply 1;48 by 1,40 (i.e., 100): result 3,00 (i.e., 180).

5.  3,0 (qa) is the original quantity. 

This procedure is identical to the one we would now use to solve a sim-
ple equation:

2
3

2
3

100
4
9

100
5
9

100 180 of 





 + =







 + =







 = =x x x x x x→ → → .

The Mesopotamians were able to solve different types of quadratic equa-
tions. The two types that occurred most frequently have the forms

x2 + bx = c, b  0, c  0;	 (4.5)

x2 - bx = c, b  0, c  0.	 (4.6)
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In solving (4.5), their approach was equivalent to the application of the 
formula

x b c b
2 2

2

= + −d dn n	 (4.7)

to get a positive solution. The corresponding formula for (4.6) gives the 
positive solution as 

.x b c b
2 2

2
= + +d dn n

As an illustration of how the Babylonians solved these quadratics, consider 
a problem from a tablet of the Old Babylonian period, now in the Yale 
collection. 

Example 4.8  The length of a rectangle exceeds its width by 7. Its area is 
1,00. Find its length and width.

Solution

The solution, shown below, establishes a close correspondence between 
the Babylonian approach and its modern symbolic variant.

Solution Given 	 Solution Expressed 
on the Tablet 	 in Modern Notation
1. � Halve 7, by which length 	 Let x be the width and y the

exceeds width: result 3;30.	� length. Then y = x + 7, xy = 60. 
Or x(x + 7) = 60, from which 
x2 + 7x = 60.

2. � Multiply together 3;30 by 	 Using equation (4.7) gives x =
3;30: result 12;15.	   ( . ) ( . ) .3 5 60 3 5 52 + − =  

3. � To 12;15 add 1,00, the 	 The length is then obtained by
product: result 1,12;15.	 adding 3.5 to the square root, 

4. � Find the square root of 	 rather than adding 7 to the width. 
1,12;15: result 8;30.	

5. � Lay down 8;30 and 8,30.  
Subtract 3;30 from one (8;30)  
and add it to the other (8;30). 

6.	� 12 is the length, 5 the width.	� Hence 12 is the length, and 5 is the 
width.
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The Yale tablet also gives examples of solutions to quadratic problems of 
a more general type, such as

ax2 + bx = c.

The technique here, expressed in our terms, was to multiply throughout 
by a to get 

(ax)2 + b(ax) = ac

and then to substitute y = ax and e = ac to obtain the standard Babylo-
nian form of quadratic

y2 + by = e, e > 0.

After solving for y, the value of y is divided by a to get the solution for x.
We have already discussed how the Babylonians handled cubics of the 

form x3 = c with the help of cube root tables, and problems of the form 
x2(x + 1) = c with the help of n3 + n2 tables. There is also a correct solu-
tion on the Yale tablet for a cubic of the form x(10 - x)(x + 1) = c, where 
c = 2,48. The correct solution of x = 6 is given. It is a tribute to the level 
of abstraction and manipulative skills of Mesopotamian mathematicians 
that they were solving higher-order equations such as ax4 + hx2 = c and 
ax8 + hx4 = c by treating them as if they were “hidden” quadratics in x2 

and x4, respectively.

Linear and Nonlinear Problems in Two or Three Unknowns
The Babylonians approached these problems in two different ways. For a 
system of equations with two unknowns, they sometimes used the method 
of substitution, familiar to us, in which one of the equations is solved for 
one of the unknowns and the value found is substituted into the other 
equation. There was, however, another approach that remained uniquely 
Mesopotamian until it was adopted by Hellenistic and, probably, Indian 
mathematicians around the beginning of the Christian era. The method 
has been called Diophantine, after the Greek mathematician Diophantus, 
who lived in Alexandria during the third century AD. It has been remarked 
that his algebraic methods have much in common with the Babylonian 
procedures.

The Diophantine method is particularly suitable for solving a system 
of two equations where one is of the form x + y = s and the other may be 
any type of equation (linear or nonlinear) in the two unknowns x and y. 
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The procedure is as follows: If x and y were equal, x + y = s would imply 
that x = y = (1/2)s. Now, if we assume that x is greater than (1/2)s by a 
quantity w, then

.x s w y s w2
1

2
1, and= + = −

If we substitute these expressions for x and y into another equation, 
which can be either linear or quadratic, we obtain an equation for w and can 
proceed to solve it. Next, we substitute the value for w into the above equa-
tions for x and y to obtain the solutions for the whole system of equations. 
An illustration is provided by a problem from a tablet found at Senkereh in 
the ancient city of Larsa, which dates back to the Hammurabi dynasty.

Example 4.9  Length (ush), width (sag). I have multiplied ush and sag, 
thus obtaining the area (asha). Then I added to asha, the excess of the 
ush over the sag: result 3,03. I have added ush and sag: result 27. Re-
quired [to know] ush, sag, and asha.

Solution

Explanation in the Text	� Explanation in Modern 
Notation

1.  One follows this method:	 Let x = length (ush), y = width (sag).
	 27 + 3,03 = 3,30;		 Then the problem can be restated as

	 2 + 27 = 29.	 xy + x - y = 183;	 (4.8)

		  x + y = 27.	 (4.9)

		  Then xy + 2x = 210.

2.  Take one-half of 	 Define y = y + 2 (so y = y - 2).
	 29 (14;30) and square it: 	 Then

	 14;30  14;30 = 3,30;15.	 xy = 210;	 (4.10)

	 	 x + y = 29.	 (4.11)

3.  Subtract 3,30 from the 	 A general solution to the above set 
	 result: 	 of equations may be expressed as

	 3,30;15 - 3,30 = 0;15. 	 xy = p

		  x + y = s
Continued . . . 
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Note that the transformations from equations (4.8) and (4.9) to equa-
tions (4.10) and (4.11) respectively are indicated in step 1 on the left-hand 
side. There is a close correspondence between the procedure as explained 
on the Babylonian tablet and the modern version given on the right.

There are a few examples in Babylonian algebra involving the solution 
of a set of equations in three unknowns. In a problem text kept at the Brit-
ish Museum, we find (in modern notation):

x2 + y2 + z2 = 1,400 [or in base 60: 23, 20],   x - y = 10,   y - z = 10.

Its solution is unlikely to have caused many difficulties, for x and z can 
easily be expressed in terms of y as y + 10 and y - 10 respectively, so as 

Continued . . . 

4.  Take the square root of 	 or 
	 0;15: the square root of  
	 0;15 is 0;30.	  
		

y s w2
1

= −l

		
2
1 ,xy s w p2

2

= =−l d n

5.  Then 	 where w is the square root of 
		

.s p2
1 2

-d n

		  So if s = 29 and p = 210, then
		  w2 = 14.52 − 210 = 0.25.

	 length (ush) = 	 So w = 0.5.
	 14;30 + 0;30 =15;	 Hence x = 15, y = y - 2 =
	 14;30 - 0;30 = 14. 	 14 - 2 = 12, and the area is 180.

6.  Subtract 2 (which has been 
	 added to 27) from 14:  
	 width (sag) = 14 - 2 = 12.

7.  I have multiplied 15 (ush) 
	 by 12 (sag) to get asha. 
	 Area (asha) = 15  12 
	 = 3,00.

x s w= +
1
2
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to obtain a quadratic equation in y. The reader may wish to check the cor-
rectness of the solution set for (x, y, z), which is given as (30,20,10); this 
solution set holds for positive y. 

In recent years, there has been considerable discussion about how the 
Babylonians approached certain problems that we would today label as 
algebraic, but where the solutions offered have an explicit geometric ra-
tionale. What has been suggested by Høyrup (2002), Robson (2007), and 
others is that a substantial number of the Old Babylonian mathematical 
problems would fall under this category of geometrical algebra, that is, the 
manipulation of geometrical objects such as lines and areas to solve prob-
lems involving unknowns. A good example from the Yale collection (YBC 
6967) would be as follows.

Example 4.10  A reciprocal exceeds its [own] reciprocal by 7. What are 
the reciprocal and its reciprocal? [Given, by definition, the product of 
the two reciprocals is 60].

Modern Solution 

The problem is one of finding the solution of a quadratic equation from 
the two equations

x - y = 7, xy = 60,

where x and y are the unknown reciprocals.
Solve the resulting quadratic equation x2 - 7x - 60 = 0 using the 

algorithm given in (4.7) and (4.8):

12;

.

x b

b c by

c b
2 2 2

2 2 2
7 60 2

7

7 60 7

5

2
2

2 2

2

= + + =

+ +− −

+ + =

= = =

d d d d

d d d d

n n n n

n n n n

The solution given in the text is essentially the same:

Break in two the 7 by which the reciprocal exceeds its reciprocal so 
that 3;30 (31

2) results. Multiply 3;30 by 3;30: result 12;15 (121
4). Add 

1,00 (60) the area, to 12;15: result 1,12;15 (721
4). Take the square root 

Continued . . .



The Beginnings: Mesopotamia  159 

Continued . . .

of 1,12;15: result 8;30 (81
2). Draw a square of side 8;30 and its counter

part of side 8;30. Take away 3;30, the holding square from one; add 
to one. One is 12 and the other is 5. The reciprocal is 12 and its re-
ciprocal is 5.

(a)

(b)

(c)

Area: 60 5

12

31∕2

31∕231∕2

81∕2

81∕2

31∕2

Area: 121∕4

Area: 121∕4

7

Figures 4.3a–c are self-explanatory. The numbers are given on the deci-
mal base. What the solution assumes is that the two unknowns are the 
sides of a rectangle of area 1,00 (or 60) (shown in Figure 4.3b). Reas-
semble the rectangle as a gnomon (figure 4.3c) with the original lengths 
being obtained by completing the square. A detailed discussion of this 
problem and solution is found in Høyrup (2002, pp. 55–58).

This approach is similar to the ones used by the Chinese, who el-
evated it to a special place in their methodology, naming it the “out-in” 
principle. The approach may well have been used in the Indian Sulba‑
sutras. There are traces of this procedure in the algebra of al-Khwarizmi. 
We will return to this subject when we consider the mathematics of 
these various traditions in later chapters. 

Babylonian Geometry

Only a few years ago most historians of mathematics shared the view that 
although the Mesopotamians excelled in algebra, they were inferior to the 
Egyptians in geometry. One cannot deny the notable achievements of the 
Egyptians in the field of mensuration of spherical objects and pyramids. 
It was argued in the past that the Mesopotamian work in this area was 

Figure 4.3: Algebra with a geometric rationale: an example from the Yale Collection
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relatively modest. The usual example taken to show the Mesopotamian lack 
of promise was the evidence pointing the way that they calculated the area 
of a circle, which was by taking three times the square of the radius. This is 
a cruder approximation than the square of 8/9 of the diameter found in the 
Ahmes Papyrus. However, in an Old Babylonian tablet excavated in 1950 
appears the direction that 3 must be multiplied by the reciprocal of 0;57,36 
to get a more accurate estimate of the area. This gives a value for p of 3.125.

We shall not be taking a detailed look at the Babylonian knowledge of 
simple rules of mensuration. Suffice it to say that there is evidence of their 
familiarity with general rules for the areas of rectangles, right-angled tri-
angles, isosceles triangles, and trapeziums with one side perpendicular to 
the parallel sides. The most notable achievements of Babylonian geometry 
were in two areas where their calculation skills could be given full rein: 
their work on the Pythagorean theorem and on similar triangles foreshad-
owed Greek work in these areas by over a thousand years.

Plimpton 322: Pythagorean Triples or Prototrigonometry?
In 1945, Neugebauer and Sachs published their decipherment of a clay tab-
let (no. 322 in the Plimpton Collection at the University of Columbia) made 
sometime between 1800 and 1650 BC. This nearly four-thousand-year-old 
clay tablet is undoubtedly the most famous mathematical text from the 
Old Babylonian period. Since its decipherment it has been discussed in the 
“Babylonian” chapter of almost every general history of mathematics and 
in a number of specialists’ works as well. The tablet, as it appears today, is 
shown in figure 4.4. Based on the curvature of the fragment that remains, 

Figure 4.4: The Plimpton Tablet (Neugebauer and Sachs 1945, 
plate 25) 
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it has been suggested that a third or more of the tablet has been lost, which 
may have included an additional four narrow columns. The tablet is fur-
ther marred by a deep chip in the middle of the right-hand edge and a 
flaked area at the top left-hand comer.

The tablet as we have it contains four columns of numbers arranged 
in fifteen rows, the last of these (column 4) giving the number of the row. 
Table 4.5 presents the four columns that can definitely be deciphered. (Col-
umn 5 is included for illustrative purposes.) There are errors in the original; 
asterisks indicate where correct values have been substituted. The break in 
column 1 throws some doubt on the accuracy of the first few terms in each 
sequence of numbers: it is not certain whether the entries set in italic type 
on the left side of column 1 were present on the original tablet. But what is 
beyond doubt is that a definite relationship exists between columns 2 and 
3, which becomes clearer if we examine column 5.14 In terms of the right 
triangle shown in figure 4.5, b2 + h2 = d 2. Hence, from row 1, b = 1,59 
(119) and d = 2,49 (169). So

d 2 - b2 = (169)2 - (119)2 = (120)2,

and therefore

h = 120 (2,00).

Table 4.5:  The Plimpton Tablet Deciphered

Column 1	 Column 2	 Column 3	 Column 4	 Column 5 
(?)	 (width, b)	 (diagonal, d)	 (row no.)	 (height, h)

1;59, 0,15	 1,59	 2,49	 1	 2,0
1;56,56, 58,14,50,6,15	 56,7	 1,20,25*	 2	 57,36
1;55,7,4, 1,15,33,45	 1,16,41	 1,50,49	 3	 1,20,0
1; 53,10,29,32,52,16	 3,31,49	 5,9,1	 4	 3,45,0
1; 48,54,1,40	 1,5	 1,37	 5	 1,12
1; 47,6,41,40	 5,19	 8,1	 6	 6,0
1; 43,11,56,28,26,40	 38,11	 59,1	 7	 45,0
1; 41,33,33,59,3,45	 13,19	 20,49	 8	 16,0
1; 38,33,36,36	 8,1*	 12,49	 9	 10,0
1; 35,10,2,28,27,24,26,40	 1,22,41	 2,16,1	 10	 1,48,0
1; 33,45	 45	 1,15	 11	 1,0
1; 29,24,54,2,15	 27,59	 48,49	 12	 40,0
1; 27,0,3,45	 2,41*	 4,49	 13	 4,0
1; 25,48,51,35,6,40	 29,31	 53,49	 14	 45,0
1; 23,13,46,40	 56	 1,46*	 15	 1,30

*Correct value substituted for incorrect one on the tablet
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What was the purpose of this clay tablet? There have been a number of 
interesting suggestions, which involve three main approaches to interpret-
ing the tablet:

1.  It is a sophisticated listing of the so‑called Pythagorean triples.

2. � It is a remarkable trigonometric table (two thousand years before the 
apparent development of angle measurement in Alexandria).

3. � It is a pedagogical tool intended to help a mathematics instructor of 
the period to generate a list of regular “reciprocal pairs” drawn up in 
a decreasing numerical order having known solutions and interme-
diate solution steps that are easily checked. 

To understand the significance of Plimpton 322 it may be necessary to 
examine the “anthropology” of Babylonian mathematics, notably how the 
people of this area approached mathematical problems and what role these 
problems played in the wider society. It should be remembered that the 
tablet contains a table of fifteen rows and four columns. The usual pre-
sumption is that the first column contained all numbers beginning with 1. 
Then, it is easily seen that each number in the column is a perfect square. 
Also, subtracting 1 from each of these numbers gives a perfect square. Con-
sider, for instance, the number in row 11 of table 4.5. The number 1;33,45 
represents 1 + 33/60 + 45/3600 = 1 + 9/16 = 25/16, which is the square 
of 5/4. One less than 25/16 is 9/16, the square of 3/4. The second and third 
entries in this row represent these fractions: 45 represents 45/60 = 3/4, 
and 1;15 represents 1 + 15/60 = 5/4.

Figure 4.5
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The relationship would still hold if 45 represent 45 and 1:15 represents 
75, in which case these two entries are proportional to the fractions. Con-
sidered as a table of Pythagorean triples, the second column (b) is one side 
of a right triangle or the width of a rectangle. In this interpretation, the 
third side of the triangle (column label h) does not appear in the fragment 
of the tablet that we have at present. However, the first column of the table 
has been interpreted as

.1h
d

h
b 22

= +d dn n

This interpretation of the Plimpton Tablet views each first column entry, 
expressed in modern terms, as the square of the secant of an angle (i.e., the 
reciprocal of the cosine) between sides d and h of a right triangle with suc-
cessive angles roughly one degree apart. In other words, the above equa-
tion may be written as

sec2  = 1 + tan2.

So we have here the first table of a trigonometric function consisting of 
squares of secants for 45 degrees down to 30 degrees—the earliest case 
of degree measurement by about two thousand years. This is a claim not 
backed up by supporting evidence from other sources of Babylonian math-
ematics. In any case, there is no reason to believe that the Mesopotamians 
were familiar with the concept of a secant or, for that matter, any other 
trigonometric function; indeed, neither they nor the Egyptians had any 
concept of an angle in the modern sense, which first occurs in the work of 
Indian and Hellenistic mathematicians around the beginning of the first 
millennium AD.

It would seem, then, that column 1 may have served another function, 
that is, this column, and indeed the tablet itself, have to do with the deri-
vation of Pythagorean triples (e.g., b, h, d in figure 4.5) for use in the con-
struction of right triangles with rational sides. It is improbable that the 
values inscribed on the tablet were derived by using trial-and-error meth-
ods, for these would have given simpler triples. But if the Mesopotamians 
had a more systematic method of deriving b, h, and d to satisfy the equa-
tion b2 + h2 = d2, what was it? We can only hazard a guess, helped by a 
possible clue in column 1.

Let us first assume that the height is normalized to 1 [i.e., that (d/h)2 - 
(b/h)2 = 1]. Now, if a = d/h and b = b/h, then
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a2 - b2 = (a - b) (a + b) = 1.

Let a + b = m/n and a - b = n/m, where m and n are positive integers 
such that m > n . Then

,n
m

m
n

n
m

m
n

2
1

2
1andα β= + = −a a a ak k k k9 9C C

or

( ) ( ) .mn
m n

mn
m n
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2 2 2 2

α β=
+

=
−< <F F

But b = bh and d = ah. And if we put h = 2mn so as to obtain a solution 
in integers, then

h = 2mn, b = m2 - n2, d = m2 + n2.	 (4.12)

This method of generating integral Pythagorean triples is usually attrib-
uted to Diophantus (c. AD 250), who, as we have seen, may be thought of 
as working in the Babylonian “metric algebra”15 tradition and introducing 
it into Greek mathematics. It is worth noting that to arrive at these formu-
lae we need nothing more than the ability to add and subtract fractions, 
and a knowledge of the algebraic identity a2 - b2 = (a - b)(a + b).

We can use the formulas (4.12) to generate the first three triples on the 
Plimpton Tablet, as shown in table 4.5. With one exception, the integers 
chosen for m and n in the complete table are all products of prime factors 
of 60. For example, in the first row m = (2)(2)(3) and n = 5.

One of the difficulties with this explanation of how the Babylonians 
generated Pythagorean triples is the lack of an underlying rationale for the 
choice of the particular values of (m, n), which seem to vary in an erratic 
fashion—there is certainly no discernible pattern to the first three sets of 
values in table 4.6. It is possible, though not very likely, that the rows may 
have been ordered so as to ensure an approximately linear increase in the 

Table 4.6:  Generating the First three Pythagorean Triples from 
the Plimpton Tablet

m	 n	 h = 2mn	 b = m2 - n2	 d = m2 + n2

12	 5	 120	 119	 169
64	 27	 3,456	 3,367	 4,825
75	 32	 4,800	 4,601	 6,649
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values in column 1 of the tablet, which contains the square of the ratio of 
two sides of the triangle shown in figure 4.5 [i.e., (d/h)2].

However, there is yet another explanation in terms of “reciprocal pairs.” 
For the sake of simplicity, we present it here in modern algebra. First we 
put a + b = n and a - b = 1/n, so that (a + b) (a - b) = 1. Then

, , ,a n n n n h2
1 1

2
1 1 1β= + = − =d dn n< <F F

which gives a fractional Pythagorean triple. This may be converted into a se-
ries of integer Pythagorean triples by multiplying each of the three numbers 
by 2n. Bruins (1955), the originator of this explanation, shows how the en-
tries as well as the scribal errors in table 4.5 can be explained by this method.

A choice between these explanations cannot be made on the basis of 
their mathematics. Robson (2001b) has introduced a set of criteria for 
judging the relative historical merit of each interpretation. She writes: “If 
we believe that Plimpton 322 was intended to be a list of parameters to aid 
the setting of school mathematics problems (and the typological evidence 
suggests that it was), the question ‘how was the tablet calculated?’ does 
not have to have the same answer as the question ‘what problems does the 
tablet set?’ The first can be answered most satisfactorily by reciprocal pairs, 
as first suggested half a century ago, and the second by some sort of right-
triangle problems. That is perhaps as far as we can go on present evidence: 
without closer parallels we run the risk of crossing the fuzzy boundary 
from history to speculation. The mystery of the Cuneiform Tablet has not 
yet been fully solved” (p. 202).

Irrespective of which of these explanations, or any other, is valid, there 
can be little doubt that the Mesopotamians knew and used the Pythago-
rean theorem. This is confirmed by a problem from a tablet found at Susa, 
a couple of hundred miles from Babylon, belonging to the Old Babylonian 
period. It is one of the oldest examples of the use of the theorem in the his-
tory of mathematics:

Example 4.11  Find the circum-radius of a triangle whose sides are 50, 
50, and 1,0.

Solution
In terms of figure 4.6, the problem is to calculate the radius, r. The solu-
tion proceeds thus:

Continued . . . 
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Continued . . . 

50 30 ,AD 402 2= − =

OC2 = r2 = 302 + (40 - r2).

Therefore

r2 = 302 + 402 - (1,20)r + r2,

(1,20)r = 41,40 (2,500)

or

,
( , ) ; ( . ) .r 1 20
41 40 31 15 31 25= =

There is another example of the application of the Pythagorean theo-
rem that is notable in that it uses a rather long-winded method of solu-
tion, which has a stronger geometric rationale, instead of a shorter method 

Figure 4.6: Applying the Pythagorean theorem: a problem from Susa
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based on algebraic techniques. The source of this evidence is interesting. 
In 1962, archaeologists working at Tell Dhibayi, near Baghdad, unearthed 
about five hundred clay tablets. Most of them deal with the commercial 
transactions and administrative matters of a city that flourished during the 
reign of Ibalpiel II of Eshunna (c. 1750 BC). One tablet presents a geomet-
ric problem in which the area and the length of diagonal of a rectangle are 
given, and what is apparently sought are its dimensions:

Example 4.12  Find the length and width of [figure 4.7], given its area, 
0;45 [0.75] and diagonal, 1;15 [1.25].

Area (A) = 0;45

y

x

d =1;15

Suggested Solution

The tablet gives the following steps. The results at each step are given 
here both in sexagesimals and in decimals.

  1.  Multiply the area by 2: result 1;30 (1.5).

  2.  Square the diagonal: result 1;33,45 (1.5625).

  3.  Subtract result 1 from result 2: result 0;03,45 (0.0625).

  4.  Find the square root of result 3: result 0;15 (0.25).

  5.  Halve result 4: result 0;07,30 (0.125).

  6.  Find one-quarter of result 3: result 0;00,56,15 (0.015625).

Continued . . . 

Figure 4.7
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Continued . . . 

  7.  Add the area to result 6: result 0;45,56,15 (0.765625).

  8.  Find the square root of result 7: result 0;52,30 (0.875).

  9.  Length = result 5 + result 8 = 1.

10.  Width = result 8 - result 5 = 0;45 (0.75).

The procedure followed above is quite baffling at first sight. We might 
well have expected to see a solution along the following lines: Let x be the 
length, y the width, d the diagonal, and A the area. 

Then

xy = A = 0.75	 (area of a rectangle);	 (4.13)

x2 + y 2= d2 = (1.25)2 	 (Pythagorean theorem). 	 (4.14)

We solve equation (4.13) for x (or y) and then substitute into equation 
(4.14) to solve for y (or x) after reducing the resulting biquadratic (i.e., 
quartic) equation to a quadratic one. Note that the general form of a quar-
tic equation is: ax4 + bx3 + cx2 + dx + e = 0, where a ≠ 0.

Thus, substituting y = (0.75)(1/x) into equation (4.14) and simplifying 
gives

16x4 + 9 = 25x2.	 (4.15)

Setting x2 = z in equation (4.15) yields

16z2 - 25z + 9 = 0,

which has the solution z = 1 or 9/16, and so x = 1, y = 3/4 (or x = 3/4, 
y = 1).

The Babylonian solution is quite ingenious and follows from the recog-
nition that

d2 - 2A = x2 + y2 - 2xy = (x – y)2	 (steps 1 to 3)

d2 + 2A = x2 + y2 + 2xy = (x + y)2,	 (the sum of steps 1 and 2)

so that

d A2 length width;2− = −
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.d A2 length width2 =+ +

Hence the suggested solution for example 4.12 is largely a procedure for 
forming these two relationships: the result from step 5,

( ),d A2 2
1

2
1 length width2− = −

and the result from step 8 is

( )

( ) .

d A A d A4
1 2 2

1 2

2
1 length width

2 2− + = +

= +

So the result from step 5 plus the result from step 8 gives the length, and 
the result from step 8 minus the result from step 5 gives the width.

This example epitomizes the versatility of Mesopotamian mathematics. 
Here was a group of people who for the first time combined what we would 
classify as arithmetic, algebra, and geometry in tackling problems—a re-
markable feat.

Similar Triangles
One of the clay tablets (figure 4.8a) excavated at Tell Harmal in Iraq is 
thought to date back to about 2000 BC, making it one of the earliest prob-
lem texts we know of. The problem is stated thus (Robson 2007, p. 100): 

Example 4.13  A wedge. The length is 1, the long length 1;15, the up-
per width 0;45, the complete area 0;22,30. Within 0;22,30, the complete 
area, the upper area is 0;08,06, the next area 0;05,11,02,24, the third area 
0;19,03,56,09,36, the lower area 0;05,53,53,39,50,24. What are the upper 
length, the middle length, the lower length, and the vertical?

Or restated in modern terminology and with reference to figure 4.8b:
Given the sides of DABC and areas of Ds BAD, ADE, DEF, and EFC, 

find the lengths BD, DF, AE, and AD.
(It is possible to infer from the lengths of the sides of ΔABC that 

it is a right-angled triangle. The original diagram and the procedures 
would indicate that AD and EF are perpendicular to BC, and that DE 

Continued . . . 
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Continued . . . 

is perpendicular to AC, as shown in figure 4.8b. So what we have is a 
series of similar right-angled triangles.)

Solution

The Babylonian procedure will be given in both its rhetorical and sym-
bolic forms. In its rhetorical form, the steps are

1. � Take the reciprocal of 1;00 and multiply it by 0;45: result 0;45.

2.  Multiply the result by 2: result 1;30.

3. � Multiply the result by the area of DABD: result (0;08,06)(1;30) = 
0;12,09.

4.  Find the square root of 0;12,09: result BD = 0;27.

Now that BD is known, the Pythagorean theorem can be used to 
show that the length of AD is 0;36. If the area and hypotenuse of DADE 
are known, the application of the above procedure would give the 
length of AE. This is followed by a further application of the Pythago-
rean theorem to evaluate ED. And this process may be continued ad 
infinitum to work out the required dimensions of an infinite series of 
similar right-angled triangles. (The reader is invited to check that AE 
and ED are 0;21;36 and 0;28;48 respectively.)

In symbolic terms, steps 1 to 3 of the Babylonian procedure are as 
follows.

1.  (1/AC)AB.

2.  (AB/AC).

3.  (2AB/AC) (area of ABD) = BD2.

To make any sense of these steps, it is necessary to introduce two 
results that must have been known to the Babylonians:

(a)  If DABC is similar to DABD, then AB/AC = BD/AD.

(b)  Area of DABD =  2
1 (BD  AD).

Applying (a) and (b) to step 3, we get (2BD/AD)   2
1 (BD  AD) 

= BD2.
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It is clear from this example that the Babylonians had some knowledge 
of the properties of similar triangles (though we know of no explicit con-
temporary statement). In particular they were familiar with one of the Eu-
clidean theorems:

In a right-angled triangle, if a perpendicular is drawn from the right 
angle to the hypotenuse, the triangles on each side are similar to the 
whole triangle and to one another.

It is a plausible hypothesis that Euclid took the kernel of his ideas about 
similar triangles either directly or indirectly from the Mesopotamians and 
then imbued it with that peculiarly Greek contribution to mathematics, 

(2BD/AD).1∕2(BD.AD) = BD2

Area 0;05,11,02,24 Area 0;05,53,53,39,50,24

Area 0;08,06

Area 0;03,19,03,56,09,36

0;45

A E C

F

D

B

1:15

Figure 4.8: Similar triangles: (a) the original tablet (Baqir 1950, opp. p. 54), and (b) the modern 
translation

(b)

(a)
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the method of axiomatic deductive logic, whose importance to the future 
development of the subject cannot be overestimated.

Astronomy: The Babylonian Beginnings
It was pointed out earlier in this chapter that angular measurement as we 
know it today only began with the Babylonians relatively late, around the 
eighth century BC.16 The methods devised were primarily to accompany 
the much older interest in observing the skies and recording the celestial 
phenomena. As in the case of all early cultures of which we have infor-
mation, the driving forces behind these activities were partly the need to 
construct calendars for both agricultural and religious purposes and partly 
(though very importantly) to satisfy astrological (or horoscopic) demands. 
As a result, the character of early astronomy of Babylonia and elsewhere 
was primarily predictive rather than explanatory. The emphasis was on 
predicting the location of heavenly bodies and determining the time and 
place at which celestial events (such as an eclipse) would occur rather than 
attempting to explain the behavior of celestial objects. As a result, compu-
tational schemes to determine when and where a periodic celestial event 
would next occur became the primary focus of early Babylonian astron-
omy. Only in the Hellenistic period, culminating in Ptolemy’s Almagest 
(second century AD), was geometry put to use to explain the movement of 
the heavenly bodies.17 

A seventh-century BC text from Babylonia contains an early version of 
the zodiac.18 A zodiac is divided into 360 units (or later, degrees). Among 
the constellations on or near the zodiac are the twelve zodiacal signs such 
as Aries, Taurus, and so on. If these signs are equal in size and each is sub-
divided into 30 ush (or length), the sun is expected to travel 1 ush (or 1° 

per day). However, the speed at which the sun travels around the ecliptic 
is not constant. The Babylonians found that at that time it was slower in 
the spring but faster in the autumn. They devised two methods of measur-
ing the sun’s continuously changing speed: a zigzag algorithm in which 
the speed alternated between two fixed values, and a second algorithm in 
which the speed varied linearly between a maximum and a minimum. The 
arithmetical schemes implicit in these two representations allowed for di-
rect predictions without the need for a geometric specification. Examples 
of the use of these procedures are found in the Babylonians’ prediction of 
the monthly solar movement along the zodiac and lunar conjunctions for 
particular years.19
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•  •  •

This is but a brief survey of Mesopotamian mathematics. Because of the 
wealth of sources and the tantalizing glimpses of some unusual mathemat-
ics from about four thousand years ago, this subject has attracted a number 
of specialist math historians, for whom the attractions of primary research 
on hitherto undeciphered tablets and the scope offered for constructing 
exciting conjectures remain unabated. 

Before we attempt, in the next chapter, a final assessment of both Egyp-
tian and Mesopotamian mathematics, it would be useful to summarize the 
overall character of Mesopotamian mathematics. The evidence presented 
in this chapter provides a compelling testimony to the quality and range of 
the mathematical achievements of this ancient civilization. It is clear that, 
with their numerical and algebraic skills, the Mesopotamian mathemati-
cians produced work that compares favorably with what was being done 
in sixteenth-century Europe before the advent of modern mathematics. 
Yet in emphasizing the quality of their arithmetic and algebra, we should 
not ignore their achievements in other areas. Their work on Pythagorean 
triples and similar triangles provides fine examples of their interest in and 
contributions to geometry.

There is a tendency to label all mathematics before the Greeks as utili-
tarian and prescientific. This view should be critically reevaluated in the 
light of the content as well as the spirit of the work examined in this chap-
ter. The connections discerned between Egyptian, Babylonian, and Greek 
mathematics will be discussed in the next chapter. Even after four thou-
sand years, some of the Mesopotamian contributions to mathematics re-
main quite awe-inspiring.

Notes

1. The precedence of mathematical activities over a written language has already been 
observed in chapter 2, especially in the case of the Incas. It is interesting in this context 
to note that more recent attempts at deciphering the Harappan script of ancient India 
are based on the premise that the evidence available on seals contains numerical rather 
than literary records. For further discussion, see the relevant section in chapter 8.

2. It may be worth pointing out, as Robson (2007) does, that the scribe and others who 
were professionally literate had to be numerate and mathematically (in terms of the 
development of concepts, etc.) proficient.



174  Chapter 4

3. This is based on the discussion contained in Robson (2007, pp. 64–65).

4. It is to be hoped that the gems from the looted cuneiform tablets in the Baghdad 
museum will be replaced by passable replicas in the display cabinets.

5. It should be noted that Hilprecht, who led the excavations at Nippur, published a 
book in 1906 in which he discussed multiplication tables and tables of reciprocals as 
well as metrological tables found in the sources that had been discovered up to that 
point. 

6. Note that in chapter 2 we observed a similar practice in dealing with counting sys-
tems in Papua New Guinea and numeration systems in Mexico.

7. From the twenty-first to the sixteenth centuries BC, the standard Mesopotamian 
units of calculation with their modern equivalents were capacity: 1 sila (≈ 1 liter); 
length: 1 rod = 12 cubits (≈ 6 meters); area: 1 area sahar = 1 rod square (≈ 36 m2); 
volume: 1 volume sahar = 1 area sahar  cubit (≈ 18 m3); weight: 1 mina = 60 shek‑
els (≈ 0.5 kg). For further details, see Robson (2007, pp. 70–72).

8. The interpretation discovered independently by Friberg and by Proust (2002) of a 
Mari text containing three kinds of counting numbers should warn us to desist from 
“easy” explanations of the origins of the Mesopotamian sexagesimal system. See end-
note 12 below for a summary of the three systems.

9. There is some fragmentary evidence that the Mesopotamians made use of a subtrac-
tion sign ( ) to relieve the tedium of their unabridged notation. In this scheme 39 
would be represented as 40 - 1: . 

10. This is not to imply that the Mesopotamians had any concept of irrational numbers. 
This only came with the Greeks.

11. It is worth remembering that just as we think today, both the Mesopotamians and 
Egyptians thought of the Pythagorean theorem as a rule relating to numbers. But for 
the Greeks (of whom Euclid was a prime example), the theorem (Euclid’s Elements 
1.47) was a statement about actual squares. For the Greeks, Chinese, and possibly the 
Indians, if you cut up the squares on the two smaller sides and reassemble the pieces, 
it will make the square on the hypotenuse. For further details of the importance of the 
“dissection and reassembly” technique in mathematical proofs, see Joseph (2003).

12. Three different systems of recording numbers are mentioned here. There is the Baby‑
lonian sexagesimal system, already discussed in some detail earlier in this chapter. In this 
system, there are special number signs for the “units,” from 1 to 9, and for the “tens” from 
10 to 50. The “mixed” decimal-sexagesimal system (which was a nonpositional system 
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peculiar to Mari) consisted of signs for numbers “a hundred,” “a thousand,” and “a ten 
thousand.” Numbers below 100 were written as sexagesimal numbers, with or without 
the word “sixty.” The Mari centesimal place-value system operated the same way as the 
Babylonian sexagesimal place-value system but with the base 100 instead of 60, with 
signs not only for the “tens” from 10 to 50 but also for 60, 70, 80, and 90. What is very in-
teresting here is the existence of three different number systems in a small urban center. 

13. The metrology of the Old Babylonian period had a relatively standardized set of 
measurements, although there are plenty of exceptions. The key units were the ninda 
(rod) for length, sahar (garden plot) for area and volume, sila for capacity, and mina 
for weight. At the base of the system is the barleycorn, she, used for the smallest unit in 
length, area, volume, and weight. Note that 1 ush = 60 rods ≈ 360 meters; 1 eshe = 600 
sahar, where 1 sahar ≈ 36 square meters. 

14. The headings above the columns of the tablet also give us a clue. Column 2 is trans-
lated as “the square side of the front” (b); column 3 is the “square side of the crossover” 
(d); and column 4 is the name or row number. The mention of “crossovers” (diago-
nals), “fronts,” and “squares” would indicate that the sides and diagonals of a series of 
rectangles are calculated though the application of the “diagonal rule” (the Babylonian 
name for the Pythagorean theorem).

15. Friberg (2007b, p. vi) uses the term “metric algebra” for a special kind of mathemat-
ics, an elaborate “combination of geometry, metrology, and linear or quadratic equa-
tions, first documented in proto-Sumerian texts from the end of the fourth millennium 
BC and which continued to be used in Mesopotamia until the Seleucid period, close to 
the end of the first millennium BC.” 

16. It is worth remembering that measurement of continuous quantities such as angles 
or lines requires an efficient system of numeration for fractional parts. The Mesopota-
mian system of numeration had devised as early as the third millennium BC a sexagesi-
mal place-value system that became the standard system of numeration in astronomy 
and trigonometry. The hour is divided into 60 minutes and the minute into 60 seconds. 
Similarly, the angle is divided into minutes and seconds. Expression of fractional parts 
of angles thus becomes a relatively easy matter.

17. It is now well known that the remarkable work of a line of Greek astronomers and 
mathematicians of the stature of Eudoxus, Euclid, Aristarchus, Archimedes, Hippar-
chus, and Menelaus advanced mathematical astronomy to an unprecedented level. 
However, a discussion of their contributions is beyond the scope of this book. For a 
clear account of the Greek contribution, see Van Brummelen (2009, chapters 1 and 2).

18. The zodiac is a band around the celestial sphere known as the ecliptic, which in turn 
is the perfect circular path of the sun through the celestial sphere. Now the zodiac is 
split up among twelve constellations that would become the zodiacal signs. And as the 



176  Chapter 4

“sun moves on an inclined circle dividing it into four regions,” spending three months 
in each, each of the twelve regions corresponds to a constellation on or near the zo-
diac. From this emerged the twelve names of the zodiacal signs, being Taurus, Gemini, 
Cancer, . . . , Aquarius, Pisces, and Aries.

19. For further details, see Neugebauer (1962, pp. 101–10).



Chapter Five

Egyptian and Mesopotamian Mathematics: 
An Assessment

A particular view of Egyptian and Mesopotamian mathematics held not 
too long ago is crystallized in the writings of Morris Kline, a well-known 
American historian of mathematics. Dismissing all the evidence to the con-
trary marshaled by both ancient Greeks and modern scholars, he considers 
that the Egyptian and Mesopotamian contributions to mathematics were 
“almost insignificant.” This is followed by his astonishing statement that, 
compared with what the Greeks achieved, “the mathematics of the Egyp-
tians and Mesopotamians is the scrawling of children just learning to write, 
as opposed to great literature.” In any case, Kline continues, these civiliza-
tions “barely recognized mathematics as a distinct discipline,” so that “over 
a period of 4000 years hardly any progress was made in the subject.”

I have quoted extensively from a single page (p. 14) of Kline’s book 
Mathematics: A Cultural Approach because his views represent a concise 
summary of what we labeled in chapter 1 as “Eurocentric scholarship.”1 We 
identified the main characteristics of this Eurocentric outlook, the chief 
of which is a tendency to ignore new findings that go against deeply en-
trenched views about the origins of mathematics. Chapters 3 and 4 have 
spelled out in great detail some of the contributions to early mathematics 
made by these most ancient of civilizations. Evidence of their contribu-
tions is not all hidden away in obscure journals or expressed in languages 
that tend to be ignored by many Western scholars: much is published in 
English in “respectable” journals and books, brought out by major pub-
lishers on both sides of the Atlantic. The reason for the neglect was not 
that the relevant literature was inaccessible or “unrespectable” but some-
thing deeper—a serious flaw in Western attitudes to historical scholarship 
(one not confined to histories of mathematics or science). An excessive 
enthusiasm for everything Greek, arising from the belief that much that 
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is desirable and worthy of emulation in Western civilization originated in 
ancient Greece, has led to a reluctance to allow other ancient civilizations 
any share in the historical heritage of mathematical discovery. The belief in 
a “Greek miracle” and the way of attributing any significant mathematical 
discoveries to Greek influences are part of this syndrome. And underlying 
this view is the belief that Egyptian, Mesopotamian, and Greek mathemat-
ics were drawn from three different mathematical traditions: never the 
three shall meet!2 Some of the most exciting work in recent years, which 
we will explore later in this chapter, has shown “unexpected links” between 
these traditions.3

Changing Perceptions

Mesopotamian Mathematics
For the most part Greek writers took Egypt to be the birthplace of math-
ematics but credited the Mesopotamians, especially the Chaldean priests, 
with astrological prowess in making predictions from the stars. Three 
Mesopotamian astronomers, two of whom have since been identified from 
cuneiform sources, were named by Strabo as notable for their time. The 
transmission of Mesopotamian observational data, values of periodicities,4 
and the use of the sexagesimal place-value system must have occurred 
during the Persian and Hellenistic periods (i.e., 550–150 BC) of Egyptian 
history. Around 300 BC Iamblichus claimed that Pythagoras had visited 
Babylon in the sixth century BC. No corroboration from earlier or contem-
porary sources for this claim has been found and hence the tendency on 
the part of contemporary historians to dismiss this as part of the fabrica-
tion of the Pythagorean tradition in late antiquity.5 Much later and during 
the Middle Ages in Europe, the ancient Chaldeans gained the reputation 
of being skilled in mathematics and astronomy, according to Isidore of Se-
ville, Bede, Bacon, Recorde, and, much later, Wallis. However, no written 
trace of Mesopotamian mathematical activity was available until the re-
markable finds of the mid–nineteenth century.

In the 1840s rival British and French teams began to uncover and docu-
ment the remains of vast stone palaces near Mosul, now in northern Iraq 
but then part of the Ottoman empire. These excavations led to the identifi-
cation of the ruins of the ancient Assyrian city of Nineveh, already known 
through the stories in the Old Testament. These discoveries were instantly 
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perceived as part of the early European heritage, and little attempt was 
made to locate them in the history of the area in which they were found. 
From this Eurocentric perception arose, however unwittingly, an approach 
to interpreting Mesopotamian remains, which were seen as part of a his-
torical evolution toward European sophistication.6 At the same time there 
occurred the birth of the idea of an exotic, decadent Orient—a view traced 
back to historians like Herodotus, who had written pejoratively of Meso-
potamia in the fifth century BC at the height of the Greek wars against Per-
sia. All this was occurring at a time when the emerging science of geology 
and the evolution of species posed real challenges to the literal truth of the 
events described in the Old Testament. 

Decipherment of cuneiform from Mesopotamia continued apace 
throughout the latter part of the nineteenth century, with armies of archae-
ologists and adventurers engaged in uncovering Babylonian and Sumerian 
remains in the region between Baghdad and Basra in Iraq. The discovery 
of Sumerian language and culture created a new problem for cuneiform 
scholars: here was a major civilization, clearly older than Assyria or Baby-
lonia, that had little biblical or Classical underpinnings. The result was that 
the study of ancient Mesopotamia freed itself from its biblical and Classical 
origins and took on an identity as an independent discipline.

Mathematical cuneiform tablets, as noted in the previous chapter, were 
first publicized in the late nineteenth century, although it took another fifty 
years before the works of Scheil, Thureau-Dangin, and Neugebauer were 
translated and interpreted. Neugebauer, who represents the culmination of 
this scholarship, was particularly thorough when it came to establishing a 
bridge between Mesopotamian and modern mathematics. But his “matho-
centric” approach came under increasing critical scrutiny from 1970s on-
ward for its neglect of the issues of context, function, and authorship of 
the Mesopotamian texts. Further, the excessive focus on the mathematics 
of the Old Babylonian period of the early second millennium BC and the 
relative neglect of the mathematics of other periods, particularly the Late 
Babylonian, presented a lopsided picture of Mesopotamian mathematics. 
Recent studies have attempted to restore a balance between the mathemat-
ical and social contexts of the Mesopotamian work.7

Egyptian Mathematics
The study of ancient Egyptian mathematics began with the discovery of 
the Ahmes Papyrus at the end of the nineteenth century. Since then, while 



180  Chapter 5

the available primary sources of Egyptian mathematics have not increased 
significantly, surveys on the subject have continued unabated. In recent 
years, the communication barriers that have traditionally existed between 
historians of mathematics and Egyptologists have fragmented the math 
historians as a community. Math historians now disagree on issues regard-
ing what are considered as “true” mathematical texts and what are the le-
gitimate ways of presenting the mathematical content in these texts. In my 
view, Egyptian and Mesopotamian mathematical sources should include 
not only table texts and problem texts but also administrative texts involv-
ing calculations.8 Further, while the “translation” of Egyptian procedures 
into modern mathematical language and symbols has no doubt come at 
the expense of losing some of their characteristic features, a refusal to do so 
makes it difficult to comprehend what lies behind these procedures. In the 
case of both Egyptian and Mesopotamian mathematics covered in the pre-
vious two chapters, we have not hesitated in “translating” texts into today’s 
mathematical language and notation whenever it was felt that this would 
help our understanding of the procedures involved.9 

A close examination of individual problems in Egyptian mathematics 
discussed in chapter 2 reveals a common structure. First, an introduction 
gives the title of the problem, the relevant data, and an indication of what 
result is being sought. This is followed by a series of instructions, expressed 
as a sequence of arithmetical operations that eventually give the solution 
to the problem.10 

An important change in perspective relating to both Egyptian and 
Mesopotamian mathematics in recent years has been the recognition 
that, in order to achieve the correct interpretation of a particular math-
ematical text, there is need to understand the context in which the text 
was written in the first place. In the training of a scribe, mathematical 
texts and practices played an important part. And evidence of such train-
ing was to be found not only in the problem and table texts alone but also 
in the economic and administrative documents that were composed by 
the scribes. In the case of ancient Egypt, for example, today we have in 
hand around one hundred problems mainly from the two major problem 
texts, the Ahmes and Moscow papyri, covering a wide range of topics 
relating to daily life, including calculations of volumes of granaries, cal-
culations of rations for workers, and calculations relating to baking and 
brewing. Supplementing these problems are tables as aids to calculations 
and administrative documents that show the results obtained through 
calculations.
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Neglect of Egyptian and Mesopotamian Mathematics
A substantial reason for neglecting Egyptian and Mesopotamian math-
ematics is contained in Kline’s view that these civilizations “barely recog-
nized mathematics as a distinct discipline.” Behind views such as this can 
be discerned a number of assertions. The mathematics of Egypt and Baby-
lonia, it is argued, (1) had no general rules, (2) contained no “proofs,” (3) 
lacked abstraction, (4) failed to distinguish clearly between exact and ap-
proximate results; and (5) generally there was no clearly discernible activ-
ity that we may label “mathematics” that was studied for its own sake. Let 
us examine each of these alleged shortcomings in detail.

1. No explicit general statements of algebraic rules and their appro-
priateness are found in the mathematical sources of either civilization. 
But this is hardly surprising, given both the nature of the mathematical 
evidence that has come down to us and the lack of symbolic notation. 
Also, it must not be forgotten that there was no general deductive al-
gebra before the emergence of modern mathematics. Now, a rule can 
be general without being deductive. Consider two notable mathemati-
cal achievements, one from Egypt and the other from Babylonia, which 
we discussed earlier: the Egyptian discovery of the rule for finding the 
volume of a truncated pyramid,11 as shown in the Moscow Papyrus, and 
the Mesopotamian calculation of Pythagorean triples, contained in the 
Plimpton Tablet. It cannot be argued that these were merely empirical 
rules arrived at through a painful process of trial and error for specific 
problems, without any awareness of their general application. In any 
case, the very fact that problems requiring specific algorithms for their 
solutions are grouped together in both the Ahmes Papyrus and the Mes-
opotamian tablets would indicate that there was some understanding of 
the generality of the underlying rules. It has also been pointed out that 
in a number of Greek geometric solutions each step is identical to the 
corresponding step in the algebraic solutions of the Mesopotamians. For 
example, the Babylonian “take square side a certain number A” would 
correspond to the Greek “take the side of a square whose area is A.”

There is sometimes a tendency to devalue the role of algorithms in 
the development of mathematics. From the practical concerns of society 
have arisen a number of rules that should be judged for both their ef-
fectiveness and their intrinsic qualities. A “good” algorithm should have 
three properties:
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a. � It should be clear and simple, laying out step by step the procedures to 
be followed.

b. � It should emphasize the general character of its applications by pointing 
out its appropriateness, not to a single problem but to a group of similar 
problems.

c. � It should show clearly the answer obtained after the prescribed set of op-
erations is completed.

It will be left to the reader to judge whether the mathematical sources 
that we have examined in the last two chapters contain algorithms that 
satisfy these requirements.

2. There is hardly a trace, according to the next argument, in any 
of the mathematical sources that we have examined, of what is com-
monly recognized as “proof ”; this implies a nonscientific approach to 
the subject. However, what constitutes “proof ” is a difficult question. 
Today, a rigorous mathematical proof that is not symbolic is inconceiv-
able. A modern proof is a procedure, based on axiomatic deduction, 
that follows a chain of reasoning from the initial assumptions to the 
final conclusion. But is this not taking a highly restrictive view of what 
is proof? Could we not expand our definition to include, as suggested 
by Imre Lakatos (1976), explanations, justifications, and elaborations of 
a conjecture constantly subjected to counterexamples? Is it not possible 
for an argument or proof to be expressed in rhetoric rather than sym-
bolic terms, and still be quite rigorous? As Gillings (1972, p. 233) states:

A non-symbolic argument or proof can be quite rigorous when given for a 
particular value of the variable; the conditions for rigor are that the particu-
lar value of the variable should be typical, and that a further generalization 
to any value should be immediate.

It is possible to distinguish between logically deductive and axiom-
atically deductive algebraic reasoning. Once David Hilbert (1862–1943) 
and Bertrand Russell (1872–1970) had laid the foundations of math-
ematical logic, it became possible to construct an algebra from a lim-
ited set of axioms. Previously, what great mathematicians such as Euler, 
Gauss, and Lagrange had considered as proof was logically deductive 
proof.

These questions are relevant not just for Egyptian and Mesopota-
mian mathematics but for other mathematical traditions that we shall 
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be examining in subsequent chapters. By posing the questions here, I 
am stressing how important it is not to be blinded by present-day pre-
conceptions of what constitutes mathematical demonstration and proof 
when studying the mathematics of the past.

The mathematical papyri and tablets from Egypt and Mesopotamia 
show a considerable technical facility in computation, and also a recog-
nition of the applicability of certain procedures to a similar set of prob-
lems, and of the importance of verifying the correctness of a procedure by 
checking, say, a division by multiplication or the solution of an equation 
by substitution of the calculated value of the unknown into the original 
equation. These procedures and checks in the mathematics of these early 
civilizations must be regarded as a form of “proof” in the broader sense.

3. It is the supposed absence of abstraction in the Egyptian and Mesopo-
tamian sources that sways many critics in their judgment of whether these 
civilizations produced mathematics or merely some form of applied arith-
metic. In a number of examples of Mesopotamian mathematics discussed 
in the previous chapter, we found close parallels between the steps of the 
ancient procedure and the steps of the corresponding modern analysis in 
algebraic symbols. The Mesopotamian symbols ush and sag for length and 
width, respectively, served the same purpose as our algebraic symbols x 
and y. The transition from specifics to abstract generalization was present. 
How else are we to interpret meaningfully the addition of length (ush) and 
area (asha)? It has also been pointed out that the addition of length and 
area can be interpreted differently. The “side to be added” may be thought 
of as the area of a rectangle with the length of that side and with width 1.

4. It is sometimes argued that ancient civilizations could not distin-
guish between exact and approximate results, and therefore that which 
they practiced was not mathematics, only something that resembled 
mathematics. We have seen that the Mesopotamians, in their evalua-
tion of the reciprocal of 7 and their calculation of the square root of 2, 
were aware of the fact that their results were approximations and not 
the true values. Indeed, their omission of irregular sexagesimals from 
mathematical tables implied an uncertainty as to whether they would 
ever obtain accurate results. Balanced against this was the need for 
practical or computational precision in solving real-life problems. But 
were the Mesopotamians aware of the important distinction between 
mathematical precision and computational precision? On the existing 
evidence, it is impossible to tell. 
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5. A point often made about Egyptian and Mesopotamian mathe-
matics is that each was more a practical tool than an intellectual pursuit. 
This implied criticism is symptomatic of the attitude, often attributed to 
the Greeks, that mathematics devoid of all utilitarian purpose is in some 
sense a nobler or better mathematics.

An important distinction running right through Greek thought is be-
tween arithmetic, the study of the properties of pure numbers, and logis‑
tics, the use of numbers in practical applications. Cultivation of the latter 
discipline was left mainly to the slaves. Legend has it that when Euclid was 
asked what was to be gained from studying geometry, he disdainfully told 
his slave to toss a coin at the inquirer. The notion that the Egyptian and 
Mesopotamian cultures were entirely utilitarian, with little or no interest 
in mathematics for its own sake, is not borne out by the nature of some of 
the problems we have examined, which appear to have no practical im-
plications. In any case, the pursuit of mathematics as an aesthetic activity 
for its own sake presupposes the existence of a leisured class, freed from 
the concerns of survival, including the need to make a livelihood. Greek 
civilization, with its substantial slave population, allowed a small elite the 
freedom to pursue activities that had no practical significance. Both the 
character of the Greeks’ mathematics and their conception of mathematics 
as a deductive science were to some extent influenced by this form of social 
stratification. In civilizations where such a luxury was not possible, math-
ematics would have had little chance of transcending its utilitarian origins.

Ultimately, whether one characterizes the activities of the Egyptians and 
Mesopotamians as mathematics will depend on how one perceives the long 
algorithmic phase that preceded the development of modern algebra. Was 
this phase an early stage in the emergence of “true” algebra, or did algebra 
begin only with the introduction of algebraic symbolism? The long period 
in which material was collected in the form of problems and valid methods 
were invented for their solution was algebra’s gestation period; the rear-
rangement of old procedures into new deductive structures marks its birth. 

The Babylonian-Egyptian-Greek Nexus:  
A Seamless Story or Three Separate Episodes?

An example of a geometric series, cited by Friberg, from an old Babylonian 
text found in Mari was discussed in chapter 4 on Mesopotamia. A parallel 



Assessment: Egypt and Mesopotamia  185 

to this example found in the Ahmes Papyrus of Egypt (example 3.11 in 
chapter 3) was the antecedent of the modern English nursery rhyme that 
went through a number of incarnations in different countries over the cen-
turies. From a study of the mathematical content and the structure of prob-
lems in the Ahmes and Moscow papyri, Friberg (2005) found significant 
“non-trivial” parallels in six out of eleven themes explored in the former 
and four of nine themes in the latter when they were compared to their 
Babylonian counterparts. We have already noted the connection in the case 
of the nursery rhyme discussed earlier. Yet another common theme treated 
by the two mathematical traditions (although the Babylonian one is based 
on more recently discovered texts) relates to the correct computation of 
the volumes of truncated pyramids.12 The overall conclusion reached is 
that there existed significant interrelations between the mathematics of the 
Middle Kingdom of Egypt and the Old Babylonian mathematics of Meso-
potamia. A study of the later texts, notably the Cairo demotic mathematical 
papyrus (third century BC), confirms Friberg’s conjecture that a significant 
part of the themes and methods of the Late Babylonian mathematics was 
known to Ptolemaic Egyptians. Therefore, two parallel traditions may have 
existed around the time that Euclid lived in Alexandria: a practical (non-
Euclidean) Greek-Egyptian mathematics (which Friberg calls “metric alge-
bra”13) and a theoretical (Euclidean) Greek mathematics.

It is at this point that Friberg’s related thesis comes into its own. In 
his book Amazing Traces of of a Babylonian Origin in Greek Mathemat‑
ics (2007b), he argues that several of the well-known Greek mathemati-
cians (for example, Euclid, Heron, Ptolemy, Diophantus, and Archimedes) 
were familiar with the Babylonian mathematical methodology (described 
as “metric algebra”), known from both Babylonian and pre-Babylonian 
mathematical clay tablets. He presents eighteen pieces of evidence in eigh-
teen chapters to support his conjecture. For example, the connection be-
tween Babylonian methods and Euclid’s Elements is the focus of a number 
of chapters. The connection of Babylonian methods with Diophantus’s Ar‑
ithmetica is the subject matter of chapter 13 of Friberg’s book. Other chap-
ters compare and contrast Babylonian geometry with corresponding topics 
from major and minor Greek mathematicians such as Theon of Smyrna, 
Theodorus of Cyrene, Heron, Ptolemy, and even the Indian mathemati-
cian Brahmagupta. Such comparisons not only lead to new questions and 
answers relating to important issues in the history of Greek mathematics 
but also highlight the interdependence between the three mathematical 
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traditions, which have been considered more or less independent of one 
another for so long.

There is one important issue that Friberg’s two studies do not address. 
Having pointed to the existence of mathematical links based on an exami-
nation of the structure and content of the texts, he has little to say about 
where, how, and when these connections were established in the first place. 
It is clear that these broader issues need to be addressed if Friberg’s theses 
are to be fully sustained.

Notes

1. The author has been criticized for paying excessive attention to the views expressed 
by Kline, who is perceived as unrepresentative of the opinions of historians of math-
ematics these days. However, the assessment of Indian mathematics by a widely quoted 
historian of mathematics, Carl Boyer (1968), was not very different:

(The Indian mathematicians) delighted more in the tricks that could be played 
with numbers than in the thoughts the mind could produce, so that neither Eu-
clidean geometry nor Aristotelian logic made a strong impression upon them. The 
Pythagorean problem of the incommensurables, which was of intense interest to 
Greek geometers, was of little import to Hindu mathematicians, who treated ratio-
nal and irrational quantities, curvilinear and rectilinear magnitudes indiscrimi-
nately. . . . Questions concerning incommensurability, the infinitesimal, infinity, 
the process of exhaustion, and other inquiries leading towards the conceptions 
and methods of calculus were neglected. (pp. 61–62)

2. As late as 2002, Høyrup wrote: “Apart from the family likeness between the filling 
problems in IM 53957 and Rhind Mathematical Papyrus # 37, no evidence suggests the 
slightest connection between Old Babylonian mathematics and ‘classical’ (Pharanoic) 
Egyptian mathematics as found in Middle and New Kingdom papyri—nor between the 
surveyors’ tradition and classical Egyptian mathematics”—a view that is not uncom-
mon even today among other scholars of Egyptian mathematics.

3. In the forefront of this activity of studying the links are the works of Friberg (2005, 
2007b), who was referred to in an earlier chapter. It is Friberg who has highlighted 
these connections using terms such as “unexpected links” to describe the relationship 
between Egyptian and Babylonian mathematics and “amazing traces” to characterize 
the “Babylonian origin in Greek mathematics.” 

4.  Periodicity is the recurrence at regular intervals of an astronomical phenomenon 
relating to a celestial body. For example, the lunar synodic period is the period of time 
from one full or new moon to another, that is, the time between consecutive align-
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ments of the sun, earth, and the moon on a plane perpendicular to the plane of solar 
revolution.

5. The relationship between Babylonian and Greek astronomy has been studied in re-
cent years, a good example being Jones (1996). Burkert (1972) contains a useful discus-
sion of the late antique construction of Pythagoreanism.

6. The political basis of Western scholarship’s appropriation of the Middle East’s past 
needs to be noted. Both postcolonial historians and anthropologists (e.g., Said 1978 and 
Fahim 1982) have written influential critiques of the strategies adopted in the West to 
“domesticate” historical interpretations toward the West and not to the area studied.

7. The innovations include Powell’s study (1976) of the evolution of the Mesopotamian 
numeration system in the third millennium BC, Høyrup’s analysis (2001) of the lan-
guage of Old Babylonian algebra without forcing it into a modern symbolic package, 
Friberg’s study (1999, 2000) of the mathematics of the New Babylonian period, and 
Robson’s (2008) emphasis on the social history of Mesopotamian mathematics. 

8. As discussed in chapter 2, the differentiation is usually made between table texts, such 
as tables of decomposition into unit fractions, and problem texts, which state a problem 
and the method of solution. The administrative texts containing calculations involve a 
wide range of sources that include accounts, parceling out food, work, and land.

9. The use of modern mathematical notations to decode and “transform” original ob-
scure texts written in dead languages remains controversial among the small band of 
professional historians of mathematics. As far as this book is concerned, the intended 
audience is general readers, and for such readers a translation of these texts into 
present-day mathematical notation and language, together with the occasional inser-
tion of excerpts from the original texts, will hopefully suffice. 

10. For further discussion of this characterization, see Imhausen (2007, pp. 25–28).

11. It should be noted that the Babylonians could also compute the volume of truncated 
pyramids. For further details, see chapter 9 in Friberg (2007b).

12. Computations relating to pyramids and cones are also found in other mathematical 
traditions, notably Greek, Chinese, and Indian. For a useful survey, see Friberg (1996).

13. As indicated in the previous chapter, the term “metric algebra” was coined by Fri-
berg (2007b, p. vi) to describe a type of mathematics that resulted from an “elaborate 
combination of geometry, metrology and linear or quadratic equations.”



Chapter Six

Ancient Chinese Mathematics

Background and Sources

To understand the history of Chinese mathematics requires some famil-
iarity with Chinese history. The history of China is a vast subject, as be-
fits a country that can trace the continuity of its civilization through 4,500 
years. The period we are concerned with runs from prehistoric times to 
the end of the Ming dynasty (AD 1386–1644) and the beginnings of Euro-
pean contact. It will help if we divide this long time span into five shorter 
periods. The reader may find it useful to refer to the map of China, figure 
6.1, for places mentioned in the following account.

The first period began with the civilization that developed along the 
banks of the Yangzi and Huang He rivers during the legendary Xia king-
dom in the third millennium BC. It continued through the Shang rule, 
which began around 1500 BC and lasted for five hundred years. The earli-
est evidence of numeration in China is from this period and consists of 
oracle bones, so named because inscriptions on them indicate that they 
were used for divination or fortune-telling. The social organization during 
the Shang dynasty was a primitive form of feudalism, with extensive use of 
bronze for weaponry and armor as well as the practical arts. Cowrie shells 
were widely used as money.

The Zhou invaders completed their conquest of the Shang around 1030 
BC. They extended their territorial control and instituted a more devel-
oped form of feudalism, reminiscent in its structure of the feudal system 
that would emerge in parts of Europe some two thousand years later. The 
development of a written language that had come into use during the 
Shang period was well under way. But from around 700 BC the Zhou dy-
nasty came under increasing attack from groups of insurgents. The empire 
disintegrated, and for a period of two hundred years from about 400 BC 
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there existed a number of independent states virtually at war with one an-
other for most of the time.

This period, usually known as the period of the Warring States, is nota-
ble from a mathematical viewpoint because from it comes one of the oldest 
sources of Chinese mathematics, the Zhou Bi Suan Jing (The Mathematical 
Classic of the Zhou Gnomon).

It is believed that the version that survived is a compilation of earlier 
texts, some of which may even date back to the Shang dynasty.1 The Zhou 
Bi is written in two parts. The first part contains a dialogue between a his-
torical figure from the eleventh century BC, the Duke of Zhou, and Shang 
Gao, who is described as a skilled mathematician. Their conversation 
ranges widely and includes the first statement of what is known as the gou 
gu (or the Pythagorean) theorem and also what some believe is a “proof ” 
of that theorem.2 While it is no longer believed that this treatise predates 
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Pythagoras by five centuries, it is still thought that it was likely composed 
before the time of the Greek mathematician. Apart from the consideration 
of the right-angled triangle and a brief discussion of simple arithmetic op-
erations, the Zhou Bi is primarily an archaic astronomical text. (This and 
other Chinese mathematical sources are listed in table 6.1, together with 
their authorship, date, and important subjects covered.)

The time of the Warring States was also a period when “a hundred 
schools of philosophers” flourished. Feudal lords, faced with uncertain 
times of popular unrest and technological innovation (iron was probably 
introduced into China at this time), employed itinerant philosophers as 
advisers. One of these philosophers was Confucius, but his deep and abid-
ing loyalty to the Zhou dynasty permitted him only a short spell as an ad-
viser to the local ruler of Lu. The emphasis Confucius placed on unity and 
stability in his philosophy may have been a reaction to the troubled times 
he lived in. As a pillar of social orthodoxy, Confucianism seemed singu-
larly uninterested in science. On the other hand, the reverse was true of the 
other philosophical stream, Taoism, which was founded on the teachings 
of Lao Zi, an older contemporary of Confucius. Indeed, Lao Zi’s Dao De 
Jing provides one of the earliest references to the practice of mathemat-
ics: “Good mathematicians do not use counting rods.” With hindsight, one 
may well disagree with Lao Zi, but the comment provides an indication of 
both how old the practice of computing with counting rods was as well as 
the existence of views of what constituted a “good” mathematician. 

It would be useful to put this period in a global context. It is one of the 
more remarkable coincidences of history that the middle of the first mil-
lennium BC saw the emergence of many of the great religious and ethical 
leaders whose influence is felt even today. Between 650 and 450 BC lived 
Confucius, Gautama Buddha, Mahavira, and, probably, Zoroaster. The 
same period saw Babylon fall to the Persians (538 BC), India invaded by 
the Persian emperor Darius (512 BC), and the Persian advance to the west 
halted by the Greeks (480 BC). And the last two centuries of the Warring 
States saw the conquests of Alexander (c. 330 BC), the foundation of the 
Mauryan empire in India, of which Asoka (273–232 BC) was the most 
illustrious ruler, and the protracted Punic Wars in the Mediterranean (c. 
250–150 BC).

The Second Punic War was contemporaneous with the successful re-
unification of China by the Qin emperor Shi Huang Di, who was master 
of all China between 221 and 207 BC. He rebuilt the Great Walls; a more 
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Table 6.1:  Major Chinese Mathematical Sources up to the Seven-
teenth Century

Title	 Author	 Date	 Notable subjects covered

Zhou Bi Suan Jing 	 Unknown	 c. 500–200 BC	 Pythagorean theorem;
(The Mathematical 			   simple rules of fractions 
Classic of the 			   and arithmetic operations 
Gnomon and the  
Circular Paths of  
Heaven) 

Suanshu Shu (A 	 Unknown	 300–150 BC	 Operations with fractions;
Book on Arithmetic) 			�   areas of rectangular fields; 

fair taxes

*Jiu Zhang Suan Shu 	 Unknown	 300 BC–AD 200	 Root extraction; ratios
(Nine Chapters on 			   (including the rule of three 
Mathematical Arts)			�   and the rule of false posi-

tion); solution of simultane-
ous equations; areas and 
volumes of various geo-
metrical figures and solids; 
right-angled triangles

Ta Tai Li Chi 	 Unknown	 AD 80	 Magic square order of 3
(Records of Rites 
Compiled by Tai the 
Elder)

Commentary on	 Chang	 130	 p = square root of 10
Jiu Zhang	 Heng

Shu Shu Chi Yi	 Xu Yue	 c. 200	 Theory of large numbers;
(Manual on the			   magic squares; first  
Traditions of the			   mention of the abacus 
Mathematical Arts)

Commentary on	 Zhao	 c. 200–300	 Solution of quadradic 
Zhou Bi	 Zhujing		  equations of the type
			   x2 + ax = b2

Hai Dao Suan Jing 	 Liu Hui	 263	 Extentions of problems in
(Sea Island Math-			   geometry and algebra from 
ematical Manual)			   the Nine Chapters

Sun Zu Suan Jing 	 Sun Zu	 400	 A problem in indeterminate
(Master Sun’s Math-			   analysis; square root  
ematical Manual)			   extraction; operations with 
			   rod numerals

			   continued
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Table 6.1:  Continued

Title	 Author	 Date	 Notable subjects covered

Sui Shu (Official	 Zu	 450	 Evaluation of π; method of
History of the Sui 	 Chongzhi		  finite differences 
Dynasty) 

Ji Gu Suan Jing	 Wang	 625	 Solution of third-degree equations;
(Continuation of	 Xiaotong		  practical problems for engineers,  
Ancient Mathematics)			   architects, and surveyors

*Suan Jing Shi Shu	 Li	 656	 An encyclopedia of mathematical
(The Ten Mathe-	 Chungfeng		  classics of the past
matical Manuals)

Meng Xi Bi Tan	 Shen Kuo	 1086	 Summation of series by piling up a
(Dream Pool			   number of kegs in a space shaped  
Essays)			   like a dissected pyramid

*Shu Shu Jiu Zhang	 Qin	 1247	 Numerical solutions of equations of
(Nine Sections of	 Jiushao		  high degree; indeterminate analysis 
Mathematics)

Ce Yuan Hai Jing	 Li Ye	 1248	 Solutions of high-degree equations;
(The Sea Mirror of			   applications of the Pythagorean 
the Circle 			   theorem to practical problems; use 
Measurements)			�   of a diagonal line across a digit to 

indicate a minus quantity

*Xiang Jie Jiu Zhang	 Yang Hui	 1261	 Arithmetic progressions; decimal
Suan Fa Zuan Lei			   fractions; quadratic equations with
(Detailed Analysis 			   negative coefficients of x
of the Nine Chapters)

Yuan Shi (Official	 Guo	 1280	 Foundations of spherical 
History of the Yuan	 Shoujing		  trigonometry; cubic interpolation 
Dynasty)			   formula; biquadratic equations

*Si Yuan Yu Jian	 Zhu Shijie	 1303	 Pascal’s triangle; solutions of
(The Precious			   simultaneous equations with five 
Mirror of the Four			   unknowns by matrix methods 
Elements)

Suan Fa Dong Zong	 Cheng 	 1593	 Magic squares; introduction to
(A Systematic	 Tai We		  abacus 
Treatise on 
Arithmetic)

Ji He Yuan Pen	 Ricci 	 1607	 Six books of Euclid’s Elements
(Elements of 	 and Xu		  translated into Chinese 
Geometry)

*Works most influential in the development of Chinese mathematics
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dubious claim to fame is his order to burn all books. Since its recent exca-
vation, the famous army of life-size ceramic soldiers buried with him has 
attracted considerable attention outside China, and may be seen as one of 
the more lasting manifestations of his egomania.

During the subsequent period, which saw the emergence of the Han dy-
nasty (200 BC to AD 220), scholars devoted a considerable amount of their 
time to transcribing from memory literary and scientific texts and seeking 
out manuscripts that had escaped destruction. This was the period when 
the earliest Chinese mathematical text was composed. Known as Suanshu 
Shu (A Book on Arithmetic), it consisted of around 200 bamboo strips, 
of which about 180 are reasonably well preserved. It was found in a tomb, 
and documentary evidence indicates that this tomb had been closed in 186 
BC. The occupant of the tomb may have been a minor local government 
official. The Suanshu Shu is anonymous, in the sense that we do not know 
the name of the person who assembled this material.3 While it is not a sys-
tematic introduction to mathematics, it contains a collection of problems 
involving arithmetic operations, including operations with fractions, the 
determination of proportional payments, the calculation of areas of fields 
and areas and volumes of different figures and shapes.4

A little later but in the same dynasty appears the most influential of all 
Chinese mathematical texts: the Jiu Zhang Suan Shu (Nine Chapters on the 
Mathematical Arts), which occupies a similar position in Chinese math-
ematics to that of Euclid’s Elements in Western mathematics. Possibly an 
original product of the late Qin and early Han dynasties, it was written at 
a time when the Roman empire was at its height and Buddhism was start-
ing to have an impact in China. It was reputed to have been arranged and 
commented upon by Zhang Shang (c. 150 BC) and later Geng Shouzhang 
(c. 50 BC), from some earlier texts that have not survived. However, the 
version put together and commented on by Liu Hui (c. AD 250) remains 
one of the more authoritative early texts. The book has now been translated 
into a number of European languages.5

The Han period is noted for significant developments in Chinese sci-
ence and technology. Much was achieved in astronomy and calendar 
construction. Xu Yue (c. AD 200) wrote a treatise titled Shu Shu Chi Yi 
(Manual on the Traditions of the Mathematical Arts), which discusses cal-
endar construction and gives an early description of the classical 3 × 3 
magic square.6 Foundations were laid for the systematic study and classifi-
cation of plants and animals. One of the greatest technological inventions 
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of mankind—paper—was a product of this period. An extensive bibliog-
raphy was compiled by experts in medicine, history, military science, phi-
losophy, astronomy, magic, and divination; some of the volumes, recorded 
on wooden or bamboo tablets or on silk, have survived. This was also a 
period when the main features of the Chinese society started to take shape, 
with the particular characteristic of a burgeoning bureaucracy recruited 
from scholars through the medium of examinations. Palace revolutions, 
peasant rebellions, and religious uprisings weakened the Han dynasty un-
til it was overthrown in AD 220, when a united China split into the Three 
Kingdoms. It is interesting that Liu Hui, an inhabitant of the Wei kingdom 
(one of the Three Kingdoms) and the influential commentator on the Jiu 
Zhang, advocated that mathematics be one of the six subjects taught to 
recruits for the state bureaucracy. 

The next period saw considerable divisions and upheavals, lasting for 
about a hundred years, which were brought to an end by a second unifica-
tion of China under the Qin dynasty. However, the troubled times appar-
ently did not disrupt mathematical activity, for during this period lived 
Liu Hui, mentioned earlier, on whose work we are so dependent for in-
formation on early Chinese mathematics. Foreign contacts through the 
spread of Buddhism, which began during the last decades of the Han dy-
nasty, continued—in art, sculpture, medicine, and the sciences as well as 
religion. Fa Xian, the great Buddhist pilgrim, set out for India in 399 and 
traveled the length and breadth of northern India, and over central Asia, 
for fifteen years.

This period produced two great mathematicians: Sun Zu (c. 300), in 
whose work we find the beginnings of indeterminate analysis, and Zu 
Chongzhi (c. 450), who accurately approximated p to be equal to 355/113 
and whose life span takes us into the succeeding Liu Song dynasty (420–
479). The Chinese work on both these topics will be discussed in the next 
chapter. From the beginning of the Tang dynasty, an encyclopedia of Chi-
nese mathematical classics titled Suan Jing Shi Shu (The Ten Mathemati-
cal Manuals) began to appear. At first, the encyclopedia consisted of more 
than ten volumes, but only ten were published and hence the title. This was 
to remain an influential text for several centuries.

A number of northern and southern dynasties followed in relatively 
quick succession after the second partitioning of China, until the short-
lived Sui dynasty (589–618) reunified the country once more. It was a pe-
riod of construction of large-scale waterworks, of which the most notable 
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was the Grand Canal linking the Huang and the Yangzi rivers. The labor re-
quirement was enormous: at times over five million workers were needed, 
which in certain districts meant all adult males between the ages of fifteen 
and fifty The benefit to posterity was immense, for a transport system had 
been developed that linked the productive agriculture of southern China 
with the politically and demographically more influential north.

The immense cost borne by ordinary people under the Sui dynasty bore 
fruit during the rule of the Tang dynasty, which many would consider one 
of the most productive periods of Chinese history. For about three hundred 
years (618−906) the Tang emperors ruled over a China whose territorial 
boundaries and cultural dominance had never been so extensive. This was 
a period characterized by a remarkable openness to foreign influences. Just 
as Baghdad, the center of intellectual activity to the west, welcomed scholars 
from all lands, the great Tang capital Chang’an numbered Arabs, Koreans, 
Japanese, and Indians among a population estimated to have reached a mil-
lion. This was a period of literary and artistic renaissance, while major tech-
nological innovations included printing and gunpowder. Surprisingly, no 
important mathematical work from this period has been discovered, but 
it could well have been the fertilization through foreign contacts and the 
scrutiny of past Chinese texts which took place in this period that led to the 
upsurge in Chinese mathematics of a few centuries later.

The Tang dynasty was followed in relatively quick succession by the 
years of the Five Dynasties and the Ten Independent States (907−960). 
Although these were chaotic times, there were great advances in block 
printing, which began initially as a means of disseminating religious texts  
but then slowly spread into secular fields. A great desire for unity elevated 
Zhao Kuangyin to the throne in 960, marking the beginning of one of lon-
gest dynasties in Chinese history, the Song (900–1279), in which may be 
seen the culmination of the developments of the previous two centuries. 
In reality, there were two dynasties: the Northern Song (960–1127) with 
its capital at modern Kaifeng, and the Southern Song (1127–1279), whose 
capital was situated in modern Hangzhou.

The scientific and technological achievements of the Song period are too 
numerous to list here; we shall concentrate on the mathematics. The Song 
period produced some of the greatest mathematicians of China, especially 
during the thirteenth century. In 1247 Qin Jiushao wrote Shu Shu Jiu Zhang 
(Nine Sections of Mathematics, not to be confused with the Jiu Zhang of a 
thousand years before). In this work Qin explained the numerical solution 



196  Chapter 6

of equations of all degrees, and extended the work on indeterminate analy-
sis begun by Sun Zu. A year later appeared Li Ye’s Ce Yuan Hai Jing (The 
Sea Mirror of the Circle Measurements), which explained how to construct 
equations of various degrees from a given set of data, thus complementing 
Qin’s methods of solving these equations. Between 1261 and 1275 appeared 
a series of works by Yang Hui, the most influential of which was Xiang Jie 
Jiu Zhang Suan Fa Zuan Lei (Detailed Analysis of the Mathematical Meth-
ods in the Jiu Zhang). It starts as a commentary on the Jiu Zhang and goes 
on to present some remarkable extensions of the original work in a num-
ber of areas including mathematical series, quadratic equations with nega-
tive coefficients of x, and higher-order numerical equations. The fourth 
name in this grand quartet of mathematicians is Zhu Shijie, who lifted Chi-
nese algebra to the highest level it was ever to attain. In the two treatises 
he wrote, Suan Xu Ji Meng (Introduction to Mathematical Studies, 1299) 
and Si Yuan Yu Jian (The Precious Mirror of the Four Elements, 1303), are 
to be found a treatment of “Pascal’s” triangle 350 years before Pascal, the 
solution of simultaneous equations with five unknowns using the “method 
of rectangular arrays” (or what we would now call matrix methods), and 
detailed applications of what was known as the “celestial element method” 
for solving equations of higher degree. This list of notable mathematicians 
would be incomplete without the mention of Guo Shoujing (1231–1316). 
While there is no extant treatise on mathematics that can be traced to Guo, 
there are records from the Ming period (1368–1648) that show his influ-
ence on astronomy and calendar construction. The first Chinese work on 
what we would now consider as spherical trigonometry based on approxi-
mation formulas is directly attributed to Guo. By the closing stages of the 
Song dynasty, the Chinese algebraists had forged so far ahead that it was 
only during the eighteenth century that the gap between Chinese and Eu-
ropean algebra, particularly with respect to the solution of equations, was 
finally closed.

The last period of this short historical survey of China and Chinese 
mathematics stretches over four hundred years, and takes in the Yuan 
(Mongol) and Ming dynasties, which ruled over the whole of China. The 
Yuan dynasty began with Shi Zu (better known in Europe as Kublai Khan, 
the grandson of Genghis Khan) in 1280 and ended with Shun Di (Togan 
Timur) in 1367. This was not a period of great creative activity in math-
ematics, but it was a time when contacts between China and Europe were 
at their height. Mongol control extended right across the Asian heartland, 
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from the Yellow Sea in the east to the Black Sea in the west. Appointment 
of non-Chinese to positions of authority was state policy, as an important 
means of preserving control. Ideas and technology were transmitted via 
the trade routes across central Asia. Marco Polo was one of many travelers 
who came to China and wondered at its marvels; he later served at the 
court of the khan. It was also during this period and the subsequent two 
centuries that four technological innovations from China, which, in the 
words of Francis Bacon (1561–1626), “changed the whole face and state of 
things throughout the world,” started their way slowly westward to Europe: 
block printing, gunpowder, papermaking, and the magnetic compass. It 
is an interesting reflection that while there was a time lag of ten centuries 
between use of paper in China and in western Europe, the time lags for 
gunpowder and the magnetic compass were four and two centuries respec-
tively. The last two would later be used by Europeans, to dramatic and dev-
astating effect, on the rest of the world.

The Ming period, which began in 1368, saw the restoration of indig-
enous culture and values after a century of foreign rule, as well as expand-
ing Chinese influence abroad. Great maritime expeditions were sent to the 
southern parts of India, Sri Lanka, the eastern coast of Africa, and the Per-
sian Gulf. Exotic items, including African animals such as giraffes, zebras, 
and ostriches, were brought back from these areas.7 However, this interest 
in things foreign was not matched by a desire to learn from foreigners. 
Chauvinism and intolerance of other people prevailed and led to a stagna-
tion of science that would be briefly relieved with the arrival of the Jesuits 
during the later part of the sixteenth century. It is not surprising, given the 
spirit of the age, that the first translation of Euclid’s Elements into Chinese 
had little impact in China. It was felt more in post-Meiji Japan, which had 
until then been very much under the influence of its larger neighbor. At 
the beginning of the seventeenth century, the Manchus from Manchuria 
mounted an invasion that led to the establishment in 1644 of a dynasty that 
would survive until its overthrow in 1911. Foreign interventions became 
increasingly common, particularly in the nineteenth century; and Chinese 
mathematics became influenced by the West once more, this time in a way 
that was to change its character completely. But this takes us far beyond the 
period covered by this book.

The following discussion of Chinese mathematics takes a thematic ap-
proach rather than examining in detail the various sources of Chinese 
mathematics listed in table 6.1. However, because of the great importance 
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of the Jiu Zhang Suan Shu (hereafter referred to simply as the Jiu Zhang) in 
the development of Chinese mathematics, its contents will be subjected to 
a detailed analysis.

In this chapter we consider developments in Chinese mathematics up to 
the end of the first millennium AD; subsequent progress, particularly dur-
ing the thirteenth century, will be examined in the next chapter. 

The Development of Chinese Numerals

Types of Chinese Numerals
It is possible to distinguish four main types of Chinese numerals, all based 
on the decimal system:

1. � The “standard” or “modern” numerals may have originated from 
common number-words in use from about the third century BC.

2. � The “official” numerals are merely a highly decorative (and rather  
more “complex”) version of the standard numerals, used on legal 
documents and banknotes that need to be protected from forgery or 
unauthorized alterations.

3. � The “commercial” numerals, again based on the standard ones, were  
devised for writing quickly and were widely used in trade and  com-
merce. They are of more recent origin, dating from the sixteenth  
century, and are found most commonly today on price tags or bills 
in Chinese shops and restaurants.

4. � The “stick” or “rod” numerals served until recently as the principal  
instrument for mathematical and scientific work, and had been in 
use  from at least the second century BC. The name derives from 
their  origins in arrangements of sticks or rods on Chinese counting 
boards.  We shall be concentrating on these numerals.

