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 1068 RAYMOND AYOUB [December

 Principia Mathematica, in 1687. On the continent G. Leibniz began his studies on
 the calculus about 1672 and published much of his work in ithe journal Acta
 Eruditorum. This was a monthly periodical published in Leipzig and devoted to
 miscellaneous articles, books and book reviews.

 Paul Euler (1670-1745) was a Lutheran Pastor who was mathematically talented
 and who had studied mathematics with James Bernoulli at the University of Basel.
 Into this intellectually rich and stimulating environment, Leonhard was born in 1707.
 He was a precocious child who received much encouragement from his father. He
 entered the University of Basel and displayed such remarkable talent for mathe-
 matics that John Bernoulli gave him special instruction on Saturdays. He graduated
 with a kind of master's degree in 1724 at the age of 17. He had enrolled in the Faculty
 of Theology and had written a thesis in Latin on a comparison between Newtonian

 and Cartesian philosophy. Although Paul expected his son to study theology, he did
 not discourage Leonhard's interest in mathematics. (Still, mathematics was fine as a
 hobby, but surely not as a profession!)

 At this period there were 3 famous centers of learning, the academies at Berlin,
 Paris, and St. Petersburg, and it was frequently the case that a young scholar would
 journey to one of these.

 John Bernoulli had 3 sons. Two of them, Nicholas 11 (1695-1726) and Daniel
 (1700-1782), were mathematicians who befriended Euler. They both went to
 St. Petersburg in 1725 and both had a high regard for their younger colleague. After
 some effort, Daniel wrote to Euler that he had secured for him a stipend in the
 Academy. The appointment was actually in the physiology section but Euler quickly
 drifted into the mathematics section. He then left Basel and arrivedi in St. Petersburg
 in 1727, remaining there until 1741.

 The period had its troubles. Tsarina Catherine I was committed to carrying out the
 policy of her husband, Peter the Great, in establishing a strong Academy. Unfor-
 tunately she died the day Euler set foot in Russia. The throne passed to Peter I's
 grandson, Peter II, who was only 12 and Russia was ruled by despotic regents who
 declared that the Academy was very costly and was of little use to the state. Euler
 despaired of being able to pursue his interests and decided to join the navy. Admiral
 Sievers saw in him a valuable asset to the navy and offered him a position as lieutenant,
 with promises of rapid promotion. From the sources available to the author it is not
 clear to what extent, if any, Euler was active in naval affairs. The death of Peter II
 brought to an end the despotic regency and the Academy's condition improved, but
 the despotism had discouraged some foreign scholars, who returned to their home-
 land. An opportunity arose when Bullfingr left Russia and in 1731 Euler was appointed
 professor of natural sciences. Two years later, when Daniel decided to return to
 Basel in 1733, he recommended that Euler be appointed his successor as professor of
 mathematics. Euler remained in this position until 1741 when he was summoned by
 Frederick the Great of Prussia to the Berlin Academy. He was in Berlin until 1766.
 Catherine II, the Great, acceded to the throne of Russia in 1762 and in 1766 sum-
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 1974] EULER AND THE ZETA FUNCTION 1069

 moned Euler back to the Academy in St. Petersburg where he remained until his

 death in 1783.

 Euler did significant work in all areas of mathematics and his work in any one of

 these would have assured him a place in history. He was a prodigious writer whose

 collected works run currently to 70 quarto volumes with more to come. In editing

 Euler's works shortly after his death N. Fuss listed 756 articles distributed in time as

 follows: 1727-33 :24; 1734-43 :49; 1744-53 :125; 1754-63 :99; 1764-72:104;

 1773-82 : 355. The most astonishing feature is the phenomenal number written in the

 last 10 years of his life, during which years he was blind. Since Fuss's editing activities,

 numerous additional manuscripts have been found and the total will run to almost

 900. In addition to his articles he wrote several books, among the most noted and
 influential of which was his Introductio in Analysin Infinitorum. Some have criticized

 his writings as being repetitive but it is proper to ignore this kind of pedantry.

 Euler's articles were mostly in Latin which is unfortunate in view of our present

 day ignorance of the classics. On the other hand, the Latin is comparatively simple

 and, with a rudimentary knowledge, together with a dictionary, the reader will be

 rewarded for his efforts. It is especially fortunate that the notation is familiar, and
 where the language is difficult, the mathematics comes to the rescue. It is customary

 to be surprised at how "modern" his notation is; the truth is that his influence was

 so profound that we still use much of the notation he helped to establish.

 Reading his papers is an exhilarating experience; one is struck by the great

 imagination and originality. Sometimes a result familiar to the reader will take on an

 original and illuminating aspect, and one wishes that later writers had not tampered
 with it.

