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Like the crest of a peacock, like the gem
on the head of a snake, so is mathematics
at the head of all knowledge.
— Vedanga Jyotisa (c. 500 BC)
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Preface to the Third Edition

It is now almost twenty years since the first edition of this book came out
as a hardback. Four reprints, two editions, and a number of translations
later, the book is badly in need of a revamp, owing to new theories and
evidence as well as comments, suggestions, and criticisms that have come
from so many different parts of the world. It was particularly fortuitous
that while I was preparing the new edition of the book there appeared The
Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook
(edited by Victor Katz), on the history of mathematics of the named cul-
tures, published in 2007. My debt to this book will become evident from
the references and acknowledgments that follow.

The readership of this book in the past has included mainly teachers
and the general public, with the technical content of the mathematical
material being accessible to anyone having a reasonable precalculus back-
ground. And since it is a similar readership that this edition addresses,
the demands on the reader have been kept to a level not different from
those of the earlier editions. However, it is hoped that the new edition will
also attract greater interest among the historians of mathematics. Toward
that end, and for other readers who wish to pursue their interests further,
this edition contains a major innovation: the introduction of endnotes for
each chapter. These endnotes will hopefully serve different objectives: to
provide references for those who wish to pursue their own reading on spe-
cific subjects, to qualify and elaborate on points made in the main text,
to respond to comments and criticisms on earlier editions, and occasion-
ally to make connections between different traditions and their “ways of
doing mathematics” It is hoped that the introduction of these endnotes
will not disturb or distract the flow of the narrative in the main text. Yet
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another innovation with this edition is a revised and enlarged reference
list. Because of substantial additions, it was felt necessary to regroup the
entries according to the mathematics of particular cultures, with a separate
category for general items. It is hoped that these innovations will make this
book a more effective resource for students and teachers of mathematics
while remaining accessible to general readers.

While researching for this edition, I also came across another book, A
History of Mathematics: From Mesopotamia to Modernity, by Luke Hodg-
kin. In its introduction, there is a section on “Eurocentrism,” which I found
both thought provoking and persuasive. Incidentally, Hodgkins book is
the first history of mathematics I have come across that acknowledges the
pervasiveness and durability of the Eurocentric version of history. The
quotation below from his book encapsulates his view:

It would appear that the argument set out by Joseph [in the Crest of the
Peacock] has not been won yet. . . . For what [Eurocentrism] might mean
in mathematics, we should go back to Joseph who, at the time he began his
project (in the 1980s), had a strong, passionate and undeniable point. . . .
his book is important: it is the only book in the history of mathemat-
ics written from a strong personal conviction, and it is valuable for that
reason alone. It stands as the single most influential work in changing at-
titudes to non-European mathematics. The sources, such as Neugebauer
on the Egyptians and Babylonians, or Youschkevitch on the Islamic tradi-
tion, may have been available for some time before, but Joseph drew their
findings into a forceful argument which since (like Kuhn’s work) its main
thrust is easy to follow has made many converts. (pp. 12-13)

A number of “mainstream” historians of mathematics have in recent years
taken up the task of casting a wider net in writing history and considering
seriously the contributions of not only the ancient Egyptian and Mesopo-
tamian civilizations but also the Chinese, Indian, and Islamic civilizations.
There are substantial and growing communities of mathematics historians
of all these civilizations, a number of whom are engaged in the task of
making new evidence accessible to everyone. Nevertheless, it is argued that
change in historical perceptions is slow, and that a significant part of the
new studies in the history of mathematics has failed to reach the broader
community.

A central theme of the earlier editions, seen by some as their principal
strength and by others as either an irritating irrelevance or even a fatal
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weakness, is their critique of the widespread acceptance of the hegemony
of a Western version of mathematics, following from the assumption that
mathematics was largely a Greek and European creation. I have argued
elsewhere that in the past the two tactics used to propagate this view were
(1) omission and appropriation and (2) exclusion by definition. The first is
examined in some detail in chapter 1. The second needs clarification and
elaboration here.

A Eurocentric approach to the history of mathematics is intimately con-
nected with the dominant view of mathematics, both as a sociohistorical
practice and as an intellectual activity. Despite evidence to the contrary,
a number of earlier histories viewed mathematics as a deductive system,
ideally proceeding from axiomatic foundations and revealing, by the “nec-
essary” unfolding of its pure abstract forms, the eternal/universal laws of
the “mind”

The concept of mathematics found outside the Graeco-European praxis
was very different. The aim was not to build an imposing edifice on a few
self-evident axioms but to validate a result by any suitable method. Some of
the most impressive work in Indian and Chinese mathematics examined in
later chapters, such as the summations of mathematical series, or the use of
Pascal’s triangle in solving higher-order numerical equations, or the deri-
vations of infinite series, or “proofs” of the so-called Pythagorean theorem,
involve computations and visual demonstrations that were not formulated
with reference to any formal deductive system. The view that mathematics
is a system of axiomatic/deductive truths inherited from the Greeks, and
enthroned by Descartes, has traditionally been accompanied by the follow-
ing cluster of values that reflect the social context in which it originated:

1. An idealist rejection of any practical, material(ist) basis for math-
ematics: hence the tendency to view mathematics as value-free and
detached from social and political concerns

2. An elitist perspective that sees mathematical work as the exclusive
preserve of a high-minded and almost priestly caste, removed from
mundane preoccupations and operating in a superior intellectual
sphere

Mathematical traditions outside Europe did not generally conform to
this cluster of values and have therefore been dismissed on the grounds
that they were dictated by utilitarian concerns with little notion of rigor,
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especially relating to proof. Any attempt at excavation and restoration of
non-European mathematics is a multifaceted task: confront historical bias,
question the social and political values shaping the mathematics (and the
writing of the history of mathematics), and search for different ways of
“knowing” or establishing mathematical truths in various traditions. I have
written elsewhere (Joseph 1994b, 1997a) on the same subject in relation
to the Indian tradition. (Documentation can be found in the “India” and
“General” sections of the reference list at the end of this book.) Because of
the centrality of the issue of “proof” in judging the quality of mathematics
outside the European tradition, we will be returning to this subject at dif-
ferent points in this book.

The responses of some critics to the earlier versions of this book have
helped to confirm my belief that words or labels in common use need care-
ful scrutiny. It has been pointed out that terms such as “Classical,” “Dark
Ages” and “Renaissance” are peculiarly European concepts of little rele-
vance to the rest of the world. Also, words such as “ancient,” “medieval,”
and “modern” are of doubtful provenance when applied to other histo-
ries. It is, however, in the labeling of geographical areas that the distortions
could, potentially, take on grotesque proportions.

Consider the term “Europe” A Eurasian peninsula has been elevated
to the status of a continent, equal in importance, if not superior, to the
rest of the continent combined. The Mercator projection may have contrib-
uted to this perception, with its visually distorted image exaggerating the
northward bounds to make “Europe” look larger than the whole of Africa,
and enormous compared with the other Eurasian peninsula, India. The
special status accorded to Europe in the standard histories of the world has
strengthened the notion, shared by many Europeans and their overseas de-
scendants, that they played a starring role in the Eurasian theater of world
history. The resulting categories such as European/non-European, West/
East, Europe/Asia have tended to reinforce this Eurocentric illusion.

It is precisely because of this tendency to enhance Europe through the
use of labels that any project involving the writing of a balanced history
should carefully address the question of labels. Unfortunately, these labels
have existed for so long that they have acquired legitimacy through us-
age. Fairly early in writing The Crest of the Peacock, I was faced with the
problem of finding a subtitle for the book. In the hardback first edition,
the publisher took the decision out of my hands and provided the sub-
title Non-Western Roots of Mathematics. The paperback versions replaced
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it with Non-European Roots of Mathematics, which had at least the benefit
of confronting the widely held view that mathematics began in Greece—a
part of Europe. However, both subtitles fail to avoid the implication that
a large part of the world’s population is defined by not being something.

A further problem was in the choice of labels to identify different math-
ematical traditions. Labeling traditions by names of regions such as India
and China, or of historical cultures such as the Islamic cultures between
AD 800 and 1500 or Greek/Hellenistic cultures between 600 BC and AD
300, has both spatial and temporal justification. If we use the linguistic
marker, descriptions of Greek, Chinese, and Arabic mathematics have le-
gitimacy, although there appears to be a certain inconsistency implied in
the first, and incompleteness implied in the last, of the descriptive terms. In
terms of content, historical legitimacy poses yet another problem. In ear-
lier editions, chapter 8 on ancient Indian mathematics contained sections
on the so-called Vedic multiplication and on the “mathematics inherent
in a meditation device, the sriyantra” For this edition, it was decided to
omit those sections, the first being of doubtful historical authenticity and
the second because of the dubious assumption that it contained “hidden
geometry””

Labeling has yet another dimension. When Alexander appointed his
general Ptolemy I to rule Egypt, he also appointed Seleucus I to rule Meso-
potamia. Historians who tended to downplay the African influence called
the science of Ptolemaic Egypt “Greek,” while they continued to label the
science and mathematics of Seleucid period as “Mesopotamian.” For ex-
ample, Otto Neugebauer (1962, p. 97) writes: “Early Mesopotamian as-
tronomy appeared to be crude and merely qualitative, quite similar to its
contemporary, Egyptian astronomy. . .. Only the last three centuries BC
[have] furnished us with texts [from the former] ... fully comparable to
the corresponding Greek systems (of the latter).”

Outstanding among these so-called Greek systems were those of Alex-
andria, which Neugebauer labels “Greek” rather than “Egyptian,” unlike
the description of the Seleucid astronomy as “Mesopotamian,” although
the Mesopotamia of that time was also under Greek rule. In this edition we
will continue to retain the label “Greek” to describe all mathematical works
written in Greek, irrespective of their geographical origins. However, a dis-
tinction is drawn between “Greek” and “Hellenistic” (or “Alexandrian”) in
providing a geographical reference. Thus, Alexandrian mathematics would
be firmly situated in Egyptian mathematics.
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The label “Arabic mathematics” is a clumsy and problematic construc-
tion that neglects the rich source of non-Arabic mathematical texts, es-
pecially those written in Pahlavi, Syriac, and Hebrew. In place of “Arabic”
other labels are available, such as “Middle Eastern” or “Semitic,” among
others. However, the terms “Middle Eastern” and “Semitic” were quickly
rejected for their geographical and conceptual imprecision. So it was
decided, despite the limitations as a descriptive label, to use the term
“Islamic” to refer to a civilization that contained a number of other ethnic
and religious groups. This is a marked departure from the use of the term
“Arab” as a descriptive label in the earlier editions. It is now recognized
that the term “Arab” is too restrictive and imprecise, given that at its height
the civilization referred to included “non-Arab” lands such as present-day
Iran, Turkey, Afghanistan, and Pakistan, all of which have distinctive Is-
lamic cultures. By the same token, it should be emphasized that medieval
Islamic civilization included non-Muslim populations such as communi-
ties of Christians, Jews, and Zoroastrians.

There have been reservations expressed about the trajectories intro-
duced in chapter 1. Now, one of the main purposes of the three trajectories
introduced in that chapter was to bring out differing perspectives on the
origins of mathematics. No claims are made for completeness or balance in
the marshaling of historical evidence underlying the discussion. Sicily, as a
staging post in the spread of mathematical ideas from the East, was of less
consequence than Spain, despite the appearance to the contrary in figure
1.3. Knowledge regarding the role of Jund-i-shapur as a center of learning
and scholarship remains speculative compared with the roles of Baghdad
or Toledo. In the case of the alternative trajectory (see figure 1.3), the role
of centers in the Maghreb from the beginning of the twelfth century to the
end of the fifteenth century AD, discussed in the works of Djebbar (1981,
1985, 1990, 1997), was ignored in the earlier editions. A brief treatment
of the subject is now incorporated in chapter 11 of this book. However, it
should be remembered that the main thrust of the argument in the case
of the “alternative” trajectory was how mathematics spread into Europe
through the intervention of the Islamic scientists. The role of the Maghreb
in this dissemination process is, as yet, unclear.

Since the first edition of this book, we are not any closer to gathering
further definitive evidence of direct transmission of mathematical knowl-
edge to Europe after the Islamic encounter. But direct written evidence
is not the only evidence taken into account in establishing transmissions.
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A number of historians of mathematics now admit that there were some
remarkable mathematical ideas emanating from China, India, and the Is-
lamic world, but many would argue that Europeans in later centuries were
unaware of this work and carried out their exploration of new ideas in-
dependent of these earlier efforts. It is interesting, in this context, that a
strong point of contention has been the somewhat tentative suggestion,
in the first edition, of possible transmission of seminal ideas in modern
mathematics from India, China, and the Islamic world.

With hindsight, the author regrets not having expressed these ideas
of transmission more clearly and forcefully. The area of greatest prom-
ise of new discoveries relates to the transmission from the Islamic world
to Europe. Cumulating circumstantial evidence now strongly supports
the thesis that significant ideas—notably in algebra, trigonometry, non-
Euclidean geometry, number theory, and combinatorics—were transmit-
ted from Islamdom to Christendom, through Arabic and Hebrew texts, to
contribute toward the development of modern mathematics. The absence
of a tradition of attribution during this period makes our task of tracing
the transmission more difficult. However, there are some intriguing pos-
sibilities raised by Katz (2007) worth further exploration.

In twelfth-century Muslim Spain, a book by Jabir ibn Aflah on spheri-
cal geometry was translated into Latin and Hebrew. A method of solving
triangles on the surface of a sphere, discussed in Jabir’s book, appeared in
a book by Regiomontanus (1436-1476), an influential European mathema-
tician of his time. The Italian algebraist Cardona (1501-1576) noted the
close similarity between the passages in the two books. The trigonometry
contained in Jabir’s book also makes an appearance in Copernicus’s semi-
nal text, De Revolutionibus. In the same text, according to Saliba (1994,
2007), Copernicus resolved the problem of the “equant” with the help of
two mathematical theorems discovered by the Islamic scientists Nasir al-
Din al-Tusi (1201-1274) and Muayyad al-Din al-Urdi (d. 1266) and named
after them as the Tusi Couple and the Urdi Lemma respectively. In chapter
11 (Islamic mathematics), other examples are quoted, notably the influ-
ence of Nasir al-Din al-Tusi’s geometry on the Italian Girolamo Saccheri’s
(1667-1733) attempt to prove the parallel postulate, and Thabit ibn Qurra’s
(826-901) formula for finding amicable numbers, which was proposed and
used by the French mathematician Pierre Fermat (1601-1665), who may
have come across a Latin translation of an Arabic or Hebrew text from the
twelfth to the fourteenth centuries containing ibn Qurra’s formula.
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Katz also mentions another example of a possible transmission, starting
from a Hebrew text of Levi ben Gerson (1288-1344), containing the basic
formulas for finding permutations and combinations that reappear in one
of Cardano’s manuscripts, and then an almost carbon copy in Mersenne’s
(1588-1648) classic book on music theory. It is interesting, in this con-
text, that almost fifteen hundred years before Mersenne’s book, the basic
formulas are found in Indian mathematics through the work of the Jaina
school (c. 300 BC), with the link between combinatorics and music theory
explored by Pingala around the same time.* A discussion of the Indian
work is found in chapter 8.

In our discussion of the transmission thesis in chapter 1, as exemplified
by the second and third (or alternative) trajectories, we have to an extent
subscribed to a view that Saliba (2007, pp. 3-25) describes as a “classical
narrative.” The narrative starts with the assumption that initially the Islamic
civilization was a desert civilization, which began to develop its scientific
thought when it came into contact with other, more ancient civilizations—
mainly the Graeco-Hellenistic in the West and to a lesser extent the Persian
(and by extension the Indian) in the East. An active appropriation of the
sciences of these cultures took place, and translations of many texts ema-
nating from these cultures were undertaken during the early period of the
Abbasid caliphates (AD 750-900), which would usher in a golden period
of Islamic mathematics and science. But from around the eleventh to the
twelfth centuries, this great enterprise, jeopardized externally by the Mon-
gol threat and internally by the conservative religious forces as exemplified
by the work of the Islamic theologian al-Ghazali (d. 1111), was gradually
abandoned. But before it was lost forever, Europe woke up from its slum-
ber and set in motion a translation movement that resulted in the start
of the scientific revolution there. The European dependence on Islamic
science was, however, short-lived, for soon European Renaissance think-
ers found a way of bypassing the Arabs and reconnecting themselves with
their Graeco-Roman legacy, where (according to the classical narrative) all
science and philosophy began. Saliba’s detailed critique, which points to

*Even more remarkable is the little-known mathematical debt owed to the ancient Chinese
for the “single most important development in Western European music in the last 400 years:
the invention of Equal Temperament” (Goodall 2000, p. 111). A short discussion of the Chinese
work on the subject will be found in chapter 7. I am grateful to Keekok Lee for bringing this to

my attention.
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both the inconsistencies and distortions that underpin this narrative, is a
useful corrective to oversimplification of what is a complex story.

