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In his pioneering history of calculus written sixty yearoa@arl Boyer was totally
dismissive of the Indian contributions to the conceptuakttgpment of the subjeét.
Boyer’s historical overview was written around the sameetiwhen (i) Ramavarma
Maru Thampuran and Akhileswarayyar brought out the firstiediof the Mathe-
matics part of the seminal textanita-yukti-bhasa, and (ii) C.T. Rajagopal and his
collaborators, in a series of pioneering studies, drewntitie to the significance of
the results and techniques outlinedYnktibhasa (and the work of the Kerala School
of Mathematics in general), which seem to have been fongatiter the initial notice
by Charles Whish in early nineteenth century. These andubsegjuent studies have
led to a somewhat different perception of the Indian contidn to the development
of calculus as may be gleaned from the following quotatiomfia recent work on the
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Abstract

In this article we shall present an overview of the developneé calculus in
Indian mathematical tradition. The article is divided matly into two parts. In
the first part we shall discuss the developments during wieat lne called the
classical period, starting with the work afryabhata (c. 499CE) and extending
up to the workNarayana Pandita (c. 1350). The work of the Kerala School
starting withMadhava of Sangamagrama (c. 1350), which has a more direct
bearing on calculus, will be dealt with in the second partreHge shall discuss
some of the contributions of the Kerala School during thegoet350-1500 as
outlined in the seminal Malayalam woiuktibhasa of Jyesthadeva (c. 1530).

PART | : THE CLASSICAL PERIOD

A_\ryabhat_ a to Narayana Pardita (c. 500-135QCE)

Introduction

history of mathematic$:

We have here a prime example of two traditions whose aims o@re
pletely different. The Euclidean ideology of proof whichsyso influen-
tial in the Islamic world had no apparent influence in Indig &&Biruni
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had complained long before), even if there is a possibitigt the Greek
tables of ‘trigonometric functions’ had been transmitted aefined. To
suppose that some version of ‘calculus’ underlay the deoineof the

series must be a matter of conjecture.

The single exception to this generalization is a long workichnadmired
in Kerala, which was known a¥uktibhasa, by Jyesthadeva; this con-
tains something more like proofs—but again, given the difféparadigm,
we should be cautious about assuming that they are meantvie the
same functions. Both the authorship and date of this workhard to
establish exactly (the date usually claimed is the sixteeantury), but it
does give explanations of how the formulae are arrived atfwbould be
taken as a version of the calculus.

The Malayalam worlkGanita-yukti-bhasa (c. 1530) ofJyesthadeva indeed presents
an overview of the work of Kerala School of mathematiciangrdythe period 1350—
1500cE. The Kerala School was founded Byadhava (c. 1340-1420), who was
followed by the illustrious mathematician-astronomessamesvara (c. 1380—1460),
his sonDamodara and the latter’'s studefilakantha Somayaji (c. 1444—1550).
While the achievements of the Kerala School are indeed apgletr, it has now been
generally recognised that these are in fact very much inimoation with the ear-
lier work of Indian mathematicians, especially of theyabhatan school, during the
period 500-135@QE.

In the first part of this article, we shall consider some of itteas and methods de-
veloped in Indian mathematics, during the period 500-185@;h have a bearing on
the later work of the Kerala School. In particular, we shadiis on the following top-
ics: Mathematics of zero and infinity; iterative approxiioas for irrational numbers;
summation (and repeated summations) of powers of naturabats; use of second-
order differences and interpolation in the calculationyafor Rsines; the emergence
of the notion of instantaneous velocity of a planet in astroy; and the calculation
of the surface area and volume of a sphere.

2 Zero and Infinity

2.1 Background

The santi-mantra of Isavasyopanisad (of Sukla-yajurveda), a text of Brahmavidya,
refers to the ultimate absolute reality, tBeahman, aspuarna, the perfect, complete
or full. Talking of how the universe emanates from Bwahman, it states:

QU= UIfHE JUigueEeA |

gule qurETery quiHarafarsad |

That Brahman) is puarna; this (the universe) igurna; [this] purna em-
anates from [thatparna; even wherparna is drawn out ofpurna, what
remains is als@urna.




Panini’s Astadhyayi (c. 500BCE) has the notion ofopa which functions as a null-
morpheme Lopa appears in sevesutras of Chapters 1, 3, 7, starting with

AT AT: | (1.1.60).