However, the earliest-known Chinese numerals appear in the form of 
Shang “oracle bones,” dating from sometime between 1500 and 1200 BC. 
A group of farmers, tilling their fields near Anyang in Henan at the end 
of the nineteenth century, came across a collection of tortoise shells and 
animal bones with inscriptions on them. They were eventually sold to an 
apothecary, who believed them to be the bones of a dragon, endowed with 
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medicinal properties. Fortunately they were rescued before being con-
sumed, and attracted the interest of several Chinese scholars, who were 
instrumental in deciphering the inscriptions they bore. It turned out that 
the bones had belonged to Shang nobles who were in the habit of appeal-
ing to the spirits of their ancestors for advice on the best times for trav-
eling, harvesting, celebrating feasts, and other activities. Such questions, 
together with answers recorded after the prophecies had been fulfilled, 
were inscribed on the bones. New finds over the last century have pro-
vided thousands of examples of inscriptions on bones, giving us a better 
understanding not only of the numeral system in use and its role as a divi-
natory instrument but also of the socioeconomic climate of the times. For 
example, on some of the oracle bones are records of numbers of prisoners 
captured, numbers of animals and birds captured on hunting expeditions, 
numbers and types of animals sacrificed in ritual ceremonies.8

The oracle bones recorded integer numbers from 1 to 30,000. The num-
bers 1 to 10 as found on these bones were represented by the following 
symbols:

 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

This numeral system was more advanced than all contemporary systems 
except the Mesopotamian, since it enabled any number, however large, to 
be expressed by the use of ten basic symbols (1 to 10) and a selected num-
ber of additional symbols to represent twenties, hundreds, thousands, and 
ten thousands. Thus, the numbers 537 and 1,348 were written as 

	 (5 hundreds, 3 tens, 7)

	 (1 thousand, 3 hundreds, 4 tens, 8) 

where the symbol  represents thousands,  hundreds, and  twenties.
In the centuries that followed, different variants of the above charac-

ters were used, as can be seen on artifacts such as coins and bronze vessels, 
mostly from the Zhou period (eleventh to the third century BC). All were 
used in a decimal system of notation, with extra symbols to denote different 
orders of magnitude. The standard number system is a direct descendant of 
the ancient Shang system: its symbols for the numbers from one to ten are
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1	 2	 3	 4	 5	 6	 7	 8	 9	 10

The number 842 may be written from left to right as

where  and  represent hundreds and tens respectively. 
It is important to recognize that just as in the case of the Egyptian nu-

merals, the Chinese had no need for a zero to distinguish between po-
sitional values, since each positional value was paired with a symbol 
representing its power of ten. For example, 2,005 would be represented as 
“2 thousands and 5” while 250 would be represented as “2 hundreds and 
5 tens.” This way of writing numbers undoubtedly influenced the way that 
computational methods developed in China. And indeed, as we shall see 
later, it had considerable bearing on how the Chinese would work with 
fractions, extract roots, and solve equations.

However, over the years the demands of commerce, administration, and 
science led to the development of a distinctive Chinese place-value num-
ber system that involved the use of counting rods. These rods, originally of 
ivory or bamboo, were arranged in columns from right to left representing 
increasing powers of ten. Positive and negative numbers were represented 
by red and black rods, respectively. Our information on their use goes back 
only to the Qin and early Han dynasties, though the system was probably 
invented earlier.

By the third century AD these rod numerals were being described as 
heng (horizontal) and zong (vertical) numerals. A later notation for these 
two variants of rod numerals took the form shown in table 6.2. The zongs 
represent units, hundreds, ten thousands, etc., and the hengs tens, thou-
sands, hundred thousands, etc.9

Thus the number 3,614 would be written as

Note that the columns of numbers need not be demarcated, since the 
type of numeral used defines the column value. Thus, in common with 
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our present-day number system, to show 3,614, a reckoner places rods to 
represent 4 in the extreme right column, 1 in the second, 6 in the third, 
and 3 in the fourth column. The alternating heng and zong representation 
would help to distinguish units of different orders in odd-numbered and 
even-numbered columns of the counting board. This provided a built-in 
means of checking whether the digits were correctly represented before 
undertaking arithmetical operations. And as computation could be carried 
out by placing the rods on any flat surface, Chinese reckoners needed no 
materials other than their bundle of counting rods.10

During the Han period, the counting rods were round bamboo sticks 
about 2.5 mm in diameter and 140 mm long, tied together in a hexagonal 
bundle that could be conveniently carried by hand. But from the sixth cen-
tury AD they became shorter and rectangular in shape. Besides bamboo, 
counting rods were also made from wood, cast iron, jade, or ivory. Count-
ing rods of other shapes and sizes were also used in Korea and Japan, which 
came within the Chinese sphere of influence in mathematics.

Operations with Rod Numerals
Elementary operations with counting rods were carried out as one would 
calculate on an abacus. If numbers were to be added or subtracted, then the 
rods were repositioned column by column. For example, the addition of 8 
and 7 would be shown as in figure 6.2a, where the first and second rows 
represent 8 and 7, respectively, while the third row shows the sum, 15. The 
subtraction of 6 from 12 would proceed as shown in figure 6.2b, where 12 
and 6 are first laid down in the first and second rows. The horizontal rod 
in the first row is then converted into an additional set of ten vertical rods 
before subtraction. The third row shows the answer, 6.

Table 6.2:  Chinese Heng and Zong Rod Numerals

	 1	 2	 3	 4	 5	 6	 7	 8	 9

Zongs	

Hengs

Note: The zongs represent units, hundreds, tens of thousands, etc., and the hengs tens, 
thousands, hundreds of thousands, etc.
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For multiplication the top row is the multiplier, the middle row is left 
blank for the intermediate steps to be entered as multiplication proceeds, 
and the bottom row shows the multiplicand. As an illustration we take 
the multiplication of 387 by 147, using modern numerals for clarity. The 
product of the two numbers is found via the five sets of arrangements of 
counting rods shown in figure 6.3. As a first step, the rods are arranged 
as in (a). In (b), 441 is obtained by multiplying 147 by 3. In the next step, 
shown in (c), 147 is multiplied by 8 and the result added to 4,410 to give 
5,586. Then, in (d), 147 is multiplied by 7 and the result added to 55,860 
to give the final product, 56,889. The multiplication process is complete in 
(e). At each stage the rods are rearranged so that the numerals fall in the 
appropriate columns, 147 being moved one place to the right at each step. 
Both canceling and correcting mistakes are easier to do with counting rods 
than with paper and pencil. With sufficient practice, the rods could be ma-
nipulated with such speed that a writer in the eleventh century comments 
on the rods “flying so quickly that the eye loses track of their movements.”

The method of division begins with the divisor (fa) in the bottom row 
and the dividend (shi) in the middle row, with the top row left blank for 
the quotient (shang). As an illustration, we shall divide 56,889 by 147; the 

Figure 6.2

(b)(a)

Figure 6.3: Multiplication with counting rods
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process takes four steps, as shown in figure 6.4. In (a) the rods are set up 
for division. The number to be divided, 56,889, is inserted in the middle 
row and the divisor, 147, in the bottom row. The divisor is moved left to the 
point where it is exactly below 568. Dividing 568 by 147 gives 3, which is 
inserted in the top row in (b). The divisor 147 is multiplied by the quotient 
and subtracted from 568 to give 127, which is placed in the middle row in 
(c) followed by the last two digits, 8 and 9, of 56,889. The divisor is moved 
one place to the right and divided into the number above it, 1,278. The re-
sult, 8, is inserted in the top row in (c). Then 147 is multiplied by 8 and the 
result subtracted from 1,278, giving 102, which is inserted in the middle 
row followed by the last digit, 9, of 56,889, as in (d). The division of 1,029 
by 147 gives 7, with no remainder, which is inserted in the top row in (d). 
The answer is 387.

The representation of zero in this system poses no problem: a space is 
simply left blank. But there was a difficulty, as with the Mesopotamian no-
tation, when the rod numerals were written down. A circular sign for zero 
makes its first appearance in Qin Jiushao’s work in 1247, probably an influ-
ence from India. However, the blank space standing for what we now call 
zero in Chinese numerals was conceptually different from the blank space 
in Mesopotamian numerals. In the Chinese system the blank space is itself 
a numeral, whereas in the Mesopotamian system it represents the absence 
of a digit—that is, a placeholder.11 This is immediately evident if we consider 
what is implied by the absence of a blank space as a right-hand terminal in-
dicator in each of the two systems. In the Mesopotamian sexagesimal place-
value notation, the symbols  could have stood for 70, or 3,660, or some 
other number. Such ambiguities did not occur with the Chinese rod nu-
merals, since the reckoner would always have been aware of the positional 
values of the digits in the numbers operated with. Also, the ingenious device 
of alternating the orientation of the rods in successive place values meant 
that it was easy to check that the numerals were correctly positioned relative 
to one another. However, there is an underlying ambiguity that the device 
of alternating the orientation of the rods in successive place values does not 

Shang
Shi
Fa

(a) (b) (c) (d)

5 6 8 8
1 4

9 5 6 8
3

8 9 1 2 7
3 8 3 8 7

8 9 1 0 2 9
7 1 4 7 1 4 7 1 4 7

Figure 6.4: Division with counting rods
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resolve. In the absence of a sign to represent zero, how does one distinguish 
between 12 and 1002 in the Chinese system? Thus

12: 	 1002:

An important advantage of a place-value number system, as we saw 
earlier, is that the fractional and integral parts of a mixed number can be 
represented as economically as possible. In the rod numeral system the in-
tegral and fractional parts are separated by a line. Thus, the number 48,125 
is represented as

The counting rods were not merely a calculating device: they eventu-
ally became a vehicle for expressing certain mathematical concepts. Apart 
from its notational facility, the rod numeral system was helpful in suggest-
ing new approaches to algebraic problems, and also ways of operating with 
negative numbers. It may even be argued that geometric algebra, which 
began with the Babylonians and was extended by the Greeks, was given an 
arithmetic dimension by the Chinese counting rods. It was merely a matter 
of time before the positions of the counting rods came to stand for alge-
braic symbols, and operations with the rods for algebraic operations. Let us 
now look at how the rods were used as a representational device. (Their use 
for algebraic operations will be examined in a later section.)

To represent a system of equations, the counting rods were arranged in 
such a way that one column was assigned to each equation of the system 
and one row to the coefficients of each unknown in the equations. The ele-
ments of the last row consisted of the entries on the right-hand side of each 
equation. Red rods were used to represent positive (zheng) coefficients and 
black rods negative (fu) coefficients.

Figure 6.5 shows the representation of the following system of equations 
in three unknowns:

2x - 3y + 8z = 32,

-6x - 2y - z = 62,

3x + 21y - 3z = 0.

It has been argued that because equations were represented in this form, 
it was only a matter of time before matrix methods of solving systems of 
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linear simultaneous equations or numerical methods of solving higher-
order equations would logically suggest themselves. Whether or not this 
happened, it is clear that these methods became an integral part of Chinese 
mathematics, probably as early as the third century BC (they made their 
first appearance in the Jiu Zhang), and remained unique to Chinese math-
ematics until the eighteenth century AD. We shall examine these methods 
more thoroughly later. 

It is easy to be deceived by the simplicity of our present-day decimal 
number system into overlooking the advantages of other systems. We have 
seen how the Mesopotamians developed a sexagesimal place-value system 
whose lack of a symbol for zero hindered both number representation and 
computation. The distinctive feature of the modern decimal system, which 
it shares with the Chinese rod numeral system, is an economy both in the 
number of symbols used and in the space occupied by a written number. 
In the Chinese system, each of the first nine numbers is represented by no 
more than five rods. By letting a single rod represent the number 5, the 
numbers from 6 to 9 became much simpler to represent than in, say, the 
Egyptian system, and arithmetical operations were easier to carry out. Al-
ternating the orientation of the rods provided a clear indication of the place 
positions of different digits of a number, and all that was needed to carry 
out computations was a bundle of rods, together with a flat surface to place 
them on. This led to the development of a set of quick and easy algorithms, 
not only for multiplication and division and extraction of square and cube 
roots, but also for the solution of simultaneous linear and higher-order 

Figure 6.5: Representing simultaneous equations with counting rods. In this drawing, solid 
(black) rods represent negative numbers and open rods positive numbers.
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equations. The early development in China of an algebra of negative num-
bers (zheng fu shu, or “positive and negative” operations) is another by-
product of the rod numeral system. With later (written) rod numerals, a 
negative number was shown by drawing a diagonal line through its last 
column, for example:

-12: 

However, as well as these virtues the rod system had its shortcomings, 
apart from its ambiguity as a numerical representational device. In long 
and complicated calculations the rods took up much space. Errors might be 
made when rods were moved rapidly, and there was no possibility of detect-
ing errors once a sequence of manipulations was complete. It may be that the 
remarkable success of these devices for calculation in China inhibited the 
development of alternative mechanical devices such as the abacus, which 
did not become widespread until the time of the Ming dynasty, and delayed 
the adoption of the modern decimal number system until recent times.

There is, however, a view that the idea of decimal place-value computa-
tion embodied in the counting-rod system was transmitted from China, 
first to India and then to the Islamic world. This is because the manner in 
which computations were carried out in the Arabic texts of al-Khwarizmi 
and other Islamic mathematicians was almost identical to the Chinese pro-
cedure. No tangible evidence exists to support this conjecture despite its 
plausibility. However, one difficulty with substantiating this conjecture is 
the need to determine at what point a computational device that did not 
depend on any writing was transformed into a procedure that was wholly 
dependent on written numerals.12 

Chinese Magic Squares (and Other Designs)

A magic square is a square array of numbers arranged in such a way that 
the numbers along any row, column, or principal diagonal add up to the 
same total. In most magic squares of n rows and n columns the n2 “cells” 
are occupied by the natural numbers from 1 to n2. For example, a magic 
square of four rows and four columns (i.e., of order 4) would contain all the 
integers from 1 to 16.

Magic squares have some interesting mathematical properties. If s is the 
constant sum of the numbers in each row, column, or principal diagonal, 
and S is the grand total of the numbers in the n2 cells, then
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( 1), / .S n n s S n2
1 and2 2= + =

If n is odd, the number of the central cell is given by S/n2, which is also 
the mean of the series 1 + 2 + . . . + n2. (For magic squares of even order, 
for which there is no single central cell, S/n2 is not a whole number.) This is 
a key number for all odd-order magic squares, since from this number and 
the value of n it is possible to work out the partial sums s and total sum S. 
For example, if n = 3 and the middle number is 5,

9 5 45, 15.S s 3
45and#= = = =

A magic square of odd order in which every pair of numbers on oppo-
site sides of the central cell add up to twice the middle number is known 
as a regular magic square. For example, in figure 6.6, in each of the pairs 
(4, 6), (2, 8), (3, 7) and (1, 9), the two numbers lie on opposite sides of the 
middle number (5) and add up to 10, which is twice 5. Figure 6.6 repre-
sents the most famous of the regular Chinese magic squares, known as the 
Luo shu. It was seen as a symbol of the universe itself. 

Magic squares are only of marginal interest today, forming part of a pe-
ripheral area known as “recreational mathematics.” Yet until four hundred 
years ago, in almost all mathematical traditions, magic squares engaged the 
interest of notable mathematicians as a challenging object of study. Their 
attractions were heightened not only by their aesthetic appeal but also by 
their association with divination and the occult; they were engraved on 
ornaments worn as talismans.

Magic Squares in China
In China, where the earliest recorded magic squares have been found, 
there was a long-established fascination with number patterns and the 
associated combinatorial analysis. The Chinese shared with the Greeks an 

Figure 6.6: A regular magic square of order three
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interest in numerology and number mysticism (e.g., odd numbers were 
thought to be lucky, even numbers unlucky), but there is nothing in Chi-
nese mathematics that resembles the Pythagorean fascination for figurate 
numbers (i.e., triangular, square, pentagonal numbers) or for types of 
numbers such as perfect or amicable numbers.13 Neither is there anything 
in Greek mathematics that suggests even the slightest interest in magic 
squares. 

The first record of a magic square in China goes back to the time of 
the semimythical emperor Yu, who was reputed to have lived in the third 
millennium BC. There is a legend that Yu acquired two diagrams, the first 
one (He tu, meaning the River Chart) from a magical dragon-horse that 
rose from the waters of the Huang He (Yellow River) and left its footprints 
along the river in the form of an imprint of the He tu, and the second (Luo 
Shu, meaning Luo River Writing) copied from the design on the back of 
a sacred turtle found in the Luo, a tributary of the Huang He. Figure 6.7 
shows these gifts: He tu, a cruciform array of numbers from 1 to 10, and 
Luo Shu, a regular magic square of order 3. (The number 10 is shown in the 
He tu as a square of black beads surrounding the five central white beads.) 
The He tu is arranged so that, disregarding the central 5 and 10, both the 

Figure 6.7: (a) He tu and (b) Luo Shu (Needham 1959, p. 57)
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odd and even sequences of numbers add up to 20. The Luo Shu, which 
we discussed earlier, is a magic square in which the figures in any diago-
nal, row, or column add up to 15, a remarkable balance being maintained 
between the odd (white beads) and even (black beads) numbers around 
the central number, which is again 5. Both diagrams represent an impor-
tant principle of Chinese philosophy—balancing the two complementary 
forces of yin (female) and yang (male) in nature, represented here by odd 
and even numbers respectively.

There can be no doubt about the antiquity of this story, and aspects 
of it suggest that it cannot have originated any later than the second cen-
tury BC. Certain passages in the ever-popular manual of divination, Yi 
Jing (The Book of Changes), written at about that time, emphasize not only 
the magical/divinatory nature of these diagrams but also their numerical 
properties. Gradually an extensive folklore grew up around the magical 
properties of the Luo Shu, and more generally of magic squares of order 3. 
It came to be described as the nine rooms or halls of the cosmic temple, the 
Ming Tang, and later writers would refer to the construction of this square 
as the “nine halls calculation” (Jiu Gong Suan). The belief in the magical 
powers of this square spread into neighboring areas, among the Tibetans, 
Koreans, and Mongolians, who depicted it as an arrangement of black and 
white knots or beads on short lengths of cord, as shown in figure 6.7b.

Given the early start the ancient Chinese had in the development of 
magic squares, one would expect them to have progressed to squares of 
order higher than 3. However, there is no evidence that they did, though 
brief quotations from existing texts show that commentaries were written 
on the Luo Shu, especially during the periods of disorder and unrest that 
occurred between the fourth and sixth centuries AD. It can only be as-
sumed that this great interest in magic and divination was but a sign of the 
times—a desperate search for a better tomorrow.

The long hiatus ended with the emergence of Yang Hui, who in 1275 
published his Xu Gu Zhai Suan Fa (Continuation of Ancient Mathematical 
Methods for Elucidating the Strange Properties of Numbers). In the pref-
ace to his book, Yang Hui pointed out that he was merely passing on the 
works of earlier scholars and would make no claim to originality. Some of 
the magic squares he constructed were very complicated, and instructions 
for building them were either absent or cryptic to the point of obscurity. 
Let us consider briefly the methods he outlined for constructing magic 
squares of orders 3, 4, and 5.
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Construction of the Luo Shu
Yang Hui’s instructions may be expressed as follows:

1. � Arrange the numbers 1 to 3, 4 to 6, and 7 to 9 (as shown in figure 
6.8a) so that they slant downward to the right.

2. � Replace 1 on the “head” with 9 on the “shoe,” and vice versa.

3. � Interchange 7 and 3, other numbers remaining in their old positions. 
(The new positions are shown in figure 6.8b.)

4. � Lower 9 to fill the slot between 4 and 2, and raise 1 to fill the slot 
between 8 and 6. (Figure 6.8c shows the Luo Shu that results, after 
similarly moving 7 and 3 inward.)

Construction of a Magic Square of Order 4
To construct a magic square of order 4, place the numbers 1 to 16 in an 
array of four columns and four rows, as shown in figure 6.9a. Then inter-
change the numbers at the corners of the outer square (16 and 1, 4 and 13), 
to give the arrangement in figure 6.9b. Finally, interchange the numbers at 
the corners of the inner square (6 and 11, 7 and 10). This will produce a 
magic square in which all the columns, rows, and diagonals add up to 34, 
as shown in figure 6.9c.

As Yang Hui points out, different variants of this “method of inter-
change” can produce different magic squares. For example, figure 6.10 was 
obtained by arranging the sixteen numbers in four columns beginning at 
the top left-hand corner. Figure 6.11 was obtained by first listing the six-
teen numbers beginning at the top right-hand corner and going down the 
four columns from right to left. This arrangement for a magic square was 

Figure 6.8: Construction of the Luo Shu



Ancient Chinese Mathematics  211 

referred to as the yin (female) square. “The diagram of the sixteen flowers,” 
shown in figure 6.12, was constructed from an initial arrangement of the 
numbers 1 to 16 in four rows running from right to left.

Construction of a Magic Square of Order 5
Yang Hui provides no explanations of how he constructed magic squares 
of order 5 onward. However, by examining the two squares of order 5 that 
he included in his book, we can get an idea of this method. The first (figure 
6.13c) is a magic square within a magic square, the inner one of order 3 
having a constant of 39. The central number is 13, which is also the middle 
number of the sequence 1 to 25. The numbers in this inner square are (in 
ascending order) 7, 8, 9; 12, 13, 14; and 17, 18, 19; this suggests that to con-
struct the complete magic square, we should proceed as follows.

First write the numbers from 1 to 25 in columns starting from the top 
right (figure 6.13a). Then proceed to make the inner square into a magic 
square of order 3 by following the method of forming a diamond-shaped 
pattern, as for the construction of the Luo Shu, discussed earlier, inter-
changing the numbers 8 and 18 and rearranging the sequence 12, 13, 14 to 

Figure 6.9: Constructing a magic square of order 4

Figure 6.10	 Figure 6.11	 Figure 6.12
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14, 13, 12, to produce figure 6.13b. Around the inner magic square arrange 
the other numbers in complementary pairs such as (1, 25), (2, 24) and (3, 
23), such that the rows, columns, and diagonals of the outer square sum to 
the constant of the outer square, 65 (figure 6.13c). This arrangement of the 
numbers around the inner magic square follows no particular pattern, and 
is done by trial and error.

Yang Hui constructs magic squares up to order 10, although the squares 
of order 10 are “incomplete.” Both the ingenuity and the “number sense” 
represented by these constructions are remarkable, and provide yet further 
evidence of the Chinese knack in computation, surely a product of their 
facility with rod numeral operations. The other striking feature of their 
work on magic squares is the crucial importance of the Luo Shu in all their 
constructions.

Figure 6.14 shows one of Yang Hui’s magic squares of order 7. It encom-
passes three magic squares, all consistent with the Luo Shu principles of 
associated pairs and the yin-yang balance, but Yang Hui does not explain 
how he derived it. The name given to this magic square is yen shu tu, which 
means the “diagram of the abundant number.” This must be a reference to 
50, which is twice the central number 25 and also the sum of each associ-
ated pair: 46 + 4 = 50, 3 + 47 = 50, 14 + 36 = 50, and so on.

Yang Hui also provides six magic circles of varying complexity. The 
simplest of them, shown in figure 6.15, consists of a total of seven circles 
arranged in such a manner that each has four numbers on its circumfer-
ence, with one other number at the center of the diagram. Each of the 
numbers on the central circle lies on one of the four circles that touch it. 
Thus, associated with each of the seven circles is a group of five numbers, 
and each of these groups adds up to 65. If we compare this magic circle 

Figure 6.13: Constructing a magic square of order 5
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Figure 6.14: A magic square of order 7

Figure 6.15: Magic circles
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with the pattern of numbers in one of Yang Hui’s magic squares of order 
5 (figure 6.13c), we can see that there is a correspondence between some 
circles and rows.

Yang Hui’s work continued to arouse interest among later mathemati-
cians. But apart from Zhang Zhao (c. 1650), who produced the first com-
plete magic square of order 10, and Bao Jishou (c. 1880), who constructed 
three-dimensional magic cubes, spheres, and tetrahedrons, there were 
hardly any innovations after Yang Hui. Ever more elaborate magic circles 
continued to be constructed, though the decline in the hold of the Luo shu 
principle may have contributed to the emergence of incomplete designs. 
But China’s influence spread abroad to produce interesting developments 
in Japan and India. In Japan, Isomura’s (1660) interest in magic shapes was 
directly derived from his work in geometry; and Seki Kowa (or more cor-
rectly Seki Takakazu) (1683), who devoted one of his seven books to the 
theory of magic squares and magic circles, used his algebraic talents to 
produce one of the first scientific treatises on the subject. These develop-
ments in Japan are well covered by Mikami (1913).

West of China, the subject of magic squares was first discussed in the 
Islamic world, toward the end of the ninth century AD. Possible influ-
ences from China through trade links cannot be ruled out. In the works of 
Thabit ibn Qurra (c. 850), al-Ghazzali (c. 1075), and al-Buni (c. 1225), and 
also of the Indian mathematician Narayana Pandit (c. 1350), one finds 
more or less the same ingredients of the occult, numerology, and com-
binatorial analysis as in the Chinese sources. One of the later exponents 
of the numerical properties of magic squares was a Fulani from northern 
Nigeria, Ibn Muhammad. In an Arabic manuscript written in 1732, he 
discusses procedures for constructing magic squares up to order 11. Al-
Buni’s book Kitab al-Khawass (The Book of Magic Properties) provided 
the inspiration for the first systematic treatment of magic squares in the 
West. This was by a Byzantine Greek, Manuel Moschopoulos (c. 1300), 
who described methods of arranging the numbers 1 to n2 in a square of 
dimension n such that the sum of the elements in each row, column, or 
diagonal equals 2

1  n(n2 + 1). Like Yang Hui, who was his contemporary, 
Moschopoulos was interested in the mathematical rather than the magi-
cal properties of the square. His work was responsible for introducing and 
then popularizing magic squares in Europe—an interest that remained for 
many centuries.14



Ancient Chinese Mathematics  215 

Mathematics from the Jiu Zhang (Suan Shu)

The Jiu Zhang is one of the oldest and certainly the most important of 
the ancient Chinese mathematical texts. We have no reliable knowledge of 
its authorship or of the exact date of its composition, but as far as can be 
judged it is a product of the late Qin or early Han dynasty, which places it 
near the beginning of the first century AD. It presents a detailed summary 
of contemporary Chinese mathematical knowledge, and in subsequent 
generations it attracted a line of distinguished commentators including 
Liu Hui (third century) and Yang Hui (thirteenth century), who elaborated 
and extended its contents and served to stimulate the creation of new top-
ics of study. 

The Jiu Zhang consists of nine sections or chapters, with a total of 246 
problems. Some of these problems are similar to those found in the Su‑
anshu Shu, mentioned earlier, although there are sufficient innovations to 
make it the premier text of its time. Each chapter deals with a topic in 
mathematics relevant to the Chinese society of the time. Information is 
provided through the statement of a specific problem and the answer, fol-
lowed by the rule for solution, which is often terse and occasionally ob-
scure—hence the invaluable role of the later commentators. While there is 
nothing in the way of algebraic notation or proofs as we understand them 
today, an examination of the general context in which the problems were 
solved firmly places the book within an algebraic/arithmetic tradition sim-
ilar to that of the Mesopotamian mathematics we examined in chapter 4.

Field Measurement and Operation with Fractions
The first chapter, titled Fang Tian (Field Measurement or, more literally, 
Square Fields), begins where the Suanshu Shu ends. Its central theme is the 
calculation of areas of fields (tian) of different shapes, and the basic unit of 
measurement is the fang, “square unit.” Correct rules are given for finding 
the areas of rectangles, triangles, trapezoids, and circles (p having an im-
plicit value of 3). Liu Hui15 was at pains to point out in his commentary that 
3 is the ratio, not of the circumference, but of the perimeter of an inscribed 
regular hexagon to the diameter, and that the more sides the inscribed 
regular polygon had, the closer its perimeter would approach the circum-
ference of the circle. However, an approximate value of 3 was sufficient 
for most practical purposes for which such calculations were required. Liu 
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Hui’s remarks were taken up by Li Chunfeng and his group in composing 
their encyclopedia of mathematical classics in AD 686.

The chapter also contains a discussion of methods for adding, subtract-
ing, and multiplying fractions. And here appears a rule for simplifying 
that is identical to that of the “repeated subtraction” algorithm found in 
the work of the Hellenistic mathematician Nicomachus of Gerasa, who 
lived around the first century AD. Consider a reducible fraction of the 
form m/n. The rule for the “reduction of fractions” is given as follows in 
the text:

If the [numerator and denominator, i.e., m and n in our notation] can 
be halved, then halve them. Otherwise set down the denominator below 
the numerator, and subtract the smaller number from the greater num-
ber. Repeat this process to obtain the greatest common divisor (teng). 
Simplify the original fraction by dividing both numbers by teng.

In his commentary, Liu explains and illustrates in some detail.16 Consider 
the following example.

Example 6.1  Simplify the fraction 49/91.

Solution

Following the text, lay out the solution as follows:

49	 49	 7	 7	 7	 7	 7	 7

91	 42	 42	 35	 28	 21	 14	 7

So the common divisor (or teng) is 7, and the simplified fraction is 7/13.

The Jiu Zhang contains rules for adding and subtracting fractions iden-
tical to the ones we would use today if we were operating without a lowest 
common multiple—multiply the numerator of each fraction by the de-
nominator of the other, and add or subtract the product before dividing 
the result by the product of the denominators; in modern notation,

.b
a

d
c

bd
ad cb

!
!

=

If necessary, the resulting fraction can be simplified by using the algo-
rithm explained above. Multiplication would proceed in the same way as 
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today, but without cancellations. The algorithm may again be used to sim-
plify the fraction that results. Division is not different from the way that we 
proceed today. It is worth noting that this algorithm has a close affinity to 
the Euclidean algorithm.

Example 6.2  Given 3 3
1  persons share 6 3

1

4

3+  coins. Tell how much 
does each person get? Answer: Each gets 2 8

1  coins.

Liu’s Explanation 
Multiply the numerator and de-
nominator of the dividend [i.e., 
the number of coins] by the de-
nominator of the divisor [i.e., the 
number of persons], and multiply 
those of the divisor by the de-
nominator of the dividend. If both 
the dividend and the divisors are 
[mixed] fractions, we first convert 
them to improper fractions, and 
then multiply both the dividend 
and the divisor by the denomina-
tor of the other to get a uniform 
denominator so that the numera-
tors can be added. Divide the divi-
sor by the dividend and simplify 
and convert the answer to a mixed 
fraction.

In Modern Notation 
Given that all fractions have been 
expressed as improper fractions 
(i.e., the number of coins is 85/12 
and the number of persons is 10/3), 
the following steps are suggested:

Step 1. 

;

.

3
10

12
12

36
120

12
85

3
3

36
255

Divisor

dividend

#

#

= =

= =

	

Step 2.

.
36

120
36

255
120
255

Dividend
Divisor

'= =
	

Step 3. Simplifying the fraction by the 
algorithm as explained in example 6.1, 

.
120
255

8
17 2

8
1

= =

Proportions and Rule of False Position
The second chapter, titled Su mi (Different Grains), deals with questions 
of simple percentages and proportions relating to these commodities.17 
The third chapter, “Distributions by Proportions” (Shuai fen), is concerned 
with the distribution of property and money according to prescribed rules, 
which lead, in some cases, to arithmetic and geometric progressions. Solu-
tions often use the “rule of three” for determining proportions.18 This rule, 
according to our present knowledge, was first applied in China. Here is an 
example from the text.



218  Chapter 6

Example 6.3  Two and one half piculs [of paddy] are purchased for 3/7 
of a tael of silver. How many [piculs of paddy] can be bought for 9 taels? 
[A picul is a measure of weight carried by a man on his back, approxi-
mately 65 kg.]

Solution

The suggested solution, expressed in modern terms, is to let x be num-
ber of piculs of paddy bought for 9 taels of silver; applying the “rule of 
three” then gives

, 52 .x x2
9 or piculs

7

3
2

1

2

1= =

Our next example illustrates how the Chinese tackled simple problems 
involving series by using the rule of false position (or assumption), which 
we came across in the section on Egyptian algebra in chapter 3.

Example 6.4  A weaver, improving her skills daily, continues to double 
her previous day’s output. In five days she produces five chi of cloth 
[1 chi = 10 cun corresponds to a Chinese “foot” and is about 23 cm]. 
How much does she weave in each successive day?

Answer: On the first day she weaves 50/31; on the second day 100/31; 
on the third day 200/31; on fourth day 400/31; and fifth day 800/31.
[This totals 1,550/31 = 50 cun or 5 chi.]

Method

Lay down the rates for distribution: 1, 2, 4, 8, and 16. Take their sum 
as divisor. Multiply 5 chi by each rate as dividend. Divide, giving the 
number of chi.

[Implied in this method is the argument of false position, which 
would proceed as follows: If the total output is 1, then the weaver would 
have produced only 1/31 of it on the first day. But since the total output 
is 5, the output on the first day would be 5/31. The outputs of successive 
days until the fifth would therefore be 10/31, 20/31, 40/31, and 80/31, 
which when added to 5/31 give 155/31, or 5 chi.]
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Extraction of Square and Cube Roots
The fourth chapter, Shao guang, contains twenty-four problems on land 
mensuration (shao means “short,” and guang means “width”). An impor-
tant objective was to parcel out squares of land, given the area and one of 
the sides. This chapter is notable for the first occurrence of an important 
topic in the development of Chinese mathematics—how to find square and 
cube roots. Although the original text is very vague, later commentators 
on the Jiu Zhang, notably Liu Hui and Yang Hui, have no doubts about 
the geometric basis of the method as used for both square and cube roots. 
To illustrate the calculation of square roots, here is a problem from the 
chapter:

Example 6.5  There is a [square] field of area 71,824 [square] bu [or 
paces]. What is the side of the square? Answer: 268 bu.

Solution

In the text only the answer is given. Fortunately, a detailed description 
of how the problem was solved is given in a fifteenth-century encyclo-
pedia, Yong Luo Da Dian, reproduced from Yang Hui’s commentary on 
the Jiu Zhang. (The Encyclopedia of Yong Le’s Reign, as its title trans-
lates, originally consisted of 11,095 volumes, of which only about 370 
survive. It covered almost every field of human knowledge and was 
compiled by over three thousand scholars under the supervision of Xie 
Jin.) Here we give both the algorithmic and the geometric approach so 
that the correspondence between the two can be easily established.

Figure 6.16 illustrates the steps of the algorithm for finding the 
square root of 71,824. On the left-hand side of each diagram is the al-
gebraic rationale for the numerical calculations. In the diagrams N is a 
number whose square root is a three-digit integer, and a, b, and g are 
the digits standing in the “hundreds,” “tens,” and “units” places, respec-
tively. Thus, if the square root of N is the three-digit number abc, then 
a = 100a, b = 10/b, and g = c. Therefore

(100 10 ) ( )
( ) [ ( ) ] .

N a b c
2 2

2 2

2

α β γ

α α β β α β γ γ

= + + = + +

= + + + + + 	 (6.1)

Continued . . . 
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Continued . . . 

It is a simple matter to extend this formula to numbers with more 
than three digits by expanding (a + b + g + d + . . . )2.

The Chinese method uses the above relationship but reverses the 
procedure and hence the ensuing calculations. The procedure is begun 
by finding an appropriate value for a by “inspection.” It is, for example, 
easily deduced that a = 200 (i.e., a = 100a, where a = 2) if we are 
seeking the square root of N = 71,824. The procedure continues with a 
calculation of a2, and this quantity is subtracted from N. We next esti-
mate b (= 10b), the second place of the square root, and form (2a + b)
b. We can now work out

 N - a2 - (2a + b)b = N - (a + b)2,	 (6.2)

and the procedure continues along similar lines until the third com-
ponent on the right-hand side of equation (6.1) is calculated. If N is a 
perfect square, the final subtraction of this component from equation 
(6.2) would leave a remainder of 0.19

How did the Chinese apply this method in calculating the square 
root of 71,824? They began by laying out counting rods in four rows, as 
shown in figure 6.16a. The top row (shang) shows the result obtained 
at each stage of the rod operations. The second row (shi) contains the 
number on which further operations are carried out. The third row, 
known as the “square element” (or fang fa), shows the adjustments 
made to the element in the previous row in the process of extracting the 
square root. The final row has two different interpretations, depending 
on the context. In this context it is called a “carrying rod” row and is 
used to fix the positions of the digits as calculation proceeds.

This method of extracting square roots was eventually extended to 
the solution of quadratic equations. Indeed, a clear connection was es-
tablished between the extraction of roots of any degree and the solution 
of equations of the same degree—at the time a unique feature of Chi-
nese mathematics. It was eventually adopted with interesting variations 
by both the Koreans and the Japanese. The interested reader may wish 
to consult Smith and Mikami (1914) for further details.

Continued . . . 
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Continued . . . 

The procedure used by the Chinese may be summarized in the fol-
lowing steps.

Step 1. � Lay out the counting rods (shown as modern decimal num-
bers for clarity) as shown in figure 6.16a. This is the initial 
configuration before calculations begin. Empty cells repre-
sent zero.

Step 2. � Find the value of the “hundreds” component of the square 
root (i.e., the value a = l00a). In this example a = 200 is 
entered in the first, “result” row. Move the “carrying rod” 
in the fourth row to the “ten thousands” position. Multiply 
the value of the “carrying rod” by a = 2, and place the re-
sult, 2, in the “square element” row (fang fa). Multiply the 
“square element” row by a = 2 and subtract the result from 
the “given number”: 71,824 - 2(20,000) = 31,824. The new 
entries are shown in figure 6.16b.

Step 3. � Double the value a to get 2a (400) and enter it as the new 
“square element” in the third row of figure 6.16c after moving 
the entry one step backward. Make the necessary adjustment 
to the “carrying rod” by moving its entry two spaces forward. 
The “tens” value is then obtained by estimating the value of 
b so that, in this case, 4,000b + 100b2 is less than or equal to 
31,824. The resulting entries are shown in figure 6.16c.

Step 4. � The product of b = 6 and the “carrying rod,” when added to 
the “square element” in the third row of figure 6.15c, gives 
2a + b. Then b is multiplied by the new “square element” 
(2a + b) and subtracted from the given number (N - a2). 
The new entries are shown in figure 6.16d.

By continuing this line of reasoning, passing through the stages 
shown in figures 6.16e and 6.16f, the digit in the “units” position (g = c) 
is found to be 8, and thus the square root of 71,824 is obtained as 268, as 
shown in the top row of figure 6.16g.

Continued . . .
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Continued . . . 

Continued . . .
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Continued . . . 

A correspondence is easily established between this algorithmic ap-
proach and the geometric approach shown in figure 6.17. We begin 
by constructing a square with side a = 200 bu, and therefore of area 
A = 40,000 square pu. Two additional rectangular sections, each of di-
mensions 200 by 60 (B = ab, C = ab), have a combined area of 24,000. 
To complete a square figure, we add a smaller square, of side 60 and

Continued . . .

N – (a + b)2

5 2

4 2

2 6a + b

2(a + b)

2 4

1 1

Result
(shang)

Given number
(shi)

Square element
(fang fa)

Carrying rod
(jie suan)

N – (a + b)2

5 2

4 2

2 6 8a + b + c

2(a + b)

2 4

1 1

Result
(shang)

Given number
(shi)

Square element
(fang fa)

Carrying rod
(jie suan)

Result
(shang)

Given number
(shi)

Square element
(fang fa)

Carrying rod
(jie suan)

N – (a + b)2 – c[2(a + b) + c]
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Figure 6.16: The Chinese method of finding square roots: an algorithmic approach
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The method of extracting cube roots is based on the following expansion:

 (a + b + g)3 = a3 + (3a2 + 3ab + b2)b + {[(3a2 + 3ab + b2) 

		  + (3ab + 2b2)] + [3(a + b)g + g 2)]}g

	 = (a + b)3 + [3(a + b)2 + 3(a + b)g + g 2)]g.	 (6.3)

The following example from the Jiu Zhang illustrates the method.

Continued . . . 

area 3,600 (D = b2). The area of the larger square, A + B + C + D, is 
40,000 + 24,000 + 3,600= 67,600. This falls short of 71,824, the num-
ber whose square root we are seeking, by 4,224. It is seen that this is 
equal to the area of two rectangular (black) strips of dimensions 260 by 
8 (E = F = (a + b)g), and a small square of side 8 (G = g2): 2(260 × 
8) + 82,4224. Thus the geometric representation of the procedure for 
extracting the square root of 71,824 is equivalent to finding the length 
of the side of a square of area 71,824 square bu. Figure 6.17 indicates 
that the side has length a + b + g = 200 + 60 + 8 = 268 bu.

Figure 6.17: The Chinese method of finding square roots: a geo-
metric interpretation
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Example 6.6  Find the cube root of 1,860,867 [or, solve the cubic equa-
tion x3 = 1,860,867].

Solution

The solution algorithm is begun by laying out the counting rods in five 
rows, as shown in figure 6.18a. The arrangement is similar to the one 
used for extracting square roots, except that the third and fourth rows, 
now known as the “upper” and “lower” elements, respectively, are for 
numbers obtained during the operations. For simplicity, we ignore op-
erations with the “carrying rods.”

It is easily deduced from the problem that the cube root of N is a 
three-digit number, abc, where the “hundreds” value is a = 100a, the 
“tens” value is b = 10b, and the “units” value is g = c. Thus the cube 
root of N is a + b + g. When we start the calculation, the first thing 
to note is that a = 1, or that a = 100. Then we reverse the calculation 
implied in the identity (6.3) and arrange the rods as in figure 6.18b. 
The procedure continues with the calculation of b = 20, giving the con-
figurations shown in figures 6.18c and 6.18d. Then we identify g = 3 
and obtain the final rod arrangement shown in figure 6.18e. Here the 
“given number” is zero, so the calculation is complete: the cube root of 
1,860,867 is 123.

Continued . . .
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Figure 6.18: The Chinese method of finding cube roots: an algorithmic approach
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Continued . . . 

Continued . . .
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Continued . . . 

The difficulties of presenting all the stages of the solution here should not 
lead us to suppose that the Chinese method was particularly laborious or 
time-consuming. Indeed, contemporary records suggest that solving prob-
lems of this nature was a matter of a few minutes and made use of me-
chanical routines (and also perhaps an auxiliary set of counting rods where 
necessary) that were second nature to the reckoners.

As with the procedure for square roots, it is possible to provide a geo-
metric interpretation of this method of extracting cube roots. The result-
ing geometric figure (figure 6.19) is three-dimensional, and its analysis, 
although more complex than that for the plane region shown in figure 6.17, 
is along similar lines. Note that figure 6.19, from Dauben (2007, p. 248), 
uses a different notation so that our a = x1 = 1 represents the “hundreds” 
digits, b = y1 = 2 represents the “tens” digits, and c = z1 represents the 
“units” digits.

Result
(shang)

Given number
(shi)

Upper element
(shang fa)

Lower element
(jia fa)

Carrying rod
(jie suan)

4 4 3 4

3 6

N – (a + b)3 –

3(a + b)2 + [3(a + b) + c]c

[3(a + b)2 + 3(a + b)c + c2]c

3(a + b)

a + b + c 1 2 3

11

Figure 6.18: The Chinese method of finding cube roots: an algorithmic approach

(e)

shi 1650867 = 100 = 100 [x1]

20 = 10 [y1]
3 = [z1]

Figure 6.19: The Chinese method of finding cube roots: a geomet-
ric interpretation
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The last two problems in chapter 4 of the Jiu Zhang involve the calcula-
tion of the diameter (d) of a sphere with a known volume (V). The solution 
suggested is one of “extracting the spherical root” to calculate the diam-
eter. Expressed in modern notation, this involves applying the formula  

( / ) .d V16 93=
Thus, for a sphere of volume 4,500 (cubic) chi, the diameter is deter-

mined as 20 chi. This is a famous problem that has attracted the attention 
of both commentators on the Jiu Zhang as well as some of the historians of 
mathematics. For example, Yushkevich (1964, p. 61) has argued on the ba-
sis of comparing the above formula with the exact formula for the volume 
of a sphere (V = pd3/6) that the unknown author(s) of the Jiu Zhang used 
an implicit value of p = 3⅜ in arriving at their value of d. This would seem 
unlikely since the value of p is taken to be 3 in a number of other instances 
in the Jiu Zhang. Liu Hui, in his commentary, presents an ingenious argu-
ment as to how the elegant but wrong formula could have been derived, 
but admits that the correct solution to the problem is beyond him. It was 
left to Zu Chongzhi and his son Zu Gengzhi (whose evaluation of p will be 
discussed in the next chapter) to arrive at the correct formula for finding 
the volume of the sphere. Their method bears a strong resemblance to that 
of the Islamic mathematician Abu Sahl al-Kuhi and the Italian mathemati-
cian Cavalieri (1598–1647) a thousand years later.20 The Zus calculated the 
volume of the sphere of diameter d for a “precise rate” for p (i.e., p = 22/7), 
using the formula (11/21) .V d3=

Engineering Mathematics 
The fifth chapter of the Jiu Zhang, titled Shang Gong (or, literally, Con-
struction Consultations), contains twenty-eight problems involving com-
puting the volumes of a variety of three-dimensional shapes that would 
be familiar to the builders of castles, houses, and canals. They include the 
correct formulas for several solids, which were referred to by the names of 
common objects (see figure 6.20). The formula for the truncated triangular 
prism was later to appear in Adrien Marie Legendre’s Éléments de géomét‑
rie (1794), and in the West he is usually credited with its discovery.

Particularly noteworthy is the rule for the volume of a tetrahedron (or 
bienuan) whose edges, of lengths w and g, share a common perpendicu-
lar, a third edge of length h. This problem is seen in modern mathematics 
as forming part of the theory relating to volumes of polyhedrons. The Jiu 
Zhang’s rule, in modern notation, is
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.V wgh6
1=

In his commentary on the Jiu Zhang, Liu Hui explains why the volume 
so measured is half that of a rectangular pyramid (a yangma) with base wg 
and height h. A cuboid of sides w, g, and h can, he says, be divided into 
three congruent yangma so that the volume of each of them is one-third 
that of the cube ( wgh3

1 ). He proceeds to show that a yangma and a bienuan 
can be slotted together to produce a right triangular prism (a qiandu) 
whose volume is wgh1

2 . So the volume V of the bienuan is 

.V wgh wgh wgh1 1 1
2 3 6= =−

Figure 6.20: Formulas for the volume V of various solids from the Jiu Zhang



230  Chapter 6

Liu shows that this formula holds not only for a prism cut from a cube 
but for any right triangular prism. Liu’s principle may be expressed in 
modern terms as follows:

If any rectangular parallelepiped is cut diagonally into two prisms, and 
the prisms are further cut into pyramids and tetrahedrons, the ratio 
between the volumes of the pyramid and tetrahedron so produced is 
always 2:1.

The method of “proof ” used by Liu reminds one of the principles that 
had wide applications in traditional Chinese geometry, including the fa-
mous gou gu (or Pythagorean) theorem, discussed in the next chapter. The 
essence of this procedure, sometimes referred to as the “out-in principle” 
in Chinese texts,21 follows from two commonsense assumptions:

1. � Both the area of a plane figure and the volume of a solid remain the 
same under rigid translation to another place.

2. � If a plane figure or solid is cut into several sections, the sum of the 
areas or volumes of the sections is equal to the area or volume of the 
original figure.

The reasoning behind this approach is not very different from that be-
hind Euclidean geometry, although it was used in Greek mathematics as a 
simple means of demonstrating results that were not immediately obvious. 
The method was often just as effective, as we shall see when we come to 
look at how it was applied in obtaining a proof of the Pythagorean theorem. 
However, it is wrong to dismiss it as a trial-and-error method, wherein the 
rule is merely a result of experimenting with concrete structures: the rules 
are stated far too precisely for that. (We have discussed this point in rela-
tion to Egyptian geometry in chapter 3.)

Li, in his commentary, uses four types of components to calculate the 
volume of solids: namely the cube (lifang), the qiandu (a right triangular 
prism), the yangma (a rectangular pyramid), and the bienuan (tetrahe-
dron). Consider the illustration from Martzloff (1997a, p. 282) given here 
as figure 6.21. It shows how a cube (lifang) cut along its diagonals produces 
two solid qiandu, which when cut along its diagonal produces a yangma 
and a bienuan. A yangma can be cut in half to yield two bienuan. Reassem-
bling these sections (or evaluating the sum of the volumes of the sections) 
gives the volume of the original cube. Martzloff (1997a, pp. 283–293) has 
an extensive discussion of various heuristic (“rule of the thumb”) methods 
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which builds on the “out-in” principle. For example, as shown in figure 
6.22, Li attempts to calculate the volume of the fang ting (square pavil-
ion) by decomposing it into nine basic components: a cube, four qiandu, 
and four yangma. But since these components do not correspond to those 
which constitute the square pavilion (pyramid),22 he proceeds to evaluate 
further and eventually arrives at the formula given for the volume (V) of 
the truncated square pyramid (or pavilion) in figure 6.22:

,V s s s s hu ub b3
1 2 2= + +_ i

where su and sb are the sides of the upper and lower squares respectively and 
h is the height.

What the calculation of the volume of the square pavilion encapsulates 
is the merging of algebraic and geometric operations. And where this was 
not sufficient, Li would introduce the notion of passage to the limit as the 
case of calculating the volume of a yangma. Further applications and exten-
sions of the “out-in” principle will be found in later sections of this book. 

Fair Taxes
The sixth chapter, Zhun shu (literally, Fair Taxes), contains a medley of 
twenty-eight problems—some relating to the distribution of grain, some 
to the number of conscripts to be supplied proportionately from different 

qiandu yangma bienuan

qiandu yangma bienuan

=

=

×2 ×2

+

=

=  1 +  4 +  4

Figure 6.22: Volume of a square pavilion (Martzloff 1997a, p. 290)

Figure 6.21: Volume of a cube (Martzloff 1997a, p. 282)
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sections of the population, and others to the time required to transport 
taxes (paid in grain) from outlying towns to the capital. Among the third 
group are “pursuit” problems, which were introduced into Europe by the 
Arabs and enjoyed considerable popularity between the twelfth and fif-
teenth centuries. Many of them have a hound chasing a hare, as in the fol-
lowing example from the chapter.

Example 6.7  A hare runs 100 bu [paces] ahead of a dog. The dog pur-
sues the hare for 250 bu, but the hare is still 30 bu ahead. In how many 
bu will the dog catch up with the hare? Answer: 107 7

1  bu.

Explanation 

In his commentary, Liu gives the following explanation. From the 100 bu 
of going ahead, subtract 30 bu for the dog lagging behind. The remain-
der, 70 bu, is the rate at which the hare goes ahead. The distance that the 
dog pursues the hare is 250 bu. So for every 25 bu that the dog pursues 
the hare, it gains 7 bu. Applying the “rule of three” to 30 bu of lagging 
behind as the given number, 25 is the sought rate and 7 as the given rate, 
we get the answer. In other words: Answer  (25 30)/7 107 1

7#= =  bu. 

The last few problems in this chapter would be familiar to past genera-
tions of schoolchildren studying arithmetic. 

Example 6.8  Water flows into a cistern at different rates through five 
canals. Open the first canal and the cistern would be filled in 1/3 of a 
day; open the second, the cistern fills in a day; open the third, the cis-
tern fills in 2 2

1  days; open the fourth, the cistern fills in 3 days; and open 
the fifth, in 5 days. If all of them are opened at the same time, how long 
will it take to fill the cistern? Answer: 15/74 days.

Explanation 

Two methods are outlined in the Jiu Zhang and elaborated on by Liu. 
The first involves finding the sum of the number of times that the cis-
tern is filled by each of the five canals in one day and taking the recipro-
cal of that sum. The second method involves arranging the information 
given in the example in columns, as shown in table 6.3, so the first row

Continued . . .
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Continued . . .

Table 6.3:  Information Used for Solving Example 6.8

			   Times cistern is	 “Homogenization” 
	 No. of	 Times cistern	 filled in one day	 factor 
Canals (A)	 days ( )Bi 	 is filled ( )Ci 	 ( ) / )D C Bi i i= 	 (75 )E Di i#=

1	 1	 3	 3	 225
2	 1	 1	 1	 75
3	 5	 2	 2/5	 30
4	 3	 1	 1/3	 25
5	 5	 1	 1/5	 15
	 Column product		  14D 4

151

5

i
i

= +
=

/
	

E 370i
i 1

5

=
=

/	
B 75i

i 1

5

=
=

% 	

indicates the fact that with the first canal, it takes 1 day to fill the cistern 
three times; the second row represents the fact that with the second 
canal, it takes 1 day to fill the cistern once, and so on. The second and 
third columns represent the number of days and the times taken by 
each canal to fill the cistern respectively. The solution is arrived at by 
multiplying the corresponding elements of the columns and then “nor-
malizing” to a single day and one full cistern. 

Method 1: Answer =  /
B

1
4 14 15

1
74
15

i
i 1

5 =
+

=

=

/
 part of a day. 

Method 2: Answer = 
E

B

370
75

74
15

i
i

i
i

1

5
1

5

= =

=

=

%

/
 part of a day.

Excess and Deficit
The seventh chapter is titled Ying Bu Zu, which may be translated as Too 
Much and Not Enough. The origin of the phrase may lie in the Chinese 
description of the phases of the moon, from full (too much) to new (too 
little). There are twenty problems in this chapter in which numbers are 
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placed on a counting board in the form of an array resembling a matrix. 
Operations are then performed to eliminate unknown variables such that 
only one will be left on the board at the end, for which a solution is ob-
tained. Later commentators, notably Liu Hui and Yang Hui, have shown 
how many of these problems can be tackled by alternative methods that 
are less cumbersome than the ones proposed in the text. An illustration is 
problem 2, which may be restated as follows:

Example 6.9  A group of people buy hens together. If each person gave 
9 wen, there will be 11 wen of money left after the purchase. If, however, 
each person contributed only 6 wen, there would be a shortfall of 16 
wen. How many persons are there in the group, and what is the total 
cost of hens?

Suggested Solution

[What follows is the procedure as given in the text, with some modi-
fications for clarity.] Arrange the two types of contribution made by 
members of the group toward the purchase of the hens along the first 
row. The excess and deficit that result are arranged as a row below the 
first row, which contains the members’ contributions. Cross-multiply 
diagonally. Add the products together and label the sum as shi. Add the 
excess and deficit and label the sum as fa. If a fraction ocurs in either shi 
or fa, make them have the same denominator. Divide shi by the differ-
ence between the two contributions to get the total cost of hens. Divide 
fa by the difference between the contributions to get the number of per-
sons in the group. Expressed in algebraic terms, the application of the 
rule is simple: Let the two contributions be a and al, and let the excess 
and deficit be b and bl, respectively;23 then 

,

,

.

a
b

a
b

ab
b

a b
b

ab a b
b b

9
11

6
16

144
11

66
16

210
27

=

=

+
+

=

l

l

l l

l

l l

l

d d

d d

d d

n n

n n

n n

Therefore, the total cost of the hens is
Continued . . .
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Continued . . .

,a a a a
ab a b

3
210 70shi

−
=

−
+

= =
l l

l l

and the number of persons in the group is

a a a a
b b

3
27 9fa

−
=

−
+

= =
l l

l

The above problem may be restated in terms of a system of equations in 
two unknowns x and y, where x is the number of persons and y is the cost:

, .ax cy b a x c y b− = − = −l l l 	 (6.4)

If 9, 6, 11, 16, 1a a b b c= = = = =l l , and 1c =l , equations (6.4) 
become

.16,x y x y9 11 6− = − = − 	 (6.5)

Equations (6.4) and (6.5) may be exprerssed in matrix form as

, .
a
a

c
c

x
y

b
b

x
y

9
6

1
1

11
16

−
−

=
−

−
−

=
−l l l

d d d d d dn n n n n n

Applying the rule attributed to the Swiss mathematician Gabriel Cramer 
(1750) for solving simultaneous equations by determinants gives

, ,x ac a c
bc b c y ac a c

ab a b
=

−
+

=
−
+

l l
l l

l l
l l

so that

, .x y9 6
11 16 9 9 6

144 66 70=
−
+

= =
−
+

=

For c = c´ = 1, the result is identical to the solution given in the Jiu Zhang.
So, as early as the beginning of the Christian era, a variant of Cramer’s 

rule for solving two equations in two unknowns was known in China, 
though there is nothing in either this treatise or any of the subsequent 
commentaries that hints at an awareness of the rule for three equations in 
three unknowns, or of the general rule for p equations in p unknowns.24 
However, we can detect in this method an early hint of the concept of a 
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determinant. Apparently this escaped the notice of Chinese mathemati-
cians, but it was taken up by the Japanese mathematician Seki Takakazu 
(alias Seki Kowa) in 1683—ten years before Leibniz, to whom historians of 
mathematics usually attribute the discovery of determinants.

There was another variant of the method for tackling problems involv-
ing “excess and deficit.” The “rule of double false position” was particularly 
popular during the period when lack of a suitable symbolic notation made 
the solution of even simple linear equations a difficult undertaking. This 
rule was brought to Europe by the Arabs and is found in the works of 
the ninth-century Islamic mathematician al-Khwarizmi under the name 
hisab al-khataayn. Whether this method was of Chinese origin or not is 
difficult to say with the existing evidence. However, what we know is that 
the method that was first introduced in the Jiu Zhang was commented on 
and refined by commentators from Liu Hui (c. third century) to Yang Hui 
(thirteenth century). 

The method is best explained in present-day notation.25 We want to find 
an unknown quantity x in a linear equation of the form

.ax b 0+ =

Let g1 and g2 be two preliminary (incorrect) guesses for the value of x, 
and let f1 and f2 be the errors arising from these guesses; then

, .ag b f ag b f1 1 2 2+ = + = 	  (6.6)

Hence

.a g g f f1 2 1 2− = −_ i 	  (6.7)

The first of equations (6.6) is multiplied by g2 and the second by g1; sub-
tracting the two resulting equations one from the other gives

.b g g f g f g2 1 1 2 2 1− = −_ i 	 (6.8)

Equation (6.8) is divided by equation (6.7) to give	  

.x f
f g f g

f1 2

1 2 2 1=
−
− 	 (6.9)

 
This rule is illustrated by problem 7 from the seventh chapter of the Jiu 
Zhang. The “excess and deficit” is not explicitly stated but has to be inferred 
from the question.
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Example 6.10  A tub of full capacity 10 dou contains a certain quantity 
of coarse [i.e., husked] rice. Grains [i.e., unhusked rice] are added to fill 
up the tub. When the grains are husked, it is found that the tub contains 
7 dou of coarse rice altogether. Find the original amount of rice in the 
tub. [Assume that 1 dou of grains yields 6 sheng of coarse rice, where 1 
dou is equal to 10 sheng.]

Suggested Solution 

If the original amount of rice in the tub is 2 dou, a shortage of 2 sheng 
occurs; if the original amount of rice is 3 dou, there is an excess of 2 
sheng. Cross-multiply 2 dou by the surplus 2 sheng, and then 3 dou by 
the deficiency of 2 sheng, and add the two products to give 10 dou. Di-
vide this sum [i.e., 10] by the sum of the surplus and deficiency [i.e., 4] 
to obtain the answer: 2 dou and 5 sheng.

This method gives the same answer as the rule of double false position: 
equation (6.9) is used, with 2g1 = , 3g2 = , 2f1 = − , and 2f2 = , to give

2x f f
f g f g

4
10

2
1 dou.

1 2

1 2 2 1=
−
−

=
−
−

=

Method of Rectangular Arrays (Solution of Simultaneous 
Equations)
Chapter 8 in the Jiu Zhang, called Fang cheng (Method of Rectangular Ar-
rays) contains one of the more innovative parts of Chinese mathematics. 
It deals with the solution of simultaneous equations with two to five un-
knowns by placing them in a table and then operating on the columns in 
a way that is identical to the row transformations of the modern matrix 
method of solution. A notable feature of this method is that it is just as easy 
to use with negative as with positive numbers. The best way to explain it 
is by examples, and we begin with problem 14 from chapter 7. (There are 
strong affinities between the solutions we discussed from chapter 7 of the 
text and those in chapter 8, and for that reason a problem similar to one 
discussed from chapter 7 was chosen to illustrate this chapter’s method of 
“rectangular array.”) 
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Example 6.11  5 large containers and 1 small container have a total ca-
pacity of 3 hu; 1 large container and 5 small containers have a capacity 
of 2 hu. Find the capacities of 1 large container and 1 small container. 
[1 hu = 10 dou.]

Solution

The method of tables starts by setting up the information contained in 
the problem in the form of a matrix:

.
1
5
2

5
1
3

Large containers
Small containers
Total capacity

f p

Step 1. � Multiply the first column by 5 and then subtract the second 
column from the result. Put this down as the first column of 
the next matrix:

.
0

24
7

5
1
3

Large containers
Small containers
Total capacity

f p

Step 2. � Multiply the second column by 24 and then subtract the first 
column from the result. Put this down as the second column 
of the next matrix:

.0
0

24
7

120

65

Large containers
Small containers
Total capacity

f p

Thus a small container has a capacity of 7/24 hu, and a large container 
has a capacity of 65/120 or 13/24 hu.

There are in all eighteen problems requiring the method of rectangular ar-
rays to be used to solve systems of simultaneous linear equations with up 
to five unknowns. The text explains how counting rods can be set up for 
column operations that would finally yield the solutions. Negative num-
bers that appear in the course of such operations do not pose any problem, 
since they could be represented (as we saw earlier in this chapter) by black 
rods, red rods, being used for positive numbers. Here is an example where 
there are three unknowns and negative quantities appear in the course of 
solution:
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Example 6.12  The yield of 2 sheaves of superior grain, 3 sheaves of 
medium grain, and 4 sheaves of inferior grain is each less than 1 dou. 
But if 1 sheaf of medium grain is added to the superior grain or if 1 
sheaf of inferior grain is added to the medium, or if 1 sheaf of superior 
grain is added to the inferior, then in each case the yield is exactly 1 dou. 
What is the yield of one sheaf of each grade of grain?

Solution 

In modern notation, the solution begins by letting x, y, and z be the 
yields from 1 sheaf of superior, medium, and inferior grain respectively. 
The question may then be posed as follows: given 2 1x # , 3 1y # , and 
4 1z # , solve

2 1, 3 1, 4 1.x y y z z x+ = + = + =

The information contained in the problem is first arranged on a count-
ing board so that it resembles a matrix:

.

1
0
4
1

0
3
1
1

2
1
0
1

J

L

K
K
K
K

N

P

O
O
O
O

The column on the extreme right contains the coefficients and constant 
of the first equation 2 1 0 1x y z+ + = , and similarly for the other col-
umns. The extreme left column is multiplied by 2, and the extreme right 
subtracted from the result; the extreme left column is replaced by the 
new column. We then have

.

0
1

0
3
1
1

2
1
0
1

8
1

-
J

L

K
K
K
K

N

P

O
O
O
O

The extreme left column is multiplied by 3, and the middle column is 
added to the result:

.25

0
3
1
1

2
1
0
1

0
0

4

J

L

K
K
K
K

N

P

O
O
O
O

	

Continued . . .
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Continued . . . 

Back substitution is now needed to obtain the full solution of the prob-
lem. Thus, given 1 sheaf of inferior grain yields 4/25 dou, then 3 sheaves 
of medium grain yield 1 - 4/25 = 21/25 dou, or 1 sheaf of medium 
grain yields 7/25 dou. Also, given 1 sheaf of medium grain yields 7/25 
dou, then 2 sheaves of superior grain yield 1 - 7/25 = 18/25, or 1 sheaf 
of superior grain yields 9/25 dou. 

Hence:

25 sheaves of inferior grain yield 4 dou, so 1 sheaf of inferior grain 
yields 4/25 dou.

3 sheaves of medium grain and 1 sheaf of inferior grain yield 1 dou, 
so 1 sheaf of medium grain yields 7/25 dou.

2 sheaves of superior grain and 1 sheaf of medium grains yield 1 
dou, so 1 sheaf of superior grain yields 9/25 dou.

This method of solving simultaneous linear equations is essentially the 
same as the one we use today, the development of which is attributed in the 
West to the famous German mathematician Karl Friedrich Gauss (1777–
1855). But, over fifteen hundred years before Gauss, Chinese mathemati-
cians were using a variant of one of Gauss’s methods. It is interesting to 
note that a variant of Gauss’s elimination procedure was proposed by Tobias 
Mayer (1723–1762), an earlier German contemporary of Gauss. The three 
procedures, including the Chinese, are algebraically similar but computa-
tionally distinct. The principal defect of the Chinese method is that it uses 
only whole numbers in the cells, and these can become very large in rela-
tively simple problems.26 This innovation, together with the use of a special 
case of Cramer’s rule for tackling certain problems in the previous chapter 
of the Jiu Zhang, raises some interesting questions about the subsequent 
treatment of these subjects in Chinese mathematics. First, despite the early 
promise, there was no work on determinants until the Japanese mathemati-
cian Seki Takakazu, working very much within the Chinese mathematical 
tradition, developed the concept of a determinant in his book Kai Fukudai 
no Ho (1683). There is a brief discussion of Seki Takakazu’s work in the next 
chapter, which contains a survey of Japanese mathematics.

Second, this way of tackling simultaneous equations is not found in any 
other mathematical tradition until the advent of modern mathematics. We 
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are therefore driven to the conclusion that the method may have been a 
logical outcome of rod numeral computational techniques. However, it has 
been argued that the reliance on these very techniques inhibited the de-
velopment of abstract algebra—a prerequisite for more advanced work on 
matrices and determinants.

The ninth and last chapter of the Jiu Zhang is called Gou gu (Base-
Height). In the Chinese mathematical literature the shortest side of a 
right-angled triangle was called the gou, the longer side the gu, and the 
hypotenuse the xian. Twenty-four problems on right-angled triangles27 are 
presented in this chapter. The demands of accurate surveying and astro-
nomical observation must have required an understanding and application 
of the Pythagorean theorem well before the Jiu Zhang was written, and this 
would explain its presence in the earlier text, the Zhou Bi Suan Jing. We 
shall examine this subject in chapter 7.

We have devoted many pages to the Jiu Zhang. The range of topics it 
covers is impressive, and indicates the level of sophistication reached by 
Chinese mathematicians at the beginning of the Christian era. It is one of 
the oldest mathematical texts in the world, with problems more varied and 
richer than in any Egyptian or Mesopotamian text. But although it was to 
have a powerful influence on the course of Chinese mathematics, with a 
number of notable mathematicians writing commentaries on it, by becom-
ing a classic it also acted as an impediment to progress. Its influence on the 
Song mathematicians of the thirteenth century was perhaps even counter-
productive, since they were obliged to refer to it, just as some of today’s aca-
demics routinely cite standard authorities to make their work “respectable.” 
(There is a parallel too with generations of students in the West being taught 
from Euclid’s Elements, a practice abandoned only in the twentieth century.) 
When the Jiu Zhang was written, the status of mathematicians was high. This 
status was gradually eroded as mathematics came to be perceived as a dili-
gent and unquestioning application of ancient wisdom rather than a process 
of building on the solid foundations that the early texts had laid.

Notes

1. However, Cullen (1996, p. 1) argues that the Zhou Bi “can best be understood as a 
product of the Han dynasty,” which would place it about fifteen hundred years later! 

2. It may be remembered from the discussion of the Plimpton Tablet in chapter 4 that 
the Babylonians were aware of the existence of the Pythagorean result much earlier 
than both the Greeks and the Chinese.
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3. A few sections of the text are marked with the common surnames Wang and Yang. 
However, these are most likely names of scribes or reviewers rather than the names 
of authors because their location in the text of Suanshu Shu corresponds to what are 
found in many other rod manuscripts in the Han period. Generally speaking, names of 
authors are mentioned before texts and not inside.

4. For further details, see Dauben (2007, 2008).

5. These translations include English (Shen et al., 1999), Russian (Berezkina 1957), Ger-
man (Vogel 1968) and French (Chemla and Guo 2004).

6. Swetz (2008) contains an interesting discussion of the mathematics and metaphysics 
of the classical 3 × 3 magic square.

7. One example of China briefly looking “outwards” is the naval expedition of Zheng 
He. Nearly ninety years before Christopher Columbus, in 1405, he led the first expedi-
tion (there were six more to follow) of almost four hundred ships with a crew of over 
thirty-seven thousand and a flagship (the Treasure Ship) measuring 450 feet long with 
nine masts. These expeditions would explore regions of the southern seas (as far as 
Java), the coasts of eastern Africa, and the long shorelines of Africa, Asia, and Eurasia. 
These expeditions were not undertaken with any “commercial” or “evangelical” goal in 
mind. Their purpose was to show the outside world the glories of Ming China. Zheng 
He’s treasure ship contained large quantities of gold and silver pieces, quantities of silk, 
and perfume jars and other gifts that were distributed among those whom the explorers 
came across during the journeys. However, this short-lived interest in foreign climes 
disappeared as a result of changes of personnel in the imperial court with the pendulum 
swinging the other way, so that imperial edicts appeared banning any maritime travel 
outside the immediate Chinese coasts at the pain of being put to death. For a fuller ac-
count of this fascinating episode in Chinese history, see Dreyer (2006).

8. Some of the oracle bones also contain early records of celestial events such as lunar 
and solar eclipses; and one bone in particular may record the earliest-known observa-
tion of a supernova, which occurred in the thirteenth century BC. For further details, 
see Keightley (1985).

9. In Sun Zu’s Mathematical Manual (AD 400), the following verse explains this method 
of recording numbers:

Units are vertical, tens are horizontal,
Hundreds stand, thousands lie down,
Thus thousands and tens look the same,
Ten thousands and hundreds look alike.

It is interesting in this context to note that a widespread knowledge of how to use the 
counting rods must have been assumed, since in only two of the ancient texts is there 
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any explanation of computation with counting rods. One of the texts is that of Master 
Sun referred above. 

10. There is a view that counting rods were manipulated on a specially devised surface 
such as a counting board or other similar frames. However, as Martzloff (1997a, p. 209) 
points out, there is no evidence of the existence of such boards.

11. The comment of a scholar relating to this comparison of a blank space in Mesopota-
mian numerals with that of the Chinese system is illuminating. “Chinese or not, a blank 
space cannot be isolated in itself. We cannot list it alone in a dictionary for example. 
Moreover, it necessarily exists absolutely everywhere, for example in front of, after, and 
inside any number between successive digits, between words too, and inside words, as 
well, regardless of the intention of the person who has unavoidably ‘written’ it (and not 
only in the case of writing but also with rod digits as well). In other words, a void space 
is compulsory in a large number of situations where no zero is involved at all and it is 
not liable to be interpreted correctly without an associated counting board or any other 
such exterior help, while this is not the case for non-zero digits.” 

12. For further details of this conjecture see Lam (1987), Lam and Ang (1992), and 
Hodgkin (2005, pp. 86–88).

13. Figurate numbers can be represented by a geometrical array of dots; the first four 
triangular numbers, for example, are 1, 3, 6, and 10. The meanings of perfect and ami-
cable numbers will be made clear in chapter 11, on Islamic mathematics.

14. For further details, see “The Magic Squares of Manuel Moschopoulos” at http://
convergence.mathdl.org.

15. The importance of Liu Hui cannot be overstated. As Shen et al. (1999) states: “The 
Chiu Chang [Jiu Zhang] would have remained a mere recipe book and not a complete 
classical mathematical textbook without Liu’s work” (p. 5).

16. This is the same as Euclid’s “antiphairesis”: starting with two homogeneous quanti-
ties, one subtracts successively the smaller of two quantities from the larger one, so that 
with each subtraction, the excess takes the place of the larger quantity while the smaller 
one stays unchanged. The final result consists of a couple of rational numbers express-
ing the relation between the quantities. This procedure provides a systematic way for 
finding the highest common factor (HCF) of two given positive integers.

17. The translation used in the earlier editions of this book was “Millet and Rice.” How-
ever, rice does not figure in the list of grains given in the conversion table at the begin-
ning of this chapter in the Jiu Zhang. Hence, the translation that is now favored is of 
different types of grain such as shelled or hulled or dried. A table of exchange rates for 
bartering different kinds of millet, beans, wheat, sesame seeds, and malt is offered in 
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Liu’s commentary. This table contains an item known as paddy or rough rice, which has 
its husk and bran. For further details, see Martzloff (1997a, p. 132).

18. The “rule of three” is a method for solving proportions using algebra. The rule states 
that if you know three numbers a, b, and c, and want to find d such that a/b = c/d (or 
a:b = c:d), then d = cb/a.

19. Although all numbers in the relevant problems in the Jiu Zhang turn out to be perfect 
squares, the commentators were aware that they would at times need to extract square 
roots of other numbers. For example, Liu Hui in discussing the extraction of the square 
root of 10 suggests that “the more the digits, the finer the fractions, till the number 
omitted from the area of the red areas is negligible.” The color referred to appears in Liu 
Hui’s attempt at explaining geometrically the iteration procedure implied in this method 
of root extraction. In relation to our example, Liu represents the first approximation of 
the square root as the “yellow” area, the second approximation as the “red” area, and the 
final approximation as the “blue” area. An interesting question that arises is whether Liu 
Hui was aware that the square root of 10 could not be exactly determined (or in modern 
parlance it was an irrational number). It would seem that the jury is still out!

20. Al-Kuhi’s incorrect derivation of the spherical volume is contained in his corre-
spondence with al-Sabi and discussed by Berggren (1983) in his translation of that 
correspondence. For a detailed discussion of the Chinese work on the volume of the 
sphere, see Wagner (1978). 

21. The term “out-in” comes from labeling the portion of a rectangle below the diagonal 
as “out” and that above the diagonal as “in.” Depending on the application of this prin-
ciple, the portions of the areas considered “out” have their equivalence in areas that are 
considered “in.” This is referred to today as the “dissection and reassembly” principle.

22. Note that the central figure in figure 6.22 is not a cube unless the height is equal to 
the length of the upper side.

23. Note that bl is positive even though it is a deficit.

24. Cramer’s rule should really be regarded as an orthogonalization procedure rather 
than as a procedure for solving systems of linear equations. Bill Farebrother worked out 
that attempting to solve a system of 240 equations in 240 unknowns by Cramer’s rule 
using the University of Manchester’s CDC 7600 mainframe computer would take about 
150,000 years, since the computer was able to perform only one million multiplications 
per second! 

25. It is worth noting that the method described is useful in problems where a and b are 
unknown (but determined), as in the problem that follows. Otherwise we would just 
use x = –b/a. This method makes it necessary to find a and b first.
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26. For further discussion of these and other procedures, see Farebrother (1999).

27. There was no specific term for a “triangle” in the Chinese mathematical literature. 
So by inference, since the “base-height” relationship is expressed in connection with a 
hypotenuse, the subject of this chapter is the right-angled triangle.



Chapter Seven

Special Topics in Chinese Mathematics

The last half of the thirteenth century and the early fourteenth marked the 
culmination of over a thousand years of development of Chinese math-
ematics, built on the solid foundation of the Jiu Zhang. In the historical 
introduction to the previous chapter we saw that the Song period pro-
duced outstanding scientific and technological achievements. Four of the 
greatest Chinese mathematicians—Qin Jiushao, Li Ye, Yang Hui, and Zhu 
Shijie—lived during this period, and there were more than thirty mathe-
matical schools scattered across the country. As in the Tang dynasty, when 
a number of ancient texts were collected and then designated as classics 
under the leadership of Li Chunfeng (AD 656), the same compendium of 
classics, Suan Jing Shi Shu (The Ten Mathematical Manuals), became for a 
short period the recommended text to set the standards for teaching at the 
Imperial Academy and for the evaluation of major examinations. How-
ever, mathematics as a subject tended to fall in and out of favor depend-
ing on the whims of the Imperial Court. And in the case of the Southern 
Song dynasty, the subject was finally removed from the curriculum of the 
civil service examinations, not to be reintroduced again. At the same time, 
mathematics was finding more practical applications in a widening num-
ber of disciplines—calendar making, surveying, chronology, architecture, 
and meteorology, as well as areas relating to trade and barter, the payment 
of wages and taxes, and simple mensuration.

The most striking feature of the Chinese mathematics of this period is 
its essentially algebraic character; there was little in contemporary geom-
etry, particularly mensuration, that was not to be found in the Jiu Zhang 
or its early commentaries. Many of the algebraic innovations of the period 
were extensions of previous work. They fall into three main categories:

1. Numerical equations of higher order. Although the procedure for 
solving higher-order equations had its origins in the method of ex-
tracting square and cube roots found in the Jiu Zhang, discussed in the 
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previous chapter, its fullest development is contained in the works of Qin 
Jiushao (c. 1202−1261). The breakthrough came with the use of what 
we know as Pascal’s triangle for the extraction of roots. Not until the 
beginning of the nineteenth century would European mathematicians, 
notably Horner and Ruffini, make any substantial progress in this area.

2. Pascal’s triangle. Although this triangular array of numbers is 
named after the seventeenth-century French mathematician Blaise Pas-
cal, it received detailed treatment in the hands of Yang Hui and Zhu 
Shijie, some 350 years previously. And Yang reported that his discus-
sion of Pascal’s triangle was derived from an earlier work by Jia Xian 
(c. 1050), which has not survived. Jia had differentiated between two 
methods of extracting square and cube roots. The first, known as zeng 
cheng fang fa, the method of “extraction by adding and multiplying,” is 
similar to the method examined in the previous chapter. The second 
was known as li cheng shi shuo, “unlocking the coefficients by means of 
a chart,” which uses binomial coefficients taken from Pascal’s triangle to 
solve numerical equations of higher order.

3. Indeterminate analysis. Interest in this subject arose in both China 
and India in connection with calculations in calendar making and as-
tronomy. The basic problem was one of finding a procedure for solving 
a system of n equations with more than n unknowns. At the simplest 
level, how does one go about solving an equation in two unknowns,

3 8 100,x y+ =

where the solutions for x and y are either real numbers or positive in-
tegers? Such problems were successfully tackled in Europe only in the 
eighteenth century, by Euler and Gauss.

There were other specific developments worthy of note, though they 
will not be examined in any detail in this book. They include

1. � The derivation of a cubic interpolation formula popularized by Guo 
Shoujing (c. 1275), which later came to be known in the West as the 
Newton-Stirling formula

2. � The tien yüan notation for nonlinear equations, first used by Li Ye 
and Zhu Shijie, which made possible the development of algorithms 
for solving different types of equation
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3. � The use of geometric methods to study mathematical series by a 
number of mathematicians of the period (We shall also examine In-
dian work in this area in chapter 9.)

There were also two subjects of a geometric character to which the 
Chinese made significant contributions: they investigated the properties 
of right-angled triangles, and they continued the age-old search for more 
accurate estimates of p. Chinese interest in both these subjects goes back 
to well before AD 1000, in the former case to one of the earliest sources of 
Chinese mathematics, the Zhou Bi.

The “Piling-Up of Rectangles”: The Pythagorean  
Theorem in China

The Pythagorean theorem is generally held to be one of the most impor-
tant results in the early history of mathematics. From it came important 
discoveries in theoretical geometry as well as practical mensuration. We 
saw in chapter 4 how the Mesopotamians’ understanding of geometry, 
based on similar triangles and circles, was enhanced by the discovery of 
the Pythagorean result, and how their algorithmic procedure for extract-
ing square roots of “irregular” (irrational) numbers was also based on this 
result. In China too, a study of the properties of the right-angled triangle 
had a considerable impact on mathematics.

The earliest extant Chinese text on astronomy and mathematics, the 
Zhou Bi, is notable for a diagrammatic demonstration of the Pythagorean 
(or gou gu) theorem. Needham’s translation of the relevant passage is il-
lustrated by figure 7.1a, drawn from the original text. The passage reads:

Let us cut a rectangle (diagonally), and make the width 3 (units) wide, 
and the length 4 (units) long. The diagonal between the (two) corners 
will then be 5 (units) long. Now, after drawing a square on this diagonal, 
circumscribe it by half-rectangles like that which has been left outside, 
so as to form a (square) plate. Thus the (four) outer half-rectangles, of 
width 3, length 4 and diagonal 5, together make two rectangles (of area 
24); then (when this is subtracted from the square plate of area 49) the 
remainder is of area 25. This (process) is called “piling up the rectan-
gles.” (Needham 1959, pp. 22–23)

In terms of figure 7.1b, the larger square ABCD has side 3 4 7+ =  and 
thus area 49. If, from this large square, four triangles (AHE, BEF, CFG, 
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and DGH), making together two rectangles each of area 3 4 12# = , are 
removed, this leaves the smaller square HEFG. And implicitly,

(3 4) 2(3 4) 3 4 5 .2 2 2 2#+ = + =−

The extension of this “proof ” to a general case was achieved in different 
ways by Zhao Zhujing and Liu Hui, two commentators living in the third 
century AD. In modern notation, Zhao’s extension may be stated thus: if 
the shorter (gou) and longer (gu) sides of one of the rectangles are a and b 
respectively, and its diagonal (xian) is c, then the above reasoning would 
produce

( ) 2

.

c b a ab

a b

square IJKL rect DGIH rect CFLG
square AMIH square MBFL

2 2

2 2

= − + = + +

= +

= +

An alternative explanation is based on the identity

( ) ;
( )

a b a ab b
c a b ab a b

2
2

square ABCD 4 DGH.

2 2 2

2 2 2 2

∆

+ = + +

= + − = +

= −

A geometric interpretation of this identity is fairly easily estab-
lished. The result was certainly known to the authors of the Sulbasutras 
(c. 500 BC) of Vedic India, which we shall examine in the next chapter. 
There is also the possibility that it was known to the Babylonians of the 

Figure 7.1: The gou gu (Pythagorean) theorem: (a) the original illustration from the 
Zhou Bi (Needham 1959, p. 22), and (b) the modern translation
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Hammurabi dynasty. Later, geometric proofs of this identity are found 
in Euclid’s Elements (c. 250 BC) and al-Khwarizmi’s Algebra (c. AD 800). 
The Chinese may have deduced the identity from the drawing reproduced 
in figure 7.1a itself, where two squares of areas 4a2 2=  and 3b2 2= , to-
gether with two rectangles of area ab, together make up the large square 
of area ( )a b 2+ .

However, there is a third explanation, found in Liu’s commentary, which 
does not refer to the diagram in the Zhou Bi (i.e., figure 7.1a) but is based 
on the “out-in” technique taken as an axiom by Chinese mathematicians 
and discussed in the previous chapter. We saw that this technique is based 
on two commonsense assumptions:

1. � Both the area of a plane figure and the volume of a solid remain the 
same under rigid translation to another place.

2. � If a plane figure or solid is cut into several sections, the sum of the 
areas or volumes of the sections is equal to the area or volume of the 
original figure.

If these conditions hold, it is possible to infer simple arithmetic relations 
between the areas or volumes of various sections of the plane or solid fig-
ures resulting from dissection or reassembly. It was this principle that Liu 
used to “prove” the Pythagorean theorem. Liu also refers to a diagram that 
is now lost. Lam and Shen’s (1984, p. 95) translation of the relevant passage 
from Liu reads:

Let the square on gou (a) be red and the square on gu (b) be blue. Use 
the [principle] of mutual subtraction and addition of like kinds to fit 
into the remainders, so that there is no change in [area on the comple-
tion of] a square on the hypotenuse (c).

The principle referred to is the “out-in” principle. There have been a 
number of attempts to construct the missing diagram that accompanied 
this statement. One of the more plausible is shown in figure 7.2. Here ABC 
is a space for a right-angled triangle. BCIS is the red square on the gou (or 
a), while AQDC (= FERI) is the blue square on the gu (or b). From SB-
CFER cut off the triangle GBS and put it in the space ABC. Next, cut off the 
triangle EGR and place it over the triangle EAF. What we have now is the 
square AEGB, which is the square on the hypotenuse (or c). This completes 
the “proof ” of the gou gu theorem. 
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Yet another reconstruction of this diagram, shown in figure 7.3, would 
involve covering the square on the hypotenuse with pieces cut from the red 
and blue squares. 

Figure 7.3 shows the original right-angled triangle (in bold) together 
with two squares on the sides gou and gu of the right angle. Following Liu, 
these squares are color-coded blue and red on the diagram. By construc-
tion, initially the square on the hypotenuse (xian) is already partly covered 
by sections of the red and blue squares. To show that these squares together 
cover the same space as that of the square on the hypotenuse, we need to 
remove the pieces of the jigsaw (identified by the word “remove”) and re-
place them by congruent pieces (identified by the word “insert”). Once the 
process of substitution is complete, we have demonstrated the validity of 
the Pythagorean result using the Chinese “out-in” technique.

It is important to recognize a basic difference between this Chinese 
proof and the Euclidean proof of the Pythagorean theorem. Considerable 
geometric knowledge of properties relating to congruent triangles and 
areas is required to understand the Euclidean proof, which probably ex-
plains why the theorem does not appear in Euclid’s Elements until the end 
of Book I. The Chinese proof is a matter of common sense, enabling the 
theorem to be applied to many practical problems with relative ease.1 We 
now examine a few of these applications.

Figure 7.2: A reconstruction of Liu’s proof of the gou gu theorem
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Applications of the Gou Gu Theorem
The gou gu theorem is applied via various permutations built on the rela-
tion gou gu xian2 2 2+ = , or a b c2 2 2+ = . The reader is invited to solve 
the following problems, which are mainly from the ninth chapter of the Jiu 
Zhang, before consulting the solutions given below them.

Example 7.1  Under a tree 20 chi high and 3 chi in circumference, there 
grows an arrowroot vine that winds seven times round the stem of the 
tree and just reaches its top. How long is the vine? [1 chi is about 23 cm.]

The problem is of the form: given a and b, find c (see figure 7.4).