 Euler's personal life, though relatively uneventful, was marred by several tragedies.
 Though apparently of a strong constitution, he developed a massive infection which

 resulted in the loss of one eye in 1735. The second eye developed a cataract about

 1766 which rendered him blind. He could still distinguish lights and shadows and

 sometimes wrote mathematics in very large symbols on a blackboard. Despite this

 handicap, he continued unabated his mathematical activities with the help of young
 assistants. He once met with J. d'Alembert (1717-1783) who was utterly astonished at

 Euler's ability to carry out in his head the most complicated analytical calculations.

 Euler married Catherine Gsell in 1733. She was the daughter of a well-known

 artist. She had 13 children 8 of whom tragically died in childhood. Catherine died in

 1776. Euler then married her half sister.

 His character was that of a kind and gentle man. He had a phenomenal memory,
 had studied the classics, and is said to have known the Aeneid by heart. Though the
 recipient of numerous honors during his lifetime, he retained his modesty and humility

 and it was said of him that he took as much pleasure in the discoveries of others as he

 did in his own.

 He carried on an extensive correspondence with various mathematicians, especi-

 ally Christian Goldbach (1690-1764). He also wrote a series of letters on various
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 1070 RAYMOND AYOUB [December

 subjects in natural philosophy addressed to a German princess. The quality of all his

 letters reflects his pleasant personality.

 2. Early history of the function C(s). In elementary courses in calculus, one of
 the first examples of an infinite series is that given by C(s).

 The student quickly learns, mainly via the integral test, that

 001

 n=1 n

 converges if s > 1 and diverges if s ? 1. Some enthusiastic teachers will point out

 that, in fact,

 1 -Z2 (1) n 2 = t- =2
 and perhaps remark that this relation is difficult to prove and that students who go

 on in mathematics will eventually learn at least one proof. More enthusiastic teachers

 will further point out that if k is an integer k > 1, then

 (2) C(2k) = k -)kB2 k(27r)2k
 2(2k)!

 where B2k is a rational number, viz. a Bernoulli number, a fact first proved by Euler.
 The generating function for these numbers is given by

 x =
 ex_1 - 2 12 zn!

 However, it is easily seen that B2m+ I - 0 and that B2 = 1/6, B4 = -(1/30),
 B6 = 1/42, *-- . They might further point out that if m is odd, m = 2k + 1 (k _ 1),
 then no such formula is known for C(m), and despite considerable efforts over the
 years, the arithmetic nature of even C(3) remains an unsolved problem.

 Before proceeding, it is interesting to note that Euler often worked with

 0 I1
 0(s) = 1S

 n=0 (2n + 1)S s
 with

 4()-00 ( )nl+1
 n=1 n

 and with

 n=0 (2n + 1)S

 The first two are related to C(s) by

 4(s) = 0(s) + 2 C(s) ;
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 1974] EULER AND THE ZETA FUNCTION 1071

 hence 0(s) = (1 - (1!2s))C(s), while

 +(s) = 4s) - 2 C(s) = (1 - 21s)(s).

 Thus 0(n) and 0(n) can be evaluated if C(n) can be. One important advantage of

 +(s) over C(s) is that the series for +(s) converges if s > 0, while that for C(s) only
 for s > 1.

 By contrast +(s) has a superficial resemblance to +(s) but although V(2n + 1) has
 been evaluated, 4(2n + 1) has not. In fact Euler proved that

 4(2n + 1) = (-1))n E,,2n 2n I

 where
 00 En

 secx = I 2n 2n
 n=O zfl.n!

 and E2n are called Euler numbers.
 Let us begin the story and go back ... Infinite series have occurred sporadically

 in mathematics for centuries - in fact Archimedes (287-212 B.C.), when he derived
 his famous theorem on the quadrature of the parabola, proved in effect that the
 series

 00

 E 4-n
 n3=1

 converges. As far as the harmonic series is concerned, however (despite Plato's
 interest), the earliest recorded appearance appears to be in the works of Nicholas of
 Oresme (1323-1382) who proved that the series

 001

 n=1 n
 diverges.

 The problem occurs again in 1650 in a book Novae Quadraturae Arithmeticae
 by a professor of mechanics in Bologna named Pietro Mengoli (1625-1686). He

 related the series to the logarithm and posed the problem of finding the sum of the
 series

 00 1

 n1 ~2 n=~1 n

 if it converges.