An area signposted as worthy of further study in the second edition
is the possible transmission westward of the remarkable work in Kerala,
South India. A connecting link that needs further exploration is the one
through the Islamic world. We know that the works of ibn al-Haytham (fl.
AD 1000), the great Islamic scientist, particularly on geometric series (dis-
cussed in chapter 11), was studied at certain madrassahs (Muslim “schools”)
in close proximity to the epicenters of the Kerala School of Mathemat-
ics and Astronomy, notably at Ponnani and near present-day Kannur. So
was it possible that, through the medium of the Islamic scholars, some of
this work moved west? Or even, possibly, that influences (technological or
otherwise) from Islamic astronomy reached Kerala, notably in the work of
Paramesvara (c. 1360-1450) in his long-term observations of eclipses? An
investigation to establish these transmissions would require an extensive
study at the various centers of Muslim learning in Kerala and elsewhere.

However, a more important and better-known connection is the role of
the Jesuits and the Portuguese: there is evidence that Matteo Ricci, the Je-
suit astronomer and mathematician who is generally credited with bring-
ing European sciences to the Chinese, spent almost two years in Cochin,
South India, after being ordained in Goa in 1580. During that time he was
in correspondence with the rector of Collegio Romano, the primary insti-
tution for the education of those who wished to become Jesuits. The Jesuits
of that time were not merely priests but also scholars who were very knowl-
edgeable in science and mathematics. In fact, if you wanted to be trained
as a mathematician in Italy at that time, you could not do better than go to
a Jesuit seminary. For a number of Jesuits who followed Ricci, Cochin was
a staging post on the way to China. Cochin was only seventy kilometers
from the largest repository of astronomical manuscripts in Trissur, from
where, two hundred years later, Whish and Heyne, two of the earliest Eu-
ropeans who reported on the work in Kerala, obtained their manuscripts.
The Jesuits were expected to submit regularly a report to their headquar-
ters in Rome, and it is a reasonable conjecture that some of the reports
may have contained appendixes of a technical nature that would then be
passed on by Rome to those who would understand them, including no-
table mathematicians. Materials gathered by the Jesuits were scattered all
over Europe: at Pisa, where Galileo, Cavalieri, and Wallis spent time; at
Padua, where James Gregory was engaged on mathematical studies; and at
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Paris, where Mersenne, through his correspondence with Galileo, Wallis,
Fermat, and Pascal, acted as an agent for the transmission of mathematical
ideas. We will examine some of these links more closely in chapter 10.

Now, in studying the mathematics of any ancient culture, three related
questions arise:

1. What was the content of the mathematics known to that culture?
2. How was that mathematics thought about and discussed?
3. Who was doing the mathematics?

In relation to (1) and (2) there are further subquestions relating to how
the information about the mathematics is available to us. If the information
requires translation from another language, long dead and esoteric, such a
translation can be either “user-friendly;” in that the purpose is to make the
ancient mathematics familiar and easily comprehensible, or “alienating;’
whereby the translation that results is “literal” in that it tries to be as faith-
ful as possible to the structure, vocabulary, and syntax of the original. It is
evident from the chapters that follow it is content rather than presentation
that is seen as important in this book, so that the texts may be interpreted
legitimately in our own terms. Indeed, the content may often be seen as in-
dependent of presentation. However, this approach has its dangers in that
we may unintentionally distort ancient mathematical concepts and proce-
dures by imposing modern concepts and symbolic packages. It is hoped
that a consciousness of this danger may help to make such qualifications as
necessary in the discussions that follow.*

In preparing this edition, I have been particularly fortunate in receiving
constructive comments from a number of scholars who have, depending
on their expertise, read different sections of the book. In particular, I wish
to thank Glen Van Brummelen, Joran Friberg, Takao Hayashi, Victor Katz,
and four other reviewers for their detailed and careful scrutiny of the man-

*This difference in approach highlighted here may be summed up as “historicism” versus “pre-
sentism.” The former asserts that works from the past can be interpreted only in the context of
that past culture, while the latter attempts to understand such works on our own terms in the
present. Whether one inclines to historicism or presentism in one’s own interpretation depends to
an extent on whether one sees present-day mathematics as having evolved from older mathemat-
ics, so that the older mathematics has been absorbed into our own, or whether one sees different

mathematical traditions as being to a significant extent incommensurable.
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uscript. I greatly appreciate the time and effort they put into their work.
Glen Van Brummelen also provided most generously a copy of his manu-
script, now published as The Mathematics of the Heavens and the Earth:
The Early History of Trigonometry, which has helped me immeasurably in
composing the sections on trigonometry in various chapters of the book.
Finally, at the stage of preparing the manuscript for publication, Vickie
Kearn’s role has been invaluable. Not only has she provided meticulous
editorial assistance in spotting ambiguities, omissions, and inconsisten-
cies in the text, but at various places she also suggested changes that have
significantly improved the presentation. More important than anything
else, she has been extremely supportive in guiding the product to its final
stages. However, I assume all responsibility for any weaknesses in the final
product. Finally, there is one person who has consistently encouraged me
in all my endeavors and provided the necessary confidence and fortitude
to complete the task, and that has been my wife, Leela. She has also been
a wonderful traveling companion on the trips we have made together to
different parts of the world to promote the ideas in this book. To her, my
deepest gratitude and love.

George Gheverghese Joseph
University of Manchester
JULY 2009
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In 1987 I visited the birthplace of the Indian mathematician Srinivasa
Ramanujan. Exactly a hundred years had passed since his birth. Ramanu-
jan was born in a small town called Erode in southern India. At his death,
aged thirty-two, he was recognized by some as a natural genius, the like of
whom could be found only by going back two centuries to Euler and Gauss.
Among his contemporaries, particularly his close collaborator G. H. Hardy,
there was a sense of disappointment—the feeling that Ramanujan’s igno-
rance of modern mathematics, his strange ways of “doing” mathematics,
and his premature death had diminished his achievements and therefore
his influence on the future of the subject. Yet today few mathematicians
would accept this assessment. In 1976, George Andrews, an American
mathematician, was rummaging through some of Ramanujan’s papers in a
library at Cambridge University and came across 130 pages of scrap paper
filled with notes representing Ramanujan’s work during the last year of his
life in Madras. This is what Richard Askey, a collaborator of Andrews, had
to say about what has come to be known as Ramanujan’s “Lost Notebook™

The work of that one year, while he was dying [and obviously in consid-
erable pain a lot of the time, according to his wife], was the equivalent of
a lifetime of work of a very great mathematician. What he accomplished
was unbelievable. If it were in a novel, nobody would believe it. (My
comment in brackets.)

The riches contained in the “Lost Notebook” and his earlier works are
being mined with increasing success and excitement by mathematicians
today. He is believed to have contributed to the creation of one of the most
revolutionary concepts of recent theoretical physics—superstring theory
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in cosmology. A 1914 paper of Ramanujan, “Modular Equations and Ap-
proximations to 7r,” was used to program a computer some years ago to
evaluate 7t to a level of accuracy (to millions of digits) never attained previ-
ously. But one should not make excessive claims for the practical applica-
tions of Ramanujan’s work. As Kanigel (1991, pp. 349-50) states,

What makes Ramanujan’s work so seductive is not the prospect of use in
the solution of real-world problems, but its richness, beauty, mystery—
its sheer mathematical loveliness.

However, for me the most intriguing aspect of Ramanujan’s mathemat-
ics work remains his method. Here was someone poorly educated in mod-
ern mathematics and isolated for most of his life from work going on at the
frontiers of the subject, yet who produced work of a quality and durability
that is increasingly tending to overshadow that of some of his more promi-
nent contemporaries, including Hardy. Ramanujan’s style of doing math-
ematics was very different from that of the conventional mathematician
trained in the deductive axiomatic method of proof. From the accounts
of his wife and close associates he made extensive use of a slate on which
he was always jotting down and erasing what his wife described as “sums,”
and then transferring some of the final results into his Notebook when he
was satisfied with his conclusions. He felt no strong compulsion to prove
that the results were true—what mattered were the results themselves. This
has provided a growing number of mathematicians with a singular task: to
prove the results that Ramanujan simply stated. And from the endeavors
of these mathematicians have emerged a number of subdisciplines, pro-
moting gatherings and collaborations among their practitioners, whose
approach stands in stark contrast to that taken by the original inspirer.

In writing this book, I found the life and work of Ramanujan instructive
because it raises a number of interesting questions. First (and this is a ques-
tion that is rarely addressed by historians of mathematics, one for which
there can in any case never be a fully satisfactory answer), how far did cul-
tural influences determine Ramanujan’s choice of subjects or his methods?
It is interesting in this context that Ramanujan came from the Ayyangar
Brahmans of Tamil Nadu in southern India, a group that enjoyed a high
social status for their traditional learning and religious observances. Given
this background, Ramanujan’s tendency to credit his discoveries to the in-
tervention of the family goddess, Namagiri, is understandable, though it
must have been a source of embarrassment to some of his admirers, both
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in India and in the West. But it is perfectly consistent with a culture that
saw mathematics in part as an instrument of divine intervention and as-
trological prediction. The Western mathematical temperament finds it dif-
ficult to come to terms with the speculative, extrarational, and intuitive
elements in Ramanujan’s makeup.

At another level, the example of Ramanujan is a sure indication that the
highest level of mathematical achievement is well within the scope of those
educated and brought up in traditions and environments far removed from
Western society. However, a second question, an interesting and indeed a
central one, is raised by Ramanujan’s work: is it possible to identify any fea-
tures in his own culture that were conducive to creative work in mathemat-
ics? Any attempt to answer this question should delve deeply into the role of
Ayyangars as custodians of traditional knowledge of astronomy and math-
ematics. Ramanujans mother was a well-known local astrologer, and it is
likely that his first exposure to mathematics, and in particular his special in-
terest in the theory of numbers, came about through his mother’s astrology.
Mathematics and numbers had a special significance within the Brahmani-
cal tradition as extrarational instruments for controlling fate and nature.

Ramanujan’s work also raises questions about what constitutes math-
ematics. Is there a need to conform to a particular method of presentation
before something is recognizable as mathematics? His notebooks contain
many jottings that do not conform to a conventional view of mathematical
results, since there is no attempt at any demonstration or examination of
the theory behind these results. Yet a number of mathematicians not only
have found these jottings sufficiently worthwhile to devote years of their
time to proving theorems Ramanujan knew to be true, but may even have
gained more from the very act of deriving the formulas than the knowl-
edge of the formulas themselves. This is quite consistent with both the In-
dian and Chinese traditions, where great mathematicians merely state the
results, leaving their students to provide oral demonstrations or written
commentaries. The students are thus encouraged to allow both their criti-
cal and their creative faculties to develop at the same time.

An author is not expected to explain why he writes a book. But the mo-
tives are often quite revealing. If I am to explain why I have spent the last
three years on this book, I would think my being a product of four different
heritages is relevant. I was born in Kerala, southern India, and spent the
first nine years of my life there and in the town of Madurai, the cultural
capital of the neighboring state of Tamil Nadu. My early awareness of the
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sheer diversity of Indian culture was helped by living close to the famous
Meenakshi Temple at Madurai, a great center of pilgrimage, dance, music,
and religious festivals. This exposure during my formative years contrib-
uted to my Indian heritage. I come from a family of Syrian Orthodox Chris-
tians that traces its descent directly to one of the families (the Sankarapuri)
who were converted by Christ’s disciple St. Thomas in about AD 50. This
is my Middle Eastern Christian heritage. My family moved to Mombasa in
Kenya, where I was brought up in that rich mixture of African and Arab
influences that makes the distinctive Swahili culture. My African heritage
is a result of the time I spent there, first at school and then at work, both in
Mombasa and in the neighboring country of Tanzania. The period I have
spent in Britain, at the University of Leicester, where I did my first degree,
and at the University of Manchester, where I continued my postgraduate
studies and subsequently worked, now accounts for more than half my life.
This is my Western heritage. To keep a balance between my four heritages
and not allow any one to take over permanently is important to me. Hence
my travels abroad, which have taken me to East and Central Africa, to
India, to Papua New Guinea, and to South and Southeast Asia. And hence,
in a different way, the driving passion behind this book, which emphasizes
the global nature of mathematical pursuits and creations.

In writing this book, I am indebted to many who have over the years
patiently and skillfully translated and interpreted the original sources of
mathematics from different cultures so that they are now more accessible
and comprehensible. I owe them more than I can acknowledge merely
through entries in the bibliography at the back of this book. They have
often had to work in environments that are not particularly sympathetic
to their efforts and have rarely received sufficient academic recognition. In
a number of cases their attempts at collecting and transliterating ancient
manuscripts show a desperate sense of urgency, as the storage and preser-
vation of these documents often leave much to be desired.

During the time I have been working on this book, several people have
given me advice, constructive criticism, and encouragement. Burjor Avari
and I have shared a long and close association, which has taken the form,
among other things, of a study of the nature and consequences of a Euro-
centric view of the history of knowledge. Our collaboration in this area
is clearly reflected in some of the ideas found in the first chapter. In par-
ticular, the historic backgrounds to a number of chapters have benefited
from his criticisms. David Nelson read the whole manuscript carefully and
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suggested a number of changes to improve the clarity and balance of the
book. I found his comments so useful and persuasive that I have tried in
almost all cases to respond to them. Even so, I am conscious of having
fallen short of the thoroughness that his detailed comments deserve. To
Bill Farebrother I am grateful for having gone through the manuscript at
various stages, making useful criticisms of the style and mathematical pre-
sentation. I should also like to acknowledge my debt to others in the De-
partment of Econometrics and Social Statistics, University of Manchester,
who not only tolerated my project (as removed as it was from the usual
concerns of the department) but in some cases went through chapters and
provided constructive responses. Finally, at the stage of preparing the man-
uscript for publication, John Woodruff’s role has been invaluable. Not only
has he provided meticulous editorial assistance in spotting ambiguities,
omissions, and inconsistencies in the text and bibliography, but at vari-
ous places he has suggested changes that have significantly improved the
presentations. It is appropriate, given my insufficient response to some of
the advice offered me, that I exclude all those mentioned above from re-
sponsibility for any errors of fact and interpretation present in this book.

George Gheverghese Joseph
University of Manchester

1991
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Chapter One
The History of Mathematics: Alternative Perspectives

A Justification for This Book

An interest in history marks us for life. How we see ourselves and others is
shaped by the history we absorb, not only in the classroom but also from
the Internet, films, newspapers, television programs, novels, and even strip
cartoons. From the time we first become aware of the past, it can fire our
imagination and excite our curiosity: we ask questions and then seek an-
swers from history. As our knowledge develops, differences in historical
perspectives emerge. And, to the extent that different views of the past affect
our perception of ourselves and of the outside world, history becomes an
important point of reference in understanding the clash of cultures and of
ideas. Not surprisingly, rulers throughout history have recognized that to
control the past is to master the present and thereby consolidate their power.

During the last four hundred years, Europe and its cultural dependen-
cies' have played a dominant role in world affairs. This is all too often
reflected in the character of some of the historical writing produced by Eu-
ropeans in the past. Where other people appear, they do so in a transitory
fashion whenever Europe has chanced in their direction. Thus the history
of the Africans or the indigenous peoples of the Americas often appears to
begin only after their encounter with Europe.

An important aspect of this Eurocentric approach to history is the man-
ner in which the history and potentialities of non-European societies were
represented, particularly with respect to their creation and development of
science and technology. The progress of Europe during the last four hun-
dred years is often inextricably—or even causally—linked with the rapid
growth of science and technology during the period. In the minds of some,
scientific progress becomes a uniquely European phenomenon, which can
be emulated by other nations only if they follow a specifically European
path of scientific and social development.
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Such a representation of societies outside the European cultural milieu
raises a number of issues that are worth exploring, however briefly. First,
these societies, many of them still in the grip of an intellectual dependence
that is the legacy of European political domination, should ask themselves
some questions. Was their indigenous scientific and technological base in-
novative and self-sufficient during their precolonial period? Case studies
of India, China, and parts of Africa, contained, for example, in the work of
Dharampal (1971), Needham (1954), and Van Sertima (1983) and summa-
rized by Teresi (2002), seem to indicate the existence of scientific creativity
and technological achievements long before the incursions of Europe into
these areas. If this is so, we need to understand the dynamics of precolo-
nial science and technology in these and other societies and to identify the
material conditions that gave rise to these developments. This is essential if
we are to see why modern science did not develop in these societies, only
in Europe, and to find meaningful ways of adapting to present-day require-
ments the indigenous and technological forms that still remain.’