Sunya appears as a symbol Pingala’s Chandah-sitra (c. 300BCE). In Chapter
VIII, while enunciating an algorithm for evaluating any |ito& integral power of 2 in
terms of an optional number of squaring and multiplicatidaglication) operations,
Sunya is used as a marker:

0 g ) i a9 (8.20-30).

Different schools of Indian philosophy have related nagiguch as the notion of
abhava in Ny aya School, and th@nyavada of the Bauddhas.

2.2 Mathematics of zero inBrahmasphué-siddhanta(c. 628CE) of
Brahmagupta

The Brahmasphuta-siddhanta (c. 628CE) of Brahmagupta seems to be the first avail-
able text that discusses the mathematics of z&towya-parikarma or the six opera-
tions with zero are discussed in the chapter XVIII on algdbtatakadhyaya), in the
same six verses in which the six operations with positivesreegatives dhanarna-
sadvidha) are also discussed. Zero divided by zero is stated to be Zemg other
quantity divided by zero is said to Beccheda (that with zero-denominatop):

mmwmmmﬁn

TAAEHURET U= U Haf IR |
S T YAHOIG YT T & |

ﬁw?mwmm%@%ﬂ%w|
HFHO UTHOT g eI Hafd |
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FOLTAET: W @ @ UL Fiadq adl

..[The sum of] positivedhana) and negativerfna), if they are equal, is
zero ham). The sum of a negative and zero is negative, of a positive and
zero is positive and of two zeros, zerufya).

8 Brahmasphutasiddhanta of Brahmagupta, Ed. with his own commentary by Sudhakara Dvivedi,
Benaras 1902, verses 18.30-35, pp. 309-310.



... Negative subracted from zero is positive, and positomfzero is neg-
ative. Zero subtracted from negative is negative, fromtpasis positive,
and from zero is zeroakasa).

... The product of zero and a negative, of zero and a posiivef two
zeroes is zero.

...A zero divided by zero is zero.
... A positive or a negative divided by zero is that with zéerominator.

2.3 Bhaskaracarya on Khahara

Bhaskaracaryall (c. 1150), while discussing the mattosnof zero inBzjaganita,

explains that infinity ¢nanta-rasi) which results when some number is divided by

zero is calledkhahara. He also mentions the characteristic property of infinityttin
is unaltered even if ‘many’ are added to or taken away frofmiterms similar to the
invocatory verse ofsavasyopanisad mentioned abové:

Gl Haq WA HFY T |
o9 Preq @ wed 79 9 399 39 a3 H U= T
L FFHA=A 3/ TfA: W FHA

ARAERR: G T Taay gy F:gay)
e FFIYERTC; ST ST 0 Tge |

A quantity divided by zero will be (calleddhahara (an entity with zero
as divisor).

Tell me .. .three divided by zero ... This infiniter{anta or that without
end) quantity? is calledkhahara.

In this quantity,khahara, there is no alteration even if many are added
or taken out, just as there is no alteration in the Infinitednta), Infal-
lible (acyuta) [Brahman] even though many groups of beings enter in or
emanate from [It] at times of dissolution and creation.

2.4 Bhaskaracarya on multiplication and division by zero

Bh'askarac'arya while discussing the mathematics ahzefiavatz, notes that when
further operations are contemplated, the quantity beinlgiphiad by zero should not
be changed to zero, but kept as is. Further he states thatthbequantity which is

multiplied by zero is also divided by zero, then it remainshamnged. He follows this
up with an example and declares that this kind of calculdtias great relevance in
astronomy?

4 Bijaganita of Bhaskaracarya, Ed. by Muralidhara Jha, Benaras 1927sana on Khasadvidham
3,p. 6.

5L#lavati of Bhaskaracarya, Ed. by H. C. Bannerjee, Calcutta 192Vasana on verses 45—46,
pp. 14-15.
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.. A quantity multiplied by zero is zero. But it must be retd as such
when further operations [involving zero] are contemplai&tthen zero is
the multiplier of a quantity, if zero also happens to be agtivithen that
guantity remains unaltered ...

..What is the number which when multiplied by zero, beingeatito
half of itself multiplied by 3 and divided by zero, amountsstety-three?

.. Either following the inverse process or by choosing arddsaumber
for the unknown (‘rule of false position’), the quantity ibtained to be
14. This kind of calculation is of great use in mathematisadaomy.