 Whether through the book of Mengoli or (what seems likely) independently, the
 problem became known in France and England. In fact, the English mathematician

 John Wallis (1616-1703), professor at Oxford, commented on the problem in 1655 in

 his book Arithmetica Infinitorum. He had computed the value of C(2) to 3 decimal
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 places but it does not appear that he recognized this value, 1.645, as being about r2/6.
 In a letter to John Bernoulli in 1673, Leibniz wrote: "let

 dy = 1 + + 3 +

 then dy = (-[log(l - x)]/x) dx, thus

 x2 x3 log(l-x)d
 2 2 33dx

 As log(l -x) is infinite when x = 1, consider instead

 x x2 x3 dy = - 2 + - -

 and get y = f [(log(l + x)]/x)dx."

 He now integrates by parts and deduces that the evaluation of the sum

 Eo (-l)n+lt

 n=1 n

 reduces to the evaluation of integrals of the form jfxe(1 + x)'dx. He continues: "If
 perhaps it were possible to consider all the cases in order, some light would be shed
 upon the problem."

 In a letter to James Bernoulli in 1691, his brother John wrote, "I see now the

 route for finding the sum T +- + ' + -l6 + v" No further work, however, was
 forthcoming from him until 1742 when he published a proof similar to that given by
 Euler in 1734.

 In the St. Petersburg Academy, the members were drawn to the problem and took

 a great interest in the evaluation of 4(2). That it is a tantalizing problem stems in part
 from the fact that the series has a superficial resemblance to the series

 ?? 1 1

 n1 n(n + 1)

 whose value is easily seen to be

 n=1 n n+
 This fact was early recognized by the academicians. In 1728, Daniel Bernoulli wrote

 to Goldbach that he had a method for computing quickly an approximation to C(2)
 and gave as an approximate value 8/5. In reply Goldbach wrote that he could show
 that

 16= 1.64 < C(2) < 12 = 1.66.
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 1974] EULER AND THE ZETA FUNCTION 1073

 Neither gave indications of their computations. As noted above, Daniel Bernoulli and

 Euler both lived in St. Petersburg between 1727 and 1733 and it seems very probable

 that they discussed the problem together.

 3. Euler's early contributions. There the problem lay. Euler's first contribution

 came in 1731 when he gave an original method for computing C(2). His method
 appeared in a paper De summatione innumerabilium progressionum. He deals with

 sums of the type

 Xk x

 k=1 (ak + b)t

 In the special case of C(2) his argument is as follows: Since

 log(l - x) = - Ex ,it follows

 x n=1 n

 that - C(2) = Jo(log(l - x)/x)dx. Replacing 1 - x by t and splitting the integral,
 it follows that

 =.liogt - {logt flog t =1+ _ C(2) = tlgtdt =Algtdt + Xlgtdt = Il + I2

 In I2, put u = 1-t, expand in a power series and integrate termwise; then if

 y= 1-x

 oo y n
 I2 = E -2

 n=1n

 On the other hand, in 11, expand (1 - t) in a series, and integrate by parts getting

 oo xn
 11 = -log x log(l-x)- E 2

 Hence C(2) = log x log(l -x) + E=1xn/n2 + 1:0(1 -x)n/n2. Putting x =
 we conclude that

 1
 C(2) = (log 2)2 + E 2

 n=1 2~nn

 What has been achieved by this next argument? The series ' 1/2nn2 converges

 much more rapidly than does the series for 4(2). Knowing that

 log 2 = -log (1 2I) = n1 n .480453, \ 2/ n1 n2__
 and that

 1
 E: 2 .' 1.164482,

 n=1 n 22
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 Euler concludes that C(2) 1.644934.
 It should be remarked that in 1730 James Stirling (1692-1770) had computed C(2)

 to 9 decimal places, of which 8 were correct, but Euler was unaware of these calcula-

 tions.

 Euler's next contribution came in 1732/33 in a paper entitled Methodus Generalis

 Summandi Progressiones. In this he states the "Euler-McLaurin" formula (Colin

 McLaurin (1698-1746)). In a later paper Inventio summae cuiusque seriei ex dato

 Termino generali, published in 1736, he gives a proof. Although the paper was

 published in 1736, it is reasonable to assume that the work was done before 1734.

 We shall give Euler's argument which we modify slightly. Moreover, we shall ignore

 a few technicalities. Let

 S(x) = z f(n).
 n?x

 The object is to approximate S(x) by an integral. We have

 (A) f(x) = S(x) - S(x - 1).

 Using the Taylor (Brooke Taylor, 1685-1731) expansion, it follows that

 (B) f(x) = n1

 (the difficulty, of course, is that in writing (A) we are assuming x to be an integer

 while in (B), we assume x to be any real number).