Second, there is the wider issue of who “makes” science and technol-
ogy. In a material and nonelitist sense, each society, impelled by the pres-
sures and demands of its environment, has found it necessary to create a
scientific base to cater to its material requirements. Perceptions of what
constitute the particular requirements of a society would vary according to
time and place, but it would be wrong to argue that the capacity to “make”
science and technology is a prerogative of one culture alone.

Third, if one attributes all significant historical developments in science
and technology to Europe, then the rest of the world can impinge only
marginally, either as an unchanging residual experience to be contrasted
with the dynamism and creativity of Europe, or as a rationale for the cre-
ation of academic disciplines congealed in subjects such as development
studies, anthropology, and oriental studies. These subjects in turn served
as the basis from which more elaborate Eurocentric theories of social de-
velopment and history were developed and tested.’

One of the more heartening aspects of academic research in the last four
or five decades is that the shaky foundations of these “adjunct” disciplines
are being increasingly exposed by scholars, a number of whom originate
from countries that provide the subject matter of these disciplines. “Sub-
versive” analyses aimed at nothing less than the unpackaging of prevailing
Eurocentric paradigms became the major preoccupation of many of these
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scholars. Syed Husain Alatas (1976) studied intellectual dependence and
imitative thinking among social scientists in developing countries. The
growing movement toward promoting a form of indigenous anthropol-
ogy that sees its primary task as questioning, redefining, and if necessary
rejecting particular concepts that grew out of colonial experience in West-
ern anthropology is thoroughly examined by Fahim (1982). Edward Said
(1978) has brilliantly described the motives and methods of the so-called
orientalists who set out to construct a fictitious entity called “the Orient”
and then ascribe to it qualities that are a mixture of the exotic, the mys-
terious, and the otherworldly. The rationale for such constructs is being
examined in terms of the recent history of Europe’s relations with the rest
of the world.

In a similar vein, and in the earlier editions of this book, it was the inten-
tion to show that the standard treatment of the history of non-European
mathematics exhibited a deep-rooted historiographical bias in the selection
and interpretation of facts, and that mathematical activity outside Europe
has as a consequence been ignored, devalued, or distorted. It is interesting
in this context that since the first edition of this book there has been a grow-
ing recognition of the mathematics outside the European and Greek tradi-
tions, especially in the mainstream teaching of the history of mathematics.
The Eurocentric argument has shifted its ground and now questions both
the nature of the European debt to other mathematical traditions and the
existence and quality of proofs and demonstrations in traditions outside
Europe. A brief discussion of the shifting ground of Eurocentrism in the
history of mathematics is found in the preface to this edition."

The Development of Mathematical Knowledge

A concise and meaningful definition of mathematics is difficult. In the
context of this book, the following aspects of the subject are highlighted.
Modern mathematics has developed into a worldwide language with a par-
ticular kind of logical structure. It contains a body of knowledge relating
to number and space, and prescribes a set of methods for reaching con-
clusions about the physical world. And it is an intellectual activity which
calls for both intuition and imagination in deriving “proofs” and reaching
conclusions. Often it rewards the creator with a strong sense of aesthetic
satisfaction.
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The “Classical” Eurocentric Trajectory

Most histories of mathematics that have had a great influence on later work
were written in the late nineteenth or early twentieth century. During that
period, two contrasting developments were taking place that had an im-
pact on both the content and the balance of these books, especially those
produced in Britain and the United States. Exciting discoveries of ancient
mathematics on papyri in Egypt and clay tablets in Mesopotamia pushed
back the origins of written mathematical records by at least fifteen hundred
years. But a far stronger and countervailing influence was the culmination
of European domination in the shape of political control of vast tracts of
Africa and Asia. Out of this domination arose the ideology of European
superiority that permeated a wide range of social and economic activities,
with traces to be found in histories of science that emphasized the unique
role of Europe in providing the soil and spirit for scientific discovery. The
contributions of the colonized peoples were ignored or devalued as part
of the rationale for subjugation and dominance. And the development of
mathematics before the Greeks—notably in Egypt and Mesopotamia—
suffered a similar fate, dismissed as of little importance to the later his-
tory of the subject. In his book Black Athena (1987), Martin Bernal has
shown how respect for ancient Egyptian science and civilization, shared
by ancient Greece and pre-nineteenth-century Europe alike, was gradu-
ally eroded, leading eventually to a Eurocentric model with Greece as the
source and Europe as the inheritor and guardian of the Greek heritage.

Figure 1.1 presents the “classical” Eurocentric view of how mathematics
developed over the ages. This development is seen as taking place in two
sections, separated by a period of stagnation lasting for over a thousand
years: Greece (from about 600 BC to AD 400), and post-Renaissance Eu-
rope from the sixteenth century to the present day. The intervening period
of inactivity was the “Dark Ages”—a convenient label that expressed both
post-Renaissance Europe’s prejudices about its immediate past and the in-
tellectual self-confidence of those who saw themselves as the true inheri-
tors of the “Greek miracle” of two thousand years earlier.

Two passages, one by a well-known historian of mathematics writing at
the turn of the century and the other by a more recent writer whose books
are still referred to on both sides of the Atlantic, show the durability of this
Eurocentric view and its imperviousness to new evidence and sources:
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FIGURE 1.1: The “classical” Eurocentric trajectory

The history of mathematics cannot with certainty be traced back to any
school or period before that of the Ionian Greeks. (Rouse Ball 1908, p. 1)

[Mathematics] finally secured a new grip on life in the highly congenial
soil of Greece and waxed strongly for a short period. ... With the de-
cline of Greek civilization the plant remained dormant for a thousand
years . .. when the plant was transported to Europe proper and once
more imbedded in fertile soil. (Kline 1953, pp. 9-10)

The first statement is a reasonable summary of what was popularly known
and accepted as the origins of mathematics at that time, except for the ne-
glect of the early Indian mathematics contained in the Sulbasutras (The
Rules of the Cord), belonging to the period between 800 and 500 BC, which
would make it at least as old as the earliest-known Greek mathematics.
Thibaut’s translations of these works, made around 1875, were known to
historians of mathematics at the turn of the century. The mathematics con-
tained in the Sulbasutras is discussed in chapter 8.

The second statement, however, ignores a considerable body of research
evidence pointing to the development of mathematics in Mesopotamia,
Egypt, China, pre-Columbian America, India, and the Islamic world that
had come to light in the intervening period. Subsequent chapters will bear
testimony to the volume and quality of the mathematics developed in these
areas. But in both these quotations mathematics is perceived as an exclu-
sive product of European civilization. And that is the central message of
the Eurocentric trajectory depicted in figure 1.1.

This comforting rationale for European dominance became increas-
ingly untenable for a number of reasons. First, there is the full acknowl-
edgment given by the ancient Greeks themselves of the intellectual debt
they owed the Egyptians. There are scattered references from Herodotus
(c. 450 BC) to Proclus (c. AD 400) of the knowledge acquired from the
Egyptians in fields such as astronomy, mathematics, and surveying, while
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other commentators even considered the priests of Memphis to be the true
founders of science.

To Aristotle (c. 350 BC), Egypt was the cradle of mathematics. His
teacher, Eudoxus, one of the notable mathematicians of the time, had stud-
ied in Egypt before teaching in Greece. Even earlier, Thales (d. 546 BC),
the legendary founder of Greek mathematics, and Pythagoras (c. 500 BC),
one of the earliest and greatest of Greek mathematicians, were reported
to have traveled widely in Egypt and Mesopotamia and learned much of
their mathematics from these areas. Some sources even credit Pythagoras
with having traveled as far as India in search of knowledge, which could
explain some of the parallels between Indian and Pythagorean philosophy
and religion.’

A second reason why the trajectory depicted in figure 1.1 was found to
be wanting arose from the combined efforts of archaeologists, translators,
and interpreters, who between them unearthed evidence of a high level of
mathematics practiced in Mesopotamia and in Egypt at the beginning of
the second millennium, providing further confirmation of Greek reports.
In particular, the Mesopotamians had invented a place-value number sys-
tem, knew different methods of solving what today would be described as
quadratic equations (methods that would not be improved upon until the
sixteenth century AD), and understood (but had not proved) the relation-
ship between the sides of a right-angled triangle that came to be known
as the Pythagorean theorem.’ Indeed, as we shall see in later chapters, this
theorem was stated and demonstrated in different forms all over the world.

A four-thousand-year-old clay tablet, kept in a Berlin museum, gives the
value of n’ + n’ forn = 1,2,..., 10, 20, 30, 40, 50, from which it has been
surmised that the Mesopotamians may have used these values in solving
cubic equations after reducing them to the form x* + x* = c. A remark-
able solution in Egyptian geometry found in the Moscow Papyrus from the
Middle Kingdom (c. 2000-1800 BC) follows from the correct use of the
formula for the volume of a truncated square pyramid. These examples and
other milestones will be discussed in the relevant chapters of this book.

The neglect of the Islamic contribution to the development of European
intellectual life in general and mathematics in particular is another serious
drawback of the “classical” view. The course of European cultural history
and the history of European thought are inseparably tied up with the activ-
ities of Islamic scholars during the Middle Ages and their seminal contri-
butions to mathematics, the natural sciences, medicine, and philosophy.”
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In particular, we owe to the Islamic world in the field of mathematics the
bringing together of the technique of measurement, evolved from its Egyp-
tian roots to its final form in the hands of the Alexandrians, and the re-
markable instrument of computation (our number system) that originated
in India. These strands were supplemented by a systematic and consistent
language of calculation that came to be known by its Arabic name, algebra.
An acknowledgment of this debt in more recent books contrasts sharply
with the neglect of other Islamic contributions to science.”

Finally, in discussing the Greek contribution, there is a need to recog-
nize the differences between the Classical period of Greek civilization (i.e.,
from about 600 to 300 BC) and the post-Alexandrian period (i.e., from
about 300 BC to AD 400). In early European scholarship, the Greeks of the
ancient world were perceived as an ethnically homogeneous group, origi-
nating from areas that were mainly within the geographical boundaries of
present-day Greece. It was part of the Eurocentric mythology that from
the mainland of Europe had emerged a group of people who had created,
virtually out of nothing, the most impressive civilization of ancient times.
And from that civilization had emerged not only the cherished institutions
of present-day Western culture but also the mainspring of modern science.
The reality, however, is different and more complex. The term “Greek,”
when applied to times before the appearance of Alexander (356323 BC),
really refers to a number of independent city-states, often at war with one
another but exhibiting close ethnic or cultural affinities and, above all, shar-
ing a common language. The conquests of Alexander changed the situation
dramatically, for at his death his empire was divided among his generals,
who established separate dynasties. The two notable dynasties from the
point of view of mathematics were the Ptolemaic dynasty of Egypt and the
Seleucid dynasty, which ruled over territories that included the earlier sites
of the Mesopotamian civilization. The most famous center of learning and
trade became Alexandria in Egypt, established in 332 BC and named after
the conqueror. From its foundation, one of its most striking features was its
cosmopolitanism—part Egyptian, part Greek, with a liberal sprinkling of
Jews, Persians, Phoenicians, and Babylonians, and even attracting scholars
and traders from as far away as India. A lively contact was maintained with
the Seleucid dynasty. Alexandria thus became the meeting place for ideas
and different traditions. The character of Greek mathematics began to
change slowly, mainly as a result of continuing cross-fertilization between
different mathematical traditions, notably the algebraic and empirical
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basis of Mesopotamian and Egyptian mathematics interacting with the
geometric and antiempirical traditions of Greek mathematics. And from
this mixture came some of the greatest mathematicians of antiquity, no-
tably Archimedes and Diophantus. It is therefore important to recognize
the Alexandrian dimension to Greek mathematics while noting that Greek
intellectual and cultural traditions served as the main inspiration and the
Greek language as the medium of instruction and writing in Alexandria. In
a later chapter, based on some innovative work of Friberg (2005, 2007), we
will examine the close and hitherto unexamined links between Egyptian,
Mesopotamian, and Greek mathematics.

A Modified Eurocentric Trajectory

Figure 1.2 takes on board some of the objections raised about the “classical”
Eurocentric trajectory. The figure acknowledges that there is growing aware-
ness of the existence of mathematics before the Greeks, and of their debt to
earlier mathematical traditions, notably those of Mesopotamia and Egypt.
But this awareness was until recently tempered by a dismissive rejection of
their importance in relation to Greek mathematics: the “scrawling of chil-
dren just learning to write as opposed to great literature” (Kline 1962, p. 14).

The differences in character of the Greek contribution before and af-
ter Alexander are also recognized to a limited extent in figure 1.2 by the
separation of Greece from the Hellenistic world (in which the Ptolemaic
and Seleucid dynasties became the crucial instruments of mathematical
creation). There is also some acknowledgment of the “Arabs” but mainly as
custodians of Greek learning during the Dark Ages in Europe. The role of
the Islamic world as transmitter and creator of knowledge is often ignored;
so are the contributions of other civilizations—notably China and India—
which have been perceived either as borrowers from Greek sources or as
having made only minor contributions that played an insignificant role in
mainstream mathematical development (i.e., the development eventually
culminating in modern mathematics).

Figure 1.2 is therefore still a flawed representation of how mathematics
developed: it contains a series of biases and remains quite impervious to
new evidence and arguments. Until a couple of decades ago, and with minor
modifications, it was the model to which a number of books on the history of
mathematics conformed. But this has changed even during the twenty-odd
years that this book has been in print. “Mainsteam” histories of mathematics
are casting a wider net by seriously considering the contributions not only
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of ancient Egyptian and Mesopotamian civilizations; they are punctilious
in incorporating as well the contributions of Chinese, Indian, and Islamic
civilizations. The recent sourcebook for the histories of mathematics of the
five civilizations edited by Katz (2007) is a testimony to this change.

It is interesting that a similar Eurocentric bias had existed in other dis-
ciplines as well: for example, diffusion theories in anthropology and social
geography implied that “civilization” has spread from the center (“greater”
Europe) to the periphery (the rest of the world). And the theories of glo-
balization or evolution developed in recent years within some Marxist and
neo-Marxist frameworks were characterized by a similar type of Eurocen-
trism. In all such conceptual schemes, the development of Europe is seen as
a precedent for the way in which the rest of the world will follow—a trajec-
tory whose spirit is not dissimilar to the one suggested by figures 1.1 and 1.2.

An Alternative Trajectory for the Dark Ages

If we are to construct an unbiased alternative to figures 1.1 and 1.2, our
guiding principle should be to recognize that different cultures in different
periods of history have contributed to the world’s stock of mathematical
knowledge. Figure 1.3 presents such a trajectory of mathematical devel-
opment but confines itself to the period between the fifth and fifteenth
centuries AD—the period represented by the arrow labeled in figures 1.1
and 1.2 as the “Dark Ages” in Europe. The choice of this trajectory as an
illustration is deliberate: it serves to highlight the variety of mathematical
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activity and exchange between a number of cultural areas that went on
while Europe was in deep slumber. A trajectory for the fifteenth century
onward would show that mathematical cross-fertilization and creativity
were more or less confined to countries within Europe until the emer-
gence of the truly international character of modern mathematics during
the twentieth century.

The role of the Islamic civilization is brought out in figure 1.3. Scien-
tific knowledge that originated in India, China, and the Hellenistic world
was sought out by Islamic scholars and then translated, refined, synthe-
sized, and augmented at different centers of learning, starting at Jund-i-
Shapur’ in Persia around the sixth century (even before the coming of
Islam) and then moving to Baghdad, Cairo, and finally to Toledo and
Cérdoba in Spain, from where this knowledge spread into western Eu-
rope. Considerable resources were made available to the scholars through
the benevolent patronage of the caliphs, the Abbasids (the rulers of the
eastern Arab empire, with its capital at Baghdad) and the Umayyads (the
rulers of the western Arab empire, with its capital first at Damascus and
later at Cérdoba).

The role of the Abbasid caliphate was particularly important for the fu-
ture development of mathematics. The caliphs, notably al-Mansur (754—
775), Harun al-Rashid (786-809), and al-Mamun (809-833), were in
the forefront of promoting the study of astronomy and mathematics in
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Baghdad. Indian scientists were invited to Baghdad. When Plato’s Acad-
emy was closed in 529, some of its scholars found refuge at Jund-i-Shapur,
which a century later became part of the Islamic world. Greek manuscripts
from the Byzantine empire, the translations of the Syriac schools of An-
tioch and Damascus, and the remains of the Alexandrian library in the
hands of the Nestorian Christians at Edessa were all eagerly sought by Is-
lamic scholars, aided by the rulers who had control over or access to men
and materials from the Byzantine empire, Persia, Egypt, Mesopotamia, and
places as far east as India and China.