Suggested Solution

Take 7 3 21# =  as one of the sides (a) of a right-angled triangle. Take 
the height of the tree as a second side (b). Find the hypotenuse (c), 
which is then the length of the vine:

.chi21 20 29length of vine 2 2= + =_ i

Continued . . . 
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Remove

Red 
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Blue 
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Blue Insert

Figure 7.3: Another reconstruction of Liu’s proof of the gou gu 
theorem
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Continued . . . 

Example 7.2  There is a rope hanging from the top of a tree with 3 chi 
of it lying on the ground. When it is tightly stretched, so that its end just 
touches the ground, it reaches a point 8 chi from the base of the tree. 
How long is the rope?

The problem is of the form: given b and c - a, find c. 

Suggested Solution

12 .chi2
1

3
64 3 6

73
6
1ength of ropeL = + = =d n

This is an interesting solution, displaying a considerable degree of so-
phistication. With modern notation and figure 7.5, we can attempt to re-
construct the algebraic route underlying the solution offered above.  Let

c = length of rope,

d = c - a = length of rope on the ground,

b = distance of end of rope, if tightly stretched, from base of tree.

The following relationship may be deduced from figure 7.5:

( ) .c c d b2 22= − +

Continued . . . 

Figure 7.4



254  Chapter 7

Continued . . . 

Therefore

;
.

cd d b
c b d d
0 2 2 2

2
1 2

= − + +

= +_ i

And it was this expression for c that could have been used to solve this 
problem.

However, Martzloff (1997a, p. 95) draws our attention to two problems 
similar to this example, one of which appears in Mesopotamian and the 
other in Chinese mathematics. A comparison between the two could be 
instructive.

Example 7.3  Mesopotamian problem (c. 1800–1600 BC): A reed is 
placed vertically against a wall. If it comes down by 3 cubits, it moves 
away by 9 cubits. What is the [length] of the reed, what is the [height] of 
the wall? Answer: 15 cubits.

Example 7.4  Chinese problem (from Jiu Zhang, chapter 9, 200 BC–AD 
200): Suppose a wall is 10 chi high. A wooden pole (tree) is rested against

Continued . . . 

Figure 7.5
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Continued . . . 

it so that its end coincides with the top of the wall. If one steps backward 
a distance of one chi pulling the pole, the pole falls to the ground. What 
is the length of the pole?

The similarity between the statement of the two problems is immedi-
ately clear. But what is interesting is that the rules for their solution are 
identical. This is easily established if the rules are expressed in modern 
symbolic notation:

15c d
a d

2Length of the reed cubits,
2 2

= =
+

=

where a = 9 cubits and d = c - a = 3 cubits.

50c d
a d2

1
2
1Length of the wooden pole chi,

2

= = + =d n

where a = 10 chi and d = 1 chi.

This similarity is found in a number of other comparisons made by 
van der Waerden (1983) and others, which should make us cautious 
about overemphasizing the algebraic/arithmetic nature of early Chinese 
mathematics. It is more likely than not that the similarities between the 
Mesopotamian and the Chinese approaches to mathematics show a strong 
geometric bent in both traditions, not only in the way that problems were 
stated but also in the way that the solutions were arrived at.

Example 7.5  The height of a door is 6 chi 8 cun larger than its width. The 
diagonal is 10 chi. What are the dimensions of the door? [1 chi = 10 cun.]

The problem is of the form: given b - a and c, find a and b (see 
figure 7.6). 

Suggested Solution

From the square of 10 chi, subtract twice the square of half the given 
difference (6 chi 8 cun). Halve this result, and find its square root. The

Continued . . .
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Continued . . . 

width of the door is equal to the difference of this root and half of 6 chi 
8 cun. The height of the door is equal to the sum of the root and half of 
6 chi 8 cun. Thus

width = 2 chi 8 cun,
height = 9 chi 6 cun.

The algebraic basis of this solution is derived from the equation (in 
modern notation)

( ) 2 ( ) ,a b c b a2 2 2+ = − − 	 (7.1)

where a is the width of the door, b the height of the door, and c the di-
agonal. This is easily seen, since

( ) ( ) 2 2 2 .a b b a a b c2 2 2 2 2+ + − = + =

However, Qin Jiushao gave a geometric demonstration (discussed by 
Lam and Shen [1984]).

From the numerical values given in the problem, it is easily estab-
lished that b - a = 6.8 chi and c = 10 chi. Substituting these values 
into equation (7.1) and taking the square root gives

( ) ( . ) .a b 2 10 6 82 2+ = − 	 (7.2)

Adding b - a = 6.8 to equation (7.2) and halving gives the value of b; 
subtracting the same quantity and halving gives the value of a.

Continued . . .

Figure 7.6
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Continued . . . 

Example 7.6  There is a bamboo 10 chi high, the upper end of which, 
being broken, touches the ground 3 chi from the foot of the stem. What 
is the height of the break?

This is a famous problem in the history of mathematics. Figure 7.7a 
shows the problem as illustrated in Yang Hui’s Xiang Jie Jiu Zhang Suan 
Fa Zuan Lei (1261). It kept reappearing in the works of Indian math-
ematicians, from Mahavira in the ninth century to Bhaskaracharya in 
the twelfth century, and eventually in European works, probably thus 
charting a westward migration of Chinese mathematics via India and 
the Islamic world.

The problem is of the form: given a and b + c, find b.

Continued . . .

Figure 7.7: The “broken bamboo” problem: (a) as illustrated in the Xiang Jie Jiu Zhang 
Suan Fa Zuan Lei (Needham 1959, p. 28), and (b) the modern translation
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Continued . . . 

Suggested Solution

Take the square of the distance from the foot of the bamboo to the point 
at which its top touches the ground, and divide this quantity by the 
length of the bamboo. Subtract the result from the length of the bam-
boo, and halve the resulting difference. This gives the height of the break.

These instructions may be expressed in modern notation, with refer-
ence to figure 7.7b, as follows. Let 

a = distance from foot of bamboo,

b + c = length of bamboo,

b = height of erect section of bamboo.

Then the above rule is equivalent to

,b b c b c
a

2
1 2

= + −
+

d n

which yields

10 10
9 .b chi2

1
20
91

= − =d n

Problem 16 of the ninth chapter of Jiu Zhang contains a circle inscribed 
in a triangle between the gou, gu, and xian sides of the familiar figure. The 
problem is one of calculating the diameter of the inscribed circle. Although 
the dimensions given here are gou = 8 and gu = 15, Liu in his commen-
tary generalizes the solution for any gou gu figure. We will consider his ex-
planation briefly. Further details are found in Dauben (2007, pp. 287–88) 
and Martzloff (1997a, pp. 300–301).

Example 7.7  Given a [right-angled triangle whose] gou and gu are 8 
and 15 respectively. Tell: what is the diameter of the inscribed circle?

Suggested Solution

The method of solution involves finding the area of a rectangle whose 
width is equal to the diameter of the circle and length is the sum of the

Continued . . . 
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Continued . . . 

three sides of the triangle. Liu’s demonstration of the result involves 
color-coding the diagram shown in figure 7.8. If gou = a, gu = b, 
xian = c, and d = diameter of the circle, then it can be shown that by 
adding the areas of different colored triangles in figure 7.8,2

.d a b c
ab2

=
+ +

Also, Liu states the following equivalent ways of obtaining d:

( );

( )( ) .

d a c b

d c a c b2

= − −

= − −

The reader is invited to show the equivalence of these three results and 
check that the answer to this example is 6.

The first extant commentary on Zhou Bi by Zhao Zhujing, a name we 
came across earlier, contains examples that involve fifteen different ap-
plications of the gou gu triangle. They and other subsequent applications 
are listed in table 7.1, following the lead given by Martzloff (1997a, pp. 
294−95). It may be remembered that a, b, and c denote gou (smaller side), 
gu (larger side), and xian (hypotenuse) respectively. The diameter of a cir-
cle that is inscribed in a gou gu triangle is denoted as d.

Figure 7.8: (Source: Dauben 2007, p. 285)
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Table 7.1 shows the different permutations of problems that could arise. 
We could continue this discussion of applications of the gou gu theorem 
in Chinese mathematics almost indefinitely. The applications are remark-
able for their range and ingenuity. The reader who wishes to know more 
will find, apart from Dauben (2007) and Martzloff (1997a) referred to 
frequently in this chapter, the works Ang (1978), Gillon (1977), Lam and 
Shen (1984), and Swetz and Kao (1977) informative. The title of Swetz and 
Kao’s book is particularly pertinent: Was Pythagoras Chinese? An Examina‑
tion of Right Triangle Theory in Ancient China.

Our detailed treatment of the properties and problems of right-angled 
triangles is justifiable for a number of reasons. Of all the ancient math-
ematical traditions, the Chinese contained the most extensive, sustained, 
and ingenious treatments. In contrast to the mathematics of ancient 
Greece, the corpus of knowledge built up was primarily for the purpose of 
practical applications in height and distance mensuration. But the discov-
ery of the gou gu theorem gave rise to work on the proportionality of sides 

Table 7.1:  Applications of the Gou-Gu Triangle

Type	 Given Data for	 Answer Sought for	 Examples Discussed

1	 a, b	 c	 7.1
2	 b, c	 a
3	 b, c - a	 a, c	 7.2
	 or	 or 
	 a, c - a	 b, c	 7.4
4	 c, b - a	 a, b	 7.5
5	 c - a, c - b	 a, b, c
6	 a, b + c	 b	 7.6
7	 a, a + c = b, where  is a 	 b, c
	 given number
9	 a, b	 d	 7.7
10	 ab, c - a
	 or	 a, b, c
	 ab, c - b
11	 ac, c - b or
	 bc, c - a	 a, b, c
12	 ab/2, c	 a, b, c
13	 ab/2, a + b	 a, b
14	 ab/2, c - (b - a)	 c
15	 ab/2, c + b - a	 a, b, c
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in similar triangles, the extraction of square and cubic roots, methods of 
solving different types of quadratic equations, and the numerical solution 
of higher-order equations (to be discussed in a later section).

The importance of the gou gu theorem in establishing geometric-
algebraic solution schemes and in its contribution to the broader develop-
ment of Chinese algebra cannot be overestimated. It founded a tradition in 
geometric reasoning which belies the notion that all mathematical tradi-
tions not influenced by the Greeks were essentially algebraic and empirical. 
The commentaries by Liu and Zhao clearly show a deductive geometry 
that was moving beyond the mere numerical relations connecting the 
sides of a right-angled triangle in an active search for general proofs of 
the relationship. The reasoning in the proofs was based on geometry, with 
the basic concept being that figures of dissimilar shape can have the same 
area, and the basic procedure being the “out-in” principle. Terms such as 
ji ju (piling up rectangles) were widely used, underlining the importance 
of pictorial representation in Chinese mathematics. But the work on the 
right-angled triangle also highlighted one of the negative aspects of the de-
velopment of Chinese mathematics—the excessive reverence accorded the 
Jiu Zhang. The above examples, chosen to show the wide range of applica-
tions, were all either taken directly from this text or derived from it. So why 
were mathematicians of the caliber of Liu and Zhao, and later the brilliant 
thirteenth-century quartet, unable to free themselves from the constricting 
influence of the Jiu Zhang? Was the astonishing continuity and stability of 
Chinese civilization responsible, coupled perhaps with a great reverence 
for the past? Most likely we shall never know.

Estimation of p

The Greek symbol p was first used to denote the ratio of the circumfer-
ence of a circle to its diameter in 1706, by the Welshman William Jones. 
The same symbol had previously been used for just the circumference, at a 
time when the idea that a ratio could be a number was quite a novel one. In 
his major work Introductio in analysin infinitorum (1748), Leonhard Euler 
gave his personal approval to this use of it, thereby popularizing it. It is now 
perhaps the most widely known mathematical symbol.

If p represented merely the ratio of the circumference of a circle to its 
diameter, the determination of its numerical value would have been of 
limited mathematical interest. However, there are other reasons why the 
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evaluation of it has been a continuing quest for some four thousand years, 
from 1800 BC to the present day:

1. � A practical requirement for increasingly accurate determinations of 
p in fields as diverse as building and electronics

2. � The perennial fascination with the problem of “squaring the circle”

3. � A growing interest in the nature of the constant represented by p

Stated simply, the problem of squaring the circle (or, more formally, the 
quadrature of the circle) is: can one construct a square whose area is ex-
actly equal to that of a circle of given diameter using only a straightedge 
and a compass? Only in the nineteenth century was it demonstrated that, 
since squaring the circle is equivalent to constructing a line segment whose 
length is equal to the product of the square root of p (which is not a con-
structable quantity) and the radius of the given circle, it cannot be done. 
However, the search for more accurate estimates of p, which began with 
the Egyptians, continues even today as powerful computers are used to 
calculate its value to millions of decimal places. Table 7.2 contains some of 
the historical highlights of this search, before the advent of modern math-
ematics. Two ways of calculating p are represented here, though only one 
example (Madhava’s calculation) of the second method was in use before 
AD 1600. 

1. � The “classical” (or geometric/empirical) method. This consists of cal-
culating the perimeters of regular polygons inscribed in and/or cir-
cumscribed about a circle of given radius whose circumference lies 
between these perimeters. This method or a variant of it was used in 
all but one of the calculations listed in table 7.2.

2. � The “modern” (or analytical) method. This consists of evaluating the 
circumference of a circle for a given diameter by applying finite se-
ries approximations to a slowly converging infinite series. It was first 
used in Kerala, India, in about the fifteenth century and attributed to 
Madhava (c. 1350). Details of this method are found in chapter 10 in 
the section on medieval Indian mathematics.

For a long period the Chinese were content with taking the ratio of 
circumference to diameter as 3 in their calculations. One of the earli-
est attempts to get a better estimate was by an astronomer and calendar 
maker called Liu Xin, who lived around the beginning of the Christian 
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Table 7.2:  Estimates of p before AD 1600

Date	 Source/mathematician	 Method and value

c. 1650 BC	 Ahmes Papyrus	 Equating a circular field of 9 units to a 
	 (Egypt)	 square of side 8 units implies p - 3.16.
c. 1600 BC	 Susa Tablet	 Equating a regular hexagon to a circle; 
	 (Babylonia)	� the ratio of the perimeter of  the 

hexagon to the circumference of the 
circle, given as 0;57,36 implies  
p - 3;7,30 (3.125).

c. 800–500 BC	 Sulbasutras (India)	� Baudhayana gave the following rule: 
(s = side of a square, d = diameter of a 
circle):  
s = d[1 - 28/(8  29) - 1/
(6  8  29) + 1/(6  8  29  8)],
which implies, if the areas are equal, that 
p - 3.09.

c. 250 BC	 Archimedes (Greece)	� Calculating the perimeters of inscribed 
and circumscribed regular polygons 
with 12, 24, 48, and 96 sides within and 
around a circle, to obtain 223/71 < p 
< 22/7, where both limits give p - 3.14, 
correct to 2 decimal places.

c. 150 BC	 Umasvati (India)	� Inscribing a regular hexagon and then 
a 12-sided polygon, and applying the 
Pythagorean result gives a value equal to 
the square root of 10: p - 3.16.

c. AD 260	 Liu Hui (China)	� Inscribing a regular hexagon within a 
circle and calculating by successive ap-
plications of the Pythagorean theorem 
the perimeters of polygons with 12, 
24, . . . , 96 sides. By considering the last 
of these polygons, he arrived at  p - 
3.1416. (The method is examined later 
in this chapter.)

c. 480	 Zu Chongzhi (China)	� Similar method to Liu’s, except for the 
successive applications of the Pythago-
rean theorem to polygons with up to 
24,576 sides! The result was 3.1415926 < 
p < 3.1415927.

	 continued
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era. Instructed by his ruler, Wang Mang, to construct a standard measure 
of capacity, Liu Xin produced a cylindrical vessel made of bronze, which 
became the prototype for hundreds of such vessels produced and distrib-
uted throughout China. From an examination of the dimensions of one of 
these vessels (now kept in a museum in Beijing), some commentators have 
inferred that Liu Xin used the value p ≈ 3.1547. This view is supported by 
an entry in Sui Shu (Official History of the Sui Dynasty) stating that Liu 
Xin found a new value for p to replace the old one of 3. Another piece of 
conjectural evidence comes from a stray remark by Liu Hui that Zhang 
Heng, a court astrologer who lived in the first century AD, made an im-
plicit estimate of p as the square root of 10, a value also found in the Jaina 
mathematics of India and reported by Umasvati a few centuries earlier.

The first systematic treatment of this topic is contained in Liu Hui’s no-
table commentary on the Jiu Zhang, written in the third century AD. He 
began by examining the underlying assumption in problems 31 and 32 of 
the first chapter of the Jiu Zhang, in which the area of a circle is calculated 
by taking the product of half the circumference and half the diameter.3 Af-
ter explaining the rationale for this rule and the use of the inaccurate value 
of 3 for the ratio of circumference to diameter, Liu proceeded to work out a 

Table 7.2:  Continued

Date	 Source/mathematician	 Method and value

c. 500	 Aryabhata (India)	� Probably by calculating the perimeter of  
a regular inscribed polygon of 384 sides: 
p - 3.1416.

c. 1400	 Madhava (India)	� Using an infinite-series expansion for 
p (to be discussed in chapter 10): p - 
3.14159265359, correct to 11 decimal 
places.

1429	 Al-Kashi (Persia)	� By calculating the perimeter of a regular 
polygon with 3  228 sides. Expressed 
in decimals: p - 3.1415926535897932, 
correct to 16 decimal places.

1579	 François Viète (France)	� Calculating the perimeter of a regular 
polygon with 393,216 sides gave p - 
3.141592654, correct to 9 decimal  
places.
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method for obtaining a more accurate value for it. Since the method bears 
some similarity to Archimedes’s innovative approach four hundred years 
earlier, it is interesting to compare them.

Archimedes based his method on the simple observation that if a circle 
is enclosed between two polygons of n sides, then as n increases, the gap 
between the circumference of the circle and the perimeters of the inscribed 
and circumscribed polygons keeps diminishing, with the perimeters of the 
polygons and the circle becoming nearly, although never exactly, identical. 
Or in other words, as n increases, the difference in area between the poly-
gons and the circle will be gradually exhausted without ever becoming zero. 
(This approach is an example of a Greek method known as “exhaustion.”)

Figure 7.9 shows a circle enclosed between an inscribed regular hexagon 
ABCDEF and a circumscribed regular hexagon RSTUVW. It is convenient 
to begin with a regular hexagon, since its construction with straightedge 
and compass is a fairly simple matter. First draw the circle. Then, with the 
compass still set to the radius of the circle, start at any point on the circum-
ference and mark off the vertices A, B, C, D, E, and F. Draw tangents to 
the circle at each of these points, and join them to give the circumscribed 

Figure 7.9: Finding the area of a circle by the method of 
exhaustion
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hexagon RSTUVW. Then given the inscribed polygon ABCDEF, it is pos-
sible next to construct a 12-sided polygon by bisecting the arc subtended 
on each of the sides of ABCDEF and joining each of the additional six 
points to the two original vertices that are adjacent.

As an illustration, if G is the midpoint of the arc AF, then joining F to 
G, and G to A, will give two of the sides of the 12-sided inscribed polygon. 
And if, at each of the 12 vertices of the new polygon, tangents are drawn to 
the circle, we obtain the corresponding circumscribed 12-sided polygon. 
This process can be carried on to obtain regular polygons of 24, 48, 96, . . . 
sides. Archimedes stopped at 96-sided polygons.

Now, if the perimeters of the inscribed and circumscribed polygons of 
n sides are denoted by pn and Pn respectively, and C is the circumference of 
the circle, it follows that

.p p p p p p p C P P P P P P P< < < < < < < < < < < < < <6 12 24 48 96 /2 /2 96 48 24 12 6n n n nf f

It can be shown with modern mathematics that pn and Pn converge to 
C as n tends to infinity. Next, it is easily established that the perimeter 
of the inscribed regular hexagon p6 is 3d, where d is the diameter, and 
also that the perimeter of the circumscribed regular hexagon, P6, is 2 d3 . 
Starting with p6, Archimedes found close approximations to p12, p24, p48, 
and p96. Then from P6 he approximated P12 to P96. Since p96 < C < P96, he 
concluded that

3 3 .71
10

7
1

< <π+ +

In his computations of the square root of 3 and other calculations, Ar-
chimedes appears to have followed the Mesopotamian methods we dis-
cussed in chapter 4. But the idea of finding approximate numerical values 
of p by establishing narrower and narrower limits, between which the 
value must lie, turned out to be a peculiarly Greek innovation.

Liu Hui’s method of evaluating p required only inscribed regular poly-
gons (see figure 7.10). Starting with the known perimeter of a regular poly-
gon of n sides inscribed in a circle, the perimeter of the inscribed regular 
polygon of 2n sides was calculated by applying the Pythagorean theorem 
twice. The circle in figure 7.10 has its center at O and radius r. Let PQ = s 
be the side of a regular inscribed polygon of n sides having a known pe-
rimeter. Then, given s and n, the Pythagorean theorem is used to calculate, 
in turn, that
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where w is one of the sides of the regular polygon with 2n sides. Repeti-
tion of this procedure will produce closer and closer approximations to the 
circumference of the circle, in terms of which p may then be defined. A 
similar procedure can be used with circumscribed polygons.

In Liu’s own example, OR = r = 1 chi = 10 zuen, n = 6, and PQ = 
s = 10 zuen, and so

8.660254,
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Figure 7.10: Liu’s method of finding π
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The first iteration produces w1 ≈ 5.176381 as the length of the side of a 
12-sided regular polygon. Repeating the same process for a 12-sided poly-
gon with s = 5.176381 gives

2.610524.w2 .

The iterative process is continued until we find the length of the side of 
a 96-sided regular inscribed polygon. Now, the area of a regular inscribed 
polygon of 2n sides is 2

1 nsr, where s is the length of the side of a regular 
polygon with n sides and r is the radius of the circle. For the dimensions 
given above,

(6 10 10) 300A12 2
1 # #= =

is the area of a 12-sided polygon. Similarly,

(12 5.176381 10) 310.5829A nsr24 2
1

2
1 ##= = =

is the area of a 24-sided polygon.
Continuing in this way, Liu Hui found

313.2629, 313.9344, 314.1024.A A Aand48 96 192= = =

Thus

2 ,A A A A< <192 192 96−

where A is the area of the circle. This leads to

314.4024 314.2704,A< <

and by interpolation Liu Hui then arrived at an estimate of the circumfer-
ence of the circle to its diameter as 3,927 to 1,250, that is, 

p = 3.1416.

Liu provides the rationale underlying the following rules for calculating 
the area of circular fields given in the Jiu Zhang:4

1.  Multiply half the circumference by half the diameter.

2.  Multiply one-fourth the of the circumference and the diameter.

3.  Evaluate three times one-fourth of the diameter squared.

4.  Evaluate the square of the circumference divided by 12.
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It is worth noting that while (1) and (2) are perfectly correct, (3) and (4) 
would give “inaccurate” results since they make the implicit assumption 
that p = 3.

The Chinese fascination with the ratio of circumference to diameter 
reached its climax in the work of Zu Chongzhi and his son Zu Gengzhi, 
who established new boundaries for p. In his text Su Shu (Method of Inter-
polation), written in AD 479 but unavailable today, the elder Zu may have 
explained his method for approximating it. All we have are passages in the 
Sui Shu (Official History of the Sui Dynasty) recording the efforts made by 
Zu (who is described as a historian) to improve the accuracy of the value of 
p. Using a circle of diameter 10 chi, subdivided into 108 units, he obtained 
an (implicit) estimate of an upper limit of 3.1415927 and a lower limit of 
3.1415926 for p.5 The same official history states that Zu gave the Archi-
medean value of 22/7 as an inaccurate approximation, and 355/113 as an 
accurate one. Zu’s book was adopted by the Tang government as a text for 
its civil service examinations.

We can only offer conjectures about how Zu achieved his highly ac-
curate estimate of p. Most probably, Zu extended the method of polygons 
well beyond the bounds achieved by Liu, to A24,576, which yields an approxi-
mation for p correct to the seventh decimal place. An accurate (implicit) 
approximation for p, correct up to the eleventh decimal place, appears, as 
we shall see later, in the work of medieval Indian mathematicians of the 
fifteenth century using the “analytical” (infinite series) method. Around 
the same time, the Persian mathematician Al-Kashi obtained an implicit 
estimate of p correct to sixteen decimal places using the method of poly-
gons with 3 228# . In 1585 a Dutch mathematician, Valentin Otho, discov-
ered the value 355/113 by subtracting the numerators and denominators 
of the Ptolemaic and Archimedean values, 377/120 and 22/7! A plausible 
explanation (although unsupported by any positive evidence at present) is 
that the Indian and European knowledge of this highly accurate value for 
p came from China as Zu’s discovery spread southward and westward over 
a number of centuries. In China itself the work of Liu and Zu was soon 
forgotten, and various inaccurate approximations—including 3—contin-
ued to be used. In 1247 Qin Jiushao stated that 3, 22/7, and 10  were all 
in use! In 1275, Yang Hui gave five formulas for finding the area of a circle. 
In one of them it was 3, two had it as 22/7, and in the other two it was 3.14. 
There was no guidance on choosing which value to use. One is left with 



270  Chapter 7

the impression that the innovative work of Liu and Zu was ignored by the 
mathematicians who came after them.

There are similarities between the work of Archimedes and that of 
Liu and Zu. But the epistemological differences between the methods of 
Archimedes and those of the two Chinese commentators are very con-
siderable, the most fundamental being the recourse to the use of “double 
reduction to the absurd” in proof demonstration by the former compared 
with the latter.6 All three used procedures akin to the “method of ex-
haustion,” whereby increasing the number of sides of a polygon inscribed 
in a circle made the sides so short that it eventually became possible to 
closely approximate the circle by the polygon.7 Both Archimedes and 
Liu used the method of exhaustion to show that the area of the circle is 
half the product of its circumference and its radius, and both proceeded 
to establish an equality between the ratio of the area of a circle to the 
square of its radius, and the ratio of the circumference to the diameter. 
However, Archimedes’ achievement seems the more remarkable when 
weighed against the limited scope offered by the numerals and compu-
tational techniques available to him, and the strongly ingrained aversion 
to experimentation and computation that marked Greek mathematics 
until the Egyptian and Mesopotamian empirical influences subtly altered 
its character. However, Liu and Zu’s highly elaborate calculations were 
products of a mathematical culture sympathetic to computation and 
offering methods that made its mathematicians far better equipped to 
carry out complicated calculations. We shall return to this point, about 
how a penchant for numerical work determined the character of Chinese 
mathematical achievements, particularly in the solution of higher-order 
and indeterminate equations.

Solution of Higher-Order Equations and Pascal’s Triangle

The Chinese Development of Pascal’s Triangle
The invention of the “arithmetical” triangle named after Blaise Pascal can-
not be traced or credited to any individual. Its earliest use was among the 
Indians and the Chinese. In India it was an outgrowth of interest in a sub-
ject called vikalpa, or what is known today as permutations and combina-
tions. It is first mentioned in the Chandasutra by Pingala (c. 200 BC) as a 
method of determining the number of combinations of n syllables taking 
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p at a time. And this was further elaborated on by the commentator Hala-
yudha, who lived in the tenth century AD. A discussion of the Indian work 
on this subject will be found in chapter 8. The triangle also appears up to 
the twelfth power in a work by Nasir al-Din al-Tusi in 1265.

During the first half of the eleventh century there appeared in China 
the earliest reference to a basic diagram for solving equations. In a book 
unfortunately no longer extant, Jia Xian is believed to have constructed a 
table of binomial coefficients up to the sixth power, the exponents being 
positive integers.8 In modern notation, Jia was selecting the coefficients of 
the binomial expansion

( ) , , , , .a b C a b C a b C a b C a b r n1 2forn
n

n
n

n
n

n
n n

n
0

0
1

1 1
2

2 2 0f f+ = + + + + =− −

Here

! ( ) !
! ,C r n r

n
n r = −

where n! is the usual notation for “n factorial,”

! ( 1) ( 2) 2 1,n n n n# # # ## f= − −

with 0! taken to be 1.

For n = 0, the coefficient is nC0 = 1.

For n = 1, the coefficients of (a + b)1 are 1C0 and 1C1, or 1, 1.

For n = 2, the coefficients of (a + b)2 are 2C0, 2C1, and 2C2, or 1, 2, 1.

For n = 3, the coefficients of (a + b)3 are 3C0, 3C1, 3C2, and 3C3, or 1, 3, 
3, 1.

For n = 4, the coefficients of (a + b)4 are 4C0, 4C1, 4C2, 4C3, and 4C4, or 
1, 4, 6, 4, 1.

In a similar fashion, the coefficients can be determined for any value 
of n. The Pascal’s triangle for n = 0, 1, 2, . . . , 8 depicted at the beginning 
of Zhu Shijie’s book Si Yuan Yu Jian (The Precious Mirror of the Four El-
ements) is shown in figure 7.11a, with a transliteration in our numerals 
given in figure 7.11b. Below Zhu’s representation of the triangle is a com-
ment that provides both an explanation of how it was constructed and an 
indication of the uses to which it might be put. Recast in present-day ter-
minology, it reads:
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Figure 7.11: Pascal’s triangle: (a) as depicted by Zhu Shijie (Needham 1959, p. 135), 
and (b) in modern numerals
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The numbers in the (n + 1)st row show the coefficients of the binomial 
expansion of ( )a b n+ , n being a positive integer. The unit coefficients 
along the extreme left slanting line (the chi shu) and the extreme right 
slanting line [the yu suan] are the coefficients of the first and last term 
respectively in each expansion. The inner numbers, “2,” “3, 3,” “4, 6, 
4,” . . .  on the third, fourth, and fifth, etc. rows [the lien], are the inner 
terms of the binomial equations of the second, third, fourth, etc. degree.

Zhu continues by indicating the close relationship between the con-
struction of the triangle and the solution of numerical equations of higher 
order:

Multiply the coefficients of the (n + 1)st row by a suggested value for 
the root; then subtract the nth power of the suggested row from shi [i.e., 
the constant whose root is to be extracted]; and divide the difference by 
the product of the suggested value and the coefficient to obtain a new 
value for the root.

The Chinese Origin of the Horner-Ruffini Method
The Horner-Ruffini method is named after an English schoolteacher and 
mathematician, William George Horner, who in 1819 published a nu-
merical method of finding approximate values of the root of equations 
of the type

( ) 0,f x a x a x a x b0 1
1

1
n n

n nf= + + + + =−
−

and an Italian, Paolo Ruffini (1765–1822), who was awarded a gold medal 
for his independent discovery of the same. The procedure that Horner and 
Ruffini rediscovered is identical to the computational scheme used by the 
Chinese over five hundred years earlier. And unlike other computational 
methods for finding such roots, this method is more efficient in that it re-
quires fewer iterations to achieve the same result. 

In our earlier discussion of the extraction of square and cube roots in 
the Jiu Zhang, we found that the basic procedure had a strong geometric 
rationale: the method consisted of adding and subtracting sections from 
a given geometric figure. But the limitation of such a geometric approach 
is obvious: it cannot be used to solve equations beyond the third degree. 
Indeed, the geometric approach, even when used in the context of cubic 
equations, is highly cumbersome, which was why we avoided it in solving 
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the cubic equation. What Pascal’s triangle did for Chinese mathematics 
was to help break the geometric mold by establishing a clear link between 
the patterns of the coefficients of the triangle and the derivation of trans-
formed equations.

A few examples will help. Let us begin with a simple one, expressed in 
symbolic notation. Suppose we want to find the square root of N, that is, to 
solve the quadratic

.x N2 = 	 (7.3)

We take the following steps:

1. Let x = h + y. Equation (7.3) is then transformed as

( ) 2 (2 ) ,N x h y h hy y h h y y2 2 2 2 2= = + = + + = + + 	 (7.4)

where h is a guesstimate of the root x, and the equation is formed with 
the coefficients from the third row of Pascal’s triangle shown in figure 
7.11.

2. Obtain y by dividing N h2-  in equation (7.4) by 2h to get

, .h
N h

h
hy

h
y

h
N h y hy2 2

2
2 2 2

1or
2 2 2

2−
= +

−
= +

Since the error term y is small relative to h, we can ignore y2  to get

.y h
N h

2
2

.
-

3. Therefore, it would follow from the initial definition in step 1 that

.x h h
hN

2
2

. +
−

If the square of this quantity is N, then you are done. Otherwise, re-
peat steps 1 and 2 with the new estimate

* .h h h
N h

2
2

= +
−

Repeat this process until you get the desired result. 

A more difficult example is from the fourth chapter of Qin Jiushao’s Shu 
Shu Jiu Zhang, which requires the solution of the equation
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, , , , .x x40 642 560 000 763 200 02 4− + − = 	 (7.5)

The first step in the solution is to guesstimate the number of digits in the 
answer and also the value of the first digit; this was done by trial and error. 
Here it is easily established that the final answer will be a three-digit number 
starting with 8. Note also that x = 240 is another solution to the equation. 
It is not clear why Qin chose 8 rather than 2 for the first digit. The approach 
used by Qin is analogous to the present-day method of synthetic division to 
factor out y = x - 800 from equation (7.5). The first division gives

, , , ,
( )( , , , ) , , , ,

x x
x x x x

40 642 560 000 763 200
800 98 560 000 123 200 800 38 205 440 000

2 4

2 3
− + −
= − + − − +

or

, , , ,
( , , , ) , , , .

x x
x x xy

40 642 560 000 763 200
98 560 000 123 200 800 38 205 440 000

2 4

2 3
− + −
= + − − +

Four repetitions of this procedure, each giving a new remainder, finally 
produce

, , , , , , , , ,y y y y38 205 440 000 826 800 000 3 076 800 3 200 02 3 4− − − − = 	 (7.6)

from which we can estimate that the first digit of y, a two-digit number, is 4.
The process of synthetic division is repeated, with equation (7.6) di-

vided by y - 40. The first division leaves no remainder, so the solution to 
equation (7.5) is x = 840.

Clearly, Qin had neither the notation nor the technique to follow the 
synthetic division used above. Instead, he proceeded by setting up a row of 
numbers corresponding to the coefficients in equation (7.5) and then ap-
plying a procedure resembling synthetic division. We shall examine Qin’s 
procedure for solving equation (7.5) by using the counting-rods format, 
but with decimal rather than rod numerals. Each row in figures 7.12a–c 
represents a certain quantity. The first is reserved for the root, the even-
tual result, and is labeled R. The next five rows represent the coefficients 
of the zeroth, first, second, third, and fourth powers of the unknown x in 
equation (7.5) and are labeled accordingly. If counting rods were used, the 
negative constant and the coefficient of the fourth power of x would be 
shown by black rods, while the positive coefficient of the second power of 
x would be shown by red rods. Further, instead of leaving blank spaces for 
zeros, as the Chinese did, here we insert the symbol 0 for clarity.
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Figure 7.12: Solving higher order equations: Qin’s procedure

(a)

(b)

(c)
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After arranging the numbers as in figure 7.12a, the calculation begins 
by advancing the elements in the rows labeled 1st to 4th by one to four 
places respectively, into the positions shown in figure 7.12b. We can now 
deduce that the solution will be a three-digit number, and that the “hun-
dreds” digit is 8. Next the “hundreds” digit is multiplied by −1 from the 4th 
row, and added to 0 from the 3rd row. This gives the new entry for the 3rd 
row in figure 7.12c, which is −800. This −800 is multiplied by the root 800 
and added to 763,200, which is the entry in the 2nd row of figure 7.12b. 
This gives the new entry in the 2nd row of figure 7.12c as

( 800)(800) 763,200 123,200.− + =

Next 123,200 is multiplied by the root 800 and added to the quantity in the 
1st row in Figure 7.12b, which is 0. This gives the new entry for the 1st row 
of figure 7.12c, 9,856,000. Finally, this quantity is multiplied by the root 
800 and added to −40,642,560 to give

(9,856,000)(800) ( 40,642,560) 38,205,440,000,+ − =

which is the new entry in the 0th row of figure 7.12c.
These calculations are equivalent to taking h = 800 as the first approxi-

mation, so that x = h + x, and then carrying out the steps 1 to 3 outlined 
to obtain the new equation

38,205,440,000 9,856,000 123,200 800 0.x x x x2 3 4+ + − − = 	 (7.7)

Subsequent iterations follow the same procedure as above. It is possible 
to skip some iterations by making use of the property that the coefficient 
of each of the transformed equations will involve the numbers of Pascal’s 
triangle lying on a line slanting across the triangle. 

Thus for n = 4 we use the first five rows of the triangle, and the coef-
ficients of the general equation of the fourth degree:

1
1

1

4

1

3

1

2

6

1

3
1

4
1

1

	

1
4 3,200
6 3 3,076,800
4 3 2 826,880,000

38,205,440,000,

a
a h a
a h a h a
a h a h a h a
a h a h a h a h a

R
R
R
R
R

0 4

1 4 3

2 4
2

3 2

3 4
3

3
2

2 1

4 4
4

3
3

2
2

1 0

= = −

= + = −

= + + = −

= + + + = −

= + + + + =

where R0 to R4 are the last five rows of figures 7.12a–c written from 
top to bottom. They also show how these quantities are calculated. The 
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transformed equation in y (at the end of the fourth iteration, which is the 
same as equation (7.6) above) can then be written, using the coefficients of 
Pascal’s triangle, as

, , , , , , , , .y y y y3 200 3 076 800 826 880 000 38 205 440 000 04 3 2− − − − + = 	 (7.8)

Now, taking equation (7.8) and setting y = h + z or x = h + h + z, 
where h = 40 is taken as the next approximation, proceed exactly in the 
same manner as before. The next transformed equation, in z, is

( 3,240 3,206,400 955,136,000) 0, 0.z z z z zso3 2− − − − = =

Since x = h + h + z and since h = 800, h = 40, and z = 0, it would fol-
low that the solution is x =840. We are advised by Qin Jiushao to check the 
correctness of this solution by substituting x = 840 in equation (7.5).

We conclude with two similar problems from contemporary texts, one 
from Qin Jiushao’s book Shu Shu Jiu Zhang and the other from Li Ye’s Ce 
Yuan Hai Jing.9

Example 7.8  From Shu Shu Jiu Zhang: There is a round, walled town 
of which the circumference and diameter are unknown. Entrance into 
the town is through four gates in the wall. Three li outside the northern 
gate is a high tree. When we go outside the southern gate and turn east, 
we have to walk 9 li before we see the tree. Find the diameter and the 
circumference of the town [1 li = 500 meters].

The suggested solution for example 7.8 in modern terminology may 
be expressed thus (see figure 7.13). Let the distance from the northern 
gate to the tree be a and the distance from the southern gate to where 
we can get sight of the tree be b. Let x2 be the diameter of the town. Then 
in general terms the equation to be solved for x is

5 8 4 ( ) 16 16 0.x ax a x a b a x a b x a b10 8 2 6 2 2 4 2 2 2 3 2+ + − − =− −

If a = 3 and b = 9, then the equation becomes

15 72 864 11,664 34,992 0.x x x x x10 8 6 4 2+ + − − =−

The solution given is x = 3, or the diameter of the town is 9 li. The 
reader is invited to find out how the equation was derived in the first 

Continued . . . 
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Continued . . . 

place. The derivation of these equations will take us beyond the scope  
of this book. For details, see Libbrecht (1973).

Example 7.9  From Ce Yuan Hai Jing: 135 bu out of the south gate of 
a circular town is a tree. If one walks 15 bu out of the north gate and 
then turns east for a distance of 208 bu, the tree can be seen. Find the 
diameter of the town [100 bu ≈ 180 meters]. 

Figure 7.14 is the diagram representing the problem given in exam-
ple 7.9. The solution involves more than basic geometry; the properties 
of the gou gu triangle, similar triangles, and of tangents are needed. 

Continued . . .

Tree
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a = 3
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Figure 7.13: A problem from Qin’s Shu Shu Jiu Zhang

Figure 7.14: A problem from Li Ye’s Ce Yuan Hai Jing
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Continued . . . 

Since the triangles ABC and AED are similar, it follows that 

xAD/AB ED/BC /BC,= =

where x is the radius of the circle,  so that

208( 135)/ .x xAB = +

Applying the gou gu theorem gives 

,(AB) (AC) (BC)2 2 2= +

or

2(AB) (AC BC) (AC BC),2 2 #− − =

from which the following equation may be obtained:10

4 600 22,500 11,681,280 788,486,400 0.x x x x4 3 2− − − + + =

Solving the equation for the root of the quartic equation gives the 
value of x = 120 bu, which is the radius of the circular town.

There are certain general features of this method that need further 
elaboration:

1. The representation of an equation on the counting board con-
formed to what has been described as the tien yuan notation. For ex-
ample, the equation

4 5 8 65 0x x x x5 3 2+ − + − =

would be represented as in figure 7.15.

Figure 7.15: The tien yuan notation
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It is characteristic of this representation that the constant term was 
always expressed as either positive or negative so as to put the equation 
into the form f(x) = 0, allowing the method described above to be used. 
It is interesting that the idea of rearranging an equation to give a sum 
of terms equal to zero did not arise in European mathematics until the 
seventeenth century, with René Descartes.

2. The absence of symbols for “equals” and “minus” was unimportant 
in Chinese mathematics, since the color of the counting rods indicated 
sign and their arrangement indicated the relations between terms.

3. While handling negative quantities posed few problems in Chinese 
mathematics, negative solutions to equations were ignored. This was a 
reflection of the practical nature of their problems, which rendered such 
solutions meaningless.

4. The origins of the method described may go back to the time of 
the Jiu Zhang, when techniques for extracting square and cube roots 
were first used to solve numerical equations. The method remained 
unique to China until the eleventh century AD, when it appears in 
the works of Islamic mathematicians such as al-Nasawi (c. 1025) and 
al-Samaw’al (c. 1172), who used it to extract cube roots, and later al-
Kashi (c. 1450), who used it to extract roots of any degree. In chapter 
11 we shall examine al-Kashi’s numerical solution of a cubic equa-
tion for evaluating the sine of 1°, which bears some resemblance to 
the method discussed above. This has raised the possibility that the 
Chinese mathematicians of the thirteenth century may have borrowed 
a version of the Horner-Ruffini method from the Islamic world. But 
this raises difficulties regarding the facts that negative numbers were 
used only by the Chinese and that mathematicians in the Islamic world 
were more adept at using sexagesimal rather than decimal numbers in 
their solutions of higher-order equations. There have been suggestions 
of a reverse transmission, whereby a simple version of what is now 
known as the Horner-Ruffini method may have slowly evolved from 
the Jiu Zhang and made its way from China to the Islamic world, and 
may even have been known to Fibonacci through the Islamic math-
ematicians. If this is so, then this method entered the mainstream of 
European mathematics, via the Islamic world, as early as the thirteenth 
century.11
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The Chinese Method in the West
The possibility of later Chinese mathematical influence on the West cannot 
be ruled out altogether. It is true that there is as yet no direct evidence of 
either William Horner or his Italian contemporary and rival, Paolo Ruffini, 
being aware of the Chinese solution. However, there is a tendency to dis-
miss too easily any circumstantial evidence of Chinese influence in this 
area. This is at least partly a consequence of ignoring the possibility that the 
Jesuit link established during the closing decades of the sixteenth century 
may have led to a two-way exchange of ideas. The emphasis has always 
been on how European mathematics reached China through the Jesuits.

In 1582 an Italian Jesuit, Matteo Ricci (1552–1610), was sent on a mission 
to China. He was one of the most remarkable men of his time, not only an ac-
complished linguist, with an extraordinary mastery of the Chinese language, 
but also a scientist and mathematician of note. A particular feature of his 
mission that is often ignored was that he had been given specific instructions 
by his superiors to gather information on scientific matters from the East. 
He was received warmly by the Imperial Court, where he, together with a 
talented group of fellow Jesuits and Chinese, set out to acquaint the Chinese 
with scientific works from the West. To that end, they translated the first six 
books of Euclid. They also made detailed reports of aspects of Chinese sci-
ence to their parent organization, the Society of Jesus. It is not unreasonable, 
given Ricci’s and his younger contemporary Johann Schreck’s (1576–1630) 
knowledge of mathematics (they were acquaintaned with the works of alge-
braists of the caliber of Girolamo Cardano [1501–1576] and Francois Viète 
[1540–1603]), to suggest that Ricci studied Chinese mathematics with some 
care and reported back his findings.12 But this must remain a conjecture until 
further research is undertaken on the mathematical content of the commu-
nications from the Jesuits in China, and on the extent of their contacts with 
the Italian mathematicians of the sixteenth and seventeenth centuries who 
were mainly responsible for the revival of algebra in Europe. However, as 
will be pointed out in a subsequent chapter of this book, there is some cir-
cumstantial evidence to support the thesis that the Jesuit conduit may have 
played a part in transmitting the mathematics of India to the West. 

Indeterminate Analysis in China

Indeterminate analysis arose in China primarily as a method of calculat-
ing calendars. In calculating the starting point of the calendar, Chinese 
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astronomers had to solve systems of relationships with data so vast that it 
was impossible to get unique solutions without some special algorithms. 
The Chinese remainder theorem was one such algorithm. Similar prob-
lems of calendar construction were faced in India and the Islamic world. 
It was with the work of European mathematicians such as Lagrange, Euler, 
and Gauss during the seventeenth and eighteenth centuries that the subject 
was detached from the coattails of astronomy and attached to the realm of 
pure mathematics.13

The following problem occurs in the third chapter of the fourth-century 
mathematical text Sun Zu Suan Jing (Master Sun’s Mathematical Manual):14

There is an unknown number of objects. When counted in “threes,” the 
remainder is 2; when counted in “fives,” the remainder is 3; and when 
counted in “sevens,” the remainder is 2. How many objects are there? 
Answer: 23.

In modern notation, what we have here is the following set of simulta-
neous equations of the first degree:

3 2, 5 3, 7 2,N x N y N z= + = + = +

where N is the total number of objects, x the number of “threes,” y the 
number of “fives,” and z the number of “sevens.” This information can be 
expressed even more concisely in the notation of linear congruences as

2( 3) 3( 5) 2( 7),mod mod modN / / /

where an integral value for N is required.15

Now, we know that in order that a solution to a given set of equations 
may be obtained, there must be as many equations as unknowns. Here 
there are three equations but four unknowns (N, x, y, z), so there are an in-
finite (or indeterminate) number of solutions. However, there is a further 
constraint implied by the answer given to the question: what we are seek-
ing is the least (or minimum) integer value for N.

There are four main approaches to the solution of indeterminate equa-
tions. The most obvious is an arithmetic one in which, for the example given 
above, a solution set for (x, y, z) that satisfies the three equations is obtained 
by trial and error. By a long and laborious process it is possible to work out 
that the solution set (x = 7, y = 4, z = 3) will give a least-integer value of 
N = 23. The scope of such a method, apart from its tedium, is very restricted.

A second approach is the one that probably originated with the Indian 
mathematician Aryabhata I (c. AD 500) and was refined and extended by 
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later mathematicians, notably Brabmagupta (c. 625), Mahavira (c. 800), 
and Bhaskaracharya (c. 1100). The method, referred to as kuttaka, con-
sisted of continuous divisions and substitutions. This approach is discussed 
in chapter 9.

The third method of solving indeterminate equations of the first degree 
bears some resemblance to the Indian approach. It is the method favored 
in more recent times. To illustrate it, consider the following problem:

Example 7.10  Solve 5x + 8y = 100, in integers ≥ 0. 

Solution We have

8 1 5 3#= + 	 (7.9)

5 1 3 2#= + 	 (7.10)

3 1 2 1#= + 	 (7.11)

2 2 1#= 	 (7.12)

The greatest common denominator (GCD) of 8 and 5 is 1, since any 
number that divides 8 and 5 must divide 3 by equation (7.9), then 2 
by equation (7.10), and then must divide 1 by equation (7.11). Back-
substituting, starting with equation (7.11), gives

( )
[ ( )]

( ) ( )
[ ( )] ( )

1 3 1 2
3 1 5 1 3
2 3 1 5

2 8 1 5 1 5

from equation (7.10),

from equation (7.9) .

#

#

# #

# # #

= −

= − −

= −

= − −

Therefore

1 (2 8) (3 5) .# #= − 	 (7.13)

The method is perfectly general, and with it we can always obtain from 
any pair of integers x and y their GCD h, and a relation

,h Mx Ny= +

where M and N are positive or negative integers.16 Returning to the so-
lution, multiplying equation (7.13) by 100 gives

Continued . . . 
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Continued . . . 

( )( ) ( )( ),100 200 8 300 5= + −

and

100 (200 5 )8 (8 300)5,t t= − + −

for any t chosen, covers all solutions. Hence the solution sets are ob-
tained from the equations

, .x t y t8 300 200 8= − = −

The solutions in integers ≥ 0 correspond to t = 38, 39, 40:

, ;
, ;
, .

x y
x y
x y

4 10
12 5
20 0

= =

= =

= =

Finally, there is the Chinese procedure (or da yan). Before we examine 
it, though, we must consider why there was such a long and sustained 
interest in this subject in both India and China. The answer for both coun-
tries lies in problems to do with time that arose in calendar making and 
astronomical calculations. One problem in calendar making attracted the 
attention of both Sun Zu (c. AD 300), the originator of indeterminate 
analysis in China, and Qin Jiushao (c. 1250), whose statement of the da 
yan rule for the general solution of indeterminate equations of the first 
degree predated the work of Euler and Gauss by five hundred years. We 
shall consider the role of astronomy in motivating Indian work in this 
area in a later chapter.

All calendars need a beginning. A calendar constructed during the 
Wei dynasty (220–265) took as its starting point the last time that winter 
solstice coincided with the beginning of a lunar month and was also the 
first day of an artificial sexagenary (60-day) cycle known as Jia Zu. The 
objective was to locate exactly the number of years (measured in days) 
since the beginning of the calendar. To restate the problem in modern 
symbolic notation, let y be the number of days in a tropical year, N the 
number of years since the beginning of the calendar, d the number of days 
in a synodic month, r1 the number of days in the 60-day cycle between the 
winter solstice and the last day of the preceding Jia Zu, and r2 the number 
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of days between the winter solstice and the beginning of the lunar month. 
The number of years since the beginning of the calendar can then be cal-
culated from

( 60) ( 60) .mod modyN r r1 2/ /

More complex alignments, including planetary conjunctions, were built 
into models for estimating the beginnings of calendars, and as early as the 
fifth century AD the mathematician-astronomer Zu Chongzhi solved a set 
of ten linear congruences. However, the first general mathematical formu-
lation for solving problems in indeterminate analysis of the first degree is 
found in the work of Qin Jiushao (c. 1250).

The Early Approach
Let us return to the problem from the Sun Zu Suan Jing. The solution of-
fered by Sun Zu reads:

If you count in “threes” and have the remainder 2, then put 140.

If you count in “fives” and have the remainder 3, then put 63.

If you count in “sevens” and have the remainder 2, then put 30.

Add these numbers and you get 233; from this subtract 210, and you 
have the answer (23).

A popular folk song of the time, “The Song of Master Sun,” offered the 
following mnemonic for the problem:

Not in every third person is there one aged three score and ten,
On five plum trees only twenty-one boughs remain,
The seven learned men meet every fifteen days,
We get our answer by subtracting one hundred and five over and over 

again.

In modern algebraic notation we would say that, given

3 2 5 3 7 2,N x y z= + = + = +

or

( ) ( ) ( ),mod mod modN 2 3 3 5 2 7/ / /

then the solution is obtained as
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70 1( 3) 0( 5) 0( 7),
21 1( 5) 0( 3) 0( 7),
15 1( 7) 0( 3) 0( 5) .

mod mod mod
mod mod mod
mod mod mod

/ / /

/ / /

/ / /

Hence

[(2 70) (3 21) (2 15)] 233 (2 105) 23.N ## # #= + + = − =

The key to understanding this method is to find out where the numbers 
105, 70, 21, and 15 come from. First, we find the smallest integers a1, a2, a3 

such that 

1( 3) 0( 5) 0( 7),
1( 5) 0( 3) 0( 7),
1( 7) 0( 3) 0( 5) .

mod mod mod
mod mod mod
mod mod mod

a
a
a

1

2

3

/ / /

/ / /

/ / /

Since 1( 3) 0( 5) 0( 7)mod mod moda1 / // , it would follow that a1 / 

0(mod 35) and thus a1 must be a multiple of 35. Now the smallest multiple 
that is congruent with 1(mod 3) is 70. So we let a1 = 70. Similarly, we can 
show that the appropriate values for a2 = 21 and for a3 = 15. 

Now let

2 3 2 .N a a a1 2 3= + +

It can be seen from the congruences shown above for a1, a2, a3 that 

2( 3) 3( 5) 2( 7) .mod mod modN / //

Specifically, 

(2 70) 5(3 21) (2 15) 233.N # ##= + + =

To obtain the smallest possible solution, we subtract multiples of 105, 
the least common multiple of 3, 5, and 7, since doing so will preserve the 
congruences modulo 3, 5, and 7:17

233 (2 105) 23.N #= − =

We shall not attempt to generalize this procedure; the interested reader 
may wish to consult Libbrecht’s splendid monograph (1973), which con-
tains an extensive discussion of this subject.

However, what is interesting is the application of this procedure in Chi-
nese mathematics. In his Methods of Computation, Yang Hui identifies an 
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ancient problem of indeterminate analysis that has come to be known as 
the “hundred fowls problem”:

Example 7.11  If cockerels cost 5 qians each, hens cost 3 qians each, and 
3 chickens cost 1 qian, and if 100 fowls are bought for 100 qians, how 
many cockerels, hens, and chickens are there [the qian is a copper coin]?

Various alternative answers are offered:

•  �Answer: 4 cockerels, 18 hens, and 78 chickens costing 20, 54, and 
26 qians respectively

•  �Answer: 8 cockerels, 11 hens, and 81 chickens costing 40, 33, and 
27 qians respectively

•  �Answer: 12 cockerels, 4 hens, and 84 chickens costing 60, 12, and 
28 qians respectively

Given our powerful tool of symbolic algebra, this problem is easy to 
solve by specifying the following set of equations, given that x, y, and z 
are the number of cockerels, hens, and chickens respectively:

5 3 100,
100.

x y z
x y z

3
1+ + =

+ + =

Substitute z = 100 - x - y in the first equation to obtain 7x + 4y = 100 
or y = 25 - (7/4)x. Since y must be an integer, it would follow that x 
must be a multiple of 4. In other words, the solutions are obtained from 
the equations 

4 , 25 4 , 100 4 25 4
7 4 75 3 .x t y t z t t t4

7
= = − = − − − = +d dn n< F

For t = 1, 2, 3, we get solution sets (x, y, z): (4, 18, 78), (8, 11, 81), and 
(12, 4, 84), which are the solution sets given above. For t = 4 or greater, y 
become negative, which is plainly absurd. However, the solution set cor-
responding to t = 0 (or no cockerels) was not offered. Neither is a plau-
sible explanation or justification of how the answers were obtained.18

The interest in this problem lies in a different context: the appearance of 
very similar problems in other mathematical traditions. The examples may 
vary in terms of the groups involved: men, women, and children (Alcuin, 
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735–804); or pigeons, cranes, swans, and peacocks (Sridhara, fl. 850–950); 
or birds, ducks, hens, and sparrows (Abu Kamil, c. 900). However, the totals 
amount to one hundred in each case. It is more than likely that there was 
diffusion in this case, but the direction and its chronology remain unclear.

The Grand Quartet
In the course of this chapter the names of four notable mathematicians oc-
cur with regularity; their innovative work in the areas discussed must rank 
as some of the greatest contributions of Chinese mathematics. We know 
little about Yang Hui, except that he lived around 1250 and came from 
Hangzhou, now a small city in the Yangzi River Delta, and was probably 
a minor civil servant. Unlike the other three, he was essentially a prolific 
arithmetician, as indicated by the content of his output, which was mostly 
concerned with bringing to light earlier computational methods found in 
the Jiu Zhang or in everyday arithmetic, including different methods of 
multiplication and division. His work on magic squares, discussed in the 
previous chapter, vouches for his interest in recreational mathematics. 

All we know regarding Zhu Shijie, who lived around the end of the thir-
teenth century near present-day Beijing, is contained in a short passage 
that reads:

Master Songting [the literary name of Zhu Shijie] of Yanshan became 
famous as a mathematician. He travelled over seas and lakes for more 
than 20 years and the number of those who came to be taught by him 
increased each day. (Quoted in Martzloff 1997a, 153)

We therefore infer that he was a wandering teacher. His major work, 
Si Yuan Yu Jian (The Precious Mirror of the Four Elements19), shows that 
he was not merely an uncritical admirer of the past reflected in the long 
tradition of the Jiu Zhang. In his mathematics he showed considerable 
daring: like the Mesopotamians, whom we discussed in chapter 4, he had 
no scruples adding areas to volumes and prices to lengths. He must have 
been an irritant to the military establishment, for when asked to help 
with their recruitment drive, he suggested that it should be based on an 
arithmetical progression. The originality of his work and his manner of 
presentation could have militated against his work being noticed by those 
who came after him in China. In more recent years, this neglect has also 
masked the extent to which Chinese algebra had outpaced its European 
counterpart. 
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We know more about the life of Li Ye. Born in 1192 in what is the 
present-day Beijing, he was appointed initially an assistant magistrate, a 
post that he was unable to take up because of war. He was then appointed 
a governor in Hunan Province, an appointment that was short-lived be-
cause of the Mongol invasion. Fleeing from the invaders, he took refuge in 
Shansu Province, where lived a reclusive life. It was during this period that 
he composed his main work, Ce Yuan Hai Jing (The Sea Mirror of the Circle 
Measurements). This is a book in twelve sections involving 170 problems 
all telling the same story (relating to the same diagram, a circle inscribed in 
a right-angled triangle) of people wandering along certain roads around a 
circular town. Each person tries to catch sight of one another or of a given 
object such as a tree, which is hidden from them by the town walls. The 
question is invariably to find the diameter of the town, given the distances 
they have walked, and the answer is often the same: 120 bu (≈ 200 meters). 
As we have seen in an earlier section, there is a striking similarity between 
problems posed by Li and Qin ( see examples 7.9 and 7.10), and the solu-
tions suggested involve higher-order equations. It is interesting that the 
two, although contemporaries, lived in mutually hostile parts of China and 
were therefore unlikely to have met or communicated. Yet, here they were, 
working independent of each other, producing work that was both original 
and similar.

Qin Jiushao is generally regarded as one of the most accomplished math-
ematicians to come out of China. Indeed, in any list of great mathemati-
cians who lived before the emergence of modern mathematics, Qin should 
figure prominently. He was one of the four brilliant Song mathematicians 
of the first half of the thirteenth century who were responsible for devel-
oping algebra to a level that was far in advance of anything that would be 
achieved elsewhere until the middle of the seventeenth century. However, 
it should not be thought that in China at that time there was anyone like 
today’s professional mathematicians. Of the four notable mathematicians 
of the period, Zhu was a wandering teacher, Yang a minor civil servant, Li 
a scholarly recluse, and Qin a man of many parts, the most important of 
which were his work for the military and civil service.

Born in Anyue in what is now Sichuan Province, Qin’s father occupied 
various posts in the local administration, which meant that the family 
moved around. In his youth, according to his own report, Qin moved to 
Hangzhou, which enabled him to study both mathematics and astronomy. 
A central part of his study was the Jiu Zhang. He served in the army when 
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the Mongol armies invaded Sichuan and held posts in various administra-
tions. He died in 1261.

The little we know of Qin’s character is not very flattering. He was con-
sidered by some of his contemporaries as unprincipled, extravagant, and 
boastful, and his penchant for sexual imbroglio made him the equal of 
Casanova himself. But nobody denies his remarkable versatility. He was 
well versed in astronomy, harmonics, mathematics, and even architecture. 
In sports, there were few to match him in polo, archery, or swordplay. He 
made notable contributions in two areas of mathematics: in the solution 
of numerical equations of higher degree (as we have discussed) and, more 
importantly, the derivation of the da yan rule for solving indeterminate 
equations of the first degree.

His treatment of indeterminate analysis is found in his best-known 
book, Shu Shu Jiu Zhang, written in 1247. The book contains eighty-one 
problems divided into nine sections, but there the resemblance to the Jiu 
Zhang stops. Neither the examination of the subjects covered nor the il-
lustrative problems included owes much to the revered text. In his preface, 
Qin notes that he intends to introduce a method of indeterminate analysis 
(da yan shu) which, though known to calendar makers and astronomers 
such as the famous Buddhist sage Yi Xin (c. AD 700), is not found in the 
Jiu Zhang.

Qin’s approach is best illustrated by an example from his book; we do 
not, however, follow him in the details of the solution he offered. His pro-
cedure for solving this problem is summarized by Libbrecht (1973, p. 408).

Example 7.12  Three thieves, A, B, and C, entered a rice shop and stole 
three vessels filled to the brim with rice but whose exact capacity was 
not known. When the thieves were caught and the vessels recovered, it 
was found that all that was left in Vessels X, Y, and Z were 1 ge, 14 ge, 
and 1 ge respectively. The captured thieves confessed that they did not 
know the exact quantities that they had stolen. But A said that he had 
used a “horse ladle” (capacity 19 ge) and taken the rice from vessel X. B 
confessed to using his wooden shoe (capacity 17 ge) to take rice from 
vessel Y. C admitted that he had used a bowl (capacity 12 ge) to help 
himself to the rice from Vessel Z. What was the total amount of rice 
stolen?

Continued . . . 
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Continued . . . 

Solution

The problem, restated concisely in modern notation, is to find N given 
that

1( 19) 14( 17) 1( 12) .mod mod modN / / /

Qin’s answer is that the total amount of rice stolen (N) is

22,573 (5 3,876) 3,193 .ge#− =

The reader who wishes to follow the computation method adopted 
by Qin should consult Libbrecht.

The Shu Shu Jiu Zhang contains a number of practical problems of inde-
terminate analysis. They include problems in calendar calculations, engi-
neering and military applications, and architecture. Qin worked not only 
with integers but also with fractions, for which he devised special proce-
dures. Libbrecht (1973) gives a detailed technical discussion of Qin’s work 
and fills in the social and economic background to the various problems. 
For its rigor, clarity, and originality, Qin’s work must rank as one of the 
outstanding pieces of mathematical literature. It is a measure of its quality 
that later Chinese mathematicians found it difficult to comprehend. It thus 
remained neglected until the eighteenth century, when it began to arouse 
some interest. By this time, though, work on linear congruence had already 
begun in Europe with seminal contributions from Euler (1743) and Gauss 
(1801), initially using techniques similar to the ones pioneered by Qin. 
European developments soon eclipsed the Chinese work that had begun 
with Sun Zu some fifteen hundred years before.

Mathematics and Music in China
It is a widely held view that mathematics in China suffered a general decline 
after the heights attained during the Song and Yuan dynasties between the 
tenth and the fourteenth centuries. The succeeding Ming dynasty (1368–
1644) was believed to be a period during which crucial mathematical texts 
and techniques were lost and the mathematical creativity of the earlier pe-
riod was stultified by the rigidities inherent in civil service and the court 
bureaucracy.20 



Special Chinese Topics  293 

Such an assertion is not based on any exhaustive studies of mathematics 
during the Ming period. One would suspect, with Hart (1997), that claims 
of mathematical decline during the Ming period emanated in part from 
Jesuit propaganda, notably the comments of Matteo Ricci, which was then 
uncritically accepted by later historians of Chinese science.21

A neglected contribution from the Ming period has been the work of 
the musician Zhu Zaiyu (1536–1611), the first person to solve the math-
ematical problem of “equal temperament.”22 A ninth-generation grandson 
of the founder of the Ming dynasty, his father enjoyed the status and wealth 
of a provincial king until he was stripped of his title and placed under 
house arrest as a result of some trumped-up charge accusing him of trea-
son against the emperor. Zhu, as a loyal son, built himself a thatched hut 
with mud floor outside his father’s palace and decided to dedicate himself 
to scholarly pursuits. These included, in the main, mathematics, calendar 
reform, music theory, performance of music instruments, and ritual dance.

To understand the context of Zhu’s work on equal temperament, it is 
important to recognize that as early as 2700 BC, Chinese theorists had 
been preoccupied in establishing the gong pitch (also known as the “Yellow 
Bell”), which can be translated as the “fundamental pitch.” They had strug-
gled to work out the mathematical complexities involved in calculating the 
eleven tones that should rise above it. To understand this preoccupation, 
it is important to recognize that, for the ancient Chinese, music was not a 
matter of entertainment and amusement alone but also had an exception-
ally important component in the rites and rituals of the court. There was 
a strong belief that the downfall of a dynasty was, therefore, caused by a 
flaw in the ritual music of that court. So every new dynasty was dictated by 
the imperative to establish the correct ritual music to prolong its survival. 
Also, correct ritual music must ensure that the scale and tonic pitch it used 
agreed with the numerical ratios that reflected the relative positions of the 
planets in the zodiac.23 Zhu was particularly conscious of the corruption 
and decadence of the court that was responsible for his father’s plight. He 
believed that by introducing a new system of ritual music, the fortunes of 
the court could be restored and the decline of the Ming dynasty arrested. 
Equal temperament was part of his armory. 

An equal temperament in music is a system of tuning in which every pair 
of adjacent notes has an identical frequency ratio.24 Equal temperaments 
are often intended to approximate some form of “just intonation” (i.e., any 
tuning system in which the frequencies of notes are related by ratios of 
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integers). In such cases, an interval—generally an octave—is divided into 
a series of equal steps (or equal frequency ratios). In the case of modern 
Western music, the most common tuning system is to divide the octave 
into twelve equal parts (semitones), usually starting with a standard pitch 
of 440 Hz. This system is normally referred to as the “twelve-tone equal 
temperament system.” The concept of equal temperament begins with the 
recognition that the ratio of tones between octaves is 1:2 (or 4:8, 8:16, . . .). 
This ratio has been known among various historical cultures for a long time.

Vincenzo Galilei (father of Galileo), in a 1581 treatise, may have been 
the first person in the West to advocate equal temperament.25 But Zhu 
Zaiyu was the first to obtain the correct solution to the problem of how 
to achieve equal temperament. He came up with the solution in 1584, and 
about thirty years later the same ideas were published in Europe by Marin 
Mersenne (1588–1648) and Simon Stevin (1548–1620).26 An interesting 
question, to be discussed later, is whether the solution may have spread 
from China to Europe through either the Jesuits or some other agency. 

In an equal temperament, the distance between each step of the scale 
is the same length. In a twelve-tone equal temperament system, which di-
vides the octave into twelve equal parts, the question arises as to the ratio 
of frequencies (r) between two adjacent semitones. Zhu concludes that this 
ratio, expressed in modern mathematical language, is 

. .r 2 1 0594630912 .=

Or, in other words, the division is achieved by calculating the thirteen 
notes of the scale (including the fundamental note, assumed here to have 
the value 1) in the following ratios:

1:1; 1:2 ; 1:2 ; 1:2 ; ; 1:2 ; 1:2 ,[i.e. 2] .1/12 /12 3/12 11/12 12/122 f

Every interval between each pair of the adjacent notes within the octave is 
212 ; that is, the scale is equidistant (or equally tempered). 
The manner in which Zhu arrives at this answer is interesting. He begins 

with the familiar Pythagorean result for a right-angled isosceles triangle of 
length 10 cun. The length of its hypotenuse is 

. .10 10 10 2 10 1 414213562 2 # f+ = =

Ignoring the length of the fundamental, given as 10 cun, the square root 
of 2 (which is the length of the hypotenuse) represents the note that is the 
midpoint (denoted by C) between the octave of the fundamental 1 (denoted 
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by A) and the terminal 2 (denoted by B). Zhu used an abacus to calculate 
the square root of 2 correctly to twenty-four decimal places, which is proba-
bly the first time in the long history of Chinese mathematics that the square 
root, and later the cube root, were calculated using the abacus!

Now the note that is the midpoint between the calculated value (C) and 
the terminal value B can be obtained by the same procedure, as follows: 

. .10 10 2 10 2 10 1 189207114# # f= =

This number represents the ratio for the interval of a minor third, or the 
interval separating three semitones.

The final step involves obtaining the ratio for a semitone that is equiva-
lent to calculating the cube root: 

. .10 10 10 2 10 2 10 1 0594630943 12# # # f= =

The number 1.059463094359295264561825r =  is the twelfth root of 2 
(correct to the twenty-fourth decimal place). This is what is required for 
generating an “equal temperament” series. That is, if the fundamental is 1, 
repeated multiplication by r, starting with multiplying 1 by r, would gener-
ate all the terms of the series.

Zhu’s actual computational procedure has an elegance and simplicity 
worthy of note. He needs only three steps to arrive at the value of twelfth 
root of 2. These steps are given below. No further explanation is needed, 
except to add that he uses the following result in step 3 to simplify his 
calculations:

( )2 2 / / /12 1 2 1 2 1 3
= 7 A# -

Step 1.  Calculate . .2 1 41421356f=

Step 2.  Calculate . . .1 4142135623 1 18920711f=

Step 3.  Calculate . . .1 189207115 1 05946309f=

In other words, in a twelve-tone equal temperament scale, which di-
vides the octave into twelve equal parts, the ratio of frequencies between 
two adjacent semitones is the twelfth root of 2. Or, more generally, the 
smallest interval in an equal-tempered scale is the ratio 

, ,r p r pson n= =

where the ratio r divides the ratio p ( = 2/1 in an octave) into n equal parts.27
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The possibility of Zhu’s work being transmitted to Europe should not 
be dismissed outright. The evidence needs to be collected and evaluated 
further. However, from Matteo Ricci’s Journals, it is clear he was aware that 
the way of gaining entry into the royal court was to introduce its members 
to the latest in astronomy, calendar reforms, and Western music. He had 
asked to be sent a harpsichord, which he taught court officials to play. He 
was on good terms with the court officials and the literati, although he 
never met Zhu, nor is there any documentary record of him being aware 
of Chu’s work on equal temperament. Nevertheless, Ricci must have been 
aware of the close relationship in China between calendrical science and 
the musical rites, and thus the revolutionary results of Zhu’s musical theo-
rizing, even if he was not aware of Zhu himself.28 After all, two of Ricci’s 
most influential converts and disciples had strong connections with music: 
one became the director of the Bureau of Rites, and the other was an ac-
complished instrumentalist. 

The Influence of Chinese Mathematics

Three main cultural areas came under the influence of Chinese mathemat-
ics: Korea, Tibet, and Japan. The circumstances under which the influence 
manifested itself, the response to it, and the assimilation of Chinese math-
ematics differ considerably between each of these areas.

Mathematics in Korea 
In 682 AD, under the Shilla dynasty, a system of mathematics educa-
tion was established in Korea. Based on the Tang liu tian, a codified 
mathematics program established during the Tang dynasty in China 
(AD 618–906), its purpose was to train professional mathematicians. A 
closely controlled program, it prescribed the number of mathematicians 
to be trained, the length of study, and the content of the curricula. Stu-
dents could be enrolled at any age between fifteen and thirty, and their 
studies lasted for nine years or longer. The full curriculum, according to 
Kim (1994, p. 112), consisted of elementary (“six‑chapter arithmetic”), 
intermediate (“nine‑chapter arithmetic”), and advanced (“continuation 
techniques”) components. The original Tang model, on which the Korean 
system was based, recruited students at a younger age, with the dura-
tion of study being seven years, and a more elaborate curriculum was of-
fered, based on the Jiu Zhang and its commentaries. The Korean program 
remained in place as the official program until the end of the Choson 
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dynasty in 1910. It influenced the system set up in Japan around AD 701, 
known as the Taihorei. China and Japan soon discontinued their pro-
gram of studies.

During the Choson dynasty in Korea (1392–1910), the program was re-
vised and strengthened, with the requirement that all bureaucrats had to 
undergo mathematical training. A class of bureaucrats, called the chungin 
(“middle men”), were put in charge of the technical civil service examina-
tions. Mathematicians were recruited to become an increasingly important 
section of this class.

The chungin soon became an exclusive class, intermarrying among 
themselves and establishing an almost castelike line of descent, whereby 
a father who was a mathematician would be succeeded by a son who was 
also trained in the same discipline. The discipline was further regimented 
during the reign of Sejong (AD 1419–1450), when a Bureau of Mathemat-
ics and an Agency for Calendars were established at the same time as a 
system of awarding titles such as sanhak paksa (doctor of mathematics), 
sanhak kyosu (professor of mathematics), and sansa (mathematician).

The growing professionalism in the discipline was not, however, 
matched by greater creativity on the part of its members. We have an ac-
count of one Hong Chong‑ha, a professor of mathematics and a chungin, 
who wrote a text titled Kuilchip (Nine Chapters of Arithmetic in One). He 
was born in 1684 into a family where his father, both grandfathers, and 
a great‑grandfather, as well as his wife’s father, were all mathematicians! 
(Kim 1994, p. 113). His book could well have been written three hundred 
years earlier. Its content was no different from the older Chinese methods 
of the original program, even to the extent of retaining calculation rods 
when, in China, they had already been replaced by the abacus.

The stranglehold that Chinese mathematics had on Korean mathemat-
ics was never significantly loosened. Even when new ideas came to China 
from Europe, they had virtually no impact on Korean mathematics. The 
intellectual climate and the institutionalization of mathematics as a disci-
pline in Korea seem to have hindered the understanding and assimilation 
of modern mathematics.

Astronomy in Tibet
Tibet has a living astronomical heritage influenced by both China and In-
dia. As a product of the cultural mixing of religions, languages, and astro-
nomical knowledge, Tibetan astronomy provides another model of how 
outside influences are fused in the development of science. 
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Tibetan astronomy (or rtsis) may be broadly divided into four branches: 
nag‑rtsis (black calculation), rgya‑rtsis (Chinese calculation), skar‑rtsis 
(star calculation), and dbayabis‑char (divination). The former two branches 
are of Chinese origin while the latter two are of Indian origin. The first and 
the third may be loosely interpreted in modern terms as astronomy, while 
the other two are closer to astrology. We will concentrate on the Chinese 
components.

A popular work of the seventeenth century on nag-rtsis lists nine inte-
gral components of the subject, being a blend of Chinese natural philoso-
phy such as the theory of the five basic elements and the yin‑yang principle 
and of Chinese astrological practices that include the association of each 
year in a twelve‑year cycle, and each month in a year, with a particular ani-
mal (e.g., rat, tiger, horse, sheep). There is also a description of the Chinese 
lunar zodiac, which contains 28 lunar mansions or houses.

The rgya‑rtsis is based on a Tibetan translation of an original Chinese 
text on the construction of a Shixian calendar, the last lunisolar calendar 
to be constructed before being replaced by the Gregorian solar calendar in 
China in 1912. A lunisolar calendar consists of “short” months of 29 days 
and “long” months of 30 days. The idea is to arrange short and long months 
so that the new moon will occur on the first day of each month and the full 
moon on the fifteenth day of that month. A solar calendar, on the other 
hand, requires an independent system of solar intervals, which, in the case 
of a tropical year, consists of twelve equal intervals of time, with the inter-
val center being the middle point of each equal interval. Since the synodic 
month (which is based on the moon and so varies between 29 and 30.1 days) 
is always slightly shorter than an equal interval in a solar calendar, an inter-
val center will not occur in certain months. The month of nonoccurrence is 
known as an intercalary month; the year in which an intercalary month oc-
curs has 13 synodic months. This occurs roughly once in every three years.

The Tibetans have had a long tradition of constructing a lunisolar cal-
endar and making adjustments for intercalary months; this has gone hand 
in hand with astronomical and calendar construction practices that origi-
nated in India. The coexistence of these different calendars used for differ-
ent purposes, reminiscent of the Mayan practice discussed in chapter 2, is 
one of the more interesting aspects of Tibetan astronomy.

The culmination of traditional Tibetan astronomy, however, is found in 
the works of Bu‑ston Rin‑chen grub (1290–1344). Bu‑ston wrote an astro-
nomical text called Kas‑pa dga’byed, which summarizes the subject matter 
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of Tibetan astronomy in seven chapters. Apart from the final chapter of the 
text, which contains a discussion of word-numerals based on Indian texts 
(to be discussed in the next chapter), mathematics (as opposed to “calcu-
lation”) is treated here as primarily a tool for astronomical calculations. 
Indeed, there is no known Tibetan text that deals with mathematical work 
outside astronomy.

Mathematics in Japan
The introduction of Chinese mathematics into Japan took place during 
two periods: in the eighth and ninth centuries AD, and in the sixteenth 
and seventeenth centuries AD.29 In the first period, when the Jiu Zhang was 
brought to Japan, its impact was limited, probably because of the lack of 
understanding of the text on the part of the Japanese. However, the text was 
preserved and a Japanese translation made, to be studied by a few scholars.

The introduction of Chinese mathematics during the second period was 
a more creative encounter. Two important thirteenth-century texts found 
their way to Japan via Korea. An encounter occurred between two cultures, 
which, despite other differences, shared the same mathematical language. 
This experience would be different from the Japanese encounter with 
Western mathematics that occurred a few centuries later. The language of 
one had to be translated and interpreted for the other.

We will approach the Sino‑Japanese encounter through a case study of 
Seki Takakazu (alias Seki Kowa, 1642–1709). He is a central figure in Japa-
nese mathematics in a number of ways and was mentioned briefly in chap-
ter 6 for his work on magic squares and the discovery of determinants. He 
is generally accepted as the greatest Japanese mathematician of his time. His 
role was crucial in giving final shape to an original and individualistic cre-
ation of Japanese mathematics, an approach known as the Wasan, the im-
portance of which is reflected in the fact that the word Wasan is sometimes 
used to describe the whole indigenous mathematical tradition of Japan.

Although Seki Takakazu was strongly influenced by Chinese mathemat-
ics, it is difficult to determine precisely which Chinese works he studied. 
However, he was a prolific writer, and a number of his publications are 
either transcriptions of mathematics from Chinese into Japanese or com-
mentaries on certain works of well‑known Chinese mathematicians.

There is little known about the personal life of Seki Takakazu. He was 
born in Fujioka, the second son in a samurai warrior family, and be-
gan writing mathematical texts when he was employed as an auditor by 
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Shogun Tokugawa lenobu. In later life he became the landlord of a “300 
person” village.

Seki Takakazu’s interests ranged widely over a number of fields of math-
ematics (fifteen, according to certain Japanese historians of mathematics), 
including constructions of calendars, recreational mathematics, magic 
squares and magic circles, and solutions of higher-order and indetermi-
nate equations. He had two able disciples, the brothers Katahiro Takebe 
(1664–1739) and Kataaki (1661–1739). Between them they brought out an 
encyclopedia of the mathematics of their forerunners, titled Taisei Sankyo 
(Large Account of Mathematics), which ran to twenty volumes. Seki Taka-
kazu died in Edo (now Tokyo) on December 5, 1708.

According to Shigeru and Rosenfeld (1997), Seki Takakazu made con-
tributions in advance of, or contemporaneous with, the works of European 
mathematicians of the same period: he discovered determinants ten years 
before Leibniz, extended the Chinese work on solving numerical equations 
of higher order using the Horner-Ruffini method, discovered the conditions 
for the existence of positive and negative roots of polynomials, did innova-
tive work on continued fractions, and discovered the Bernoulli numbers a 
year before Bernoulli. In geometry, he calculated the value of p correct to 
nine decimal places by applying an ingenious extrapolation to a polygon 
with 217 sides. This work was extended by his disciple Takebe, who obtained 
an accuracy, remarkable for the time, of thirty-one decimal places, from a 
formula equivalent to Taylor’s expansion of sin–1x, fifteen years before Euler. 
Other notable geometrical contributions include the calculation of the vol-
ume of a sphere using an original integral method called enri, calculations 
on conic sections, and on Archimedes’ spirals. The last few years of his life 
were spent mainly on astronomical works, which are found in Shiyo Sampo 
(Mathematical Methods of Computing Four Points on the Lunar Orbit) and 
Tenmon Sūgaku Zatcho (Notes on Astronomy and Mathematics).

Many of Seki Takakazu’s works are remarkable considering the standard 
of Japanese work of that time. The subjects he took up were mainly those that 
interested Chinese mathematicians of the Song and Yuan dynasties. These 
included Yang Hui’s Suan Fa (Method of Computation), Shen Kuo’s Meng Ji 
Xi Tan (Dream Pool Essays), Zhu Shijie’s Si Yuan Yu Jian (Precious Mirror of 
the Four Elements), Li Ye’s Ce Yuan Hai Jing (Sea Mirror of Circle Measure-
ments), and Qin Jiushao’s Shu Shu Jiu Zhang (Nine Sections of Mathematics).

As an illustration of the way that Seki Takakazu put his own stamp on 
the Chinese work, consider the first and the last works in the above list. 
Yang Hui’s work on magic squares indicates that the Chinese interest in 
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the subject had both mathematical and philosophical significance. As 
mentioned in the previous chapter, Chinese philosophers believed that the 
smallest magic square (Luo Shu) had mysterious power. Chinese math-
ematicians were constrained because of this “magical” element to confine 
themselves only to squares of certain sizes. Seki Takakazu was not under 
any such constraint: his interest in the subject was purely mathematical. 
As a result, the work on this topic found among Seki Takakazu and other 
Japanese mathematicians after him ranged widely to include larger squares 
as well as other shapes such as circles, cubes, and spheres.

One may detect a similar disposition in Seki Takakazu’s approach to 
the problem of solving indeterminate equations. In China, indeterminate 
equations arose from astronomical studies in particular to compute “ac-
cumulated years from an initial epoch.” Shigeru and Rosenfeld (1997) 
maintain that it is likely, as in the case of magic squares, that Seki Taka-
kazu ignored the metaphysics contained in Qin Jiushao’s works and con-
centrated instead on the mathematics. However, Seki Takakazu’s work on 
indeterminate equations does not represent any significance advance on 
Shu Shu Jiu Zhang.

There is an area in which Seki Takakazu had a far‑reaching impact on 
Japanese mathematics: in his book Jinko‑ki, he invented a form of nota-
tional algebra that helped him to understand and decipher the solutions 
of higher-order numerical equations that Qin Jiushao had obtained using 
the tian yuan notation. Seki Takakazu proceeded to develop this approach, 
known as the Wasan, to study parabolas, hyperbolas, and the spirals of 
Archimedes. He applied this approach to calculate a determinant of order 
5 in his work Kaifukudai‑no‑ho, published in 1683. Seki Takakazu’s dis-
ciples took up his work and developed the Japanese mathematical tradition 
of Wasan to a significant degree, climaxing in the work of Yoshiro Kuru-
shima (d. 1757) and Ryohitsu Matsunaga (d. 1744). For further details of 
the strengths and weaknesses of the Wasan tradition, the publications of 
Murata (1975, 1980, and 1994) are particularly valuable. 

Chinese Mathematics: A Final Assessment

From our survey in this chapter and the last, we can identify the areas 
where Chinese contributions were notable:

1. As early as the Shang dynasty (c. fourteenth century BC), there 
emerged a system of notation consisting of fourteen symbols, with 
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thirteen representing numbers (1 to 10 and signs for hundreds, thou-
sands, ten thousands) and an additive sign corresponding to “and.” 
Numbers were written using a decimal system. For example, 4,876 was 
written as (4  1,000) + ( 8  100) + (7  10) + 6 using specific sym-
bols for units and powers of ten. 

2. The development of an algorithm for extracting square and cube 
roots was first explained in the Jiu Zhang, and elaborated and refined by 
Sun Zu (c. AD 300) and other commentators. The thirteenth-century 
mathematicians extended the algorithm to the extraction of roots of any 
order using a Chinese version of the Horner-Ruffini method. It is pos-
sible that the Islamic mathematician Al-Kashi (c. AD 1400) and later 
Europeans were influenced by the Chinese method.

3. It is in China, near the beginning of the Christian era, that the con-
cept of negative numbers and of operations with them appears for the 
first time. These numbers appeared in India over five hundred years later.

4. In a third-century AD commentary on the Zhou Bi Jing there ap-
pears one of the earliest visual “proofs” of the gou gu (Pythagorean) 
theorem. A detailed discussion of the applications of this theorem to 
practical problems is found in the Jiu Zhang and its commentaries.

5. Early applications of the “rule of three” and the “rule of false posi-
tion” are found in Chinese mathematics during the first few centuries 
AD. The methods also appear in India soon after that and then in the 
Islamic world, from which they passed on to the West.

6. A notable contribution of Chinese mathematics was the develop-
ment of numerical methods of solving higher-order equations in the 
thirteenth century—methods bearing an uncanny resemblance to the 
Horner-Ruffini method, which was discovered in Europe at the begin-
ning of the nineteenth century.