 Assume now that this series can be inverted; that is, assume there exist constants

 bo, b1, b2, *. such that

 a)

 (C) SG') (x) = I bnf'(n) (x).
 n =0

 Differentiating (B),i nserting in (C), and equating coefficients, gives recurrence

 formulae for the b's, viz.,

 bo = 1, b, = bo?) b2 = b2!-bo b3- =2-_b + bo etc.

 Hence S(x) = bo ff(x)dx + Encl bnf (n- ')(x). The b's turn out to be essentially
 the Bernoulli numbers. This fact can be intuitively gleaned from the following argu-

 ment: let D denote the operator d/dx, then (B) can be written as

 f(x) = + - - xS = (eD1)S( )(x)
 2! 3

 or inverting,

 SM'(x) D(eQ )f(x).
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 1974] EULER AND THE ZETA FUNCTION 1075

 On the other hand, the generating function for the Bernoulli numbers as noted

 above, gives

 x x B2X2 B3x3

 ex- 2 2! 3!

 Hence, replacing x by -D gives the desired result. Euler is evidently excited by

 this discovery (as which of us would not be!) and proceeds to apply it with great

 enthusiasm in the paper which appeared in 1736, Inventio summae cuiusque seriei

 ex dato Termino generali, referred to above.

 He derives a formula for

 n

 E mk (k_ 1)
 m=1

 and painstakingly computes the necessary constants B2, ..., B16 and writes out at

 length the results for k = 1, *.,16. Then he applies it to the harmonic series, showing

 that

 const + logx+y-122 +. ,
 n?x n - f

 and performs calculations for x = 101 for 1 = 1,2,3,4,5,6. Finally among other

 things, he computes 4(2) and ((3) with great accuracy. For C(2), he writes

 10 1 0 1

 C(2) = - + X -.
 n1 = =11n

 He computes the first term by hand and then estimates the remainder by the

 formula. His result is that approximately

 C(2) = 1.64493406684822643647.

 Still the evaluation of C(2) in closed form eluded him. Needless to say, this method
 of approximation opened a whole new area of research.

 4. First triumph. Euler's first triumph came in 1734. Having previously done

 work on the roots of polynomials, he conceived the idea of generalizing the factoriza-

 tion of polynomials to transcendental functions. Euler communicated his result to

 Daniel Bernoulli and, while unfortunately this letter has been lost, the reply does

 exist. Daniel says: "The theorem on the sum of the series

 1 1 1 pp 1 1 1 __4
 1 4 + 9 + 16 24 34 44 90

 is very remarkable. You must no doubt have come upon it a posteriori. I should very

 much like to see your solution."

 Here is a sketch of it as it appears in De summis serierum reciprocarum. Consider

 the expression f(x) = 1 - (sin x/sin a) with oc fixed and oc not a multiple of t. Leibniz
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 had derived the power series expansion for sin x, so write

 x x

 f(x) = 1- *sin + 3! sin x
 The right hand side is now viewed as a polynomial of infinite degree. If a1, a2, **, a,..
 are the roots, then write

 f ((x) a1.)(. - ) ( = k=1 (ja )

 The roots of f(x) however, are evident from the left hand side, viz.,

 (2n7t + a = O _ 1, ? 2, . X = n = 0+1 +2 n

 thus

 (F) f(x) n=H ( 2nn + o) 2n7r + 7t-x)

 =(i ) ( - (2nf-1)7r-o)(1 + (2n-1)7r+ e)(- 2nn+e)( + 2nn-eo)
 We can now expand the right hand side in a power series and equate coefficients.

 The expansion on the right involves the "infinite" elementary symmetric functions

 and Euler now derived the infinite analogues of Newton's formulae, viz., if a 1, * , an, .
 is a sequence and

 Sm= E aiI ai
 (T ai ** , 1 .. . i

 while Sm =Y? 1 a7, then in particular,

 S1 = 1 S2 = a1 -2C2, 3 = 13- 312 + 3C3.

 The other relations may be similarly derived.

 Applying these facts to (F) we get (since U2 = 0),

 1 0 _ _ _ _ 1 1 1 I_ _

 n = I (2n1(2n-)-o (2n-1)7r + e + o+ 2nnr-e)o = sin eo

 1 (E 1 1 1 1 \
 -+~ )+ + + - -I
 C2 n=l ((2n -1)- _ a)2 ((2n - 1)7t + a)2 (2n7t + a)2 (2nr - )2j

 1

 sin2a

 3 n (((2n - 1)ng -_ )3 ((2n - 1)7r + x)3 (2nnt + a)3 (2nn-g )3)

 1 1

 sin3 a 2sinoc
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 1974] EULER AND THE ZETA FUNCTION 1077

 Putting a = n/2, the first gives (4/X)(1-i + 1 ... ) = 1-a fact already known
 to James Gregory (1638-1675). The second, however, leads to the long sought after
 objective, for it gives

 8 1 1~~~ 1 2( 2- + 52 + *)-1

 However, as Euler remarks,

 C(2) 1 + 1 + 1 + + 1 C(2)

 and this, then, gives g(2) = ir2/6. Similar arguments give

 1 1 73
 33 5373+ 2

 1 1 4

 1+34 + 54 96'
 and, hence, C(4) = 7r4/90.