Caliph al-Mansur built at Baghdad a Bait al-Hikma (House of Wisdom),
which contained a large library for the manuscripts that had been collected
from various sources; an observatory that became a meeting place of Indian,
Babylonian, Hellenistic, and probably Chinese astronomical traditions; and a
university where scientific research continued apace.'” A notable member of
the institution, Muhammad ibn Musa al-Khwarizmi (fl. AD 825), wrote two
books that were of crucial importance to the future development of mathe-
matics. One of them, the Arabic text of which is extant, is titled Hisab al-jabr
wal-mugabala (which may be loosely translated as Calculation by Reunion
and Reduction). The title refers to the two main operations in solving equa-
tions: “reunion,” the transfer of negative terms from one side of the equation
to the other, and “reduction,” the merging of like terms on the same side into
a single term." In the twelfth century the book was translated into Latin un-
der the title Liber algebrae et almucabola, thus giving a name to a central area
of mathematics. A traditional meaning of the Arabic word jabr is “the setting
of a broken bone” (and hence “reunion” in the title of al-Khwarizmi’s book).
Some decades ago it was not an uncommon sight on Spanish streets to come
across a sign advertising “Algebrista y Sangrador” (i.e., someone dedicated to
setting dislocated bones) at the entrance of barbers’ shops."

Al-Khwarizmi wrote a second book, of which only a Latin translation is
extant: Algorithmi de numero indorum, which explained the Indian num-
ber system. While al-Khwarizmi was at pains to point out the Indian ori-
gin of this number system, subsequent translations of the book attributed
not only the book but the numerals to the author. Hence, in Europe any
scheme using these numerals came to be known as an “algorism” or, later,
“algorithm” (a corruption of the name al-Khwarizmi) and the numerals
themselves as Arabic numerals.

Figure 1.3 shows the importance of two areas of southern Europe in
the transmission of mathematical knowledge to western Europe. Spain and
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Sicily were the nearest points of contact with Islamic science and had been
under Arab hegemony, Cérdoba succeeding Cairo as the center of learn-
ing during the ninth and tenth centuries. Scholars from different parts of
western Europe congregated in Cérdoba and Toledo in search of ancient
and contemporary knowledge. It is reported that Gherardo of Cremona (c.
1114-1187) went to Toledo, after its recapture by the Christians, in search
of Ptolemy’s Almagest, an astronomical work of great importance produced
in Alexandria during the second century AD. He was so taken by the in-
tellectual activity there that he stayed for twenty years, during which time
he was reported to have copied or translated eighty-seven manuscripts of
Islamic science or Greek classics, which were later disseminated across
western Europe. Gherardo was just one of a number of European schol-
ars, including Plato of Tivoli, Adelard of Bath, and Robert of Chester, who
flocked to Spain in search of knowledge."

The main message of figure 1.3 is that it is dangerous to characterize
the history of mathematics solely in terms of European developments. The
darkness that was supposed to have descended over Europe for a thousand
years before the illumination that came with the Renaissance did not inter-
rupt mathematical activity elsewhere. Indeed, as we shall see in later chap-
ters, the period saw not only a mathematical renaissance in the Islamic
world but also high points of Indian and Chinese mathematics.

Mathematical Signposts and Transmissions across the Ages

Alternative trajectories to the ones shown in figures 1.1 and 1.2 should
highlight the following three features of the plurality of mathematical
development:

1. The global nature of mathematical pursuits of one kind or another

2. The possibility of independent mathematical development within
each cultural tradition followed or not followed by cross-fertilization

3. The crucial importance of diverse transmissions of mathematics
across cultures, culminating in the creation of the unified discipline
of modern mathematics

However, to construct a feasible diagram we must limit the number of
geographical areas of mathematical activity we wish to include. Selection
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inevitably introduces an element of arbitrariness, for some areas that may
merit inclusion are excluded, while certain inclusions may be controversial.
Two considerations have influenced the choice of the cultural areas repre-
sented in figure 1.4. First, a judgment was made, on the basis of existing
evidence, as to which places saw significant developments in mathematics.
Second, an assessment of the nature and direction of the transmission of
mathematical knowledge also helped to identify the areas of interest.

On the basis of these two criteria, ancient Egypt and Mesopotamia,
Greece (and the Hellenistic world), India, China, the Islamic (or “Arab”)
world, and Europe were selected as being important in the historical devel-
opment of mathematics. For one cultural area, the application of the two
selection criteria produced conflicting results: from existing evidence, the
Maya of Central America were isolated from other centers of mathematical
activity, yet their achievements in numeration and calendar construction
were quite remarkable by any standards. I therefore decided to include the
Maya in figure 1.4, and to examine their contributions briefly in chapter 2.

The limited scope of this book and the application of the above crite-
ria make it impossible to examine the mathematical experience of Africa,
Korea, and Japan in greater detail. However, chapter 2 contains a discussion
of the Ishango bone and the Yoruba numerals, and chapter 3 a detailed ex-
amination of Egyptian mathematics, all of which were products of Africa.
Further information on the mathematical traditions of Korea and Japan is
available in the second of the two chapters on Chinese mathematics (chap-
ter 7), since these traditions were both heavily influenced by China.

Figure 1.4, together with its detailed legend, emphasizes the following
features of mathematical activity through the ages:

1. The continuity of mathematical traditions until the last few centuries
in most of the selected cultural areas

2. The extent of transmissions between different cultural areas that
were geographically or otherwise separated from one another

3. The relative ineffectiveness of cultural barriers (or “filters”) in inhib-
iting the transmission of mathematical knowledge (In a number of
other areas of human knowledge, notably in philosophy and the arts,
the barriers are often insurmountable unless filters can be devised to
make foreign “products” more palatable.)
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16 Chapter 1

In both Egypt and Mesopotamia there existed well-developed written
number systems as early as the third millennium BC. The peculiar char-
acter of the Egyptian hieroglyphic numerals led to the creation of special
types of algorithms for basic arithmetic operations. Both these develop-
ments and subsequent work in the area of algebra and geometry, especially
during the period between 1800 and 1600 BC, will form the subject matter
of chapter 3. Figure 1.4 brings out another impressive aspect of Egyptian
mathematics—the continuity of a tradition for over three thousand years,
culminating in the great period of Alexandrian mathematics around the
beginning of the Christian era. We shall not examine the content and per-
sonalities of this mature phase of Egyptian mathematics in any detail, since
its coverage in standard histories of mathematics is more than adequate.
There is, however, a widespread tendency in many of these texts to view
Alexandrian mathematics as a mere extension of Greek mathematics, in
spite of the distinctive character of the mathematics of Archimedes, Heron,
Diophantus, and Pappus, to mention a few notable names of the Alexan-
drian period.

The other early contributor to mathematics was the civilization that
grew around the twin rivers, the Tigris and the Euphrates, in Mesopota-
mia. There mathematical activity flourished, given impetus by the estab-
lishment of a place-value sexagesimal (i.e., base 60) system of numerals,
which must surely rank as one of the most significant developments in
the history of mathematics. However, the golden period of mathematics
in this area (or at least the period for which considerable written evidence
exists) came during the First Babylonian period (c. 1800-1600 BC), which
saw not only the introduction of further refinements to the existing nu-
meral system but also the development of an algebra more advanced than
that in use in Egypt. The period is so important that the mathematics that
developed in Mesopotamia is often simply referred to as Babylonian math-
ematics. As with Egypt, the next period of significant advance followed
Alexander’s conquest and the establishment of the Seleucid dynasty. Bab-
ylonian mathematics (a term that will be used interchangeably with Meso-
potamian hereafter to describe the mathematics of this cultural area) is
discussed in chapter 4.

There is growing evidence of mathematical links between Egypt and
Mesopotamia before the Hellenistic period, which we would expect, given
their proximity and the records we have of their economic and political
contacts. Earlier, Parker (1972) had examined the evidence for a spread of
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Mesopotamian algebra and geometry to Egypt. He pointed out that certain
parallel developments in both geometry and algebra provided at least some
support for links between the two cultural areas. This has now been re-
inforced by Friberg (2005), who examined “Egyptian mathematics against
an up-to-date background in the history of Mesopotamian mathematics”
We will discuss Friberg’s work in greater detail in chapter 5. However, given
that there is more evidence than hitherto believed, we represent the con-
tacts between Egypt and Mesopotamia by a two-headed arrow in figure 1.4.

There is also evidence of the great debt that Greece owed to Egypt and
Mesopotamia for its earlier mathematics and astronomy. We have men-
tioned the acknowledgment of this debt by the Greeks themselves, who be-
lieved that mathematics originated in Egypt. The travels of the early Greek
mathematicians such as Thales, Pythagoras, and Eudoxus to Egypt and
Mesopotamia in search of knowledge have been attested to both by their
contemporaries and by later historians writing on the period. The period
of greatest Egyptian influence on the Greeks may have been the first half
of the first millennium BC. The Greek colonies scattered across the Medi-
terranean provided a wide channel of interchange. It is at the time of their
heyday that we hear of Anaximander of Miletus (610-546 BC) introduc-
ing the gnomon (a geometric shape of both mathematical and astronomi-
cal significance)" from Babylon. During the same period, contacts with
the Greeks were maintained through the campaigns of the Assyrian king
Sargon II (722-705 BC), and later through Ashurbanipal’s occupation of
Egypt and his meeting with Gyges of Lydia toward the middle of the sev-
enth century BC. Even when Assyria ceased to exist, the Jewish captivity
played a significant part in disseminating Babylonian learning. This was
followed by the Persian invasion of Greece at the beginning of the fifth
century and the final defeat of the Persians at the end of the fifth century.
Thus continuous contacts were maintained throughout a period in which
Greek mathematics was still in its infancy, as the foundations were being
laid for the flowering of Greek creativity in a couple of centuries. In the
next five hundred years, the pupil would learn and develop sufficiently to
teach the teachers.

Adding to these historical conjectures, there is now stronger evidence
of links between the mathematical traditions of Egypt, Mesopotamia, and
Greece. In a recent book Friberg (2007b) has argued as a sequel to his ear-
lier thesis (Friberg 2005) of “unexpected links between Egyptian and Bab-
ylonian mathematics” that there are “amazing traces of a Babylonian origin
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in Greek mathematics.”"” These “traces” (discussed in chapter 5) are found
in the fact that several of the famous Greek mathematicians showed an
easy familiarity with what Friberg describes as Babylonian “metric alge-
bra,” that is, a characteristic approach that combines geometry, metrology,
and the solution of quadratic equations.

The transmissions to Greece from the two areas are shown in figure
1.4 by the arrows from 2 in Egypt and 2b in Mesopotamia to 1 in Greece.
All three areas then became part of the Hellenistic world, and during the
period between the third century BC and the third century AD, and partly
due to the interaction between the three mathematical traditions, there
emerged one of the most creative periods in mathematics. We usually as-
sociate this period with names such as Euclid, Archimedes, Apollonius and
Diophantus. But if Friberg’s thesis is sustained, there was a ‘non-Euclidean
lower level’ of mathematics present in these traditions. These links are
represented by the double lines between 3 in Egypt, 2 in Greece and 3 in
Mesopotamia.

The geographical location of India made it throughout history an im-
portant meeting place of nations and cultures. This enabled India from the
very beginning to play an important role in the transmission and diffusion
of ideas. The traffic was often two-way, with Indian ideas and achievements
traveling abroad as easily as those from outside entered. Archaeological evi-
dence shows both cultural and commercial contacts between Mesopotamia
and the Indus Valley. While there is no direct evidence of mathematical
exchange between the two cultural areas, certain astronomical calculations
of the longest and shortest day included in the Vedanga Jyotisa, the oldest
extant Indian astronomical/astrological text, as well as the list of twenty-
eight nakshatras found in the early Vedic texts, have close parallels with
those used in Mesopotamia. And hence the tentative link, shown by broken
lines in figure 1.4, between 1 in Mesopotamia and 1 in India.'

The relative seclusion that India had enjoyed for centuries was broken
by the invasion of the Persians under Darius around 513 BC. In the ensu-
ing six centuries, except for a century and a half of security under the Mau-
ryan dynasty, India was subjected to incursions by the Greeks, the Sakas,
the Pahlavas, and the Kusanas. Despite the turbulence, the period offered
an opportunity for a close and productive contact between India and the
West. Beginning with the appearance of the vast Persian empire, which
touched Greece at one extremity and India at the other, tributes from
Greece and from the frontier hills of India found their way to the same



The History of Mathematics 19

imperial treasure houses at Ecbatana or Susa. Soldiers from Mesopotamia,
the Greek cities of Asia Minor, and India served in the same armies. The
word indoi for Indians began to appear in Greek literature. Certain inter-
esting parallels between Indian and Pythagorean philosophy have already
been pointed out. Indeed, according to some Greek sources, Pythagoras
had ventured as far afield as India in his search for knowledge.

By the time Ptolemaic Egypt and Rome’s Eastern empire had established
themselves just before the beginning of the Christian era, Indian civiliza-
tion was already well developed, having founded three great religions—
Hinduism, Buddhism, and Jainism—and expressed in writing some subtle
currents of religious thought and speculation as well as fundamental theo-
ries in science and medicine. There are scattered references to Indian sci-
ence in literary sources from countries to the west of India after the time of
Alexander. The Greeks had a high regard for Indian “gymnosophists” (i.e.,
philosophers) and Indian medicine. Indeed, there are various expressions
of nervousness about the Indian use of poison in warfare. In a letter to his
pupil Alexander in India, Aristotle warns of the danger posed by intimacy
with a “poison-maiden,” who had been fed on poison from her infancy so
that she could kill merely by her embrace!

There is little doubt that the Mesopotamian influence on Indian as-
tronomy continued into the Hellenistic period, when the astronomy and
mathematics of the Ptolemaic and Seleucid dynasties became important
forces in Indian science, readily detectable in the corpus of astronomical
works known as Siddhantas, written around the beginning of the Chris-
tian era. Evidence of such contacts (especially in the field of medicine) has
been found in places such as Jund-i-Shapur in Persia dating from between
AD 300 and 600. As mentioned earlier, Jund-i-Shapur was an important
meeting place of scholars from a number of different areas, including In-
dians and, later, Greeks who sought refuge there with the demise of Alex-
andria as a center of learning and the closure of Plato’s Academy. All such
contacts are shown in figure 1.4 by lines linking 2 in India to 1 in Greece
and 3 in India to the Hellenistic cultural areas.

By the second half of the first millennium AD, the most important con-
tacts for the future development of mathematics were those between India
and the Islamic world. This is shown by the arrow from 3 in India to 1 in
the “Arab” world. As we saw in figure 1.3, the other major influence on the
Islamic world was from the Greek cultural areas, and the nature of these
influences has been discussed in some detail. As far as Indian influence via
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the Islamic world on the future development of mathematics is concerned,
it is possible to identify three main areas:

1. The spread of Indian numerals and their associated algorithms, first
to the Islamic world and later to Europe

2. The spread of Indian trigonometry,” especially the use of the sine
function

3. The solutions of equations in general, and of indeterminate equa-
tions in particular®

These contributions will be discussed in chapters 8-10, which deal with
Indian mathematics.

We have already looked briefly at the contributions of Islamic scholars
as producers, transmitters, and custodians of mathematical learning. Their
role as teachers of mathematics to Europe is not sufficiently acknowledged.
The arrow from 1 in the “Arab” world to 1 in Europe represents the crucial
role of the Islamic world in the creation and spread of mathematics, which
culminated in the birth of modern mathematics. These contributions will
be discussed in the final chapter of this book.

Figure 1.4 shows another important cross-cultural contact, between
India and China. There is very fragmentary evidence (as shown by the
broken line between 2 in India and 2 in China) of contacts between the
two countries before the spread of Buddhism into China. After this, from
around the first century AD, India became the center for pilgrimage of
Chinese Buddhists, opening the way for a scientific and cultural exchange
that lasted for several centuries. In a catalogue of publications during the
Sui dynasty (c. 600), there appear Chinese translations of Indian works on
astronomy, mathematics, and medicine. Records of the Tang dynasty in-
dicate that from 600 onward Indian astronomers were hired by the Astro-
nomical Board of Changan to teach the principles of Indian astronomy. The
solution of indeterminate equations, using the method of kuttaka in India
and of giuyishu in China, was an abiding passion in both countries. The na-
ture and direction of transmission of mathematical ideas between the two
areas is a complex but interesting problem, one to which we shall return in
later chapters. The two-headed arrow linking 3 in India with 3 in China is
arecognition of the existence of such transmission. Also, there is some evi-
dence of a direct transmission of mathematical (and astronomical) ideas
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between China and the Islamic world, around the beginning of the second
millennium AD."” Numerical methods of solving equations of higher order
such as quadratics and cubics, which attracted the interest of later Islamic
mathematicians, notably al-Kashi (c. 1400), may have been influenced
by Chinese work in this area. There is every likelihood that some of the
important trigonometric concepts introduced into Chinese mathematics
around this period may have an Islamic origin.