7. From Sun Zu (c. AD 300) onward, the Chinese forged ahead with 
the solution of indeterminate equations of the first degree, using an 
approach further developed on the basis of continued fractions by La-
grange, Euler, and Gauss many years later.30

8. Pascal’s triangle of binomial coefficients was known in China as 
early as AD 1100. Chinese mathematicians used it as an aid to root 
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extractions. Later appearances of the triangle occur in the Islamic world 
(in Samarkand) and then in Europe. Pascal’s interest in the triangle that 
was named after him was more as an aid toward establishing his the-
ory of probability. Work on what looks like Pascal’s triangle is found in 
India, but the triangles were used more as representational devices to 
show combination than as analytical tools for numerical solutions of 
equations. We will discuss the Indian work in the next chapter.

9. In the work of some Chinese mathematicians can be seen attempts 
to blend geometric and algebraic approaches that are reminiscent of the 
work of al-Khwarizmi (c. AD 800), discussed in chapter 11.

10. The values of p estimated by Liu Hui (c. AD 200) and Zu Chong-
zhi (c. AD 400) remained the most accurate values for a thousand years.

11. Practical geometrical problems from the Jiu Zhang (early years 
of the common era), such as the broken bamboo problem, are found in 
the work of the ninth-century Indian mathematician Mahavira. In his 
work there also appears an erroneous rule for calculating the area of a 
segment of a circle, which one also finds in the Jiu Zhang.

12. The earliest appearance of the Chinese “remainder” theorem is 
in the work of Sun Zu (fourth century AD). It appears later in India in 
the work of Brahmagupta and then later in Europe. This is also true of 
the problem of the hundred fowls, which appears in China in the fifth 
century AD and then reappears later in India in the work of Bhaskara
charya (twelfth century) and in Europe in the works of the Italian Leon-
ardo of Pisa (also known as Fibonacci) in the thirteenth century.

13. The rule of “double false position” has its origins in the Jiu Zhang. 
It reappears in Europe via the Islamic world.

14. Numerical solutions of equations of order 3 are found in the Ji Gu 
Suan Jing (Contination of Ancient Mathematics) of Wang Xiaotong in 
the seventh century AD. They then appear in the work of Leonardo of 
Pisa via the Islamic world. 

Correspondences similar to these can be established in other cases. 
However, more research needs to be done before we can be more cer-
tain about the nature, direction, and mode of the interchange of math-
ematical ideas that took place between China and other cultural centers. 
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Throughout history, China has been relatively isolated from other cultures, 
partly by sheer geographical distance. Archaeological evidence suggests 
that at the time of the river valley civilizations there were contacts between 
Egypt, Mesopotamia, and the Harappan cultures; the civilization that de-
veloped along the Yellow River, however, was remote and separated from 
areas to the south and west by natural barriers such as the Himalayas and 
the central Asian plains. But these geographical barriers were not sufficient 
to exclude all contacts throughout history. The major impact of Chinese 
culture and mathematics (particularly the Jiu Zhang) on Japan, Korea, and 
other neighboring countries is clear, but Chinese contacts with areas to the 
south and west are more difficult to establish.

By the second century AD trade over the silk routes from China to the 
West was at its height, and along with the goods went ideas and techniques. 
In the centuries to come, the Classical civilizations of both the East and the 
West would suffer invasions small and large, culminating in Mongol hege-
mony over vast stretches of the Eurasian plains, which both served as an 
instrument for diffusion and led to the convergence of ideas and techno-
logical practices. In examining the dissemination of Chinese mathematics, 
one needs to look at the Indian and Islamic connections.

There is only fragmentary evidence of Chinese-Indian cultural and sci-
entific contacts before the rise of Buddhism around the fourth century AD. 
A number of Chinese Buddhist scholars (notable among the early travelers 
were Fa Xian, c. AD 400, and Xuan Zang, c. AD 650) made their pilgrimage 
to holy places in India, bringing back many texts for translation. Among 
the places they visited were monasteries such as Nalanda and Taxila, which 
were Indian centers of scholarship not only in religion but in medicine, 
astronomy, and mathematics too. Few of the writings or commentaries of 
these Buddhist pilgrims from China have been examined for what they 
reveal about Indian science; the main interest has been in their religious 
and sociological content.

Then there is the evidence of Chinese diplomats posted at the court of 
the Guptas in India around the fifth century AD. And from the seventh 
century, there is evidence that translations were made of Indian astronom-
ical and mathematical texts, such as the Bo-luo-men Suan Fa (Brahman 
Arithmetical Rules) and Bo-luo-men Suan Jing (Brahman Arithmetical 
Classic) mentioned in the records of the Sui dynasty. These works are no 
longer extant, and so it is difficult to assess how influential they were on 
Chinese science. However, there is clearer evidence of Indian influence on 
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Chinese astronomy and calendar making during the Tang dynasty. Indian 
astronomers were employed in the Imperial Bureau of Astronomy and 
charged with the tasks of preparing accurate calendars, some of which con-
tain the names of Indian astronomers. One of the Indians, whose Chinese 
name was Xi Da (Siddharta), was reputed to have constructed in AD 718 a 
calendar, based on the Indian Siddhanta of Varamahira (c. AD 550), on the 
orders of the first emperor of the Tang dynasty. The text contains sections 
on Indian numerals and operations, and sine tables. There are also sine 
tables at intervals of 3° 45´ for a radius of 3,438 units, which are the values 
given in the Indian astronomical texts Aryabhatiya and Suryasiddhanta.31 
This is the earliest record of a sine table in any Chinese text. Unfortunately, 
there is little evidence of Chinese science in any of the extant Indian texts.

The Islamic connection is probably better documented. One of the 
better-known hadiths (i.e., utterances of the prophet Muhammad that have 
religious sanction) is: “Seek learning, though it be as far away as China.” 
There are a number of reports of political and diplomatic links between 
the Islamic world and China to supplement trade relations. Arab travelers, 
including ibn Battuta (c. AD 1350), reputedly the greatest traveler of medi-
eval times, gave detailed accounts of Chinese society and science, includ-
ing shipbuilding, the manufacture of porcelain, the use of paper money, 
and even a comprehensive system of old-age pensions. Chinese mathemat-
ics may have made specific borrowings from Islamic sources: it is possible 
that trigonometric methods used in astronomy may have been transmit-
ted through Arab and Indian contacts. In constructing a calendar in the 
fourteenth century, Gou Shoujing used spherical trigonometric methods 
reminiscent of Islamic work. It is possible that Euclid’s geometry may have 
reached China at the end of the thirteenth century via the Islamic scholars, 
though the lack of interest in the Euclidean method—or, more probably, 
a lack of sympathy—meant that this knowledge was forgotten until it was 
reintroduced by the Jesuits. Finally, the lattice method of multiplication, 
which will be examined in chapter 10, appears in Chinese mathematical 
texts at the end of the sixteenth century. It is not clear whether the agents 
of transmission were the Arabs or the Portuguese.

Whether there was any direct transmission of mathematical knowledge 
from China to the West remains a matter of conjecture. However, the pos-
sibility should not be dismissed out of hand, as many historians of math-
ematics are inclined to do—either because they find the idea unpalatable or 
because there is insufficient documentary evidence. The fact remains that, 
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as early as the third century BC, Chinese silk and fine ironware were to be 
found in the markets of imperial Rome. And a few centuries later a whole 
range of technological innovations found their way slowly to Europe. It is 
not unreasonable to argue that some of China’s intellectual products, in-
cluding mathematical knowledge, were also carried westward to Europe, 
there perhaps to remain dormant during Europe’s intellectual Dark Ages but 
coming to life once more with the cultural awakening of the Renaissance.

During the late seventeenth and the eighteenth centuries, Europe be-
came aware of the Chinese intellectual heritage. The Jesuits were respon-
sible through their translations for awakening the interest of people like 
Voltaire, Gottfried Leibniz, and François Quesnay in Chinese thought and 
science. Leibniz (1646–1716), one of the founders of modern mathematics, 
was in the forefront of promoting a universal system of natural philosophy 
based on Confucian writings. He founded the Berlin Society of Science with 
the express purpose of “opening up China and the interchange of civiliza-
tions between China and Europe.” While there is already some recognition 
of Europe’s debt to China in the realms of philosophy and the arts (Ed-
wardes 1971), the possibility of an “east to west” passage of scientific ideas 
during this period through the Jesuit connection has hardly been explored.

If these conjectures are implausible, then so too must be the attribution 
of Greek or European origins to so many developments in mathematics and 
astronomy in other cultures. However, it is my belief that if the idea of a 
westward transmission of mathematics were to be taken more seriously, and 
research were to be channeled in this direction, perhaps it would be only a 
matter of time before further evidence of east-west links comes to light.32

Notes

1. It should be recognized here that the value of each of the two proofs mentioned 
varies, depending on the cultural context. Thus, trying to axiomatize a Chinese proof 
involving what we would today describe as a “cut-and-paste” method would be a cum-
bersome exercise, just as any attempt to remove Euclid’s proof from an Elements-type 
approach would run counter to common sense. For an attempt by the Islamic math-
ematician al-Kuhi to refocus proofs contained in Euclid’s Elements from an axiomatic 
basis to one of analysis and synthesis (a project close to the spirit of the “cut-and-paste” 
method of the Chinese), see Berggren and Van Brummelen (2005).

2. A reconstruction of Liu’s explanation is given in Dauben (2007, p. 285). 

3. Problem 32 in the Jiu Zhang reads: Given a circular field, the circumference is 181 bu 
and the diameter 60 3

1  bu. Tell what is the area. Liu points out that this corresponds to 
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an inaccurate ratio of circumference to diameter of 3. A more accurate diameter of  
57 22

13  bu would result from the ratio of 22/7. 

4. For a detailed discussion of Liu’s demonstration of these results, see Dauben (2007, 
pp. 235–39) and Martzloff (1997a, pp. 277–80).

5. It is worth reiterating that none of the ancient societies discussed in this book had 
the modern concept of p, and hence the qualification suggested by the term “implicit.” 

6. Rogers (2009) has argued that a closer study of the works of Euclid and of Archime-
des indicates that anything you can do with circumscribed polygons can be done just as 
well with inscribed ones. His argument is quite complex and best left to the interested 
reader to follow up. 

7. It may be argued that the concept of the “method of exhaustion” strictly involves a 
process of limiting the number captured between two converging bounds. In that case, 
it cannot be claimed that the “method of exhaustion” existed in China.

8. This was reported by Yang Hui in Xiang Jie Jiu Zhang Suan Fa (Detailed Analysis of 
the Mathematical Mehods in the Nine Chapters), who describes a table of binomial 
coefficients up to the sixth power that he attributes to Jia Xian.

9. These examples have been adapted from Dauben (2007, pp. 323–27) and Hodgkin 
(2005, pp. 92–93).

10. For details of the derivation, see Dauben (2007, pp. 325–27).

11. This is a view that originated with an article by Wang Ling and Joseph Needham 
(1955), who argued that the method was already present in the Jiu Zhang. This is not a 
view that is universally accepted. For a brief discussion see Martzloff (1997a, pp. 247–49).

12. Johann Schreck (1576–1630) was a fellow student of Viète. He arrived in China in 
1619 and, after learning Chinese, wrote and translated several Chinese textbooks on 
mathematics, engineering, medicine, and astronomy, alongside other Jesuit and Chi-
nese scholars. He was in contact with important scientists of his time, including Jo-
hannes Kepler, who sent Schreck his newest astronomical opus, the Rudolphine Tables, 
which arrived only after Schreck’s death. For further details, see Iannaccone (1998).

13. For an interesting technical discussion of the historical development of the subject, 
with special emphasis on China, see Shen Kangsheng (1988).

14. It is this problem of Sun Zu from which the name “Chinese remainder theorem” 
originates, a name that was given after the problem came to be known in the West.

15. If two integers A and B are divided by a common integer m (called the modulus) 
and leave the same remainder r, then A is said to be “congruent to B modulus m.” This 
is written as A / r (mod m) / B.
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16. Underlying this procedure is the use of the Euclidean algorithm, an algorithm to 
determine the greatest common denominator (GCD) of two integers. Its major signifi-
cance is that it does not require finding the factors of the two integers. It is one of the 
oldest algorithms known, appearing in Euclid’s Elements around 300 BC (Book VII, 
proposition 2). Given two natural numbers a and b, not both equal to zero: check if 
b is zero; if yes, a is the GCD. If not, repeat the process using, respectively, b, and the 
remainder after dividing a by b. The remainder after dividing a by b is usually written 
as a mod b. The Euclidean algorithm can be used in any context where division with 
remainder is possible.

17. Let n be a positive integer. Integers a and b are said to be congruent modulo n if they 
have the same remainder when divided by n. This is shown by writing a º b (mod n).

18. In another work, Yang Hui offers a similar problem that involves the purchase of 
three types of oranges: the total cost of 100 oranges is 100 coins, and the answer sought 
is how many oranges of the three types are bought. Yang Hui attempts to explain the 
method by which he obtains the solution, but the logic of his solution is not clear. See 
Dauben (2007, p. 333).

19. This English translation, suggested by Mikami (1974, p. 89), has been questioned by 
Hoe (1977, p. 41), who offers his own as “Mirror [trustworthy as] jade [relative to the] 
four origins [unknown],” which is incomprehensible unless explained!

20. For expressions of this widely held view among the historians of Chinese math-
ematics and science, see Liu Dun (1994, pp. 103–4), Martzloff (1994, p. 99), and Sivin 
(1995, p. 172). Needham (1959, p. 50) talks about “decay,” and Mikami (1974, p. 112) 
labels the Ming scholars “degenerate.”

21. Ricci was initially full of praise for Chinese science and technology. In a journal that 
he kept, he wrote soon after his arrival in China: “In their sciences, the Chinese are very 
learned: in medicine, moral [sciences], mathematics and astronomy, arithmetic, and fi-
nally all the liberal or mechanical arts. It is admirable that a nation, which has never had 
any relations with Europe, should have reached by its means almost the same results as we 
with the collaboration of the whole universe.” This opinion changed radically over time.

22. In the book titled Big Bangs: The Story of Five Discoveries That Changed Musical 
History, Goodall (2000, pp. 111–12) writes: “Equal Temperament is probably the single 
most important development in Western European music in the last 400 years and 
yet most people haven’t heard of it. Even musicians don’t really understand it, but an 
enormous amount of the world’s most beautiful music wouldn’t exist without it. Equal 
Temperament is . . . to music what the calendar is to the days and nights or what the 
24-hour clock is to the minutes and seconds.” 

23. It is interesting to note that, as early as the second century BC, the Han emperor 
Wu Di had set up a Bureau of Rites with the task of regulating the performance of ritual 
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music to ensure harmony between Man and Heaven. The twelve tones represented the 
cyclic return of a twelve-month year. Each month had its own fundamental pitch—and 
thus symbolic meaning and cosmological significance were bestowed on the relation-
ship between the musical pitch and the calendar month. 

24. For those unaware of musical terminology, a few explanations may be useful. Mu-
sical notes are the periodic oscillations in air pressure felt though the eardrums. If we 
plot air pressure against time, we get wavelike shapes. Frequencies, measured in hertz 
(Hz), are the number of cycles a wave completes in a second. The human ear can pick 
up frequencies from 20 Hz to 20,000 Hz, although aging lowers the upper limit to be-
low 10,000 Hz. Now some note combinations (i.e., two or more notes played together) 
are more pleasing than others, and they obey certain mathematical laws. For example, 
it has been found in a number of musical traditions that the most pleasing combina-
tions are those in which the numerical ratios between the frequencies are in the ratio 
of 1:2 (the “octave”) or in the ratio of 2:3 (the “perfect fifth”). Thus 440 Hz (considered 
as the fundamental “tuning” note in Western music) is one octave above 880 Hz, and 
the interval between two notes whose frequencies are 440 Hz and 660 Hz respectively 
constitutes a “perfect fifth.” Now if a melody (i.e., a sequence of notes played together) 
with frequencies 440, 660, and 733.3 Hz is played together with another melody exactly 
one octave apart, whose note frequencies are 880, 1,320, and 1,466.6 Hz, the result will 
be pleasing to the ear. However, if the second melody has frequencies 550, 825, and 
916.6 Hz, the result will sound discordant and not pleasing to the ear. Pythagoras and 
his disciples developed a theory to connect numbers, musical notes, and the movement 
of the planets. Some of the esoteric and metaphysical elements of the theory have been 
discarded, but the credit for recognizing the mathematics behind musical notes rests 
with the Pythagoreans.

25. Galilei’s solution in his Dialogo was to use the ratio of 18:17 ( i.e., 1.058823529 . . .) 
between the semitones, which was very close to equal temperament tuning although 
not as accurate as Chu’s based on taking the twelfth root of 2.

26. These dates are highly conjectural and the “thirty years” stated may well be an 
underestimate. We know that the preface to Chu’s first publication on the subject was 
written in January 1581, which implies that he must have arrived at his theory at least 
three years before, or earlier. Stevin’s undated work was first published after his death 
in 1620.

27. Traditions conforming to five- and seven-tone equal temperament are quite com-
mon. The Indonesian gamelan is tuned to a five-tone equal temperament, while a Thai 
or Ugandan Chopi xylophone approximates to a seven-tone equal temperament. Fur-
ther details of different tone temperaments found in ethnomusicology are discussed in 
Tenzer (2006).

28. Cho (2003, p. 200) writes: “The justification that Zhu [i.e., Chu] gave in first fixing 
this juibin [i.e., a particular note] by equalizing the distance between all the adjacent 
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tones within the octave is of considerable interest: it is based on calendrical science. 
That is, the correct length of (or the number of days within) a solar year can be ac-
curately determined by measuring the length of the periods between the summer and 
winter solstices or the vernal and autumnal equinoxes.” In other words, what Chu was 
recommending was the validity of a solar calendar measurement to replace what had 
been in use in China since time immemorial, a lunar calendar in which equinoxes fall 
on different days and even in different months.

29. This section on Japanese mathematics concentrates on the work of one man, Seki 
Takakazu, arguably the greatest mathematician produced by Japan before the eigh-
teenth century. However, there was a period between the seventh and nineteenth cen-
turies when Japan was cut off from the outside by imperial decree. During that period 
an unusual form of indigenous mathematics flourished independent of what was hap-
pening in the rest of the world. A wide selection of geometry problems were inscribed 
on wooden tablets called sangaku and posted in Buddhist temples and Shinto shrines 
all across the country by a variety of people including farmers, merchants, and warriors 
(or samurai). For further details of this unique mathematical tradition, see the book by 
Fukagawa and Rothman (2008). Their book also provides a useful survey of Japanese 
mathematics before the introduction of Western mathematics.

30. For further details, see Shen Kangsheng (1988).

31. The choice of a radius of value 3,438 was determined by the practice of dividing the 
circumference (C) of a circle into 360 # 60 = 21,600 equal parts. If the length of the 
arc of each of these equal parts is one unit, and the value of p is taken as 3.1416 (Ary-
abhatiya’s value), then the radius (r) of the circle can easily be established from the for-
mula C = 2pr to be r = 21,600/62,832 = 3,438 (to the nearest integer). Furthermore, 
in the construction of a sine table for angles between 0 and 90°, Aryabhata divided the 
quadrant into 24 equal parts so that the table would give the sines of the multiples of 
the basic angle (90/24), or 3° 45´.

32. Since the first edition of this book in 1991, there has been considerable work on 
transmissions to and from India, the Islamic world, and China. Chapter 10 contains a 
discussion of the methodologies of establishing transmissions across cultures and their 
application to a possible migration of Kerala mathematics to Europe through the Jesuit 
conduit. Further bibliographical information is available in that chapter. Another use-
ful reference is Y. Dold-Samplonius et al. (2002), which contains the proceedings of a 
conference on mathematical transmissions held in 2000.



Chapter Eight

Ancient Indian Mathematics

A Restatement of Intent and a Brief Historical Sketch

Ancient Indian history raises many problems. The period before the 
Christian era takes on a haziness that seems to have prompted opposing 
reactions. There are those who make excessive claims for the antiquity of 
Indian mathematics, and others who go to the opposite extreme and deny 
the existence of any “real” Indian mathematics before about AD 500. The 
principal motive of the former is to emphasize the uniqueness of Indian 
mathematical achievements. In this view, if there was any influence, it was 
always a one-way traffic from India to the rest of the world. The motives 
of the latter are more mixed. For some their Eurocentrism (or Graeco-
centrism) is so deeply entrenched that they cannot bring themselves to 
face the idea of independent developments in early Indian mathematics, 
even as a remote possibility.1

A good illustration of this blinkered vision is provided by a widely re-
spected historian of mathematics at the turn of the twentieth century, Paul 
Tannery. Confronted with the evidence from Islamic sources that the In-
dians were the first to use the sine function as we know it today, Tannery 
devoted himself to seeking ways in which the Indians could have acquired 
the concept from the Greeks. For Tannery, the very fact that the Indians 
knew and used sines in their astronomical calculations was sufficient evi-
dence that they must have had it from the Greeks.2 But why this tunnel 
vision? The following quotation from G. R. Kaye (1915) is illuminating:

The achievements of the Greeks in mathematics and art form the most 
wonderful chapters in the history of civilisation, and these achieve-
ments are the admiration of western scholars. It is therefore natural that 
western investigators in the history of knowledge should seek for traces 
of Greek influence in later manifestations of art, and mathematics in 
particular.
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It is particularly unfortunate that Kaye is still quoted as an authority on 
Indian mathematics. Not only did he devote much attention to showing 
the derivative nature of Indian mathematics, usually on dubious linguistic 
grounds (his knowledge of Sanskrit was such that he depended largely on 
indigenous pandits for translations of primary sources), but he was pre-
pared to neglect the weight of contemporary evidence and scholarship 
to promote his own viewpoint. So, while everyone else claimed that the 
Bakhshali Manuscript (discussed at the end of this chapter) was written 
or copied from an earlier text dating back to the first few centuries of the 
Christian era, Kaye insisted that it was no older than the twelfth century 
AD. Again, while the Islamic sources unanimously attributed the origin of 
our present-day numerals to the Indians, Kaye was of a different opinion. 
And the distortions that resulted from Kaye’s work have to be taken seri-
ously because of his influence on Western historians of mathematics, many 
of whom remained immune to findings that refuted Kaye’s inferences and 
established the strength of the alternative position much more effectively 
than is generally recognized.

This tunnel vision is not confined to mathematics alone. Surprised at 
the accuracy of information on the preparation of alkalis contained in an 
early Indian textbook on medicine (Sushruta Samhita)3 dating back to a 
few centuries BC, an eminent chemist and historian of the subject, M. Ber-
thelot (1827–1909), suggested that this was a later insertion, after the Indi-
ans had come into contact with European chemistry!

While non-European chauvinism (on the part of, for example, the 
Arabs, Chinese, and Indians) does persist, “arrogant ignorance”—as J. D. 
Bernal (1969) described the character of Eurocentric scholarship in the 
history of science—is the other side of the same coin. But the latter ten-
dency has done more harm than the former because it rode upon the po-
litical domination imposed by the West, which imprinted its own version 
of knowledge on the rest of the world.

Table 8.1 offers a brief summary of the main events in the long history of 
India as a backdrop to the development of mathematics; it divides Indian 
history up to the beginning of the sixteenth century into six periods. The 
map of India in figure 8.1 shows places mentioned in the text. The earli-
est evidence of mathematics is found among the ruins of the Indus Valley 
civilization, which goes back to 3000 BC. (It is perhaps more appropriately 
referred to as the Harappan civilization, since at its peak it spread far be-
yond the Indus Valley itself.) Around 1500 BC, according to the traditional 
—though increasingly contentious—view among historians, a group of 
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Table 8.1:  Chronology of Indian History and Mathematics

Period	 Main historical events	 Mathematics	 Notable  
			   mathematicians

3000–1500 BC	 The Indus Valley	 Weights, artistic 
	 civilization (script	 designs, “Indus scale”; 
	 undeciphered) 	 brick technology 
	 covering 1–2 million	 probably influenced 
	 square km; main urban	 the construction of 
	 centers Harappa, 	 Vedic altars in the next 
	 Lothal, and Mohenjo-	 period 
	 Daro
1500–500 BC	 The coming of the 	 Vedangas and	 Baudhayana,
	 Aryans; the formation	 Sulbasutras; problems	 Apastamba,
	 of Hindu civilization;	 in astronomy, arith-	 Katyayana 
	 the emergence of the	 metical operations, 
	 Code of Manu; the	 Vedic geometry
	 recording of the Vedas 
	 and Upanishads
500–200	 The establishment of	 Vedic mathematics 
	 Indian states; the rise of	 continues during the 
	 Buddhism and Jainism; 	 earlier years but 
	 contacts with Persia	 declines with ending 
	 maintained; the	 of ritual sacrifices; 
	 Mauryan empire,	 beginnings of Jaina 
	 culminating in the reign	 mathematics: number 
	 of Asoka, who spread	 theory, permutations 
	 Buddhism abroad	 and combinations, the 
		  binomial theorem; 
		  astronomy
200 BC–AD 400	 Triple division: Kushan	 Jaina mathematics: 
	 dynasty (North), 	 rules of mathematical 
	 Pandyas (South), 	 operations, decimal- 
	 Bactrian-Persian 	 place notation, first use 
	 (Punjab); pervading	 of 0; algebra including 
	 influence of Buddhism	 simple, simultaneous, 
	 in art and sculpture	 and quadratic equations; 
		  square roots; details of 
		  how to represent 
		  unknown quantities  
		  and negative signs
	 continued
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people descended from the north and destroyed the Harappan culture, but 
not before they had absorbed some of its features. These invaders are often 
referred to as “Aryans”—a term that has acquired an unfortunate connota-
tion in modern times through its association with the Nazis.

The Aryans were a pastoral people, speaking a language that belonged 
to the Indo-European family. It remained for a long time a spoken rather 
than a written language, with writing initially restricted to the vernaculars. 
Over the years this language, Sanskrit, developed sufficiently to become a 
suitable medium for religious, scientific, and philosophical discourse. Its 
potential for scientific use was greatly enhanced as a result of the thorough 
systematization of its grammar by Panini, about 2,600 years ago. In a book 
titled Astadhyayi (Eight Chapters), Panini offered what must be the first 
attempt at a structural analysis of a language. On the basis of just under 
four thousand sutras (i.e., rules expressed as aphorisms), he built virtually 

Table 8.1:  Continued

Period	 Main historical events	 Mathematics	 Notable  
			   mathematicians

400–1200	 Imperial Guptas	 The Classical period	 Aryabhata I, 
	 reaching their height in	 of Indian mathematics;	 Varahamihira, 
	 the reign of Harsha	 important works: the	 Bhaskara I, 
	 (606–647); flowering	 Bakshali Manuscript,	 Brahmagupta, 
	 of Indian civilization	 Aryabhatiya, Panca-	 Sridhara,
	 as shown in science,	 siddhantika,	 Mahavira,
	 philosophy, medicine,	 Aryabhatiya Bhasya,	 Bhaskara II
	 logic, grammar, and	 Maha Bhaskariya,	 (also known as
	 literature	 Brahma Shputa-	 Bhaskaracharya)
		  siddhanta, Patiganita,
		  Ganita Sara Samgraha,
		  Ganitilaka, Lilavati, 
		  Bijaganita
1200–1600	 Early Muslim dynasties;	 Decline of mathe-	 Narayana, 
	 birth of Sikhism; the	 matics and learning	 Madhava, 
	 Hindu kingdom of	 in the North; the rise	 Nilakantha 
	 Vijaynagar in the South	 of the Kerala school  
		  of astronomy and 
		  mathematics; work  
		  on infinite series and  
		  analysis
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the whole structure of “Classical” Sanskrit language, whose general “shape” 
hardly changed for the next two thousand years. Sanskrit served as a useful 
medium for recording early scriptural texts such as the Vedas and Upa‑
nishads, early scientific literature such as the Vedangas (or Limbs of the 
Vedas), and early rules of social conduct such as the Code of Manu.

Figure 8.1: Map of India and (inset) Southeast Asia
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An indirect consequence of Panini’s efforts to increase the linguistic 
facility of Sanskrit soon became apparent in the character of scientific 
and mathematical literature. This may be brought out by comparing the 
grammar of Sanskrit with the geometry of Euclid—a particularly apposite 
comparison since, whereas mathematics grew out of philosophy in ancient 
Greece, it was, as we shall see, partly an outcome of linguistic develop-
ments in India.

The geometry of Euclid’s Elements starts with a few definitions, axioms, 
and postulates and then proceeds to build up an imposing structure of 
closely interlinked theorems, each of which is in itself logically coherent 
and complete. In a similar fashion, Panini began his study of Sanskrit by 
taking about seventeen hundred basic building blocks—some general con-
cepts, vowels and consonants, nouns, pronouns and verbs, and so on—and 
proceeded to group them into various classes. With these roots and some 
appropriate suffixes and prefixes, he constructed compound words by a 
process not dissimilar to the way in which one specifies a function in mod-
ern mathematics. Consequently, the linguistic facility of the language came 
to be reflected in the character of mathematical literature and reasoning in 
India. Indeed, it may even be argued that the algebraic character of ancient 
Indian mathematics is but a by-product of the well-established linguistic 
tradition of representing numbers by words.

The third period of Indian history began around 800 BC. It saw not only 
the establishment of two of the great religions originating in India, Bud-
dhism and Jainism, but also the growth of independent states, a number of 
which were later merged to form the first of the great empires of India, the 
Mauryan empire. This period marked the decline of Vedic mathematics 
and the gradual emergence of the Jaina school, which was to do notable 
work in number theory, permutations and combinations, as well as other 
abstract areas of mathematics.

The fourth period, from about 200 BC, was a period of instability and 
fragmentation brought about by waves of foreign invasions. But it was also 
a time of useful cross-cultural contacts with neighbors and with the Hel-
lenistic world, bringing fresh ideas into Indian science and laying the foun-
dation for great advances in the next period. The Kushan empire became 
an important vehicle for spreading not only Buddhist religion and art but 
also Indian science, particularly astronomy, into western Asia. Probably 
the only piece of existing mathematical evidence from this period is the 
Bakhshali Manuscript. However, the earlier dating of this manuscript to 
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the third century is based on an estimate made by Hoernle, who was the 
first to study it. On the basis of recent evidence, notably that of Hayashi 
(1995), the manuscript cannot be dated earlier than the eighth century.

The fifth period, from the third to the twelfth centuries, is often referred 
to as the Classical period of Indian civilization. The earlier part of this 
period saw much of India ruled by the imperial Guptas, who encouraged 
the study of science, philosophy, medicine, and other arts. Mathemati-
cal activities reached a climax with the appearance of the famous quartet: 
Aryabhata, Brabmagupta, Mahavira, and Bhaskaracharya. Their lives and 
works will be examined in the next chapter. Indian work on astronomy 
and mathematics spread westward, reaching the Islamic world, where it 
was absorbed, refined, and augmented before being transmitted to Europe.

The last period, which we may describe as the “medieval” period of In-
dian history, saw the rise of great states in southern India and a migration 
of mathematics and astronomy from the North to the South, probably as a 
result of political upheavals. It was believed for a long time that mathemati-
cal development came virtually to a stop in India after Bhaskaracharya in 
the twelfth century. There may be some element of truth in this as far as the 
North was concerned, but in the South—and particularly in the Southwest, 
in the area corresponding to the present-day state of Kerala—this was a 
period marked by remarkable studies of infinite series and mathematical 
analysis that predated similar work in Europe by about three hundred years.

The mathematics of Kerala will be presented in a separate chapter. In this 
chapter we examine Indian mathematics from its early beginnings to just 
before the Classical period; in the next chapter we consider mainly Classi-
cal Indian mathematics. The development of Indian numerals is dealt with 
in this chapter, though there is some historical overlap, particularly when 
one considers the spread of the numerals into countries such as Cambodia 
and Java to the east, and into the Islamic world to the west. The reader may 
wish to refer to table 8.1 and figure 8.1 whenever necessary to sketch in the 
historical and geographical background to this and the next chapter.

Math from Bricks: Evidence from the Harappan Culture

Between 1921 and 1923 a series of archaeological excavations along the 
banks of the Indus uncovered the remains of two urban centers, at Harappa 
and Mohenjo-Daro, dating back to about 3000 BC. Subsequent searches 
over the last four decades have revealed further remains spread across an 
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area of about 1.2 million square kilometers, including not only the Indus 
Valley but parts of East Punjab and Uttar Pradesh, northern Rajasthan, the 
coastal areas of Gujerat (which contained the major port and the third of 
the large urban settlements of this civilization, Lothal), and northern areas 
near the Persian border. Over seventy sites, large and small, have been ex-
cavated to uncover this most dispersed of the early civilizations, hereafter 
referred to as the Harappan culture.

It was a highly organized society, with the towns supplied by surround-
ing agricultural communities, which cultivated wheat and barley and 
raised livestock. Urban development was regulated by planning and char-
acterized by a highly standardized architecture. There is every possibility 
that the town dwellers were skilled in mensuration and practical arithme-
tic of a kind similar to what was practiced in Egypt and Mesopotamia. 
Alas, the Harappan script remains undeciphered, so our evaluation of the 
mathematical proficiency of this civilization must be based on excavated 
artifacts. The archaeological finds described below do provide some in-
dication, however meager, of the nature of the numerate culture that this 
civilization possessed.

1. A number of different plumb bobs of uniform size and weight, 
showing little change over the five hundred years for which evidence 
is available, have been found throughout the vast area of the Harappan 
culture. This uniformity of weights over such a wide area and time is 
quite unusual in the history of metrology. Rao (1973), who examined the 
considerable finds at Lothal, showed that the weights could be classified 
as “decimal”: if we take the plumb bob weighing approximately 27.584 
grams as a standard, representing 1, the other weights form a series with 
values of 0.05, 0.1, 0.2, 0.5, 2, 5, 10, 20, 50, 100, 200, and 500. Such stan-
dardization and durability is a strong indication of a numerate culture 
with a well-established, centralized system of weights and measures.

2. Scales and instruments for measuring length have been discov-
ered at Mohenjo-Daro, Harappa, and Lothal. The Mohenjo-Daro scale 
is a fragment of shell 66.2 mm long, with nine carefully sawn, equally 
spaced parallel lines, on average 6.7056 mm apart. The accuracy of the 
graduation is remarkably high, with a mean error of only 0.075 mm. 
One of the lines is marked by a hollow circle, and the sixth line from the 
circle is indicated by a large circular dot. The distance between the two 
markers is 1.32 inches (335 mm) and has been named the “Indus inch.”



Ancient Indian Mathematics  319 

There are a number of interesting links between this unit of measure-
ment (if indeed this is what it was) and others found elsewhere. A Sumerian 
shushi is exactly half an Indus inch, which would support other archaeo-
logical evidence of a possible link between the two urban civilizations. In 
northwestern India a traditional yard, known as the gaz, was in use from 
very early times; in the sixteenth century the Mughal emperor Akbar even 
attempted (unsuccessfully) to have the gaz adopted as a standard measure 
in his kingdom. The gaz, which is 33 inches (840 mm) by our measure-
ment, equals 25 Indus inches. Furthermore, the gaz is only a fraction (0.36 
inches) longer than the megalithic yard, a measure that seems to have been 
in use in northwestern Europe around the second millennium BC. This has 
led to the conjecture that a decimal scale of measurement may have origi-
nated somewhere in western Asia and spread widely—as far as Britain, and 
to ancient Egypt, Mesopotamia, and the Indus Valley (Mackie 1977).

A notable feature of the Harappan culture was its extensive use of kiln-
fired bricks and the advanced level of its brick-making technology. Chatto-
padhyaya (1986) has argued for a closer examination of this activity, which 
should give us some vital clues about the direction and character of later 
mathematical developments in India. So let us examine the socioeconomic 
origins of making and using kiln-fired brick in the Harappan culture.

There is general agreement among archaeologists of the Harappan cul-
ture that, during its formative stages, farmers had to produce a substantial 
agricultural surplus to support a rapidly growing urban population. Pre-
sumably this occurred, not as a result of the introduction of any revolu-
tionary agricultural technology, but because of improved knowledge about 
how to exploit the annual flooding and thus raise agricultural productivity. 
When the floods receded, principal food crops such as wheat and barley 
would be sown on the land that had been submerged, to be harvested in 
March or April. The land would need no plowing, no manure, and no ad-
ditional irrigation. With a minimum of labor and equipment, a substantial 
yield could be achieved. The return of the floods would mark the period 
when the autumn crops, such as cotton and sesame, would be sown for 
harvesting at the end of the autumn. By recognizing how the floods could 
be utilized to prepare the land for cultivation, and by following a strict 
sequence of sowing and harvesting spring and autumn crops, it became 
possible to build up a large agricultural surplus. However, before such a 
system of cultivation could be considered, an effective system of flood con-
trol was necessary. In areas where stone was not readily available (and this 
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included most of the Harappan sites), there was a need for something more 
solid than mud brick, which was easily destroyed by rain or floodwater. 
The technology for firing bricks was thus a momentous discovery. There 
is evidence, especially from Kalibanga, a pre-Harappan site, that kiln-fired 
bricks were already in use, but by the time the Harappan culture had ma-
tured there had been a veritable explosion in the production and use of 
such bricks.

The story is told of how William Brunton, a nineteenth-century railway 
builder, dug up the ruins of Harappa for bricks to use as ballast for a rail-
way line between Multan and Lahore, a distance of over a hundred miles! 
Despite this and other new uses for antique bricks, a massive quantity of 
them remain at Harappa. They are exceptionally well baked and of excel-
lent quality, and may still be used over and over again provided some care 
is taken in removing them in the first place. They contain no straw or other 
binding material. While fifteen different sizes of Harappan bricks have 
been identified, the standard ratio of the three dimensions—the length, 
breadth, and thickness—is always 4:2:1. Even today this is considered the 
optimal ratio for efficient bonding.

A correspondence between the Indus scales (from Harappa, Mohenjo-
Daro, and Lothal) and brick sizes has been noted by Mainikar (1984). 
Bricks of different sizes from these three urban centers were found to have 
dimensions that were integral multiples of the graduations of their respec-
tive scales. This apparent relationship between brick-making technology 
and metrology was to reappear about fifteen hundred years later during the 
Vedic period, in the construction of sacrificial altars of brick. We take up 
the story again later in this chapter.

The argument for Indian mathematics beginning in Harappa is not 
based on any direct evidence: nothing like the Mesopotamian clay tablets 
or the Egyptian papyri exist to testify to its origins. However, the elaborate 
constructions excavated there cannot be understood without attributing 
knowledge of a number of geometrical propositions: propositions relating 
to the shapes and mensuration of rectilinear figures and circles.

Notwithstanding these conjectures, an important source of evidence, 
the written Harappan script, has so far thrown no light on this subject. It 
remains unread, despite years of ingenious attempts to do so. The script 
poses certain problems that were not present in the case of other ancient 
scripts. The Harappan writing is available only through objects of a very 
restricted medium: typically in the form of seals made of steatite, each seal, 
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on average, containing a text of only five graphemes (or signs). No bilin-
gual or multilingual text, such as the Rosetta stone in the Egyptian case, is 
available. Also the language, or the language family, of the Indus script is 
unknown, although the common assumption made in the past was that it is 
some form of proto‑Dravidian language and had “disappeared” sometime 
before the middle of the second millennium BC. There is, apparently, a 
long hiatus between this disappearance and the emergence of the so‑called 
historical period of the Indian subcontinent (the Vedic period), thereby 
causing a big “hole” in the chronology of Indian mathematics right from 
its inception. Whether this “hole” has been partly filled by recent research 
evidence is a moot point to be discussed in a later section.

Deciphering the Indus Script
There have been a number of attempts to read the inscriptions on the 
steatite seals ever since a substantial collection of them became available 
around the 1920s. Many of the early attempts were phonetic interpreta-
tions based on unverifiable a priori linguistic attributes and other specula-
tions sometimes involving mythological elements of Hindu traditions. A 
notable “objective” attempt was that of Hunter (1934), who carried out a 
positional and functional analysis of the signs of the Indus script and sug-
gested methods for splitting the texts into certain sign combinations that 
constituted “words,” irrespective of their linguistic attributes. Following 
Hunter’s work, more recent investigations have involved detailed structural 
analysis of the texts with the aim of classifying the signs or sign combina-
tions into linguistic units, such as root morphemes, attributes, and other 
grammatical suffixes, and then reading the texts phonetically, adapting a 
form of Dravidian as the underlying language. 

Any fresh approach to the deciphering of the Indus script needs to take 
account of three distinctive features that have been identified in earlier 
studies. First, rich structural regularities exist in the texts, which makes 
them distinct from other ancient writings. Second, the texts occur in al-
most all cases on seals, so that the purposes of these seals become a matter 
of some importance. Finally, a closer examination should be made of the 
nature and significance of a number of animal and other motifs, named 
“field symbols” by archaeologists, that occur on many of the seals together 
with the writing. And the examination of all three features should be made 
within the historical context of the emergence of the Harappan culture and 
its aftermath. Some more recent studies (Jeganathan 1993; Kak 1989, 1990; 
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Subbarayappa 1993) are noteworthy attempts to incorporate these features 
and look at the seals with fresh eyes.

It is generally accepted that the Indus seals are records of administra-
tion and of internal as well as external trade. Indus seals have been found 
in sites of West Asia, commercial contact between the Harappans and the 
neighboring areas. There is also general agreement among archaeologists 
of the existence of an efficient and centralized administration, governing 
the vast area that constituted the Harappan culture, ensuring a degree of 
uniformity, whether it was in the construction of houses and public ameni-
ties or the promotion of arts and commerce or other activities.

What do the inscriptions on seals mean? To attempt an answer, some 
features of the Harappa culture need to be highlighted. The geographical 
spread of this culture makes it highly unlikely that the language was the 
same throughout the length and breadth of that culture. Even the Meso-
potamian civilization, which was contained in a much smaller area than 
that of the Harappan culture, had regional languages. India has had a mul-
tilingual culture from ancient times. There have been marked variations 
not only in spoken but also in written languages. As to a common script, 
whatever may have been the situation in other ancient civilizations, the 
picture could well be different on the Indian subcontinent. Even the earli-
est extant written records from the first half of the first millennium BC 
used two scripts—Kharosti and Brahmi—as vehicles of the same language.

Are we therefore justified in assuming that there was one language 
throughout the Harappan culture—in the urban centers such as Mohenjo‑
Daro, Harappa, Chanhu‑Daro, Lothal, and Kalibangan as well as in the 
rural settlements—spanning a total area of 1.2 million square kilometers? 
Yet the assumption of a similar literary script is necessary since the seals, 
and other inscribed objects found in different parts of the Harappan cul-
ture, have more or less identical forms with a noticeable uniformity of their 
own. Such continuity is more plausible in the case of a well‑established 
system of numerical notation. Subbarayappa (1993) compared the Indus 
signs to Brahmi, Kharosti, and the Chinese “oracle‑bone” numerals and 
found a number of similarities between these numeral forms. This find-
ing has important implications for examining the origins of our decimal 
numerals. Future work based on longer written records found from more 
recent excavations is needed to verify other conjectures linking the Indus 
script with the Brahmi script, in the case of Kak (1989), or with the Dravid-
ian counting etymology in the case of Jaganathan (1993).
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Mathematics from the Vedas

The Sources
Vedic literature4 went through four stages of development: the Samhitas 
(c. 1000 BC), the Brahmanas (c. 800 BC), the Aranyakas (c. 700 BC), and 
the Upanishads (c. 600–500 BC). The Samhitas were lyrical collections of 
hymns, prayers, incantations, and sacrificial and magical formulas. From 
what must have been a vast corpus of such writings, four great collections 
have come down to us—some of the oldest surviving literary efforts of 
mankind. In order of their age5 they are

1. � Rig-veda (Praise-Knowledge), which contains hymns and prayers to 
be recited during the performance of rituals and sacrifices

2. � Sama-veda (Song-Knowledge), which contains melodies to be sung 
on suitable occasions

3. � Yajur-veda (Sacrifice-Knowledge), which contains sacrificial formu-
las for ceremonial occasions

4. � Athara-veda (Knowledge of the legendary sage Atharavan), a collec-
tion of magical formulas and spells

The Brahmanas, the second great division of Vedic literature, have been 
described as practical handbooks for those conducting sacrifices. Of these, 
an important source of early mathematics, which will be referred to later, 
is the Satapatha Brahmana (Brahmana of a Hundred Paths). As the Brah-
mana communities gradually dispersed from the north to the eastern and 
southern parts of the country, there arose a need for a record of ritual pro-
cedures and duties for a traveling class of priests, and a means of allocating 
special tasks among different priests.

For mathematics, a more important source is provided by the “limbs” 
(or appendixes) to the main Vedas, known as the Vedangas. These were 
classified into six branches of knowledge: (1) phonetics, the science of ar-
ticulation and pronunciation, (2) grammar, (3) etymology, (4) the art of 
prosody (chandah), (5) astronomy, and (6) rules for rituals and ceremoni-
als (kalpa). In the last two Vedangas are found the most important sources 
of mathematics from the Vedic period. The evidence is usually in the form 
of sutras, a peculiar form of writing that aims at the utmost brevity and 
often uses a poetic style to capture the essence of an argument or result. 
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By avoiding the use of verbs as far as possible and compounding nouns 
at great length, a vast body of knowledge was made easier to memorize. 
Condensation into sutras was also a way of eking out scarce writing ma-
terials. This was the form in which the contents of the Brahmanas were 
preserved, and it was adopted later not only by various philosophical and 
scientific schools but also by writers of books on statecraft (arthasastra) 
and sex manuals (kamasastra).

We have referred to the Kalpasutras as an important source of Vedic 
mathematics. This ritual literature included Srautasutras, which gave di-
rections for constructing sacrificial fires at different times of the year. Part 
of this literature dealt with the measurement and construction of sacrificial 
altars, and came to be known as the Sulbasutras. The term originally meant 
rules governing “sacrificial rites,” though later the word sulba came to refer 
to the rope used to lay out altars. Most of what we know of Vedic geometry 
comes from these sutras.

The Early Antecedents of Vedic Geometry
The Satapatha Brahmana, which is about three thousand years old,6 con-
tains one of the earliest mentions of the technical aspects of altar construc-
tion. A section of this text deals with constructing altars to carry out a 
twelve‑day Agnicayana (Fire Altars) ceremony to mark the passage of time. 
The ceremony is carried out on an open ground divided into two sections:

1. The Mahavedi (Great Altar) was laid out as an isosceles trapezium 
with the bases 24 prakrama and 30 prakrama and width 36 prakrama. 
A prakrama is about 0.8 meters. The choice of these dimensions may 
have been dictated by a calendrical consideration: to reconcile the dis-
crepancy between the two calendars in use at the time—the lunar and 
the solar—by choosing a nominal year of 360 days, which is four times 
the sum of the above dimensions. The Mahavedi contained within it a 
vakrapaksa‑syena (i.e., an altar shaped like a falcon with curved wings), 
shown in figure 8.2. There were other constructions in the Mahavedi 
of functional and ritual significance, but of little mathematical interest.

2. The Pracinavamsa was a smaller rectangular section that lay to 
the west of the Mahavedi and contained three fire altars consisting of 
Garhapatya (of circular shape symbolizing the earth), Dakshinagni 
(of semicircular shape representing space), and Ahvaniya (of a square 
shape representing the sky). These three altars had to be of equal area 



Fi
gu

re
 8

.2
: Th

e fi
rs

t l
ay

er
 o

f a
 V

ed
ic

 sa
cr

ifi
ci

al
 al

ta
r i

n 
th

e s
ha

pe
 o

f a
 fa

lc
on

. Th
e w

in
gs

 ar
e e

ac
h 

m
ad

e f
ro

m
 6

0 
br

ic
ks

 o
f t

yp
e a

, a
nd

 th
e b

od
y 

fr
om

 
46

 o
f t

yp
e 

b,
 6

 o
f t

yp
e 

c, 
an

d 
24

 o
f t

yp
e 

d.
 (A

fte
r Th

ib
au

t 1
87

5)



326  Chapter 8

of one square purusha (approximately five square meters). Seidenberg 
(1962, 1983) has an interesting discussion of the ambiguities in the Ve-
dic texts relating to equivalence of area as well as the philosophical un-
derpinnings of such a requirement. The last of the fire altars mentioned 
(the sky altar) was laid out in five layers, with the first representing the 
earth, the second being the joining of earth and space, the third space, 
the fourth representing the joining of space and sky, and the fifth the 
sky. The need to maintain equivalence of areas among altars of various 
shapes was a preoccupation that continued for a long time. As discussed 
in the next section, it raised a number of geometric problems, the solu-
tions of which led to early Indian geometry.

Another problem that led to some interesting mathematics related to 
ensuring the precise distance and relative positions of the three fire altars. 
The general requirement was that Dakshinagni should lie south of the 
line joining the other two fire altars and at a distance from Garhapatya of 
one‑third the distance between the other two fire altars. A discussion of 
how this was solved is given in Joseph (1996a, 1996b).

The Sulbas : Mathematics in the Service of Religion?
There is a view that Indian mathematics originated in the service of reli-
gion. The proponents of this view have sought their main support in the 
complex motives behind the recording of the Sulbasutras. Since time im-
memorial, they argue, the needs of religion have determined not only the 
character of Indian social and political institutions but also the develop-
ment of scientific knowledge. Astronomy was developed to help determine 
the auspicious day and hour for performing sacrifices. The thirty-six verses 
attributed to one Lagadha known as the Vedanga-Jyotisa (the Vedanga 
containing astronomical information) gave procedures for calculating the 
time and position of the sun and moon in various naksatras (signs of the 
zodiac).7 Also, a strong reason in Vedic India for the study of phonetics and 
grammar was to ensure perfect accuracy in pronouncing every syllable in a 
prayer or sacrificial chant. And the construction of altars (or vedi) and the 
location of sacred fires (or agni) had to conform to clear instructions about 
their shapes and areas if they were to be effective instruments of sacrifice.

The Sulbasutras provided such instructions for two types of ritual, one 
for worship at home and the other for communal worship. Square and 
circular altars were sufficient for household rituals, while more elaborate 
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altars whose shapes were combinations of rectangles, triangles, and trape-
ziums were required for public worship. One of the most elaborate of the 
public altars was shaped like a falcon just about to take flight, as shown in 
figure 8.2. It was believed that offering a sacrifice on such an altar would 
enable the soul of the supplicant to be conveyed by a falcon straight to 
heaven. There were other shapes of fire altars such as one in the form of a 
tortoise to be constructed by one “desiring to win the world of Brahman” 
and another in the shape of a rhombus to enable one to “destroy existing 
and future enemies” (Sen and Bag 1983, pp. 86, 98).

Early researchers on the Sulbasutras, notably Thibaut in the second half 
of the nineteenth century, were at pains to stress the religious element of 
these texts but ignored their secular side. It is worth merely mentioning at 
this stage an argument to be elaborated later that the Sulbasutras may well 
provide a connecting thread between the Harappan culture, which came 
to an end around 1750 BC, and the emergence of a literate Vedic culture 
around the beginning of the first millennium BC. The highly developed 
brick-making technology of the Harappan culture was replicated in the 
construction of sacrificial altars during the Vedic period. According to this 
view, then, the instructions given in the Sulbasutras were mainly for the 
benefit of craftsmen laying out and building altars. To overemphasize the 
religious and ritual features of altar design and construction at the expense 
of the technological aspects is to diminish the role of craftsmen in ancient 
Indian society, at the same time buttressing the stereotypical view of a so-
ciety dominated by priests and overwhelmed by ritual.

Three of the more mathematically important Sulbasutras were the ones 
recorded by Baudhayana, Apastamba, and Katyayana. Little is known about 
these sulbakaras (i.e., authors of Sulbasutras), except that they were not just 
scribes but probably also priest-craftsmen performing a multitude of tasks 
including constructing vedi (sacrificial altars), maintaining agni (sacred 
fires), and instructing worshippers on the appropriate choice of both sacri-
fices and altars. It is difficult to assign firm dates to these three texts. All we 
can say is that the earliest of them, the one composed by Baudhayana, was 
probably first recorded between 800 and 500 BC, and that the other two 
were recorded one or two centuries later. (From their style, they predate the 
Sanskrit grammarian Panini, who lived in the fourth century BC). 

Baudhayana’s Sulbasutra is complete in three chapters and offers in-
structions to those conducting the sacrifices as to how to construct altars of 
various shapes using stakes and marked cords. With our present hindsight, 
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we can discern from these instructions a general statement of the Pythago-
rean theorem, an approximation procedure for obtaining the square root 
of 2 correct to five decimal places, and a number of area-preserving trans-
formations for “squaring the circle” (approximately) and constructing rec-
tilinear shapes whose area was equal to the sum or difference of areas of 
other shapes. The next-oldest text, by Apastamba, contains six chapters 
and treats in more detail the topics examined by Baudhayana. Katyayana’s 
Sulbasutra adds little to the work of his predecessors.

Sulba Geometry
The geometry of the Sulbasutras grew out of the need to ensure strict con-
formation of the orientation, shape, and area of altars to the prescriptions 
laid down in the Vedic scriptures. Such accuracy was just as important 
for the efficacy of the ritual as was the meticulous pronunciation of Ve-
dic chants (or mantras). However, while accurate geometric methods were 
used, the principles underlying the constructions were often not discussed. 
It will therefore be useful, while going through the illustrative examples 
given below, to bear in mind the distinction between three aspects of the 
geometry found in the Sulbasutras:

1.  Geometric results and theorems explicitly stated

2.  Procedures for constructing different shapes of altars

3.  Algorithmic devices contained in (1) and (2)

In the first category the most notable is the Pythagorean theorem for a 
right-angled triangle. As we have seen, knowledge of this result has been 
found in a number of early mathematical traditions. Here we shall look 
only at a specific application of it to the design of a particular type of altar. 
It is the second aspect of sulba geometry that forms a substantial part of the 
mathematical evidence of the period. Again, the emphasis is on designing 
altars with the minimum of tools. We shall briefly examine just three of the 
fifteen such constructions discussed in the texts. Finally, as an illustration 
of an algorithmic device born out of constructional needs, we consider the 
approximation procedure for evaluating the square root of 2.

The actual statement of the Pythagorean theorem, expressed in terms of 
the sides and diagonals of squares and rectangles, is found in both the Baud-
hayana and Apastamba Sulbasutras. Almost the same statement with exactly 
the same content occurs in Katyayana’s Sulbasutra. Baudhayana states:
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The rope which is stretched across the diagonal of a square produces an 
area double the size of the original square.

All three Sulbasutras give a more general proposition:8

The rope [stretched along the length] of the diagonal of a rectangle 
makes an [area] which the vertical and horizontal sides make together.

Figure 8.3 illustrates how this proposition was applied in the construc-
tion of altars. It shows a drawing of the base of the Mahavedi (Great Altar) 
for the Soma ritual (at which an intoxicating drink called soma was offered 
as a sacrifice to the gods).9 Its base had to be constructed to precise dimen-
sions if the sacrifice was to bear fruit. It had to be an isosceles trapezium 
like ABCD, with AD and BC being 24 and 30 padas (literally feet). The 
altitude of the trapezium (i.e., the distance between the midpoints X and Y 
of AD and BC) had to be precisely 36 padas.

The instructions given for the construction of this altar in Apastamba’s 
Sulbasutra are, in modern notation, as follows:

1.  With the help of a rope mark out XY, which is precisely 36 padas.

Figure 8.3: The layout of the Mahavedi (Great Altar)
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2. � Along this line, locate points P, R, and Q such that XP, XR, and XQ 
equal 5, 28, and 35 padas respectively.

3. � Construct perpendiculars at X and Y.

4. � Use the fact that the triangles APX, DPX, BRY, and CRY are right-
angled triangles with integral-valued sides to locate points A, B, C, 
and D. In other words, make AXD 24 padas and BYC 30 padas. Join 
AB, BC, CD, and DA.

Implied in these directions for construction are the following right-
angled triangles with integral sides:

DAPX and DDPX with sides 5, 12, 13

DAOX and DDOX with sides 12, 16, 20

DBRY and DCRY with sides 8, 15, 17

DBOY and DCOY with sides 15, 20, 25

DAQX and DDQX with sides 12, 35, 37

DBXY and DCXY with sides 15, 36, 39

Besides these integral “Pythagorean triples,” two involving fractions (2 2
1 , 

6, 6 2
1 ; and 7 2

1 , 10, 12 2
1 ) were also used to construct right-angled triangles. 

Furthermore, the construction of some altars required the use of triples 
such as 1, 1, 2 ; 5 3 , 12 3 , 13 3 ; and 15 2 , 36 2 , 39 2 . These num-
bers probably arose from ritual requirements that dictated constructions 
of altars whose areas were either integral multiples or fractions of the areas 
of other altars of the same shape. For example, the dimensions of the Ma‑
havedi for the Sautramani ritual (one with a triangular base of sides 5 3 , 
12 3 , and 13 3 ) were arrived at by starting with a 5, 12, 13 triangle, the 
unit of measurement being the purusha (nearly 2.5 meters, or the height of 
a man with his arms stretched above him).

The Sulbasutras were, however, primarily instruction manuals for geo-
metric constructions: squares, rectangles, trapeziums, and circles that had 
to conform to specified dimensions or areas. Any inaccuracy would make 
the consequent rituals and sacrifices ineffective. Here are three examples:

1. To merge two equal or unequal squares to obtain a third square. 
The method is reported in all three Sulbasutras. Figure 8.4 shows 
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the construction. In modern notation, let ABCD and PQRS be the 
two squares to be combined, and let DX be equal to SR. Draw a line 
to join A and X. The square on AX is equal to the sum of the squares 
ABCD and PQRS. The original explanation then points out that 
DX2 + AD2 = AX2 = SR2 + AD2, which shows the use of the Pythago-
rean theorem.

2. To transform a rectangle into a square of equal area. The result, 
from Baudhayana’s Sulbasutra, is shown in figure 8.5. ABCD is a rectan-
gle of length AD and breadth AB. The procedure begins by completing 
the square ABKH. Let E and M be the midpoints of HD and KC re-
spectively, so that EM bisects the rectangle HKCD. Move the rectangle 
EMCD so that its new position is KBJG. Complete the square KGFM. 
Draw an arc of radius JF to cut BC at W, and draw a line through W, 
parallel to MF, to cut JF at S. The required square is then the square on 
JS, JSTR. A demonstration that the square JSTR is equal in area to the 
rectangle ABCD follows easily from the Pythagorean theorem:

JS JW WS AJ BJ (AJ BJ)(AJ BJ)
AD AB area of ABCD.

2 2 2 2 2

#

= = = + −

= =

− −

Figure 8.4: Turning two squares into a third
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3. Squaring a circle and circling a square. No geometric method can 
achieve this exactly; the Sulbasutras provide only approximate construc-
tions. In figure 8.6 ABCD is a given square of side a, centred at O. Join 
OD, and construct an arc from D to the point P, which lies on the line 
passing through O and the midpoint E of the side CD. Thus OD = OP. 
To construct a circle centered at O and of radius r equal in area to the 
square, we are advised to take the radius of the circle as the sum of half 
the length of the side of the square (i.e., 2

1 a) and one-third of the length 
of OP that remains outside the square.

In other words,

r 3
1

3
1ON OE EN OE EP OE (OP OE).= = + = + = + −

Now,

45 .sin sin 1 2OE/OD OE/OPcθ = = = =

D

E

H

A

C

M F

S

G

J

T
W

K

R B

Figure 8.5: Turning a rectangle into a square
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Therefore 2OP OE= , and so

r 3
1 2OE OE OE .= + −_ i

Since aOE 2
1= ,

( )
( .)r a a a

2 3
2
1 2

6 2 2
1

= + = +
−

The area of the square is a2 and that of the circle is pr2, so

( ) ,a a36 2 22 2π
= +7 A

which implies a value of p of 3.088.10

All three Sulbasutras give the following directions for converting a circle 
into a square: Divide the diameter into 15 parts and take 13 of these parts 

D
N

C

A

E

P

O

B
a

1∕2a

1∕2a

θ=45°

Figure 8.6: Turning a square into a circle (or vice versa)
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as the side of the square. If d is the diameter of the circle and a the side of 
the required square, then a = (13/15)d, which implies a value of p of 3.004.

Irrational Square Roots: An Approximation Procedure
A remarkable achievement of Vedic mathematics is the discovery of a pro-
cedure for evaluating square roots to a high degree of approximation. The 
problem may have originally arisen from an attempt to construct a square 
altar twice the area of a given square altar. Takao Hayashi has pointed out 
in a personal communication that the approximation of 2  could also be 
used for constructing a right-angled triangle and a square. 

The problem, which the reader may wish to try, is one of constructing a 
square twice the area of a given square, A, of side 1 unit. It is clear that for 
the larger square, C, to have twice the area of square A, its side should be 

2  units. Also, we are given a third square, B, of side 1, which needs to be 
dissected and reassembled so that by joining cut-up sections of square B 
to square A, it is possible to make up a square close to the size of square C. 
Figure 8.7 shows diagrammatically what needs to be done.

The procedure given in the three Sulbasutras discussed earlier may be 
restated as “Increase the measure by its third and this third by its own 
fourth less the thirty-fourth part of that fourth. This is the value with a 
special quantity in excess.”11 If we take 1 unit as the dimension of the side 
of a square, this formula gives the approximate length of the square’s di-
agonal as

. .2 1 3
1

3 4
1

3 4 34
1 1 4142156

# # #
f= + + − =

B
Square A Square B

Square C

11

A

√2

Figure 8.7: Doubling a square: Square B is cut into strips and added to Square A to give 
Square C
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The true value is 1.414 213. . . . A commentator on the Sulbasutras, Rama, 
who lived in the middle of the fifteenth century AD, gave an improved ap-
proximation by adding two further terms to the equation:

,3 4 34 33
1

3 4 34 3
1

4# # # # # #
− +

which gives a value correct to seven decimal places.
The Sulbasutras contain no clue as to how this remarkable approxima-

tion was arrived at. Many explanations have been proposed. A plausible 
one, put forward by Datta (1932a), is as follows. Consider two squares, 
ABCD and PQRS, each of unit side (see figure 8.8). PQRS is divided 
into three equal rectangular strips, of which the first two are marked 1 
and 2. The third strip is subdivided into three squares, of which the first 
is marked 3. The remaining two squares are each divided into four equal 
strips marked 4 to 11. These eleven areas are added to the square ABCD as 
shown in figure 8.8 to obtain a large square less a small square at the corner 
F. The side of the augmented square (AEFG) is

.1 3
1

3 4
1
#

+ +

The area of the shaded square is [1/(3 # 4)]2, so that the area of the aug-
mented square AEFG is greater than the sum of the areas of the original 
squares, ABCD and PQRS, by [1/(3 # 4)]2. 

Figure 8.8: How doubling the square may have led to the Indian approximation to the 
square root of 2 (After Datta 1932)
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To make the area of the square AEFG approximately equal to the sum 
of the areas of the original squares ABCD and PQRS, imagine cutting off 
two very narrow strips, of width x, from the square AEFG, one from the 
left side and one from the bottom. Then

.x x2 1 3
1

3 4
1

3 4
12

2

# #
+ + − =

−

d dn n

Simplifying the above expression and ignoring x2, an insignificantly 
small quantity, gives

.x 3 4 34
1

# #
.

The diagonal of each of the original squares is 2 , which can be ap-
proximated by the side of the new square as just calculated:

.2 1 3
1

3 4
1

3 4 34
1

# # #
. + + −

What is particularly appealing about this line of reasoning is that there 
is other evidence from Sulbasutra geometry of the use of this “concrete” 
mode of argument, which was described as the “out-in” principle in our 
earlier discussion of Chinese geometry. This mode of demonstration re-
quires neither a well-developed symbolic algebra nor a Greek-style pro-
cedure of deductive inference. In this instance, the Indian and Chinese 
geometric approaches exhibit similarities that may have antecedents 
in the “geometrical algebraic” approach first found in Mesopotamian 
mathematics.12

The Harappa-Vedic Nexus: Restoring Historical  
Continuity to Early Indian Mathematics
There is a danger that the magico-religious beliefs surrounding the Vedic 
rituals may be overemphasized when considering the origins of Indian 
mathematics. We have already mentioned the role played by the Agni
cayana ceremony in generating geometrical concepts and techniques found 
in the Sulbasutras. The rituals associated with the construction of fire altars 
may be looked at from two standpoints. The first is that the beliefs con-
nect the shapes of altars with specific desires to be fulfilled by their use in 
the sacrifices. The second is simply technological: how exactly does one 
construct the altars with specific shapes and sizes, and by using a specific 
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number of bricks, or how does one vary their shapes without affecting their 
size or area?

It may be argued that the geometry of the Sulbasutras has little to do 
with the first standpoint. Thus, for example, whether a falcon‑shaped altar 
ensures the transport of one’s soul to heaven or the annihilation of one’s 
enemies has little relevance to the problem of constructing it to conform to 
a certain size and shape. As a matter of fact, these construction problems 
would remain even if the purpose of the construction was to erect an or-
namental structure in a garden. In other words, the geometry developed 
in the Sulbasutras was basically needed to solve technological problems 
involved in construction. It is this geometry, placed in a social context, that 
should be of primary interest to the historian of mathematics.

Once the Sulbasutras are seen primarily as manuals for technicians, the 
question then arises as to where and when the practical knowledge relating 
to brick technology was acquired. References to bricks are conspicuous by 
their absence from the most sacred and earliest of Vedic literature, the Rig-
veda Samhita. When they do make an appearance in a recension (Tattiriya 
Samhita) of a later Veda, the Yajur-veda Samhita, bricks are viewed as mar-
velous and mysterious entities. In Tattiriya Samhita, there is a reference to 
bricks as “milk cows” (a ready source of income). In Yajur-veda Samhita, 
there are exhortations that “tiles or potsherds” from the ruined, probably 
Harappan, cities should be gathered for ritual purposes. It is, therefore, 
likely that the priests were acquainted with the fired bricks from the same 
sites and would in course of time invest them with magico‑religious prop-
erties. In one of the last critical revisions to the Yajur-veda appears the 
Satapatha Brahmana, in which a discussion of conducting the Agnicayana 
is accompanied by a short discourse on the construction of brick altars of 
various shapes and sizes. While the discussion lacks the sophistication of 
the Sulbasutras, it is clear that knowledge of brick technology, probably 
from the Harappan culture, had percolated into the Vedic rituals. Staal’s 
(1978) conclusion that “it is certainly reasonable to suppose that knowledge 
of the techniques for firing bricks was preserved among the inhabitants of 
the subcontinent even after the Harappa civilization had disappeared” is 
particularly apposite. So the geometry embodied in the Sulbasutras should 
be viewed as the outcome of a long and sophisticated tradition of brick 
technology inherited from the Harappan civilization. If this presumption 
is correct, the first and earliest of the discontinuities in the chronology of 
Indian mathematics has been filled with the assistance of bricks. 
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Early Indian Numerals and Their Development

Three early types of Indian numerals are shown in table 8.2 in chrono-
logical order of appearance. The Kharosthi-type numerals, derived from 
the Aramaic script, are found in inscriptions dating to a period from the 
fourth century BC to the second century AD. Special symbols were used 
to show both 10 and 20. Numbers up to 100 were then built up additively; 
for larger numbers the multiplication principle came into operation, with 
special symbols for higher powers of 10. Following from their West Asian 
origins, the Kharosthi numerals were written from right to left. The most 
complete example of this type of numerals is the Saka numerals from 
around the first century BC. The Brahmi-type numerals were more highly 
developed. There were separate symbols for the digits 1, 4 to 9, and the 
number 10 and its higher powers. There were also symbols for multiples 
of 10 up to 90, and for multiples of 100 up to 900. The number 486, for 
example, would be written by using the symbols for 400, 80, and 6. It is 
possible that our symbols “2” and “3” are cursive versions of the Brahmi 
numerals (i.e., from  and  may have evolved 2 and 3). 

The earliest trace of Brahmi-type numerals is from the third century 
BC, on the Asoka pillars scattered around India, though more detailed 
pieces of evidence are found elsewhere later. At the top of Nana Ghat near 
Poona in central India is a cave that must once have been a resting place for 
travelers; inscribed on the cave walls are numerals representing the signs 
for 10 and 7, which date back to 150 BC. Another version of the Brahmi 
numerals (shown in table 8.2) is found at Nasik, near present-day Bom-
bay (now Mumbai), from around 100 BC. Both versions resemble each 

Table 8.2:  Three Types of Indian Numerals, in Chronological 
Order

	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

Kharosthi

Brahmi

Gwalior

Note: The Kharosthi numeral for 9 is not known for certain
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other, and it was thought until recently that from them evolved first the 
Bakhshali number system (c. AD 400–1200) and then the Gwalior system 
(c. AD 850), which is recognizably close to our present-day number sys-
tem.13 In both the Bakhshali and Gwalior number systems, ten symbols 
were used to represent 1 to 9 and zero. With them it became possible to 
express any number, no matter how large, by a decimal place-value system.

The earliest appearance of the symbol that we associate with zero in In-
dia in a decimal place-value system is in an inscription from Gwalior dated 
“Samvat 933” (AD 876), where the numbers 50 and 270 are given as  
and  respectively. Note the close similarity with our notation for 270. 
For earlier evidence, we have to turn to Southeast Asia when it was under 
the cultural influence of India. There, three inscriptions have been found 
bearing dates in the Saka era, which began in AD 78. A Malay inscription 
at Palembang in Sumatra from AD 684 shows 60 and 606 Saka as  
and  respectively, a Khmer inscription at Sambor in Cambodia 
from AD 683 gives 605 as , and an inscription at Ponagar, Champa 
(now southern Vietnam), from AD 813 represents 735 as . If, how-
ever, the original version of the Bakhshali Manuscript dates from the third 
century AD, it would be the earliest evidence of a well-established number 
system with a place-value scale and zero that is also recognizably an ances-
tor of our present-day number system. In the Bakhshali Manuscript are 
found the following numbers:

330: ,	 846,720: ,	 947: .

What we have here is a fully developed decimal place-value system incor-
porating zero.

The Emergence of the Place-Value Principle
Fascination with numbers has been an abiding characteristic of Indian 
civilization. Not only large numbers but very small ones as well. Opera-
tions with zero attracted the interest of both Bhaskaracharya (b. 1114) and 
Srinivas Ramanujan (1887–1920). In an elementary class that Ramanujan 
attended, the teacher was explaining the concept of division (or “sharing”) 
through examples: between three children, each child would get one ba-
nana. Similarly, the share would be one banana if four bananas were shared 
among four children, five bananas among five children, and so on. And 
when the teacher generalized this idea of sharing x bananas among x boys, 
Ramanujan asked whether, if x equaled zero, each child would then get 
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one banana! There is no record of the teacher’s reply. Ramanujan explained 
later to his school friends that zero divided by zero could be anything, 
since the zero of the denominator may be any number of times the zero of 
the numerator.

Two important features of early numeration may have been of signifi-
cance in the subsequent development of Indian numerals. Ever since the 
Harappan period the number 10 may have formed the basis of numera-
tion; there is no evidence of the use of any other base in the whole of San-
skrit literature. Long lists of number-names for powers of 10 are found 
in various early sources. For example, one of the four major Vedas, the 
Yajur-veda, gives special names for powers of ten from one or 100 (eka) to 
one trillion or 1012 (parardha). In the Ramayana, one of the most popular 
texts of Hinduism and roughly contemporaneous with the later Vedas, it is 
reported that Ravana, the chief villain of the piece, commanded an army 
whose total equaled 1012 + 105 + 36(104). Facing them was the rival army 
of Rama, the hero of the epic, which had 1010 + 1014 + 1020 + 1024 + 1030 
+ 1034 + 1040 + 1044 + 1052 + 1057 + 1062 + 5 men! Even though these 
numbers are fantastic, the very existence of names for powers of ten up 
to 62 indicates that the Vedic Indians were quite at home with very large 
numbers. This is to be compared with the ancient Greeks, who had no 
words for numbers above the myriad (104).

And these were by no means the largest numbers ever conceived in an-
cient India. The Jains, who came after the Vedic Indians, were particularly 
fascinated by even larger numbers, which were intimately tied up with 
their philosophy of time and space. This fascination with large numbers is 
also found in Buddhist literature. In the life of the Buddha, as reported in 
Lalita-vistara, the young Buddha, as part of a competion to win the hand 
of the princess Gopa, recites a table that includes names for powers of 10 
going up to the fiftieth power.14 (We shall look at the Jaina contribution in 
detail in a later section.) For units of measuring time, the Jains suggested 
the following relationships:

1 756 10
( , , ) .

purvis
shirsa prahelika purvis1 8 400 000

days;11

28

#=

=

The last number contains 194 digits!
The early use of such large numbers eventually led to the adoption of 

a series of names for successive powers of 10. The importance of these 
number-names in the evolution of the decimal place-value notation cannot 
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be exaggerated. The word-numeral system, later replaced by an alphabetic 
notation, was the logical outcome of proceeding by multiples of 10. Thus 
60,799 is sasti (sixty) sahasra (thousand) sapta (seven) sata (hundred) na‑
vati (nine ten times) nava (nine). Such a system presupposes a scientifically 
based vocabulary of number-names in which the principles of addition, 
subtraction, and multiplication are used. It requires: 

1. � The naming of the first nine digits (eka, dvi, tri, catur, pancha, sat, 
sapta, asta, nava)

2. � A second group of nine numbers obtained by multiplying each of the 
first nine digits by ten (dasa, vimsati, trimsat, catvarimsat, panchasat, 
sasti, saptati, asiti, navati)

3. � A group of numbers that are increasing integral powers of 10, start-
ing with 102 (sata, sahasra, ayuta, niyuta, prayuta, arbuda, nyarbuda, 
samudra, madhya, anta, parardha . . .).

In forming the words of the second and third groups of numbers, the 
multiplicative principle applies, as in the example quoted: 60,000 is sasti-
sahasra. The additive principle is employed when the numbers from the 
first and second group are used, for example, 27 is sapta‑vimsati. The sub-
tractive principle may apply occasionally and in a limited way; for example, 
ekanna‑catvarimsat indicates 40 - 1 = 39, where ekanna means “one less.”

To understand why word‑numerals persisted in India, even after the 
Indian numerals became widespread, it is necessary to recognize the im-
portance of the oral mode of preserving and disseminating knowledge. An 
important characteristic of written texts in India from time immemorial 
was the sutra style of writing, which presented information in a cryptic 
form, leaving out details and rationale to be filled in by teachers and com-
mentators. In short pithy sentences, often expressed in verses, the sutras 
enabled the reader to memorize the content easily.

As a replacement for the older word‑numeral system that consisted 
of merely names of numbers, a new system (a concrete number system) 
was devised to help versification and memory. In this system, known as 
bhuta‑samkhya, numbers were indicated by well‑known objects or ideas. 
Thus, zero was shunya (void) or ambara akasa (heavenly space or sky or 
ether) or other empty things, one was candra (moon) or bhumi (earth) 
or other single things, two was netra (eyes) or paksa (wings of a bird) or 
other pairs, three was kala (time: past, present, and future) or loka (heaven, 
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earth, and hell) or other trios, and so on. With multiple words available for 
each number, the choice of a particular word for a number would be dic-
tated by literary considerations. This form of notation continued for many 
years in both secular and religious writings because it was aesthetically 
pleasing and offered an easier way of remembering numbers and rules.

There were two major problems with the bhuta-samkhya system. First, 
there was an “exclusionist” element, in that to decode the words for their 
numerical values required considerable familiarity with the philosophical 
and religious texts from which the correspondences were established in the 
first place. Second, at times the same word stood for two or more different 
numbers, since some writers had their own preferences when it came to 
choosing words to correspond to numbers as, for example, when paksa was 
used for 2 as well as 15 and dik for 8, 10, and 4.

There are traces of this system of numeration in the Yavanajataka (AD 
269) of Sphujidhvaja, although the first clearest and detailed evidence of it 
is found in the works of the astronomer Varahamihira (d. AD 587). Thus, 
except for the actual symbols themselves, the present-day number system 
with distinct numerals for the numbers from zero to 9, the place-value 
principle, and the use of the zero within the decimal base is essentially 
what we see in this early number system.15 In a sense, what is used as a 
symbol for a number, whether it be a letter, a word, or a specially invented 
squiggle, is of little importance. Indeed, an unduly close association—or 
even identity—between a number and the symbol used to represent it 
may even be counterproductive, preventing the strength of the place-value 
principle from being fully exploited in elementary operations.

A third system of numerical notation originated with Aryabhata (b. 
476 AD). In his Aryabhatiya, he introduced an alphabetical scheme for 
representing numerals, based on distinguishing between classified (varga) 
and unclassified (avarga) consonants and vowels. The vargas fall into five 
phonetic groups: ka‑varga (guttural), ca‑varga (palatal), ta‑varga (lingual), 
ta‑varga (dental), and pa‑varga (labial). Each group has five letters associ-
ated to it, and represented numbers from 1 to 25. There were seven avargas 
consisting of semivowels and sibilants representing numerical values 30, 
40, 50, . . . , 190. An eighth avarga was used to extend the number to the 
next place value. The ten vowels denoted successive integral powers of 10 
from 100 onward.

This form of representation, closer to the system that preceded bhuta-
samkhya, has the advantage of brevity and clarity but the disadvantage of 
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having limited potential for formations of words that are pronounceable 
and meaningful, both necessary requirements for easy memorization. For 
example, in the Aryabhatan system, the representation of the number of 
revolutions of the moon in a yuga (calculated as 57,753,336 days) is the 
unpronounceable and meaningless word cayagiyinusuchlr!

From a refinement of Aryabhata’s alphabet‑numeral system of notation 
emerged the katapayadi system, which the legendary founder of the Kerala 
school of astronomy, Varurici, was believed to have popularized around 
the fourth century AD. In this system, every number in the decimal place-
value system can be represented by words, each letter of the word repre-
senting a digit. A vowel not preceded by a consonant stands for zero, but 
vowels following consonants have no special value. In the case of conjunct 
consonants (a combination of two or more consonants), only the last con-
sonant has a numerical value. Number‑words are read from right to left so 
that the letter denoting the “units” is given first, and so on.

This was a system devised to help memorization, since memorable 
words can be made up using different chronograms. For example, if such 
a system is applied to English, the letters b, c, d, f, g, h, j, k, l, m would 
represent the numbers zero to 9. So would n, p, q, r, s, t, v, w, x, y. The last 
letter, z, denotes zero. The vowels, a, e, i, o, u are helpful in forming mean-
ingful words but have no numerical values associated with them. Thus, 
the sentence “I love Madras” represents the numbers 86 and 9,234. To take 
another example from Kunjunni Raja (1963, p. 123), the number 1,729,133 
could be represented by balakalatram saukhyam (i.e., the [company] of a 
young woman is sheer happiness) or lingavyadhir asahyah (i.e., the demise 
of sexual virility is unbearable).

The close relationship between literacy and numeracy, implied by such 
varied systems of numerical notation, may have its roots in the way that 
Sanskrit developed in its formative period after its separation from other 
languages of the Indo‑European family. A long tradition of oral communi-
cation of knowledge was a characteristic of that period and left a singular 
mark on the nature and transmission of knowledge, whether religious or 
scientific, in Indian culture. After many years, as Sanskrit became a written 
language, three kinds of scientific Sanskrit developed with varying degrees 
of artificiality: grammatical, logical, and mathematical Sanskrit.

Mathematical Sanskrit remained the least artificial of the three, with 
the greatest artificiality found in the development of grammatical Sanskrit 
by Panini and Patanjali, followed five hundred years later by the logical 
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Sanskrit of Nyaya, which culminated a thousand years later in Navya‑
Nyaya. This has important implications for a comparative study of the 
historical development of Indian and Western mathematics, according to 
Staal (1995). First, the chronological order of the development of artificial 
scientific languages in the West was a reversal of the Indian experience. In 
the West, logic followed mathematics, and linguistics was a late developer. 
In India, mathematical Sanskrit never quite became an artificial language, 
although it employed abbreviations and artificial notations outside San-
skrit as shorthand for practical procedures. And logical Sanskrit never be-
came, like its Western counterpart, an important adjunct to “mathematical 
philosophy.”

The Enormity of Zero
The word “zero” comes from the Arabic al-sifr.16 Sifr in turn is a translit-
eration of the Sanskrit word shunya, meaning void or empty, which later 
became the term for zero. Introduced into Europe during the Italian Re-
naissance in the twelfth century by Leonardo Fibonacci (and by Nemo-
rarius, a less well-known mathematician) as cifra, the word emerged in 
English as “cipher.” In French it became chiffre, and in German ziffer, both 
of which mean zero. 

The ancient Egyptians never used a zero symbol in writing their numer-
als. Instead they had a stand-alone zero to represent a benchmark value 
or magnitude. A bookkeeper’s record from the Thirteenth dynasty (about 
1700 BC) shows a monthly balance sheet for items received and disbursed 
by the royal court during its travels. On subtracting total disbursements 
from total income, a zero remainder was left in several columns. This zero 
remainder was represented by the hieroglyph nfr, which also means beau-
tiful or complete in ancient Egyptian. The same nfr symbol also labeled a 
zero reference point for a system of integers used on construction guide-
lines at Egyptian tombs and pyramids. These massive stone structures re-
quired deep foundations and careful leveling of the courses of stone. A 
vertical number-line labeled the horizontal leveling lines that guided con-
struction at different levels. One of these horizontal lines, often at pave-
ment level, was used as a reference and was labeled nfr or zero. Horizontal 
leveling lines were spaced 1 cubit apart. Those above the zero level were 
labeled as 1 cubit above nfr, 2 cubits above nfr, and so on. Those below the 
zero level were labeled 1 cubit below nfr, 2 cubits below, and so forth. Here 
zero was used as a reference for directed or signed numbers.
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It is quite extraordinary that the Mesopotamian culture, more or less 
contemporaneous to the Egyptian culture, developed a full positional-
value number system on base 60 and did not use zero as a number. A sym-
bol for zero as a placeholder appeared late in the Mesopotamian culture. 
The early Greeks, who were the intellectual inheritors of Egyptian math-
ematics and science, emphasized geometry to the exclusion of everything 
else. They did not seem interested in perfecting their number notation sys-
tem. They simply had no use for zero. In any case, they were not greatly 
interested in arithmetic, claiming that arithmetic should only be taught 
in democracies, for it “dealt with relations of equality.” On the other hand, 
geometry was the natural study for oligarchies, for “it demonstrated the 
proportions within inequality.”17

In India, zero as a concept probably predated zero as a number by hun-
dreds of years. The Sanskrit word for zero, shunya, meant “void” or “empty.” 
The word is probably derived from shuna, which is the past participle of 
svi, “to grow.” In one of the early Vedas, Rig-veda, there is another mean-
ing: the sense of “lack” or “deficiency.” It is possible that the two different 
words were fused to give shunya a single sense of “absence” or “emptiness” 
with the potential for growth. Hence, its derivative, Shunyata, described 
the Buddhist doctrine of “Emptiness,” being the spiritual practice of emp-
tying the mind of all impressions. This was a course of action prescribed in 
a wide range of creative endeavors. For example, the practice of Shunyata 
is recommended in writing poetry, composing a piece of music, producing 
a painting, or in any activity that comes out of the mind of the artist. An 
architect was advised in the traditional manuals of architecture (the Silpas) 
that designing a building involved the organization of empty space, for “it 
is not the walls that make a building but the empty spaces created by the 
walls.” The whole process of creation is vividly described in the following 
verse from a Tantric Buddhist text: 

First the realization of the void [shunya],
Second the seed in which all is concentrated,
Third the physical manifestation,
Fourth one should implant the syllable.

The mathematical correspondence was soon established. “Just as empti-
ness of space is a necessary condition for the appearance of any object, the 
number zero being no number at all is the condition for the existence of 
all numbers.”
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A discussion of the mathematics of the shunya involves three related 
issues: (1) the concept of the shunya within a place-value system, (2) the 
symbols used for shunya, and (3) mathematical operations with the shunya. 
Materials from appropriate early texts are used as illustrations below. 

It was soon recognized that the shunya denoted notational place (place-
holder) as well as the “void,” or absence of numerical value, in a particular 
notational place. Consequently all numerical quantities, however great, 
could be represented with just ten symbols. A twelfth-century text (Mana‑
sollasa) states:

Basically, there are only nine digits, starting from “one” and going to 
“nine.” By adding the zeros these are raised successively to tens, hun-
dreds, and beyond. 