Bh'askara works out his example as follows:

0[(z+§)xg] — 63

— x3 = 63.
Therefore, x = 14. (1)
Bh'askara, it seems, had not fully mastered this kind ottdafion with infinitesi-

mals” as is clear from the following example that he presémtBijaganita while
solving quadratic equations by eliminating the middle t&rm

F: TYlET e GO anr 4 |
UM WHF Y ITdr: W@W’ﬂﬂ{ll
Say what is the number which when added to half of itself, ipligd

by zero, squared and the square being augmented by twiceoitsnd
divided by zero, becomes fifteen?

Clearly the problem as stated is

[0(z + %)]2 +02 x [0(z + §)] - 15. (2)

6 Bijaganita, cited above,Vasana on avyaktavargadi-samikaranam 5, pp. 63-64.



Bh'askara in hi¥asana seems to just cancel out the zeros without paying any heed to
the different powers of zero involved. He converts the peabinto the equation

[a:—i—g]Q—i—Zx{x—l—g}:lS. 3)

Solving this, by the method of elimination of the middle ter®h askara obtains the
solutionz = 2. The other solutiori—+) is not noted.

3 lIrrationals and iterative approximations

3.1 Background

Baudhayana-sulva-sitra gives the following approximation foy'2:”

THIOT JAE JHATE T e | T |
The measure [of the side] is to be increased by its third aisd[tihird]

again by its own fourth less the thirty-fourth part [of theufth]. That is
the approximate diagonaddquisesa).

11 1

2 &~ 14—

vz T3t 317 3434
577

408
= 1.4142156. @)

The above approximation is accurate to 5 decimal places.
Baudhayana-$ulva-sitra also gives an approximation far. 8
T Avse et maArR AT |
AR T T HUSe qRicha |
If it is desired to transform a square into a circle, [a cordeoigth] half
the diagonal of the square is stretched from the centre tedke with

one-third [of the part lying outside] added to the remaifdéthe half-
diagonal] the [required] circle is drawn.

If a is half-the side of the square, then the radiws the circle is given by
a
r (g) 2+ V2). (5)

This corresponds te ~ 3.0883.

7 Baudhayanasulvasutram (1.61-2), inTheSulvasatras, Ed. by S. N. Sen and A. K. Bag, New Delhi
1983, p. 19.

8 Baudhayanasulvasatram (1.58), ibid., p. 19.



3.2 Algorithm for square-roots in A_ryabha_u_ya

The Aryabhatiya of Aryabhata (c. 499CE) gives a general algorithm for comput-
ing the successive digits of the square root of a number. Tbeedure given in the
following verse is also elucidated by an exambple:

7 5
AT ENEaiteeg fgaoeT avaes | 5 6 2 5
TG 9§ o T e 49
Always divide the non-square (even) place by 14) 7.2 (5
twice the square-root [already found]. Having sub- 0
tracted the square [of the quotient] from the square
(odd) place, the quotient gives the [digit in the] 23
next place in the square-root. 2 5

0 O

3.3 Approximating the square-root of a non-square number

The method for obtaining approximate square—r@h@a-mala) of a non-square
number @maulada-rasi) is stated explicitly inTrisatika of Sridhara (c. 750)%°

Multiply the non-square number by some large square nunédes,the
square-root [of the product] neglecting the remainder, dinidie by the
square-root of the multiplier.

Narayana Pandita (c. 1356) has noted that the solutionswafga-prakrti (the so
called Pell's equation) can be used to compute succesgivexdamations to the square-
root of a non-square numbé:

6 Te] T 9 a‘;”créué qe a7 |
% FEYe T THGL HAHTHH |

[With the number] whose square-root is to be found aspthgrti and
unity as theksepa, [obtain the greater and smaller] roots. The greater root
divided by the lesser root is an approximate value of the reguzot.

Narayana considers the example

1022 + 1 = 32, (6)
9 Aryabhatzya of Aryabhata, Ed. by K. S. Shukla and K. V. Sarma, New Delhi 19T&nitapada 4,
p. 36.

10Prigatika of Sridhara, Ed. by Sudhakara Dvivedi, Varanasi 1899, verse 46, p. 34.