There are broken lines of transmission in figure 1.4 that need some ex-
planation. One of the conjectures posed and elaborated in chapter 10 is the
possibility that mathematics from medieval India, particularly from the
southern state of Kerala, may have had an impact on European mathemat-
ics of the sixteenth and seventeenth centuries. While this cannot be sub-
stantiated at present by existing direct evidence, the circumstantial evidence
has become much stronger as a result of some recent archival research. The
fact remains that around the beginning of the fifteenth century Madhava of
Kerala derived infinite series for p and for certain trigonometric functions,
thereby contributing to the beginnings of mathematical analysis about 250
years before European mathematicians such as Leibniz, Newton, and Greg-
ory were to arrive at the same results from their work on infinitesimal cal-
culus. The possibility of medieval Indian mathematics influencing Europe is
indicated by the arrow linking 4 in India with 1 in Europe.

During the medieval period in India, especially after the establishment
of Mughal rule in North India, the Arab and Persian mathematical sources
became better known there. From about the fifteenth century onward
there were two independent mathematical developments taking place,
one Sanskrit-derived and constituting the mainstream tradition of Indian
mathematics, then best exemplified in the work of Kerala mathematicians
in the South, and the other based in a number of Muslim schools (or ma-
drassahs) located mainly in the North. We recognize this transmission by
constructing an arrow linking 1 in the Arab world to 4 in India. A discus-
sion of the flourishing mathematical tradition introduced into India dur-
ing the medieval times, where the sources were Persian and Arabic texts,
will be found in chapter 9.

The medieval period also saw a considerable transfer of technology and
products from China to Europe, which has been thoroughly investigated
by Lach (1965) and Needham (1954). The fifteenth and sixteenth centuries
witnessed the culmination of a westward flow of technology from China



22 Chapter1

that had started as early as the first century AD. It included, from the list
given by Needham (1954, pp. 240-41), the square-pallet chain pump,
metallurgical blowing engines operated by water power, the wheelbarrow,
the sailing carriage, the wagon mill, the crossbow, the technique of deep
drilling, the so-called Cardan suspension for a compass, the segmental
arch-bridge, canal lock-gates, numerous inventions in ship construction
(including watertight compartments and aerodynamically efficient sails),
gunpowder, the magnetic compass for navigation, paper and printing, and
porcelain. The conjecture here is that with the transfer of technology went
certain mathematical ideas, including different algorithms for extracting
square and cube roots, the “Chinese remainder theorem,” solutions of cu-
bic and higher-order equations by what is known as Horner’s method, and
indeterminate analysis. Such a transmission from China need not have
been a direct one but may have taken place through India and the Islamic
world. We shall return to the question of influences and transmission from
China to the rest of the world in chapter 7.

During the first half of the first millennium of the Christian era, the
Central American Mayan civilization attained great heights in a number
of different fields including art, sculpture, architecture, mathematics, and
astronomy. In the field of numeration, the Maya shared in two fundamen-
tal discoveries: the principle of place value and the use of zero. Present
evidence indicates that the principle of place value was discovered in-
dependently four times in the history of mathematics. At the beginning
of the second millennium BC, the Mesopotamians were working with a
place-value notational system to base 60. Around the beginning of the
Christian era, the Chinese were using positional principles in their rod
numeral computations. Between the third and fifth centuries AD, Indian
mathematicians and astronomers were using a place-value decimal system
of numeration that would eventually be adopted by the whole world. And
finally, the Maya—apparently cut off from the rest of the world—had de-
veloped a positional number system to base 20. As regards zero, there are
only two original instances of its modern use in a number system: by the
Maya and by the Indians around the beginning of the Christian era.

But mathematics is not the only area in which the Maya surprise us.
With the most rudimentary instruments at their disposal they undertook
astronomical observations and calendar construction with a precision that
went beyond anything available in Europe at that time. They had accurate



The History of Mathematics 23

estimates of the duration of solar, lunar, and planetary movements. They
estimated the synodic period of Venus (i.e., the time between one appear-
ance at a given point in the sky and its next appearance at that point) to
be 584 days, which is an underestimate of 0.08 days. They achieved these
discoveries with no knowledge of glass or, consequently, of any sort of opti-
cal device. Neither did they apparently have any device for measuring the
passage of time, such as clocks or sandglasses, without which it would now
seem impossible to produce astronomical data.

Figure 1.5 shows the geographical areas whose mathematics form the
subject matter of this book. I am conscious of not having examined in suf-
ficient detail the mathematical pursuits of other groups, notably the Af-
ricans south of the Sahara, the Amerindians of North America, and the
indigenous Australasians, although the topics treated in chapter 2 should
go some way in making up for this neglect.”” Much research still needs to
be done on mathematical activities in these areas, despite some promising
work on ethnomathematics in recent years, notably by Gerdes (1995, 1999,
2002) and Zaslavsky (1973a) on African mathematics.”

Since the publication of the first edition of this book in 1991, there has
been an increase in interest in ethnomathematics, or the study of math-
ematical concepts in their cultural context, often within socially cohesive
and small-scale indigenous groups. Within the definition of mathematics
given earlier, the emphasis is on how structures and systems of ideas in-
volving number, pattern, logic, and spatial configuration arose in different
cultures. This view has had to contend with the strongly entrenched notion
that mathematics, having originated in some primitive unformed state, ad-
vanced in a linear direction to the current state of modern mathematics
and will continue to grow in that direction. A mathematical system that
emerges in a culture removed from this “mainstream” would then be per-
ceived as a mere distraction of little relevance to the ideas and activities
supported by modern mathematics.

A telling criticism of the first edition of The Crest of the Peacock is that it
implicitly subscribed to this “linear” view, being “epistemologically based
on the idea of direct literal translations of non-western mathematics to the
western tradition” (Eglash 1997, p. 79). In response to this criticism and
in subsequent editions, the coverage has been extended to include areas
in the Pacific and elaborate further on the mathematical activities in the
African and American continents.
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Notes

1. The term “cultural dependencies” is used here to describe those countries—notably
the United States, Canada, Australia, and New Zealand—which are inhabited mainly
by populations of European origin or which have historical and cultural roots similar to
those of European peoples. For the sake of brevity, the term “Europe” is used hereafter
to include these cultural dependencies as well.

2. This is a variation on the famous Needham question (named after Joseph Needham,
the well-known twentieth-century British scientist and sinologist): Why did modern
science develop in Europe when China with its momentous inventions like printing
and gunpowder seemed so much better placed to achieve it? A similar question may be
asked substituting instead of China the names of India or the Islamic world. For further
discussion, see Bala (2006) and Bala and Joseph (2007).

3. See Brohman (1995a, 1995b) for further details.

4. The shift has occurred not only in the history of mathematics. The traditional Euro-
centric world history presupposed the existence of an imaginary line of “civilizational
apartheid” between the European and the non-European world whereby the former
had single-handedly propelled the whole world from tradition into modernity while
the latter remained stagnant. In recent years, spurred by a non-Eurocentric global his-
tory focusing on the historical resource portfolios (i.e., ideas, institutions, and tech-
nologies) diffused from the East across to the West, one discerns the emergence of what
may be described as a neo-Eurocentric approach: one that acknowledges the borrowing
of non-Western resources in the rise of the West but recasts Europe as “cosmopoli-
tan, tolerant, open to others ideas, and highly adaptive insofar as it put all these non-
Western sources together in a unique way to produce modernity” I am grateful to John
Hobson for making this point in a private communication. It follows logically from his
book The Eastern Origins of Western Civilisation (2004).

5. These parallels include (a) a belief in the transmigration of souls; (b) the theory of
four elements constituting matter; (c) the reasons for not eating beans; (d) the structure
of the religio-philosophical character of the Pythagorean fraternity, which resembled
Buddhist monastic orders; and (e) the contents of the mystical speculations of the Py-
thagorean schools, which bear a striking resemblance to the Hindu Upanishads. Ac-
cording to Greek tradition, Pythagoras, Thales, Empedocles, Anaxagoras, Democritus,
and others undertook journeys to the East to study philosophy and science. While it
is far-fetched to assume that all these individuals reached India, there is a strong pos-
sibility that some of them became aware of Indian thought and science through Persia.

6. It is interesting to note that the terminology used in modern mathematics has a
mixed origin consisting mainly of Greek, Latin, and modern European languages. The
terms used in both Egyptian and Mesopotamian texts date back to the period before
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the Greeks. Given the nature and scope of this book, we will continue to use modern
terminology and avoid literal translations of the technical terms given in the ancient
texts. Thus, for example, we use the modern term “triangle” (three angles) rather than
the Babylonian term translated as “wedge” (three sides). The concept of an “angle” came
only with the Greeks. A right-angled triangle in Old Babylonian mathematics had no
angle connotation and was literally transliterated as one of two triangles into which
a rectangle was divided by the longer diagonal. Similarly, although we use a modern
term such as a “square” in the presentation of the ancient mathematics of Egypt and
Mesopotamia, it should be noted that the corresponding term in these texts is “equal
side” (or “same side”).

7. In terms of historical, geographical, as well as intellectual proximity, Islamic sci-
ence could be regarded as the most immediate predecessor of modern Western sci-
ence. Some of the more recent studies (Bala 2006; Saliba 2007) show the existence
of epistemological links between the two sciences. The “mathematicization” of nature,
the centrality of the empirical method in scientific methodology, and the rationality of
scientific discourses are features of Islamic science inherited by founders of modern
Western science.

8. They include (a) an early description of pulmonary circulation of the blood, by ibn
al-Nafis, usually attributed to Harvey, though there are records of an even earlier ex-
planation in China; (b) the first known statement about the refraction of light, by ibn
al-Hayatham, usually attributed to Newton; (c) the first known scientific discussion of
gravity, by al-Khazin, again attributed to Newton; (d) the first clear statement of the idea
of evolution, by ibn Miskawayh, usually attributed to Darwin; and (e) the first exposition
of the rationale underlying the “scientific method,” found in the works of ibn Sina, ibn
al-Hayatham, and al-Biruni but usually credited to Roger Bacon. A general discussion of
the Western debt to the Middle East is given by Savory (1976), while detailed references
to specific contributions of Islamic science are given by Gillespie (1969-).

9. Jund-i-Shapur (or Guneshahpuhr) was founded around AD 260 by Shahpuhr I
(241-272) to settle Roman prisoners captured in the war against Valerian and was lo-
cated in Khuzistan in southwestern Iran. Early settlers included Roman engineers and
physicians, and doubtless others who may have been acquainted with Greek, Egyptian,
and Mesopotamian mathematics. The Christian bishop Demetrianus from Antioch
founded a bishopric there, and during the fifth and sixth centuries Nestorianism was
the only form of Christianity permitted in Iran. This intolerance contrasted with the
openness and tolerance exhibited toward other religious immigrants, for when Zeno
closed the School of the Persians in Edessa (AD 489), its intellectual and spiritual cen-
ter moved to Persian Nisibis, where the exiles re-created their famous seat of learning.
The Medical School of Jund-i-Shapur was founded on Greek medical knowledge (itself
from Egyptian and Babylonian) by these Nestorian physicians. In the realms of phi-
losophy, it is often forgotten that the Sasanian king Khusro I welcomed the major seven
Neoplatonist Greek philosophers who fled Athens in 529 when the Academy there was
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closed on the orders of the Byzantine Justinian. Some of these scholars worked for some
time at Jund-i-Shapur but became homesick; Khusro negotiated their safe conduct and
pardon for their return to Athens. Indeed, it was said of the enlightened Khusro that
he was “a disciple of Plato seated on the Persian throne” The Jund-i-Shapur Medical
School remained a center of excellence right through to Islamic times and indeed well
past the mid-ninth century. While there are no extant records relating to mathemati-
cal activities in Jund-i-Shapur, we have evidence to indicate that during the reign of
Shahpuhr I and later Khusro I, translations into Middle Persian (Pahlavi) were made
in Iran from Greek and Sanskrit texts. It is more than likely that these included texts in
astronomy, mathematics, and other sciences. After the downfall of the Sasanians, the
Islamic regimes of the caliphs were by turns favorable or otherwise to the ancient learn-
ing enshrined at Jund-i-Shapur. Either way, Islamic knowledge was vastly increased
through such deep and enduring exchanges.

10. This familiar story (or even some believe a caricature) about the role played by the
House of Wisdom is now being reassessed. For further details see Gutas (1998) and
Saliba (2007). See also endnote 2 of chapter 11.

11. But see the comment and reference given in endnote 24 of chapter 11 for further
clarification.

12. A Spanish dictionary gives the following meanings: dlgebra. 1. f. Parte de las ma-
tematicas en la cual las operaciones aritméticas son generalizadas empleando nimeros,
letras y signos. 2. f. desus. Arte de restituir a su lugar los huesos dislocados (translation:
the art of restoring broken bones to their correct positions).

13. For further details of these transmissions, see Zaimeche (2003, p. 10).

14. Gnomon is an ancient Greek word meaning “indicator” or “that which reveals”
There are references to the gnomon in other traditions, for example, the seminal Chi-
nese text Nine Chapters on the Mathematical Art, and it was referred to earlier by the
Duke of Zhou (eleventh century BC). “Gnomon” also refers to the triangular part of a
sundial that casts the shadow.

15. In the concluding paragraph Friberg (2005, p. 270) writes: “The observation that
Greek ostraca [i.e., limestone chippings and pottery used as writing material] and pa-
pyri with Euclidean mathematics existed side by side with demotic and Greek papyri
with Babylonian style mathematics is important for the reason that this surprising cir-
cumstance is an indication that when the Greeks themselves claimed that they got their
mathematics from Egypt, they can really have meant that they got their mathematical
inspiration from Egyptian texts with the mathematics of the Babylonian type. To make
this thought more explicit would be a natural continuation of the present investigation.”
Friberg (2007) is the continuation of the investigation alluded to and provides the ma-
terial for the Greek links with the two earlier civilizations.
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16. In the case of Indian astronomy and the mathematics associated with it, the early
influences from Mesopotamia came through the mediation of the Greeks. Probably
in the fifth century BC, India acquired Babylonian astronomical period relations and
arithmetic (e.g., representing continuously changing quantities with “zigzag” func-
tions). Around the early centuries AD, the Babylonian arithmetical procedures were
combined with Greek geometrical methods to determine solar and lunar positions, as
reported in the Indian astronomical treatises Romaka-siddhanta and Paulisa-siddhanta.
For further details, see Pingree (1981).

17. Since this is the first time we use the term “trigonometry,” a word of caution is nec-
essary. Trigonometry (meaning “triangle measurement”) is a relatively modern term
dating back to the sixteenth century. While today we have difficulty disentangling the
concept of trigonometry from the ratio of sides in a right-angled triangle, for a long
period of history the concept related only to circles and their arcs. And this was par-
ticularly so for the Greeks and the Indians. It was a search for a measure of the angle (or
the inclination) of one line to another, an interest (and ability) to estimate the lengths
of line segments, and a “systematic ability to convert back and forth between measures
of angles and of lengths” that gave rise to modern trigonometry. I am grateful to Van
Brummelen (2008) for this insight.

18. An example of an indeterminate equation in two unknowns (x and y) is 3x + 4y =
50, which has a number of positive whole-number (or integer) solutions for (x, y). For
example, x = 14, y = 2 satisfies the equation, as do the solution sets (10, 5), (6, 8) and
2, 11).

19. An exchange of astronomical knowledge took place between the Islamic world and
the Yuan dynasty in China in the latter part of the thirteenth century, when both ter-
ritories were part of the Mongol empire. A few Chinese astronomers were employed at
the observatory in Maragha (set up by Hulegu Khan in 1258) and probably helped in
the construction of the Chinese-Uighur calendar (a type of a lunisolar calendar or a cal-
endar whose date indicates both the phase of the moon and the time of the solar year).
This calendar was widely used in Iran from the late thirteenth century onward. There
were at least ten Islamic astronomers working in the Islamic Astronomical Bureau in
Beijing founded by the first Mongol emperor of China, Kublai Khan, in 1271. At this
bureau, continuous observations were made and a zij (or astronomical handbook with
tables) was compiled in Persian. This work was then translated into Chinese during
the early Ming dynasty (1383) and, together with Kushayar’s influential Islamic text,
Introduction to Astrology, served for a number of years as important sources for further
research and study by Chinese scholars. For further details, see van Dalen (2002).