 Likewise Euler computes the corresponding series with exponents 5,6,7, and 8.

 If oc = 7t/4, the first relation gives

 it 1 111 1
 __ = 1 + --- ----+ --+- -
 21/2 3 5 7 9 11

 -- a fact he attributes to Newton.

 This elegant discovery gave him one of his earliest successes and established him

 as a mathematician of the first rank.

 One is naturally tempted to ask why, if Euler intends to use infinite products, he
 does not simply use sin x itself? In fact he does; as a postscript to this paper, he notes
 that

 (G) sinx = I7 ( 2 )

 and deduces more directly, ;(2n) for n = 1, 2, 3,4, 5, 6. (G), however, does not give

 the flexibility of (F) and clearly has no hope of yielding anything about C(2n + 1).
 One might surmise that he first proved (G) and then the more general result (F).

 Two objections were raised to this proof by Daniel Bernoulli. In the first place, one

 can't compute with infinite series in the same way that one does with polynomials,
 and in the second place, it is not evident that all the roots of sin x = sin a are real.

 Euler recognizes the second objection as being valid and proceeds to prove that, in

 fact, all the roots are real. As to the first objection, he rightfully insisted in 1740 that

 the method is as well founded as any other method and, moreover, it is based upon a
 principle of which adequate use had not been made. Indeed, it opened up the theory
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 1078 RAYMOND AYOUB [December

 of infinite products and partial fraction decomposition of transcendental functions
 and its importance goes far beyond the immediate application.

 5. Connections with arithmetic. Having achieved his objective of evaluating C(2),
 Euler now turned to the arithmetic properties of C(s). In 1737 he communicated a

 paper entitled Variae Observationes circa series infinitas.
 Here for the first time he proved the famous Euler product decomposition in the

 form

 2s. 3s 5s 7s i f..
 (2s 1)(3s 1)(5s -l)(7si 1)(1 l 1)

 One of his theorems is the statement that

 E 1 - log S n'

 where the left hand side is summed over all p. Nowadays we would insist on writing
 that as x X-+0

 1 1 -log ?, I
 p<x P n?x n

 He also "proved" that if n = pl1 ... pl and A(n) = (1)r +r2+. +rl, then

 E A(n) =

 n=1 n

 and the corresponding fact for ,(u) (what is now called the Mobius function) is stated
 in his "Introductio". Regretfully, we have put the word "proved" in quotation marks
 since the justification of this statement is as deep a result as the prime number
 theorem itself.

 6. Return to C(s). He returned to C(s) in 1740 in a paper entitled De Seribus
 Quibusdam Considerationes. In this he developed the partial fraction decomposition
 of various functions. In particular, he proved that

 rrcos[(b - a)/2n]7r I 2b 2a
 .. , F = _ + _ , 'I 1 -1 _ . ... .,.

 n sin[(b + a)/2n]rr - n sin[(b - a)/2n] - a k = 1 (2k - 1)2n2 - b2 (2kn)2- a2

 By specializing, once again he deduced the values of 4(2), C(4),
 In the meantime what has happened to ((3)? In this same paper he computed

 approximate values of 4(2n + 1) for n = 1,2,3,4,5 to which he added the known
 values of g(2n). He wrote these in the form

 C(n) = N7n.

 He says that if n is even, then N is rational, while if N is odd then he conjectures that
 N is a function of log 2.
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 There is now a slight digression.

 Apparently to respond to the earlier criticism concerning his first proof, Euler
 published a paper in an obscure journal, "Literary Journal of Germany, Switzerland
 and the North (The Hague)", entitled Demonstration de la somme de la suite

 1 + 4 + 9 + . Here he derived once again the formula for C(2).
 Since this method is elementary, and is not generally known, and can be given

 in an elementary course, we present it in detail. We have

 (arcsin x)2 = fX arc sin t

 11 - t2

 If we expand (1- u2)-? by the binomial theorem and integrate termwise, we get

 at du = 0 1 + 3 ...(2n - 1) t2n+' arc sin t t + _ n 1 24 2
 0 V 2U n 2-4 ...2n 2n+I

 It follows that

 r)2 x tdt 00 3 ... (2n -1) 1 r X n+ J(arc sin + I ___ dt.
 - 2-4 ...2n 2n + JI v~t