U Qanitakaumudi of Narayana Pandita, Ed. by Padmakara Dvivedi, Part Il, Benaras 1942, verse
10.17, p. 244.




and gives the approximate values:
19 721 27379
Vior =, — —— =
6 228" 8658
which are obtained by successive compositidhg(ana) of the basic solutions 6, 1%9:

(@)

228 = (2)(6)(19), 721 = (10)(6)* + (19)?, and so on

3.4 Approximate value ofr in A_\ryabhau_ya

A_\ryabhaa (c. 499) gives the following approximate value fot*

TIUF TTHEIOT GIIRETIT TEHONH |
AL AH R JAIROME: |
One hundred plus four multiplied by eight and added to siwtg-thou-

sand: This is the approximate measure of the circumferehaecocle
whose diameter is twenty-thousand.

~ 02832 __
Thus as per the above verse~ 55755 = 3.1416.

3.5 Successive doubling of the sides of the circumscribingfygon

It appears that Indian mathematicians (at least imthyenbhatan tradition) employed
the method of successive doubling of the sides of a circubiiegrpolygon—starting
from the circumscribing square leading to an octagon, etio fird successive approx-
imations to the circumference of a circle. This method hanlwkescribed in the later
Kerala textsYuktibhasa (c. 1530) of Jyesthadeva and Kriyakramakari commentary
(c. 1535) ofSankara Variyar on Lilavati, of Bhaskara Il. The latter cites the verses
of Madhava (c. 1340-1420) in this connection and notes at the end'that:

U9 JaTHE YEHTHIRIAT S|
Thus, one can obtain [an approximation to the circumferenttee circle]
to any desired level of accuracy.

We now outline this method as describedvinktibhasa.*® In Figure 1,FOS A, is the
first quadrant of the square circumscribing the given cirgld, is half the side of the

12 Bhavana or the rule of composition enunciated by Brahmagupta isrargarmation X, Y)— (X2 +
DY?2, 2XY) which tranforms a solution: = X, y = Y of the equationz2 — Dy? = 1, into an-
other solution with larger values far, y, which correspond to higher convergents in the continuactifin
expansion of/D and thus give better approximations to it.

13 Aryabhatiya, cited aboveGanitapada 10, p. 45.

1 Lidavati of Bhaskara Il, Ed. with commentary Kriyakramakari of Sankara Variyar by
K. V. Sarma, Hoshiarpur 1975, comm. on verse 199, p. 379.

15Ganita-yukti-bhasa of Jyesthadeva, Ed. and Tr. by K. V. Sarma, with Exp. Notes by K. Rama-
subramanian, M. D. Srinivas and M. S. Sriram, 2 Vols, HindnsBook Agency, New Delhi 2008. Reprint
Springer 2009, Vol. | Section 6.2, pp. 4649, 180-83, 366—69
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Figure 1: Finding the circumference of a square from ciruthgtgy polygons.

circumscribing square. L& A; meet the circle af’;. Draw A,C; B, parallel toE'S.
FE A, is half the side of the circumscribing octagon.

Similarly, letO A meet the circle af’s. Draw A3C, B3 parallel toECy. E A3 is now
half the side of a circumscribing regular polygon of 16 sid&sd so on. Let half the
sides of the circumscribing square, octagon etc., be ddnote

Iy =FEAy, Iy =FAy, l3=FAs;, ... (8)
The correspondingarnas (diagonals) are
k1 =O0A;, ks = OAs, k3 = OAs, ... 9
And the abhadhas (intercepts) are
a1 = D1 A1, as = DoAs, a3 = D3As, ... (10)

Now
r

V2
Using thebhuja-koti-karna-nyaya (Pythagoras theorem) anchirasika-nyaya (rule
of three for similar triangles), it can be shown that

Lh=r k=v2r and a = (11)

Iy

ZQ = ll — (kl — 7’) — (12)
a1
k3 = 413 (13)
2 (2 ]2
and 4y = M (14)
2ko

In the same way,, 1, k,+1 anda, 1 are to be obtained in terms of, &k, anda,,.
These can be shown equivalent to the recursion reldfion:

181f we setr = 1 andl,, = tan 6,,, then equation (15) gives,+1 = tan (97") Actually, 0, = 575

and the above method is based on the fact that for lar@¢ tan o ~ 2" 55 = 7.




ot = = V0 +B) =11, (15)

n

4 Summation (and repeated summations) of powers of
natural numbers (sankalita)

4.1 Sum of squares and cubes of natural numbers iﬂryabhau_ya

The ancient texBrhaddevata (c. 5" centuryBcE) has the result
243+ ...41000 = 500, 499. (16)

Aryabhata (c. 499CE), in the Ganitapada of Aryabhatiya, deals with a general
arithmetic progression in verses 19-20. He gives the suimeoquares and cubes of
natural numbers in verse 22:

TFg T FH oo T8isT: |
Fufafoe: T Haq Rfae aaffaT

The product of the three quantities, the number of terms phes the
same increased by the number of terms, and the number of, tetmes
divided by six, gives the sum of squares of natural numbers;g-citi-
ghana). The square of the sum of natural numbers gives the sum of the
cubes of natural numbergHana-citi-ghana).