20. It could be argued that in the examples discussed in chapter 2 there is undue em-
phasis on the role of number systems and insufficient attention paid to what Gerdes
(1995) describes as “frozen geometry.” These would include geometric or logical re-
lationships embedded in diverse activities such as basket weaving, knitting, and sand
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drawings highlighted by scholars such as Gerdes (1999) and Harris (1997). The prob-
lem in including such ethnomathematical activities is partly one of determining their
historical origins and partly one of deciding what are to be included/excluded given the
scope of this book.

21. The burgeoning study of African mathematics in recent years has highlighted a
variety of mathematics that goes under the blanket term “ethnomathematics” Ram-
bane and Mashige (2007, 184-85) have constructed the following list, with references
to those who have worked in these areas.

1. Oral mathematics. The mathematical knowledge that is transmitted orally
from one generation to another.

2. Oppressed mathematics. The mathematical elements in daily life that remain
unrecognized by the dominant (colonial and neocolonial) ideologies (Gerdes
1985b).

3. Indigenous mathematics. A mathematical curriculum that uses everyday in-
digenous mathematics as the starting point. The origin of this concept is found
in Gay and Cole (1967), who criticized the teaching of Kpelle children in Liberia
in Western-oriented schools “things that have no point or meaning within their
culture”

4. Sociomathematics of Africa. “The applications of mathematics in the lives of
African people, and, conversely, the influence that African institutions had upon the
evolution of their mathematics” (Zaslavsky 1973b, 1991).

5. Informal mathematics. Mathematics that is transmitted and learned outside
the formal system of education, sometimes referred to as “street mathematics” (Pos-
ner 1982; Nunes et al. 1993).

6. Nonstandard mathematics. A distinctive mathematics beyond the standard
form, found outside the school and university (Gerdes 1985b).

7. Hidden or frozen mathematics. Mathematics that has to be unfrozen from
“hidden” or frozen objects or techniques, such as basket making, weaving, or tradi-
tional architecture (Gerdes 1985b).



Chapter Two
Mathematics from Bones, Strings,
and Standing Stones

It is taking an unnecessarily restrictive view of the history of mathematics
to confine our study to written evidence. Mathematics initially arose from
a need to count and record numbers. As far as we know there has never
been a society without some form of counting or tallying (i.e., matching a
collection of objects with some easily handled set of markers, whether it
be stones, knots, or inscriptions such as notches on wood or bone). If we
define mathematics as any activity that arises out of, or directly generates,
concepts relating to numbers or spatial configurations together with some
form of logic, we can then legitimately include in our study protomath-
ematics, which existed when no written records were available.

Beginnings: The Ishango Bone

High in the mountains of central equatorial Africa, on the borders of
Uganda and Congo, lies Lake Rutanzige (Edward), one of the furthest
sources of the river Nile. It is a small lake by African standards, about
eighty kilometers long and fifty wide. Though the area is remote and
sparsely populated today, about twenty-five thousand years ago by the
shores of the lake lived a small community that fished, gathered food, or
grew crops, depending on the season of the year. The settlement had a
relatively short life span of a few hundred years before being buried in a
volcanic eruption. These Neolithic people have come to be known as the
Ishango, after the place where their remains were found. There exists today
a small village by that name.

Archaeological excavations at Ishango have unearthed human remains
and tools for fishing, hunting, and food production (including grinding
and pounding stones for grain). Harpoon heads made from bone may have
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FIGURE 2.1: The Ishango bone (Courtesy of Dr. J. de Heinzelin)

served as prototypes for tools discovered as far away as northern Sudan
and West Africa. However, the most interesting find, from our point of
view, is a bone tool handle (figure 2.1) which is now at the Musée d’Histoire
Naturelle in Brussels.' The original bone may have petrified or undergone
chemical change through the action of water and other elements. What
remains is a dark brown object on which some markings are clearly visible.
At one end is a sharp, firmly fixed piece of quartz which may have been
used for engraving, tattooing, or even writing of some kind.

The markings on the Ishango bone, as it is called, consist of series of
notches arranged in three distinct rows. The asymmetrical grouping of
these notches, as shown in figure 2.1, would make it unlikely that they were
put there merely for decorative purposes. Row (a) contains four groups
of notches with 9, 19, 21, and 11 markings. In row (b) there are also four
groups, of 19, 17, 13, and 11 markings. Row (c) has eight groups of notches
in the following order: 7, 5, 5, 10, 8, 4, 6, 3. The last two groups (6, 3) are
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spaced closer together, as are (8, 4) and (5, 5, 10), suggesting a deliberate
arrangement in distinct subgroups.

If these groups of notches were not decorative, why were they put there?
An obvious explanation is that they were simply tally marks. Permanent
records of counts maintained by scratches on stones, knots on strings, or
notches on sticks or bones have been found all over the world, some going
back to the very early history of human habitation. During an excavation of
a cave in the Lebembo Mountains on the borders of Swaziland in southern
Africa, a small section of the fibula of a baboon was discovered, with 29
clearly visible notches, dating to about 35,000 BC.> This is one of the earliest
artifacts we have that provide evidence of a numerical recording device. An
interesting feature of this bone is its resemblance to the “calendar sticks”
still used by some inhabitants of Namibia to record the passage of time.
From about five thousand years later we have the shin-bone of a young wolf,
found in Czechoslovakia, which contains 57 deeply cut notches arranged in
S-shaped groups. It was probably a record kept by a hunter of the number
of kills to his credit. Such artifacts represent a distinct advance, a first step
toward constructing a numeration system, whereby the counting of objects
in groups is supplemented by permanent records of these counts.

However, the Ishango bone appears to have been more than a simple
tally. Certain underlying numerical patterns may be observed within each
of the rows marked (a) to (c) in figure 2.1. The markings on rows (a) and
(b) each add up to 60: 9+19+21+11=60, and 19+17+13+11=60,
respectively. Row (b) contains the prime numbers between 10 and 20. Row
(a) is quite consistent with a numeration system based on 10, since the
notches are grouped as 20 + 1, 20 — 1,10 + 1, and 10 — 1. Finally, row (c),
where subgroups (5, 5, 10), (8, 4), and (6, 3) are clearly demarcated, has
been interpreted as showing some appreciation of the concept of duplica-
tion or multiplying by 2.

De Heinzelin (1962), the archaeologist who helped to excavate the
Ishango bone, wrote that it “may represent an arithmetical game of some
sort, devised by a people who had a number system based on 10 as well as
a knowledge of duplication and of prime numbers” (p. 111). Further, from
the existing evidence of the transmission of Ishango tools, notably har-
poon heads, northward up to the frontiers of Egypt, de Heinzelin consid-
ered the possibility that the Ishango numeration system may have traveled
as far as Egypt and influenced the development of its number system, the
earliest decimal-based system in the world.
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The African origins of Egyptian civilization are well attested to by ar-
chaeological and early written evidence. Herodotus wrote of the Egyptian
people and culture having strong African roots, coming from the lands of
the “long-lived Ethiopians,” which meant in those days the vast tract of in-
ner Africa inhabited by black people. However, de Heinzelin's speculations
about the state of mathematical knowledge of the Ishango, based as they
are on the evidence of a single bone, seem far-fetched. A single bone with
suggestive markings raises interesting possibilities of a highly developed
sense of arithmetical awareness; it does not provide conclusive evidence.

There is, however, another answer, more firmly rooted in the cultural
environment, to the puzzle of the Ishango bone. Rather than attribute the
development of a numeration system to a small group of Neolithic set-
tlers living in relative isolation on the shores of a lake, apparently cut off
from other traceable settlements of any size and permanence, a more plau-
sible hypothesis is that the bone markings constitute a system of sequential
notation—for example, a record of different phases of the moon. Whether
this is a convincing explanation would depend in part on establishing the
importance of lunar observations in the Ishango culture, and in part on
how closely the series of notches on the bone matches the number of days
contained in successive phases of the moon.

Archaeological evidence of seasonal changes in the habitat and activity
of the Ishango highlights how important it was to maintain an accurate lu-
nar calendar. At the beginning of the dry season, the Ishango moved down
to the lake from the hills and valleys that formed their habitat during the
rains. For those who were permanently settled along the shores of the lake,
the onset of the dry season brought animals and birds to the lake in search
of water. Now assume, for the sake of argument, that migration took place
around the full moon or a few days before the full moon. About six months
later the rainy season would begin, and the water levels of the lake would
rise. Between the beginning of the dry season and the onset of the rainy
season, there might be festivities that coincided with particular phases of
the moon. And such events might very well be what is recorded notation-
ally on the bone. Activities such as gathering and processing of nuts and
seeds, or hunting, both of which archaeological evidence suggests were im-
portant in the Ishango economy, could be incorporated sequentially into
the lunar calendar represented by the Ishango bone. Similarly, religious
rituals associated with seasonal and other festivities could be recorded on
the bone. Such a scenario is still conjectural, but consistent with what we
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know of present-day peoples who still follow the hunter-gatherer lifestyle
of the Ishango.

A cursory examination of the pattern of notches on the Ishango bone
shows no obvious regularity that one can associate with lunar phenomena.
Two of the rows add up to 60, so that each of these rows may be said to rep-
resent two lunar months. The third row contains only 48 notches, which
would account for only a month and a half. But a mere count of the notches
would ignore the possible significance of the different sizes and shapes of
the markings as well as the sequencing of the subgroups demarcated on
the bone.

Marshack (1972) carried out a detailed microscopic examination of the
Ishango bone and found markings of different indentations, shapes, and
sizes. He concluded that there was evidence of a close fit between different
phases of the moon and the sequential notation contained on the bone,
once the additional markings—visible only through the microscope—were
taken into account. Also, the different engravings represented by markings
of various shapes and sizes may have been a calendar of events of a ceremo-
nial or ritual nature.

These conjectures about the Ishango bone highlight three important
aspects of protomathematics. First, the close link between mathematics
and astronomy has a long history and is tied up with the need felt even
by early humans to record the passage of time, out of curiosity as well as
practical necessity. Second, there is no reason to believe that early humans’
capacity to reason and conceptualize was any different from that of their
modern counterparts. What has changed dramatically over the years is the
nature of the facts and relationships with which human beings have had
to operate. Thus the creation of a complicated system of sequential nota-
tion based on a lunar calendar was well within the capacity of prehistoric
humans, whose desire to keep track of the passage of time and changes
in seasons was translated into observations of the changing aspect of the
moon. Finally, in the absence of records, conjectures about the mathemati-
cal pursuits of early human beings have to be examined in the light of their
plausibility, the existence of convincing alternative explanations, and the
quality of evidence available. A single bone may well collapse under the
heavy weight of conjectures piled upon it.’

The notches of the Ishango bone open up other interesting conjectures.
The epoch of the Ishango bone was around the same period when women
were supposedly the temporal and spiritual leaders of their clans. Since a
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woman’s menstrual cycle mimics the phases of the moon, would it be too
fanciful to argue that the markings on the bone represent an early calendar
of events of a ceremonial or ritual nature superimposed on a record of a
lunar/menstrual cycle constructed by a woman? After all, among the Siaui
of the Solomon Islands in the Pacific, a menstruating female is described
as “going to the moon.™*

There is yet another interpretation.’ The Ishango bone may have been a
precursor of writing. In that case, writing originated not in drawing figures
or in attempting to record speech but in storing numerical information. The
rows of notches became “graphically isomorphic” to the recorder’s counting
numbers. In this and subsequent chapters, there are illustrations of count-
ing systems with forms of recording in which the iconic origin of the dash
or stroke is the human digit (i.e., the finger or toe). These strokes are graphi-
cally isomorphic with the corresponding words used for counting. It makes
little difference whether we “read” the sign pictorially, as standing for so
many fingers held up, or in “script,” as standing for a certain numeral.

Counting Systems and Numeration: The Pacific Dimension

The study of worldwide systems of numeration as they occur in natural
languages has had a checkered career. A rich source of information on “ex-
otic” languages and customs from the published literature of the explorers,
administrators, and missionaries forms the core of the data now available
on non-European counting systems. Initiated originally by those inter-
ested in linguistics and anthropology, the subject is now of only marginal
interest to these groups. Yet no growth of interest on the part of historians
or philosophers of mathematics has matched the waning interest on the
part of the linguist or the ethnographer.

There are various reasons for this lack of interest. For the Western phi-
losopher, the study of natural-language number systems seems to have
little or no relevance to understanding the nature of number—an abstract
philosophical concept derived from ancient Greeks and independent of
linguistics and cultural vagaries. Historians of mathematics tend to con-
centrate on the origins of written numbers because of their uneasiness
about straying into territories where culture and language interpose. In
any case, they prefer to work with written records, even if these records are
mainly confined to those in European languages. The occurrence of ideas
relating to numbers as existing among “primitive” tribes, if considered at
all, is mentioned in a dismissive fashion.
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This lack of interest in societies outside the usual ambit of historians and
philosophers has had some unfortunate consequences. Societies that lack
a tradition of historical documentation constitute the majority of world
languages. Hence, a great part of humanity’s numeration and counting
practices is ignored. Also, those societies whose numerical practices are
considered in historical writing tend to fall into a small range of count-
ing types, leading to an overwhelming bias in discussions on systems that
concentrate on base 10. Allowance may sometimes be made for irregu-
larities introduced by vestiges of base 12 (English and German) or base 20
(French and Dutch). An unfortunate consequence of this concentration is
the susceptibility to the reductionist fallacy that sees humans’ response to
the need for enumeration of their world as being unvarying across time
and culture.

A renewed interest, since the 1960s, in documenting mathematical ideas
from non-Western societies is reflected in histories of numbers, notably
the works of Flegg (1983), Ifrah (1985), Menninger (1969), and Schmandt-
Besserat (1999). However, part of the material on which these studies were
based came from nineteenth-century reports of the agents of European colo-
nization. Regions such as Melanesia, Polynesia, Micronesia, and Australasia,
which account for more than one-quarter of the existing world languages,
have been neglected. This situation has now changed dramatically with the
monumental twenty-one-volume “Counting Systems of Papua New Guinea
and Oceania” by Glendon Lean (1996). The study, which remains unpub-
lished,’ is a valuable guide to natural-language counting systems used by
nine hundred out of twelve hundred linguistic groups in Papua New Guinea,
Irian Jaya, Solomon Islands, Vanuata, New Caledonia, and parts of Polynesia
and Micronesia. The study relating to Papua New Guinea and Irian Jaya, the
other half of the island of New Guinea, is especially useful since nowhere
in the world is the diversity of cultures and languages so marked as on this
island. This study will form the main basis of the discussion here.

To present a coherent framework for a discussion of the large database
available from Lean’s study, a system of classifying the number systems is
required. The classification discussed later in this chapter under the head-
ing “Emergence of Written Number Systems” is found in the older litera-
ture and is built around the descriptive term “base.” This classification is
unsatisfactory for various reasons. It is particularly inadequate for examin-
ing “mixed” systems of counting, which may, for example, have elements
of base 2, base 5, and base 10 at the same time.” Also, Lean’s study indicates
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FIGURE 2.2: “Body numbers” based on Saxe’s 1982 drawing

that groups within Papua New Guinea, sometimes in close proximity to
one another, differ in significant ways in their counting practices according
to the importance that they attribute to the enumeration of objects as well
as the type of objects counted, and the circumstances in which the count-
ing takes place.

Laycock (1975) introduced a clearer fourfold classification of number
systems. The first consists of a “body part” tally system whereby num-
ber representation is based on the body and entails counting body parts
according to a conventionally defined order. Consider the Oksapmin, a
group found in the West Sepik Province of Papua New Guinea, as an ex-
ample. Saxe (1982) describes their counting system in the following terms:
starting with the thumb of a hand, counting proceeds along the fingers of
that hand, so that the little finger would be 5; it further proceeds down that
hand, so that 7 is the forearm along the upper periphery of the body; to the
face, with 12 being the nearest ear to the hand that has been counted; to
the nearest eye (13); the nose (14); the other eye (15); the other ear (16); and
down along the other side of the body to the little finger on the other hand
(27). If necessary, one could repeat the counting process again to reach 54
on the second count. A specific number is referred to by its associated body
part. (See figure 2.2)

Such a system of number representation has been applied to a range of
diverse activities, whether counting a set of objects (e.g., number of pigs),
measuring the length of an object (e.g., a bow), or establishing the location
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of a house in relation to other houses on a path. And the system alters to
take account of changing socioeconomic circumstances. Saxe describes the
ingenious modifications in counting made by the Oksapmin with the in-
troduction of the Australian “shilling and pound” currency (1 pound = 20
shillings): rather than using all 27 parts of the body for enumeration, an
individual stopped at the inner elbow of the other side of the hand (20)
and called it one “round” or one pound. When the count continued, the
individual began a new “round” starting with the thumb of the first hand.
In 1975, when Papua New Guinea became independent, a new currency
in the form of kina and toea (100 toea = 1 kina, 200 toea = 2-kina note)
was introduced.” This did not lead to an abandonment of the old system of
counting money. Many older Oksapmin people resorted to a “translation”
of kina and toea into pounds and shillings, and then continued the count
by referring to a 10-tfoea coin as one shilling and one 2-kina note as one
pound.