 Euler then writes, "Since the first term is integrable all the others will also be since
 the integration of each term reduces to that of the preceding. One can see this clearly
 if we reflect that in general

 i tn+2 dt = n++ I _t_ - dt- x+l 2 -X2 .1 1t2 nl+ 2Jo1 n 2

 (Apparently the favorite phrases of mathematicians, "clearly etc.," are not of recent
 origin!) In fact, it takes a few steps to see this "clearly." Let

 I~(x) X tn+2 X tn+ I tdt

 V1I - t2 J I - t2

 Integration by parts gives In(x) - -x"+' 11 -x2 + (n + 1) SJtl( - t2)dt.
 Multiplying the integrand by 1 = 1 -t2 / 11 - t2, and splitting into 2 parts gives

 I"(X) = -XI+'V1 - x2 + (n + 1) In_ 2(x) - (n + 1) In(x),

 and the result follows.

 Thus

 T 1 t2n+ 2n 1 t2n-1
 (H) _

 ? t2 2n+1 o I 1 t2

 and as fo tdt/l -t2 = 1, we conclude that
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 1 t2,+ 1 2n(2n-2) ... 2

 ? 1 t2 (2n + 1)(2n -1) ..3

 Therefore it2/8 = l(arc sin 1)2 = 1O O 1/(2n + 1)2, which as we know from above is
 equivalent to C(2) = 7r2/6. The same result may be obtained by first showing that
 -(arc sin x)2 satisfies the differential equation

 (1-X2)y- xy' = 1,

 then using undetermined coefficients to derive the series for (arc sin x)2, and finally
 integrating termwise to get '(arc sin x)3, after using the above result (H). The reader

 will find it interesting to carry out these steps. The method gives 4(2) = 72/6 directly.

 Euler concludes with the remark that despite repeated efforts, he was unable to use

 this technique to find C(2n) for n > 2. The reader will note that we have glossed over
 the mild difficulties associated with the point x = 1.

 Since the time of Euler, there have been many proofs giving the value of C(2n).
 The interested reader is urged to consult K. Knopp's book on "Infinite Series."

 7. The functional equation and C(3). In the middle of the paper De
 Seriebus... referred to above, Euler began a highly interesting new development.

 There he states that

 1-3+5-7+*** = 0

 1-3 3 +53-73 + = 0,
 etc., whereas,

 -I+j-4+ ... = log2,

 1-2+3-4+... =*i,

 1-27 + 3 - 4 + ... = - 17/16

 On the other hand,

 1-22 + 32 42 + = 0,

 I-2 4+3 4-4 4+ .= 0,

 1-26 + 36 46 +- = 0.

 Where do these come from? They are derived as follows. Let

 f(x) = 1 + x + x2 +* + x + ... = 1/(1- x) if lx| < 1.

 Euler has no reluctance to put x = -1; then 1- 1 + 1- 1 + = j

 To f(x) apply the operator x(d/dx). Then
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 1974] EULER AND THE ZETA FUNCTION 1081

 d X~' 23 = X
 Xdx f (x) = X + 2X2 + 3X3 + ( X)2

 putting x =-1, gives -2 +3-4+ ** = i4.
 Apply the operator again:

 x 22X2 +32X3 + ,. x(1 + x)

 Putting x =-1, gives 1-22+ 32 ** =0.

 As the series converges at each stage of this process for x j < 1, we have Euler
 anticipating "Abel summability" by some 75 years. Then Euler notes that

 1-2 + 3-4 + ** = = 2 (1 + + 2 +.)

 2 3 + 3 3 -43 +3 *' - 8 = - 2 3 ! + 1 1 1- 2 + 35-4 +* 1 + 3

 1 2'-5! 111

 1 2-27 + 35-45 + ''= -6 6 ,:1 + 386 + 58 + *)'
 4 n6j 36 S +

 7 7 7 ~~17 -2-7! / 1
 16 7r8 38 5 ~8

 as can be verified by an easy computation using the values of 0(2n):

 As in Section 1, let 0(s) = '0 1/(2n + 1)' and +(s) = ? _1)n- 'n'
 These relations can be rephrased as

 0(1 -2n)=(- 1) n' 2 (2n - 1)!
 ( - 2n 12 2n - (2n) (n = 1, 2, 3, 4),

 where, of course, 0(m), (m = 0, ? 1, ? 2, ...) is to be understood as

 lim E (-l)" x"
 x-l- n=1 n

 Although he does not explicitly say so, one gets the impression that Euler is trying
 energetically to develop a technique for evaluating C(3), and this impression is partially
 confirmed later, as we shall see.