In other words,
nn+1)(2n+1)

12422432 4., +n? = 5 (17)
B+23433 4. .40 = 14+2+43+...4+n)?
1 2
_ [7”(”; )} . (18)

4.2 Repeated sum of natural numbers irA_ryabhaiTya

Aryabhata also gives the repeated sum of the sum of the natural numbeikaita-
sankalita or vara-sankalita): 18

C haVRaY

AL [ RE I I E IR ER EL

vge: O ffoes: evege fager an

Of the series 4paciti) 1, 2, ...,n, take three terms in continuation of
which the first is the given number of termgitcha), and find their prod-

uct; that [product], or the number of terms plus one subd&cétom its
own cube divided by six, gives the repeated suti{ghana).

17ﬁiryabha.t77ya, cited aboveGanitapada 22, p. 65.
18 Aryabhatiya, cited aboveGanitapada 21, p. 64.
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We have

1+2+3+...+n=@. (19)
Aryabhata’s result expresses the sum of these triangular numbersoifiduns:
1(1+1) Jr2(2+1) +...+n(n+1) _ [n(n+1)(n+ 2)]
2 2 2 6
3 _
_ [(mn+1)° = (n+ 1)]. (20)

6

4.3 Narayana Pandita’s general formula for Varasakalita

In his Ganita-kaumudi, N ar ayaPaulita (c. 1356) gives the formula for th&"-order
repeated sum of the sequence of numbers 1, 2, 3p:1%,

QIR TRIQEdTy Jue dSar: |
JFR]FITETRIGIA AT gl |

The pada (number of terms in the sequence) is the first term [of an-arith
metic progression] and 1 is the common difference. Take atenators
[the terms in the AP] numbering one more thaina (the number of times
the repeated summation is to be made). The denominatorteanss|of
an AP of the same length] starting with one and with commoadiedifice
one. The resultant producti@ra-sarikalita.

Let )
1+2+3+...+n:”("T+):V7§1>. (1)
Then, N'ar ayais result is
v =yl gy D (22)
_ ntn41)...(n+1)]
N 12...(r+1)] (23)

N ar ayais result can also be expressed in the form of a sum of pobigarmbers:

“~ m(m+1)...(m+r—1)] [nn+1)...(n+7)]
Z [1.2...7] L2 .. (r+1)] 24)

m=1

This result can be used to evaluate the sdnfs , %, >°;_, k%, ... by induction. It
can also be used to estimate the behaviour of these sumsdernla

4.4 Summation of geometric series

The geometric series + 2 + 22 4 ... 2" is summed in Chapter VIII of Pihgala’s
Chandah-sutra (c. 300BCE). As we mentioned earlier, Pingala also gives an algo-
rithm for evaluating any positive integral power of a numfi2rin this context) in
terms of an optimal number of squaring and multiplicatioerapions.

B Qanitakaumudi of NarayanPamita, Ed. by Padmakara Dvivedi, Part |, Benaras 1936, verse
3.19-20, p. 123.
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Mahaviracarya (. 850), in hisGanita-sara-sargraha gives the sum of a geometric
series and also explains the Pingala algorithm for findivgrequired power of the
common ratio between the terms of the seffes:

R HTUTR oI+ Pqﬁ;umtra—q'ra]m|

qaﬁmmﬁ%mm‘ﬁ%ﬁrﬁa@um
OHE uHwEEy) Wﬁ?ﬁaﬁwﬁ?ﬁm |
T THES AR TR

The first term when multiplied by the product of the commorioréguna)
taken as many times as the number of termsi¢), gives rise to the
gunadhana. This gunadhana, when diminished by the first term and
divided by the common ratio less one, is to be understoodeasum of
the geometrical seriegqna-sankalita).