A second type of number system, according to Laycock, is one that has
two to four discrete number-words and a matching “base” to carry out
the tally. For example, in the case of an indigenous Australian group, the
Cumulgal, counting proceeds as urapon (1), ukasar (2), ukasar-urapon (3),
ukasar-ukasar (4), ukasar-ukasar-urapon (5), indicating counting by twos
(or a base 2 system).

A third type is the “quinary-vigesimal” system, which has a 5, 20 cyclic
pattern and may employ fingers and toes as an aid to tallying. For example,
in the Melanesian language Sesake, counting proceeds as sekai (1), dua (2),
dolu (3), pati (4), lima (5), la-tesa (6), la-dua (7), . .., dua-lima (10), . ..,
dua-lima dua (20). The system has a cycle of 5, in which numbers six or
seven use the roots for words one or two respectively, and a superordinate
cycle of 20, in which 20 is two fives twice.

The final type is a decimal system, normally with no reference to
“body parts” and having six to ten discrete number-words. In the Mi-
cronesian language Kiribati, counting proceeds as tenuana (1), uoua (2),
tenua (3), aua (4), nimua (5), onoua (6), itiua (7), wanua (8), ruainua (9),
tebwina (10), tebwina-ma-tenuana (11), . . . , vabui (20), vabui-ma-tenuana
(21), ..., tebubua (100), . . . , tenga (1000), . . . ., tebina-tenga (10,000), . . .,
tebubuna-tenga (100,000). Here we have a straightforward base 10 count-
ing system with no association to body parts. In Kiribiti, number-words
also vary according to the object being counted. Thus the number-word
for nine is ruaman when counting animals, ruakai when counting plants,
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ruai when counting knives, ruakora when counting baskets, and rauawa
when counting boats.

Numeration relating to time has not been a significant influence on the
development of counting systems in the Pacific. Time is usually reckoned
in units determined by lunar and seasonal cycles. Precision of reckoning
is not very important, and in only two activities would reckoning time be
significant: agriculture and ceremonial events. The Mae Enga, a group in
New Guinea, have a lunar “calendar of events” consisting of twelve kana
(or “garden” months) with which they monitor agriculture and other ac-
tivities. The name of each kana is indicative of the activity undertaken that
month. A month is allocated for each activity, such as planting of specific
crops, harvesting, preparing the “garden” for planting, as well as under-
taking trading trips or engaging in fighting. It is not clear whether the Mae
Enga ever kept a record of the passage of time as measured by their calen-
dar, such as the Ishango bone from central Africa.

The recording of ceremonial events does not require anything as elabo-
rate as a calendar. Among the Kewa, the body-part system of counting
is sufficient to track the occurrence of ceremonial dances. According to
Johnson (1997, p. 659), if a cycle of dances were to begin in eleven months
time, this would be counted as komane roba summa (elbow). If the next
occurrence of the dance were three months later, this would be shown as
pesame roba suma (shoulder). The third occurrence, six or seven months
later, would be counted as rigame robasuna (between the eyes). This se-
quence of dances would continue until the climax of the feast, when pigs
were killed. This happened on the month represented by the division of
the wrist and the finger. A number of these festivals required a strong
numerical sense on the part of the participants, since a person’s prestige
was measured by the quantity of pigs, shells, or any other “currency” given
away as gifts.

The Yoruba Counting System: The African Dimension

The origins of the Yoruba people of southwestern Nigeria are lost in the
mists of time.” Oral traditions indicate that they came from the east, and
certain similarities between the customs and practices of ancient Egyptians
and those of the Yoruba would support this. These include similarities in
religious practices and institutions, in particular, the carved idols used in
worship, the shape and design of sacrificial altars, and the role of a power-
ful priesthood.
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Their more recent history began with the foundation of the Oyo state
around the early centuries of the second millennium AD. Commercial and
other contacts with the north provided an important stimulus to scientific
and cultural activity in the region. Later centuries saw the establishment
of the vast Benin empire, independent of the Oyo kingdom, both of which
were finally dissolved by the British at the end of the nineteenth century.

The Yoruba system of numeration is essentially a base 20 counting sys-
tem, its most unusual feature being a heavy reliance on subtraction. The
subtraction principle operates in the following way. As in our system, there
are different names for the numbers one (okan) to ten (eewa). The numbers
eleven (ookanla) to fourteen (eerinla) are expressed as compound words that
may be translated as “one more than ten” to “four more than ten” But once
fifteen (aarundinlogun) is reached the convention changes, so that fifteen
to nineteen (ookandinlogun) are expressed as “twenty less five” to “twenty
less one,” respectively, where twenty is known as oogun. Similarly, the num-
bers twenty-one to twenty-four are expressed as additions to twenty, and
twenty-five to twenty-nine as deductions from thirty (ogbon). At thirty-five
(aarundinlogun), however, there is a change in the way the first multiple
of twenty is referred to: forty is expressed as “two twenties” (0goji), while
higher multiples are named ogota (three twenties), ogerin (four twenties),
and so on to “ten twenties,” for which a new word, igba, is used. It is in the
naming of some of the intermediate numbers that the subtraction principle
comes into its own. To take a few examples, the following numbers are given
names that indicate the decomposition shown on the right:

45 = (20X3)—10 -5,
50 = (20X 3)— 10,
108 = (20X6) — 10 — 2,
300 = 20X (20 — 5),
318 = 400 — (20 X 4) — 2,
525 = (200X 3) — (20 X 4) + 5.

All the numbers from 200 to 2,000 (except those that can be directly re-
lated to 400, or irinwo) are reckoned as multiples of 200. From the name
egbewa for two thousand, compound names are constructed for numbers
in excess of this figure using subtraction and addition wherever appropri-
ate, in ways similar to those shown in the above examples.
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The origin of this unusual counting system is uncertain. One conjec-
ture is that it grew out of the widespread practice of using cowrie shells
for counting and computation. A description of the cowrie-shell counting
procedure given by Mann in 1887 is interesting. From a bag containing a
large number of shells, the counter draws four lots of 5 to make 20. Five 20s
are then combined to form a single pile of 100. The merging of two piles of
100 shells gives the next important unit of Yoruba numeration, 200. As a
direct result of counting in 5s, the subtraction principle comes into opera-
tion: taking 525 as an illustration, we begin with three piles of igha (200),
remove four smaller piles of oogun (20), and then add 5 (aarun) cowrie
shells to make up the necessary number.

This amazingly complicated system of numeration, in which the expres-
sion of certain numbers involves considerable feats of arithmetical ma-
nipulation, runs counter to the widespread view that indigenous African
mathematics is primitive and unsophisticated. But does it have any intrin-
sic merit for computation? As an example of a calculation that exploits
Yoruba numeration to the full, consider the multiplication 19 X 17. The
cowry calculator begins with twenty piles of 20 shells each. From each pile,
1 shell is removed (—20). Then three of the piles, now containing 19 shells
each, are also removed. The three piles are adjusted by taking 2 shells from
one of them and adding 1 each to the other two piles to bring them back to
20: =20 X 2 — (20 — 3). At the end of these operations, we have

400 — 20 — (20X 2) — (20 — 3) = 323.

While the Yoruba system shows what is possible in arithmetic without a
written number system, it is clearly impractical for more difficult multi-
plications. It is a cumbersome method requiring a good deal of recall and
mental arithmetic. Its peculiar characteristics, the base 20 and the subtrac-
tion principle of reckoning, seem to have had only a limited impact on
other counting systems, even within West Africa.

Further Reflections on African Mathematics

Most books on the history of mathematics ignore Africa, especially areas
south of the Sahara. After a cursory treatment of Egyptian mathematics,
which in any case is not often considered African, Africa disappears from
the reckoning. The publication of Claudia Zaslavsky’s Africa Counts: Num-
ber and Pattern in African Cultures (1973a) seems to have made little
impression on the dominant Eurocentrism of the practitioners. Yet a recog-
nition and evaluation of Africa’s contribution to mathematics is important,
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and not only for reasons of restoring a historical balance to the subject.
Consideration of African mathematics reminds us of what is often forgot-
ten: mathematics is a pancultural phenomenon that manifests itself in a
number of different ways, in counting and numeration systems, in games
and leisure pursuits, in art and design, in record keeping and metrology.
Our very definition of mathematics has to be broadened to include activi-
ties such as counting, locating, measuring, designing, playing, explaining,
classifying, sorting. Further, a search for the origins and nature of African
mathematics takes us on an adventure of establishing interdisciplinary con-
nections: between mathematics and cosmology; between mathematics and
philosophy; between mathematics and technology; between mathematics
and linguistics; and between mathematics and cross-cultural psychology.
Gerdes and Djebbar (2007) has a list of references to recent studies that at-
tempt to establish these connections.

In this book, we examine in a piecemeal and scattered fashion the math-
ematics of the African continent. Apart from Egyptian mathematics, ex-
amined in chapter 3, there are brief discussions of the Ishango bone, the
Yoruba system of numeration, and a mention in passing of the counting
system of the Zulus. The geometry of African art and design, the math-
ematical “ingredients” of games and puzzles, and the implicit mathematics
of certain aspects of African astronomy are ignored. Some mention of the
type of work done in this area over the last forty years may be instruc-
tive. Ascher (1988) discusses the cultural background and mathematical
properties of the continuous graphs drawn by the Booshong and Tshokwe
who live on the borders of the area adjoining Angola, Zaire, and Zambia.
In a general discussion of archaeastronomy, Aveni (1981) draws parallels
between cultures in the tropics that appear to have adopted a horizon and
zenith approach to the sky, as opposed to the approach with the celestial
pole (now Polaris) and the ecliptic/celestial equator, which is more famil-
iar to those from the temperate climates. As a result, navigators tended
to use stars on the horizon instead of compass directions. The use of the
star compass seemed a characteristic of cultures as geographically far re-
moved as the inhabitants of the Caroline Islands in the Pacific, the Maya
of Central America, the Mursi of Ethiopia, and the Bambara of the Sudan.
Crowe (1971, 1975, 1982a) discerns complex geometrical patterns from
the designs on the smoking pipes of Begho (Ghana), on the textiles and
wood carvings of the Bakuba (Tanzania) and in Benin art. Eglash (1995)
considers an example of fractals (i.e., scaling in street branching, recursive
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rectangular enclosures, circles of circular dwellings, etc.) in the layout of
settlements of the Mokoulek in Cameroon. Gerdes (1990, 1991, 1995 and
1999) has written voluminously on the “frozen” geometry found in the ma-
terial artifacts and games of different groups from southern Africa, and his
1995 publication provides a good overview of the burgeoning literature in
this area in recent years. Zaslavsky’s classic text, originally written in 1973,
with a new edition that came out in 1999, still remains a valuable reference
to the geometry implicit in African art and design.

There are two other aspects of African mathematics that are often
neglected.

1. The enforced diaspora of the Africans resulting from the slave trade
was destructive of existing mathematical traditions, and yet games
such as “mancala” (a board game based solely on strategy akin to
mathematical reasoning, and found today with minor variations in
many parts of Africa and elsewhere) were taken in their earlier forms
to the Caribbean and the American continents.

2. Skills in drawing and design, and a rich tradition of mental arithme-
tic, were also taken over in slave ships.

African Diaspora Mathematics: The Case of Thomas Fuller

In discussions of people with extraordinary powers of mental calculation,
there is occasionally a mention of Thomas Fuller, an African, shipped to
America in 1724 as a slave at the age of fourteen. He was born somewhere
between present-day Liberia and Benin. Late in his life, his remarkable
powers of calculation made him an example for the abolitionists to dem-
onstrate blacks are not mentally inferior to whites. After his death, Fuller
became a source of interest for psychics and psychologists; the latter, even
when denying mental abilities of blacks, supported the notion of Fuller
as an idiot savant. This was not borne out by those who met him. They
remarked on Fuller’s general self-taught intelligence and decried a system
that prevented him from attaining formal education.
On his death in 1790, an obituary contained the following passage:

Though he could never read or write, he had perfectly acquired the art
of enumeration. . . . He could multiply seven into itself, that product by
seven, and the products, so produced, by seven, for seven times. He could
give the number of months, days, weeks, hours, minutes, and seconds in
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any period of time that any person chose to mention, allowing in his
calculation for all leap years that happened in the time; he could give the
number of poles, yards, feet, inches, and barley-corns in any distance, say
the diameter of the earth’s orbit; and in every calculation he would pro-
duce the true answer in less time than ninety-nine men out of a hundred
would produce with their pens. . . . He drew just conclusions from facts,
surprisingly so, for his (limited) opportunities. . . . Had his opportunity
been equal to those of thousands of his fellow-men . .. even a Newton
himself, need not have been ashamed to acknowledge him a Brother in
Science. (Columbian Centennial, December 29, 1790)

Our new understanding of the ethnomathematics of his birthplace al-
lows us to claim that when Thomas Fuller arrived in 1724 Virginia, he had
already developed his calculation abilities based on his indigenous tradi-
tions. The existing evidence for this claim is not conclusive. However, Bar-
dot’s 1732 account of the numerical abilities of the inhabitants of Fida (on
the coast of Benin) may be of relevance:

The Fidasians are so expert in keeping their accounts, that they easily
reckon as exact, and as quick by memory, as we can do with penand ink. . . .
[This] very much facilitates the trade the Europeans have with them.

Thomas Clarkson backed this up in 1788, writing:

It is astonishing with what facility the African brokers reckon up the ex-
change of European goods for slaves. One of these brokers has perhaps
ten slaves to sell, and for each of these he demands ten different articles.
He reduces them immediately by the head to bars, coppers ounces . . .
and immediately strikes the balance. The European, on the other hand,
takes his pen, and with great deliberation, and with all the advantage of
the arithmetic and letters, begins to estimate also. He is so unfortunate
often, as to make a mistake; but he no sooner errs, than he is detected by
this man of inferior capacity, whom he can neither deceive in the name
or quality of his goods, nor in the balance of his account.

Gerdes and Fauvel (1990) wrote an interesting account of Thomas Fuller
(1710-1790). Shirley (1988) shows the survival of a numerate tradition,
placing high value on mental calculations, among a mainly illiterate popu-
lation, from whose ancestors captive slaves such as Fuller were transported
to the American continents.
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Native Americans and Their Mathematics

It is difficult to estimate precisely how many Native Americans were pres-
ent on the two continents when the Europeans “discovered” them in 1492.
An estimate (Denevan 1992, p. 244) puts the number at fifty-four mil-
lion. The question as to where they came from has fascinated scholars
since Columbus’s time. It is now generally agreed that the distribution
of their population in the Americas, together with their physical appear-
ance and the underlying unity in some aspects of their cultures across
the Americas, implies a common Asian origin. An interesting lacuna in
all Native American cultures may help to establish a lower bound for the
date of their migration from Asia to the Americas. In no culture in the
pre-Columbian Americas is there any evidence of the use of the wheel for
transport. A probable date for the first use of the wheel for this purpose
in central Eurasia is the beginning of the sixth millennium BC. Further,
the early Native Americans and the Asians had certain technologies in
common: these included the smelting of bronze, the casting of gold, silver,
and copper, as well as the arts of weaving and dyeing. These facts together
would indicate that the migration was likely to have occurred not long
before 12,000 BC.

There is yet another singular feature in the early history of the Native
Americans: of all the Americans, the Maya of Central America seem to
exhibit in their arts, folklore, and myths a clearer historical memory of
their Asian origins. Among them one finds sculptures of elephants, a spe-
cies not found on the American continents. The Mayan is perceived as be-
ing among the most “advanced” of all Native American cultures in terms
of its mathematics, astronomy, and technology, and is one of the few cul-
tures that possessed a written language. This leads to the conjecture that
the Mayan may have been the prototype of the culture that was transferred
from Asia to America during the migration. Other groups, as they roamed
across the Americas, splintered away and forgot their origins, whereas the
Maya remained closer to their roots.

Knotted Strings from South America
Knots as Aids to Memory

Human memory is remarkable for both its capacity and its complexity. It
can store an incredible amount of information, but as a storage device it is
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often unreliable and not particularly well organized. Therefore from early
times all types of mnemonic devices, including notches and knots, have
been used as aids to memory. Compared with writing, the use of knots is
a clumsy device, though for a preliterate culture it would have had its ad-
vantages. Knots were easy to use, convenient to carry around, and they had
familiar associations with everyday pursuits such as sewing or fishing. In
fact, Niles (2007) reports that recent work by anthropologists has concen-
trated on the users and uses of knots and how the codes implied in them
functioned to validate authority. The knots served one primary purpose: to
record and preserve information.