 In 1749 he gave a paper to the Berlin Academy entitled Remarques sur un beau
 rapport entre les series des puissances tant directes que re'ciproques.

 This time he considers

 +(s) = I -
 S= n
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 alone and notes the following relations:

 1- 2 + 3 - 4 + 5 - 6 + 1 (22 _ 1)

 1 1 1 1 1 (2- 1)7r2
 1 -2 + - ++ ( 22 32 42 52 62

 _ 22 + 32 - 42 + 52 62 = + 0

 1 1 1 1 1 (23_1)it4

 1- +._ + _ ~ +,, 24 3 4 53 4

 24 +34 44+54 64

 14- 24 + 34-44+ 54 64 + = ) 0
 1 1 1 1 1

 12 35 45 55 6

 or if n > 2,

 q5(1 - n) F (l1)(n/2)+1(2 n- 1)(n - 2)! if n is even,
 (j) ~~0(n)=

 (L0if n is odd.

 These relations are listed for n = 2, 3, 10. On the other hand, if n = 1, we see that

 I - 1+ 1 I + .. 1

 I1-i +1 -i + ... 21n2'

 "'whose connection with the others is entirely hidden." (J) is now rewritten in the
 form

 - (I) _ n (n - 1)!(2n - 1) c rn
 +(n) (2n-1 _ 1)r 2

 and Euler says "I shall hazard the following conjecture:

 (I - s) F-(s)(2' - 1) cos 7rs/2
 (K) )

 0(S) (2s-_ 1)7S

 is true for all s". Isn't this derivation beautiful!?

 Now taking the limit of the right hand side as s -+ 1 gives exactly 1/2 In 2! Euler
 continues: "The validity of our conjecture for s = 1 (which case first appeared to

 deviate from the others) is already a strong justification' of the truth of our conjec-

 1 Although Euler uses the word "preuve," the original meaning in English (and presumably
 also in French) conveys the idea of testing an assumption or statement rather than proving in our

 sense. Compare, for example, the expression "the exception that 'proves' the rule."
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 ture since it appears unlikely that a false assumption could have upheld the truth of

 this case. We can therefore regard our conjecture as being solidly based but I shall

 give other justifications which are equally convincing."

 He then checks the formula for s = 2,, and in general s = (2k + 1)/2.
 We have seen in Chapter 1, that

 +(s) = (1 -2 -%(s),

 which leads at once from (K) to

 - s) - -s2lsF(s) cos g- C(S),

 and this is the famous functional equation2. It was proved by Riemann in 1859.

 It should be noted that Euler could not have used C(s) itself since

 00

 lim I nk xn
 x-l- n=1

 does not exist for k = 0, 1, 2, and therefore he could not have attached a meaning to

 c0

 E n-(l-S)
 n=

 for s = 2, 3,....

 On the other hand, it can be shown that the series

 00

 +(s) = , (-l)n+1ns = (1 - 21 -s)s)
 n = 1

 converges for s > 0 (in fact if s = a + it, for a > 0), but as the pole of C(s) at s-1
 has been removed by the factor (1 - 21 -), there remains nothing in the nature of
 ?(s) to account for this limitation, and it turns out that

 Y, ( _ )n+ In-s
 n 1

 is Abel summable for every value of s.

 One is naturally tempted to ask whether Riemann could have seen Euler's work.

 There is no evidence that he had3.

 Euler continues:

 "As far as the sum of the reciprocals of powers (i.e., ,%-1 (= l+ 1 /nk) is con-
 cerned, I have already observed that their sum can be assigned a value only when k

 2 Since completing this article the author has found that E. Landau has given a rigorous proof

 of the functional equation in the form (K). See Bibliotheca Mathematica, vol. 7 (1906-1907) pp.

 69-79.

 3 Added inproof. A. Weil remarks that the external evidence supports strongly the view that

 Riemann was very familiar with Euler's contributions.
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 is even and that when k is odd, all my efforts have been useless up to now."
 Euler now observes as follows: If s = 2). + 1, then

 q~(2).+ 1) - (2 2A 1)n2A+1 q$-))
 O(2N + 1) _ (2A + 1)(22A + I _ 1) cos((2A + 1)n/2)

 and b(-22) as well as cos((2N + 1)n/2) vanish if A is an integer. Taking the limit as

 i m a positive integer with the help of l'Hospital's rule, we get

 (L 0(2m + 1) =+ 2(22- 1)l2 4 (i)l +;= 1 n2mn log n
 (2m)!(22,, +I - 1) cos7nm

 "It is necessary therefore to find the value of these sums

 00

 E(1)n 1n2 log n.