That is

a—l—ar—i—arQ—i—...—i—arn_l:u. (25)
(r—1)
Virasena (C. 816), in his commentarfhavala on theSatkhandagama, has made use
of the sum of the following infinite geometric series in higkation of the volume of
the frustum of a right circular core:

1 1\2 1\" 4
1+-+(= (= == 26
+4+(4>+ +<4)+ : (26)

The proof of the above result is discussed in thejabhatiya-bhasya (c. 1502) of
Nilakantha Somayaji. As we shall see later (section 10.Nilakantha makes use
of this series for deriving an approximate expression fomalkarc in terms of the
corresponding chord in a circle.

5 Use of Second-order differences and interpolation in
computation of Rsines Jyanayang

Jya, Kot and Sara

The jya or bhuja-jya of an arc of a circle is actually the half-chordr@ha-jya or
jyardha) of double the arc. In the Figure 2,/ is the radius of the circleya (Rsine),
koti or koti-jya (Rcosine) andara (Rversine) of thecapa (arc) EC are given by:

jya (arc EC) =CD = Rsin(/COE) (27)
koti (arc EC) = OD = Rcos(/COE) (28)
Sara (arc EC) = ED = Rver{/COE)

= R— Rcos(/COE). (29)

For computing standard Rsine-tablegi(ita-jya), the circumference of a circle is

20 Qanitasarasangraha of Mahaviracarya, Ed. by Lakshmi Chanda Jain, Sholapur 1963, verses 2.93—
94, pp. 28-29.

21gee, forinstance, T. A. Sarasvati Amr@gometry in Ancient and Medieval Indidotilal Banarsidass,
Delhi 1979, Rep. 2007, pp. 203-05.

12



(0]

Figure 2:Jya, Koti andSara.

divided into21600” and usually the Rsines are tabulated for every multiple &,22
thus giving 24 tabulated Rsines in a quadrant. Using theevalla ~ 32332 — 3.1416,
given byAryabhata, the value of the radius then turns out to3&7’ 44” 19", This

is accurate up to the seconds, but is usually approximatéda®. Using a more
accurate value of, Madhava (c. 1340-1420) gave the value of the radius correct to
the thirds as3437’ 44" 48" which is also known by thé&atapayadi formula devo-

visvasthali-bhrguh.

5.1 Computation of Rsines

Once the value of the radiusis fixed (in units of minutes, seconds etc.) the 24 Rsines
can be computed (in the same units) using standard relaifgpstpatti (trigonome-
try). For instanceyVarahamihira has given the following Rsine values and relations
in his Paricasiddhantika (c. 505)?2

Rsin(30°) = g (30)

Rsin(45°) = % (30b)

Rsin(60°) = ?R (30c)

Rsin(90°) = R (30d)

Rsin(A) = Rcos(90— A) (31)
Rsin?(A) + Rcos?*(A) = R? (32)

Rsm<§> = (é) [Rsin?(A) + R vers(A)]z

22 paricasiddhantika of Varahamihira, Ed. by T. S. Kuppanna Sastry and K. V. Sarma, Madras 1993,
verses 4.1-5, pp. 76-80.
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1
2
= (?) [R—RCOSA]%. (33)

The above Rsine values (30) and relations (31)—(33) can fiedausing thebhuja-
koti-karna-nyaya (Pythagoras theorem) anduirasika (rule of three for similar tri-
angles), as is done for instance in thi@sana-bhasya of Prthudakasvamin (c. 860)
on Brahmasphutasiddhanta (c. 628) ofBrahmagupta. Equations (30)—(33) can be
used to compute all4 tabular Rsine values.

5.2 A_\ryabhat_a’s computation of Rsine-differences

The computation of tabular Rsine values was made much siropl&ryabhata who
gave an ingenious method of computing the Rsine-differgrmoaking use of the im-
portant property that the second-order differences of ésare proportional to the
Rsines themselves:

TS s fgdramda)

T AT e 1= Q9o |

The first Rsine divided by itself and then diminished by thetgnt will
give the second Rsine-difference. The same first Rsinenished by the

guotients obtained by dividing each of the preceding Rsinethe first
Rsine, gives the remaining Rsine-differences.