And in a commentary on Patanjali’s Yogasutra there appears in the fifth 
century the following analogy:18

Just as the same sign is called a hundred in the “hundreds” place, ten 
in the “tens” place, and one in the “units” place, so is one and the same 
woman referred to (differently) as mother, daughter, or sister. 

One of the earliest mentions of a symbol for zero occurs in the Chan‑
dahsutra of Pingala (fl. third century BC), which discusses a method for 
calculating the number of arrangements of long and short syllables in a 
meter containing a certain number of syllables (i.e., the number of com-
binations of two items from a total of n items, repetitions being allowed). 
The symbol for shunya began as a dot (bindu), found in inscriptions in In-
dia, Cambodia, and Sumatra around the seventh and eighth centuries, and 
then became a circle (chidra or randhra, meaning a hole). The association 
between the concept of zero and its symbol was already well established by 
the early centuries of the Christian era, as the following quotation shows:

The stars shone forth, like zero dots [shunya-bindu] scattered in the sky 
as if on a blue rug, [such that] the Creator reckoned the total with a bit 
of the moon for chalk. (Vasavadatta, c. AD 400)

Sanskrit texts on mathematics/astronomy from the time of Brahma-
gupta usually contain a section called shunya-ganita or computations in-
volving zero. While the discussion in the arithmetical texts (patiganita) 
is limited only to addition, subtraction, and multiplication with zero, the 
treatment in algebra texts (bijaganita) covers such questions as the effect 
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of zero on the positive and negative signs, division with zero, and more 
particularly the relation between zero and infinity (ananta).

Take, as an example, Brahmagupta’s seventh-century text Brahma 
Sphuta Siddhanta. In it he treats the zero as a separate entity from the posi-
tive (dhana) and negative (rina) quantities, implying that shunya is neither 
positive nor negative but denotes the boundary between the two kinds, 
being the sum of two equal but opposite quantities. He states that a num-
ber, whether positive or negative, remains unchanged when zero is added 
to or subtracted from it. In multiplication with zero, the product is zero. 
A zero divided by zero or by some number becomes zero. Likewise the 
square and square root of zero is zero. But when a number is divided by 
zero, the answer is an undefined quantity, “that which has that zero as the 
denominator.”19 In the twelfth century, Bhaskaracharya stated that if you 
were to divide by zero you would get a number that was “as infinite as the 
god Vishnu”!

The Spread of Numeracy in India: A Historical Perspective
A search for the social origins of numeracy must consider the everyday 
practices and institutions that make the numerals and operations with 
them familiar to the ordinary person. The structure of Indian mathematics 
education for all may have been set by a Jaina text, called Sthananga Su‑
tra, dating back to about 300 BC. In that, the first two topics out of ten, 
parikarma (number representation and the four fundamental operations 
of arithmetic) and vyavahara (arithmetic problems, including the “rule of 
three”), came to be referred to as patiganita (etymology: “calculation on 
tablet”) and were meant to be studied by all. The other eight topics were 
plane geometry calculations as carried out with a rope (rajju), mensuration 
of plane figures and solids (rasi), advanced treatment of fractions (kalasa‑
varna), study of that which is unknown or algebra (yavat-tavat), problems 
involving squares and square roots (varga), problems involving cubes and 
cube roots (ghana), problems involving higher powers and higher roots 
(varga‑varga), and permutations and combinations (vikalpa).

Although being taught at home was the usual practice for the higher-
caste males and for all females, all other castes attended schools. There 
are early British descriptions of indigenous village schools where emphasis 
on numeracy was an important part of the school curriculum. A report, 
submitted in 1838 by William Adam, of such schools in certain districts 
of Bengal and Bihar (Dharampal 1983) is quite illuminating. The period 
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a student spent in an elementary school was divided into four stages. The 
first stage, when the child first entered school, seldom exceeded ten days. 
During that time the young child was taught “to form letters of the alpha-
bet on the ground with a small stick or slip of bamboo,” or on a sand board, 
a board on which sand was sprinkled as a writing surface.The second stage, 
lasting from two and a half to four years, involved pupils being taught to 
read from and write on palm leaves. During the same period, the pupil 
was expected to memorize “the Cowrie Table, the Numeration Table as 
far as 100, the Katha Table and the Ser Table,” the latter two being tables 
of weights and measures. To help them with this enormous task, different 
systems of word‑numerals were taught. The third stage, lasting from two 
to three years, was spent on improving their literary skills practiced on 
plantain leaf, as well as completing the basic course on patiganita. In the 
fourth and final stage, lasting up to two years, pupils were expected to read 
religious and other texts, both at school and at home, undergo training in 
commercial and agricultural accounts, and compose letters and petitions. 
A few would continue their education in institutions or within the house-
hold, where Sanskrit was the language of instruction and the teachers and 
students were predominantly Brahmins.

Apart from numeracy skills, patiganita consisted of all the mathematics 
needed for daily living. The vyavaharaganita included problems involving 
calculation of volumes of grains and heaps, estimating amounts in piles of 
bricks and timber, construction of roads and building, calculation of the time 
of the day, interest and capital calculations, barter and exchange, and recre-
ational problems. In modern terminology, this was practical mathematics, 
which included commercial mathematics. The authors who wrote texts on 
patiganita, such as the unknown author of Bakhshali Manuscript, or Maha-
vira (fl. 850 AD), or Sridhara (fl. AD 800) began with a review of arithmetic 
operations, though the extent and detail to which this was done varied with 
different texts; the earlier the text, the more detailed the treatment.

The level of numeracy in traditional Indian society was high, partly be-
cause of the manner in which numeracy was acquired and passed on and 
partly because of the lack of any institutional, religious, or philosophical 
inhibitions to the acquisition and practice of numeracy. Yet the absence 
of a commercial revolution in India meant that the social milieu that nur-
tured interest in matters scientific in Europe was missing. In particular, no 
artificial language evolved, and while notations were fun and intellectually 
distracting, they did little to advance science, which ultimately stagnated. 
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And practical mathematics, the handmaiden of numeracy, continued to 
remain at the same level for about a thousand years, eventually to be sub-
merged by the rise of Western mathematics. Even the remnants of indig-
enous numeracy that exist in subterranean occupations, such as astrology 
and traditional architecture, may soon become a historical memory.

Jaina Mathematics

The rise of Buddhism and Jainism around the middle of the first millen-
nium BC was in part a reaction to some of the excesses of Vedic religious 
and social practices. The resulting decline in offerings of Vedic sacrifices, 
which had played such a central role in Hindu ritual, meant that occasions 
for constructing altars requiring practical skills and geometric knowledge 
became few and far between. There was also a gradual change in the per-
ception of the role of mathematics: from fulfilling the needs of sacrificial 
ritual, it became an abstract discipline to be cultivated for its own sake. 
The Jaina contribution to this change should be recognized. Unfortunately, 
sources of information on Jaina mathematics are scarce, though there are 
enough to show how original the work was.

A number of Jaina texts of mathematical importance have yet to be 
studied, and what we know of them is based almost entirely on later com-
mentaries. Of particular relevance is the old canonical literature: Surya 
Prajnapti, Jambu Dvipa Prajnapti, Sthananga Sutra, Uttaradhyayana Sutra, 
Bhagavati Sutra, and Anuyoga Dvara Sutra. The first two works are from the 
third or fourth century BC, and the others are from at least two centuries 
later. As mentioned in the previous section, the Sthananga Sutra gives a 
list of mathematical topics that were studied at the time. Expressed in their 
modern equivalents, they were the theory of numbers, arithmetical opera-
tions, geometry, operations with fractions, simple equations, cubic equa-
tions, biquadratic (quartic) equations, and permutations and combinations. 
This classification by the Jains was adopted by later mathematicians.

Given the paucity of existing evidence and the little scrutiny it has re-
ceived, our survey of Jaina mathematics must be rather piecemeal. We shall 
examine four main areas in which the Jaina contribution was distinctive.20

Theory of Numbers
Like the Vedic mathematicians, the Jains had an interest in the enumeration 
of very large numbers, which was intimately tied up with their philosophy 
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of time and space. The Jaina cosmology involved two suns, two moons, 
and two sets of stars. One of four suggested subjects of investigation was 
ganita-anuyoga (inquiry into calculation). It was as a part of this inquiry 
that the Jains developed their interest in the concepts of infinity (very large 
numbers) and the infinitesimal (very small numbers).

We mentioned earlier that they devised a measure of time, called a shirsa 
prahelika, that equaled 756 # 1011 # (8,400,000)28 days! Other examples of the 
Jaina fascination with very large numbers are these two definitions: a rajju is 
the distance traveled by a god in six months if he covers a hundred thousand 
yojana (approximately a million kilometers) in each blink of his eye; a palya 
is the time it will take to empty a cubic vessel of side one yojana filled with 
the wool of newborn lambs if one strand is removed every century.

The contemplation of such large numbers led the Jains to an early con-
cept of infinity, which, if not mathematically precise, was by no means 
simpleminded. All numbers were classified into three groups—enumer-
able, innumerable, and infinite—each of which was in turn subdivided into 
three orders:

1.  Enumerable: lowest, intermediate, and highest

2. � Innumerable: nearly innumerable, truly innumerable, and innumer-
ably innumerable

3.  Infinite: nearly infinite, truly infinite, and infinitely infinite

The first group, the enumerable numbers, consisted of all the numbers 
from 2 (1 was ignored) to the highest. An idea of the “highest” number is 
given by the following extract from the Anuyoga Dvara Sutra, from around 
the beginning of the Christian era:

Consider a trough whose diameter is that of the earth (100,000 yojana) 
and whose circumference is 316,227 yojana. Fill it up with white mus-
tard seeds counting one after another. Similarly fill up with mustard 
seeds other troughs of the sizes of the various lands and seas. Still the 
highest enumerable number has not been attained. [In this case 10 yo‑
jana is about 10 kilometers.] 

But if and when this highest number, call it N, is attained, infinity may be 
reached via the following sequence of operations:

1, 2, , ( 1) 1,
( 1) , ( 2) , , ( 1) 1,
( 1) , ( 2) , , ( 1)81,
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N N N
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and so on. Five different kinds of infinity are recognized: infinite in one 
direction, infinite in two directions, infinite in area, infinite everywhere, 
and infinite perpetually. This was quite a revolutionary idea in more than 
one way:

1. The Jains were the first to discard the idea that all infinities were 
the same or equal, an idea still generally accepted in Europe until the 
work of Georg Cantor in the late nineteenth century.

2. The highest enumerable number (i.e., N) of the Jains has some reso-
nance with another concept developed by Cantor, aleph-null (the cardi-
nal number of the infinite set of integers 1,2, . . . , N), also called the first 
transfinite number. It was Cantor who defined the concept of a sequence 
of transfinite numbers and devised an arithmetic of such numbers.21 

3. In the Jaina work on the theory of sets (not discussed here, though 
documentation is given in the reference list), two basic types of transfi-
nite number (i.e., the cardinal numbers of infinite sets) are distinguished. 
On both physical and ontological grounds, a distinction is made between 
asamkhyata and ananta, between rigidly bounded and loosely bounded 
infinities. With this distinction, the way was open for the Jains to develop 
a detailed classification of transfinite numbers and mathematical opera-
tions for handling transfinite numbers of different kinds. However, un-
surprisingly, they did not do so given their limited technical and symbolic 
compass. (For further details see Jain [1973, 1982] and N. Singh [1987].)

Indices and Logarithms
Without a convenient notation for indices, the laws of indices cannot be 
formulated precisely. But there are some indications that the Jains were 
aware of the existence of these laws and made use of related concepts.

The Anuyoga Dvara Sutra lists sequences of successive squares or square 
roots of numbers. Expressed in modern notation as operations performed 
on a certain number a, these sequences may be represented as

( ) , ( ) , [( ) ] ,

,, ,

a a a

a a a

2 2 2 2 2 2

f

f
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In the same Sutra, we come across the following statement on opera-
tions with power series or sequences: “The first square root multiplied by 
the second square root [is] the cube of the second square root; the second 
square root multiplied by the third square root [is] the cube of the third 
square root.” Expressed in terms of a, this says that

( ) , ( ) .a a a a a aand/ / / / / /1 2 1 4 1 4 3 1 1 1 34 8 8# #= =

As a further illustration, the total population of the world is given as “a 
number obtained by multiplying the sixth square by the fifth square, or a 
number that can be divided by 2 ninety-six times.” This gives a figure of 
264 # 232 = 296, which in decimal form is a number of 29 digits!

Does this statement indicate that the laws of indices,

, ( ) ,a a a a aandm n m n m n mn# = =+

were familiar to the Jains? From the period around the eighth century AD, 
some interesting evidence in the Dhavala commentary by Virasenacharya 
suggests that the Jains may have developed the idea of logarithms to base 
2, 3, and 4 without using them for any computational purposes. The terms 
ardhacheda, trikacheda, and caturthacheda of a quantity may be defined as 
the number of times the quantity can be divided by 2, 3, and 4, respectively, 
without a remainder. For example, since 32 = 25, the ardhacheda of 32 is 5. 
Or, in the language of modern mathematics, the ardhacheda of x is log2 x, 
the trikacheda of x is log3 x, and so on.22

Permutations and Combinations
A permutation is a particular way of ordering some or all of a given num-
ber of items. Therefore, the number of permutations that can be formed 
from a group of unlike items is given by the number of ways of arranging 
them. As an example, take the letters a, b, and c, and find the number of 
permutations of two letters at a time. Six arrangements are possible: ab, ac, 
ba, ca, be, cb.

Instead of listing all possible arrangements, we can work out the num-
ber of permutations by arguing as follows: the first letter in an arrangement 
can be any of three, while the second must be either of the other two let-
ters. Consequently, the number of permutations for two of a group of three 
letters is 3 # 2 = 6. The shorthand way of expressing this result is 3P2 = 6.

A combination is the number of selections of r different items from 
n distinguishable items when order of selection is ignored (unlike a 
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permutation, where order is taken into account). Therefore, the number 
of combinations that can be formed from a group of unlike items is given 
by the number of ways of selecting them. To take the same illustration as 
above, the number of combinations of two letters at a time from a, b, and 
c is three: ab, ac, bc. Again, instead of listing all possible combinations, we 
can work out how many there are as follows: in each combination the first 
letter can be any of the three, the second letter has two possibilities, and the 
third letter has just one possibility, so that there are 6 possibilities in total. 
But if you are not concerned about order of appearance of the two letters 
(i.e., although ab and ba are two different permutations, they amount to 
the same combination), you must divide the total possibilities (6) by 2 to 
get 3 as the number of combinations. A shorthand way of expressing this 
result is 3C2 = 3.

Permutations and combinations were favorite topics of study among the 
Jains. Statements of results, presumably arrived at by methods like the one 
just discussed, appear quite early in the Jaina literature.The Bhagavati Sutra 
(c. 300 BC) sets forth simple problems such as finding the number of com-
binations that can be obtained from a given number of fundamental philo-
sophical categories taken one at a time, two at a time, and three or more 
at a time. Others include calculation of the groups that can be formed out 
of the five senses, and selections that can be made from a given number of 
men, women, and eunuchs. The Bhagavati Sutra gives the corresponding 
values correctly for selections of up to three at a time. Expressed in modern 
mathematical notation, the results are 

, ( ), ( )( ) .

, ( 1), ( )( 2) .

n n n n n n

n n n n n n
1 2

1
1 2 3

1 2

1

C C C

P P P

1 2 3

1 2 3

n n n

n n n

# # #
= =

−
=

− −

= = − = − −

Values are given for n = 2, 3, 4, and there is then the following observa-
tion: “In this way, 5, 6, 7, . . . , 10, etc., or an enumerable, unenumerable, 
or infinite number of things may be specified. Taking one at a time, two at 
a time, . . . , ten at a time, as the number of combinations are formed, they 
must all be worked out.” Apart from the generalizations implied, the ap-
plication of the principle to different kinds of infinities or different dimen-
sions is noteworthy.

Even before the advent of Jainism there was some interest in the notion 
of permutations and combinations. Sushruta’s great work on medicine, 
mentioned at the beginning of this chapter, contained the statement that 
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sixty-three combinations may be made out of six different tastes (rasa)—
bitter, sour, salty, astringent, sweet, hot—by taking the rasa one at a time, 
two at a time, three at a time, and so on. This solution of 63 can easily be 
checked as follows: 6C1 + 6C2 + 6C3 + 6C4 + 6C5 + 6C6 = 6 + 15 + 20 + 
15 + 6 + 1 = 63.

Another interesting example from the Vedic period relates to the num-
ber of ways of combining different meters (chandas) in a poetic compo-
sition. In a book titled Chandahsutra (Rule of Metrics) from the second 
century BC, Pingala considered a method of calculating the number of 
combinations of short (laghu) and long (guru) sounds (or syllable patterns) 
in a given poetical composition. During this period, the music of sound 
variations (varnasangita) was based mainly on these two sounds. Pingala 
considered a three-syllabic meter, for which the following different com-
binations of the sounds of guru and laghu could result: three guru sounds 
will occur once, two guru and one laghu three times, one guru and two 
laghu also three times, and three laghu sounds once. The rule given in the 
original sutra is cryptic to the point of incomprehensibility. We have to 
be dependent on the commentaries. In modern terms, the rule may be 
expressed thus:

If we represent guru by a and laghu by b, then the different combina-
tions may be represented by the coefficients of the binomial expansion:

( ) 3 3 .a b a a b ab b3 3 2 2 3+ = + + +

For a four-syllabic meter, different combinations of the two sounds can 
be found by the same representation:

( ) 4 6 4 .a b a a b a b ab b4 4 3 2 2 3 4+ = + + + +

This technique of finding the number of variations of sounds was useful 
as a means of testing the quality of different meters, and after Pingala it was 
commonly used for this purpose.

Around the end of the tenth century AD, Halayudha produced a com-
mentary on Pingala’s Chandahsutra in which he introduced a pictorial 
representation of different combinations of sounds, enabling them to be 
read off directly. Figure 8.9 shows Halayudha’s meruprastara (or pyrami-
dal arrangement) for a binomial expansion of (a + b)n, where n = 0, 1, 2, 
3, 4. We came across the same triangular array of numbers, Pascal’s tri-
angle, in the previous chapter on Chinese mathematics. However, there 
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is no evidence that this triangle was used for any other purpose, such as 
numerical solutions to higher-order equations, as it was in China. Indeed, 
there is no evidence that the device was ever incorporated into Indian 
mathematics.

Sequences and Progressions
Jaina interest in sequences and progressions developed out of the Jains’ 
philosophical theory of cosmological structures. Schematic representa-
tions of the cosmos constructed according to this theory contained innu-
merable concentric rings of alternate continents and oceans, the diameter 
of each ring being twice that of the previous one, so that if the smallest ring 
had a diameter of 1 unit, the next largest would have a diameter of 2 units, 
the next 22 units, and so on to the nth ring of diameter 2 1n-  units.

Arithmetic progressions were given the most detailed treatment. Sepa-
rate formulas were worked out for finding the first term a, the common 
difference d, the number of elements n in the series, and the sum S of the 
terms. This was well explored in a Jaina text titled Trilokaprajnapti of Yat-
ivrsabha (500 AD). One of its problems is to find the sum of a complicated 
series consisting of forty-nine terms made up of seven groups, each group 
itself forming a separate arithmetical progression, and the terms of each 

Figure 8.9: Halayudha’s meruprastara (Pascal’s triangle)
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group forming another. We shall not attempt a solution here; for details see 
Bag (1979).

It was the elaborate treatment of mathematical series by Mahavira (c. 
AD 850) that paved the way for some notable work by medieval mathema-
ticians in this area. We shall examine these developments briefly in the 
next chapter.

Geometry
The term rajju was used in two different senses by the Jaina theorists. In 
cosmology it was a frequently occurring measure of length, approximately 
3.4 # 1021 kilometers according to the Digambara23 school. But in a more 
general sense it was the term the Jains used for geometry or mensuration, 
in which they followed closely the Vedic Sulbasutras. Their notable con-
tribution was with measurements of the circle. In Jaina cosmography the 
earth is a large circular island called the Jambu Island, with a diameter of 
100,000 yojana. While there are a number of estimates of the circumfer-
ence of this island, including the rather crude 300,000 yojana, an interest-
ing estimate mentioned in both the Anuyoga Dvara Sutra and the Triloko 
Sara, from around the beginning the first millennium AD, is 316,227 
yojanna, 3 krosa, 128 danda, and 13½ angula, where 1 yojanna is about 
10 kilometers, 4 krosa = I yojanna, 2,000 danda = 1 krosa, and 96 angula 
(literally a finger’s breadth) = 1 danda. This result is consistent with taking 
the circumference to be given by d10 , where d = 100,000 yojanna. The 
choice of the square root of 10 for the number we call p was quite conve-
nient, since in Jaina cosmography islands and oceans always had diameters 
measured in powers of 10.

Mathematics on the Eve of the Classical Period

It was in the field of astronomy during the early centuries of the first mil-
lennium that India began to make its mark. While written records of such 
activity have not survived the ravages of time, there is enough to get a fla-
vor of what was happening then. The fundamental objective of mathemat-
ical astronomy (as exemplified by the siddhantas) was to help to locate the 
position of the luminaries in the sky as seen from a particular place and 
at a particular time for the purposes of constructing accurate calendars or 
to make astrological predictions or to determine geographical directions. 
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It was soon recognized that this could be achieved by determining the 
mean position of the celestial body in question, correcting this position 
for its orbital anomalies, and then using the true position to predict the 
occurrence of sunrise, new and full moons, conjunctions, eclipses, and so 
on. A typical siddhanta contained not only an explanation of the methods 
involved but also a discussion of the technical instruments available then 
for measuring time and angles. In terms of both intellectual and techno-
logical transfer across cultures, the siddhanta became an important tool 
for the advancement of mathematical astronomy in India. By the early 
centuries of the first millennium AD, a synthesis was emerging between 
indigenous traditions of astronomical and calendrical concepts and com-
putations and the Hellenistic contributions in the form of plane trigo-
nometry of chords and geocentric models involving spherical bodies with 
planetary eccentrics and epicycles. The period of intellectual exchange 
seems to have come to an end before the emergence of Ptolemaic astron-
omy in the third century AD, after which Indian astronomy developed 
in near isolation for the next few centuries. The first of the major fully 
preserved astronomical texts that integrated both mathematical methods 
with astronomical explanations as well as Hellenistic components with 
indigenous elements is found in the well-known work Aryabhatiya of 
Aryabhata (b. AD 476). A discussion of this work and its author will be 
found in the next chapter.

However, for an exemplar of early Indian mathematics, we need to look 
elsewhere. In 1881, near a village called Bakhshali near the northwest bor-
der of India, a farmer digging in a ruined stone enclosure came across a 
manuscript written in an old form of Sanskrit, using Sarada characters, 
on seventy leaves of birch bark. The find was described as being as fragile 
as “dry tinder,” with a substantial part mutilated beyond repair. What re-
mained was put in order and parts of it translated into English by Rudolph 
Hoernle; it now resides in the Bodleian Library at Oxford.

G. R. Kaye produced the first translation of this manuscript, published 
in 1933 together with a commentary by him. Unfortunately, it is partial, 
incomplete, and fragmentary. There are serious errors in both his trans-
lation and his interpretation—errors that have passed into histories of 
mathematics that cite his work. There has been much controversy over the 
manuscript’s age, and here Kaye’s pronouncement has been particularly 
unfortunate. On the basis of rather dubious literary evidence, Kaye argued 
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that the Bakhshali Manuscript belonged to the twelfth century AD. The 
general consensus supports Hoernle’s assessment that the manuscript is a 
later copy of a document probably composed sometime in the early cen-
turies of the Christian era. Hoernle’s dating is based on a careful consider-
ation of a number of aspects, including the mathematical content, the units 
of money given in some examples, the use of the symbol + for the nega-
tive sign, and the lack of reference to certain topics (especially the solution 
of indeterminate equations) that appeared in works known to have been 
written later. Note, however, that Hayashi (1995) claims that the original 
is probably from the seventh century AD, although the manuscript itself 
is a later copy made between the eighth and the twelfth centuries. Hayashi 
has given the first complete translation of the manuscript. The section on 
the Bakhshali Manuscript in this chapter owes a considerable debt to his 
translation and interpretation. 

If we accept Hoernle’s dating, the manuscript may therefore be the next 
substantial piece of evidence, after Jaina mathematics, to bridge the long 
gap between the Sulbasutras of the Vedic period and the mathematics of the 
Classical period, which began around AD 500. It is also the earliest evidence 
we have of Indian mathematics free from any religious or metaphysical as-
sociations. Indeed, there is some resemblance between the manuscript and 
the Chinese Jiu Zhang Suan Shu from a few centuries earlier, which we ex-
amined in chapter 6, both in the topics discussed and in the style of presen-
tation of results. It should, however, be added that the premier Chinese text 
is far more wide-ranging and “advanced” than the Bakhshali work.

The Bakhshali Manuscript is a handbook of rules and illustrative ex-
amples together with their solutions. It is devoted mainly to arithmetic 
and algebra, with just a few problems on geometry and mensuration. Only 
parts of it have been restored, so we cannot be certain about the balance 
between different topics. The arithmetic examples cover fractions, square 
roots, profit and loss, interest, and the “rule of three,” while the algebraic 
problems deal with simple and simultaneous equations, quadratic equa-
tions, and arithmetic and geometric progressions. There is no clue as to 
who was the author of the work.

The subject matter is arranged in groups of sutras and presented as fol-
lows. In a typical case, a rule is stated and then a relevant example is given, 
first in verse and then in notational form. The solution follows in prose, 
and finally we have the demonstration or “proof.”24 This method of presen-
tation is quite unusual in Indian mathematics. The few texts arranged in 
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this way are invariably commentaries on earlier works. Since, in terms of 
its content, the Bakhshali Manuscript is but a prelude to more substantial 
work in the Classical period, we confine our discussion to a few novel fea-
tures in this text. We begin with an examination of the system of notation 
used, as it is a recognizable precursor of later systems.

Notations and Operations
The system of notation used in the Bakhshali Manuscript bears some re-
semblance to those used by mathematicians such as Aryabhata I (c. AD 
476–550), Brahmagupta (b. 598), and even Bhaskaracharya (b. 1114). But 
there is one important difference. In the Bakhshali text we find that the 
sign for a negative quantity looks exactly like the present “plus” symbol 
used to denote addition or a positive quantity. This sign was placed after 
the number it qualifies. For example, in the manuscript,

15
4

8
3
+

means 15/4 - 8/3. Later, the + sign was replaced by a dot over the num-
ber to which it referred. Incidentally, this is one of the clues telling us that 
the Bakhshali Manuscript must have originated before the twelfth century. 
Another interesting aspect of the notation shown in the example above is 
the representation of fractions. It is similar to the present-day representa-
tion in that the denominator is placed below the numerator, but the line 
between the two numbers is missing.

This and other aspects of the notation and operations will be brought 
out if we take an example from the twenty-fifth sutra. There the following 
representation appears:

32bha sesam phalam mula1
1
1
3

1
1
3

1
1
3

108
:

+ + +

Here the black dot is used very much in the same way as we use the 
letter x to denote the unknown quantity whose value we are seeking. A 
fraction is denoted by placing one number under another, without a line 
between them. A compound fraction is shown by placing three numbers 
under one another; thus the second column of the representation above 
denotes 1 minus 1/3, or 2/3. (Without the + sign, it would denote 1 plus 
1/3.) Multiplication is usually indicated by placing the numbers side by 
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side. Thus the representation above means (2/3) # (2/3) # (2/3), or 8/27. 
Bha is an abbreviation of bhaga, meaning “part,” and indicates that the 
number preceding it is to be treated as a denominator; bha is thus the sym-
bol for division. The representation above therefore means

2 ,x 3 32 8
27 32 108

3 1

# #= = =
−

d dn n< F

or, in words, “the remainder (sesam) is divided by 1(1 -  3
1 )(1 -  3

1 )(1 -  3
1 ). 

The result is 108.”
In the Bakhshali Manuscript the dot is also used to represent zero. The 

use of the same symbol to represent both an unknown quantity and a 
numeral is interesting. At the time the dot indicated an empty place, as 
its Sanskrit name shows: shunya means “empty,” or “void.” It is this dual 
meaning that gives us a clue to the age of the text.

On only two occasions the symbol for addition, which is the abbrevia-
tion yu (for yuta), is used. On almost all occasions, the two numbers to 
be added are put side by side. The whole operation is enclosed between 
lines, and the result is set down on the right of pha. Thus 3 + 6 = 9 is 
represented as

phayu
1

9
3 6

1

The Rule of Three (Trairasika)
One of the problems from the Jiu Zhang (example 6.3, discussed in chapter 
6) has a solution that clearly shows a knowledge of the “rule of three.” An 
early statement of this rule is in Aryabhata’s Aryabhatiya: 

In the rule of three [trairasika], multiply the phala-rasi [fruit] by the 
iccha-rasi [desire or requisition] and divide by the pramana [measure 
or argument]. The required result iccha-phala [or fruit corresponding 
to desire or requisition] will be thus obtained.

Symbolically, this rule can be expressed thus: given that f, i, p, and m are 
phala-rasi, iccha-rasi, pramana, and iccha-phala respectively, then m = fi/p.

This is the first time in Indian mathematics that the technical names for 
the “rule of three” and for the four numerical quantities involved are given. 
However, the succinct manner in which the rule is given would indicate 
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that it was already well known and that Aryabhata was merely restating it 
as a prelude to its use in astronomical computations. The antecedents of 
this rule have been traced back about a thousand years to a verse in the 
Vedanga Jyotisa and are discussed by Sarma (2002).

Discussion of this rule becomes a standard feature of all texts after 
Aryabhata. Though normally employed in solving commercial problems, 
the rule played a more important role in other areas of Indian mathemat-
ics and astronomy. In arithmetic, as we will see below, it was used as a 
means of verification in solving other problems. More importantly, it was 
employed in astronomical computations, for example, in the computation 
of the mean position of a planet from the number of its revolutions in 
a kalpa of 4,320,000,000 years. Many of the problems of spherical trigo-
nometry were solved by applying the rule to similar right-angled triangles 
such as those found in the aksajaksetra (figure produced by the latitude).25 
Also, the rule forms the basis for computing trigonometric ratios. Bhas-
kara I’s commentary on Aryabhata’s work contains a detailed discussion of 
the rule and points to how it can be extended to encompass rules of five, 
seven, and so on. He also introduces the question of the logical sequence in 
which the three numerical quantities should be set down and the order in 
which the multiplication (f times i) and division by p should be carried out. 
Later, Brahmagupta’s formulation of the rule became a model for subse-
quent writers bringing out more explicitly the fact that the three quantities 
should be set down in such a way that the first and last be of like denomi-
nation and the middle one of a different denomination. This is reiterated 
by Sridhara (c. 800), Mahavira (c. 850), and Aryabhata II (c. 950) without 
adding much to the principles underlying the rule. However, Bhaskara II 
(b. 1114) in his Lilavati states the important point that nearly the entire 
arithmetic is based on the “rule of three” and that most of the topics dealt 
with in ganita are but variations of this “rule of three”: 

Just as the universe is pervaded by Hari with His manifestations, even so 
all that has been taught [in arithmetic] is pervaded by the “rule of three” 
with its variations. (S. R. Sarma 2002, p. 133)

Further, Nilakantha declares in his commentary on the Aryabhatiya 
that the entire mathematical astronomy (graha-ganita) is pervaded by two 
fundamental laws: by the law of relation between the base, perpendicular, 
and hypotenuse in a right-angled triangle—which goes today under the 
name of Pythagoras theorem—and by the rule of three.
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However, depending on the date of composition of the original Bakh-
shali Manuscript, the first recorded application of this rule may very well 
have been here. The problem to which the rule is applied is of a type famil-
iar to schoolchildren today. For example, If 8 oranges cost 92 pence, what 
will 14 oranges cost? The solution is (92 # 14)/8 = £1.61.

The method suggested in the Bakhshali Manuscript, which is also found 
in later works, may be stated in the following terms: If p oranges (argu-
ment, or pramana) yield f pence (fruit, or phala), what will i oranges (req-
uisition, or iccha) yield? It is suggested that the three quantities be set down 
as follows:

	 p	 f	 i

where p and i are of the same denomination and f is of a different denomi-
nation. For the required result the middle quantity is to be multiplied by 
the last quantity and divided by the first, to give the result as fi/p. The fol-
lowing example from the Bakhshali Manuscript (example 2 from sutra 53) 
illustrates the “rule of three,” although the solution in the manuscript does 
not follow the method used here. For the Bakhshali solution, the reader is 
invited to refer to Hayashi (1995, pp. 385–86).

Example 8.1  Two page boys are attendants of a king. For their services 
one gets 13/6 dinaras a day and the other 3/2. The first owes the second 
10 dinaras. Calculate and tell me when they have equal amounts. 

Suggested Solution

Take the denominators 6 and 2, together with the number 10 that the 
first has to give. The lowest common multiple of 2, 6, and 10 is 30, so 
30 is the iccha (requisition). Now apply the rule of three (see table 8.3). 
Note that if the first page boy gives the second 10 dinaras, both will be 
left with 55 dinaras.

Table 8.3:  Information for Example 8.1

	 p	 f	 i	 Required result
	 (day)	 (dinaras)	 (day)	 (fi/p)

First page boy	 1	 13/6	 30	 65
Second page boy	 1	 3/2	 30	 45
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Consider a more apposite illustration from sutra 27 of the “rule-and-
example” type of exposition, beginning with the statement of the rule, fol-
lowed by the problem expressed verbally and then in a numerical form, 
and ending with a verification using the “rule of three.” This example is 
based on a minor modification of what is contained in Hayashi (1995).

Example 8.2 

Rule 

Multiply [the weights of] the gold pieces by [their respective] impu-
rities. Divide their sum by [the weights of] the gold pieces added to-
gether. The [result] gives the loss [of gold] per unit [weight of the alloy].

Example 

[Four] gold pieces, the quantities of which are one, two, three, and four 
suvarnas [respectively] are debased by one-half, one-third, one-fourth, 
and one-fifth of a masa [per suvarna in that order]. [They are melted] 
and formed into a single alloy. What is the impurity [of that alloy]? 
[Note: 1 suvarna = 16 masas]

The Problem in Numbers 

Computation 

Multiply [the weight of each] gold piece by its own impurity. And 
then set up the result as given below [see table 8.4]. Add the fractions 

Continued . . . 

 

Weight in suvarnas	 1	 2	 3	 4
Impurity in masas	 1/2	 1/3	 1/4	 1/5

Table 8.4:  Calculations for Example 8.2

	 Pramana	 Phala-rasi	 Iccha-rasi	 Iccha-phala (m)
Type	 (p)	 (f)	 (i)	 m = fi/p

1	 10/1	 163/60	 1/1	 163/600 masas
2	 10/1	 163/60	 2/1	 163/300 masas
3	 10/1	 163/60	 3/1	 163/200 masas
4	 10/1	 163/60	 4/1	 163/150 masas
  Total				    1630/600 masas
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Continued . . . 

together by reducing each to the same denominator. Result 163/60. Di-
vide this sum by the weights of the gold pieces added together (Result: 
163/600). This is the loss [of gold] per suvarna.

The calculation is therefore verified by applying the “rule of three” 
in obtaining the combined impurity of all four pieces, which amounts 
to 1,630/600 = 163/60 masas. In the terms of modern notation: If 
wi = weight of the ith gold piece in suvarnas and ci is the impurity (or 
the nongold component) of the ith gold piece in masas for i = 1, 2, . . . , 
n, then the combined impurity of all n gold pieces when melted to-
gether is

.w w w
w c w c w c2

n

nn

1 2

1 1 2

f

f

+ + +
+ + +

Extracting Square Roots
The Bakhshali Manuscript extended the work on square roots in the Sulba‑
sutras, which we discussed earlier in this chapter, to give a more accurate 
formula for finding an approximate value of the square root of a nonsquare 
number. The relevant sutra (no. 18) may be expressed more comprehensi-
bly in the following terms:

In the case of a nonsquare number, subtract the nearest square number; 
divide the remainder by twice the nearest square; half the square of this 
is divided by the sum of the approximate root and the fraction. This is 
subtracted, and will give the corrected root.

In symbolic form, this rule is:

,( / )
( / )A a r a a

r
a r a
r a

2 2 2
22

2

.= + + −
+

where a2 is the perfect square nearest to A and r = A - a2. For example:

( / )
( / ) .41 6 12

5
6 5 12
5 12 6 40312 (to four decimal places) .

2

. .+ −
+

(The reader may wish to try using this rule to evaluate 3  and 5 .) The 
formula was applied in the manuscript to calculate the approximate square 
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root of 481 as 424,642/19,362, which is correct to four decimal places. The 
formula may be compared with the approximation procedure for finding 
the square root of a nonsquare integer usually attributed to the Hellenistic 
mathematician Heron (c. AD 200), although we came across a close ante-
cedent of the procedure in Babylonian mathematics in chapter 4. Heron’s 
formula for finding the square root of A is

* * ,A a a
A

2
1

. +d n

where a* is a first approximation to the square root of A, and can be a non-
integer (this is not possible with the Bakhshali method).26 

Indeterminate Equations: Their First Appearance
The following is one of a number of similar problems found in the 
manuscript:

Example 8.3  Three persons possess 7 asavs, 9 hayas, and 10 camels, 
respectively [asavs and hayas are two breeds of horses]. Each gives two 
animals, one to each of the others. They are then equally well off. Find 
the price of each kind of animal and the total value of the livestock pos-
sessed by each person.

Solution (in Symbolic Terms)

Let x1, x2, and x3 be the prices of an asav, a haya, and a camel respec-
tively. Then, from the information given in the question,

,x x x x x x x x x k5 7 81 2 3 1 2 3 1 2 3+ + = + + = + + =

or

4 6 7 ,x x x k1 2 3= = =

and we seek values of x1, x2, x3, and k that are positive integers.
To get integer solutions, we take k to be any multiple of the lowest 

common multiple of 4, 6, and 7. In the Bakhshali Manuscript k is taken 
as 4 # 6 # 7 = 168. Then the price of an asav is 42, the price of a haya 
is 28, and the price of a camel is 24. The total value of livestock in the 
possession of each person is 262.
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From these humble beginnings, over the next thousand years there was 
to be a systematic development of indeterminate analysis, which will be 
examined in the next chapter.

An Unusual Series
Among the arithmetic series found in the Bakhshali Manuscript, there are 
some unusual ones. The next problem, reconstructed from a mutilated 
birch-bark strip, is Hayashi’s translation and interpretation of example 7 in 
sutra N6 (Hayashi 1995, pp. 286 and 395).

Example 8.4  O wise man! A certain king gave five horsemen a gift of 
fifty-seven [monetary unit missing]. Each person in order, I tell [you], 
obtained twice the amount of his predecessor and one more.What then 
was obtained by the first person and what by each of the others? 

Solution (in Symbolic Terms)

The problem may be expressed thus. Let xi be the share of the ith horse-
man. Then

2 1( 0, 1, 2, 3, 4), .x x i x 57and1i i i
i 0

4

= + = =+
=

/

The solution is lost in the original manuscript, except for the follow-
ing tabulation of the numerical data (see table 8.5).

Expressed in modern notation, the cells of the table are the coeffi-
cients of the following equations:

0, 2 1, 4 3, 8 7, 16 15.x x x x x x x x x x1 0 2 0 3 0 4 0 5 0= + = + = + = + = +

Continued . . . 

Table 8.5:  Data for Example 8.4

0	 1	 3	 7	 15	 57
1	 1	 1	 1	 1	 1

1	 2	 4	 8	 16
1	 1 	 1	 1	 1
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Continued . . . 

The solution is obtained by applying the algorithm given in sutra N6:

( ) .x 1 2 4 8 16
57 1 3 7 15

31
31 10 = + + + +

− + + +
= =

Hence 

1, 3, 7, 15, 31x x x x x1 2 3 4 5= = = = =

are the shares received by the five horsemen.

The state of Indian mathematics at the middle of the first millennium 
AD, as represented by the Bakhshali Manuscript, may be summarized as 
follows.

1. Whereas the mathematics of the Vedic age and of the Jains were in 
part inspired by religion, the mathematics of this period became more 
practical and secular, being applied to everyday problems. Examples of 
profit and loss, computation of the average impurities of gold, of wages, 
or of gifts to be paid to subordinates, and of speeds and distances to be 
covered, form the subject matter of the Bakhshali Manuscript.

2. Whereas the writers of the Sulbasutras had already devised rules 
to find approximate values of 2 , these rules were now more elabo-
rate and were being used to obtain the square root of any number to a 
greater degree of accuracy.

3. There is some evidence that work on series begun during the Jaina 
period was continued.

4. This period marks the beginning of the great interest in indeter-
minate analysis. Such an interest did not arise solely from the demands 
made by astronomical calculations. Other problems, some of them of a 
recreational nature, were also included. The examples discussed in the 
Bakhshali Manuscript and the solutions offered are not difficult, but 
they mark the beginning of a study that was to reach an advanced level 
during the so-called Classical period of Indian mathematics.

5. There is evidence of a well-developed place-value number sys-
tem that included zero (represented by a dot). The ease with which the 
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system is used in the manuscript suggests that the system predates the 
document by a few hundred years.

6. In contrast to the vast majority of Indian mathematical works com-
posed before and after this manuscript, the method of exposition follows 
a systematic order, as illustrated by example 8.2 above: (1) statement of 
the rule (sutra), (2) example(s) to apply the rule, (3) a solution using 
the rule, and (4) verification of the correctness of the solution. Most of 
the other sources of Indian mathematics, until the emergence of Kerala 
mathematics in the late fourteenth century, contain concise statements 
of the rules, usually without any attempt at deriving or demonstrating 
them. These were left to subsequent commentators or teachers to explain.

Notes

1. The beginnings of European awareness of ancient Indian mathematics may be 
traced to the English translation by Colebrook (1817) of three notable classics of In-
dian mathematics, namely the Brahma Sphuta Siddhanta of Brahmagupta (AD 628) 
and the Lilavati and Bijaganita of Bhaskara II (1150). One response was to believe 
that the mathematics contained in these texts could be traced to the Greeks, who were 
perceived as the originators of Western mathematics. Cantor (1880–1908), the author 
of an influential four-volume treatise on the history of mathematics, maintained at a 
number of places that the Indians had learned algebra through traces of algebra within 
Greek geometry. And similarly, Brahmagupta’s solution to quadratic equations had 
Greek origins. In response to Cantor, Hankel (1874, p. 204) argued:

[H]umanist education [has] deeply inculcated prejudice that all higher intellectual 
culture in the Orient, in particular all science, is risen from the Greek soil and that 
the only mentally truly productive people have been Greek. This makes it difficult 
to turn around the direction of interest for one instant. 

Heeffer (2007) argues that soon a split arose between the “believers,” such as Rodet 
(1879) and Hankel (1874), in an independent development of Indian mathematics and 
the “nonbelievers,” such as Cantor (1905) and Kaye (1915), who argued that Indian 
mathematics was derived from the Greeks. The latter group traced the development of 
Indian indeterminate algebra back to Diophantus, whose algebra in turn was believed 
to have originated with Pythagoras. For a discussion of the alleged Indian debt to Greek 
mathematics, see Heeffer (2007). 

2. This is not to deny that a case can be made that Hipparchus of Nicaea’s (fl. 150 BC) 
work on chords may have influenced early Indian trigonometry. For details, see Toomer 
(1973) and Duke (2005).
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3. In this chapter and the next, a number of titles of Indian texts are given without trans-
lation. This is sometimes because words in the title have a number of possible interpreta-
tions, and sometimes because a literal translation would not be particularly meaningful.

4. In recent years, the term “Vedic mathematics” has been used to describe a set of com-
putational algorithms based originally on a book by that name, first published in 1965 
and authored by Krishna Tirthaji. The computation rules (given in the form of modern 
Sanskrit sutras) were claimed to have been “rediscovered” from a parisista (appendix) of 
the Atharavaveda. Extensive search for this parisista has proved to be fruitless. Hence, 
in this edition, for the sake of historical accuracy and consistency, it was decided to 
omit this topic, which nevertheless contains fascinating computational tools. For further 
elaboration of the methods, see Nelson et al. (1993) and Krishna Tirthaji (1965). 

5. The dating of early Indian texts is highly uncertain. The dates given here are rough 
and conservative estimates of when the first versions of the texts were recorded. It is 
very likely that, before they were written, an earlier oral tradition kept the contents alive. 
Copying old texts was a common pursuit of the Indian scholar and student, sanctioned 
by religion and custom. It is therefore important not to depend on the dates of copies 
of mathematical texts in assessing the true age of a particular method or technique. 

6. This is a conservative estimate. There are varying astrochronological estimates that 
suggest dates around 4000 BC, 3300BC, and 3000 BC, any of which are possible dates 
for the composition of Vedic texts or, more plausibly, the origin of the ideas that were 
later incorporated into them. For further information on these interpretations, see 
Kak (2005). 

7. For further details, see Kuppanna Sastry (1985).

8. These statements are not literal translations of the original texts. For the sake of 
clarity, modifications have been made. Thus, for example, a more literal translation of 
the first statement reads: “The rope [equal to] the diagonal of a [square] quadrilateral 
makes twice the area. It is the ‘two-maker’ [dvi-karani or ‘double’] of the square.”

9. The Mahavedi provides the prototype for a smaller sacrificial altar to the chief of the 
gods, Indira, with proportions identical to those of the Great Altar but having only 
one-third of the area. A scaling factor of  1/ 3  is applied to achieve the desired result. 
It would seem that the Sulbasutras exhibit considerable skills in arithmetical manipula-
tions, including those of fractions and their combinations.

10. The rule, stated in the Sulbasutras, was as follows: 

Wishing to make a [square] quadrilateral a circle: Bring [a cord] from the center 
to the corner [of the square]. [Then] stretching [it] toward the side, draw a circle 
with [radius equal to the half-side] plus a third of the excess [of half the diagonal 
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over the half-side]. This is definitely the [radius of the] circle. As much as is added 
[to the edges of the circle] is taken out [of the corners of the square]. (Quoted in 
Plofker 2009, p. 23)

It would seem that the authors of the Sulbasutras were primarily “interested in practical 
results and show no direct concern with proof procedures as such at all” (Lloyd 1990, 
p. 104).

11. In the Katyayana Sulbasutra, there is a clear recognition that the procedure pro-
duces only an approximate result, implied in the term “having a difference” (from the 
exact value). 

12. In chapter 4, on Mesopotamian mathematics, we came across an approximation 
method for evaluating 2 . The result, which in sexagesimal notation is 1;24,51,10, is 
more or less the same as the Sulbasutra value, and this prompts the question of whether 
the Sulbasutra procedure was in some sense derived from the Mesopotamian. For spec-
ulations regarding the Mesopotamian connections, see Datta (1932a, pp. 192–94) and 
Neugebauer (1962, p. 34).

13. This would of course depend on the dating of the Bakhshali Manuscript. 

14. See Plofker (2009, p. 57).

15. However, the order of the digits is the opposite of what had have today, beginning 
with the least significant (unit) and moving on to digits representing increasing pow-
ers of 10. Thus “earth-eye-sky-time” would be read as 3,021 in our full-fledged decimal 
place-value system.

16. Or more precisely, “zero” is also known in Arabic by the term daira saghira (small 
circle). It is this small circle that appears in early Latin manuscripts (S. R. Sarma 2009, 
p. 215).

17. See Han (2002, p. 106) for the source of the quotation.

18. As early as the first century AD, the Buddhist philosopher Vasumitra was using a 
similar analogy when he compared the varieties of realities to the merchants’ counters: 
the same single clay counter can represent units, hundred, thousands, and so on, de-
pending on its position. 

19. In his Brahma Sphuta Siddhanta, Brahmagupta gave rules for zero and negative 
numbers in terms of “fortunes,” which represent positive numbers, and “debts,” indicat-
ing negative numbers. For example, a debt subtracted from zero is a fortune, and a for-
tune subtracted from zero is a debt. Also the product or quotient of a debt and a fortune 
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is a debt, while the product or quotient of two fortunes is a fortune. In his attempt to 
extend these statements to include division by zero, Brahmagupta stated wrongly that 
zero divided by zero is zero. In terms of modern notation, he also suggested that any 
number n divided by zero is n/0, which is saying very little. However, Brahmagupta is 
given credit for being one of the earliest mathematicians to tackle this fascinating sub-
ject of “calculations with zero” (shunya ganita).

20. An interesting area for historical investigation is the connection between the math-
ematics contained in the Buddhist and Jaina texts and the development of logic. A 
belief in a truth-functional two-valued logic was denied by both the Buddhists and the 
Jains. Instead, as expressed by the philosopher Nagarjuna (c. third century AD), the 
Buddhists had a logic of four alternatives: “Everything is such (X), not such (not X), 
both such and not such (X and not X), neither such nor not such (neither X nor not 
X).” It is interesting that Nagarjuna’s main contribution to Buddhist philosophy is in the 
development of the concept of shunyata, discussed earlier in this chapter. For further 
elaboration, see Matilal (1985).

21. It is not practicable to examine this fascinating area of mathematics here. Simple 
introductions to the concept of transfinite numbers and operations with such numbers 
are given by Stewart (1981, pp. 127–43) and by Sondheim and Rogerson (1981, pp. 
148–59). 

22. A cautionary note should be sounded here. The use of the word “logarithm” in this 
context does not imply that it ever became a computational tool in Indian mathematics.

23. The Digambara are one of the two main sects of Jain monks whose members shun 
all property and wear no clothes. In their active practice of nonviolence, they use a 
peacock-feather duster to clear their path of insects to avoid trampling them.

24. It is interesting that the prose explanations do not always reflect the solution proce-
dures offered, possibly suggesting that some of the verses stating the problem may have 
been recorded earlier than the explanations.

25. I am grateful to Takao Hayashi for providing a precise definition of the term 
aksajaksetra.

26. It is worthy of note that the Babylonian procedure, discussed in chapter 4, permits 
successive approximation (also not possible with the Bakhshali method). It is easily 
seen that the Bakhshali formula and Heron’s formula produce identical results for the 
square root of 3, for a = 1 and a* = 1.5. In Heron’s example in his book, Metrica 1.8, 
A = 720, a* = 27, and A/a* = 720/27 = 26 3

2  produces a square root approximation 
for 720 as ( ) /27 26 2 263

2
2
1

3
1+ = + + , which is correct to three decimal places.



Chapter Nine

Indian Mathematics: The Classical Period and After

From the previous chapter it is clear that our evidence of mathematical 
activities after the Vedic period, as represented by Jaina canonical litera-
ture and the Bakhshali Manuscript, is imperfect and incomplete. Our 
knowledge of the development of mathematics and astronomy between 
the Sulbasutras and the period of Aryabhata I (c. AD 500) is therefore fairly 
sketchy. Yet this hiatus in our knowledge is particularly puzzling given the 
wealth of evidence we have for the same period in other fields, notably in 
medicine and chemistry, and in philosophy, where outstanding work was 
produced by the Nyaya and Mimamsa schools.

Various explanations have been offered for this apparent discontinuity. 
The virtual disappearance of Vedic sacrifices removed, as it were, the raison 
d’être for continued interest in geometry. The sheer size of the Indian sub-
continent would have restricted communication between different parts 
of the country, with an adverse effect on the transmission of mathematical 
ideas, which were widely scattered and normally restricted to certain fami-
lies. If a particular generation showed little interest or aptitude, the fam-
ily’s mathematical knowledge might be lost forever. Mathematical ideas 
were transmitted orally in a verse form that could easily be memorized. 
This sutra form was specially suited for this purpose, but to the uniniti-
ated it required elaborate explanations—without commentaries, the sutras 
often made little sense. This form of transmitting knowledge had the re-
sult of confining mathematical pursuits to a tiny elite. This elitism, born of 
the caste system, is probably one of the reasons why Indian mathematics 
floundered for a few centuries after its impressive beginnings. (For other 
disciplines such as medicine and chemistry, knowledge was concentrated 
in schools and did not suffer in this way.)

The revival, which came in the middle of the first millennium AD, also 
established channels of communication both within India, where math-
ematical work was concentrated in three centers of learning (Kusum Pura 
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and Ujjain in the north and Mysore in the south) and within other cul-
tures, first Persia and later the Islamic world and China. The scene was 
set for the transmission of Indian mathematical ideas to the West and the 
incorporation of important Babylonian and Hellenistic ideas, mainly from 
Alexandria, into Indian astronomy.

The few centuries preceding and following the beginning of the Christian 
era saw the emergence of a class of astronomical texts called the Siddhantas.1 
Contained in them were important changes in astronomical methods and 
practices. The traditional system, based on tracking the movement of the 
planets in relation to twenty-seven (or twenty-eight) stars chosen as refer-
ence points, was dispensed with and replaced by the twelve signs of the 
zodiac. More sophisticated mathematical methods were used to determine 
the periods of planetary revolutions. The mean longitudes were calculated 
from the number of days that had elapsed since the beginning of the pres-
ent Kaliyuga era (Friday, February 18, 3102 BC, on the Gregorian calen-
dar). Different measures of the duration of the day and year were correctly 
determined. Planetary positions were computed using Ptolemaic epicycles 
and deferents; eclipses were calculated and the results corrected for par-
allax (the apparent displacement of celestial objects resulting from the 
changing location of the observer as the earth moves in its orbit). These 
computations required a wide range of mathematical techniques, includ-
ing certain innovative methods of plane and spherical trigonometry and 
applications of indeterminate equations. Some of these methods will be 
examined in this chapter.

Major Indian Mathematician-Astronomers 

Aryabhata I (b. AD 476)
In his best-known work, Aryabhatiya, Aryabhata I states that he com-
posed it during the 3,600th year of the Kaliyuga, when he was twenty-
three years old.2 According to the Suryasiddhanta, an astronomical treatise 
that is the basis of all Hindu and Buddhist calendars, Kali Yuga began at 
midnight on January 23, 3102 BC, according to our present calendar. So 
he must have been born in AD 476 and completed his work in 499 (i.e., 
3601 - 3102 = 499). There are a number of conjectures about his birth-
place, ranging from the south (Kerala, Tamil Nadu, Andhra Pradesh) to 
the northeast (Bihar, Bengal). But all we know is that he wrote his great 
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work in Kusum Pura, near modern Patna in Bihar. It was then the imperial 
capital of the Gupta empire, and had been an important center of learning 
since the Jaina period; the great Jaina metaphysician-scientist Umasvati 
(c. AD 200) recorded that a famous school of mathematics and astronomy 
had stood there before his time.

The Aryabhatiya is short and concise, and is essentially a systematization 
of results known earlier and probably contained in the older Siddhantas. The 
mathematical section consists of just thirty-three verses. It is, however, of 
particular importance not only because of the picture it gives of the state of 
mathematical knowledge of the period but also for the impetus it gave to the 
future study of the subject. It contains details of an alphabet-numeral sys-
tem of notation (discussed in chapter 8), rules for arithmetical operations, 
and methods of solving simple and quadratic equations and indeterminate 
equations of the first degree. The book pays some attention to trigonometry 
and introduces the sine and versine (i.e., 1 - cosine) functions—a notable 
innovation on earlier work both in and outside India. The Indian contribu-
tion to trigonometry will be discussed later in this chapter.

Aryabhata hit upon 3.1416 as a close approximation to the ratio of the 
circumference of a circle to its diameter, a fact mentioned earlier in our 
discussion of the history of p in chapter 7. He also gave correct general 
rules for computing the sum of natural numbers, and of their squares and 
cubes. There was, on the evidence of a later commentator, a nonextant 
work under the title Arya Siddhanta, a more detailed examination of as-
tronomy (and possibly trigonometry), but there are serious doubts about 
its authorship.

Aryabhata’s place as the premier and pioneering mathematician of In-
dia will have to be reassessed in the light of recent discoveries about the 
scope and quality of Jaina mathematics. As the mathematical activities of 
the post-Vedic and pre-Classical period become better known, Aryabhata 
will come to be seen mainly as an astronomer who had a great influence 
on those who came after him. It is therefore appropriate that India’s first 
artificial satellite, designed and built in India, and launched in the former 
USSR on April 19, 1975, was named Aryabhata.

Two astronomers who followed Aryabhata extended his work. As an as-
tronomer, Varahamihira (fl. AD 500) is remembered for his construction of 
trigonometric tables in his famous astronomical treatise Pancasiddhantika 
and for a revised version of the Indian calendar, which he corrected for the 
amount of precession that had accumulated since the preparation of Sury‑
asiddhanta (one of the widely known earlier Siddhantas). Mathematically, 
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his work is interesting for its detailed exposition of trigonometry. It gives 
a number of relations between three functions, jya (Indian sine, or half 
chord), kojya (Indian cosine, or cosine-chord of an arc), and utkramajya 
(Indian versine), which we shall examine in the section on trigonometry 
later in this chapter. Also, extending the work of Aryabhata I, he gave val-
ues of different jyas in a quadrant drawn at a fixed interval (i.e., an Indian 
sine table). 

Bhaskara I was one of the most competent exponents of Aryabhata’s 
astronomy. His three major works consist of two treatises on astronomy 
and a commentary on the Aryabhatiya (629). His work reveals not only 
the depth and breadth of his mathematical understanding but also that 
he was part of a well-established tradition of investigation into the subject 
and its foundations. He may be seen as the first illustrious commentator 
of the Aryabhatan school, who would influence not only the mathemati-
cians who came after him during the Classical period but also the Kerala 
mathematicians who lived more than seven hundred years later. His no-
table contributions to mathematics include his solution of indeterminate 
equations of the first degree and a remarkably accurate approximation for-
mula for calculating the Indian sine of an acute angle without the use of 
a table, of which the former was to have a significant influence on a later 
mathematician-astronomer, Brahmagupta.3

Brahmagupta (b. AD 598)
After Varahamihira, the best-known mathematician-astronomer of the 
Ujjain school is Brahmagupta. He wrote two works, the first and more 
important, Brahma Sphuta-siddhanta (Corrected Siddhanta of Brahman), 
when he was thirty. The book is a comprehensive astronomy text, several 
chapters of which deal with mathematics. Brahmagupta called the twelfth 
chapter Ganita (Arithmetical Calculation), although it includes a discus-
sion of mathematical series and a few geometric topics (including the 
well-known “Brahmagupta theorem” discussed in a later section of this 
chapter). The eighteenth chapter, Kuttaka (literally Pulverizer, but broadly 
translated as Algebra), contains solutions of indeterminate equations of 
the first and second degree.4 Scattered through his second book, an as-
tronomical treatise titled Khanda Khadyaka, are further developments in 
trigonometry, including a method of obtaining the sines of intermediate 
angles from a given table of sines. The method employed is equivalent to 
the Newton-Stirling interpolation formula up to second-order differences. 
We shall return to this later.
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Brahmagupta holds a special place in the history of mathematics. As we 
shall see in chapter 11, it was partly through a translation of his Brahma 
Sphuta-siddhanta that the Islamic world, and then the West, became aware 
of Indian astronomy and mathematics. This was to have momentous con-
sequences for the development of the two subjects.

Sridhara (fl. AD 800)
There remains some controversy over Sridhara’s time and place of birth; 
some scholars suggest he came from Bengal, others from southern India. 
What is definitely known is that he wrote the partly extant Patiganita and 
the highly influential Trisatika. The latter proved to be one of the most 
popular textbooks on arithmetic before the Lilavati of Bhaskaracharya 
over three centuries later. In it he deals with elementary operations, includ-
ing extracting square and cube roots, and fractions. Eight rules are given 
for operations involving zero (but not division). His methods of summa-
tion of different arithmetic and geometric series were to become standard 
references in later works.

Mahavira (fl. AD 850)
Mahavira was the best-known Indian mathematician of the ninth cen-
tury. A Jain by religion, he was familiar with Jaina mathematics, which 
he included and refined in his book Ganita-sara-sangraha. It is possible 
that Mahavira knew the works of Aryabhata and Brahmagupta. Unlike his 
predecessors, Mahavira was not an astronomer—his work was confined to 
mathematics. He was a member of the mathematical school at Mysore in 
southern India.

In Ganita-sara-sangraha he gives a lucid classification of arithmetical 
operations and a number of examples to illustrate the rules. His contribu-
tions include:

1. � A detailed examination of operations with fractions, with some in-
genious methods for decomposing integers and fractions into unit 
fractions (a subject of practical utility for the ancient Egyptians, as 
we saw in chapter 3)

2. � A statement of general rules of operations with zero and positive and 
negative quantities

3. � An extension and systematization of the Jaina work on permutations 
and combinations, for both of which he provides the well-known 
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general formulas illustrated with examples involving combinations 
of flavors, of different precious stones making up a necklace, and of 
different flowers contained in a garland5

4. � Solutions of different types of quadratic equations, as well as an ex-
tension of his predecessors’ work on indeterminate equations

5. � Geometric work on right-angled triangles whose sides are rational 
and, something unusual in Indian mathematics, attempts (albeit un-
successful) to derive formulas for the area and perimeter of an ellipse

The book was widely used in southern India and translated into Telegu, 
a regional language, during the eleventh century.

Mahavira’s contribution may be looked at in two ways. Ganita-sara-
sangraha may be seen as the culmination of Jaina work on mathematics (in-
deed it is the only substantial treatise on Jaina mathematics that we have). 
Alternatively, Mahavira can be seen as summarizing and extending the math-
ematical content of the works of his predecessors such as Aryabhata, Bhas-
kara I, and Brahmagupta. He was very conscious of the debt he owed those 
who came before him. In the introductory chapter of his book, he wrote:

With the help of the accomplished holy sages, who are worthy to be 
worshipped by the lords of the world. . . . I glean from the great ocean 
of the knowledge of numbers a little of its essence, in the manner in 
which gems are [picked] from the sea, gold from the stony rock, and 
the pearl from the oyster shell; and I give out according to the power of 
my intelligence, the Sara Sangraha, a small work on arithmetic, which is 
[however] not small in importance.

Later than Mahavira was the astronomer Aryabhata II, who lived around 
the middle of the tenth century. In his major astronomical treatise of eigh-
teen chapters, Maha-siddhanta, there is a clear treatment of kuttaka, which 
had by then come to mean the solution of indeterminate equations. Fol-
lowing them were the mathematician-astronomers Sripati (fl. AD 1050), 
the author of Ganita-tilaka (Forehead Mark of Calculation), and Jayadeva, 
who lived around the middle of the eleventh century. More popular than 
any of them was Bhaskara II.

Bhaskara II (b. AD 1114)
Bhaskara II or Bhaskaracharya (Bhaskara the Teacher), as he is still popu-
larly known in India, lived in the Sahyadri region in Maharashtra and came 
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from a family of court scholars. Little is known about him, except that his 
grandson helped to set up a school for the study of his writings. His fame 
rests on three works: Lilavati, Bijaganita, and Siddhanta-siromani. The last, 
a highly influential astronomical work, was written in 1150 when he was 
thirty-six years old.

Lilavati, which is based on the works of Brahmagupta, Sridhara, and 
Aryabhata II, shows a profound understanding of arithmetic. Bhaskara-
charya’s work on fundamental operations, his rules of three, five, seven, 
nine, and eleven, his work on permutations and combinations, and his 
rules of operations with zero6 together speak of a maturity, a culmination, 
of five hundred years of mathematical progress.

In 1587, on the instructions of the Mughal emperor Akbar, the court 
scholar Fyzi translated Lilavati into Persian. Fyzi tells a charming story of 
the book’s origin. Lilavati was the name of Bhaskaracharya’s daughter. From 
casting her horoscope, he discovered that the auspicious time for her wed-
ding would be a particular hour on a certain day. He placed a cup with a 
small hole at the bottom in a vessel filled with water, arranged so that the 
cup would sink at the beginning of the propitious hour. When everything 
was ready and the cup was placed in the vessel, Lilavati suddenly out of 
curiosity bent over the vessel, and a pearl from her dress fell into the cup 
and blocked the hole in it. The lucky hour passed without the cup sinking. 
Bhaskaracharya believed that the way to console his dejected daughter, who 
now would never get married, was to write her a manual of mathematics!

Bhaskaracharya’s Bijaganita contains problems on determining un-
known quantities, evaluating surds (i.e., square roots that cannot be re-
duced to whole numbers) and solving simple and quadratic equations, and 
some general rules that went beyond Sridhara in dealing with the solution 
of indeterminate equations of the second degree and even equations of 
the third and fourth degree. Bhaskaracharya’s “cyclic” method for solving 
indeterminate equations of the form ax2 + bx + c = y was rediscovered in 
the West by William Brouncker in 1657.

In Siddhanta-siromani, Bhaskaracharya demonstrates his knowledge of 
trigonometry, including the sine table and relationships between different 
trigonometric functions. Certain preliminary concepts of the infinitesimal 
calculus and analysis can be traced in his work, concepts that would be 
taken up in the Kerala school of mathematicians in their work on infinite 
series some two hundred years later.

He won such a great reputation that his manuscripts were still being 
copied and commented upon as late as the beginning of the nineteenth 



Classical Indian Mathematics  379 

century. A medieval temple inscription refers to him in the following terms 
(and here reappears the imagery of the peacock that provides the inspira-
tion for the title of the present book):

Triumphant is the illustrious Bhaskaracharya whose feats are revered 
by the wise and the learned. A poet endowed with fame and religious 
merit, he is like the crest on a peacock.

It was generally believed until recently that mathematical developments 
in India came to a virtual halt after Bhaskaracharya. This opinion has had 
to be revised in the light of recent research on what one could describe as 
medieval Indian mathematics. A number of the manuscripts of this period 
are yet to be published, or even subjected to critical scrutiny. But we are 
able to identify the following notable contributors to mathematics during 
the medieval period.

Narayana Pandita (fl. AD 1350)
Narayana lived during the reign of Firoz Shah (1355−1388) and composed 
Ganita-kaumudi (Moonlight of Computation), a treatise on arithmetic, 
and Bijaganita-avatamsa (Garland of Algebra), a work on algebra, both of 
which were heavily influenced by Bhaskaracharya. The topics contained 
in Narayana’s books include laws of signs, mathematical operations with 
zero, approximation methods for finding the square root of a nonsquare 
number, detailed investigation of permutations and combinations (“net of 
numbers”),7 and a diagrammatic method of representing different math-
ematical series, to be discussed in the last section of this chapter. His work 
is also notable for its treatment of magic squares.8

Madhava of Sangamagramma (c. AD 1340–1425)
Madhava was probably the greatest of the Indian medieval astronomer-
mathematicians, but he has come to the fore only in recent years as a result 
of growing knowledge of Kerala mathematics. It was Madhava who “took 
the decisive step onwards from the finite procedures of ancient mathemat-
ics to treat their limit-passage to infinity, which is the kernel of modern 
classical analysis” (Rajagopal and Rangachari 1978, p. 101).

Sangamagramma was a village with a temple dedicated to a deity of 
the same name and situated near Cochin in Kerala. This place-name is 
often given when referring to Madhava so as to distinguish him from 
others such as the astrologer Vidya Madhava. Later astronomers called 
him Golavid (or Master of Spherics). Of his works that have survived, all 
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are astronomical treatises; for his mathematical contributions we rely on 
reports by his contemporaries and successors. These contributions, which 
include infinite-series expansions of circular and trigonometric functions 
and finite-series approximations, are discussed in chapter 10.

Nilakantha Somayaji (AD 1445–1545)
Nilakantha, who was a student of the eminent astronomer Paramesvara 
of Vatasreni, lived to the ripe old age of one hundred. He came from a 
Nambuthri Brahmin family in South Malabar, Kerala. He was a versatile 
scholar, but, like Madhava, all his surviving works are on astronomy. The 
mathematical sections of his Tantra Samgraha elaborate and extend the 
contributions that are attributed to Madhava.

The Kerala school of mathematics and astronomy continued for another 
two centuries, producing detailed commentaries on the works of classical 
mathematicians such as Aryabhata and Bhaskaracharya as well as continu-
ing the work on trigonometry and infinite series begun by Madhava. In a 
notable work in Malayalam (the regional language of Kerala) titled Yuk‑
tibhasa, Jyesthadeva (fl. 1550) provides a detailed summary of the math-
ematical contributions made by the Kerala school. It is unusual in Indian 
mathematics since it contains derivations of most of the theorems and for-
mulas stated in the text. Finally, it is worth mentioning a highly influential 
figure outside the Kerala tradition. Ganesa (b. 1507) was the author of the 
popular work Tithi-cintamani (Thought-Jewel of Lunar Days), a detailed 
commentary on the Lilavati of Bhaskaracharya. He came from a family in 
Nandigram in Gujerat, who had over several generations earned the repu-
tation of being noted astrologer/astronomers.

In the rest of this chapter we survey the major contributions of the In-
dian mathematicians of the Classical (from Aryabhata I to Bhaskaracha-
rya) and medieval (from after Bhaskaracharya until about 1600) periods. 
Our approach will be a thematic one, with the exception of the contribu-
tion of the Kerala school, which will be examined in the next chapter. It 
may help whenever necessary to refer both to the map in figure 8.1 and to 
the Indian chronology in table 8.1.

Indian Algebra

It was briefly indicated in the previous chapter that the Sulbasutras and 
the later Bakhshali Manuscript contain some early algebra, including the 
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solution of linear, simultaneous, and even indeterminate equations. But it 
is only from the time of Aryabhata I (fifth to sixth centuries) that algebra 
grew into a distinct branch of mathematics. Different names were used 
for this area of mathematics. Brahmagupta (sixth century) has a separate 
chapter in his book, Brahma Sphuta-siddhanta, called Kuttaka. The topic 
was of such importance that he placed it at the beginning of the chapter 
even before the discussion of basic topics such as the six arithmetic opera-
tions involving negative numbers, zero, irrational numbers, and unknown 
numbers. It was Sridhara (fl. AD 800) who used the term bijaganita (com-
putation with seeds) for algebra for the first time. According to Bhaskara 
II, Sridhara was the author of at least one book on algebra, which is no 
longer extant. However, his book on arithmetic, referred to earlier, which 
he called Patiganita, brought to the fore a distinction drawn between two 
major fields in Indian mathematics: patiganita and bijaganita. Mahavira 
(fl. AD 850) introduced the term kuttukara to describe the procedure for 
the solution of equations of the first and second degree whether they were 
determinate or indeterminate. It would therefore seem that terms to de-
scribe different branches of mathematics varied over time. 

A significant feature of early Indian algebra that distinguishes it from 
other mathematical traditions was the use of symbols, such as a dot (in the 
Bakhshali Manuscript) or the letters of the alphabet, to denote unknown 
quantities. In fact it is this very feature of algebra that one immediately 
associates with the subject today. The Indians were probably the first to 
make systematic use of this method of representing unknown quantities. A 
general term for any unknown was yavat tavat, which was shortened to the 
algebraic symbol ya. When Brahmagupta uses the word avyakta, he simply 
means “invisible” or “unknown.” However, when he prescribes rules for 
equations in several unknown numbers, he uses the word varna, mean-
ing “color,” for indicating them. Thus, “Having subtracted the colors other 
than the first color [from the opposite side, that side] is divided by the 
[coefficient of] the first [color]. The result is the value of the first [color]” 
(Brahma Sphuta-siddanta, 18.51).

Simple operations were also indicated by abbreviations or symbols. We 
saw in chapter 8 that addition was represented a few times in the Bakhshali 
Manuscript by placing yu (which stood for yuta, “added” or “increased”) 
between the terms to be added, and subtraction by placing the sign + af-
ter the term to be subtracted. Multiplication was indicated by placing gu 
(for gunita or multiplied) after the second term (i.e., 3 4 gu = 3 # 4), and 
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division by putting bha (for bhaga) after the two terms (i.e., 3 4 bha = 3 
÷ 4) or between the two terms (i.e., 3 bha 4 = 3 ÷ 4). A square root was 
indicated by mu (for mula) after the term. There were several other similar 
abbreviations for other operations. 

In Prthudakaswami’s (fl. AD 864) commentary on Brahmagupta’s 
Brahma Sphuta-siddhanta appears the following representation:

yava	  0	 ya 10 ru 8

yava	 1	 ya 0 ru 1

Here ya is an abbreviation for yavat tavat (the unknown quantity, or x) 
and yava is an abbreviation for yavat avad varga (the square of the un-
known quantity, or x2 ); ru stands for rupa (the constant term). In other 
words, this is what we would now write as 10 8 1.x x2+ = +

Solutions of Determinate Equations
A geometric solution to a linear equation in one unknown (an equation 
like 3x + 8 = 23) may be discerned in Baudhayana’s Sulbasutra, while an 
algebraic solution appears for the first time in the Bakhshali Manuscript. 
The method used was an inversion method, whereby one works backward 
from a given piece of information—an approach particularly favored by 
Islamic mathematicians five hundred years later, which may have reached 
them from India. (An illustration of the procedure is given later in this 
section.) 

Quadratic equations make their first appearance in the Sulbasutras in 
the forms ax2 = c and ax2 + bx = c. No solution is given. For an equation 
of the form ax2 + bx - c = 0, the Bakhshali Manuscript offers the follow-
ing solution (in modern notation):

.x a
b ac b

2
42

=
− − 	 (9.1)

The first explicit statement of a general rule appears in a work by Srid-
hara, which is unfortunately lost, though the rule is preserved in quota-
tions by Bhaskaracharya and others. It is:

Multiply both sides [of the equation] by a known quantity equal to four 
times the coefficient of the square of the unknown; add to both sides a 
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known quantity equal to the square of the coefficient of the unknown; 
then [extract] the square root.

This solution, obtained by transforming the left-hand side of the qua-
dratic equation

ax bx c2 + =

by multiplying both sides by 4a, adding b2, and finally taking the square 
root, is a variant of equation (9.1). There is no evidence that Sridhara used 
both signs of the radical, but Mahavira was certainly aware of both pos-
sibilities. He gave the solution (in modern notation) as

/ ( / / ) / .x b a b a c b b a
2

4!
=
− − 	 (9.2)

In the works of Mahavira, Bhaskaracharya, and others are found a num-
ber of fascinating problems, clearly devised to stimulate the interest of the 
reader. Let us consider a few of these, about linear and quadratic equations, 
beginning with one attributed to Aryabhata by his commentator Bhas-
kara I, whose solution used the method of “algebraic inversion.”9

Example 9.1  O maiden with beaming eyes, tell me, since you un-
derstand the method of inversion, what number multiplied by 3, then 
increased by three-quarters of the product, then divided by 7, then di-
minished by one-third of the result, then multiplied by itself, then di-
minished by 52, whose square root is then extracted before 8 is added 
and then divided by 10, gives the final result of 2?

Solution

The solution offered is elegant and simple. We start with the answer, 2, 
and work backward. When the problem says divide by 10, we multiply 
by that number; when told to add 8, we subtract 8; when told to extract 
the square root, we take the square; and so on. It is precisely the replace-
ment of the original operation by the inverse that gives the method its 
name of “inversion.”

Therefore the original number is obtained thus:

Continued . . . 
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Continued . . . 

[(2)(10) 8] 52 196;

14;
( )( / )( )( / ) .

196

3
14 3 2 7 4 7 28

2− + =

=

=

Example 9.2  Out of a certain number of Sarasa birds, one-fourth 
the number are moving about among the lotus plants; one-ninth to-
gether with one-fourth as well as 7 times the square root of the total 
number of birds are found on a hill nearby; 56 birds remain on the 
Vakula trees. What is the total number of birds? (From Mahivira’s 
Ganita-sara-sangraha)

Solution

In modern notation the solution is simple. If x is the total number of 
birds, this gives the equation

x x x x x4 9 4 7 56 birds,= + + + +

which solved for x gives 576 birds. 

Example 9.3  From a swarm of bees, a number equal to the square root 
of half the total number of bees flew out to the lotus flowers. Soon after, 
8/9 of the total swarm went to the same place. A male bee enticed by the 
fragrance of the lotus flew into it. But when it was inside the night fell, 
the lotus closed, and the bee was caught inside. To its buzz, its consort 
responded anxiously from outside. O my beloved! How many bees are 
there in the swarm? (From Bhaskaracharya’s Lilavati)

Solution

Bhaskaracharya’s approach is equivalent to solving the following 
equation:

. 8 2 ,x x x0 5 9+ + =d n

Continued . . . 
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Continued . . . 

where x is the total number of bees in the swarm. It is to be assumed 
from the question that the male bee and his consort were late arrivals 
from the same swarm—hence the 2 in the above equation. Only x = 72 
bees is given as an admissible solution. However, in the following prob-
lem from Bijaganita, Bhaskaracharya admits that more than one solu-
tion is valid.

Example 9.4  Inside a forest, a number of apes equal to the square of 
one-eighth of the total apes in a pack are playing noisy games. The re-
maining 12 apes, who are of a more serious disposition, are on a nearby 
hill and irritated by the shrieks coming from the forest. What is the total 
number of apes in the pack?

Solution

The solutions x = 16 and x = 48 are equally admissible, according to 
Bhaskaracharya.

In the case of a number of problems, the recreational and poetic ele-
ments were dominant. Consider the following example from the Ganita-
sara-sangraha of Mahavira.

Example 9.5  One night in spring, a certain young lady was lovingly 
happy with her husband on the floor of a big mansion, white like the 
moon, situated in a pleasure garden full of trees heavy with flowers and 
fruits. The whole place was resonant with the sweet sounds of parrots, 
cuckoos, and bees intoxicated with the honey from the flowers in the 
garden. In the course of a “love quarrel” between the couple, the lady’s 
necklace came undone and the pearls got scattered all around. One-
third of the pearls reached the maidservant who was sitting nearby; 
one-sixth fell on the mattress; one-half of what remained (and one-half 
of what remained thereafter and again one-half of what remained there-
after and so on, counting six times in all) were scattered everywhere. 
On the broken necklace, there remained 1,161 pearls. Oh my love, tell 
me quickly the total number of pearls on the necklace.

Continued . . .
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Continued . . . 

The solution is tedious (but not difficult today) and takes us into 
the realms of fantasy. We will not attempt it here. With the answer as 
148,608 pearls, this is truly a fantasy necklace. Such problems were not 
to be taken too seriously. They reflect a fascination with large numbers 
referred to previously.

Example 9.6  Three merchants find a purse lying on a road. One of 
them says, “If I keep this purse, I shall be twice as rich as both of you to-
gether.” “Give me the purse and I will be thrice as rich,” says the second, 
while the third exclaims, “I shall be much better off than either of you if 
I keep the purse. I shall become five times as rich!” How much money 
is there in the purse? How much money has each merchant? (From 
Mahavira’s Ganita-sara-sangraha)

Solution

The solution starts by setting up the following relationships:

2( ),
3( ),
5( ),

m x y z
m y x z
m z x y

+ = +

+ = +

+ = +

where m is the amount of money in the purse and x, y, and z are the 
amounts of money in the possession of the three merchants.

The final solution is given in the form of ratios since there is no 
unique solution set m:x:y:z = 15:1:3:5.

Interest in such indeterminate problems, with no unique solution, has 
been a characteristic of Indian mathematics ever since the Vedic period.10

Indeterminate Equations
It is in Aryabhata I’s work, Aryabhatiya, that we come across the first un-
equivocal discussion of the subject of indeterminate analysis. It arose, just 
as it did in China, in the field of astronomy, where there is a need to deter-
mine the orbits of planets. The problem that Aryabhata addresses may be 
expressed in modern terms as follows:
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Find an integer (N) which when divided by another integer (a) leaves 
the remainder (r1) and when divided by another integer (b) leaves the 
remainder (r2). 

And also the general problem:

Find an integer (N*) which being divided severally by the given num-
bers a1, a2, . . . , an leaves remainders r1, r2, . . . , rn respectively.

Symbolically, the two problems may be expressed thus:

;N ax r by r1 2= + = + 	  (9.3a)

* .N a x r a x r a x r1 1 1 2 2 2 n n nf= + = + = = +  	 (9.3b)

If c denotes the difference between r1 and r2 in equation (9.3a), then (9.3a) 
may be rewritten as

.ax c by! = 	 (9.3c) 

It is suggested that c always be kept positive by appropriately labeling r1 and 
r2 such that r1 > r2 .

The following solution is offered in verses 32 and 33. There is some con-
troversy as to how they are to be interpreted.11 

Divide the greater remainder by the divisor of the smaller remainder. 
The mutual division [of the previous divisor] by the remainder [is made 
continuously. The last remainder], having a “clever” [quantity] for mul-
tiplier, is added to the difference of the [initial] remainders [and divided 
by the last divisor]. (Verse 32)

The one above is multiplied by the one below, and increased by the 
last. When [the result of this procedure] is divided by the divisor of 
the smaller remainder, the remainder, having the divisor of the greater 
remainder for multiplier, and increased by the greater remainder, is the 
[quantity that has such] remainders for the two divisors. (Verse 33)

In Bhaskara I’s commentary on the Aryabhatiya, the following numeri-
cal example is given to illustrate the method:

A quantity divided by 12 leaves a remainder of 5. Furthermore, if such 
a quantity divided by 31 leaves a remainder of 7, what should one such 
quantity be?
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Bhaskara I’s explanation of Aryabhata’s solution procedure is clear 
and concise when translated into modern notation.12 In Bhaskara I’s ex-
ample, integers N, x, and y are sought such that N = 12y + 5 = 31x +7. 
The “mutual division” is understood to mean continued divisions recasting 
the original equation between two unknown quantities with smaller and 
smaller coefficients until it is reduced or “pulverized” into a form that can 
be solved by inspection.13 Thus 

,y x x w12
31 2 2=

+
= +

,x w w v7
12 2 1=

−
= +

,w v v u5
7 2 1=
+

= +

.v u
2

5 2
=

−

At this point, a “clever” integer solution is found by inspection showing 
that u = 2 and v = 4. By working our way to the top through a chain of 
substitutions, we find that the minimum solution set is (x = 10, y = 36, 
and N = 317).

This method of solution came to be known as kuttaka. The word is de-
rived from kutt, meaning to “crush,” “grind,” or “pulverize,” and describes 
a successive process of breaking something down into smaller and smaller 
pieces, in this case making the values of the coefficients a and b in equation 
(9.3a) smaller and smaller. All the great mathematicians of the Classical 
period dealt with the kuttaka, and it is one of the very few topics in Indian 
mathematics to be made the subject of a special monograph, titled Kutta‑
kara Siromani, written by a commentator on Aryabhata I named Devaraja.

However, the climax of Indian work in this area is the solution of in-
determinate equations of the second degree. Brahmagupta considered the 
following two equations, the second of which is a special case of the first:

,ax c y2 2! = 	  (9.4a)

1 ,ax y2 2+ = 	  (9.4b)

where a and c are known as the multiplier and augment, and x and y 
as the smaller and larger roots. Equation (9.4b) is a form of Pell’s equa-
tion, wrongly named by Euler after the English mathematician John Pell 
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(1610–85). Brahmagupta was probably the first mathematician to give 
solutions to both equations (9.4a) and (9.4b) in rational integers. His ap-
proach is ingenious and general; here, though, we give a simple example 
to illustrate his approach. The algebraic intricacies are gone into by Bag 
(1979, pp. 216–17).

Example 9.7  Solve the equation 8x2 + 1 = y2.

Solution

Brahmagupta’s method may be expressed in the following way.14

From inspection, it is obvious that the smallest integral solution 
(root) for x is 1, and the y that corresponds to this solution is 3, the 
minimum solution (root) for y.

Now arrange this information as follows:

Multiply crosswise as indicated by arrows and add the products. Thus

3 3 6 , 17.x yso+ = = =

Arrange the old and new sets of values of x and y together with the 
augment the following way:

Multiply crosswise the first two columns and add to obtain x = 35. 
The corresponding value for y is found by substituting into the original 
equation, which gives y = 99.

Proceeding along these lines, we can construct the following se-
quence of diagrams to obtain larger and larger solution sets:

Continued . . .
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Continued . . .

Thus the solution sets for (x, y) are (1, 3), (6, 17), (35, 99), (204, 577), 
(1,189, 3,363). . . .

The last column of the diagrams in example 9.7 comes into play when, 
in the process of calculation, we no longer obtain perfect squares, as in the 
next example.

Example 9.8  Solve the equation 11x2 + 1 = y2.

Solution

Follow the same procedure as before. Take the smaller root x = 1.
The left-hand side of the equation is not a perfect square. If, however, 

the augment is −2 rather than 1, the left-hand side becomes 9, a perfect 
square. 