 But this research is probably more difficult than the one we have in mind (meaning

 b(2m + 1)) and I perceive no method whatsoever which could lead us to the pro-
 posed objective. "

 He returned to the question for what appears to be the last time in 1772 in a

 paper entitled Exercitationes Analyticae. Through a striking and elaborate scheme,
 he proved that

 1+1 1+ + x x log sin xdx.

 Here is a sketch of the proof which invokes the extreme virtuosity of a master:
 We know from (L) that

 1 + 33+ 53+ =- 2-Z'

 where 00
 Z = I (-_1)n2logn.

 n = 2

 This follows from (L) as well as the relations cited in Section 1. Of course we con-

 tinue to understand that if n 1 an does not converge but I ," 1 a,xn converges
 for I x< 1, then X'1an is definedby

 00

 lim z an xn, if this limit exists.
 x-1- n=1

 Euler then shows that

 co 2log (2n)2 2+12 Z = In2o - n(n + 1)log (2+ 1
 n- = 1 (2n - 1)(2n + 1) - n(2n)(2n + 2)

 The expansion of the logarithm is carried out and the series rearranged. Letting
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 i(s) - 1/(n(n + 1))s, then

 2 22 + Y --z2 (4C(2n -2) + (-1)n )(n -1)).

 A~(n) is then expressed in terms of C(2k) (k = 1, 2, *., n), and if

 1 (n +k-l1)(n +k) ...(n +2 k -2) S(n) - n22n k=1 k!(n + k)22n+2k
 then

 S(1) + 2 t C(2n)((2 +2)2n+2 - S(2n + 1))

 He now finds the sum S(n) by showing that

 S x+ , (n + k-1)(n + k) ...(n + 2k-2)xn+
 nl k=1 k! (n + k)

 satisfies a difference differential equation and that

 S.(1) 1 + 2x - \/1 - 4x 4

 This is to be evaluated when x -. The result of these intricate details is that

 S(2n + 1) 1 1
 (2n + 2)2 2n+ 2 (2n + 1)(2n + 2)2 2,+ 1

 1 00 C(2n)
 2,2 n-1 (2n + 1)(2n + 2)22n

 We know that C(2n) = c2n7r 2, where C2, is explicitly determined in terms of the
 Bernoulli numbers.

 If then

 co 2n

 f (x) x x2 2 CX2n X
 n - x (2n + 1)(2n + 2)

 then by twice differentiating f(x), we see that it satisfies a differential equation which
 can be solved in view of the fact that we can evaluate the generating function

 00

 E 2nX

 Is not this derivation breathtaking, especially in the light of the fact that Euler
 was now blind and these calculations were performed mentally!

 8. Conclusion. So end the main contributions of Euler to the zeta function. He
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 did, however, write a brief paper on the function I' , xl/n' toward the end of his
 life (1779), which was published posthumously. We have given only the highlights of

 his work on C(s). Scattered throughout his papers on analysis and in his correspond-
 ence with Goldbach and the Bernoulli's are many results which are related to the

 problem.

 While he did not succeed in every objective he set himself, his triumphs stand like

 a grand fresco - a monument to his extraordinary imagination and sense of beauty

 and harmony.

 Acknowledgements
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 2. The article by Paul Stackel, "Eine vergessene Abhandlung Eulers." This first appeared in the

 now defunct journal Bibliotheca Mathematica, 83 (1907-1908) 37-54. In this, Stackel discusses the

 article "Demonstration de la somme..." and gives numerous interesting historical facts. It is reprinted

 in Euler's Collected Works, Vol. 14, pp. 156-176.

 3. Correspondence between Euler and Goldbach published by Deutsche Akademie der Wis-
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 DEPARIMENT OF MATHEMATICS, PENNSYLVANIA STATE UNIVERSITY, UNIVERSITY PARK, PA 16802.

 rHE WILLIAM LOWELL PUTNAM MATHEMATICAL COMPETITION

 A. P. HILLMAN

 The following results of the thirty-fourth William Lowell Putnam Mathematical

 Competition, held on December 1, 1973, have been determined in accordance with

 the regulations governing the Competition. This competition is supported by the

 William Lowell Putnam Prize Fund for the Promotion of Scholarship left by Mrs.

 Putnam in memory of her husband and is held under the auspices of the Mathematical

 Association of America.

 The first prize, five hundred dollars, is awarded to the Department of Mathematics

 of the California Institute of Technology, Pasadena, California. The members of the

 team were Arthur L. Rubin, James B. Shearer, and Michael F. Yoder; to each of

 these a prize of one hundred dollars is awarded.

 The second prize, four hundred dollars, is awarded to the Department of Mathe-

 matics of the University of British Columbia, Vancouver, British Columbia. The
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