There are a host of anecdotes and legends about knots used for record-
ing the passage of time. To take just one story: at the turn of the twentieth
century a German, Karl Weule, reported a conversation he had had with
an old inhabitant of the Makonde Plateau in East Africa. At the beginning
of a journey the old man would present his wife a piece of bark string
with eleven knots. She would be asked to untie a knot each day. The first
knot represented the day of his departure, the next three knots the period
of his journey, the fifth knot the day he reached his destination, the sixth
and seventh knots the days he spent conducting his business, and the next
three knots the period of his return journey. So when she had untied the
tenth knot, she would know that he was returning home the next day.

It is important not to confuse the purpose of these simple mnemonic
knots with that of the quipu, to which we shall now turn. Such confusion
may arise from failure to distinguish a straightforward numerical magni-
tude represented by tally marks or knots from the ordinal representation
possible on a quipu or with a written number system. The fact that the
quipu cannot be manipulated for calculations, while a written number sys-
tem can, does not affect the argument. Tying knots in a cord to show a
certain numerical quantity is no different from writing the same number
on a piece of paper using some widely accepted symbols. This point will
become clearer as we proceed

The Inca Quipu: Appearance and History

Quipu is a Quechua (the language of the Incas) word meaning “knot” A
quipu resembles a mop that has seen better days. It consists of a collection
of cords, often dyed in one or more colors and containing knots of different
types but not, apparently, arranged in any systematic fashion. Quipus, of
which there are about four hundred authenticated examples, are to be found
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in the museums of western Europe and the Americas. They were initially
thought of as primitive artifacts with little aesthetic appeal. About fifty of
these objects have now been carefully studied, the credit for unraveling part
of their mystery going to Leyland Locke (1912, 1923). From a close study
of statements made by Spanish chroniclers of the sixteenth century and a
detailed examination of some of the quipus, Locke concluded that the quipu
was basically a device for recording numbers in a decimal base system.

At its height during the last decades of the fifteenth century AD, the
Inca empire occupied an area that today would include all of Peru and
parts of Bolivia, Chile, Ecuador, and Argentina. In this vast and difficult
terrain lived a culturally diverse population of about six million. It was
a well-organized society, cooperative in character, its material culture the
creation of a number of different groups that the Inca state was able to
organize and control during its short 150-year period of dominance. Yet,
despite the level of their material culture, the Incas seem to have lacked
the three widely accepted basics of early civilizations: the wheel, beasts of
burden, and a written language. Yet the high level of organization required
the keeping of detailed accounts and records. In the absence of a system of
writing, they used quipus.

There is, of course, no contemporary written evidence on the nature
and uses of a quipu from the society that used it. There are, however, the
chronicles of Spanish soldiers, priests, and administrators. The most reli-
able and unbiased of these chroniclers was a soldier, Cieza de Leén, who
began keeping a record in 1547—fifteen years after the Spanish conquest—
and stopped writing three years later. It provides a fascinating account,
both of the flora and fauna of the vast territory and of the society there.

There was one aspect of the former Inca state that Cieza found impres-
sive. Across the imperial highways, many of them more substantial than
the Roman roads of his native land, were to be found small post houses,
the staging posts for runners who carried messages across the difficult
mountainous terrain, impossible for any animal to negotiate. These trained
runners, called chasquis, were stationed in pairs at intervals of about a
mile along the highways. Running at top speed and handing their quipus
on from one runner to the next, as in a relay race, they could transmit
a message to the imperial capital Cuzco from three hundred miles away
in twenty-four hours. Given the terrain, Cieza noted that this method of
carrying messages was superior to using horses and mules, with which he
was more familiar.
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In two words, Cieza summed up the strengths of the former Inca empire
and its ability later to withstand to some degree the havoc brought about by
Spanish plunder: order and organization. And the essential prerequisite for
maintaining good order and efficient organization was the existence of de-
tailed and up-to-date information (or government statistics, as we would
describe such information today) that the state could call upon whenever
necessary. Records of all such information were kept on quipus.

A whole inventory of resources that included agricultural produce, live-
stock, and weaponry—as well as people—was maintained and updated
regularly by a group of special officials known as quipucamayus (quipu
keepers). Each district under the rule of the Incas had its own specially
trained quipucamayu, and larger villages had as many as thirty. For infor-
mation on the role and status of the quipucamayus we have a set of remark-
able drawings by one Guaman Pomade Ayala, a Peruvian, which form part
of a 1,179-page letter to the king of Spain sent in about 1600, some eighty
years after the Spanish conquest. Apart from being one of the most searing
indictments of Spanish rule, it contains a series of illustrations in which
the Inca bureaucracy figures prominently. Seven of these drawings show
people carrying quipus; two of them are reproduced in figure 2.3.

The inscription in figure 2.3a indicates that the figure holding the quipu
is none other than the secretary to the Inca (emperor) and his Council.
Figure 2.3b shows the chief treasurer to the Inca. There is little doubt that
“quipu literacy” was widespread among government officials, of whom the
quipucamayus were important members enjoying high social status.

Figure 2.3b contains another interesting feature, apart from the blank
(i.e., unknotted) quipu held by the Inca’s treasurer. At the bottom left of the
drawing is a rectangle divided into twenty cells, in each of which there is
a systematic arrangement of small circles and dots probably representing
seeds, stones, or similar objects. The Inca abacus, as it has been nicknamed,
may have been the device on which computations were worked out before
the results were recorded on the quipu. We shall return to an explanation
of how computations may have been carried out on this “abacus” in a later
section. But we begin by looking at how a quipu was constructed and used
for storing numerical data.

The Construction and Interpretation of a Quipu

A quipu is constructed by joining together different types of cord. Each
cord is at least two-ply, with one end looped and the other tapered and
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tied with a small knot. Four different kinds of cord can be distinguished.
The first type, which is thicker than the rest, is termed the main cord. From
it are attached like a fringe a number of other cords, most of which hang
down and are known as the pendant cords, but a few have knotted ends
that are directed upward, the top cords. In some quipus there may be an ad-
ditional cord whose looped end is connected to the looped end of the main
cord and tightened, which explains its name—the dangle end cord. To any
of these cords suspended from the main cord there may be attached subsid-
iary cords. And this process of attachment may be carried further, so that
a subsidiary may be connected to a subsidiary of a subsidiary, and so on.
Also, it is possible that some of the pendant cords may be drawn together
by means of a single top cord to form a distinct group. What we have after
the process is complete is a blank quipu, rather like the one in figure 2.3b,
which apparently has no top cords. A blank quipu can have as few as three
cords or as many as two thousand.

There is a further dimension to the construction of a quipu—color. The
predominant colors of the cords in the quipus that have survived are dull
white and varying shades of brown. It is not clear whether the small dif-
ferences in the shades of brown are simply a reflection of the age of the
quipus rather than real color differences. However, early chroniclers of the
Inca culture refer to the use of symbolic color representation for different
things: white for silver, yellow for gold, red for soldiers, and so on. The
symbolic use of colors is common in many societies. The use of red and
green in traffic lights, for example, conveys a meaning that cuts across cul-
tural barriers. Even in those societies where red is not traditionally associ-
ated with danger, its appearance in a traffic signal is sufficient to produce
a rapid response, much more readily than if the warning were in the form
of printed words. And in any case, color being more recognizable than
print over a longer distance would clinch the argument for its adoption.
But the use of color codes to distinguish between mathematical quantities
or operations is unusual in modern mathematics (though not in modern
bookkeeping). Yet, as we shall see later, the ancient Egyptians used red
ink to represent “auxiliaries,” which they calculated as part of arithmeti-
cal operations with fractions; the Chinese distinguished between positive
and negative numbers by using red and black rods, respectively; and the
Indians called algebraic unknowns by the names of different colors. In a
quipu, color was used primarily to distinguish between different attributes.
Each quipu had a color coding system to relate some of the cords to one
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FIGURE 2.3: Two Inca officials holding quipus. An “Inca abacus” can be seen in (b) at the
bottom left. (Poma de Ayala 1936, pp. 358 and 360. Reproduced with permission.)
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another and at the same time to distinguish them from other cords. The
range and subtlety of color coding was extended by using different combi-
nations of colored yarns.

There have been suggestions that the colors had some numerical sig-
nificance, but we cannot be certain. What we do know is that numerical
representation on a quipu was achieved by means of knots. Contemporary
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records clearly indicate that the Incas used a decimal system of numera-
tion. According to Garcilaso de la Vega (b. 1539), whose mother was the
niece of the last king of the Incas (Inca Huayna Capac) and whose father
was a Spaniard, the knots indicated a system of notation by position:

According to their position, the knots signified units, tens, hundreds,
thousands, ten thousands and, exceptionally, hundred thousands, and
they are all as well aligned on their different cords as the figures that an
accountant sets down, column by column, in his ledger.

On each cord except the main cord, clusters of knots were used to represent
a certain number. A number shown on one of the pendant cords could be
read by counting the number of knots in the cluster of knots closest to the
main cord, which represented the highest-value digit, and proceeding along
the cord to the next cluster of knots, representing the next positional digit
(i.e., the next-lowest power of 10) as far as the “units” cluster, at the other end
of the pendant cord. To distinguish the units cluster of knots from the other
clusters representing higher positional digits, a different knot was used.
Generally a long knot with four turns indicated the units position unless a 1
occurred in the units position, in which case a figure-of-eight (or Flemish)
knot was used instead. For all other positions single (or short) knots were
used. The absence of a knot indicated zero in any of the positions.

An illustration will be useful at this point. Figure 2.4 shows how the
numbers 1,351, 258, and 807 may be represented on a quipu, with L, S,
and F denoting long, single, and Flemish knots respectively. The left-hand
pendant cord contains four knot clusters, of one single knot (1S), three
single knots (3S), five single knots (5S), and one Flemish knot (IF), reading
downward from the main cord. This may be read as

(1X 1,000) + (3 X 100) + (5X 10) + (1X 1) = 1,351.
In a similar manner, the other two pendant cords may be read as

(2% 100) + (5X 10) + (8 X 1) = 258,
(8 X 100) + (0X 10) + (7X 1) = 807.

The spacing of the knot clusters is crucial here. For example, the pendant
cord on the right is read as representing 807 because of the considerable
space without any knots that exists between the cluster of eight knots (or
eight 100s, shown as 8S in figure 2.4) and the cluster of seven knots (or
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2416 Top cord
@ Single knot (S)
> Long knot (L) 6L
QOO Flemish knot (F)
1S
4S
2
S Main cord
18 28
Pendant cords
3s
58
58 Subsidiary
cord
8L
1F
1351 258

FIGURE 2.4: Recording numbers on a quipu

seven 1s, shown as 7L). If there were the usual space between the two clus-
ters of knots, this pendant cord would read as 87.

The knot clusters on a top cord usually represent the sum of the num-
bers of the pendant cords. So in figure 2.4 the knots on the top cord may
be interpreted as

(2% 1,000) + (4 X 100) + (1 X 10) + (6 X 1) = 2,416 = 1,351 + 258 + 807.

The same principles apply to interpreting numbers on subsidiary cords, of
which there is only one (with knots representing 302) in figure 2.4. This
example is only a simple illustration of one way of using a quipu. There
are other ways of forming cord groups, by using different colors or by
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distinguishing between different subgroups of pendant cords to extend the
versatility of the quipu.

Asan illustration of another use' of the quipu, we have the report of the
early chronicler Garcilaso de la Vega:

The ordinary judges gave a monthly account of the sentences they im-
posed to their superiors, and they in turn reported to their immediate
superiors, and so on finally to the Inca or those of his Supreme Council.
The method of making these reports was by means of knots, made of
various colors, where knots of such and such colors denote that such
and such crimes had been punished. Smaller threads attached to thicker
cords were of different colors to signify the precise nature of the punish-
ment that had been inflicted. By such a device was information stored
in the absence of writing.

The Mathematics of the Quipu

The quipu served as a device for storing ordered information, cross-
referenced and summed within and between categories. One of the few
real-life examples known to us is a quipu that was used to record data from
a household census of an Andean population in 1567 (Ascher and Ascher
1981; Murra 1968). We shall look at this example in some detail, for it
serves to bring out clearly the versatility of the quipu as a recording device.

Data for the Andean population of Lupaqa are given for seven prov-
inces whose households were classified into two ethnic groups (Alasaa and
Maasaa). Each of the two groups is further divided into two subgroups
(Uru and Aymara). However, for two of the seven provinces the only in-
formation available is the total number of Uru and Aymara households.
How was this information fitted into a logical structure, involving cross-
categorization and summation, so that it could be recorded on a quipu?

We can see from the above information that the household census data
contains 26 independent items of information consisting of:

1. The populations of the five provinces for which complete information
is available, divided into Alasaa and Maasaa groups and further sub-
divided into Uruand Aymara (making a total of 20 items of information)

2. The populations of the two provinces for which the only information
available is the number of Uru and Aymara households in each (4
items of information)
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3. The total population of households in the two provinces for which
information is incomplete (2 items of information).

From the same data it is possible to obtain 20 derived items of
information:

1. The grand total of all households: 1 item of information

2. The total number of Uru and Aymara households: 2 items of
information

3. The number of households in each province: 7 items of information

4. The number of Alasaa and Maasaa households in each province: 10
items of information

These are the 26 + 20 = 46 items of information—a mixture of given
and derived values, and partial and total summations—represented on this
household census quipu.

The simplest way would be to represent each item of information along
the main cord on a pendant cord, equally spaced, using different colors
to distinguish categories. But this is a most uneconomical method of for-
matting information, for it takes no account of the relationships that exist
among a number of these items. A more efficient construction, but not
optimal in any sense, is to proceed as follows. The information is arranged
in seven groups, each group having seven pendant cords. The first four
groups relate to the number of Uru and Aymara households in Alasaa and
Maasaa for the seven provinces. The first eight pendant cords are blank
(i.e., unknotted) since they represent the two provinces for which informa-
tion is not available separately for Alasaa and Maasaa. The other twenty
pendant cords have all the relevant information in the form of clusters of
knots. Partial sums and total sums—the 20 items of derived information
listed above—can be shown by proper positioning of top cords.

This is one of a number of possible arrangements of cords on a quipu.
The more the quipucamayu considers the pattern of distribution by tak-
ing account of the relative sizes and positions of different cords, the better
the logical structure of the final representation. Cord placement, color
coding, and number representation are the basic constructional features,
repeated and recombined to define a format and convey a logical struc-
ture. This search for a coherent numerical/logical structure is mathemati-
cal thinking.
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An Inca Abacus?

The quipu could not have been used as a calculating device. While results
of summations and other simple arithmetical operations were recorded on
the quipu, the computations were worked out elsewhere. How did the In-
cas carry out these calculations? The clue may lie in a passage from a book
written by Father Jose de Acosta, a Spanish priest, who lived in Peru from
1571 to 1586:"

To see them use another kind of quipu with maize kernels, is a perfect
joy. In order to carry out a very difficult computation for which an able
computer would require paper and pen, these Indians make use of their
kernels. They place one here, three somewhere else and eight, I know
not where. They move one kernel here and there and the fact is that they
are able to complete their computation without making the smallest
mistake. As a matter of fact, they are better at practical arithmetic than
we are with pen and ink. Whether this is not ingenious and whether
these people are wild animals, let those judge who will! What I consider
as certain is that in what they undertake to do they are superior to us.
(de Acosta 1596)

Is the priest here describing a form of counting board (yupanu) simi-
lar in appearance to Poma’s drawing shown in figure 2.3b and reproduced
in figure 2.5a? There can of course be no conclusive answer. But Wassen
(1931), who was among the first to describe and interpret Guarnan Poma’s
drawings, had an interesting explanation. He interpreted the row values of
figure 2.5a, from bottom to top, as successive powers of 10. More contro-
versial is his explanation of the column values of the counting board: that,
from left to right, they represent the values 1, 5, 15, and 30." According
to this interpretation, the number represented by the dark circles on the
counting board, worked out in figure 2.5b, is

47 + 21(10) + 20(100) + 36(1,000) + 37(10,000) = 408,257.

This is determined in the following way. In the bottom row, there is one
black dot in the column marked 30, three in the column marked 5, and
2 in the column marked 1. This gives you 30 + 15 + 2, or 47. The other
numbers in the equation above are derived in a similar manner.

There is no other evidence to substantiate this idiosyncratic interpre-
tation of the columns of the counting board. Indeed, it would appear a
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