The diagrammatic representation is then as follows:

Continued . . .
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Continued . . .

Take the first diagram, multiply crosswise, and add to get x* = 6. 
Find the product of the smaller roots (i.e., 1 # 1), multiply the product 
by 11 (1 # 11), and add to it the product of the larger root (3 # 3) to give

11 9 20 *.y+ = =

But x* = 6 and y* = 20 satisfy the equation

11 4 ,x y2 2+ =

which has an augment of 4 and is not the same as the equation we 
started with. Now, the product of the assumed augment is −2 # −2 = 4. 
Dividing 4 by 4 gives an augment of 1. Thus to obtain the values of x 
and y that correspond to the original augment 1, divide x* and y* by 2 
to give one solution set for (x, y) as (3, 10).

If we begin with the smaller root x = 1 and the larger root y = 4, 
the augment is 5. Following exactly the same procedure as before, and 
operating with the second diagram, the resulting solution set for (x, y) 
is (8/5, 27/5).

To generate another solution set, proceed as before but use the fol-
lowing diagram:

The new solution set for (x, y) is (161/5, 534/5).

It is worth noting that this method was first used by Brahmagupta as 
early as the seventh century AD, though it is usually attributed to Euler, who 
named it theorem elegantissimum. The sheer ingenuity and versatility of the 
approach is also highlighted by the fact that it was not until 1767 that La-
grange gave a complete solution to Pell’s equation, using continued fractions.

Jayadeva (c. 1000) was one of the first to point out that, while Brahma-
gupta’s approach would easily produce an infinite number of solutions with 
an augment of ± 1, ± 2, or ± 4, with all other augments a trial-and-error 
process was necessary. In Udayadivakara’s eleventh-century commentary 
on Bhaskara I’s Laghu Bhaskariya, titled Sundari, Jayadeva’s twenty verses 
are quoted, which constitute a general method for solving indeterminate 
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equations of the kind just discussed. The method was refined by Bhaskara-
charya about a hundred years later. The Jayadeva-Bhaskaracharya method 
was known as the chakravala, or “cyclic,” method because the same set of 
operations is repeated over and over again. It bears a close resemblance to 
the so-called “inverse cyclic method” based on continued-fraction expan-
sions that attracted the attention of European mathematicians of the cali-
ber of Pierre de Fermat (1601–1665), Leonhard Euler (1707–1783), Joseph 
Lagrange (1736–1813), and Évariste Galois (1811–1832). The method must 
be regarded as a purely Indian creation, for there is no record of it at all 
in Chinese mathematics. For details of the Indian cyclic method, see Bag 
(1979, pp. 217–24) and Selenius (1975).

There is a problem of considerable historical interest for which Bhas-
kara II offers the first complete solution. The problem is to solve

61 1x y2 2+ =

for minimum x and y.
He gives the solution x = 226,153,980 and y = 1,766,319,049. It was pre-

cisely this problem that Fermat set as a challenge to his friend Frénicle de 
Bessy in 1657. We do not know whether Frénicle de Bessy took up the chal-
lenge; the problem was finally solved by Lagrange about a hundred years 
later. A comparison between Lagrange’s and Bhaskaracharya’s methods is 
quite illuminating. Lagrange’s method requires the calculation of twenty-
one successive convergents of the continued fraction for the square root of 
61, while the Jayadeva-Bhaskaracharya approach gives the solution in a few 
easy steps.15 Selenius’s (1975, p. 180) assessment of the method is interesting:

The method represents a best approximation algorithm of minimal 
length that, owing to several minimization properties, with minimal 
effort and avoiding large numbers always automatically produces the 
[best] solutions to the equation. . . . The chakravala method . . . antici-
pated the European methods by more than a thousand years. But no 
European performances in the whole field of algebra at a time much 
later than Bhaskara’s, nay nearly up to our times, equaled the marvelous 
complexity and ingenuity of chakravala.

Indian Trigonometry

The origins of trigonometry are obscure. There are certain problems in the 
Ahmes Papyrus (c. 1650 BC) relating to measuring the steepness of the face 
of a pyramid by the ratio of the “run” to the “rise” (the horizontal departure 
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of the oblique face from the vertical per unit height). As we mentioned in 
chapter 3, this ratio (known as the seked of the pyramid) would be consid-
ered today as equivalent to the cotangent of the angle made by the face of 
the pyramid and its base. This angle was kept constant at around 52° in the 
Great Pyramid at Gizeh and many other Egyptian pyramids. There is also 
the conjecture, discussed in chapter 4, that a column of numbers contained 
in a Babylonian cuneiform tablet, Plimpton 322, is a table of secants, but 
this must be considered a far-fetched idea, especially since more plausible 
explanations exist. Also, there is no evidence that the Babylonians of that 
period were familiar with the concept of an angle. However, we cannot be 
so dismissive about the possibility that the Babylonians of the “New” pe-
riod may have constructed a form of prototrigonometry for astronomical 
purposes. The Babylonian astronomers of the first millennium BC were 
known to have accumulated a large number of observations that survived 
to provide the Greeks and then the Alexandrians with an impetus for early 
work on trigonometry.

The beginnings of a systematic study of the relationships between the 
angles (or arcs) of a circle and the lengths of chords subtending them are 
usually attributed to the Alexandrian Hipparchus (c. 150 BC), who was 
also credited with a twelve-part treatise dealing with the construction of a 
table of chords of arcs of a circle. Ptolemy (c. AD 100) constructed a table 
of his own that gave the lengths of the chords of all central angles of a given 
circle in half-degree intervals from 2

1 ° to 180°. The radius of a circle was 
divided into 60 equal parts, and the chord lengths were then expressed 
sexagesimally in terms of one of these parts as a unit. Ptolemy’s table has 
entries like crd 36° = 0;37,4,55, which means that the length of the chord 
of a central angle of 36° (see figure 9.1) is equal to 37 small parts of the 
radius (37/60) plus 4/602 of one of these small parts and 55/603 more of 
one of the small parts. The division of a circumference into 360° goes back 
to the period of the Mesopotamians. Again, it was the sexagesimal system 
that led Ptolemy to subdivide the diameter of his trigonometric circle into 
120 parts, each of these in turn being split into 60 minutes and each minute 
into 60 seconds.

From the earliest surviving works of Indian astronomy, especially Ary-
abhata’s Aryabhatiya (c. AD 500) and Varahamihira’s Pancasiddhantika 
(c. AD 550), it is clear that the astronomers were interested in finding an-
swers to the same questions that engaged the earlier civilizations: deter-
mining solar, lunar, and planetary positions, predicting eclipses, and so on. 
From a combination of indigenous and Babylonian procedures, they were 
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able to derive planetary positions to intervals of up to a billion years since 
the epoch. The calculations that led to such numbers may have spurred 
Indian interest in the mathematics of indeterminate equations discussed 
earlier. And, in a short time, Indian astronomy was able to cut itself off 
from the coattails of its predecessors and achieve a degree of autonomy, no 
doubt helped by its singular method of recording past knowledge. Unlike 
the Greek texts, for example, Indian texts contained in most cases merely 
prescriptions for calculations given in cryptic verses to aid memorization. 
And since verses are often open to different interpretations, controversies 
were bound to arise.

The Sources of Indian Trigonometry
While the work of the Alexandrians Hipparchus (c. 150 BC), Menelaus (c. 
AD 100), and Ptolemy (c. AD 150) in astronomy laid the foundations of 
trigonometry, further progress was piecemeal and spasmodic. From about 
the time of Aryabhata I (c. AD 500), the character of the subject changed, 
and it began to resemble its modern form. Subsequently it was transmit-
ted to the Arabs, who introduced further refinements. From the Islamic 
world, the knowledge spread to Europe, where a detailed account of exist-
ing trigonometric knowledge first appeared under the title De triangulis 
omni modis, written in 1464 by Regiomontanus. 

In early Indian mathematics, trigonometry formed an integral part of 
astronomy. References to trigonometric concepts are found in the Surya
siddhanta (c. AD 400), Varahamihira’s Pancasiddhantika (c. AD 500), and 

Figure 9.1: The chord of an angle



Classical Indian Mathematics  395 

Brahmagupta’s Brahma Sphuta-siddhanta (AD 628). A detailed and system-
atic study of the subject was made by Vatesvara (b. AD 880) in the Vatesvara 
Siddhanta and then by Bhaskaracharya in his Siddhanta Siromani. He felt 
that the title acharya (i.e., master or teacher) in astronomy could be given 
only to those who possessed sufficient knowledge of trigonometry. Infinite 
expansions of trigonometric functions, building on Bhaskaracharya’s work, 
are found in the work of Madhava and Nilakantha, discussed chapter 10.

The Development of Trigonometric Functions
On account of their shapes, the arc of a circle (e.g., the arc ACB in figure 
9.2) was known as the “bow” (capa) and its full chord (e.g., the line seg-
ment AMB in figure 9.2) as the “bow string” (samastajya). In their study 
of trigonometric functions, Indian mathematicians more often used the 
half chord (e.g., the segment AM or MB). The half chord was known as 
ardhajya or jyardha, later abbreviated to jya to become the Indian sine.16 
Three functions were developed, whose modern equivalents are defined 
here with reference to figure 9.2:

jya a = AM = r sin a,

kojya a = OM = r cos a, 

utkramajya a �= MC = OC - OM = r - r cos a = r (1 - cos a) 
= r versin a.

Figure 9.2: The Indian sine



396  Chapter 9

To calculate jya a (r sin a) for angles a ≤ 90°, Varahamihira in his Panca
siddhantika suggested the following formulas:

30 , 60 , 90 .jya r jya r jya r32
1

2
1c cc = = =

With the help of these formulas he calculated the values of r sin a rang-
ing 3° 45 in twenty-four multiples to 90°.

Bhaskara I (c. 600), in his Maha Bhaskariya, gave the following approxi-
mate formula for calculating the Indian sine of an acute angle without the 
use of a table:

[ , ( )]
( ) ,sinr r

40 500 180
4 180

.α
α α

α α
− −

−

which is equivalent to

( )
( ) ,sin

5 4
16
2.β

π β π β
β π β
− −

−

where b radians correspond to a degrees. If now b = p/3 and then p/7,

sin (p/3) á 0.8643 . . . and sin (p/7) á 0.4314 . . . , 

which are both correct to the second decimal place.17

A similar degree of accuracy is achieved when the values of sin p, sin 
(p/2), and sin (p/4) are obtained from the above approximation formula. 
Bhaskara I ascribed this formula to Aryabhata I. It occurs in Brahmagup-
ta’s Brahma Sphuta-siddhanta and in several later works.

Some other trigonometric relations found in the astronomical texts of 
the Classical period are shown below, together with the names of the au-
thor in whose work they first appear. (For ease of expression we take r = 1, 
so that the Indian sine [usually denoted as Sine with capital S] becomes 
equal to the modern sine.)

sin(n + 1)a − sin na = 
sin na − sin(n - 1)a − (1/225)sin na 	 Aryabhata I

cos a = sin( 2
1p − a)	 Varahamihira 

sin2 a + cos2 a = 1	 Varahamihira

sin2 a =  4
1 (sin2 2a + versin2 2a) =  2

1 (1 − cos 2a)	 Varahamihira

1 − sin2 a = cos2 a = sin2 ( 2
1p − a)	  Brahmagupta



Classical Indian Mathematics  397 

( ) ( )sin sin12
4
1

2
1

2
1 !π α α+ = 	 Aryabhata II

sin (a ± b) = sin a cos b ± cos a sin b	  Bhaskara II

In 1658, the astronomer Kamalakara in his Siddhanta Tattvaviveka gave 
the formulas for Sin 2a, Cos 2a, Sin 3a, Cos 3a, and increasing multiples 
generated by specifying na = a + a + a + . . . and then applying the 
sum formula repeatedly. Thus, for example, 

( )
( ) ,3 3

30
Sin Sin

Sin
Sin

0 2

2

α α
α

= −> H

which is equivalent to sin 3a = 3 sin a - 4 sin3 a.
The above expression is important since it could be used to get an esti-

mate of the seed value for sin 1° from sin 3°, which provides the starting 
point in the construction of sine tables. The method was first applied by 
the Islamic astronomer al-Kashi to obtain a highly accurate value of sin 1° 
using an iterative procedure to solve cubic equations. Al-Kashi’s work will 
be discussed in chapter 11. Kamalakara approached the problem differ-
ently. He used a triple angle approximation formula, particularly suitable 
for small angles, to obtain more accurate seed values.18 

The Construction of Sine Tables
Various relationships between the sine of an arc and its integral and frac-
tional multiples were used to construct sine tables for different arcs lying 
between 0° and 90°. These tables were used for astronomical calculations, 
for example, to compute exact locations of planets. The general formula by 
the name of Aryabhata I above was used to compute tables of half chords in 
a quadrant divided into twenty-four equal parts, so that the smallest arc is 
3° 45 (or 225). It is worth noting that this formula is too crude to be used 
in the construction of the twenty-four sines as given in table 9.1. However, 
if we use Aryabhata’s formula as interpreted in Nilakantha’s Aryabhatiyiab‑
hasya, we get the values of the twenty-four Sines shown.19 Since the Indian 
sines are not the ratios of the corresponding half chords and the radius, but 
represent the half chords themselves, their values obviously depend on the 
length of the radius chosen.

Many Indian Sine tables used r = 3,438. This follows from the fact that 
if the circumference is measured in minutes (60 minutes = 1 degree), then 
the total circumference is 360 # 60 = 21,600 minutes, and the correspond-
ing radius is 3,437.7467 . . . , or approximately 3,438 minutes. This value has 
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a great advantage in that the Sines of small arcs are almost equal to the arcs 
themselves. For example, in Aryabhata’s Sine table, which has a step size of 
3°45, the Sine of the smallest value (3°45) is equal to 225. Whether this 
was a deliberate choice of the largest convenient arc at which Sin x = x, or 
because it would result in a natural division of the right angle into twenty-
four (21,600/90) segments, is a moot point. If it was the latter, an indebted-
ness to Hipparchus (second century BC) becomes a possibility.20 The values 
for the radius adopted by Varahamihira, Aryabhata I, and Brahmagupta 

Table 9.1  Indian Sines: Values Given by Varahamihira and 
Aryabhata I, and Their Modern Equivalents

	
	     Varahamihira    	       Aryabhata      	

Modern
	Angle,	 r sin θ	 Computed	 r sin θ	 Computed	 value
	 θ	 (r = 120ʹ)	 sin θ	 (r = 3438ʹ)	 sin θ	 of sin θ

3°45ʹ	 7ʹ51ʹʹ 	 0.06542	 225ʹ	 0.06545	 0.06540
7°30ʹ	 15ʹ40ʹʹ 	 0.13056	 449ʹ	 0.13060	 0.13053
11°15ʹ	 23ʹ25ʹʹ 	 0.19514	 671ʹ	 0.19517	 0.19509
15°	 31ʹ  4ʹʹ 	 0.25889	 890ʹ	 0.25962	 0.25882
18°45ʹ	 38ʹ34ʹʹ 	 0.32139	 1105ʹ	 0.32141	 0.32143
22°30ʹ	 45ʹ56ʹʹ	 0.38278	 1315ʹ	 0.38249	 0.38268
26°15ʹ	 53ʹ  5ʹʹ 	 0.44236	 1520ʹ	 0.44212	 0.44229
30°	 60ʹ    	   0.50000	 1719ʹ	 0.50000	 0.50000
33°45ʹ	 66ʹ40ʹʹ 	 0.55556	 1910ʹ	 0.55556	 0.55556
37°30ʹ	 73ʹ  3ʹʹ 	 0.60875	 2093ʹ	 0.60878	 0.60876
41°15ʹ	 79ʹ  7ʹʹ 	 0.65931	 2267ʹ	 0.65910	 0.65935
45°	 84ʹ51ʹʹ	 0.70708	 2431ʹ	 0.70710	 0.70711
48°45ʹ	 90ʹ13ʹʹ 	 0.75181	 2585ʹ	 0.75189	 0.75184
52°30ʹ	 95ʹ13ʹʹ 	 0.79347	 2728ʹ	 0.79348	 0.79335
56°15ʹ	 99ʹ46ʹʹ 	 0.83139	 2859ʹ	 0.83159	 0.83147
60°	 103ʹ56ʹʹ	 0.86611	 2978ʹ	 0.86620	 0.86602
63°45ʹ	 107ʹ38ʹʹ 	 0.89694	 3084ʹ	 0.89703	 0.89687
67°30ʹ	 110ʹ53ʹʹ	 0.92402	 3177ʹ	 0.92408	 0.92388
71°15ʹ	 113ʹ38ʹʹ 	 0.94694	 3256ʹ	 0.94706	 0.94693
75°	 115ʹ56ʹʹ	 0.96611	 3321ʹ	 0.96597	 0.96593
78°45ʹ	 117ʹ43ʹʹ 	 0.98097	 3372ʹ	 0.98080	 0.98079
82°30ʹ	 119ʹ    	   0.99167	 3409ʹ	 0.99156	 0.99144
86°15ʹ	 119ʹ45ʹʹ	 0.99792	 3431ʹ	 0.99796	 0.99786
90°	 120ʹ    	   1.00000	 3438ʹ	 1.00000	 1.00000

Adapted from table 3.4 in Bose et al. (1971, p. 200)
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were 120, 3,438, 3,270, and 150. 120 was used by Varahamihira, 3,438 
by Aryabhata, 3,270 and 150 by Brahmagupta. 900 is the value of a unit 
arc when a quadrant is divided into six equal parts. The multiplicity of the 
values taken for the radius has some interesting historical implications. For 
example, Varahamihira’s odd choice of r = 120 and the resulting Sine table 
has been linked with Ptolemy’s table of chords. This has led to the sugges-
tion that Varahamihira’s values were taken from Ptolemy. It could equally 
be argued that Ptolemy’s Almagest and Varahamihira’s Pancasiddhantika 
were both dependent on an earlier source. The jury is still out on whether 
this earlier source was of Greek or Indian origin. 

The first known variant of a sine table is Ptolemy’s. He gave a table of 
chords within a circle of radius 60 units and expressed it in sexagesimal 
units. The arc ranges from 2

1 ° to 180° at half-degree intervals. With the help 
of this table, the corresponding length of the chord can be calculated when 
the length of the arc is known, and vice versa. There is some controversy 
as to the source of the Indian sine table. What seems likely is that both 
Ptolemy and the Indian astronomers were indebted to an earlier source, 
possibly Hipparchus.21

However, a uniquely Indian approach to constructing a sine table soon 
appeared. Beginning from the assumption that the first entry in the table 
is sin 225 = 225, various procedures were tried for the successive compu-
tation, one at a time, of the remaining twenty-three sine values. An early 
such attempt is found in verses 11 and 12 of Aryabhata I’s Aryabhatiya.22 
The values of the twenty-four Sines given in the Pancasiddhantika and Ary‑
abhatiya are given together with equivalent modern values in table 9.1. The 
accuracy of Aryabhata’s Sines is quite impressive.

While these methods were ingenious, a sine table that contained en-
tries only for every 225 minutes would seem to be rather limited. However, 
in the twelfth century, the sine of 18° entered Indian mathematics in an 
appendix titled Jyotpatti to Bhaskara II’s astronomical treatise Siddhanta 
Siromani. In terms of modern notation, Jyotpatti gives the formula for the 
Indian sine (r sin):

,sinr r r18 4
5 2

c =
−

which is equivalent to

18 36 .sin sin4
5

8
5 51 andc c= =
−−
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Two more building blocks complete Bhaskara II’s attempt to build a 
fuller sine table. The first is to obtain an accurate approximation to Sin 
1°, which is relatively simple since, as we saw earlier, sin (225) ≈ 225 and, 
even more accurately, sin (60 = 1° ) ≈ 60. The second is to find a method 
of calculating the sines of sums and differences of angles. The rule is given 
in Jyotpatti as follows:23

The Sines of the two given arcs are crossly multiplied by [their] Cosines 
and [the products are] divided by the radius. Their [i.e., the quotients 
obtained] sum is the Sine of the sum of the arcs; their difference is the 
Sine of the differences of the arc.

The above may be expressed in modern notation as 

( ) .r rSin Sin Cos Cos Sin
! !

α β α β
α β =

The equivalent of this formula for the modern sine was given earlier. 
The analogous formula for the cosine of sums and differences [cos (a ± 
b) = cos a cos b ± sin a sin b] is rarely shown in Indian mathematical 
texts since, as stated in a seventeenth-century commentary on Jyotpatti, 
once Sin (a ± b) is known, Cos (a ± b) can be more easily calculated using 
the Pythagorean rule. A variety of derivations of the sine and cosine addi-
tion rules based on both geometrical and other methods are to be found in 
Indian mathematics. One of the more interesting derivations involves the 
use of indeterminate analysis, a favorite subject in Indian mathematics.24 

In the year 665, when Brahmagupta was sixty-seven years old, he wrote 
an astronomical treatise titled Khanda Khadyaka. In its ninth chapter he 
shows how to interpolate the sines of intermediate angles from a sine table. 
Brahmagupta’s rule may be stated as follows:

Multiply half the difference of the gata khanda [tabular differences 
passed over] and bhogya khanda [the difference to be passed over] by 
the residual arc [h in minutes] and divide by 900. The result is added to 
and subtracted from half the sum of gata khanda and bhogya khanda 
according to whether this half sum is less than or greater than the tabu-
lar difference to be crossed. The result obtained is the true functional 
difference to be crossed. [Brahmagupta takes the radius as 150 and the 
interval to be 900.] 

We can use Brahmagupta’s interpolation formula to find the sine of 67°:
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the interval is 	  h = 15° or 900,

the residual angle is	   = (67 - 60) = 7° or 420, 

the relevant tabulated values are	 Dp = 24, Dp+1 = 15,

where Dp and Dp+1 are the corresponding functional differences, gata 
khanda and bhogya khanda respectively, and are taken from table 9.2.

The value given by the interpolation formula is then

.h
D D

h
D D

2 2
p p p p1 1

#
θ θ∆ ∆+

+
−+ +d n

Applying the Brahmagupta interpolation formula gives

8.12.15
7

2
15 24

15
7

2
15 24

#
+

+
−

=d n

Hence

67 130 8.12 138.12,jya c = + =

Table 9.2:  Calculation of Sines Using Brahmagupta’s 
Interpolation Formula

Angle	 Indian sine	 First difference,	 Second difference, 
(degrees)	 (jya)	 Dp	 Dp+1 – Dp

0	 0
		  39
15	 39		  –3
		  36
30	 75		  –5
		  31
45	 106		  –7
		  24
60	 130		  –9
		  15
75	 145		  –10
		  5
90	 150

Adapted from Bag (1979, p. 257)
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which is close to 150 sin 67° = 138.08, the modern value, and good enough 
for most astronomical purposes. Given that Brahmagupta began with a 
sine table with just six entries, the accuracy that he got for any given arc 
is very impressive. The reader is invited to estimate 150 sin 78° using the 
Brahmagupta interpolation formula and to check how close the approxi-
mation is to the modern value of 146.72. 

The rule is equivalent to the Newton-Stirling interpolation formula to 
second-order differences, expressed as

( ) ( ) [ ( ) ( )]
!

),(f a xh f a x f a f a h x f a h
2 2

2 2∆ ∆ ∆
+ = +

+ −
+

−

where D is the first-order forward-difference operator [i.e., Df (a) = f (a + h)
- f (a), or the column Dp values given in table 9.2], D2 is the second-order 
difference operator (i.e., the column of Dp+1 - Dp values in table 9.2), and 
x = D/h. This Brahmagupta scheme for approximating sines could very 
well be the earliest use of finite difference interpolation.

Two centuries after Brahmagupta, the astronomer Govindasvamin (fl. 
800–850), an early Kerala commentator on the works of Aryabhata and 
Bhaskara I, produced a rule for second-order interpolation to compute in-
termediate functional values. This proved to be a particular case (up to 
second order) of the general Newton-Gauss interpolation formula:

( ) ( ) ( ) ( 1)[ ( ) ( )] .f a xh f a x f a x x f a f a h2
1∆ ∆ ∆+ = + + − − −

Vatesvara was a notable but neglected figure who showed great under-
standing of trigonometric concepts and computations. Born in 880, he 
composed his Siddhanta in 904. In verses 2–51 of this text he gives us a 
list of the values of ninety-six Indian sines and versed sines at intervals 
of 56.25 minutes.25 This list is interposed with verses indicating the rela-
tionships between sines, cosines, and versed sines in various quadrants; 
several methods for computing desired sines from given arc and tabular 
values; and different methods of first- and second-order interpolation and 
inverse interpolation procedures for finding desired arcs from given sine 
and tabular values.26

The culmination of the Indian effort in the construction of trigonomet-
ric tables is found in the Golasara of Nilakantha Somayaji, a small text on 
spherical astronomy consisting of fifty-six verses. The author points out 
that he was computing sines and cosines because they were required for a 
discussion of the motion of planets in their respective orbits on the stellar 
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sphere. The text begins by providing a geometrical method of computing 
successively the values of sines of half angles starting from 30° = 1,800 
along the lines indicated in the Aryabhatiya. The method is then repeat-
edly applied to find the sine of 1,800/2n for n = 1, 2, 3, 4. . . . Next, taking 
the value of sine of 1,800/2m for some chosen m as the first sine value, a sine 
table of length l = 3 # 2m could be constructed. 

Sine tables of lengths 3, 6, 12, 24, 48, 96, 192, 384, . . . are easily computed 
using this Golasara algorithm. It is quite interesting in this context to note 
that Nilakantha has referred to the last and the first sine differences by the 
terms antya and adi khanda without mentioning that the last sine is the 
twenty-fourth. So it may be inferred that Nilakantha’s rule for the deter-
mination of the sines successively gives a general method for constructing 
sine and cosine tables. Cosine tables may also be constructed similarly.27

Other work on computing sine and cosine functions, mainly in Kerala, 
produced expressions that are similar to the modern Taylor approxima-
tions to second order, and predate Taylor by more than three hundred 
years. We will examine in the next chapter this work of the Kerala math-
ematicians from about the fourteenth to the seventeenth centuries. 

Other Notable Contributions

It is clearly impossible, given the scope of this book, to examine the whole 
range of subjects covered by Indian mathematicians over a period of two 
thousand five hundred years. In this section we consider three areas where 
contributions were notable or unusual, though they may have had only 
a limited impact outside India. We begin with medieval approaches to 
mathematical series, and then discuss briefly some special topics in Indian 
geometry. We conclude by assessing the preliminary notions of the infini-
tesimal calculus to be found in the work of Bhaskaracharya.

Geometric Representation of Arithmetic Series
Interest in number sequences that follow particular laws has been shown by 
several mathematical cultures, beginning—as we saw in chapter 3—with the 
Egyptians. In India, it was not until Mahavira’s time (c. AD 850) that a sys-
tematic examination of the properties of different series was first attempted. 
We concentrate here on one memorable aspect of Indian work in this area: 
the study of the properties of different arithmetic series through diagrams 
(or sredhiksetras), which aroused interest well into the fifteenth century.
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In Nilakantha’s commentary on the Aryabhatiya, mentioned earlier, an 
arithmetic series is represented by piling rectangular strips, of unit width 
and of lengths equal to the number of units in each term of the series, on 
top of each other, with the shortest strip at the top and the longest at the 
bottom (see figure 9.3a).28 If two of these sredhiksetras are joined together, 
one inverted to fit with the other, as shown in figure 9.3a, the resulting 
figure will be a rectangle with height n units (the number of terms, or rect-
angular strips) and length a + f, where a and f are the first and last terms 
of the series, respectively. Since the area of this rectangle is ( )n a f+  square 
units, the area of one of the sredhiksetras will be the sum of the series, 

( )n a f2
1 + .

Nilakantha proceeds to demonstrate the relationship

( ) ( )( )n n n n n
2

1
6

1 2/ +
=

+ +

by taking six sredhiksetras, representing the sum of n natural numbers, and 
combining pairs of them to form rectangular strips in the shape of figure 
9.3b having adjacent sides of n, n +1, and n +2 units and thickness 1 unit. 
If one of these strips is placed flat on the ground, as in figure 9.3c, and the 
other two are held vertically touching the edge of the first, so that the sides 
of the section along the top of the strip are n + 1 and n + 2, then the three 
strips define a rectangular block of sides n, n + 1, and n + 2. The inside of 
the block is filled with the set of rectangles formed by joining three pairs 
each of the sredhiksetras representing the sums of n − 1, n − 2, n − 3, . . . ,2, 
1 natural numbers. A solid cuboid measuring n by n + 1 by n + 2 is the fi-
nal result. The volume of this cuboid is equal to n(n + 1)(n + 2). This may 
be equated with the “contents” of the cuboid, known to be ( )n n6 12

1/ + , 
so that each of the sredhiksetras occupies one-sixth of this:

( ) ( 1)( 2),n n n n n6 12
1/ + = + +

so

( ) )( ) .(n n n nn
2

1
6

1 2/ +
=

+ +  

A similar geometrical representation, which has the great advantage of 
being immediately convincing, is found in the demonstration of a num-
ber of other results for mathematical series. In Kriyakramakari there is 
the intriguing statement that a demonstration similar to the one above is 
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possible for arithmetic series that lead beyond the three-dimensional cube. 
It would indeed be interesting to see how such a demonstration would 
have proceeded to show that

!
( )( )( )

!
( )( )( )( ) .n n n n n n n n n

4
1 2 3 1 2 3 4

5/ + + +
=

+ + + +

The lack of explanation by the authors of Kriyakramakari may have been 
because of the difficulty on the part of the reader to conceive of spaces hav-
ing more than three dimensions. After all, at the beginning of the book it 
is stated that the book has been composed for the benefit of the less intelli-
gent! The formulas of the sum of squares and sum of cubes of natural num-
bers are also treated diagrammatically by Nilakantha and Sankara Variyar. 

The sredhiksetra method of representing mathematical series is an inter-
esting feature of Indian mathematics and probably a legacy from the Vedic 
constructions. The terminology like citi (pile) or ghana (solid content) used 

n

n+1

(a)

(b) (c)

Figure 9.3: Piling rectangular strips
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by Aryabhata for sums of series is definitely an indication of the close rela-
tionship of series to geometry. The innovative idea of visual demonstration 
for introducing advanced mathematical concepts in a highly effective and 
convincing manner is an important contribution of Indian mathematics. 
The closest parallel from a contemporary mathematical tradition is found 
in the China of the Song dynasty, in the works of Shen Kuo and Yang Hui. 
They describe the pictorial representation of different series as “piling up 
stacks.” Here again, possible Sino-Indian links are worth exploring. How-
ever, one should always be careful in making broad generalizations about 
the character of different mathematical traditions. The subtle nature of 
geometric reasoning behind this approach to mathematical series should 
make one wary of any suggestions of a hypothetical “Oriental” mathemat-
ics, predominantly algebraic in character. It is just possible that in India an 
undercurrent of geometry began to flow in the Vedic period and contin-
ued, surfacing occasionally, as during the Jaina epoch, but came to a head 
during the medieval phase of Kerala mathematics.29

Special Topics in Indian Geometry
After the impressive start in mensuration in the Sulbasutras, subsequent 
geometrical developments were on the whole patchy. In both Jaina math-
ematics and the works of the Classical mathematicians there was con-
siderable emphasis on simple rules of mensuration but little sign of the 
sophistication found in Chinese geometry (see chapters 6 and 7). But in 
one area of geometry, the Indian contribution was notable: the study of 
the properties of a cyclic quadrilateral (i.e., a quadrilateral inscribed in a 
circle). In chapter 12 of the Brahma Sphuta-siddhanta, Brahmagupta gives 
the following two results:

1. The area of a cyclic quadrilateral is given by the product of half the 
sums of the opposite sides, or by the square root of the product of four 
sets of half the sum of the sides (respectively) diminished by the sides.

2. The sums of the products of the sides about the diagonal should be 
divided by each other and multiplied by the sum of the opposite sides. 
The square roots of the quotients give the diagonals of a cyclical quad-
rilateral. (Verse 28)30 

In modern notation, and with reference to figure 9.4, these rules may be 
expressed as follows. Let a, b, c, and d be the sides of a cyclic quadrilateral 
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of area A; let s = ½(a + b + c + d) be the semiperimeter, and x and y the 
diagonals. Then

( )( )( )( )

( )( ) ( )( ) .

,

,

A s a s b s c s d

x ad bc
ab cd ac bd

a cd
a bc ac bdy b
d

= − − − −

=
+

+ +
=

+
+ +

The first statement of the expressions for the diagonals in Western 
mathematics is found in 1619 in the work of Willebrord Snell, some thou-
sand years later.

The derivations of these results are first referred to in a tenth-century 
commentary on Brahmagupta’s work but find their full expression in the 
sixteenth-century Kerala text Yuktibhasa. This contains a detailed discus-
sion of the properties of a cyclic quadrilateral and how it is used to arrive 
at various trigonometric results. It makes use of Ptolemy’s theorem, which 
states that the product xy of the diagonals of a cyclic quadrilateral is equal 
to the sum of the products of the two pairs of opposite sides, ac + bd. Bag 
(1979) and Sarasvati (1979) give details of the proofs.

Notable extensions in this area are contained in Narayana Pandita’s 
Ganita Kaumadi in the fourteenth century and Paramesvara’s Lilavati 
Bhasya, a detailed fifteenth-century commentary on Bhaskaracharya’s Li‑
lavati. The cyclic quadrilateral was an important device used by the Kerala 
school for deriving a number of important trigonometric results, including 

Figure 9.4: A cyclic quadrilateral
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( ) ( )sin sin sin sinA B A B A B2 2 #− = + −

and

( ) ( ) .sin sin sin sinA A B A BB 2
2
1 2

2
1# += − −

A new rule is found in the work of Paramesvara for obtaining the ra-
dius r of the circle in which a cyclic quadrilateral of sides a, b, c, and d is 
inscribed:

( )( )( )( )
( )( )( ) .r a b c d b c d a c d a b d a b c
ab cd ac cd ad bc

=
+ + − + + − + + − + + −

+ + +

A detailed demonstration of this result is found in a later commentary 
on Bhaskaracharya’s Lilavati, from the Kerala school, titled Kriyakrama
kari (Gupta 1977). This result makes its first appearance in European 
mathematics in 1782 in the work of l’Huilier.

The Beginnings of the Calculus
One of the most important problems of ancient astronomy was the accu-
rate prediction of eclipses. In India, as in many other countries, the occa-
sion of an eclipse had great religious significance, and rites and sacrifices 
were performed. It was a matter of considerable prestige for an astronomer 
to demonstrate his skills dramatically by predicting precisely when the 
eclipse would occur.

In order to find the precise time at which a lunar eclipse occurs, it is 
necessary first to determine the true instantaneous motion of the moon at 
a particular point in time. The concept of instantaneous motion, known 
as tatkalika-gati in Indian astronomy, is found in the works of Aryabhata 
I and Brahmagupta. They calculated this quantity from the formula (in 
modern notation)

( ),sin sinu u v v e w w!− = − −l l l 	  (9.5)

where u, v, and w denote the moon’s true longitude, mean longitude, and 
mean anomaly at a particular time; u, v, and w are these same quantities 
after a specific interval of time; and e is the eccentricity, or sine of the great-
est equation of the orbit. The use of sine tables and interpolation formulas 
would then yield values of the sines of angles over very short intervals.

Manjula (c. AD 930) was the first Indian astronomer to recognize that 
equation (9.5) could also be expressed as
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u - u = v - v ± e(w - w)cos w,	  (9.6)

since (sin w - sin w) = (w - w)cos w.
In modern notation, we would write equation (9.6) as

du = dw ± e cos w du.

Bhaskaracharya extended this result to obtain the differential of sin w as

d(sin w) = cos w dw.

Bhaskaracharya proceeded to use this equation to work out the position 
angle of the ecliptic, the other quantity required for predicting the time of 
an eclipse.

This result in itself was a notable technical achievement in the astron-
omy of the period, but it may well be much more than this. It may seem a 
far-fetched claim, on this evidence alone, that Bhaskaracharya was one of 
the first mathematicians to conceive of the differential calculus, but there is 
further evidence to be found in his Siddhanta Siromani:31 

1. In computing the instantaneous motion of a planet, the time in-
terval between successive positions of the planet was no greater than a 
truti, or 1/33,750 of a second, and his measure of velocity was expressed 
in this “infinitesimal” unit of time.

2. Bhaskaracharya was aware that when a variable attains the maxi-
mum value, its differential vanishes.

3. He also showed that when a planet is either at its farthest from the 
earth or at its closest, the equation of the center32 vanishes. He therefore 
concluded that for some intermediate position the differential of the 
equation of the center is equal to zero. 

In the third observation above there are traces of the “mean value theo-
rem,” which today is usually derived from Rolle’s theorem (1691).

Later mathematicians, particularly the Kerala school, continued the 
work of Bhaskaracharya. Nilakantha (1443–1543) derived an expression for 
the differential of an inverse sine function, and Acyuta Pisarati (c. 1550–
1621) gave the rule for finding the differential of the ratio of two cosine 
functions. As we will see in the next chapter, a number of other ideas of the 
Kerala school—notably those relating to approximating very small arc seg-
ments to their sines and making adjustments to infinite series—anticipate 
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seventeenth-century European work on infinitesimal calculus. The idea of 
using the integral calculus to find the value of p, and the areas of curved 
surfaces and the volumes enclosed by them, is implicit in the method of 
exhaustion that we examined in earlier chapters. Such ideas and their devel-
opment are also found in the works of Bhaskaracharya, Narayana Pandita 
(c. 1350), and Jyesthadeva (c. 1550), but there are few novel features in the 
Indian treatment of the subject.

Outside Europe, there has been only one other country apart from India 
in which some form of calculus developed. In Japan, during the seven-
teenth century, Seki Kowa (or Seki Takakazu) developed a form of calcu-
lus called yenri that was primarily used in circle measurements (Mikami 
1913; Smith and Mikami 1914). In India itself, where the concept of dif-
ferentiation was understood from the time of Manjula, differential calculus 
was applied only to astronomy and certain problems in mensuration and 
did not spread across the broad spectrum of mathematics. This spread has 
been an important factor in promoting the phenomenal development of 
modern mathematics during the last few hundred years. The crucial con-
cept of the “limit” of a function or a sum is essentially a modern idea, not to 
be found in Indian or any premodern mathematics. But its absence should 
not make one ignore the advances made during the Classical and medieval 
phases of Indian mathematics.

Indian Mathematics from Persian and Arabic Sources
The arrival of the Islamic scientist al‑Biruni in India in AD 1018 as a pris-
oner of the invading army of Muhammad Ghaznavi was an important 
landmark in the scientific contact between the two cultures. During his en-
forced stay in India, which he profitably occupied by learning the language 
and culture of the country, al‑Biruni translated from Arabic into Sanskrit 
Euclid’s Elements, Ptolemy’s Almagest, and his own work on the construc-
tion of the astrolabe. None of these Sanskrit translations are extant today. 
However, al‑Biruni’s example was followed by Sultan Firus Tughlaq, who 
occupied the throne of Delhi between 1351 and 1388. He ordered the as-
tronomical text Brhatsamhita of Varahamihira to be translated into Per-
sian, while his court astronomer, Mahendra Suri, wrote Yantraraja, which 
introduced astronomical principles and practices from central and western 
Asia into India. Unfortunately, the ideas proposed in the book of welding 
together principles from the Siddhantas and the Persian‑Arabic system did 
not get a favorable reception. However, ideas from the West continued to 
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flow into India, including those of Nasir al‑Din al‑Tusi (1201–1274). His 
Kitab Zij‑Ilkani, based on the observations made at the Marghah Observa-
tory, became the model for future zij (astronomical tables) in the Islamic 
world. Two of his texts, one each in Arabic and Persian, became compul-
sory reading for students of astronomy in Indian madrassahs (mosque 
schools) and appear to have inspired the astronomer Muhammad Jaunpuri 
to question the validity of the Ptolemaic planetary model.

Geometry has always been an integral part of astronomy. However, it has 
developed on different lines in different cultural areas. In India, as we saw 
in chapter 8, it originated to serve the needs of rituals and cosmographic 
speculations. In central and western Asia, under Islamic rule, Euclidean 
geometry, which developed as a deductive science, became dominant. As 
a result, a thorough knowledge of Euclidean geometry was required before 
students of mathematics and astronomy, taught in Arabic‑Persian language 
schools in India, took up the study of Ptolemy’s Almagest, or Archimedes’ 
On the Sphere and Cylinder, or Appollonius’s Conics. The most widely used 
Arabic translation of Euclid’s Elements was Nasir al‑Din al‑Tusi’s Tahrir 
Uqlidis, which in turn went into a number of Persian translations. In 1732, 
seven centuries after al‑Biruni’s attempt to introduce Euclid to India, Jag-
annatha Samrata translated the Persian text into a Sanskrit version of the 
Elements titled Rekhaganita. Only one hundred years later, five chapters 
of Hutton’s Euclidean Geometry were rendered from English into Sanskrit 
by Yogadyana Misra in Calcutta. By then, English‑language education had 
become the norm in a number of schools in major cities of India.

The major difference between the two streams of mathematical activ-
ity, namely those working within the Sanskritic tradition and others within 
the Arabic‑Persian tradition, is well brought out in the research preoccu-
pations of the two groups. The Kerala mathematicians, with their work 
on infinite series, were inspired by Aryabhata and his school. The Indian 
mathematicians working within the Greek‑Arabic‑Persian tradition, whose 
interests were primarily in Greek geometry and Ptolemaic astronomy, of-
fered another model. An interesting illustration of the difference between 
the preoccupations of the two traditions is shown by the work of Ghulam-
Hussain Jaunpuri (b. 1790), one of the notable Indian mathematicians from 
the Arabic‑Persian tradition. In Jame‑i‑Bahadur Khani, composed in 1833, 
Juanpuri tackles the problem of trisecting an angle, which had engaged 
mathematicians from the Greek‑Arabic‑European tradition over a long 
period of time, including notable names such as Archimedes, al‑Biruni, 
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Thabit ibn Qurra, and François Viete. Various approaches were tried out, 
including those involving conic sections, transcendental curves, circles, and 
neusis (insertion of a static line). Jaunpuri used the last method to achieve 
a construction that is sound and practicable. The details of his method are 
found in Rizvi (1983) and are of little importance within the context of this 
discussion. What would have been very unlikely is that such a problem 
would have engaged the interest of an Indian mathematician from the San-
skrit tradition. 

The two parallel traditions met in a few cases involving astronomy in the 
courts of the Tughluq and Mughal emperors at Delhi and later in the court 
of Jai Singh in Jaipur, but hardly ever on matters relating to pure math-
ematics. The Islamic astronomical table (zij) and astronomical instruments 
(particularly the astrolabe, known in Sanskrit as the yantraraja or “king of 
instruments”) had a significant impact on mathematical astronomy in In-
dia. The practical advantage of referring to a table rather than calculating 
planetary positions using the rules from a siddhanta became immediately 
obvious. Indian astronomers soon took to these tables, and apart from their 
usefulness for working out planetary positions, they became indispensable 
aids for synchronizing time units in calendars.33 There were translations of 
texts such as Lilavati and Bijaganita into Persian under the patronage of 
Mughal emperors Akbar and Shah Jahan and dictionaries compiled to help 
this process. However, such cross-cultural exchanges were exceptional: a 
missed opportunity that has had considerable repercussions for the devel-
opment of Indian mathematics. But that is another story.

Notes

1. This sentence, without further comment here, would be oversimplifying the devel-
opment of Indian astronomy from the post-Vedic times onward. The emergence of the 
early Classical Indian astronomy may be discerned from later summaries contained 
in the Pancasiddhantika (the Five Siddhantas) composed in the fifth century AD by 
Varahamihira. The five named are Paulisa-siddhanta (the Text of Paulisa), Romaka-
siddhanta (the Text of Romans), Vasistha-siddhanta (the Text of the Sage Vasistha), 
Surya-siddhanta (the Text of the Sun), and Paitamaha-siddhanta (the Text of Pitamaha, 
or the deity Brahman). These texts were composed at varying times during the first half 
of the second millennium AD. On the basis of similarities detected between the Pan‑
casiddhantika and Hellenistic astronomical texts, it has been conjectured that a trans-
mission occurred from the Hellenistic world to India during the period. In particular, 
similarities between Indian sines and the Greek chords have led some to hypothesize 
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on the Greek origins of the Indian sine. Irrespective of whether such a transmission 
took place, it should be borne in mind that the Indian astronomers were the first to 
replace the chord geometry of triangles inscribed in a semicircle with the geometry of 
sines of right-angle triangles in the quadrants of a circle. The subject will be taken up in 
a later section of this chapter.

2. It may be argued that the word “states” in this context is somewhat imprecise since it 
cannot help in fixing the precise year of the composition of Aryabhatiya. The relevant 
verse gives the year of the birth of Aryabhata as AD 476: “When sixty times sixty years 
and three quarter yugas (of the current yuga) had elapsed, twenty-three years had then 
passed since my birth” (Verse 3.10, Aryabhatiya 499, translated by Shukla and Sarma 
1976, p. 95). 

3. A recent translation and discussion of Bhaskara I’s commentary on the mathematical 
chapter of the Aryabhatiya will be found in the two volumes by Keller (2006).

4. A useful summary of the topics contained in chapter 18 is found in Plofker (2007, 
pp. 428–34).

5. The following problem in chapter 6 of Mahavira’s book is quite deep and throws an 
interesting light on the social context of his time.

Five men are enamored by a courtesan, of whom only three she finds attractive. 
However, to each one of them separately, she says: “You are my only beloved.” How 
many of her statements are true?

The solution offered by Mahavira: Multiply the total number of men (5) by the number 
of those found attractive plus one (3 + 1). Diminish this product by twice the number 
found attractive (2 # 3) and you will get the number of false statements. The square of 
the number of men (52) minus the number of false statements gives the number of true 
statements. Or

Number of false statements = (5 # 4 ) - (2 # 3 ) = 14;

Number of true statements = 25 - 14 = 11.

It is important to recognize here that the rule concerns the truth values of a set of n 
explicit statements and (n2 - n) implicit statements. For further details, see Plofker 
(2007, pp. 446–47). 

6. Operations with zero (sunya-ganita) had been a characteristic of Indian mathemat-
ics texts from the time of Brahmagupta. While the discussion in the arithmetical texts 
(patiganita) was limited only to addition, subtraction, and multiplication with zero, 
the treatment in algebra texts (bijaganita) covered such questions as the effect of zero 
on the positive and negative signs, division with zero, and more particularly the rela-
tion between zero and infinity (ananta). In the Lilavati of Bhaskaracharya, the eight 
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operations involving zero—addition, subtraction, multiplication, and division with 
zero as well as the square, square root, cube, and cube root of zero—are listed. A num-
ber divided by zero is given, like Brahmagupta, as “zero-divided” or “that which has 
zero as the denominator.” For further details, see Joseph (2002a).

7. At the beginning of the thirteenth chapter of Ganita-kaumudi, Narayana writes: “I 
will briefly describe the net of numbers which causes enjoyment for mathematicians, 
in which those who are jealous, depraved and poor mathematicians fall down. . . . It is 
applied to dance and music, metrics, medicine, garland-making, and mathematics as 
well as architecture. Knowledge of these [subjects] is [indeed acquired] by means of 
numbers” (Plofker 2007, 499).

8. For further details on Narayana’s work on magic squares, see P. Singh (1982, 1986).

9. Note that example 9.1 is taken from Bhaskaracharya’s Lilavati.

10. For example, in the Baudhyana Sulbasutra (c. 800 BC), there appears the problem of 
designing a Garuda Chayana altar (an altar in the shape of an eagle with outstretched 
wings). The altar should have five layers of bricks, with each layer containing 200 bricks 
of four different sizes covering an area of 7 2

1  square purushas. In terms of modern nota-
tion, if x, y, z, w represent the numbers of the four sizes of bricks in any layer, and the 
bricks of each of those sizes have the area of 1/m, 1/n, 1/p, 1/q respectively, then what is 
required is the solution of the indeterminate equations

x + y + z + w = 200;

x/m + y/n + z/p + w/q = 7 2
1 .

The solution set that Baudhayana accepts is (x = 24, y = 120, z = 36, w = 20; m = 16, 
n = 25, p = 36, q = 100).

11. The interpretations include those of Rodet (1879), Kaye (1908), Heath (1910), Ma-
jumdar (1911–12), Sengupta (1927), Ganguli (1929), Clark (1930), and Datta (1932a). 
The translations of Rodet and Kaye are now accepted as faulty. But the damage persisted 
with the adoption of Kaye’s interpretation by certain Western and Indian historians 
of mathematics, notably Heath and Majumdar. Sengupta’s interpretation is based on 
Brahmagupta and Clark’s on Paramesvara. Datta’s and Ganguli’s refer to Bhaskara I, 
whose authority is now acknowledged to be the more plausible one.

12. A translation of the full verbal explanation of the procedure is given in Keller (2006, 
vol. 1, p. 131). The explanation of this procedure in modern notation that follows is 
based on the exposition by Plofker (2007, pp. 416–17).

13. To illustrate the process of mutual division: Taking y = (31x + 2)/12, we divide to 
get 2x + [(7/12)x + 1/6]. Setting w = (7/12)x + 1/6, which reduces to 7x = 12w - 2, 
we continue with the process of mutual division. Bhaskara I, while commenting on this 
solution procedure, called it kuttaka.
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14. Brahmagupta uses the principle of composition (samasabhavana) to arrive at a so-
lution. In algebraic symbols, assume that for conveniently chosen values of c1 and c2, 
(a1, b1) and (a2, b2) is a set of solutions of Nx2 + c1 = y

2 and Nx2 + c2 = y
2 respectively. 

Then x = a1b2 ± a2b1 and y = b1b2 ± Na1a2 will satisfy the equation Nx2 + c1c2 = y
2.

15. Bill Farebrother points out in a personal communication that using a Pascal pro-
gram, Bhaskaracharya’s result for d = 61 was obtained from evaluating the square 
root of 974 quadratic expressions. A contemporary adaptation of Lagrange’s method 
required the evaluation of as many as 226,153,980 square roots before alighting upon 
the correct result! 

16. Van Brummelen (2009), following Datta and Singh (1962), conjectures that the 
replacement of the chord function by the sine in even the most ancient of extant Indian 
texts started as a “time-saving” device when “some early Indian astronomer (having to) 
repeatedly double arcs and (halve) the resulting chords” realized that he could save time 
by tabulating the half chords (or ardhajya).

17. One radian is the angle subtended at the center of the circle by an arc whose length 
is equal to the radius of the circle. Since an arc of 2pr (i.e., the circumference) subtends 
an angle of 360° at the center of the circle, it would follow that 360° = 2p radians or 
1 radian = 360/2p ≈ 57 degrees. Bhaskara I merely stated this rule without providing 
any explanation. However, a number of explanations have been proposed, including 
those based on the assumption that Bhaskara expressed the sine function as a ratio of 
two quadratics and then proceeded to solve for the coefficients by substituting known 
sine values. For further details on the various explanations, see Gupta (1967, 1986). 
Note that by substituting p = 180° into the approximate formula expressed in terms of 
radians, the formula for degrees can be derived.

18. For a more detailed account of Kamalakara’s work on multiple angle formulas, see 
Gupta (1974a).

19. For further details, see Hayashi (1997). 

20. For further details, see Van Brummelen (2009). 

21. For further details, see Duke (2005).

22. The relevant verses are:

A quadrant of the circumference of a circle is divided and from the [right] tri-
angles and quadrilaterals as many r sines (jya-ardhas) of equal arcs as desired are 
found for any given half diameter.

The r sine of the first arc, divided by itself and lessened by the quotient, gives the 
second r sine difference. That first r sine diminished by all the quotients obtained 
by dividing each of the preceding r sines by the first r sine gives the remaining r 
sine differences. 
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Expressed in modern notation, the (n + 1)th r sine-difference (dn+1) is given by 
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With these formulas it is possible to generate the r sine-differences successively from 
the preceding ones and also to find the r sines, which then become the entries in table 
9.1. For further details, see Mallayya and Joseph (2009b).

23. The source of this quotation is Van Brummelen (2009) from Gupta (1974b, p. 165).

24. For further details, see Gupta (1974a). 

25. It is interesting in this context that the radius used by Vatesvara in computing his 
sines was the more accurate 3,43744 rather than Aryabatha’s 3,438. Govindasvamin’s 
radius was even more accurate at 34374419 while Madhava, the founder of the Ker-
ala school of mathematics and astronomy, whose links with Govindasvamin have been 
established, must have used 34374448 for his sine computation. Since the radius of 
a circle can be estimated from 360/2p, it would follow that the relative accuracy of p in 
decimal places (dp) of the four mentioned are: Aryabhathan (3 dp), Vatesvara (4 dp), 
Govindasvamin (4 dp), and Madhava (6 dp).

26. A detailed discussion of Vatesvara’s Siddhanta is found in Mallayya (2008). 

27. For further details, see Mallayya (2004) and Mallayya and Joseph (2009).

28. A similar geometrical treatment is also found in Sankara Variyar and Narayana’s 
Kriyakramakari, which is a commentary on Bhaskaracharya’s Lilavati.

29. Further details of the sredhiksetra geometry are given by Sarasvati (1963, 1979) and 
Mallayya (2002).

30. The flavor of the original text is captured by the following more literal translation of 
verse 28, which reads: “One should multiply the sum of the products of the arms adja-
cent to the diagonals, after it has been mutually divided on either side, by the products 
of the arms and the counterarms. For an unequal [cyclical quadrilateral] the two square 
roots are the two diagonals.” 

31. It may be argued quite legitimately that the core of the method of calculus is not 
its ability to deal with sines and cosines but its universal power to approach all sorts of 
different functions. It is stretching a point to suggest that the application of the calculus 
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technique to a small subset of functions (such as sines and cosines) does qualify as 
calculus as we understand it today. 

32. This is a measure of how far a planet is from the position it is predicted to be in by 
assuming it to move uniformly. The predicted and actual positions differ because plan-
etary orbits are elliptical, whereas uniform motion implies a circular orbit.

33. Since the Indian calendar is a lunisolar calendar, there is need for true lunar months 
to be synchronized with true solar years, and this is most efficiently achieved with the 
help of tables. One of the best-known examples of such a text is Tithi-cintamani by Ga-
nesa Daivajna (1525). For further details see Ikeyama and Plofker (2001).



Chapter Ten

A Passage to Infinity: The Kerala Episode*

Along the southwest coast near the tip of the Indian peninsula lies a strip 
of land known as Kerala. It has figured prominently in history, not only 
as a stopover for travelers and explorers such as ibn Battuta (b. 1304) and 
Vasco da Gama (b. 1460) arriving from across the Arabian Sea, but as a 
center of maritime trade, with its variety of spices greatly in demand even 
as early as the time of the Mesopotamians. While most of India was in po-
litical upheaval during the first part of the second millennium AD, Kerala 
was a place of relative tranquillity, sheltered by the high mountains of the 
Western Ghats to the east and the Arabian Sea to the west. In recent years, 
Kerala has played a central role in the reconstruction of medieval Indian 
mathematics.

The Actors

Two powerful tools contributed to the creation of modern mathematics 
in the seventeenth century: the discovery of the general algorithms of cal-
culus, and the development and application of infinite-series techniques. 
When introduced to calculus, one is often told that the names normally 
associated with the development of the subject are Newton and Leibniz. 
The other, less well-known stream, the discovery and applications of infi-
nite series, is often downplayed despite its importance in the development 
of modern mathematics. Historically, the two streams tended to reinforce 
each other in their simultaneous development by each extending the range 
of application of the other.

*While the third edition was being prepared for the press, a book on this subject came 
out that contains a detailed examination of this remarkable episode in the history of 
mathematics. Readers may wish to consult Joseph (2009).
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It is generally assumed that modern calculus developed from ideas and 
techniques inspired by ancient Greek mathematics culminating with the 
“method of exhaustion” deployed by Archimedes (287–212 BC).1 After a 
period of more than eighteen centuries these techniques were rediscovered 
in Europe with the translation of the works of Archimedes in the sixteenth 
century, and then developed further by a chain of European mathema-
ticians including Roberval (1602–1675), Cavalieri (1598–1647), and Fer-
mat (1601–1665), culminating in the consolidation of calculus by Leibniz 
(1646–1716) and Newton (1643–1727). This version of history takes for 
granted that no significant developments took place between the time of 
Archimedes and the seventeenth century that could have had a bearing on 
the all-European chain of transmission. 

However, it is now generally recognized that the origin of the analy-
sis and derivations of certain infinite series, notably those relating to the 
arctangent, sine, and cosine, are not to be found in Europe but in an area 
in South India that now falls within the state of Kerala. From a region of 
about a thousand square kilometers north of Cochin, during the period 
between the fourteenth and sixteenth centuries, there emerged discoveries 
in infinite series that predate similar work of James Gregory, Newton, and 
Leibniz by at least two hundred years.

There are a number of questions worth asking about the activities of this 
group of mathematician-astronomers (referred to hereafter as the Kerala 
school2), apart from those relating to the mathematical content of their 
work. The questions include specific ones relating to the social and his-
torical landscape in which the Kerala school developed as well as to the 
motivation underlying their work. Figure 10.1 provides a useful point of 
reference for the notable members of the Kerala school.

There are six texts that constitute the main evidence of the work of 
the Kerala school. They are Aryabhatiyabhasya (A Commentary on Ary‑
abhatiya) and Tantrasamgraha (A Digest of Scientific Knowledge) of 
Nilakantha (1443–1544); Yuktibhasa (An Exposition of the Rationale) of 
Jyesthadeva (fl. 1500–1610); Kriyakramakari (Operational Techniques) of 
Sankara Variyar (c. 1500–1560) and Narayana (c. 1500–1575); Karanapad‑
dhati (A Manual of Performances in the Right Sequence) of Putumana So-
mayaji (fl. 1660–1740); and Sadratnamala (A Garland of Bright Gems) of 
Sankara Varman (1800–1838).

An important feature of these texts is their claim to have derived their 
principal ideas from Madhava of Sangamagrama (c. 1340–1425), who was 
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mentioned earlier. We have little information of his family background, 
except that he belonged to a subcaste of Brahmins known as the Empra-
natiri, who were not originally Nambutiri Brahmins (the highest-ranking 
Brahmins in Kerala) but had over the years attempted to enter this group. 
His only surviving works are in astronomy. We know, from the reports of 
those who came after him, of Madhava’s contribution to the development 
of Kerala mathematics. He was frequently referred to as Golavid or “One 
Who Knows the Sphere.” His fame rests on his discovery of the infinite 
series for circular and trigonometric functions, notably the Gregory series 
for arctangent, the Leibniz series for p, and the Newton power series for 
sine and cosine. There are also some remarkable approximations attributed 
to him based mainly on incorporating “correction” terms for these slowly 
converging series.

Madhava’s distinguished student was Paramesvara, whom we came 
across in the previous chapter. Born in 1360 into a Nambutiri Brahmin 
family of Vedic scholars in the village of Alattur, he was reputed to have 
learned his mathematics and astronomy from Madhava. Alattur had 

Madhava
c. 1340–1425

Paramesvara
c. 1360–1460

Damodara
fl. 1450

Nilakantha
c. 1443–1544

Jyesthadeva
c. 1500–1610

Acyuta Pisaroti
fl. 1550–1621

Citrabhanu
fl. 1475–1550

Sankara Variyar
fl. 1500–1560

Figure 10.1: The Kerala school of mathematics and astronomy
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become a famous center of learning and scholarship some centuries earlier 
during the period of Jain and Buddhist dominance. Paramesvara wrote a 
number of commentaries including ones on Aryabhata’s Aryabhatiya, on 
Bhaskara I’s Mahabhaskariya and Laghubhaskariya, and on Bhaskara II’s 
Lilavati.

The foundation laid by Paramesvara heralded the emergence of the ma-
jor figure of Nilakantha Somayaji, born in 1443 into a Nambutiri Brahmin 
family of somatiris or somayajis (those who performed the soma sacrifice) 
in Trikkantiyur. He stayed and studied in the house of Damodara, the son 
of Paramesvara, where he was probably taught by Paramesvara. His major 
works include a commentary on three chapters of Aryabhatiya, and the 
seminal text Tantrasamgraha.

The latter consists of eight chapters, containing 432 verses, dealing with 
various topics connected with astronomical calculations, including the set-
ting up of a sundial, calculations of the meridian, the method(s) of deter-
mining the latitude,3 and the prediction of eclipses.

In the Tantrasamgraha, Nilakantha carried out a major revision of the 
Aryabhatan model for the interior planets, Mercury and Venus, arriving 
at a more accurate specification of the equation of the center4 for these 
planets than any other that existed in Islamic or European astronomy be-
fore Kepler (born about 130 years after Nilakantha). In Aryabatiyabhasya, 
Nilakantha developed a computational scheme for planetary motion more 
efficient than that of Tycho Brahe in that it correctly takes account of the 
equation of center and latitudinal motion of the interior planets. This com-
putational scheme implied a heliocentric model of planetary motion in 
which the five planets (Mercury, Venus, Mars, Jupiter, and Saturn) move 
in eccentric orbits around the mean sun which, in turn, goes round the 
earth. This model is similar to the one suggested by Brahe when he revised 
Copernicus’s heliocentric model. It is significant that all astronomers of 
the Kerala school who followed Nilakantha accepted his planetary model.5 

The other works that he wrote late in life were either commentaries on 
his earlier texts, such as those on his Chandrachayaganita and Siddhan‑
tadarpana (a short work in thirty-two verses dealing with certain impor-
tant astronomical constants and the theory of epicycles); or works such as 
Golasara, mentioned earlier, a book in three chapters on spherical astron-
omy; or Sundararaja Prasnottara, a work no longer extant but mentioned 
elsewhere as giving answers to questions raised by a Tamil astronomer 
called Sundararaja. The last work is important because it provides rare 
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evidence of the spread of the influence of Kerala mathematics and astron-
omy to other areas of South India. 

One of Nilakantha’s students was Citrabhanu (fl. 1475–1550). He was a 
Nambutiri and came from the village of Sivapuram (situated in present‑day 
Trissur). His work, Karanamrta, contained four chapters dealing with ad-
vanced astronomical calculations. He was also the author of Ekavimsati 
Prasnottara (Twenty‑one Questions and Answers), in which he offered 
solutions for each of a set of twenty-one pairs of simultaneous equations 
in two unknowns. The twenty-one pairs arose from taking, at a time, any 
two of the following seven quantities (a to g) given on the right side of the 
following equations:

; ; ; ; ; ; .x y a bx y b xy c x y d x y e x y f x y g2 2 2 2 3 3 3 3+ = − = = + = − = + = − =

The solutions to fifteen of the twenty-one pairs (7C2) are fairly straightfor-
ward, while the remaining six are not.6

A student of Citrabhanu, Narayana (c. 1500–1575) completed one of 
the major texts of the Kerala school, Kriyakramakari. A commentary on 
Bhaskara II’s Lilavati, it was begun by Sankara Variyar (c. 1500–1560), a 
student of both Nilakantha and Citrabhanu. The Variyars were a group of 
non‑Brahmin temple officials who assisted the Brahmin priests in their re-
ligious rituals. A number of them were skilled in astrology, and many were 
fluent in Sanskrit. The text Kriyakramakari is important in the history of 
Kerala mathematics and astronomy for its detailed discussion of the works 
of earlier writers, some of which are not extant, and for providing rationale 
and proof for a number of earlier results.7

Another student of Nilakantha was a Nambutiri from the Alattur vil-
lage (the birthplace of Paramesvara), Jyesthadeva (fl. 1500–1610). He was 
the author of the seminal text of the Kerala school, Yuktibhasa. There are 
at least three versions of this text, of which the Malayalam version became 
well known throughout Kerala.8 Based on Nilakantha’s Tantrasamgraha, it 
is unique in Indian mathematical literature for giving detailed rationale, 
proofs, or derivations of many theorems and formulas in use among the 
astronomer-mathematicians of that time.

A student of Jyesthadeva came from the Pisarati community. They were 
not Brahmins but performed traditional functions as cleaners and suppli-
ers of flowers and plants for the temple. They were also employed by some 
Nambutiri families to give instructions to family members on the calcu-
lation of the astrological calendar (panchanga) and on time reckoning. 
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Acyuta Pisarati (c. 1550–1621) was a versatile scholar who made a mark not 
only in astronomy but also in literature and medicine. His major contribu-
tion is found in his work Sphuta-nirnaya, where he introduced for the first 
time in Indian astronomy a correction called “reduction to the ecliptic,” 
around the same time as Tycho Brahe did in Western astronomy.

In Charles Whish’s 1832 paper appears the passage: “The author of the 
Karanapaddhati whose grandson is now alive in his seventieth year was 
Putumana Somayaji, a Nambutiri Brahmana of Trisivapur [Trissur] in 
Malabar.” An influential work in the dissemination of Kerala mathemat-
ics and astronomy not only in Kerala but also in the neighboring areas of 
present‑day Tamilnadu and Andhra Pradesh, Karanapaddhati was written 
in 1732, almost two hundred years after Jysthadeva’s Yuktibhasa.

After Acyuta Pisarati, little in the way of original work was done, al-
though the tradition of providing corrections and contributing to the 
preparation of astronomical ephemerides for the daily needs of faithful 
observers and practitioners continued for a long time. About one hundred 
years after Karanapaddhati came the last of the known texts of the Kerala 
school, Sadratamala. The author of this book, Sankara Varman, belonged 
to a minor royal family and was a contemporary of Charles Whish. Sadrat‑
namala, written in 1823, contains many of the results of the Kerala school, 
but given without the rationales or derivations found in the earlier texts. 
Whish met him and described him as “a very intelligent man and acute 
mathematician.” He died six years after Whish’s article on Kerala math-
ematics and astronomy appeared in 1832.

The authors mentioned above form part of a tradition of continuing 
scholarship in Kerala over a period of four hundred years, from the birth 
of Madhava in 1340 to the probable death of Putumana Somayaji in 1740. 
The current level of knowledge of source materials means that it is difficult 
to assign many of the developments to any particular person. The results 
should be seen as produced by members of a school spread over several 
generations.

The Social Background
To understand the context in which mathematics developed in Kerala, 
there is a need to take a careful look at the social landscape of medieval 
Kerala and, in particular, the structure of medieval Kerala society, the piv-
otal role of the Kerala temple, and the mode by which scientific knowledge 
was acquired and disseminated. Each of these topics could well provide 
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sufficient subject matter for a whole chapter. Instead, we will confine our-
selves to making a few observations.

It is clear, from the discussion so far, that the members of the Kerala 
school were mostly Nambutiri Brahmins. Within a mainly two‑tier caste 
system in Kerala, consisting of Brahmins and Nairs, two institutions oper-
ated to strengthen and sustain the economic and social dominance of the 
Nambutiris to a degree not known elsewhere in India: a system of feudal-
ism (the janmi system of landholding) headed by the Nambutiris, and their 
control of vast areas of arable land owned by temples.

There were also certain social factors that strengthened the Nambu-
tiri dominance over the Kerala society of that time. The Nairs practiced 
the marumakkattayam (matrilineal) system of descent outside the formal 
institution of marriage. Sexual alliances between Nair women and Nam-
butiri men were permitted, indeed sometimes encouraged, with children 
of such unions remaining the sole responsibility of their mother’s family. 
At the same time, the Nambutiris operated a system of patrilineal descent 
(makkatayam), with a form of primogeniture that allowed only the eldest 
son to inherit property and to marry Nambutiri women. The eldest son 
was also required by custom to provide for the material needs of his sib-
lings, consisting of younger brothers and unmarried sisters (of whom there 
were a large number, given the way that the system operated).

It is known that the pursuit of activities such as studying mathematics 
and astronomy did not traditionally confer high status, which was reserved 
for those who carried out ceremonial and ritualistic duties. The most no-
table member of the Kerala school after Madhava, Nilakantha, belonged 
to the highest rank among the Nambutiris. His high social status arose 
from the fact that he was a somayaji, one of the select subcastes among the 
Nambutiris who carried out the soma sacrifices. In the traditional soma 
sacrifice, the preparation and consumption of the hallucinatory juice of the 
soma plant played a central role. Yet Nilakantha single‑mindedly pursued 
his interests in mathematics and astronomy. There were other members of 
the Kerala school who were not even Brahmins. There was, for instance, 
Sankara Variyar: the name Variyar indicates that he belonged to the Am‑
bilavasis, a caste of temple servants, as does the name of Acyuta Pisarati. 
This would suggest that the Kerala school were a mixed group, probably 
brought together by their interest in mathematics and astronomy, un-
dertaking pursuits that did not have great social status—a group that cut 
across caste lines to an extent, and which probably had strong contacts 
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with the temple personnel.9 The temple fulfilled an important purpose as 
an institution for acquiring and disseminating scientific knowledge. It was 
an influential organization since it combined religious power with secular 
power, its Nambutiri members being in many cases powerful landlords in 
their own right. The temple served as a medium through which the Nam-
butiris asserted their power and kept other groups in check.

Another aspect of the social background, for present speculation and fu-
ture research, is whether a number of the Nambutiri members of the Kerala 
school were younger sons. If that was so, we would have a group of Nambuti-
ris freed of all economic and family responsibilities, a truly leisured class with 
religious duties confined to a few, and not very demanding, rituals. Some in 
such a situation whiled away their time writing erotic poetry, and many were 
engaged in other less demanding pursuits. But a few pursued their interest in 
astronomy and mathematics consistently over a period of several centuries, 
sustained by the institution of the guru‑sisya (teacher‑disciple) relationship, 
which was characteristic of the educational system then.

While this explanation for the emergence and continued existence of 
the Kerala school might appear attractive, particularly to those who are 
disposed to seeking major explanations of any Indian phenomena in the 
caste system, it seems somewhat unconvincing. First, it does not account 
for the presence and the role of non‑Brahmins in the Kerala school. Second, 
this explanation ignores the symbiotic nature of the relationship between 
the traditional jyotisa (astronomer/astrologer), who often came from the 
lowly Kaniyan caste, and the Nambutiris. Third, the granthaveri (or village 
records) of Kerala of this period contain ample evidence of the metrical 
precision of a number of artisans and craftsmen (such as the carpenter, 
the trader, the builder, and the architect). These records show among these 
artisans some awareness of the developments taking place in astronomy 
and mathematics during that period. The granthaveri and temple records 
remain a good but relatively untapped source of information about the 
“calculating people” of the period.

Further study of the social context of Kerala mathematics may yield an 
unexpected bonus. There is a deeply entrenched notion, as mentioned in re-
lation to Egyptian and Mesopotamian mathematics, that all non‑European 
mathematics is utilitarian. A number of scholars have fallen into the same 
trap. Their search in astronomy, navigation, and other practical pursuits 
for the motivation behind Kerala mathematics can offer only a partial an-
swer. One should, of course, never ignore the practical motivation. After 
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all, many of the members of the Kerala school were both mathematicians 
and astronomers. The texts of that period cover both subjects. However, a 
lot of the works on infinite series do not have any direct applications to as-
tronomy. So what led them on in their pursuit of knowledge? I have a vision 
of a group of pure mathematicians in Kerala between the fourteenth and 
sixteenth centuries (like Ramanujan, Hardy, and Littlewood at the Univer-
sity of Cambridge early in the twentieth century) indulging in their passion 
and probably proud of the fact that the mathematics that they did was of no 
use to anyone! Some members of the Kerala school must have taken delight 
in long and tedious calculations, such as the one reportedly undertaken by 
Madhava in calculating the sine tables to twelve decimal places. Such fasci-
nation with numbers and delight in calculation has been a characteristic of 
Indian mathematics over the ages, as we saw in chapter 8.

The Motivation and Method
An important “mathematical” motivation for the Kerala school may be 
traced to a verse in Aryabhatiya that explains how, for a given diameter, 
the circumference of a circle is calculated:

Add 4 to 100, multiply by 8, and add 62,000. The result is approximately 
the circumference of a circle whose diameter is 20,000. (Verse 10)

Some historians of mathematics have argued, partly on the basis of such 
quotations, that the Indians were not aware of the fact that the circumfer-
ence of a circle (and therefore p) could never be exactly determined. The 
confusion may have risen because of the mistranslation of the word asanna 
as “approximate” or “rough value,” as in the quotation above. The word is 
subtler than that. What it conveys is the notion of “unattainability,” that is, 
something that cannot be reached.

This is illustrated by a passage from Nilakantha’s commentary on Ary‑
abhatiya:

Why is only the approximate value (of circumference) given here? Let 
me explain. [It is approximate] because the real value cannot be ob-
tained. If the diameter can be measured without a remainder, the cir-
cumference measured by the same unit [of measurement] will leave a 
remainder. Similarly, the unit that measures the circumference without 
a remainder will leave a remainder when used for measuring the diam-
eter. Hence, the two measured by the same unit will never be without a 
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remainder. Though we try very hard we can reduce the remainder to a 
small quantity but never achieve the state of “remainderlessness.” This 
is the problem.

What the passage shows is that Nilakantha and others understood the 
“irrational” nature of the ratio we now represent as p. So the question arose 
as to what could be done as a result. The following passage from Sankara 
Variyar and Narayana’s Kriyakramakari contains a strategy:

Thus even by computing the results progressively, it is impossible theo-
retically to come to a final value. So, one has to stop computation at that 
stage of accuracy that one wants and take the final result arrived at by 
ignoring the previous results [obtained along the way].

In applying the infinite-series approach to estimate the circumference, 
the Kerala mathematicians came across a serious difficulty: the special case 
of the Madhava‑Gregory series (discussed in a later section) converges 
very slowly. The problem was tackled by Kerala mathematicians in two 
directions: 

1. � Obtain rational approximations by applying corrections to partial 
sums of the series. 

2. � Obtain more rapidly converging series by transforming the original 
series.

An unusual aspect of the Kerala approach to the derivation of a num-
ber of infinite series is their use of the method of direct rectification. The 
method of direct rectification of an arc of a circle involves summation of 
very small arc segments and reducing the resulting sum to an integral. This 
is an interesting geometric technique different from the “method of ex-
haustion” used in Islamic and European mathematics. In the Kerala case, 
you are subdividing an arc into unequal parts, whereas in the Islamic and 
European case there is a subdivision of the arc into equal parts. The dif-
ferent technique used in Kerala does not indicate that the method of ex-
haustion was unknown to the Indians. Indeed, it is likely that Aryabhata 
preferred the octagon method rather than the hexagon method used by 
Greek and Islamic mathematicians to compute his accurate estimate of 
the circumference of the circle.10 The method of exhaustion was probably 
avoided because it involved working out the square roots of numbers at 
each stage of the calculation, a tedious and time‑consuming task.
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Astronomy provided an important motive for the study of infinite-
series expansions of p and rational approximations for different trigono-
metric functions. For astronomical work, it was necessary to have both an 
accurate value for p and highly detailed trigonometric tables.11 In this area 
Kerala mathematicians made the following discoveries:

1.  The power series for the inverse tangent, usually attributed to Gregory

2. � The power series for p, usually attributed to Leibniz, and a number 
of rational approximations to p

3. � The power series for sine and cosine, usually attributed to Newton, 
and approximations for sine and cosine functions (to the second or-
der of small quantities), usually attributed to Taylor; this work was 
extended to a third-order series approximation of the sine function, 
usually attributed to Gregory

Apart from the work on infinite series, there were extensions of ear-
lier work, notably of Brahmagupta and Bhaskara II, already discussed in 
Chapter 9.

The Madhava-Gregory Series for the Inverse Tangent
The power series for tan–1 x is

1tan x x x x x3 5 for1
3

f #= = + −− 	 (10.1)

and is generally known as the Gregory series for the inverse tangent after 
the Scottish mathematician James Gregory, who derived it in 1667. Mad-
hava is credited with the following rule found in various texts, including 
the Yuktibhasa and the Kriyakramakari. The first of these two sources gives 
the rule as follows.

The first term is the product of the given Sine and radius of the desired 
arc divided by the Cosine of the arc. The succeeding terms are obtained 
by a process of iteration when the first term is repeatedly multiplied by 
the square of the Sine and divided by the square of the Cosine. All the 
terms are then divided by the odd numbers 1, 3, 5, . . . . The arc is ob-
tained by adding and subtracting [respectively] the terms of odd rank 
and those of even rank. It is laid down that the [Sine of the arc] or that 
of its complement whichever is smaller should be taken here [as the 
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given Sine]. Otherwise, the terms obtained by this above iteration will 
not tend to the vanishing magnitude.

The use of capital letters in Sine and Cosine in this extract indicates that 
we are dealing with the Indian sine and cosine, where Sin  = r sin  and 
Cos  = r cos , r being the radius. The condition given at the end of this 
rule may be interpreted as ensuring that r sin  is less than r cos , or that 
tan  (i.e., x in equation 10.1) should be less than 1 to ensure absolute con-
vergence of the series. Thus Madhava’s rule given above may be written as
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This is equivalent to the Gregory series (10.1) for the inverse tangent.
When x = 1 in equation (10.1) or  = 45° = p/4 in equation (10.2), the 

Madhava-Gregory series reduces to the Liebniz series:

.4 1 3
1

5
1

7
1
f

π
= − + − + 	 (10.3a)

Or, expressed in terms of the circumference (C) and diameter (d) of a cir-
cle, we have the usual form found in Kerala mathematics:
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Steps in the derivation of this series are found in Mallayya and Joseph 
(2009b), Plofker (2009), Roy (1990), Sarasvati (1979), Srinivasiengar (1967), 
and other publications, based on the original explanations in the Yukti
bhasa and Kriyakramakari. The method used corresponds to what is 
known today as the method of expansion and term-by-term integraion.12 

It was soon realized that the infinite-series expansion for the circum-
ference (C) given in equation (10.3b) was not particularly helpful in ob-
taining accurate estimates of the circumference for a given diameter (i.e., 
for estimating p), because of the slowness of the convergence of the se-
ries. To stop the computation of the C at any desired stage, as the quo-
tation given earlier from Kriyakramakari recommends, the infinite series 
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has to be truncated, and such truncation produces some error in the es-
timate of C. The objective was to minimize this truncation error (or to 
compensate for the loss of terms because of truncation). This gave impe-
tus to developments in two directions: (1) obtaining rational approxima-
tions by applying corrections to partial (or truncated) sums of the series; 
and (2) obtaining more rapidly converging series by transforming the 
original series. There was considerable work in both directions, and the 
details are discussed in both the Yuktibhasa and the Kriyakramakari.13

 What the work exhibits is a measure of understanding of the concept of 
convergence, of the notion of rapidity of convergence, and an awareness 
that convergence can be speeded up by transformations. 

As an illustration of the remarkable efficiency of some of the corrections 
introduced, consider the following examples. In the Kriyakramakari, the 
discussion starts with a quotation from Bhaskara’s Lilavati. 

When a diameter is multiplied by 3,927 and divided by 1,250, [this is] a 
very accurate circumference. Or when [a diameter] is multiplied by 22 
and divided by 7, [the result is] crude and for practical use.

It is then pointed out that the diameter and the circumference given here 
can be obtained by dividing Aryabhatiya’s original estimate of circumfer-
ence and diameter given in verse 11, and quoted earlier, by 16. However, a 
more accurate estimate of the circumference is given as 355 for a diameter 
of 113, which corresponds to p correct to six decimal places. 

Consider another example from the Yuktibhasa. What is required is 
to evaluate the circumference of a circle with a diameter of 1011. With-
out the correction and using infinite series (10.3b) above with the number 
of terms on the right-hand side as nineteen, the circumference is about 
3.194 # 1011. However, incorporating one of the corrections gives the 
circumference as 3.1415926529 # 1011, which is correct to nine places.14

 And the interest in increasing the accuracy of the estimate seems to have 
continued for a long time, so that as late as the nineteenth century San-
kara Varman, the author of Sadratnamala, estimated the circumference 
of a circle corresponding to a diameter measure of 1 parardha (1017) as 
314,159,265,358,979,324—correct to seventeen places. 

A second approach to achieving a greater degree of accuracy is by trans-
forming the original series to a more rapidly converging series. For x = 1/

3  or  = 30°, that is, for an arc that is 1/12th of the circumference, we get 
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a transformation attributed to Madhava and found in both the Yuktibhasa 
and the Kriyakramakari:
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f= − +− +< F

It is likely that Madhava used one of these approximation formulas 
when he estimated correctly to eleven decimal places the circumference of 
a circle of diameter 9 # 1011. Madhava’s calculated value of the circumfer-
ence is 2,827,433,388,233 units (implying a value for p of 3.14159265359), 
as reported in the Kriyakramakari (Sarma 1972, p. 26). 

A translation of Madhava’s verse statement of the circumference gives 
a flavor of how numbers were recorded in verse. In the notational sys-
tem known as bhuta samkhya, discussed in chapter 8, certain objects 
were traditionally used to represent numerals, either singly or in pairs, 
reading from right to left. Thus the circumference 2,827,433,388,233 was 
recorded as

Gods (33), eyes (2), elephants (8), serpents (8), fires (3), three (3), quali-
ties (3), Vedas (4), naksatras (27), elephants (8), and arms (2)—the wise 
say that this is the measure of the circumference when the diameter of a 
circle is nine nikharva [1011].

These approximations (for obtaining accurate estimates of the circum-
ference for a given diameter) are not to be found in any other mathematical 
literature until much later.15 They are unique to Kerala.

The Madhava-Newton Power Series for the Sine and Cosine 
In a commentary on Nilakantha’s Tantrasamgraha by an unknown student 
of Jyesthadeva, the author of Yuktibhasa, are found the following descrip-
tions of the power series for sine and versine without any derivations.

(A) The arc is repeatedly multiplied by the square of itself and divided 
(in order) by the square of each and every even number increased by 
itself and multiplied by the square of the radius. The arc and the terms 
obtained from these repeated operations are to be placed one beneath 
the other in order, and the last term subtracted from the one above, 
the remainder from the term then next above, and so on, to yield the 
[bhuja] jya [or Indian Sine] of the arc. 
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(B) The radius is repeatedly multiplied by the square of the arc and di-
vided [in order] by the square of each and every even number dimin-
ished by itself and multiplied by the square of the radius, with the first 
term involving only 2. The resulting terms are placed one beneath the 
other in order, and the last term subtracted from the one above, the re-
mainder from the term next above and so on, to yield utkamajya or sara 
[Indian versine] of the arc. 

Expressed symbolically, where r is the radius and a the length of the 
given arc, the first three are 
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Substituting a/r =  gives

! ! ! .sin 3 5 7
3 5 7

fθ θ
θ θ θ

= − + − + 	 (10.4)

Using the above notation and denoting Indian versine (sara ) by (r - r 
cos ), the first three even numbers given in (B) can be written as 
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Substituting a/r =  and simplifying gives

1 ! ! ! .cos 2 4 6
2 4 6

fθ
θ θ θ

= − + − + 	 (10.5)

The series given in (10.4) and (10.5) are usually named after Newton. 
They make their first appearance in European mathematics in a letter 
from Newton to Oldenburg in 1676 and are then elaborated on a firmer 
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algebraic basis by De Moivre (1708–1738) and Euler (1748). They should 
be more appropriately named after Madhava, to whom the series are usu-
ally attributed by the later members of the Kerala school. 

The rules given for generating the two power series given in (10.4) and 
(10.5) may be explained in terms of figure 10.2 as

Indian sine = r sin  = AC;

Indian cosine = r cos  = OC.

Madhava’s approach is to express r sin  and r cos  in terms of r and a. 
(We shall not attempt to follow the long and complex steps in the deriva-
tion of the sine and cosine series in the Yuktibhasa. Details of the original 
explanation involving the use of the method of “expansion and term-by-
term integration” are given by Rajagopal and Venkataraman [1949], Saras-
vati [1963], and K. V. Sarma [2008]).16

These power series were probably used to construct accurate sine and 
cosine tables for astronomical calculations. In a table of values of half-sine 
chords reportedly calculated by Madhava for twenty-four arcs drawn at 
equal intervals for a quadrant of a given circle, the values are correct in 
almost all cases to the eighth or ninth decimal place. Such an accuracy was 
not achieved in Europe for another two hundred years.17

Approximations for sine and cosine functions to the second power of 
small quantities are also attributed to Madhava. In modern notation, Mad-
hava’s results can be written as

Figure 10.2: The Indian sine and cosine
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where h is the small quantity and r the radius. These results are but special 
cases of one of the familiar expansions in mathematics, the Taylor series, 
named after Brook Taylor (1685–1731).

In our brief look at Kerala mathematics, the name that keeps recurring 
is that of Madhava of Sangamagrama. His brilliance is generously acknowl-
edged by those who came after him, and the effects of his teaching on the 
works of Paramesvara, Nilakantha, Jyesthadeva, and others are there to see. 
It would be quite in keeping with Indian tradition if, in holding him in 
such awe, his successors were to have credited him with more than his 
share of discoveries. Of his teachers we know nothing. Madhava’s out-
standing contributions, in the area of infinite-series expansions of circular 
and trigonometric functions and finite series approximations to them, pre-
date European work on the subject by two hundred to three hundred years.

We may consider Madhava to be the founder of mathematical analysis. 
Some of his discoveries in this field show him to have possessed extraor-
dinary intuition, making him almost the equal of a more recent intuitive 
genius, Ramanujan (1887–1920), who spent his childhood and youth at 
Kumbakonam, not very far from Madhava’s birthplace. Ramanujan also 
showed a considerable intuitive grasp of infinite-series expansions, par-
ticularly of trigonometric and circular functions, as his Notebooks (1985) 
now testify. Do we see in these notes the vestiges of a “hidden” indigenous 
mathematics not submerged by the influx of modern mathematics from 
the West ?

There is an interesting Chinese connection that merits further investi-
gation. In the middle of the eighteenth century Ming Antu wrote a book 
on geometry that contained power-series expansions for trigonometric 
functions and p. The derivations of the Gregory and Newton formulas 
contained in his book bear an uncanny resemblance to the work of the 
Kerala school. The inference is usually that the Chinese were introduced 
to these results by the Jesuit missionary Pierre Jartoux at the beginning of 
the eighteenth century, and that the proofs were subsequently arrived at 
independently. However, the Kerala-China link should also be examined. 
We mentioned in the historical introduction to chapter 6 that the early 
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Ming period saw considerable maritime contact between China and parts 
of Asia and Africa. Kerala has a long history of trade contacts with China. 
One piece of tangible evidence of technology having been transferred 
from China to Kerala is the Chinese fishing net, which is still in use today. 
Would it be far-fetched to suggest that the contacts between the two areas 
also had a less tangible dimension?18

Transmission of Kerala Mathematics

Establishing Transmissions: A Digression
The question to be addressed here, in the case of cross-cultural trans-
mission of mathematical ideas, is how do we establish that an item of 
knowledge was actually transmitted into, say, Europe and was not an in-
dependent discovery within Europe even though it was known earlier in 
another culture?19 

Translations provide direct, indubitable evidence of transmissions. So 
do written acknowledgments of debts owed to particular mathematical tra-
ditions. The transmission of Indian or Greek mathematics and astronomy 
via Islamic scholars to Europe has been established by such direct evidence. 
We know that Indian astronomy was transmitted westward to Baghdad, by 
a translation into Arabic of the Siddhantas around 760, and into Spain, by a 
translation into Latin of the same work in 1126. This transmission was not 
just westward, for there is documentary evidence of Indian mathematics 
and astronomy being imported to China, Thailand, Indonesia, and other 
Southeast Asian regions from the seventh century onward.

Table 10.1 provides a list of topics on which there has been similar work 
in Indian, Islamic, and European mathematics. In some of these cases, 
there is documentary evidence to establish transmission. However, it is of-
ten the case that direct evidence based on translations is unavailable. Then, 
we have to turn to circumstantial evidence to support transmission claims. 
Notably, in the exact sciences, the identification of methodological, algo-
rithmic, and epistemological similarities—especially where these similari-
ties may involve duplications in the recipient culture of incorrect results or 
of approximations from the original source—would support the case for 
transmission. Correct results could have been independently discovered. 
But incorrect results and approximations that match are less likely to have 
been independently discovered. Furthermore, showing the existence of an 
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Table 10.1:  Common Mathematical Pursuits in India and 
Elsewhere

Topic	 First appears in	 Repeated or used by

Method of calculating	 Ptolemy AD 150	 Islamic mathematicians
values of the chord

Method of construction	 Aryabhata AD 499	 Regiomontanus 1533 
of 24 Sine values

Radian measure	 Aryabhata AD 499	 European mathematians late 
	 (Hipparchus 150 BC?)	 19th century AD

Square and cube root	 Aryabhata AD 499	 Islamic mathematics 10th 
extraction	 (China 1st century BC)	 century

Methods in algebra	 Aryabhata AD 499	 Italian mathematics: 
including summation	 (Archimedes and	 Bombelli 16th century 
of finite series	 Diophantus)	

Number system with 0	 Indians c. 6th	 Al Khwarizimi 9th century 
as number and as 	 century AD 
positional symbol

Generalized arithmetic	 Bhasakara I AD 600	 Islamic mathematics 9th 
of fractions		  century

Prime factorizing	 Narayana AD 1356	 Fermat 17th century 
method involving 
differences of squares

Arithmetic involving 	 Brahmagupta 7th 	 Arab mathematics 9th  
zero	 century AD	 century, European 
		  mathematics 13th century

Elements of the calculus	 Bhaskara II 12th	 Renaissance mathematics 
including derivatives of	 century AD	 17th–18th centuries 
sine and cosine

Continued fractions 	 Bhaskara II 12th	 John Wallis 1655 
formulas	 century AD

Pells equation:	 Brahmagupta 7th 	 Fermat challenge problem 
61x2 + 1 = y2	 century AD,	 17th century, solved by Euler
	 Bhaskara II 12th	 18th century 
	 century AD, 
	 x = 226,153,980,
	 y = 1,766,319,049

continued
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accessible corridor of communication between the two cultures involved, 
as well as an appropriate chronology of the transmission process, could 
strengthen the case. However, using a legal analogy, such an approach can-
not establish a case for transmission beyond reasonable doubt; it can only 
establish a case for transmission as better than its no-transmission com-
petitor on the balance of probabilities.20

Using such approaches, historians have argued for transmissions of 
ideas from Europe to cultures outside. It was by thus inferring method-
ological similarities that Van der Waerden (1983) claimed that Aryabhata’s 
trigonometry was borrowed from the Greeks. Earlier in 1976, combining 
this approach with his much-criticized “hypothesis of common origin,” he 
made claims that Bhaskara II’s work on Diophantine equations could be 
traced to an unknown Greek manuscript that was available to Bhaskara 
and his students. Van der Waerden concluded his study of the Greek ori-
gins of the works of Aryabhata and Bhaskara by stating that “in the history 
of science independent inventions are exceptions: the general rule is de-
pendence.” Neugebauer (1962) used “priority, accessible communication 
routes and methodological similarities” to establish his conjecture about 
the Greek origins of the astronomy contained in the Indian Siddhantas. 
What we see from these examples is that a case for claiming the trans-
mission of knowledge from Europe to places outside does not necessarily 
rest on direct documentary evidence. In certain circumstances, priority, 
communication routes, and similarities appear to establish transmission 
from West to East as more plausible, on the balance of probabilities, than 
independent discovery in the East. However, when it comes to East-to-
West transmissions, there seems to be a complete change of orientation. 
The criterion for establishing transmission is no longer the comparative 

Table 10.1:  Continued

Topic	 First appears in	 Repeated or used by

A proof of the 	 Bhaskara II 12th	 John Wallis 1655 
“Pythagorean” theorem	 century AD

Infinite series for p	 Madhava 15th	 Leibniz, James Gregory,
	 century AD	 17th century

Infinite series for sine	 Madhava 15th	 Newton 17th century 
and cosine functions	 century AD
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notion of “balance of probabilities” but the absolute notion of “beyond 
all reasonable doubt.” This double standard makes it possible to sustain a 
case for Eurocentric histories against their dialogical competitors, even in 
those situations where an across-the-board application of the principle of 
the balance of probabilities would make a stronger case for East-to-West 
transmission.

So how can our conjecture of transmission of Kerala mathematics pos-
sibly be established? The tradition in Renaissance Europe was that math-
ematicians did not always reveal their sources or give credit to the original 
source of their ideas. However, the activities of the monk Marin Mersenne 
from the early 1620s to 1648 suggest some attempt at gathering scientific 
information from the Orient. Mersenne corresponded with the leading Re-
naissance mathematicians such as Descartes, Pascal, Fermat, and Rober-
val.21 Though a minim monk, Mersenne had had a Jesuit education and 
maintained ties with the Collegio Romano. Mersenne’s correspondence 
reveals that he was aware of the importance of Goa and Cochin (in a letter 
from the astronomer Ismael Boulliaud to Mersenne in Rome22). He also 
wrote of the knowledge of Brahmins and “Indicos”23 and took an active in-
terest in the work of orientalists such as Erpen. Regarding Erpen, he men-
tions his collection of manuscripts in Arabic, Syriac, Persian, and Indian 
languages.24 

It is our conjecture that between 1560 and 1650 knowledge of Indian 
mathematical, astronomical, and calendrical techniques accumulated in 
Rome and diffused to neighboring Italian universities like Padua and Pisa, 
and to wider regions through Cavalieri and Galileo, and through visitors 
to Padua like James Gregory. Mersenne may have also had access to knowl-
edge from India acquired by the Jesuits in Rome and, via his well-known 
correspondence, helped to diffuse this knowledge throughout Europe. 
Certainly the way James Gregory acquired his geometry after his four-year 
sojourn in Padua, where Galileo taught, supports this possibility. 

All this is circumstantial. To make the case stronger for the transmission 
of Kerala mathematics to Europe, we require documentary evidence to 
show that the Jesuits acquired and comprehended mathematics of Kerala 
and disseminated this information among those in Europe who had the 
necessary background to assimilate this information. Failing the availabil-
ity of such direct evidence, the indirect route for establishing transmission 
needs to be strongly delineated. In addition to the Neugebauer’s criteria 
of priority, communication routes, and methodological similarities, we 
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propose to test the hypothesis of transmission on the grounds of motiva‑
tion and evidence of transmission activity by Jesuit missionaries. In the next 
few sections all these aspects will be discussed.

The Case for Transmission: Applying the Neugebauer Criteria 
The priority of the Kerala work over that of Europe is now beyond doubt. 
Madhava (1340–1425) is credited with the original ideas in Kerala math-
ematics. These ideas led to derivation of the infinite series for p, which 
we illustrated earlier, and to infinite series for a range of trigonometric 
functions. These developments, therefore, precede the late-seventeenth-
century work of Gregory, Newton, and Leibniz by at least 250 years. 

A corridor of communication between the South of India and the Ara-
bian Gulf (via the port of Basra) had been in existence for centuries. The 
arrival of the Portuguese Vasco da Gama to the Malabar coast in 1499 her-
alded a direct route between Kerala and Europe via Lisbon. Thus, after 
1499, despite its geographical location, which prevented easy communica-
tion with the rest of India, Kerala was linked with the rest of the world and, 
in particular, directly to Europe.

While the two aspects of priority and communication routes are readily 
established, the existence of methodological similarities requires further 
examination. It is beyond the scope of this book to do so; the interested 
reader may refer to the literature listed in endnote 19 in the present chap-
ter. However, consider the intriguing similarity in a key result in the Yuk‑
tibhasa and one adopted by Fermat, Pascal, and Wallis among others in 
European mathematics.25 In the Yuktibhasa, the following result, expressed 
in modern notation, is proved:
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The same result was adopted in Europe in the seventeenth century 
to evaluate the area under the parabola y = xk or, equivalently, calculate 

x dxk# . At this point it should be pointed out that Wallis used reasoning 
somewhat similar to that given in the Yuktibhasa.26 Methodological sim-
ilarities between the mathematics of the Aryabhata school, upon which 
Kerala mathematics is based, and the works of the renaissance European 
mathematicians are not infrequent. Apart from the similarities between 
their infinitesimal methods, both traditions shared a common interest in 
quadratures and rectifications for different reasons.27 
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The Case for Transmission: Applying the Legal Standard of 
Motivation and Opportunity
The primary motivation for Europeans to import knowledge from India was 
navigation: the need for more accuracy in computation, a better calendar, 
and more advanced astronomy.28 By the middle of the sixteenth century 
there was an error in the calculations that formed the basis of the existing 
Julian calendar. The true solar year was around 11.25 minutes shorter than 
the assumed 365.25 days, thus causing a cumulative error that was offsetting 
the date of Easter appreciably. For example, the vernal equinox was sched-
uled by the calendar to take place on March 21, but it actually took place on 
March 11—thus, without correction, Easter would eventually take place in 
summer rather than in spring. An awareness of this inadequacy in relation 
to other calendars may be inferred from the calculation involving the tithi29 
measure in Viete’s critique of the Gregorian calendar reform (Bein 2007). 
In astronomy, the remarkable similarities between the planetary model de-
vised by the Kerala mathematician Nilakantha and the later one by Tycho 
Brahe, and the adoption for a time by Kepler of the tenth-century Indian 
lunar model of the astronomer Munjala, are worthy of note.30 

The arrival of Francis Xavier in Goa in 1540 heralded a continuous pres-
ence of the Jesuits in the Malabar till 1670. The early Jesuits were interested 
in learning the vernacular languages to further their work of religious con-
version, but the later Jesuits, who arrived after 1578, were of a different 
mold. The famous Matteo Ricci was in the first batch of Jesuits, trained in 
the new mathematics curriculum introduced in the Collegio Romano by 
Clavius. Ricci was an accomplished mathematician. He also studied cos-
mography and nautical science in Lisbon prior to his arrival in India in 
1578. Ricci’s arrival in Goa was significant in respect to Jesuit acquisition of 
local knowledge. His specialist knowledge of mathematics, cosmography, 
astronomy, and navigation made him an eminent candidate for “discov-
ering the knowledge of the colonies and he had specific instructions to 
investigate the sciences of India” (Bernard 1973, p. 38).

Subsequently several other scientist Jesuits trained by Clavius or Grien-
berger (Clavius’s successor as mathematics professor at the Collegio Ro-
mano) were sent to India. Most notable of these, in terms of their scientific 
activity in India, were Johann Schreck and Antonio Rubino. The former 
had studied with the French mathematician Viete, well known for his work 
in algebra and geometry. At some point in their stay in India these Jesuits 
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went to the Malabar region, including the city of Cochin, the epicenter 
of developments in Kerala mathematics. The Jesuits were keen to acquire 
local knowledge, especially relating to the calendar and navigation. They 
had, as mentioned earlier, an interest in the calendar that stemmed from 
the Church’s desire to reform the erroneous dating of Easter and other fes-
tivals. Clavius was a member of the commission that ultimately reformed 
the Gregorian calendar in 1582. Also, as discussed earlier, improving navi-
gational skills became a matter of vital importance, as shown by the large 
prizes offered by various governments in Europe.31 All this has led to the 
conjecture that these Jesuits took part in an interchange of scientific ideas 
between Europe on the one hand and India and China on the other.32

With regard to the earlier Jesuits on the Malabar Coast, we observe that 
several references in the historical works of Wicki indicate that they were 
interested in the arithmetic, astronomy, and timekeeping of the region. In-
deed, it appears that the Jesuits tried to augment their knowledge of indig-
enous sciences by including subjects such as jyotisa (astronomy/astrology) 
in the curriculum of the Jesuit colleges on the Malabar Coast. They were 
also active in the transmission of local knowledge back to Europe. Evi-
dence of this knowledge acquisition is contained in the manuscript collec-
tions Goa 38, 46, and 58 to be found in the Jesuit historical library in Rome 
(ARSI). The last collection mentioned contains the work of Father Diogo 
Gonsalves on the judicial system, the sciences, and the mechanical arts 
of the Malabar region. This work of knowledge acquisition started from 
the very outset of the Jesuit presence in Kerala.33 The translation of the lo-
cal sciences into European languages prior to transmission to Europe was 
epitomized by Garcia da Orta’s popular Colloquios dos simples e drogas he 
cousas mediçinas da India, published in Goa in 1563. There may have been 
other publications of this type that remain inaccessible, possibly because of 
linguistic and nationalistic reasons.

If the earlier and later Jesuits were involved in learning the local sciences, 
then—given the academic credentials of the Jesuits such as Ricci, Schreck, 
and Rubino of the middle period—it is a plausible conjecture that this work 
continued and with greater intensity. There is fragmentary documentary 
evidence that this did happen. It is known that Ricci made inquiries about 
the Indian calendar—in a letter to Maffei he states that he requires the as-
sistance of an “intelligent Brahmin or an honest Moor” to help him un-
derstand the local ways of recording and measuring time.34 Then there is 
de Menses, who, writing from Kollam in 1580, reports that, on the basis of 
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local knowledge, he has detected inaccuracies in European maps.35 There 
were other later Jesuits who reported on scientific findings on such diverse 
things as calendrical sciences and inaccuracies in the astronomical tables. 
Antonio Rubino wrote in 1610 about inaccuracies in European mathemati-
cal tables for determining time.36 Then there is the letter from Schreck, in 
1618, on astronomical observations intended for the benefit of Kepler—the 
latter had requested the eminent Jesuit mathematician Paul Guldin to help 
him to acquire these observations from India to support his theories.37 Al-
though this does not establish the fact that these Jesuits obtained manu-
scripts containing Kerala mathematics, it does establish that their scientific 
investigations about local astronomy and calendrical sciences could have 
led them to an awareness of this knowledge. There are some reports that the 
Brahmins were secretive and unwilling to share their knowledge. However, 
this was not an experience shared by many others. For example in the mid–
seventeenth century Fr. Diogo Gonsalves, who learned the local language 
Malayalam well, was able to write a book about the administration of jus-
tice, sciences, and mechanical arts of the Malabar. This book is to be found 
in the manuscript Goa 58 collection in the Jesuit historical library (ARSI), 
Rome. Also there is a report of a Brahmin who spent eight years translating 
Sanskrit works for Fr. Frois during the same time.38

The information gathering and transmission activities of the Jesuit mis-
sionaries are thus not in doubt. In addition, after the 1580 annexation of 
Portugal by Spain and subsequent loss of funding from Lisbon, the rationale 
for transmission acquired another dimension, that of profit. Whatever the 
nature of the profit, intellectual or material, the motivation may have been 
sufficient for the learned Jesuits to have acquired (or at the very least read 
and understood) the relevant manuscripts containing Kerala mathematics.

A Conjecture on the Mode of Acquisition of Manuscripts  
by the Jesuits 
The question arises as to how the Jesuits might have obtained key manu-
scripts of Indian astronomy such as the Tantrasangraha and the Yuktib‑
hasa.39 It would require the Jesuits being in close contact with scholars who 
had access to such manuscripts. We know that at least one scholarly Brah-
min was working for the Jesuits.40 In addition, as we shall now show, the 
Jesuits were in communication with the members of the Court of Cochin, 
whose scholarship and authority may have enabled them to help the Jesuits 
to acquire Kerala mathematics. 
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The rulers of Cochin came from a scholarly family who were reputed to 
be knowledgeable about the mathematical and astronomical works of me-
dieval Kerala, at least to the extent that they were aware of the methods for 
astrological prediction and of the manuscripts that contained these meth-
ods. They were in possession of a large number of manuscripts in math-
ematics and astronomy and were known for a tradition of helping other 
scholars. “Thus, the royal family could itself have been a possible source 
of knowledge for the Jesuits. Indeed, the Jesuits working on the Malabar 
Coast had close relations with the royal court of Cochin. Furthermore, 
around 1670, they were granted special privileges by Raja Rama Varma 
who, despite his misgivings about the evangelical work of the Jesuits, per-
mitted members of his household to be converted to Christianity. The close 
relationship between the Raja of Cochin and the foreigners from Portugal 
was cemented by Rama Varma’s appointment of a Portuguese as his tax 
collector” (The Aryabhata Group 2002, p. 47). Given this close relationship 
with the kings of Cochin, the Jesuits’ desire to acquire local knowledge, 
and the royal family’s contiguity to the works on Indian astronomy, it is 
quite possible that the Jesuits may have gained access to key manuscripts 
of the Kerala school via the royal household. 

In conclusion, it is worth noting that we have focused so far on doc-
umentary evidence of direct transmissions of Kerala ideas to Europe 
and pointed to certain conjectures based on circumstantial evidence. It 
should be emphasized that a painstaking trawl of the mass of manuscripts 
and other materials mentioned earlier in this chapter and discussed in 
Almeida and Joseph (2009) has yielded no direct evidence of the conjec‑
tured transmission. Therefore, on the basis of the evidence in documents 
studied so far, we should conclude that the European Renaissance devel-
opments of prototypical calculus were independent of the developments 
in that subject in Kerala some centuries earlier. Baldini (2009), who 
has provided some of the more cogent arguments against transmission, 
concludes: 

[U]nless new evidence is found and some basically new circumstance 
is established, the only possible deduction seems to be that not only no 
information exists on a Jesuit mathematician having managed to study 
some advanced Indian text (not to say to transmit it, or its content, 
to Europe), but no serious clue appears of a scientific interchange not 
purely superficial and more than occasional. (p. 288)
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The debate is by no means over. As pointed out by Bala (2009), the 
transmission of the discoveries of Kerala mathematics could have been as 
“know-how” and computation techniques through the channel of crafts-
men and technicians. This may explain the absence of direct documentary 
evidence in Jesuit communications. Even if there exists documentary evi-
dence on the use of approximate series derived from the discoveries of the 
Kerala school in sixteenth- and seventeenth-century European manuals 
on navigation, map making, and calendar construction, it would hardly 
have been directly communicated to European mathematicians. After all, 
craftsmen oriented to practical rather than theoretical concerns would 
have been unlikely to write to leading mathematical figures or to be taken 
seriously if they did so. This raises the question as to whether it was possi-
ble to transmit the knowledge of infinite series through computations and 
calculations contained in navigation charts and similar aids, and if so what 
would be the precise nature of the calculation with series that could be 
transmitted. Only a closer look at ship records and other practical manuals 
would help to finally resolve the validity of Bala’s hypothesis.41

Notes

1. See Aaboe and Berggren (1996, pp. 295–316) for further details. The paper also ar-
gues that Archimedes may have used infinitesimals to produce his results.

2. In this book, the term “school” is used in two different ways. In this instance, the 
“Kerala school,” as shown in figure 10.1, describes the institution of guru-parampara or 
a sequence of direct transmissions from teachers to students living in the same locality, 
even if this happens over a number of generations. In the other sense, the “Aryabhata 
school” is a term used to describe those who were influenced by Aryabhata even if the 
influence lasted over a thousand years. 

3. The traditional Indian method for determining latitude (discussed in the Laghu 
Bhaskariya of the seventh century AD) involved measuring solar altitude at noon (a), 
which is in turn a function of the latitude (λ) and the solar declination (i.e., the angular 
distance of the sun north or south of the equator) denoted by δ. At any given place, a 
varies with δ at different days of the year. The relationship between the three variables, 
according to the Laghu Bhaskariya, can be expressed as 

sin  = sin  sin a.

Thus to determine the latitude correctly, an accurate calendar giving the number of days 
that elapsed since the last equinox becomes an absolute requirement. The traditional 
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Indian day-count system (ahargana) achieved this purpose well, in contrast to the Ju-
lian calendar. 

4. The equation of the center is equal to the difference between the actual angular posi-
tion in the elliptical orbit and the position the orbiting body would have if its angular 
motion was uniform. It arises from the ellipticity of the orbit, and is zero at the peri-
center (i.e., the point on the orbit nearest to the center) and the apocenter (i.e., the point 
on the orbit that is farthest from the center). The difference is at its greatest approximat-
ing midway between these points.

5. For further details, see Ramasubramanian et al. ( 1994).

6. For further details, see Hayashi and Kusuba (1998).

7. While other commentaries (such as those of Bhaskara I and Nilakantha on Aryab‑
hatiya) contain some form of rationale and verification of the results, the proofs offered 
in Yuktibhasa and Kriyakramakari use complicated geometrical constructions to be 
found in no other mathematical traditions.

8. In Kerala at the time of the Yuktibhasa, “advanced” mathematics were used mainly in 
two areas, astronomy and building science (known as vastu vidya or thachu sastra). A 
contemporary of Jyesthadeva, Thirumangalath Neelakantan, had written a very popu-
lar text on traditional building science, Manushyalaya Candrika.

9. It would seem that there existed some caste flexibility that allowed the Brahmins and 
the non-Brahmins (i.e., Ambalavasis such as Variyars and Pisaratis) to share Sanskritic 
knowledge and collaborate on more or less equal terms. 

10. The “octagon method” appears as one of the earliest methods of estimating the area 
of a circle. It is found in the Ahmes Papyrus of ancient Egypt and discussed in chapter 
3. The “hexagon method” is of Greek origin and is usually associated with the “method 
of exhaustion.” This method is discussed in chapter 7.

11. It should be noted that the main purpose of developing the mathematics of the sine 
and cosine power series was to provide a sounder basis for mathematical astronomy. 
To construct a sine table accurate even to seven decimal places, which is what Mad-
hava achieved, a better value for p than that implied by the traditional Indian radius 
of 3,438 was necessary. Madhava seems to have realized this. And it was his search for 
a more accurate estimate of the circumference of a circle in terms of its diameter that 
probably led him to the infinite series corresponding to that measure. 

12. Chapter 6 of the Yuktibhasa discusses another procedure for estimating the cir-
cumference of a circle by approximating it to regular polygons. The method involves 
approximating the circle to regular polygons having an increasing number of sides by 
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an iterative process of finding at each stage the length of the sides of regular polygons 
of 2n sides from a regular regular polygon of n sides. Thus we could derive the length 
of the side of a regular octagon from a square, the length of the side of a sixteen-sided 
regular polygon from a regular octagon, of a thirty-two-sided polygon from a sixteen-
sided polygon, and so on, such that when n becomes very large, the resulting polygon 
will approximate a circle. Known in the Yuktibhasa as the “square-square root method,” 
it makes use of the relation between the sides of a right-angled triangle. For a useful 
discussion of this method and its derivation, as stated in the Yuktibhasa, see Rajasekhar 
(2009, pp. 113–36) and Sarma (2008, pp. 46–49, 180–83). 

13. The following corrections (in ascending order of accuracy) are suggested for incor-
poration as the last term in equation (10.3b): 
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where n is the number of terms on the right-hand side of (10.3b). 
Historians have argued that continued factor approximations to the errors produced 

by successive partial sums lie behind Madhava’s procedure. If that is so, Madhava was 
not only a skilled geometer but also showed remarkable numerical intuition reminis-
cent of Ramanujan five hundred years later, who had a lot in common with him. For a 
discussion of the possible derivations of the various correction terms, see Hayashi et al. 
(1990), Gupta (1992), and Sarma (2008, vol. 1, pp. 72–82).

14. One can only assume that of the three corrections given in note 15, the one used in 
this instance, is 

( ) .F n
n
n

4 12 2=
+

15. Sankara states that Madhava’s value for the ratio of circumference to diameter is 
more accurate than the traditional value of 355/113 given in Lilavati.

16. For some of the more recent work outside India, see the relevant articles in M. 
Anderson et al. (2004).

17. Note that the trigonometric table relating to sines was constructed by a contempo-
rary of Madhava, Ulugh Beg (1393/4–1449) of Samarkand, who achieved a similar level 
of accuracy to eight decimal places.

18. The role of the Jesuit conduit in India and China during the period of the Ming dy-
nasty has become an interesting area of study in recent years. In this book, we identify 
two specific cases: a conjecture regarding possible transmission of the Chinese solution 
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to the mathematical problem of equal temperament in music through the agency of the 
Jesuits, discussed briefly in chapter 7; and, in the section that follows, a more detailed 
examination of possible transmission of mathematical and astronomical ideas from 
Kerala to Europe again through the Jesuits. 

19.  This section is based on the findings of a research project funded by the Arts and 
Humanities Research Board, UK, undertaken by Dennis Almeida and the author. For 
further details, see the Aryabhata Group (2002), Almeida et al. (2001), Almeida and Jo-
seph (2004, 2007, 2009), and Bala (2009). For a short period, C. K. Raju was a member 
of the Aryabhata Group, which had been modeled along the lines of Nicolas Bourbaki, 
a collective nom de plume of mainly French mathematicians who aimed to publish an 
ambitious Éléments de mathématiques, a text in many volumes in which the funda-
mental structures of modern mathematics were to be treated in a rigorous fashion. The 
Aryabhata Group was dissolved in 2000, before the author began his collaboration with 
Dennis Almeida, the origins of which may be traced back to a discussion between us in 
July 1997 in South Africa of a Jesuit role in the spread of Kerala mathematics to Europe. 
Raju (2007) has recently brought out a book that contains his own interpretation of the 
“transmission of the calculus from India to Europe in the 16th century.” It also makes 
claims regarding the nonexistence of a historical Euclid and his Elements before the 
tenth century AD and expresses similar skepticism about Archimedes and his works. In 
writing this section of the book, the author owes a considerable debt to the Aryabhata 
Group, whose work (2002) is extensively referred to.

20. In all common-law systems, the standard of proof in civil cases is on a “balance of 
probabilities,” while in criminal cases, where the prosecution bears the burden of proof, 
the standard is proof “beyond reasonable doubt.”

21. These letters have been published in eighteen volumes (Mersenne 1945– ).

22. See Mersenne (1945– ), vol. 13, p. 267.

23. See Mersenne (1945– ), vol. 13, pp. 518–21.

24. See Mersenne (1945– ), vol. 2, pp. 103–15. It is interesting in this context that Mer-
senne’s classical work on musical theory explored the relationship between combina-
torics and music theory, a topic covered by Pingala (third century AD) in Chandasutra, 
as stated in chapter 8. Further, as discussed in chapter 7, about thirty years before Mer-
senne set down the mathematical basis for the concept of equal temperament in music, 
the same theory was propounded in 1584 by Zhu Zaiyu. Mersenne’s work came out 
sixteen years after the first reference to Zhu’s work in Europe.

25. The mathematical representation that follows is taken from the paper by the Ary-
abhata Group (2002, p. 42), who in turn credit it to a paper presented by C. K. Raju 
in 1999 at the National Seminar on Applied Sciences in Sanskrit Literature, Various 
Aspects of Utility, Agra, February 20–22.
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26. That is, Wallis replaces the term n2 by n(n + 1), implying by that, as n tends to ∞, 
(n + 1) can be replaced by n. (Scott 1981, p. 30). 

27. Quadrature involves the process of determining the area of a plane geometric figure 
by dividing it into a collection of shapes of known area and then finding the limit (as 
the divisions become ever finer) of the sum of these areas. A similar process called 
rectification is used in determining the length of a curve. The curve is divided into a 
sequence of straight-line segments of known length, and the sum of a large number of 
these segments gives an estimate of the length of the curve.

28. The navigational problems in Europe related to difficulties of obtaining (1) an accu-
rate measurement of latitude (the prerequisites being an accurate calendar and accurate 
trigonometric values, as explained in note 3 above); and (2) an accurate method of de-
termining longitude (the prerequisite before the invention of the marine chronometer 
being an accurate measurement of the size of the earth). In the absence of (1) and (2) 
the problem was one of tracing the path of a ship along a constant course (a rhumb 
line or loxodrome), given a compass that was often unreliable, a chart that was often 
incomplete and inaccurate, and the lack of any identifiable star or celestial body (such 
as the fixed polestar, which would disappear from the horizon once the ship reached 
the equator). For further explanation of the difficulties faced by European navigators 
during the fifteenth and sixteenth centuries, see Waters (1958). 

29. In traditional Indian timekeeping, a tithi is a lunar day (i.e., the time it takes for the 
longitudinal angle between the moon and the sun to increase by 12°). Tithis begin at 
different times of day and vary in duration from approximately 19 to 26 hours. The tithi 
is a basic measure of the Indian lunisolar calendar (i.e., a calendar whose date shows 
both the moon phase and the time of the solar year).

30. “The eccentric version of [Manjula’s] Laghumanasam model has an interesting sub-
sequent history. Essentially the same model, with the small epicycle rotating through 
the angle 2, was used by Kepler at an intermediate stage of his lunar research, and then 
abandoned” (Duke 2007, p. 157).

31. These offers by governments included the Spanish prize of 1567, the Dutch prize of 
1636, the French prize of 1666, and the English prize of 1711. Portugal had earlier in-
stituted a special post for navigational studies in Lisbon, first occupied by Pedro Nunes 
as early as 1529. And among the first tasks that the infant Royal Society of London and 
the Royal Academy of Paris set for themselves was improving the navigational methods 
of their respective countries.

32. Baldini (1992, p. 70) wrote: “It can be recalled that many of the best Jesuit students 
of Clavius and Geienberger (beginning with Ricci and continuing with Spinola, Aleni, 
Rubino, Ursis, Schreck, and Rho) became missionaries in the Oriental Indies. This 
made them protagonists of an interchange between the European tradition and those 
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of India and China, particularly in mathematics and astronomy, which was a phenom-
enon of great historical meaning.”

33. Ferroli (1939, p. 402) wrote: “In Portuguese India, hardly seven years after the death 
of St. Francis Xavier the fathers obtained the translation of a great part of the 18 Pura‑
nas and sent it to Europe. A Brahmin spent eight years in translating the works of 
Veaso [Vyasa]. . . .  several Hindu books were got from Brahmin houses, and brought 
to the Library of the Jesuit college. These translations are now preserved in the Roman 
Archives of the Society of Jesus” (Goa, 46).

34. Letter by Matteo Ricci to Petri Maffei dated December 1, 1581 in Josef Wicki, Docu‑
menta Indica, vol. 12, pp. 472–77 (p. 474).

35. “I have sent Valignano a description of the whole world by many selected astrolo-
gers and pilots, and others in India, which had no errors in the latitudes, for the benefit 
of the astrologers and pilots that every day come to these lands, because the maps of 
theirs are all wrong in the indicated latitudes, as I clearly saw” Josef Wicki, Documenta 
Indica, vol. 11, p.185.

36. “ . . . comparing the real local times with those inferable from the ephemeridis [ta-
bles] of Magini, he [Rubino] found great inaccuracies and, therefore, requested other 
ephemeridi” Baldini (1992, p. 214).

37. For details, see Iannaccone (1998, p. 58).

38. For details, see Ferroli (1939, vol. 2, p. 402).

39. This section takes as a starting point the discussion of this conjecture in the paper by 
the Aryabhata Group (2002, pp. 46–47), which should be referred to for further details.

40. See note 32 above. 

41. There is the further question as to how necessary it was to obtain increasingly ac-
curate values for sines, cosines, and p from a practical point of view. Opinions are 
divided as to whether accuracy up to ten or more decimal places was required for 
navigational purposes. Of course, it is always possible that a “delight in accurate cal-
culation” may have driven the Kerala mathematicians to attempt increasingly accurate 
approximations.



Chapter Eleven

Prelude to Modern Mathematics: 
The Islamic Contribution

Historical Background

The year AD 622 is a momentous one in world history. It was then that 
the Prophet Muhammad fled from Mecca and took refuge in Yathrib (now 
Medina) about 350 kilometers away. He had incurred the wrath of pilgrims 
who had come to worship at a shrine called the K’aba—a shrine then dedi-
cated to many gods. Muhammad’s preaching of a monotheistic faith, which 
he claimed had been directly revealed to him by the Archangel Gabriel, 
had aroused considerable hostility, contributing to his decision to flee his 
birthplace. Eight years later he returned at the head of an army, and two 
years after that he died. But he had already created a whirlwind that would 
eventually lead to the establishment of Islamic rule1 over areas stretching 
from North Africa in the south to the borders of France in the west, right 
across Persia and the central Asian plains to the borders of China in the 
east, and down to Sindh in northern India. Figure 11.1 shows the extent of 
the empire at its height, and the location of places referred to in the course 
of this chapter. Much of this vast territory was brought under Islamic rule 
in less than a hundred years.

Such a rapid expansion was possible for two reasons. First, there was 
something quite irresistible about the passion and egalitarian character of 
early Islam that fired the imagination and won the devotion of many who 
came across it for the first time. And second, in a number of areas through 
which the forces passed, local rulers were so unpopular with their sub-
jects that the conquering armies were welcomed as liberators. With the 
physical conquest completed, the government of this vast territory passed 
into the hands of khalifa (caliphs), who were the Prophet’s deputies and 
whose role included duties such as leading the army into battle or solving 
legal disputes. They belonged to one of two dynasties: the Umayyad and 
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the Abbasid. The Umayyads were the early rulers of the Eastern empire, 
with their capital at Damascus, but in the year 750 they were overthrown 
and power passed to the Abbasids. This was not the end of the Umayyad 
dynasty, though. Among the few who escaped was a young man of twenty 
named Abd al-Rahman, who reached Spain and reestablished Umayyad 
power there. For the next three centuries Spain was to be the center of Mus-
lim power in the West, with its political and intellectual capital at Cordoba.

The Abbasids differed from the Umayyads in one important respect. 
While both came from the Arabian Peninsula, the former were more cos-
mopolitan, welcoming new converts from many different ethnic groups. 
In 762 the second of the Abbasid caliphs, al-Mansur, moved his capital to 
Baghdad and began the process of building it into a new center of power. 
This ambitious program of construction was carried out during the caliph-
ates of Harun al-Rashid (786–809) and his son al-Ma’mun (809–833), and 
may have included an observatory, a library, and an institute for transla-
tion and research named Bait al-Hikma (House of Wisdom), which was 
to be the intellectual center of the Islamic world for the next two hundred 
years.2 Within its walls lived some of the greatest scientists of the period. 
It housed translators, busy rendering into Arabic scientific classics written 
in Sanskrit, Pahlavi (the classical language of Persia), Syriac, and Greek. 
These translations were often carried out under the patronage of the caliph 
himself, or notable families in Baghdad, and the classic texts were acquired 
in different ways, by scholars traveling to the Byzantium and other territo-
ries or by caliphs as part of peace negotiations. Early collections included 
Greek manuscripts from the Byzantium. Some accounts suggest that the 
caliphs were able to obtain translations of Mesopotamian astronomy by 
the Syriac schools based in Antioch and Damascus and even the remains 
of the Alexandrian library believed to be in the hands of the Nestorian 
Christians at Edessa.

It is a mistake, however, to overemphasize the role of Baghdad at the ex-
pense of earlier pre-Islamic centers of scientific learning. By doing so, two 
questions are left unresolved: why was there a greater willingness to ac-
cept Indian rather than Hellenistic astronomy and mathematics during the 
earlier period of Islamic rule? And why were so many of the early scholars 
in Baghdad from a region such as Khurasan, which is now in present-day 
Iran and Afghanistan?

The answers to these apparently rhetorical questions are simpler than 
one might think. The researchers’ interest focused at the beginning on 



The Islamic Contribution  453 

Sasanian astrology, which drew on Hellenistic as well as Sanskrit sources; 
the Iranian base of the Abbasids and their Iranian astrologers explain the 
preference for this kind of astrology and its astronomical aspects. Closely 
related to this interest was the translation of Sanskrit sources as far as they 
were done in Baghdad. Other translations were made in Sind and maybe 
Kashmir, which were all parts then of eastern Iran. The answer to the sec-
ond question is that the Abbasids recruited their power base in eastern 
Iran and many of their followers came with them to Iraq and settled there. 
Because of their Iranian military and ideological setup, people from other 
parts of Iran joined them.

Long before the Islamic conquest, there were scientific and translation 
centers in Syria as well as in Sasanian Iran. In astronomy, for example, 
the first translation of Ptolemy’s Almagest and its important commentary 
by Theon of Alexandria (c. AD 300) was from Greek into Syriac. Three 
important components of Persian astronomy were carried into the Islamic 
period:

1. � Syriac astronomy, inspired mainly by Hellenistic influences and no-
tably Ptolemy

2. � Pre-Sasanian astrology, dating back to the Babylonian astronomy of 
the Seleucid period and earlier

3. � Indian astronomy transmitted to central Asia, probably during the 
first and second centuries AD, when such regions as Parthia and 
Bactria, as well as northwestern India, were part of the great Kushan 
empire

Against this background was composed the first zij of Sasanian Iran. 
The word zij, probably a distortion of the Pahlavi word zeh (bowstring), 
came later to be applied to Islamic works on calendar construction and 
tables of movement of the sun, moon, and planets, as well as trigonometric 
and geographical tables.3

It is possible to distinguish three main influences that went into the cre-
ation of medieval Islamic mathematics. The first was Greek mathematics, 
and notably the geometrical works of Euclid, Apollonius, and Archimedes, 
followed chronologically by the work of Diophantus with his solutions of 
indeterminate equations and concluding with Heron, who wrote on prac-
tical mathematics, and Pappus, whose best-known work, Synagoge, is a 
compendium of mathematics of which eight volumes survive. The second 
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influence was that of the Indians, with their ingenious arithmetical calcula-
tions based on a numeral system consisting of nine symbols and a dot for 
zero. The Indians also contributed ideas on algebraic notations and solu-
tions, an early trigonometry of sines and cosines that extended the work of 
Ptolemy, and finally methods of solid geometry useful in solving problems 
in astronomy.4 The third influence, often ignored in historical discussion, 
is the mathematics of practitioners such as surveyors, architects, builders, 
merchants, and government officials. Their mathematics often formed a 
part of an oral tradition that transcended ethnic and linguistic divisions 
and constituted the common heritage of the Islamic world and beyond. By 
the very nature of oral transmission, it is difficult to trace the origins and 
impact of such traditions on the mathematical culture of the day.

Thus the scientific culture that developed in Baghdad arose from an in-
teraction of these different traditions. By far the greatest contribution of 
the Islamic culture, as we shall see, was to continue this creative synthesis. 
This the scholars pursued with an openness of mind and a clearer under-
standing than had been shown by any of the earlier scientific cultures of 
the need to balance empiricism and theory in mathematics and other sci-
ences. The process of synthesis was aided by the creative tension between 
two main traditions of astronomy and mathematics represented in Bagh-
dad, even from the early years of Islamic rule. One tradition was derived 
directly from Indian and Iranian sources and is best exemplified in the 
astronomical tables and the algebraic approach to mathematics. One of 
the greatest exponents of this tradition, who left an indelible mark on the 
subsequent development of Islamic mathematics, was al-Khwarizmi. To 
him mathematics had to be useful and help with practical concerns such as 
determining inheritances, constructing calendars, or informing religious 
observances. The other tradition looked to Hellenistic mathematics, with 
its strong emphasis on geometry and deductive methods. A well-known 
proponent of this school was Thabit ibn Qurra, who was both an outstand-
ing translator of Greek texts and an original contributor to geometry and 
algebra. That the two traditions eventually merged is evident in the work of 
later Islamic mathematicians such as Omar Khayyam and al-Kashi. 

Our knowledge of medieval Islamic mathematics is mainly from docu-
ments recorded with pen and paper in the Arabic language. Chinese pris-
oners taken at the battle of Atlakh in AD 751 had shown their captors how 
to manufacture paper, and this technology had spread rapidly through-
out the Islamic world. Extant collections of these documents are found 
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not only in those countries which formed part of the medieval Islamic 
world but also in countries of Europe that had at some time exerted co-
lonial domination. The manuscripts contain not only prose compositions 
but also a large number of tables of numbers, often computed for astro-
nomical purposes and illustrating certain mathematical procedures. Apart 
from this documentary evidence, artifacts in the form of mathematical or 
astronomical instruments have increasingly become important sources of 
evidence of medieval Islamic mathematics. 

We shall now proceed to examine the contributions of medieval Islamic 
mathematicians in three areas in which the results of their creativity and 
synthesis are most apparent: the introduction and popularization of our 
present-day numerals, the bringing together of the geometric and algebraic 
approaches to the solution of equations, and the first systematic treatment 
of trigonometry. First, though, let us look at the lives and achievements of 
the mathematicians themselves.

Major Medieval Islamic Mathematicians

Muhammad ibn Musa al-Khwarizmi (c. 780−850)
Abu Jafar Muhammad ibn Musa al-Khwarizmi (to give him his full name, 
which means Muhammad, the father of Jafar and the son of Musa, from 
Khwarizm) was born in about 780. The name “al-Khwarizmi” suggests that 
either he or his family came from Khwarizm, east of the Caspian Sea in 
present-day Uzbekistan. Little is known of his early life. There is a refer-
ence to al-Khwarizmi as “al-Majusi” in a book titled History of Envoys and 
Kings by al-Tabari, an Islamic historian who lived between the ninth and 
tenth centuries. Now, a Zoroastrian was sometimes referred to as a magos 
(i.e., belonging to the Magi, a Median tribe). From that word is derived 
our words “magi” and “magician.” There is, therefore, the view that al-
Khwarizmi may have been of Zoroastrian descent and acquired his early 
knowledge of Indian mathematics and astronomy from Zoroastrian clergy, 
some of whom were reputed to be well acquainted with these subjects. 
However, there is some uncertainty about his origins. For example, there is 
a report by the historian Tabari that al-Khwarizmi came from a town not 
far from Baghdad.

In about 820, he was invited by Caliph al-Ma’mun to move to Bagh-
dad, where he was appointed first astronomer and then head of the library 
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at the House of Wisdom. He continued to serve other caliphs, includ-
ing al-Wathiq during his short rule from 842 to 847. There is a story, 
told by the historian al-Tabari, that when al-Wathiq lay seriously ill, he 
asked al-Khwarizmi to cast his horoscope and find out whether he would 
live. Al-Khwarizmi assured the caliph that he would live another fifty 
years, but al-Wathiq died within ten days. Whether this story illustrates 
al-Khwarizmi’s highly developed sense of survival or his ineptness as a 
fortune-teller, it is difficult to say. We know little else of his later life except 
that he probably died before 850.

However, we do have information on his scientific work. A bibliog-
rapher, Ibn al-Nadim, lists four astronomical works: the Zij al-Sindhind 
(an astronomical handbook according to the Sindhind), a treatise on the 
sundial, and two works on the astrolabe. Of these, the first is no longer 
extant in Arabic but available in Latin translation; the second seems to be 
extant, as are fragments of a work on the astrolabe. Of his mathematical 
works, the two most influential were Hisab al-jabr w’al-muqabala (Calcu-
lation by Restoration and Reduction), and Algorithmi de numero indorum 
(Calculation with Indian Numerals). The original Arabic version of the 
latter no longer exists, and so we have it only in Latin translation. The first, 
hereafter known as the Algebra, was the starting point for Islamic work in 
algebra, and indeed gave the subject its name. It is an interesting blend of 
a variety of mathematical traditions including the Mesopotamian, Indian, 
and Greek.5 The second book, which we shall call the Arithmetic, served to 
introduce the decimal positional number system developed in India a few 
hundred years earlier. It was also the first book on arithmetic to be trans-
lated into Latin, and gave currency to the word “algorithm,” derived from 
the name of the author and frequently used today to denote any systematic 
procedure for calculation.6

Al-Khwarizmi also constructed a zij (i.e., a set of astronomical tables) 
that was to remain influential in astronomy for the next five centuries.7 The 
antecedents of this zij are interesting, for they are indicative of the shad-
owy path through which Indian mathematics and astronomy entered the 
Islamic world. The first Arabic translations of Indian astronomical texts 
were made in the later Umayyad and early Abbasid caliphates in Sind and 
Kashmir, although little is known about the impact of these translations. 
A historian, al-Qifti (c. 1270), reported that in the year AH 156 (or AD 
773)8 a man well versed in astronomy, by the name of Kanaka (or pos-
sibly Ganaka, meaning an astrologer or a calculator) came to Baghdad as 
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a member of a diplomatic mission from Sind, in northern India. It is pos-
sible that he brought with him Indian astronomical texts, including Surya 
Siddhanta and the works of Brahmagupta. Caliph al-Mansur ordered that 
some of these texts be translated into Arabic and, according to the prin-
ciples given in them, that a handbook be constructed for use by the court 
astronomers. The task was delegated to al-Fazari, who produced a text that 
came to be known by later astronomers as the Great Sindhind.9 The word 
sindhind is derived from the Sanskrit word siddhanta, meaning a “doctrine 
or teaching.” It was mainly on the basis of such texts, as well as some other 
elements from Babylonian and Ptolemaic astronomy, that al-Khwarizmi 
constructed his zij. Unfortunately, the original Arabic text is no longer ex-
tant. But a Latin translation, made in 1126 from an edited version pro-
duced by Maslama al-Majriti (a Spanish astronomer who lived in Cordoba 
in about the year 1000), became one of the most influential astronomical 
texts in medieval Europe and elsewhere.10

Finally, there is al-Khwarizmi’s geographical work, in particular his 
contribution to cartography. He was believed to have been a member of a 
team that was given the following tasks by Caliph al-Ma’mun:11

1. � To measure the length of one degree of longitude at the latitude of 
Baghdad (the result obtained was quite accurate, at 91 kilometers in 
modern measurement)

2. � To use astronomical observations to find the latitude and longitude 
of 1,200 important places on the earth’s surface, including cities, 
lakes, and rivers

3. � To collate the personal observations of travelers on the physical fea-
tures of different areas of the caliphate and traveling times between 
them.

Al-Khwarizmi incorporated some of these in his book The Image of the 
Earth, which contains substantial parts of Ptolemy’s Geography with many 
non-Ptolemaic coordinates and place-names. He corrected Ptolemy’s over-
estimate of the length of the Mediterranean Sea by the simple device of 
moving the prime meridian by ten degrees, and provided detailed and ac-
curate descriptions of the geography of Asia and Africa.12

In other fields, al-Khwarizmi wrote a history of the Islamic caliphates 
that contained horoscopes of prominent persons. A number of minor 
works on topics such as the astrolabe, the sundial, and the Jewish calendar 
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showed his versatility.13 His mathematical texts are still recommended 
reading in some Islamic countries, not for their mathematical content but 
for their legal acumen. His book on algebra contains an analysis of prop-
erty relations, the distribution of inheritance according to Islamic law, and 
rules for drawing up wills. He was but the first of a succession of remark-
able scientists who contributed to some of the most significant scientific 
discoveries of all time. These included Thabit ibn Qurra (836–901), al-Razi 
(c. 865–901), Ibn al-Haytham (c. 965–1039), al-Biruni (973−1051), Ibn 
Sina (980−1037), Umar al-Khayyami or Omar Khayyam (c. 1048−1126), 
al-Tusi (1201−1274), and al-Kashi (d. 1429), some of whom are better 
known in the West by their Latin names. Let us look very briefly at one of 
these who was not primarily a mathematician but whose contributions to 
mathematics will be noted in later sections.

Ibn al-Haytham, known in Latin as Alhazen, wrote more than two hun-
dred books on mathematics, physics, astronomy, and medicine, and com-
mentaries on Aristotle and Galen. But his major work was in optics. It 
included an early account of refraction, the mathematics of finding the 
focal point of a concave mirror, and a refutation of the theory put forward 
by both Euclid and Ptolemy that human vision works by the eye sending 
out rays to the object observed. Ibn al-Haytham’s work had a significant 
impact on Roger Bacon and Johannes Kepler.

Thabit ibn Qurra (c. 836–901)
Hasan Thabit ibn Qurra Marwan al-Harrani was born in Harran in al-
Jazira (northern Mesopotamia), probably in 836, and died in 901. Little is 
known of his early life except that when he reached adulthood he became a 
money changer. Thabit belonged to a religious sect that was believed to be 
descended from Babylonian star worshippers and that produced eminent 
scholars in both astronomy and mathematics. Members of the sect called 
themselves Sabeans (after a Chaldean sect that was later designated as “the 
People of the Book”) to avoid being persecuted as polytheists. Either his 
unorthodox religious beliefs or a quarrel with his community led him to 
leave Harran and head for Baghdad. He had been befriended by a mem-
ber of a wealthy and influential Baghdad family, the Banu Musa (Sons of 
Musa), who invited him to come to Baghdad, where he joined a circle of 
scholars and translators. Thabit’s command of languages, namely Arabic, 
Greek, and Syriac, soon established him as one of the foremost transla-
tors in Baghdad. His translations (as well as corrections of translations by 
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Hunayun ibn Ishaq) included Greek mathematical texts such as Euclid’s 
Elements, several works by Archimedes, parts of Apollonius’s Conics, and 
Ptolemy’s Almagest. They were in turn rendered into Latin by Gherardo of 
Cremona and Adelard of Bath in the twelfth century, in which form they 
were to have a momentous impact on medieval Europe.

Thabit’s passion for translation led him to set up a school for translators 
in Baghdad, the members of which included the son of his distinguished 
collaborator, Hunayun ibn Ishaq, and some of the greatest translators of 
the day. Two of his grandsons who were physicians followed the family tra-
dition and became mathematicians in their own right. Ibrahim ibn Sinan 
ibn Thabit ibn Qurra’s commentary extending Archimedes’ work on the 
quadrature14 of the parabola has been described as one of the most in-
novative approaches known before the emergence of the novel technique 
of integral calculus. Whether it was the range of translations that he un-
dertook or the unusual breadth of mind possessed by the scholars of the 
period, Thabit himself became highly competent in a number of subjects 
that included—apart from mathematics—medicine, astronomy, philoso-
phy, theology, and meteorology. However, it is for his work in mathematics 
that he is best remembered.

His notable contributions in mathematics included the rule for discov-
ering pairs of “amicable numbers” (discussed in a later section); a “dis-
section” proof of the Pythagorean theorem, strangely reminiscent (no 
“connection” intended!) of the Chinese approach, which we discussed ear-
lier; work on spherical trigonometry; an attempt to prove Euclid’s parallel 
postulate;15 and his work on conic sections and mensuration of parabolas 
and paraboloids, which some look upon as providing the essential link be-
tween Archimedes and later European mathematicians such as Cavalieri, 
Kepler, and Wallis. As a geometer he had few equals in the Islamic world, 
and it is clear from the above list that his algebraic strength was also con-
siderable. Clearly, we shall not be able to explore all the contributions of 
this remarkable polymath, but we shall consider briefly some of his geo-
metric work and his rule for generating amicable numbers.

Omar Khayyam (c. 1040–1123)
The Ruba’iyat of Omar Khayyam, a number of quatrains (verses of four 
lines) freely translated into English by Edward Fitzgerald in the middle 
of the nineteenth century, is one of the best-known and most translated 
books in world literature. But what is not widely known outside the Islamic 
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world is that the poet was also a distinguished mathematician, astronomer, 
and philosopher.

Abul-Fath Umar ibn Ibrahim al-Khayyami was born in about 1040 at 
Nishapur in Khurasan, now part of Iran and Afghanistan. This region had 
already produced two distinguished figures—Firdausi (c. 940–1020), a 
poet, and ibn Sina. It is quite possible that these two men in different ways 
had a considerable influence on the young Omar. The name al-Khayyam 
would indicate that either Omar or his family were tent makers. Little else 
is known about his childhood or his youth.

In 1070, he wrote his great work on algebra. In it he classified equations 
according to their degree and gave rules for solving quadratic equations, 
which are very similar to the ones given by his predecessors. The true im-
portance of his algebra lies in his geometric theory of cubic equations. (We 
shall be looking at Omar’s solution of cubic equations in a later section.) 
He also wrote on the triangular array of binomial coefficients known as 
Pascal’s triangle.

In 1074, Omar was appointed by Sultan Malik Shah as one of the eight 
learned men involved with the task of revising astronomical tables and 
reforming the calendar. They produced a new calendar, according to which 
eight out of every thirty-three years were made into leap years. This treat-
ment produces a more accurate measure of a solar year than does our Gre-
gorian calendar year.16

Three years later, Omar wrote Sharh ma ashkala min musadarat kitab 
Uqlidis (Explanations of the Difficulties in the Postulates of Euclid). An 
important section of this book is concerned with Euclid’s famous parallel 
postulate, which had also attracted the interest of Thabit ibn Qurra. Al-
Haytham too had attempted a demonstration of the postulate; Omar’s at-
tempt was also unsuccesful, although it marked a distinct advance on his 
predecessors.17

Omar Khayyam died in Nishapur in 1123. Unlike the image of him we 
may get from the Rubai’yat, of a hedonist who lived only for the present, he 
was a scholar, a poet, a Sufi, and a gnostic. He was that rare combination—
an outstanding poet and a mathematician.

Jamshid al-Kashi (b. unknown–1429)
Ghiyath al-Din Jamshid al-Kashi was born at Kashan, a town in Iran not 
far from Isfahan, in the latter half of the fourteenth century. A short pe-
riod of turmoil had followed the Mongol invasion under Hulegu Khan, 
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grandson of Genghis Khan. The caliphate at Baghdad was destroyed in 
1258, and a century later a new empire was created under Timur (also 
known as Tamburlaine or Timur the Lame). But mathematical activities 
continued throughout this period, probably because of the patronage of-
fered by Hulegu Khan to astronomers of the caliber of al-Tusi, and by 
Ulugh Beg, grandson of Timur, to a later group that included al-Kashi.18

Little is known of al-Kashi’s life until 1406, when he began a series of 
observations of lunar eclipses from his birthplace, Kashan. At Samarkand, 
Ulugh Beg had established an observatory and a madrassa (a school of ad-
vanced study in science or theology), and it is probable that al-Kashi was 
invited to join a group of scientists there. We know that in 1414 he revised 
a set of astronomical tables produced by al-Tusi and dedicated it to Ulugh 
Beg, who was a knowledgeable astronomer himself. Samarkand under the 
rule of Ulugh Beg had become an intellectual center where, as al-Kashi 
observed in a letter to his father, “the learned are gathered together, and 
teachers who hold classes in all the sciences are at hand, and the students 
are all at work on the art of mathematics.”

AI-Kashi’s strength lay in prodigious calculations. His approximation 
for p, correct to sixteen decimal places, was obtained by circumscribing 
a circle by a polygon having 3 # 228 (805,306,368) sides. His best-known 
work, Miftah al-hisab (The Key of Arithmetic), completed in 1427, pro-
vides us with a compendium of the best of Islamic arithmetic and algebra. 
Its contents include the first systematic exposition of decimal fractions; 
a method of extracting the nth root of a number, similar to the so-called 
Horner’s method and thus probably derived from the Chinese; and the 
solution of a cubic equation to obtain a value for the sine of one degree. 
On al-Kashi’s death in 1429, Ulugh Beg praised the mathematician’s 
achievements, in the preface to his own zij, calling him “the admirable 
mullah known among the famous of the world, who had mastered and 
completed the science of the ancients, and who could solve the most dif-
ficult problems.”

Medieval Islam’s Role in the Rise and Spread of  
Indian Numerals

In chapter 8 we saw how the Indian numerals evolved and spread to South-
east Asia; we now take up the story of their spread westward. The Islamic 
world contained the leading actors in this drama. The first evidence of the 
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westward migration of Indian numerals is found in the following (rather 
aggrieved) passage from the fragments of a book in Syriac. It was written 
in 662 by a Nestorian bishop, Severus Sebokht, who came from Keneshra 
in the upper reaches of the Euphrates. He had written previously on both 
geography and astronomy, and hurt by the arrogance of some Greek (or 
Byzantine) scholars who looked down on his people, he wrote:

I will omit all discussion of the science of the Indians, a people not the 
same as the Syrians; of their subtle discoveries in astronomy, discoveries 
that are more ingenious than those of the Greeks and the Babylonians; 
and of their valuable methods of calculation which surpass description. 
I wish only to say that this computation is done by means of nine signs. 
If those who believe, because they speak Greek, that they have arrived at 
the limits of science, [would read the earlier texts], they would perhaps 
be convinced, even if a little late in the day, that there are others also 
who know something of value.

This supports the view that, even before the beginning of Islamic rule, 
knowledge of Indian numerals had spread westward, probably as a result 
of widespread interest in Indian astronomy. Christian sects, particularly 
the Nestorian and Syrian Orthodox denominations, needed to calculate 
an accurate date for Easter, and various astronomical texts were examined 
with this problem in mind. (It was a problem that continued to occupy 
mathematicians, including Gauss, down to the nineteenth century.) There 
is also the possibility, given the thriving commercial relations between Al-
exandria and India, that the Indian numeral system had reached the shores 
of Egypt as early as the fifth century AD. It would have been regarded as 
a useful commercial device rather than a system that might become more 
widely used or accepted; it would not have been adopted for scientific and 
astronomical calculations by Alexandrian scientists, who used the Meso-
potamian sexagesimal system.

After the Islamic conquest, Indian numerals probably arrived at Bagh-
dad in 773 with the diplomatic mission from Sind to the court of al-
Mansur. Around 825, al-Khwarizmi wrote his famous Book of Addition 
and Subtraction according to the Indian Calculation, the first text to deal 
with the new numerals. As mentioned earlier, although the original Arabic 
text is now lost, it gave rise to a whole genre of works in Arabic, Latin, and 
Greek. Europe came to know it only through several partial Latin transla-
tions undertaken five hundred years later by John of Seville and Robert of 
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Chester. The text contained a detailed exposition of both the representa-
tion of numbers and operations using Indian numerals. Al-Khwarizmi was 
at pains to point out the usefulness of a place-value system incorporating 
zero, particularly for writing large numbers. 

The earliest extant texts to examine arithmetical operations with Indian 
numerals are Abul Hassan al-Uqlidisi’s Kitab al-fusul fil-hisab al-Hindi 
(The Book of Chapters on Indian Arithmetic, 952) and Kushyar ibn Lab-
ban’s Usul hisab al-Hind (Principles of Indian Reckoning, c. 1010). Op-
erations are given in both the Indian decimal place-value system and the 
Babylonian sexagesimal system. Al-Uqlidisi’s book is particularly notable 
for the first use of decimal fractions in computing with the new numerals; 
Ibn Labban introduces “Indian” reckoning as part of a general discussion 
of Indian methods used in astronomical calculations. Ibn Labban’s work 
became an influential arithmetic textbook in the Islamic world. Some as-
pects of both works will be highlighted in the next section.

Other references to Indian numerals are found in works by later writ-
ers. The opinions of the tenth-century polymath Abu Rayhan al-Biruni are 
particularly valuable since he lived in India and knew Sanskrit. Two of his 
books, Risalah (Book of Numbers) and Rasum al-Hind (Indian Arithme-
tic) contain an assessment of Indian numeration as well as some correc-
tions to earlier works on the subject.

A minor incident from the autobiography of Ibn Sina (c. 980–1037) 
shows us how the use of the Indian numerals was spreading. When he was 
about ten years old a group of missionaries belonging to a small Islamic 
sect came to Bukhara from Egypt, and it was from these people that Ibn 
Sina learned “Indian arithmetic.” There is also a story of the young Ibn Sina 
being taught “Indian calculation” and algebra by a vegetable vendor. What 
these stories illustrate is that by the beginning of the eleventh century In-
dian numeration was being used from the borders of central Asia to the 
southern reaches of the Islamic empire in North Africa and Egypt—and 
not just by scholars.

In the transmission of Indian numerals to Europe, as with almost all 
knowledge obtained from the Islamic world, Spain and (to a lesser extent) 
Sicily played the role of intermediaries, being the two areas in Europe that 
had been under Islamic rule for many years. (This was one of the impor-
tant aspects emphasized in our examination of the spread of mathemati-
cal knowledge in chapter 1.) So it is not surprising to find that the oldest 
record of Indian numeration in Europe, dating from the year 976, is found 
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in a monastery in northern Spain. This manuscript, known as the Codex 
Vigilanus, is now kept in a museum in Madrid. The relevant passage reads:

So with computing symbols. We must realize that the Indians had the 
most penetrating intellect, and other nations were way behind them in 
the art of computing, in geometry, and in other free [? probably mean-
ing natural] sciences. And this is evident from the nine symbols with 
which they represented every rank of number at every level.

There follows a set of symbols, now known as the West Arabic or Ghubar 
(Gobar) numerals, from which our present numerals derive. The shapes of 
these numerals are shown in figure 11.2, which outlines the evolution of 
our numerals from some of the earlier forms. The Indian numerals from 
which the two main forms of Arabic numerals (East and West) were de-
rived quite likely resembled those found in the Gwalior inscription of 876, 
which we discussed in chapter 8. The western version of the Arabic nu-
merals that stemmed from Indian figures were called Ghubar numerals—
presumably because, as the word Ghubar suggests, these symbols were 
written on a sand board containing dust, a practice that was popular in 
India. The Ghubar numerals were widely used in the western part of the 
Islamic empire, including Spain and Sicily; indeed, they are still found in 
parts of North Africa. The eastern Arabic numerals may have come to the 
Islamic world by a more indirect route that included Persia. In the early 
years the differences between the two types of Arabic numerals were slight, 
but they grew with the passage of time. A striking feature of the evolution 
of Indian numerals from the Gwalior script to the present form, as shown 
in figure 11.2, is how little they have changed on passing through one cul-
ture after another. In several instances what changed was the orientation of 
a symbol, not its form.

The oldest date to appear in the new numerals in Europe is on a Sicil-
ian coin from the reign of the Norman king Roger II. On it the year is ex-
pressed as AH 533 (AD 1138). The use of the Muslim date is not surprising, 
since Roger II encouraged the pursuit of Islamic learning in his kingdom. 

We now come to a landmark in the spread of Indian numerals: the ap-
pearance of one of the most influential mathematical texts in medieval 
Europe, the Liber Abaci (Book of the Abacus) by Fibonacci (1170–1250). 
The young Fibonacci grew up in North Africa, where his father was in 
charge of a customshouse. He was first introduced to Indian numerals by 
his Islamic teachers there. As a young man, he traveled extensively around 
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the Mediterranean, visiting Egypt, Syria, Greece, Sicily, and southern 
France, observing the various computational systems used by merchants, 
particularly in the Islamic world. He quickly recognized the enormous 
advantage of the Indian system, and introduced the new numerals with 
the following words:

The nine Indian numerals are 9, 8, 7, 6, 5, 4, 3, 2, 1. With these nine and 
0, which in Arabic is called sifr, any desired number can be written.

It was mainly through this work that the Indian numerals came to be 
widely known in Christian Europe. For a long time they were used along-
side the Roman numerals. The change from the latter to the former was a 
slow process with a number of false starts, primarily because the abacus 
remained popular for carrying out calculations, and traders and others en-
gaged in commercial activities were reluctant to adopt a new system that 
was difficult to comprehend. At times there were diktats from above to dis-
courage the use of the new numerals. In 1299, for example, the city of Flor-
ence passed an ordinance prohibiting the use of the new numerals since 
they were more easily altered (e.g., by changing 0 to 6 or 9) than Roman 
numerals or numbers written out in words. As late as the end of the fif-
teenth century, the mayor of Frankfurt ordered his officials to refrain from 
calculating with Indian numerals. And even after the decimal numeral sys-
tem was well established, Charles XII of Sweden (1682–1718) tried in vain 
to ban the decimal system and replace it with a base 64 system for which he 
devised sixty-four symbols! But these were all temporary setbacks. Once 
the contest between the “abacists” (those in favor of the use of the abacus or 
some mechanical device for calculation) and the “algorists” (those who fa-
vored the use of the new numerals) had been won by the latter, it was only a 
matter of time before the final triumph of the new numerals, with bankers, 
traders, and merchants adopting the system for their daily calculations.

Arithmetic in the Islamic World

Arithmetical Operations
The first systematic treatment of arithmetical operations is found in al-
Khwarizmi’s Arithmetic, in which he discusses the place-value system and 
rules for performing the four arithmetical operations. In later works, nota-
bly those of Ibn Labban and al-Uqlidisi referred to in the previous section, 
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there are computational schemes for carrying out operations, such as long 
multiplication, which were reproduced in medieval Latin texts. Al-Kashi’s 
Key of Arithmetic presents a comprehensive treatment of arithmetical meth-
ods, including operations with decimal fractions (to be discussed later).

We have not the space here to examine in any detail how the mathema-
ticians of the Islamic world carried out the basic operations; in any case, 
their pratices were not very different from ours. However, we shall look at 
a method they popularized for long multiplication known as the “sieve” or 
“lattice” method, which is of historical significance. Ibn Labban discusses 
the method, probably of Indian origin, in his Principles of Indian Reckoning. 
Traces of the method are found later in the “grating” methods explained in 
the Treviso Arithmetic of 1478, in the mechanical device known as “Napi-
er’s rods” or “Napier’s bones” after its inventor, John Napier (1550–1617) of 
Scotland, and the nineteenth-century Japanese Sokuchi method.19 Even to-
day the “lattice” provides a useful diversion in learning long multiplication.

Figure 11.3 shows how the lattice method is used to multiply 1,958 by 
546. The numbers to be multiplied are entered as shown. The number of 
paths from (a) to (g) is 7, the sum of the digits in the two numbers to be 
multiplied. The product to be entered in each cell is obtained by multiply-
ing the numbers of the row and column in which it lies and arranging the 

Figure 11.3: Multiplication by the “lattice” method
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result with the “units” digit below and the “tens” digit above the cell’s di-
agonal. For example, in the top right-hand cell of the square is entered 40, 
the product of 8 and 5, arranged so that 4 is above the diagonal and 0 below 
it. After all the cells have been filled, additions are made along the diagonal 
paths from (a) to (g), starting at (a) and continuing to (g), carrying over 
if necessary, and the results written at the bottom. For example, summing 
the numbers in path (c) gives 0 + 3 + 0 + 3 + 4 = 10, so 0 is written at 
the bottom and 1 carried over to (d). The answer appears at the bottom of 
figure 11.3 as 1,069,068.

The reader is invited to multiply 1,990 by 365 using this method.

Decimal Fractions
In previous chapters we have seen the versatility of the Babylonian sex-
agesimal system for representing fractions, and the Chinese facility in 
manipulating fractions using their rod numerals. However, neither the 
Mesopotamians nor the Chinese had a device or symbol for separating in-
tegers from fractions. The credit for such a symbol must go to our Islamic 
precursors.

Decimal fractions make their first appearance in Islamic mathematics 
in The Book of Chapters on Indian Arithmetic, written in Damascus in the 
year 952 or 953 by Abul Hassan al-Uqlidisi. We know little about the au-
thor, except that he probably made a living by copying the works of Euclid 
(hence the “Uqlidisi”). It is not clear whether it was he or some previous 
scholar who was responsible for the discovery of decimal fractions, since 
he does state at the beginning of his text that he attempted to incorporate 
in it the best methods from the past. Al-Uqlidisi’s book is in four parts, the 
first two of which deal with computational methods using Indian numer-
als. It is in the second part that decimal fractions appear for the first time. 
He considers the problem of successively halving 19 five times, and gives 
the answer as 059375

1
, the vertical mark on 0 indicating that the decimal-

fraction part of the number starts with the digit to the right. This notation 
is general, so that our 0.059375 would be denoted by 0059375

1
.

There is evidence that al-Uqlidisi was aware of the method of multi-
plying decimal fractions by whole numbers. However, it is not until two 
centuries later that we find al-Samawal (1172) at ease with decimal frac-
tions in problems of division and root extraction. In the fifteenth century, 
al-Kashi provided a comprehensive and systematic treatment of arithmetic 
operations with fractions. Devices for separating integers from fractions 
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now included not only the vertical mark placed on the last digit of the 
integer part but also the use of different colors, or a numerical superscript 
giving the number of decimal places specified: thus 36

2
 would indicate the 

decimal fraction 0.36. Al-Kashi’s multiplication procedure is identical to 
the one we use today.

During the fifteenth century this method of representing decimal frac-
tions came to be known outside the Islamic world as the Turkish method, 
after a Turkish colleague of al-Kashi known as Ali Qushji, who provided 
an explanation. Knowledge of the method then spread to Vienna, where 
in 1562 it appeared in a collection of Byzantine problems. It is quite likely 
that the Dutch mathematician Simon Stevin (1548–1620), who is often 
credited with the first systematic exposition of decimal fractions, may have 
learned of the so-called Turkish method from this Byzantine text or a simi-
lar source. In place of the short vertical line over the last digit of the integer 
part of the number, which was the original notation of al-Uqlidisi, Stevin 
used a cipher, so that the number 6.8145 would be represented as 68145

0
. 

To his contemporary John Napier we owe the present convention of using 
a decimal point to separate integer and fractional parts.

Another contribution of al-Uqlidisi’s was to adapt the Indian sand 
board techniques of computation to methods suitable for pen and paper. 
It was a common practice to perform arithmetical calculations by writing 
number symbols in sand or dust, rubbing out intermediate steps as one 
proceeded. Al-Uqlidisi had strong reservations about this procedure, not 
for any shortcomings in the method itself but because dust-board calcula-
tions were carried out by street astrologers and other “good-for-nothings” 
to earn their livelihood! He suggested the use of pen and paper so as not 
to be associated with such company. Indeed, the “pen and paper methods” 
for carrying out multiplication and division that found their way into me-
dieval Latin works owe more to al-Uqlidisi than to al-Khwarizmi.

Mathematics in the Service of Islamic Law: Problems  
of Inheritance 
The second half of al-Khwarizmi’s Algebra contains a series of problems 
about the Islamic law of inheritance. These laws are fairly straightforward 
in that when a woman dies her husband receives one-quarter of her estate, 
and the rest is divided among the children such that a son receives twice as 
much as a daughter. However, if a legacy is left to a stranger, the division 
gets more complicated. The law on legacies states that a stranger cannot 
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receive more than one-third of the estate without the permission of the 
natural heirs. If some of the natural heirs endorse such a legacy but others 
do not, those who do must between them pay pro rata, out of their own 
shares, the amount by which the stranger’s legacy exceeds one-third of the 
estate. In any case, the legacy to the stranger has to be paid before the rest 
is shared out among the natural heirs. Clearly, it is possible to construct 
problems of varying degrees of complexity that illustrate different aspects 
of the law. Here are two simple examples considered by al-Khwarizmi:

Example 11.1  A woman dies leaving a husband, a son, and three 
daughters. She leaves a bequest consisting of 1/8 + 1/7 of her estate 
to a stranger. Calculate the shares of her estate that go to each of her 
beneficiaries.

Solution

The stranger receives 1/8 + 1/7 = 15/56 of the estate, leaving 41/56 
to be shared out among the family. The husband receives one-quarter 
of what remains, that is, 1/4 of 41/56 = 41/224. The son and the three 
daughters receive their shares in the ratio 2:1:1:1; that is, the son’s share 
is two-fifths of the estate after the stranger and the husband have been 
given their bequests. So, if the estate is divided into 5 # 224 = 1,120 
equal parts, the shares received by each beneficiary will be

Stranger: 	 15/56 of 1,120 or 300 parts

Husband: 	 41/224 of 1,120 or 205 parts

Son:	 2/5 of (1,120 − 505) or 246 parts

Each daughter:	 1/5 of (1,120 − 505) or 123 parts

Example 11.2  A man dies, leaving his mother, his wife, and two broth-
ers and two sisters by the same father and mother as himself. He (also) 
bequeaths to a stranger one-ninth of his estate. Calculate the shares go-
ing to each of the beneficiaries.

The original text reads as follows:

Calculation 

You work out their shares by taking them out of forty-eight parts. 
You know that if you take one-ninth from the capital, eight-ninths

Continued . . . 
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Continued . . . 

will remain. Add now to the eight-ninths one-eighth of the same and 
to the forty-eight also one-eighth of them, namely, six, in order to 
complete your capital. This gives fifty-four. The person to whom one-
ninth is bequeathed receives six out of this, being one-ninth of the 
whole capital. The remaining forty-eight will be distributed among 
the heirs, proportionally to their legal share. 

The reader may wish to work this out in terms of modern mathematics.

It is important, however, not to exaggerate the role of mathematics in 
the service of Islam. Undoubtedly, religious requirements such as imple-
menting the law of inheritance, determining the direction of Mecca for 
daily prayer, or identifying the beginning and end of the period of fasting 
(Ramadan) gave a special impetus to the development of certain areas of 
mathematics. But there is a limit to the usefulness of mathematics for such 
purposes, and to the stimulus that such activities provided for the further 
development of mathematics.

The Theory of Numbers
In the theory of numbers, as in other fields, the mathematicians of the Is-
lamic world managed to produce a creative synthesis of the ideas they ob-
tained from different traditions—notably India and the Hellenistic world. 
This is best exemplified in the work of Ibn Sina (or Avicenna, as he came to 
be known in Europe). Although he is widely known for his Canon of Medi‑
cine, a standard text used for centuries in medieval Europe, his mathemati-
cal work is little appreciated outside the Islamic world. His Kitab al-Shifa 
(Book of Healing) contains sections on arithmetic. They begin with a dis-
cussion, based on Greek and Indian sources, of different types of number 
(e.g., odd, even, deficient, perfect, and abundant numbers20) and an expla-
nation of different arithmetical operations, including the rule for “casting 
out nines.”21 He then proceeds to state the two rules of summation. The first 
is for summing a square array of odd numbers:

If successive odd numbers are placed in a square table, the sum of the 
numbers lying on the diagonal will be equal to the cube of the side; the 
sum of the numbers filling the square will be the fourth power of the 
side. (Al-Daffa and Stroyls 1984, pp. 77–78)
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Ibn Sina illustrates this rule by the square shown in figure 11.4. The 
diagonals of the square add up to

9 17 25 33 41 125 1 13 25 37 49,+ + + + = = + + + +

which is equal to the cube of the “side,” 53. The total sum of the numbers of 
the square is 625 = 54, the fourth power of the “side.” There is the clear im-
plication here that Ibn Sina knew that the sum of successive odd numbers 
starting with 1 is equal to the square of the number of odd numbers being 
added. For example, 1 + 3 + 5 + 7 + 9 + 11 = 36, which is the square of 
6, the number of odd numbers added. 

The second rule is for summing a triangular array of odd numbers:

If successive odd numbers are placed in a triangle, the sum of the num-
bers taken from one row equals the cube of the [row] number. (Al-Daffa 
and Stroyls 1984, p. 78)

Such a triangular array of odd numbers from 1 to 30 is shown in figure 
11.5. It is easily seen that the sum of the numbers in, say, the third row is 
27, the cube of the row number.

Figurate numbers were studied by several Islamic mathematicians, 
particularly those who favored a geometric rather than an algorithmic ap-
proach to numbers; al-Khwarizmi represented the latter, Thabit ibn Qurra 
the former approach. Thabit was one of the first Islamic mathematicians 
to recognize the value of a geometric interpretation of an algebraic prob-
lem. However, his most notable contribution to the theory of numbers 

9 7 5 3 1

19 17 15 13 11

29 27 25 23 21

39 37 35 33 31

49 47 45 43 41

Figure 11.4: A square array of odd numbers
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apparently had no geometric motivation—this was his derivation of a for-
mula for generating pairs of amicable numbers. This appears in a text on 
amicable numbers written after his translation into Arabic of Nicomachus’s 
Introduction to Arithmetic. 

After explaining that the Pythagoreans and other ancient Greek math-
ematicians had made use of two main kinds of numbers in illustrating 
their philosophy, namely perfect numbers and amicable numbers, Thabit 
goes on to define these and other “imperfect” (i.e., abundant and deficient) 
numbers. He then points out that neither Euclid nor Nicomachus paid any 
attention to the “theory” of amicable numbers. The theory that he suggests 
may be expressed in the following modern form. 

A pair of natural numbers, M and N, is defined as amicable if each is 
equal to the sum of the proper divisors (i.e., all the divisors of a number, 
including 1, but not itself) of the other. The smallest pair of amicable num-
bers is 220 and 284. The proper divisors of 220 are 1, 2, 4, 5, 10, 11, 20, 22, 
44, 55, 110, the sum of which is 284. Similarly, the proper divisors of 284 
are 1, 2, 4, 71, 142, the sum of which is 220.

Thabit then proceeds to provide a verbal rule that can be translated into 
the following formula for deriving pairs of amicable numbers. Let p, q, and 
r be distinct prime numbers given by

3 , , ,p q r2 1 3 2 1 9 2 1n n n1 2 1# # #= − = − = −− −

where the integer n is greater than 1. Then M and N will be a pair of ami-
cable numbers, given by

2 , 2 .M pq N rn n= =

9 7

5 3

1

19 17 15 13

29 27 25 23 21

11

Figure 11.5: A triangular array of odd numbers
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For n = 2,

3 , , .p q r2 1 5 3 2 1 11 9 2 1 712 3# # #= − = = − = = − =

As p, q, and r are all prime, they may be used to yield M and N as

, ,M N2 5 11 220 2 71 2842 2# # #= = = =

which is the smallest pair of amicable numbers. For n = 3, q = 287, which is 
not prime (it is divisible by 7), so the formula cannot be applied. For n = 4, it 
is found that p = 23, q = 47, and r = 1,151. These are all primes, and so the 
next pair of amicable numbers generated from Thabit’s formula is

2 , , , , .M N23 47 17 296 2 1 151 18 4164 4# # #= = = =

Thabit obtained only the first pair of amicable numbers from his rule. It 
was a later Islamic mathematician, Ibn al-Banna (1256–1321), who found 
the above pair corresponding to n = 4. Some six hundred years after 
Thabit, Fermat rediscovered this rule and the pair for n = 4, and shortly af-
ter this Descartes too rediscovered the rule and set n = 7 to yield 9,363,584 
and 9,437,056. It turns out that Thabit’s rule generates pairs of amicable 
numbers for n = 2, 4, and 7, but for no other value of n below 20,000. For-
tunately there are other lines of attack. Euler found more than sixty pairs, 
using methods he developed himself—methods that still form the basis 
for present-day search techniques. Over a thousand pairs are now known. 
Curiously, the second-smallest pair, 1,184 and 1,210, was overlooked by all 
the famous “amicable number chasers”—it was discovered in 1866 by an 
Italian schoolboy!

To complete the story it is worthwhile mentioning that Abu Mansur 
al-Baghdadi (d. 1027), in his book the Book of Completion on Reckoning, 
discusses a notion related to amicable numbers, the property of “balanced 
numbers.” Take the example given by al-Baghdadi: 

We wish to know two numbers such that [the sum of] the aliquot22 parts 
of each gives 57. So we subtract 1 from it, and there remains 56. We di-
vide this into two prime parts, [say] 3 and 53, and we multiply the one 
by the other; the result is 159 and summing its aliquot parts gives 57. 
Next, we again divide 56 into two other prime parts, say 13 and 43, and 
we multiply the one by the other: [the result is 559]. Then the sum of the 
aliquot parts of the result is 57. (Quoted from Berggren 2007, p. 563)

It is interesting to note that apart from the pair of balanced numbers 159 
and 559, given above, there is a third number, 703 (19 # 37). 
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Extraction of Roots
The Arabic word for “root,” jidhir, was the term introduced by al-Khwarizmi 
to denote the unknown in an equation. With the help of the terms mal 
(second power, literally “wealth”) and kab (cube), he was able to describe 
equations of first or second degree and exponents of degree higher than 
third. More precisely, al-Khwarizmi described only solutions to equations 
of first and second degree, but referred to higher exponents and higher 
reducible equation. Thus, for example:

, ,mal mal x mal kab x kab kab x , and so on.4 5 6= = =  

There are close parallels between the way the Islamic mathematicians 
extracted square and cube roots (by seeking numerical solutions to qua-
dratic and cubic equations) and the methods used in other mathemati-
cal traditions. Both the Mesopotamian (c. 1800 BC) numerical method of 
extracting square roots, which we examined in chapter 4, and the closely 
related method found in the Sulbasutras (c. 500 BC), discussed in chapter 
8, probably came to be known to the Islamic mathematicians through work 
of the Alexandrian mathematician Heron (c. first century AD). We also 
saw, in chapters 6 and 7, that the Chinese had developed quite sophisti-
cated procedures for obtaining approximate solutions of xn = A, for any 
integral of n and to any degree of accuracy, based on variants of Horner’s 
method using the binomial coefficients of Pascal’s triangle. Later Islamic 
mathematicians worked with methods very similar to those used by the 
Chinese to extract roots of the second and higher orders.23 

Algebra in the Islamic World

Perhaps Islamic mathematics should be best remembered for its synthesis 
of geometry (mainly from Euclid) and algebra from the Eastern world, be-
ginning with al-Khwarizmi’s geometric solution of quadratic equations and 
culminating in Omar Khayyam’s geometric solution of cubic equations. 

The word al-jabr appears frequently in mathematical texts that followed 
al-Khwarizmi’s influential Hisab al-jabr w’al-muqabala (Compendium 
on Calculation by Completion and Reduction), written in the first half 
of the ninth century.24 There were two meanings associated with al-jabr. 
The more common was “restoration,” as applied to the operation of adding 
equal terms to both sides of an equation so as to remove negative quanti-
ties, or to “restore” a quantity that is subtracted from one side by adding 
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it to the other. Thus an operation on the equation 2x + 5 = 8 - 3x that 
led to 5x + 5 = 8 would be an illustration of al-jabr. There was also an-
other, less common meaning: multiplying both sides of an equation by a 
certain number to eliminate fractions. Thus if both sides of the equation 
(9/4)x + 1/8 = 3 + (5/8)x were multiplied by 8 to give the new equation 
18x + 1 = 24 +15x, this too would be an instance of al-jabr. The com-
mon meaning of al-muqabala is the “reduction” of positive quantities in 
an equation by subtracting equal quantities from both sides. So for the two 
equations above, applying al-muqabala would give

,
,

,

x
x
x

5 5 8
5 5 5 8 5
5 3

+ =

+ − = −

=

and

,
,

.

x x
x x x x

x

18 1 24 15
18 15 1 1 24 1 15 15
3 23

+ = +

− + − = − + −

=

The words al-jabr and al-muqabala, linked by wa, meaning “and,” came 
to be used for any algebraic operation and eventually for the subject itself. 
Since the algebra of the time was almost wholly confined to the solution of 
equations, the phrase meant exactly that.

A Geometric Approach to the Solution of Equations
Al-Khwarizmi distinguished six different types of equation by using cer-
tain word conventions mentioned earlier. The unknown quantity (which 
we now denote by x) was referred to as “root” or “thing,” and the constant 
was known as “number.” So the six different types of equation were

1.  roots equal squares: bx = ax2

2.  roots equal numbers: bx = c

3.  squares equal numbers: ax2 = c

4.  squares and roots equal numbers: ax2 + bx = c

5.  roots and numbers equal squares: bx + c = ax2

6.  squares and numbers equal roots: ax2 + c = bx,

where a, b, and c are positive integers. Al-Khwarizmi provided rules for 
solving these equations and in a number of cases the geometric rationale 
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for these solutions. Let us take one example of a type 4 equation (squares 
[mal] and roots equal numbers) that is interesting historically since it re-
curs in later texts.

Example 11.3  One square [mal] and 10 roots of the same equals 39 
direhems. [Or, in modern notation, solve x2 + 10x = 39.]

Suggested Solution

Al-Khwarizmi’s	 Explanation in  
Explanation 	 Modern Notation 
1.	 You halve the “number” of	 x2 + 10x = 39.
	 roots: result 5.

2.	 This you multiply by itself:  
	 result 25.

3.	 Add this to 39: result 64.	 (x + 5)2 = 39 + 25 = 64.

4.	 Take the square root of this: 	 x + 5 = 8.
	 result 8.

5.	 Subtract from 8 the result	  x = 3.
	 given in step 1: result 3.

This is the root of the square  
you sought [the square itself  
is 9].

(The negative root, x = −13, is ignored.)
Variants of this rule are found in both Mesopotamian and Indian 

mathematics, and there is every likelihood that this algorithm came 
from either or both of these sources.

The real novelty of the Islamic approach is contained in the following 
statement of al-Khwarizmi’s. After giving numerical solutions for all six 
types of equation, he goes on:

We have said enough, so far as numbers are concerned, about the six 
types of equation. Now it is necessary to demonstrate geometrically the 
truth of the same problems which we have explained in numbers.

We can illustrate al-Khwarizmi’s geometric approach by returning to 
the above exercise. In figure 11.6, ABCD is a square of side x. AD and AB 
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are extended to E and F such that DE = BF = 5. The square AFKE is com-
pleted, and DC is extended to G and BC to H. From the diagram it is clear 
that the area of AFKE is equal to

0 25, ( 5) .1x x xor2 2+ + +

Adding 25 to both sides of the equation x2 + 10x = 39 gives

0 25 39 25 64,x x12 + + = + =

from which one of the sides of AFKE, say EK, is found to be x + 5 = 8, 
and so EH = x = 3.

Al-Khwarizmi’s geometric demonstration for each type of equation 
is based on a specific example. Thabit ibn Qurra presented the first gen-
eral demonstration, using two of Euclid’s theorems, in a short work titled 
Problems of Algebra through Geometrical Demonstrations, of which only a 
single manuscript has survived. We can illustrate this demonstration for 
the type 4 equation discussed above—squares and roots equal numbers, 
or x2 + bx = c.25

Figure 11.6: Al-Khwarizmi’s geometric solution of a quadratic equation
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In figure 11.7,

.x bxABCD BHFC AHFD 2+ = = +

The application of a result from Euclid’s Elements (Book II, proposition 
5) on the equivalence of areas gives

AHFD BG AG2 2+ =

if G is the midpoint of BH. Now,

, ( ) , ( ) ,x bx c b c bAHFD BG AG2 2 2 2 2
2
1

2
1= + = = = +

and therefore

( ) ( ) .x bx b c b2 2 2
2
1

2
1+ + = + 	 (11.1)

Applying another of Euclid’s propositions (Elements, Book II, proposi-
tion 4) to the left-hand side of equation (11.1) gives

( ) ( ) .x bx b x b2 2 2
2
1

2
1+ + = + 	 (11.2)

Substituting (11.2) in (11.1) gives

( ) ( ) .x b c b2 2
2
1

2
1+ = +

Therefore

Figure 11.7: Thabit’s general solution of quadratic equations
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( ) .x c b b2
1 2

2
1= + −

The validity of this result can be checked by applying it to example 11.2 
to solve for x. Thabit also provided a similar geometric proof for type 6 
equations, squares and numbers equal to roots, or x2 + c = bx.

To sum up, the Islamic mathematicians’ work on solving quadratic equa-
tions is yet another illustration of their ability to bring together two strands 
of mathematical thinking—the geometric approach that had been care-
fully cultivated by the Greeks, and the algebraic/algorithmic methods that 
had been used to such effect by the Mesopotamians, Indians, and Chinese. 
The Islamic mathematicians went far beyond the ingenuity and calculat-
ing skills of the Mesopotamians, of which we have seen ample evidence 
in chapter 4. By devising an efficient system of classifying equations, they, 
starting with al-Khwarizmi, reduced all equations to six main types. For 
each type they offered solutions as well as a geometric rationale, thereby 
laying the foundation of modern algebra. Thus were the ahl al-jabr (the 
“algebra people”), in Thabit’s words, and the “geometry people” brought 
together.

Changing Algebra: Al‑Khwarizmi to Abu Kamil to al‑Karaji
Around AD 830, Muhammad ibn Musa al‑Khwarizmi composed the 
earliest-known Islamic treatment of algebra, beginning a preoccupation 
that continued for several centuries. As discussed earlier, his treatise, Hisab 
al‑jabr wa’l‑muqabala, began with a discussion of the algebra of first- and 
second-degree equations, proceeding to practical applications of this algebra 
to questions of mensuration and legacies. Different influences and sources 
went into the making of this treatise. The use of geometry to justify algebraic 
manipulation has been traced to Euclid’s Elements, although Chinese and 
Indian mathematics, discussed in earlier chapters, contain similar strands. 
His interest in equations of a second degree and the rhetorical style of his 
presentation show vestiges of both Mesopotamian and Indian influences.

A generation later, Abu Kamil ibn Aslam (c. 850–930) wrote his own 
text, Kitab fi al‑jabr wa’l‑muqabala, based on al‑Khwarizmi’s work. In it, 
Abu Kamil not only quotes directly from al‑Khwarizmi but also incorpo-
rates almost half of al‑Khwarizmi’s forty examples into his work, with nu-
merical changes. However, the mathematical environment in which Abu 
Kamil’s thought developed had undergone significant changes, notably in 
that the Greek influence had become more manifest. Compare, for exam-
ple, Abu Kamil’s proof of the solution of the equation x2 + 10x = 39 with 
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the proof of al‑Khwarizmi.26 What Abu Kamil did was to use the under-
pinnings of Greek mathematics without destroying the concrete base of 
al‑Khwarizmi’s algebra to create an algebra based on practical realities. This 
approach remained unchanged in other commentaries on al‑Khwarizmi’s 
work until the middle of the tenth century.

The next change may have been a result of the gradual impact of the 
ninth-century Arabic translation of Diophantus’s Arithmetica by Qusta b. 
Luqa, which introduced the Diophantine approach to the solutions of de-
terminate and indeterminate equations. It is important, in this context, to 
distinguish between the approach to and the actual solution of indetermi-
nate equations, since it is likely that the Islamic mathematicians had come 
across Indian and possibly Chinese work on the subject.

One mathematician whose work reflected this change in approach 
was Abu Bakr al‑Karaji (al-Karkhi) (c. 1000). In al‑Fakhri fi’l-jabr wa’l-
muqabala (Glorious Work on Algebra27), al‑Karaji solved indeterminate 
equations of degrees two and three in up to three unknowns by methods 
clearly influenced by the Arithmetica while retaining the geometrical ap-
proach of al‑Khwarizmi. At the same time, he rejected aspects of both ap-
proaches, in particular al‑Khwarizmi’s complete reliance on geometry for 
proof and Diophantus’s syncopated notation. 

Omar Khayyam’s Geometric Solution of Cubic Equations
Omar Khayyam’s work may be seen as the culmination of the geometric 
approach to the solution of equations, in particular general cubic equa-
tions. It is almost certain that he was unaware of the arithmetic solutions 
we have found in Chinese mathematics. He bemoaned the fact that he 
could not find an “algebraic” solution for cubics, as had been done for qua-
dratics, and hoped that his successors would be able to do so. Instead, he 
explored the possibility of using geometric methods, in particular whether 
parts of intersecting conics28 could be used to solve cubic equations. 
Traces of such an approach are found in the works of earlier writers such 
as Menaechmus (c. 350 BC) and Archimedes (287–212 BC), and Omar’s 
near-contemporary Ibn al-Haytham (c. 965−1039). They had observed, for 
quantities a, b, c, and d, that if

,c
b

d
c

a
d

= =

then
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,c
b

d
c

a
d

a
c2

= =d a dn k n

or

.c b a3 2=

Now, if b = 1, the cube root of a can be evaluated as long as c and d exist 
such that

.c d d acand2 2= = 	 (11.3)

Omar Khayyam’s great contribution was to discover the geometrical 
argument embedded in this algebra. For the Greek mathematicians who 
were the inspiration behind Omar’s work, the equations leading to 11.3 
can hardly be described as “algebra.” For them, the equations were the so-
lutions of certain ratio problems, such as finding two mean proportionals 
between two given quantities, that could be found by dealing with conic 
sections.29 

If we think of c and d as variables and of a as a constant, then equations 
(11.3) are the equations of two parabolas with perpendicular axes and the 
same vertex. This is illustrated in figure 11.8. The two parabolas, whose 
construction is explained in example 11.4 later in this chapter, have the 
same vertex B, with axes AB (= a) and CB (= b = 1), and they intersect at 
E. In the rectangle BDEF, BF = DE = c, and BD = FE = d. Since AB is a 
line segment and the point E lies on the parabola with vertex B and axis 
AB, the rectangle BDEF has the property that

( ) , .d acFE AB BF or2 2#= = 	  (11.4)

Similarly, for the other parabola with vertex B and axis BC,

( ) , .c bd dBF CB BD or2 2#= = = 	  (11.5) 

From (11.4) and (11.5) we get

.c a2 = 	  (11.6)

Therefore, DE = BF is a root of equation (11.6).
Applying similar reasoning, Omar extended his method to solve any 

third-degree equation for positive roots. He discussed nineteen types of 
cubic equations (expressed with only positive coefficients). Five of these 
could easily be reduced to quadratic equations. Each of the remaining 
fourteen he solved by means of conic sections. It is possible to classify these 
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fourteen cubics, using modern notation, into four main types as in table 
11.1. To illustrate this reduction, take a cubic of the form

0,z pz qz r3 2+ + + = 	  (11.7)

where the coefficients p, q, and r can be positive, negative, or zero. Setting 
z = x − p/3 in equation (11.7) gives an equation of the form

0,x gx h3 + + =

where the coefficients g and h are again positive, negative, or zero. It can 
be shown that

.g q p h p pq r3
1

27
2

3
1and2 3= − = +−

There is evidence of Omar Khayyam’s facility with other cubics, especially 
those that can be transformed to one of the standard types given in table 
11.1. Take for example the cubic

Figure 11.8: Omar Khayyam’s solution of cubic equations
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0x ax b x c3 2 2+ + + = 	 (11.8)

for a, b, c > 0, and substitute 2dy for x2 to obtain the transformed equation

2 2 0, , , , 0.dxy ady b x c a b c dfor >2+ + + = 	  (11.9)

Equation (11.9) is the equation of a hyperbola, while the transforma-
tion x2 = 2dy is the equation of a parabola. The abscissas, or x values at the 
point of intersection of these two curves, are the roots of the cubic equa-
tion (11.8). 

Without the language of modern mathematics, in particular its sym-
bolic notation, Omar’s task of exposition was much more difficult. In his 
approach, a, b, c, and x are line segments, and the problem is:

Given a, b, and c, to construct a line segment x such that equation (11.8) 
holds.

Omar begins by declaring that a line segment cannot be constructed by 
using only a straightedge and compass; at some point in the construction 
conic sections must be introduced. His knowledge of conic sections was 
derived mainly from the Conics, the work of the Hellenistic mathematician 
Apollonius of Perga (c. 200 BC). This is one of the more difficult works 
of Alexandrian geometry. It is a measure of the level of sophistication of 
Islamic mathematics in the tenth century that the Conics together with Ar-
chimedes’ On the Sphere and Cylinder constituted the two pillars of Islamic 
geometry. Omar’s solutions for each type of cubic listed in table 11.1 are 
too long and involved for us to discuss here. His own book, Al-jabr w’al-
muqabala (Algebra, translated into English and edited by Kasir, 1931), gives 
an indication of the breadth of coverage of his approach to different cubics.

Table 11.1:  Some of Omar Khayyam’s Solutions of Cubic 
Equations

Type (a > 0, c > 0)	 Method

1.  x3 + c	 Intersection of two parabolas
2.  x3 + ax = c	 Intersection of circle and parabola
3.  x3 ± c = ax	 Intersection of hyperbola and parabola
4.  x3 = ax + c	 Intersection of two hyperbolas

Note: In each case one positive root was found.
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Omar’s achievement is typical of Islamic mathematics in its application 
(in a systematic fashion) of geometry to algebra. While Omar made no 
addition to the theory of conics, he did apply the principle of intersecting 
conic sections to solving algebraic problems. In doing so he not only exhib-
ited his mastery of conic sections but also showed that he was aware of the 
applications of what was then a highly abstruse area of geometry.

Also important was Omar’s systematic classification of cubic equations, 
with his demonstration of a geometric solution for each type. Despite the 
constraints imposed by the character of the mathematical language of the 
time (he used either geometric magnitudes or numbers capable of geomet-
ric interpretation), the clarity of Omar’s presentation is striking, and the 
cases he cannot demonstrate are relatively few. He was aware that some-
times there was more than one positive solution, sometimes none at all (for 
nonintersecting conic sections). His neglect of negative or imaginary roots 
is perfectly understandable given the mathematical climate of the time. But, 
with hindsight, this does not imply that the methods he used were not ad-
equate for the purpose of extracting negative roots. In fact, referring to table 
11.1, it can be shown, first, that the absolute value of the negative roots of 
type 1 is identical to the positive root of type 2, and vice versa; and second, 
that the absolute values of the negative roots of type 4 correspond to the 
positive roots of type 3, and vice versa. Indeed, Omar’s geometrical meth-
ods were the only ones available until the algebraic methods were developed 
by the Italian algebraists, notably Girolamo Cardano and Niccolò Tartaglia. 

What Omar Khayyam and those who came after him failed to do was 
find an algebraic solution of cubic equations. In an earlier chapter we exam-
ined the numerical procedures the Chinese used to solve equations of any 
degree, but the Chinese showed little interest in the algebra of these solu-
tions. Sharaf al-Din al-Tusi’s work (Rashed 1986) contains an interesting 
application of what we would describe today as the determination of max-
ima and minima to the solutions to cubic equations. However, it should be 
noted that Sharaf al-Din al-Tusi found the positive solutions to his equa-
tions by a numerical procedure similar to the Chinese procedure discussed 
in chapter 7. For an equation x c ax3 2+ =  expressed in the form

( ) ,x a x c2 − = 	  (11.10)

al-Tusi notes that whether it has a positive solution depends on whether 
the expression on the left-hand side reaches c. He is aware that, for any 
value of x lying between 0 and a, 
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( ) .x a x a a
3

2
3

2
2

#- d an k

We can easily see with the help of elementary calculus that a (relative) 
maximum occurs for x in equation (11.10) when x0 = 2a/3. But there is 
no indication as to how al-Tusi found this value. He proceeds to make the 
following inferences:

If 4a3/27 < c, no positive solution exists.

If 4a3/27 = c, only one positive solution (x = 2a/3) exists. 

If 4a3/27 > c, two positive solutions (x1 and x2) exist,

where 0 < x1 < 2a/3 and 2a/3 < x2 < a. However, there is no evidence that 
al-Tusi actually found the two positive solutions (x1 and x2).

Islamic Algebra and Its Influence on Europe

Tracing the lines of Islamic influence on European mathematics is a dif-
ficult task at the best of times, although there are one or two lines of which 
we are reasonably certain. Al-Khwarizmi’s Algebra is generally recognized, 
through its Latin translations, as having been highly influential in the de-
velopment of European algebra. Abu Kamil (c. AD 900), popularly known 
as the “Egyptian Calculator,” wrote a commentary on al-Khwarizmi’s work 
in which he systematically treated the fundamental rules of algebraic 
operations and solution of equations, including nonlinear simultaneous 
equations. This work influenced Fibonacci, whose impact on medieval 
European mathematics cannot be overstated. There was a third Islamic 
mathematician and scientist whose geometric theory of the solution of 
equations, particularly as applied to problems in optics, had a direct im-
pact on Europe—Ibn al-Haytham. It is one of the ironies of history that 
the works of Thabit and Omar, two of the greatest Islamic mathematicians 
who turned to geometry for rigorous derivations of results, were less well 
known than those just mentioned.

It is interesting that, in the westward movement of algebra, it was mainly 
the twelfth-century Latin translations of al‑Khwarizmi’s text, by Robert of 
Chester and Gerard of Cremona, that shaped the mathematical environ-
ment of medieval Europe. The same applied in the case of Fibonacci, who 
came across al‑Khwarizmi’s work either from reading one or both transla-
tions or from learning algebra during his youth in North Africa or during 
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his travels as an adult in Egypt, Syria, Greece, and Sicily. The fact remains 
that al‑Khwarizmi’s ideas on the theory of quadratic equations figured 
prominently in the fifteenth and final chapter of Fibonacci’s influential 
book, Liber Abbaci (1202).

Not until the 1850s did Omar’s work begin to be mentioned in the stan-
dard Western histories of mathematics, when Woepcke’s translation of his 
Algebra appeared, though Kasir (1931, pp. 6–7) produces evidence of Eu-
ropean interest in Omar’s work from over a hundred years before. And 
there is no evidence that Thabit ibn Qurra may have directly influenced 
the development of mathematics in Europe, yet there are pieces of circum-
stantial evidence that are rare but quite suggestive. The texts translated by 
Gherardo of Cremona (c. 1175), through which more Islamic science en-
tered Europe than in any other way, may have indirectly drawn on Thabit’s 
works. Furthermore, we may question the originality of John Wallis’s Trea‑
tise on Angular Sections (1685), in which there are echoes of the works of 
Ptolemy (c. AD 100) and of Thabit’s generalization of the Pythagorean the-
orem. (Thabit’s work in this area will be discussed in a later section.) Given 
the steady stream of Arabic manuscripts that flowed into Europe in the 
seventeenth century and the appointment of professors of Arabic in some 
of the major universities of Europe who were conversant with mathemati-
cal and astronomical works of the Islamic world, it is important to keep an 
open mind on possible transmissions, about which more may emerge from 
detailed research on how the Islamic world influenced medieval Europe.30 
It was not all that long ago that the Islamic scholars were dismissed as mere 
custodians, or at best pale imitators, of Greek science and philosophy.

Geometry in the Islamic World

Throughout the Islamic world are to be found buildings decorated with 
intricate geometric designs. These are a common feature of Islamic art, 
which has an ornamental tradition since the Islamic religion has generally 
discouraged the portrayal of living things. Such superb craftsmanship in 
various media, including wood and tile, would have required consider-
able geometric skills in construction. Islamic mathematicians were par-
ticularly interested in geometrical constructions, both Euclidean using 
straightedge and compass as well as more advanced constructions using 
conic sections. Around the year 960, Abu al-Wafa al-Buzjani (940−997) is 
believed to have written a book (now lost), titled Knowledge of Geometry 
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Necessary for the Craftsman, that provided a number of constructions, 
many of which could be achieved with just a straightedge and compass. 
These included construction of polygons, inscribing (or circumscribing) 
circles in (or around) various polygons, dividing the surface of a sphere 
into given shapes, decomposing a square into a given number of squares 
or constructing a square equal to a given number of squares, and so on. 
Consider one example of such a construction.

Example 11.4  To inscribe an equilateral triangle in a square so that its 
angles touch its sides.

Method

We make a square ABCD [see figure 11.9], and we extend AB to E to 
make BE equal to AB. And on AE we construct the semicircle ECA. Then 
with A as center and distance BA [as radius] we mark G [on the semi-
circle ECA] and with E as center and distance EG we mark F [on line 
AB]. And we make CH equal to AF. Then we draw DH, DF, and FH. Then 
triangle DHF is equilateral, and it was constructed in the square ABCD.

D C

G H

A F B E

[A proof is provided to show that the triangle DHF is equilateral 
with its angles touching the sides of the square.]31

However, it was in the construction of conic sections that the Islamic 
mathematicians made their distinctive contribution.

In Rasm al qutu as salasa (On Drawing the Three Conic Sections) by 
Ibrahim ibn Sinan (d. 946), a grandson of Thabit ibn Qurra, there are 
detailed instructions on how to construct a parabola and an ellipse, and 
three different ways of constructing a hyperbola. Ibn Sinan begins with a 
cautionary note. “When we found that it was difficult to draw these three 

Figure 11.9: An equilateral triangle in a square
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sections with a compass or other instruments, we tried hard to draw nu-
merous points to which [a] man can add as many as he wants and such that 
these points will be on one of the three sections. Everything [that was] de-
termined that way proved how these sections, along with others, are gener-
ated from the circle” (Berggren 2007, p. 565). 

To illustrate, let us consider Ibn Sinan’s constructions of a parabola and 
a hyperbola. (The reader may like to try drawing these figures with just a 
ruler and compass to appreciate the sheer ingenuity and geometric “sense” 
displayed here.)

Example 11.5  To construct a parabola.

Method

Draw a line AB [see figure 11.10], and construct a perpendicular CE 
cutting AB at D. On the line segment DB, mark a number of points G, 

Continued . . .
Figure 11.10: Ibn Sinan’s construction of a parabola
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Continued . . . 

F, . . . . Next, construct circles with diameters AB, AF, AG, . . . , which 
intersect CE at H and L, J and M, K and N, . . . , respectively. Through 
H and L, draw lines parallel to AB, and through B draw a line parallel 
to CE. Let these lines through H, L, and B meet at P and S. Similar lines 
drawn through J, M, and F, and through K, N, and G, intersect at points 
Q and T, and R and U, respectively. lbn Sinan provides a proof that all 
such points of intersection lie on a parabola. The parabola has turning 
point at D, axis AB, and parameter AD.

Example 11.6  To construct a hyperbola.

Method

AB is a line segment [see figure 11.11] that is also the diameter of a 
semicircle, center O. Extend AB in the direction of B. Choose points 
C, D, E, . . . , and through them construct tangents of the semicircle: 
CH, DI, EJ. From points H, I, J construct lines parallel to AB such that 
HR = HC, IQ = ID, JP = JE. Ibn Sinan shows that points M, N, P, Q, 
R, . . . , B lie on a hyperbola.

There is little doubt that had Ibn Sinan not died at the untimely age of 
thirty-eight, his contribution to mathematics could have been even more 
important than that of his illustrious grandfather. His notable work in-
cluded quadrature of a parabola using a method of integration building 
on that of Archimedes.32 Following Archimedes, he gave an elegant proof 
that the area of a segment of the parabola is four-thirds of the area of the 
inscribed triangle. And in another text, he solved forty-one geometrical 
problems using the method of analysis and synthesis.33 Indeed, geometri-
cal transformations of different kinds appear often in his work. Examples 
include the application of an orthogonal compression to transform a cir-
cle to an ellipse and of an oblique compression to map a hyperbola into a 

Figure 11.11: Ibn Sinan’s construction of a hyperbola
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second hyperbola. In another work, he uses a transformation that maps 
figures keeping invariant the ratio between their areas.34 

It is difficult to establish the origins of the mathematician, mentioned 
earlier, considered by many to have been al-Khwarizmi’s natural successor. 
The difficulty arises from a characteristic of Arabic writing: sometimes let-
ters are distinguished, not by their different shapes, but by the location of 
a dot near the letter. So whether this mathematician was al-Karkhi (which 
places his origins in Iraq) or al-Karaji (which places his origins in Iran) 
depends on whether the dot was placed above the relevant Arabic letter or 
below it; both versions are recorded. Whatever his origins, we shall refer to 
him as al-Karaji (i.e., one who was born in the town of Karaj, near Tehran). 
All we know about him is that he lived in Baghdad around the year 1000, 
where he dedicated a book on algebra to a vizier Fakhr al-Din. His contri-
butions include his development of the binomial coefficients and the “Pas-
cal triangle,” deriving rules of operations with exponents, solving equations 
of higher degree, and an elaboration of the “Indian calculation.”35 Al-Karaji 
gives an interesting geometric construction. 

Example 11.7  Construct a circle whose area is equal to a given fraction 
(1/n) of the area of a given circle.

Method

[In figure 11.12], AOB is the diameter of the given circle, with center O. 
Draw TA perpendicular to AB. Extend BA to C such that CA = (1/n)AB. 

Continued . . . 
Figure 11.12: Al-Karaji’s construction of a circle
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Continued . . . 

Construct a circle with CB as diameter. The point at which this circle cuts 
TA is denoted by D. AD is then the diameter of the required circle, equal 
to (1/n)AB, so the area of this circle, C2, is 1/n of the given circle, C1.

Proof

The proof follows easily from two propositions of Euclid’s on intersect-
ing chords (Elements, Book II, propositions 12 and 13), which give 

,n
d dCA AB DA2# = = d n

where AB = d, CA = (1/n)AB. Therefore /d nDA = . Now, the circle 
with diameter AB is C1 and the circle with diameter AD = d/n is C2. So 
the ratio of the areas of C1 and C2 = d 2:d 2/n = 1:1/n.

Thabit ibn Qurra’s Generalization of the Pythagorean Theorem
In a letter to a friend, Thabit expressed disappointment with an existing 
(so-called Socratic) proof of the Pythagorean theorem because it applied 
only to isosceles right-angled triangles. He then proceeded to give three 
results, of which the third is a generalization of the Pythagorean theorem 
applicable to all triangles, whether right-angled or not. We shall look at 
the third result, which Sayili (1960, p. 35) has described as an “important 
contribution” to the history of mathematics.

Consider figure 11.13, which is constructed in the following manner. 
From the vertex A of a triangle ABC drop lines intersecting the base BC at 
B and C and forming angles ABB and ACC respectively, each of which 
equals angle BAC. We wish to show that

AB2 + AC2 = BC(BB + CC).

Thabit ibn Qurra provides no proof, except to say that it follows from 
Euclid.

A reconstruction of the proof that makes use of similar triangles is as 
follows. It can easily be shown that BAC, BAB, and CAC are similar tri-
angles. Therefore

BC:AC:AB = AC:CC:AC = AB:AB:BB.
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B́ Ć CB

A

D

Then

 AB/BB = BC/AB, so AB2 = (BC)(BB);	  (11.11)

and

AC/CC = BC/AC, so AC2 = (BC)(CC).	  (11.12)

Adding equations (11.11) and (11.12) gives Thabit’s generalization of the 
Pythagorean theorem:

AC2 + AB2 = BC(BB + CC).

Figure 11.13 shows an obtuse triangle, with the angle at A greater than a 
right angle. Thabit also considers an acute triangle, for which B and C lie 
outside BC, but for which the above proof (with minor modifications) still 
applies; and he considers the Pythagorean right-angled triangle, for which 
B and C coincide at D. 

Thabit’s work on this theorem was discovered as late as 1953 in the li-
brary of the Aya Sofia Museum in Turkey. However, it made its first ap-
pearance in European mathematics in 1685, when John Wallis’s proof 
of the theorem was published in his Treatise on Angular Sections. It is a 
reasonable conjecture that Wallis was aware of Thabit’s work in this area, 
since he was sufficiently acquainted with Islamic mathematics to know of 
al-Tusi’s work on the parallel postulate. Indeed, Scriba (1966, p. 67) is of 
the opinion that the Treatise on Angular Sections is based on Thabit ibn 
Qurra’s generalization of the Pythagorean theorem and Ptolemy’s work in 
this area.

Figure 11.13: Thabit’s generalized Pythagorean theorem
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Summation of Powers in the Islamic World: The Work of  
Ibn al-Haytham
Ibn al-Haytham (965–1040), known by his Latin name Alhazen in Europe, 
was born in Basra but spent most of his adult life in Egypt, where he had 
been invited by the caliph al-Hakim to work on a project to control the Nile. 
His most important scientific work was his Optics, translated into Latin in 
the thirteenth century and studied in Europe for several centuries thereaf-
ter. It was probably his interest in optics and his close examination of what 
came to be known after him as “Alhazen’s problem”36 that led him to prove 
a set of results on the sum of powers of whole numbers, which then became 
an integral part of his measurement of the volume of a certain kind of pa-
raboloid.37 Rather than consider how Ibn al-Haytham proceeded to measure 
the volume of the solid of revolution formed by rotating a parabola around 
a line at a right angle to its axis, we will examine some of the results that he 
stated and proved relating to the sums of powers of whole numbers.38

Result 1. If one has a sequence of natural numbers, beginning with one, 
and one takes half the largest and half of one, adds these halves and 
multiplies this sum by the largest number, one has the sum of all given 
numbers.

Or in modern notation

( ) .i n n n nn n
2
1

2
1

2 2
1 12i

n

1

2

= + + = +=
=

d n/

Result 2. One has again the same sequence of numbers. One takes the 
third part of the largest and third part of one, adds these parts, and 
multiplies the sum by the largest numbers. Then one adds to the largest 
numbers the half of one and multiplies this sum by the former product. 
One has the sum of the squares of the given numbers.

Or in modern notation

.i n n n n n n1 1
2
1

23 3 3 6i

n
2

1

23

= + + = + +
=

d dn n/

Result 3. One is again given the same sequence of numbers. One takes 
the fourth part of the largest and the fourth part of one, adds these parts, 
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and multiplies the sum by the largest number. One then adds one to the 
largest number, multiplies the sum by the largest number, and multi-
plies this product by the former product. One then has the sum of the 
cubes of the given numbers.

Or in modern notation

( ) .i n n n n n n n1 1 1 24 4 4 4i

n
3

1

34 2

= + + = + +
=

d n/

Result 4. One is again given the same sequence of numbers. One takes 
the fifth part of the largest and the fifth part of one, adds these parts, 
and multiplies the sum by the largest number; then one adds to the larg-
est number half of one, and multiplies this sum by the former product. 
Now one adds one to the largest number, multiplies this sum by the 
largest number, subtracts from the product the third part of one, and 
multiplies this result with the previous product. One then has the sum 
of the fourth powers of the given numbers.

Or in modern notation 

.( )i n n n n n n nn n1 1
2
1

25 5 5 3 301 3
1 5

i

n
4

1

4 3

= + + = + = −+ −
=

d dn n< F/

Ibn al-Haytham provides proofs for these results, which will not be 
discussed here. The approach used by Ibn al-Haytham may be extended 
further for any positive integral k (Katz 1993). Inductively, it can be estab-
lished from the results above that 

( ),i n n nk p21
k

i

n kk

1

1

= +
+

+
=

+

/

where p(n) is a polynomial in n of degree < k. As Katz (1995, pp. 168–69) 
points out, this formula for the sum of fourth powers appears in works of 
other mathematicians in the Islamic world, including Ibn Haydur (d. 1413), 
Ibn Ghazi (1437–1514), and in The Key of Arithmetic of al-Kashi (d. 1429). 
As discussed in the previous chapter, a variant of this result occurs in Kerala 
mathematics in the fifteenth century. It was used by European mathemati-
cians, including Fermat, Roberval, and Pascal, in the seventeenth century to 
evaluate the area under the parabola. This brings us back to the mathemat-
ics of Ibn al-Haytham, a true pioneer of early modern mathematics.
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Trigonometry in the Islamic World

As with so many other areas of mathematics, the Islamic scholars selected 
Hellenistic and Indian concepts of trigonometry and combined them into 
a distinctive discipline that bore little resemblance to its precursors. It then 
became an essential component of modern mathematics. We shall con-
sider three aspects of Islamic trigonometry:

1. � The introduction of six basic trigonometric functions, namely sine 
and cosine, tangent and cotangent, secant, and cosecant

2. � The derivation of the sine rule and establishment of other trigono-
metric identities

3. � The construction of highly detailed trigonometric tables with the aid 
of various interpolation procedures

Introduction of Trigonometric Functions
Basic to modern trigonometry is the sine function. It was introduced into 
the Islamic world from India, probably through the famous Indian astro-
nomical text Suryasiddhanta. This was one of the texts brought to the court 
of al-Mansur during the eighth century by a diplomatic mission from Sind. 
We saw in an earlier chapter that there were two types of trigonometry: 
one based on the geometry of chords (see figure 9.1) and best exemplified 
in Ptolemy’s Almagest, and the other based on the geometry of semichords 
(see figure 9.2), which was an Indian invention.

In the Indian scheme, the length of the semichord (AM in figure 9.2) 
that corresponded to the semiangle at the center of the circle (of radius 
3,438, where each minute was a unit of length equal to 1/60 of the length 
of 1c of arc on the circle) was given at intervals of 3c 45: effectively, a sine 
table. The only difference between this table and a modern one is that it 
gives the Indian sine, or jya, of the angle a:

3,438 .sin sinjya rα α α= =

From the tenth century onward, starting with the work of Abu Nasr 
Mansur (c. 960–1036), Islamic mathematicians brought the sine function 
closer to its modern form with a few defining it for the first time in terms 
of a circle of unit radius, although it remained defined for an arc of a circle 
rather than the angle subtended at the center.
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The etymology of the word “sine” is instructive, for it shows what can 
happen as a result of imperfect linguistic and cultural filtering. The Sanskrit 
term for sine in an astronomical context was jya-ardha (half chord), which 
was later abbreviated to jya. From this came the phonetically derived Ara-
bic word jiba, which, following the usual practice of omitting vowels in Se-
mitic languages, was written as jyb. Early Latin translators, coming across 
this word, mistook it for another word, jaib, which had among its mean-
ings the opening of a woman’s garment at the neck, or bosom; jaib was 
translated as sinus, which in Latin had a number of meanings, including a 
cavity in facial bones (whence sinusitis), bay, bosom, and, indeed, curve. 
And hence the present word “sine.”

There are two other functions that Islamic mathematicians may have 
derived from the Indians. Kojya (i.e., r cos a, or OM in figure 9.2) and ukr‑
amajya (i.e., r vers a = r (1 - cos a), or MC in figure 9.2) were trigono-
metric functions commonly used in Indian astronomy during the period 
of contact between the Indians and the Islamic world. But the tangent and 
cotangent functions are of Islamic origin. 

During the ninth century the Islamic astronomer Habash al-Hasib 
examined the length of the shadow of a rod of unit length horizontally 
mounted on a wall when the sun was at a given angle to the horizontal. It 
is easily shown (figure 11.14a) that the length s of the shadow on the wall 
can be calculated as

,cos
sin tans

α
α

α= =

where a is the angle of elevation of the sun above the horizon. The length t 
of the shadow cast by a vertical rod (see figure 11.14b) is

.sin
cos cott

α
α

α= =

Al-Hasib also contructed the first table of tangents and cotangents. 
The secant and cosecant functions seldom appeared in Islamic trigo-

nometric tables. They were first mentioned without special names by Abu 
al-Wafa (940–997), who was also one of the first to construct a table of 
tangents. But such tables were of little practical use until navigational 
tables were computed in the fifteenth century. The first printed table of 
secants appeared in European mathematics in the work of Georg Joachim 
Rhaeticus (1514–1576), who was a younger contemporary of Copernicus 
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(1473–1543) and later his disciple. However, where they were referred to 
in Islamic mathematics, the secant and the cosecant were known respec-
tively as the “hypotenuse of the shadow” (the distance from the top of the 
horizontal rod to the tip of the shadow in figure 11.14a) and the “hypot-
enuse of the reversed shadow” (the distance from the top of the vertical rod 
to the tip of the shadow in figure 11.14b). A long-standing trigonometric 
tradition based on shadow lengths is found in both Indian and Islamic 
mathematics.39

Derivation of Trigonometric Relationships
Abu al-Wafa’s work on trigonometry contains more than a systematic 
treatment of the six functions. In his Zij almagesti he gives a rule for calcu-
lating the sine of the sum of two arcs and the sine of their difference when 
each of them is known:

Multiply the sine of each of them by the cosine of the other, expressed 
in sixtieths, and we add the two products if we want the sine of the 
sum of the two arcs, but take the difference if we want the sine of their 
difference.

Wall

Rod

1

Secant

Cosecant

s

α

α

Sun

α

Sun

Rod
1

t

α

(b)(a)

Figure 11.14: A “shadow” problem resolved
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Expressed in modern notation, this rule becomes the familiar 

( ) .sin sin cos cos sin! !α β α β α β=

The reference to sine and cosine functions expressed in sixtieths shows 
that calculations were carried out in sexagesimal fractions. Al-Wafa pro-
vides a proof of this result in terms of arcs of a circle of unit radius (Berg-
gren 1986, pp. 136–38).

The sine rule in its modern version is sometimes wrongly attributed to 
Nasir al-Din al-Tusi, although even the spherical version of the rule was 
known at least 250 years before him. In spherical trigonometry, the ratio 
of the sines of any two angles is equal to the ratio of the sines of the great 
arcs forming the sides opposite the angles. In plane trigonometry the ratio 
of the sines of any two angles is equal to the ratio of the two opposite sides. 
This result for a spherical triangle was discovered almost simultaneously 
by Nasir ibn Iraq and Abu al-Wafa, and a long controversy ensued on the 
question of priority. Abu al-Wafa’s proof is the one that is better known 
and is contained in his astronomical text, the Almagest. Unfortunately, a 
discussion of the significant contributions of Islamic mathematicians to 
spherical trigonometry is well beyond the scope of this book.40 

The sine rule in plane trigonometry may be stated in the following way. 
Given any triangle ABC (see figure 11.15),

Figure 11.15: Al-Tusi’s procedure for calculating the sides of 
a triangle
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,sin
sin

c
b

r C
r B

=

where r is taken to be 60 units. Al-Tusi provides a proof for this rule (Beg-
gren 1986, pp. 138–39) and proceeds to consider how the result could be 
used to calculate the dimensions of a triangle, given a knowledge of differ-
ent combinations of angles and sides. For example, knowing the values of 
one angle (say B) and two sides (b and c), the other angle (C) can be calcu-
lated by first using the rule given above and then looking up the angle in a 
sine table. This would immediately yield the other angle (A), and the sine 
rule could then be used to obtain the length of side a. 

Construction of Trigonometric Tables
The interest of Islamic mathematicians in trigonometry was triggered by 
their discovery of sine tables in the Indian Siddhantas. They soon realized 
that trigonometric calculations, whether applied to astronomy or to ge-
ometry, required detailed and accurate tables, and they proceeded to con-
struct tables that were more accurate than any before. Al-Hasib (c. 850) 
constructed the first sine and tangent tables at intervals of 1c, accurate to 
three sexagesimal (five decimal) places. Subsequent work concentrated on 
reducing the intervals and increasing the accuracy of these tables. Thus, 
in the works of the astronomer-king Ulugh Beg in 1440 are tables for the 
two functions at intervals of 1/60 of a degree correct to five sexagesimal 
(nine decimal) places. The computation necessary to produce such a table 
is quite breathtaking. For each of the 90 degrees there would be 60 entries, 
making a total of 5,400 entries.

The calculation of the sine of 1c (assuming, for simplicity, a unit ra-
dius) was itself a considerable undertaking. We know from Abu al-Wafa’s 
work in the tenth century that the procedure was to apply the formula for 
the sine of the difference of the two arcs, namely sin (72c - 60c), which 
would give sin 12c. The choice of 72c and 60c was deliberate and derives 
from Ptolemy’s Almagest, since from the sides of a regular pentagon and 
of an equilateral hexagon inscribed in a circle it is possible to work out 
the required values of the sines of the angles mentioned to any degree of 
accuracy.

To illustrate this using modern methods, figure 11.16 shows a triangle 
ABC whose base angles are each 72c and whose third angle is therefore 36c. 
It can be shown that41 
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2 36 2 72 1.cos cosc c= + 	 (11.13)

From the double-angle formula for the cosine (i.e., cos 2 x = 2 cos2 

x - 1), equation (11.13) can be expressed as

2 2(2 1) 1, 36 .cosc c cwhere2 c= − + =

Therefore 4c2 - 2c - 1 = 0, the solution of which, for c > 0, is 

,c 8
2 4 16

4
1 5!

=
+

=
+

or ( )cos 36 1 54
1c = + .

Now, to calculate sin 72c, since sin 72c = cos 18c, we set c = cos 18. Then

c2 1 4
1 52 − =
+

and

,c 8
5 52 =
+

Figure 11.16: Equation 11.13 is established by drawing the line AD bisecting angle CAB, then 
dropping perpendiculars from A and D
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so

18 72 .cos sin 8
5 5

c c= =
+

The fact that 60 /sin 3 2c =  was known to the Indians as early as AD 500 
probably explains the early Islamic acquaintance with the result.42 The dif-
ference between the calculated values of sin 72c and sin 60c is taken and 
used with the expression

(72 60 ) 72 60 60 72sin sin cos sin cosc c c c c c− = −

to obtain the value of sin 12c. Next the half-angle formula43 is applied to 
yield, successively, sin 6c, sin 3c, sin 1 2

1 c and sin 4
3 c; and then some linear 

interpolation is applied to the last two values to give an estimate of sin 1c.
Different types of interpolation procedure were experimented with, 

particularly when it was recognized that while linear interpolation would 
work well over small intervals, where the growth was uniform, it was not 
appropriate for large intervals, or for the upper bounds of a tangent func-
tion, where the value of the tangent of an angle approaches infinity as the 
angle approaches 90c (i.e., the function has a vertical asymptote at 90c). 
This recognition was already implicit in Indian mathematics before it came 
to be known in the Islamic world. One of the greatest Islamic astronomers, 
Ibn Yunus, who lived during the first half of the tenth century, had de-
vised a second-order interpolation procedure and used it for constructing 
his sine table. New ground was broken by al-Kashi. In his book Risala al-
watar wa’l-jaib (Treatise on the Chord and Sine) he treats the problem of 
obtaining an accurate estimate of sin 1c in a different manner, devising an 
iterative procedure involving the solution of cubic equations. His method 
highlights some of the similarities between the methods used for this pur-
pose by the Chinese and the Islamic mathematicians.

The approximation to sin 1c was based on two pieces of information 
known to Islamic mathematicians at least three centuries before al-Kashi’s 
time. (For the sake of simplicity we shall use base 10 here, not the sexagesi-
mal base with which al-Kashi worked. Also, we shall use the modern sine 
function whereas al-Kashi’s sine function is 60 times the modern one.) The 
two relationships are, first, that for any given angle a,

3 3 4 ,sin sin sin3α α α= −

so that
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3 3 1 4 1 .sin sin sin3c c c= − 	 (11.14)

Second, by the method discussed earlier, we calculate that 

3 0.052335956.sin c = 	 (11.15)

Combining equations (11.14) and (11.15), and denoting the unknown 
value sin 1c by x, we get the cubic equation

0.75 0.013083989 0.x x3 − + =

To solve this cubic equation al-Kashi used an iterative method that, 
expressed in modern terms, proceeds as follows. Given an equation of 
y = f(x), choose an arbitrary value x0 as a first approximation to the root. 
Then, by using the relation xn = f (xn–1) for n = 1, 2, 3, . . . , a sequence of 
values x1, x2, . . . , is obtained that approximates more and more closely to 
the solution, irrespective of what was chosen as x0 , as long as lim x0 exists. 
In numerical analysis this procedure is known as “fixed point” or “direct” 
iteration.

By this method al-Kashi computed the value of 60 sin 1c correct to nine 
sexagesimal (sixteen decimal) places—a remarkable exhibition of computa-
tional skill, even by today’s standards. The reader who wishes to know about 
al-Kashi’s method will find Aaboe (1954) illuminating. Values of sines for 2

1 c, 
1
4 c, 

1
8 c, and so on were obtained by applying the half-angle formula; other 

fractions or finer divisions were achieved by applying some appropriate in-
terpolation formula. Variants of al-Kashi’s method were used by astrono-
mers, mainly working in Samarkand, including his patron UIugh Beg, who 
paid him the tribute quoted earlier. An iterative procedure similar to al-
Kashi’s was used by the German astronomer Johannes Kepler (1571–1630).

Mathematics from Related Sources

Mathematics from Hebrew Sources
The oldest mathematical text in Hebrew is the Mishnat ha‑Middol. Of un-
known authorship and uncertain date, it gives practical rules for mensu-
ration, including that of the Tabernacle that the Jews constructed in the 
desert. There is a section on the solution of quadratic equations with the 
geometric analogues of these equations, which may have been a later inclu-
sion since its composition was strongly influenced by al‑Khwarizmi’s alge-
bra from a later period. It was only in the twelfth century that significant 
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Hebrew mathematics emerged, in the persons of Abraham bar Hiyya 
(c. 1065–1145) and Abraham ibn Ezra (1092–1167).

Abraham bar Hiyya spent most of his life in Barcelona in Christian 
Spain, although it is likely that he was educated in the Muslim kingdom of 
Zaragoza. His major text, written in Hebrew and titled Hibbur ha‑Meshiha 
we ha Tisboret (The Composition on Geometrical Measures), has an ex-
tensive coverage that includes algebra akin to that in al‑Khwarizmi’s work, 
mensuration on plane figures and solids including the truncated pyramid, 
some trigonometry of chords, and a lost fragment of Euclid’s work on the 
“division of figures.” The text was translated into Latin as Liber embadorum 
(1145) by Plato of Tivoli and would play a significant role in the spread of 
mathematical knowledge into Europe.

The contribution of Abraham ibn Ezra is more difficult to assess. Born 
in Aragon and imbued with Islamic culture and learning, he was a versatile 
scholar and poet. His mathematical reputation is essentially based on one 
book, Sefer ha‑Mispar (The Book of Numbers). Written before 1160, it is 
one of the first expositions in Europe of the Indo‑Arabic numerals and ar-
ithmetical operations with them. It was an important text in the diffusion 
of Indian arithmetic among Hebrew readers. He also wrote another book, 
Sefer ha‑Ehad (The Book of the One), that was highly prized by some Jew-
ish scholars of the period for the “mathematical hints” (or numerology) 
contained in it.

The role of the two Abrahams was to make basic mathematical knowl-
edge available to Jewish communities whose members were either unfa-
miliar with Arabic sources or did not have direct access to these sources. 
A scientific language close to biblical Hebrew became the vehicle for the 
transmission of such knowledge. Translations of scientific and philosophi-
cal texts from Arabic into Hebrew gathered momentum. For example, Ja-
cob Anatoli (c. 1194–1256), living in Italy under the patronage of Frederic 
II of Sicily, translated Ptolemy’s Almagest, Ibn Rushd’s Compendium on 
Astronomy, and Euclid’s Elements into Hebrew. Moses ben Samuel ben Ye-
huda of Montpellier (fl. 1240–1283) carried out a number of translations 
of mathematical texts from Arabic, including works of Euclid, al‑Farabi 
(Commentary on the Elements), ibn al‑Haytham (Commentary on the Ele‑
ments) and al‑Hassar (The Arithmetic). Other major translators of math-
ematical literature from Arabic into Hebrew included Jacob ben Makhir of 
Montpellier (c. 1236–1305), Yehuda ben Solmon ha-Kohen (b. 1215), and 
Qalonymos ben Qalonymos (b. 1287). The activities of these and other 
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translators meant that, by the middle of the thirteenth century, there were 
Hebrew versions of the major Greek texts of Euclid, Archimedes, and Ptol-
emy, and of works of Islamic mathematicians, such as Abu Kamil (Algebra) 
and Ibn al‑Haytham (Astronomy).

An outstanding example of the resulting creativity was Levi ben Ger-
shom (1288–1344), better known in Europe by his Latin name Gersonides. 
He was one of the most versatile Jewish scholars of the European Middle 
Ages, and wrote on philosophy, logic, mathematics, and astronomy. His 
treatise Ma’asheh Hoshev (Computer’s Manual) contains studies of permu-
tations, combinations, and summations of series as well as introductions 
to arithmetic and algebra. He also wrote commentaries on the Elements, 
including a treatise on the “parallel postulate,” and on Thabit ibn Qurra’s 
Risala fi Shakl al‑qatta (On the Secant Figure). However, his most last-
ing contribution is contained in his book on astronomy, Sefer Tekhunah, 
which is preserved in both the Hebrew and Latin versions. A lengthy work, 
divided into 136 chapters, it is notable for its emphasis on astronomical 
observations and its critical assessment of Ptolemy and the Islamic as-
tronomer al‑Bitruji.44 Using his own solar and lunar models, he calculated 
sine tables, spherical astronomical parameters, and solar and lunar mean 
motions and corrections. His practical bent led him to the invention of a 
transversal scale that helped to reduce the random errors introduced into 
observations when reading off minutes from the linear scale of an astrolabe 
calibrated in degrees. His writings on harmonic numbers (now extant only 
in Latin translation), combinatorial analysis, and the geometry of Euclid 
have been studied in depth by Tony Levy (1996) for their Arabic sources, 
and for their impact on later work. As mentioned in chapter 1, there is the 
possibility of a transmission of the basic formulas for finding permutations 
and combinations from Gershom’s Computer’s Manual to a Cardano man-
uscript, which in turn bore great similarities to the treatment in Mersenne’s 
classical book on music theory, Harmonie Universelle (1636).

In this short survey of mathematicians from the Hebrew tradition, we 
have omitted discussion of one of the most influential figures in Jewish 
intellectual history, Moses Maimonides (d. 1204). His early education in 
Andalusian Spain introduced him to the scientific treatises of fellow Anda-
lusians Jabir ibn Aflah and al‑Mu’tamir ibn Hud. He wrote in both Arabic 
and Hebrew, and his notable works in the former language include com-
mentaries on Apollonius’s Conics and Ibn al‑Haytham’s Completion of the 
Conics (Langermann 1984).
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A study of mathematics from Hebrew sources is an instructive exercise. 
Like Islamic mathematics, of which it was an integral part at times, it went 
through different phases: translation, assimilation, synthesis, creation, and 
transmission. Mathematical ideas and practices contained in Arabic texts 
were translated into Hebrew and then assimilated by Jewish communities 
unfamiliar with Islamic sources. From their ranks came notable scholars 
who synthesized and developed the subject. Their writing became an im-
portant channel for the diffusion of ideas and texts before Europe discov-
ered the original Greek texts.

Mathematics of the Maghreb
There is a tendency, in studying Islamic mathematics, to confine one’s at-
tention to the activities around the Middle East and Spain, and ignore 
the work in North and Northwest Africa, a large region referred to as the 
Maghreb, in which there occurred mathematical activity within the frame-
work of the Islamic civilization. The starting point of this activity was the 
link between Andalusia in Spain and the Maghreb, where the close politi-
cal, economic, and cultural ties meant that it was difficult to separate the 
two regions of the Muslim West.

From the information available, mathematical activity began in Ifriqya 
(present-day Tunisia) around the end of the eighth century, when there 
is a record of a scholar known as Yahya al‑Kharraz, who wrote a book on 
metrology. For the next two centuries information about mathematical ac-
tivity in the region is scarce, although there is some evidence of knowledge 
moving westward from Baghdad. Abu Sahl al-Qayarawani, who may have 
spent some time in Baghdad, is the first known mathematician from the 
Maghreb. He wrote a book titled Kitab fi al‑hisab al‑hindi explaining In-
dian arithmetic. Around the same period, the ruler Ibrahim II (875–902) 
established a Bail al‑Hikma (House of Wisdom) in Raqqada, modeled on 
the lines of the one in Baghdad, to promote the study of mathematics, as-
tronomy, and other subjects. This institution survived as a scientific center 
until the establishment of the Fatimid caliphate in Egypt. The patronage 
of learning was reestablished during the reign of Fatimid caliph al‑Mu’izz, 
and although we know that the study of mathematics and astronomy flour-
ished during this period, there is little information on the scholars and the 
type of work that they undertook.

There is considerably more information available on mathematical ac-
tivity in the Maghreb during the Almohad period (twelfth and thirteenth 
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centuries). Of the three mathematicians who have been identified and 
studied, Ibn Mun’im’s (d. 1228) work is the most innovative. In his only ex-
tant work, Fiqh al‑hisab, dealing with combinatory problems, he states the 
rule for determining all possible combinations of n colors p times and es-
tablishes, inductively, the resulting arithmetic triangle of the relationship:
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He applies similar formulas for permutations with and without repeti-
tions using the Arabic alphabet for illustration purposes. One of the more 
remarkable aspects of his work is the use of combinatorial reasoning, the 
earliest attempt in Islamic mathematics to do so.

With the advent of the fourteenth century the quantity of mathematical 
writing increased substantially, although many of these texts took the form 
of commentaries and summaries of previous work. However, this century 
produced a mathematician of exceptional ability: Ibn al‑Banna (c. 1256–
1321). Born in Marrakesh (Morocco), he became a versatile scholar, having 
made a study of the Arabic language, the Qur’an, astronomy, mathemat-
ics, and medicine. His fame rests mainly on his work in mathematics. His 
best-known book, Talkis a’mal al‑hisab (Summary of Arithmetical Opera-
tions) is still extant. This was widely known in the Islamic world because 
of its clarity and conciseness. He also wrote two other texts on calculation 
that have survived: al‑Qanun al‑hisab (Manual of Mathematics) and Raf 
al‑hijab (Lifting of the Veil). Other texts include an introduction to Euclid, 
a book on algebra, a treatise on geometry, and a popular astronomical al-
manac. In the Raf al-Hijab there are some interesting mathematical ideas 
and results. It contains one of the earliest expressions of the continued 
fractions used to compute square roots. In the section on summing series 
Ibn al-Banna obtains the results for n terms as 
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However, Rashed (1994) considers Ibn al-Banna’s work on binomial co-
efficients to be his most innovative work; it is even more fundamental than 
the Pascal triangle results given by al-Karaji and al-Samawal. 

The Maghreb tradition carried on for a few centuries, but the quality of 
the work declined. Mathematicians were reduced to teaching or mundane 
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activities such as advising on the determination of times for prayer or dis-
tributing inheritances or using astronomical instruments. Yet sparks of 
curiosity and inventiveness appeared occasionally. Muhammad ibn Mu-
hammad al‑Fullani al‑Kishnawi was a Fulani from northern Nigeria. He 
traveled to Egypt and, in 1732, wrote a manuscript (in Arabic) of proce-
dures for constructing magic squares up to order eleven. As words of en-
couragement to the reader, he writes: “Do not give up, for that is ignorance 
and not according to the rules of this art. . . . Like the lover, you cannot hope 
to achieve success without infinite perseverance.” He died in Cairo in 1741.

General methods for constructing magic squares first appeared in the 
Islamic world, including the Maghreb, during the ninth century. From the 
thirteenth century, recreational and divinatory applications began to re-
place mathematical study. However, interest in the mathematics of con-
struction survived, as shown by the work of Muhammad ibn Muhammad 
al‑Fulani al‑Kishnawi.

The Islamic Contribution: A Final Assessment

In chapter 1 we contrasted modern Eurocentric attitudes toward the Islamic 
contribution with the seminal role Islamic innovators played in transmit-
ting mathematics to Western Europe, setting the stage for the development 
of modern mathematics. It should be clear from the present chapter that 
the traditional view of the medieval Islamic world as a mere custodian of 
Greek learning and passive transmitter of knowledge is both a partial view 
and a distorted one. We have seen how original were the Islamic scholars’ 
contributions to algebra and trigonometry, and how crucial was the role 
they played in bringing together two different mathematical strands—the 
algebraic and arithmetic traditions so evident in the mathematical cultures 
of Mesopotamia, India, and China; and the geometric traditions of Greece 
and the Hellenistic world. The intertwining of these strands had already 
begun with later Alexandrian mathematicians such as Heron, Diophantus, 
and Pappus, who had absorbed some of their mathematics from Meso-
potamia and Egypt, but there remained the constraints imposed by the 
straitjacket of the Greek mathematical tradition.45 It was left to the Islamic 
scholars to bring together the best of both traditions. In doing so, they 
provided us with an efficient system of numeration in which calculations 
were no longer tied to mechanical devices, an algebra that was practical 
and rigorous, a geometry that was no longer an intellectual pastime, and 
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a trigonometry freed from its ties to astronomy to eventually be used in 
fields as diverse as optics and surveying.

The Islamic approach to mathematics was no doubt helped in its early 
years by the existence of a creative tension between the “algebra people” 
and the “geometry people,” best exemplified by al-Khwarizmi and Thabit 
ibn Qurra, respectively. Each group remained open to influences from the 
other group, as shown by al-Khwarizmi’s geometric approach to the solu-
tion of quadratic equations and Thabit’s discovery of a rule for generating 
amicable numbers. As mathematics developed, work on “pure” geometry, 
such as attempts to prove or modify Euclid’s parallel postulate, continued 
alongside the development of skillful numerical methods for extracting 
roots and solving higher-order equations. Indeed, one of the main reasons 
why modern mathematics moved away so substantially from the spirit 
and methods of Greek mathematics was the intervention of the Islamic 
scholars. Perhaps, if the lessons had been absorbed earlier and if the works 
of the notable figures of Islamic mathematics such as Omar Khayyam and 
Thabit ibn Qurra had been better known than they were, the period of 
painful transition and the repetitious nature of some medieval European 
mathematics could have been avoided altogether.

Both history and religion in Europe conspired to stem the flow of ideas 
from the Islamic world at a time when Europe was rousing itself from its 
long slumber and taking its first confident steps into the realm of ideas. 
Increasingly, Europe was exposed only to the Greek vision as represented 
by various translations into Latin and other languages from Arabic texts. 
In a search for their roots, Europeans bypassed their Islamic and non-
European heritage and homed in on Greece and Rome. Greece thereby 
became the fount of their intellectual and cultural heritage, while for 
their religious roots they looked toward Rome and the Byzantium. Here 
they eventually rewove a synthetic Christianity from some of the various 
strands into which doctrinal controversies had split the original Pauline 
faith, although the result was in some ways far removed from its Eastern 
and Judaic origins. The history of the last five hundred years has tended to 
strengthen these ties, partly as a consequence of European dominance and 
partly under the impetus of “Classical” scholarship, much of which regards 
Greece as the sole source of knowledge and culture. 

In mathematics, the glorification of ancient Greece during the Renais-
sance led to a concentration on Hellenistic texts. The medieval Islamic 
world also admired the Hellenistic contribution, particularly in geometry. 
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One wonders, especially with Thabit ibn Qurra, whether some of the time 
and effort spent translating Greek works might have been put to better use 
in developing the translators’ own, very promising algebra. Nevertheless, 
the Islamic world remained open to other influences as well.	

There is no denying that the Greek approach to mathematics produced 
remarkable results, but it also hampered the subsequent development of 
the subject. The strengths of the Greek approach have been discussed ex-
tensively; any standard textbook on the history of mathematics deals with 
this, so there is little point in going over the positive aspects again. But 
the limiting effect of the Greek mode of thought is another matter. The 
Greek preoccupation with geometry until the infiltration of the Mesopota-
mian and Egyptian influences in the later Hellenistic period was a serious 
constraint. Great minds such as Pythagoras, Euclid, and Apollonius spent 
much of their time creating what were essentially abstract, idealized con-
structs; how they arrived at a conclusion was in some way more important 
than any practical significance. There were in fact two different geometries 
coexisting at the time: the “pure” geometry of the Greeks, whose validity 
was determined wholly by its internal consistency and coherence, and the 
“applied” geometry of other mathematical traditions, whose validity was 
judged solely by its ability to describe physical reality. (It is interesting to 
speculate what a Euclid who had absorbed the arithmetic and algebra of the 
Mesopotamians and had sympathy with their analytic/algebraic approach 
to geometry might have created with his particular brand of deductive rea-
soning.) Apollonius’s Conics seemed to be a product of a Greek abstract ge-
ometry that had reached a level of refinement with no further progress in 
sight. Only with the emergence of the Islamic mathematics were the works 
of the period rescued and given a new direction. However, the pioneers 
of modern mathematics in the post-Renaissance period found themselves 
compelled to undergo a sometimes painful distancing from the Greek geo-
metric approach their predecessors had too readily espoused, unleavened 
as it was with the Islamic spirit. 

We conclude this chapter by returning to the question of transmissions, 
which we have touched on in several previous chapters. The impact of the 
Islamic world on the intellectual life of Europe is better chronicled than 
most other cross-cultural influences. The spread of Indian numerals, the 
growth of algebra, the introduction of trigonometry, the dissemination of 
Greek geometry, and the Islamic extensions to it—these are all well au-
thenticated and recognized in the more recent histories of mathematics. 
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The possible transmission of certain techniques through third parties for 
which written records are nonexistent or incomplete is more problematic. 
We have looked at several examples, including solutions of higher-order 
equations by the Horner-Ruffini method and Thabit’s rule for generating 
amicable numbers (sometimes credited to Fermat and Euler). As a further 
instance, it is now known that Nicolaus Copernicus (1473–1543) owed a 
considerable debt to the Islamic mathematician-astronomers Nasir al-
Din al-Tusi (1201–1274) and Mu’ayyad al-Din al-’Urdi (d. 1266), some of 
whose ideas are incorporated in the Copernican solar system (though it 
was Copernicus who put the sun at the center, thus reviving an idea that 
dates back to the Greek Aristarchus of Samos in the third century BC) 
(Saliba 2007, pp. 193–232). There is clearly a need for further examination 
of known medieval European sources and for a search for other archival 
material, especially in Arabic and Ottoman sources.46

Apart from transmissions to the West, there are two other links that 
require further elaboration.

1. There is the whole question of possible transmissions of mathe-
matical ideas between the Islamic world and China. We have remarked 
in this chapter on how Chinese methods of solving numerical equations 
of higher order may have influenced Islamic mathematics; at the end of 
chapter 7, on Chinese mathematics, we briefly considered the likelihood 
that Islamic trigonometry and arithmetic may have reached China. In 
looking for channels along which such transmissions could have oc-
curred, we must take into account the political and social climate of 
the first half of the second millennium AD. There is evidence, from the 
time of the Song dynasty, of political and cultural contacts between the 
two societies. The Mongol empire stretched across a good part of cen-
tral Asia. We have seen how receptive some of the rulers were to sci-
entific ideas from lands they had conquered. Hulegu Khan and Ulugh 
Beg were not only patrons but practitioners of science. The intriguing 
question remains: did they fulfill the same role as the caliphs of Bagh-
dad by encouraging contacts between their scientists? Here again, more 
research needs to be done before we can provide any definite answers.

2. Indian mathematics and astronomy absorbed much from Islamic 
and Persian sources; astronomy was the main beneficiary. In 1370 Ma-
hendra Suri, the astronomer at the court of Firoz Tughlaq, published 
his work Yantraraja, which introduced Persian and Islamic astronomy 
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into the Sanskrit Siddhanta tradition. This flow of astronomical ideas, as 
well as instruments, continued into the seventeenth century, providing 
the basic materials for those training in the Ptolemaic system. However, 
attempts to synthesize the two systems, which had such promising be-
ginnings with Mahendra Suri, proved unsuccessful. Over a period of 
time there developed two distinct schools in mathematical astronomy: 
the old Sanskrit school and the new Islamic school. Occasionally they 
came together, usually under the patronage of an enlightened ruler such 
as the Mughal emperor Akbar, or Raja Jai Singh of Rajasthan. The latter 
left as his monument the large masonry astronomical instruments at 
Delhi, Jaipur, Ujjain, and Varanasi (Benares).

•  •  •

This is the end of our story. We have traveled around the world in search 
of our “hidden” mathematical heritage, and in the rich tapestry of early 
human experience we have discovered mathematics in bones, strings, and 
standing stones. No society, however small or remote, has ever lacked the 
basic curiosity and “number sense” that is part of the global mathemati-
cal experience. The need to record information that gave birth to writ-
ten language also brought a variety of number systems, each with its own 
strengths and peculiarities. And yet if there is a single universal object, one 
that transcends linguistic, national, and cultural barriers and is acceptable 
to all and denied by none, it is our present set of numerals. From its re-
mote beginnings in India, its gradual spread in all directions remains the 
great romantic episode in the history of mathematics. It is hoped that this 
episode, together with other non-European mathematical achievements 
highlighted in this book, will help to extend our horizons and dent the pa-
rochialism that lies behind the Eurocentric perception of the development 
of mathematical knowledge.

Notes

1. For the present edition, I decided to substitute the phrase “medieval Islamic math-
ematics” or, in short where the context allowed, “Islamic mathematics” for “Arab 
Mathematics.” This allows for the accommodation of other groups such as Iranians, 
Egyptians, North and West Africans. A further qualification then becomes necessary. 
Although Islam is a religion, the term can be used to describe a culture tha includes sig-
nificant communities of other religious groups—notably Christians and Jews. During 
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the period (hereafter referred to as the medieval period) that we are concerned with 
in this book (from AD 750 to 1450), these groups played an important part. There 
is a brief section on the contribution of those mathematicians who wrote in Hebrew. 
However, as we will find out in this chapter, the majority of the mathematicians dis-
cussed were Muslims of different denominations living in societies where Islam was 
the dominant religion.

2. This view is now hotly contested. An alternative view, espoused by Balty-Guesdon 
(1992) and Gutas (1998) among others, sees Bait al-Hikma as little more than a library 
where a few translations were carried out.

3. For a detailed examination of the meaning of the term zij from a large number of 
primary sources in different languages, including Persian, Arabic, and Sanskrit, see 
Mercier (2004, pp. 451–60).

4. To understand the probable debt to Indian algebra, it is important to remember that 
in the context of algebraic notation a distinction may be made between two different 
categories of things to be represented: unknown quantities and types of numbers. In 
Indian algebra, this distinction is present from early times. For example, colors (black 
[calaca], blue [nilaca], yellow [pitaca], red [lohitaca], . . .) and later letters (ca, ni, pi, 
loh, . . .) were used to represent unknown quantities. At the same time, names for 
the type or species of numbers such as rupa, varga, and ghana for absolute numbers, 
squares, and cubes respectively were also used. This is well summed up in the following 
passage from Bhaskaracharya’s Bijganita, translated by Colebrooke (1817):

When absolute number and colour or letter are multiplied one by the other, 
the product will be colour or letter. When two or more homogenous quantities 
[meaning those of the same color] are multiplied together, the product will be the 
square, cube or other [power] of the quantity. But if unlike quantities be multi-
plied, the result is their (bhavita) ‘to be’ product or factum. (p. 140; my insertions 
in square brackets)

In al-Khwarizmi’s Algebra, a distinction exists between “types of numbers that appear 
in the calculation” (e.g., treasures [mal], roots [jidr], . . .) and unknown quantities (e.g., 
thing [shay]) but only for the purpose of expressing arithmetic operations rhetorically. 
Later Islamic mathematicians, notably al-Karaji and Omar Khayyam, extended this 
closer to our usage: shay and mal were identified without x and x2 respectively. But this 
is another story. 

5. More precisely, these consisted of a large dollop of Indian and unknown quantities of 
Babylonian and Greek ingredients.

6. Algorithm, algorism, or augrim originally referred to systematic calculation with 
decimal numbers. It was referred to as such in Dr. Johnson’s 1755 Dictionary of the 
English Language.
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7. More strictly, al-Khwarizmi’s zij became influential after the thirteenth century, ex-
cept in al-Andulus, where it gained favor from the eleventh century. Its influence on the 
later zijes compiled in medieval Europe is not insignificant, although not as important 
as the so-called Toledan and Alphonsine tables. I am grateful to an anonymous reader 
for drawing my attention to this point. 

8. The Muslim era begins in the year that Muhammad fled from Mecca (AD 622, the 
year of the Hejira). The Muslim year is a lunar year and therefore about eleven days 
shorter than the Western calendar year, so an AH date (“after Hejira”) cannot be con-
verted to an AD date simply by adding 622.

9. For further details, see Pingree (1970).

10. Al-Khwarizmi’s Zij al-Sindhind remains an important “transmission” document in 
the history of mathematics. It highlighted the role of pre-Islamic Indian astronomy in 
the birth of Islamic astronomy. The astronomer Ibn al-Adami described al-Khwarizmi’s 
Zij as an abridgement of the one that al-Fazari had prepared for Caliph al-Ma’mun 
soon after the Sind mission during the second half of the eighth century. The fame of 
al-Khwarizmi’s tables had spread among the astronomers not only in Baghdad but also 
in central Asia and Andalusia. Al-Biruni wrote three commentaries on this work, in 
one of which he defended al-Khwarizmi against attacks by al-Ahwazi. And as late as the 
nineteenth century, al-Khwarizmi’s Zij was being copied in Egypt. For further details 
and references, see Brentjes (2007). 

11. Here again it is difficult to separate fact from fiction. For more recent details and 
references, see King (2000).

12. For further details, see Berggren (1986).

13. Al-Khwarizmi’s treatise on the Jewish calendar contains rules for calculating the 
mean longitude of the sun and the moon based on this calendar and for determining 
on what day of the Muslim week the first day of the new year would fall. It also discusses 
more fanciful subjects such as the lapse of time between the beginning of the Jewish era 
(i.e., the creation of Adam) and the beginning of the Seleucid era. For further details, 
see Kennedy (1964).

14. Quadrature is the process of determining the area of a plane geometric figure by 
dividing it into a collection of shapes of known area.

15. The status of Euclid’s parallel postulate has been a source of great controversy in the 
history of mathematics. The question first raised by Greek writers was whether Euclid 
had made a postulate out of what amounted to a theorem. Attempts to prove the postu-
late continued attracting the attention of Islamic mathematicians of the caliber of Omar 
Khayyam and Nasir al-Din al-Tusi and those who came after. 
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16. A comparison between the two calendars indicates that, in the case of Omar’s, 96 out 
of 396 years were made into leap years, while the corresponding figure for the Gregorian 
calendar is 97 out of 400. It is estimated that the Gregorian calendar had an error of one 
day in 3,330 years, while Omar’s (Jalali) calendar had an error of one day in 3,770 years.

17. The Islamic work on the parallel postulate is outside the scope of this book. For 
further details, see Rosenfeld (1988). 

18. Courtly patronage offered to scholars by the Mongols can only be a partial expla-
nation for the continuity of mathematical studies during this period, for after all they 
ruled only Iran, parts of Iraq, and Anatolia. Other explanations should be sought in the 
widespread interest in mathematics, particularly since the subject was taught also in 
madrassas all over the Islamic world.

19. These multiplication methods are discussed by Smith (1923–25).

20.	 The number 6 is perfect since the sum of its proper divisors is 1 + 2 + 3 = 6.

	 The number 8 is deficient since the sum of its proper divisors is 1 + 2 + 4 < 8.

	� The number 12 is abundant since the sum of its proper divisors is 1 + 2 + 3 + 4 + 6 
> 12.

21. “Casting out nines” is an originally Indian method of checking addition and mul-
tiplication. It uses the well-known property that the sum of the digits of any natural 
number when divided by 9 produces the same remainder as when the number itself 
is divided by 9. For example, in checking that the product of 436 and 659 is 287,324, 

1.  Add the digits of 436 to get 13, whose digits are then added to get 4.

2.  Add the digits of 659 to get 20, whose digits are then added to get 2.

3.  Add the digits of the product 287,324 to get 26, whose digits add to 8. 

So “casting out nines” leaves remainders of 4, 2, and 8 respectively, and since 4 # 2 = 8, 
the multiplication is probably correct.

22. An aliquot is any divisor of a given number other than the number itself. A prime 
number has only one aliquot part: the number 1. Numbers 1, 2, 3, 4, and 6 are all ali-
quot parts of 12.

23. For a useful discussion of the historical background to extraction of higher roots in 
the medieval Islamic culture and the mathematics of this procedure, which results in 
the generation of the numbers in the Pascal’s triangle, see Berggren (1986, pp. 53–63). 
The procedure is equivalent to the Ruffini-Horner method for extracting a fifth root. 
Al-Kashi (d. 1429), the Persian mathematician, in his book The Key of Arithmetic illus-
trates this procedure by working out the fifth root of the number 44,240,899,506,197.
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24. Oakes and Alkhateeb (2007) have argued that words al-jabr and al-muqabala were 
used in everyday Arabic long before being “appropriated” into arithmetic and algebra. 
What is uniquely algebraic is the phrase al-jabr wa’l-muqabala. It began as a shorthand 
way of saying “by al-jabr and/or al-muqabala.” Different Italian books have argibra, 
alcibra, algebra, and even aliabraa argibra. The English word “algebra” derives from the 
Italian spelling.

25. For further details of Thabit’s approach, see Rashed (1994 ).

26. A detailed step‑by‑step comparison is found in Joseph (1994d, 65–67) and will not 
be discussed here. The difference between Al-Khwarizmi’s and Abu Kamil’s approaches 
is that the latter makes explicit use of propositions from Euclid’s Elements in solving 
the quadratic equation discussed. However, it is worth noting that Abu Kamil gave es-
sentially the same proofs for solving quadratic equations as Thabit ibn Qurra, who lived 
around the same time. 

27. Since the book was dedicated to a vizier by the name of Fakhr al-Din, the title may 
well reflect that fact.

28. A conic is a curve formed by intersecting a cone with a plane. In 200 BC, the Greek 
mathematician Apollonius of Perga undertook a systematic study of the genesis of five 
type of conics: circle, hyperbola, ellipse, parabola, and rectangular hyperbola. For ex-
ample, the circle and the ellipse arise when the intersection of cone and plane is a closed 
curve. And the circle is a special case of the ellipse: it arises when the plane is perpen-
dicular to the axis of the cone. 

29. I am grateful to Victor Katz for this observation.

30. For some of the most recent evidence on the Islamic influence, see Bala (2007) and 
Saliba (2007).

31. For a statement of this proof and the original diagram on which figure 11.9 is based, 
see Berggren (2007, p. 579). 

32. In the Quadrature of the Parabola, Archimedes proved that the area enclosed by 
a parabola and a straight line is 4/3 multiplied by the area of a triangle with equal 
base and height. He expressed the solution to the problem as a geometric series that 
summed to infinity with the ratio 1/4.

33. The method of analysis and synthesis goes back to the Greeks and is a useful ap-
proach to solving problems. Analysis is a method of geometrical demonstration that 
proceeds from the solution and retraces the path of solution to an original set of givens 
that is known to be true. The ensuing synthesis moves from the known set of givens 
toward the solution. Ibn Sinan’s work exhibits two main preoccupations. First, to obtain 
the magnitude of certain parts of geometrical figures, assuming that other parts are 
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given so that, for example, given certain chords and arcs of a circle, the diameter of the 
circle can be determined. Second, to investigate the construction of certain geometric 
figures, of which the most interesting are the so-called “contact” problems, such as, for 
example, how one constructs a circle that is tangent to given lines and circles and/or 
passes through certain specified points.

34. For more details of Ibn Sinan’s innovative work in geometry, see Rashed (1996).

35. Unfortunately, al-Karaji’s original work on binomial coefficients and the Pascal tri-
angle is no longer extant, and so we have to depend on the account of al-Samawal (1125–
1174). For a brief discussion of al-Karaji’s work on binomial coefficients, see Rashed 
(1994, pp. 66–67).

36. “Alhazen’s problem” involves locating a point or points reflecting on the surface 
of a concave or convex spherical mirror, given that the two points are related to one 
another as are the eye and the visible object. In Book 5 of his Optics, Ibn al-Haytham 
lays down the solution for a variety of surfaces—spherical, cylindrical, and conical. 
He does so based on certain results (lemmas) that he has proved for geometrical 
constructions.

37. A paraboloid is a type of surface in three dimensions. It can be shaped like an oval 
cup, in which case it is known as an elliptic paraboloid, or shaped like a saddle, in which 
case it is a hyperbolic paraboloid. Depending on the way a parabola is rotated, we ob-
tain paraboloids of different shapes. 

38. The discussion that follows is based on Berggren (2007, pp. 588–92) and Katz 
(1998). It should be remembered that al-Karaji gave one of the earliest-known proofs 
of the formula for the sum of cubes using a method of induction. However, as early as 
AD 500, the Indian mathematician Aryabhata had stated the result. It was rediscovered 
by Uthman al-Qabisi in tenth-century Baghdad and again in early fourteenth-century 
France by Levi ben Gershom. The Indian mathematician/astronomer Nilakantha, 
whose work we referred to in earlier chapters, gave a visual proof in 1500 that captured 
the essence of al-Karaji’s approach. 

39. It is interesting in this context that a contemporary of al-Hasib, known as al-Battani, 
gave the following rule for finding the elevation of the sun above the horizon () in 
terms of the length s of the shadow cast by a vertical gnomon of height h:

( ) .sin
sins h 90c

θ
θ

=
−

40. The interested reader may wish to consult the relevant sections of Van Brummelen 
(2009). 

41. The result follows from: Let ABCDE be a regular pentagon of side 1 unit. M, P, and 
N are points on BE such that AP, CM, and DN are all perpendicular to BE.
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(a) Find DABP and DCBM.

(b) By considering D ABE, prove that BE = 2 cos 36c.

(c) By considering quadrilateral BCDE, prove that BE = 2 cos 72c + 1.

(d) Therefore BE = 2 cos 36c = 2 cos 72c + 1.

C

DB

EA

M

P

N

1

1

1

72°

72°108°

36°

36°

42. It may be argued that the Islamic mathematicians also obtained this value from 
Ptolemy’s work, which contains the value corresponding to the sine of 36c (and there-
fore the values of 18c and 72c).

43. The half-angle formula follows from the identities sin2 x + cos2 x = 1 and cos 
2x = cos2 x - sin2 x. Thus

.sin cos sin cosx x x x1 2
1

2
1and2= − =
−

44. A well-known translation of Gershom’s astronomy is Goldstein (1985).

45. This statement may be seen by some as “incendiary and vague.” The “constraints” 
referred to relate to a view that mathematics is a system of axiomatic/deductive truths 
inherited from the Greeks and is concerned with a search for infallible eternal truths 
and modes of establishing them. There is a growing awareness that the formal deduc-
tive format found in mathematics texts is a serious obstacle to understanding, leaving 
many students with no clear idea of what is being talked about. It is now also clearly 
recognized that the development of mathematical analysis in Europe became possible 
only when the Greek canon of logical rigor and the Greek mode of establishing math-
ematical truths was given up during the heyday of the development of “infinitesimal 
calculus.” As a notable historian of calculus writes: “Although the Greek bequest of 
deductive rigour is the distinguishing feature of modern mathematics, it is arguable 
that, had all the succeeding generations also refused to use real numbers and limits 
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until they fully understood them, the calculus might never have been developed and 
mathematics might now be a dead and forgotten science” (Edwards 1979, p. 79). 

46. More importantly, a reevaluation of the roots of the Copernican Revolution is called 
for. It is generally recognized that the Copernican Revolution transformed the Euro-
pean conception of the universe from an earth-centered vision to one in which the 
earth became only one planet among others orbiting the sun, and this is often seen 
as the key event that triggered the birth of modern science. What is often ignored in 
the Eurocentered history of science is the significant non-European contribution to 
this revolution. According to Bala (2007), these include Arabic optics and astronomy, 
Indian mathematics, and Chinese cosmological ideas, acknowledged in the pioneering 
studies of Needham (1954– ) and others who followed him.
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Horner-Ruffini method, 247, 300, 302, 
511, 515n2; Chinese origin of, 273–81
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Craftsman, 487–88
Korea, 13, 201, 299, 304; mathematics in, 

296–97
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162, 172, 175n16; of areas, 136; British 
units of, 62–63; Chinese “square unit” 
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Pell’s equation, 388–89, 391
perfect numbers, 91, 473
permutations, 252, 260, 507; and com-

binations, 270, 316, 347, 349, 352–55, 
376, 378, 379, 505



558  Subject Index

Persia, 10, 11, 19, 25n5, 125, 179, 373, 
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Pythagorean philosophy, 6, 19, 25n5, 91
Pythagorean theorem, 6, 119, 144, 160, 
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107, 108, 149–50, 184, 376, 516n32; 
Gregory series, 420, 428–29; Liebniz 
series for π, 420; infinite, 21, 170, 
262, 269, 317, 378, 380, 409, 411, 418, 
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ematics, 68, 72–73
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292, 300, 406, 511 
Spain, 10, 11, 12, 48, 435, 442, 452, 

463–64, 504, 505, 506
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415n15, 416n30, 427, 507; extrac-
tion of, 146, 219–28, 244n19, 248, 
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231, 301, 378, 476–77, 478, 480, 
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Suanshu Shu, 193, 242n3
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Sui Shu, 264, 269
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147, 159, 249, 324, 356, 358, 369n9, 
369–70n10, 372, 380, 382, 406, 
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Sumerian Empire, 128, 130, 131–32, 133, 
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surds, 378
surveying, 5, 110, 131, 153, 241, 246, 509
Suryasiddhanta, 373, 374, 394, 496
sutras, 314, 323, 324, 341, 358, 369n4, 

372
symbols, 55, 65, 244n19, 339; absence of 
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used as, 251, 259, 281, 381, 513n4

Syria, 80, 453, 466, 487

tablets: bamboo, 194; cuneiform, 174n4, 
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143, 167, 173, 181, 183, 185; of Tell 
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See also technology flow
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tokens, 134–35
Toledo, 10, 12
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triangles, 25–26n6, 215, 259, 303, 327, 

330, 412–13n1, 472, 500, 507; acute, 
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isosceles, 111–12, 160, 294; lack of 
term for in Chinese mathematical 
literature, 245n27; obtuse, 493; right-
angled, 6, 75–76n17, 163, 165, 169, 
170, 190, 241, 248, 250–51, 258–59, 
260, 302–3n8; 330, 361, 377, 492; 
similar, 171, 173, 248, 261, 279–80, 
492; spherical, 499. See also Pascal’s 
triangle; Pythagorean theorem

trigonometry, 28n17, 175n16, 374–75, 
378, 380, 437, 454, 455, 508, 509, 
510; of chords, 357, 504; construction 
of trigonometric tables, 500–503; 

derivation of trigonometric relation-
ships, 498–500; development of 
trigonometric functions, 395–97; 
Indian, 20, 368n2, 392–94, 394–95; 
spherical, 196, 361, 373, 459. See also 
Islamic trigonometry
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two, square root of, 146, 294–95, 378; 

Babylonian estimate of, 144, 183
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Ujjain, India, 373, 512
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Umayyads, 10, 452
Uruk, 132
Usul hisab al-Hind, 463

Vedangas, 315, 323, 326, 361
Vedic mathematics, 249, 316, 320, 321, 

327, 328, 340, 349, 354, 367, 369n4, 
369n6, 372, 386, 405, 406; anteced-
ents of Vedic geometry, 324–26; and 
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technology, 327, 337; and the 
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334–36; sources of, 232–24. See also 
Sulbasutras (The Rules of the Cord)

versine, 374, 375, 431, 432
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494; spherical volume, 244n20, 300; 
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114–15, 116, 118, 181, 185, 187n11, 231
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cians, 75n4; sexual alliances of, 424; 
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written

Xi Da, 305
Xiang Jie Jiu Zhang Suan Fa Zuan Lei, 

196, 257, 307n8
Xu Gu Zhai Suan Fa, 209 
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Yuan Dynasty, 28n19, 196, 292, 300
Yuktibhasa, 407, 442
Yung Luo Da Dian, 219

zeng cheng fang fa, 247
zero, 22, 281, 370n16; absence of a 

symbol for, 65, 86, 138; African use 
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203–4, 205, 221, 243n11; in Egyptian 
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339–40, 341, 342, 346–47, 360, 367, 
370–71n19, 376, 379, 381, 413–14n6, 
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Mayan mathematics, 67, 68, 77n16, 
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138–39, 345

Zhou Bi Suan Jing, 189, 190, 241, 241n1, 
248, 250, 259, 302

Zhun shu, 231
Zij almagesti, 498
Zij al-Sindhind, 514n10
Zulu counting words, 42, 62–63
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