Let By = Rsin (225"), By = Rsin (450), ..., Bas = Rsin (90°), be the twenty-
four Rsines, and lef\; = By, Ay = By — By,..., Ay = By — Bi_1,... be the
Rsine-differences. Then, the above rule may be expresséd as

Ay = B —— (34)

I
&

Apir (k=1,2,...,23). (35)

This second relation is also sometimes expressed in theagot form

A +Ar+ . +A
Ak+1=Ak—( — J

(k=1,2,...,23).  (36)

B
From the above it follows that
—B
Apy1 — Aj = B’“ (k=1,2,...,23). (37)
1

Since Aryabhata also takesA; = B; = Rsin(225') ~ 225/, the above relations
reduce to

Ay = 225 (38)
Aoy — A, = B (k=1,2 23) (39)
k41 E = 595 =1,2,..., .

28 Aryabhatiya, cited aboveGanitapada 12, p. 51.
24Aryabhata is using the approximatiorhs — A ~ 1’ and the second terms in the RHS of (34)—(36)
and the RHS of (37) and (39) have an implicit factor &fx(— A1). See (45) below which is exact.
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5.3 Derivation of theAryabhata-relation for the second-order Rsine-
differences

Aryabhata’s relation for the second-order Rsine-differences iswdgtiand made
more exact in thelryabhatiya-bhasya (c. 1502) ofNilakantha Somayaji and Yuk-
tibhasa (c. 1530) ofJyesthadeva. We shall present a detailed account of the first and
second-order Rsine-differences as giveXurktibhasa °° later in Section 16. Here we
shall only summarize the argument.

In Figure 3, the arc&C; andEC},, are successive multiples 225’. The Rsine and
Rcosine of the arc&'C; andEC,, are given by

Bj = CjPj, Bjy1 = Cj1Pin (40)
and K; = O, Kjp = CiaTip, (41)

respectively. LetM;,; and M; be the mid-points of the araS;C;y1, C;—1C;
and the Rsine and Rcosine of the af€3/; and EM;,, be denoted respectively

by Bj_1, Bjpy, Ky Kjrg-
E
<,\ E S
g P
M G
j+1 Qj+1
Cij+1 = P
N
T U T Y, ©

Figure 3: Derivation ofdryabhata relation.

Let the chord of the ar€’;C;, be denoted by and letR be the radius. Then a
simple argument based oruirasika (similar triangles) leads to the relatioffs:

Bj1—B; = (%)Kﬂé (42)
Ki_y—Kiy = (%)B: (43)

25 Qanita-yukti-bhasa, cited above, Section 7.5.1, pp. 94-96, 221-24, 417-20.
26Equations (42) and (43) are essentially the relations:

Rsin(z + h) — Rsinz = (%) Rcos (m+g)
R cos (:c—ﬁ) — Rcos (x—l—ﬁ) = (ﬁ) Rsinz,
2 2 R

15



Thus we get
Aj+1 —Aj = (Bj+1 _Bj)_(Bj_ijl)
o 2
_ (ﬁ) Bj. (44)

We can also express this relation in the form

—Bj(Al — AQ)

Ajr1 —Aj = B

. (45)

The above relations are exadtryabhata’s relation(39) corresponds to the approxi-
mations,B; ~ 225 andA; — Ay ~ 1’ so that

(%)2 - (AIB%IAZ) ~ <2215'> ' (48)

In Tantrasarngraha, Nilakantha Somayaji has given the finer approximatich:

(0% 2 - (Al—Ag) - 1
(f_%) B B (233%’)' “7

This is further refined byaiikara Variyar in his commentanLaghu-vivrti in the

form:28
(0% 2 . (Al — Ag) - 1
(}_z) N B (233'32”) ‘ (48)

Sincea = 2Rsin 112/30”, we find that the above relation is correct up to seconds.

Commenting oAryabhata’s method of computing Rsines, Delambre had remafRed:

The method is curious: it indicates a method of calculathgtable of
sines by means of their second-differences... This diffié@kprocess
has not up to now been employed except by Briggs, who himakliat
know that the constant factor was the square of the chotd = 3°45’)
or of the interval, and who could not obtain it except by conmathe
second differences obtained in a different manner. Theahslalso have
probably done the same; they obtained the method of difée®only
from a table calculated previously by a geometric processelthen is a
method which the Indians possessed and which is found meithengst
the Greeks, nor amongst the Arabs.

with « = 2R sin % These lead to (44) in the form:

2
(Rsin(x + h) — Rsinz) — (Rsinz — Rsin(x — h)) = — (%) Rsinz.

2" Tantrasangraha of Nilakantha Somayaji, Ed. with Laghu-vivrti of Sankara Variyar by
S. K. Pillai, Trivandrum 1958, verse 2.4, p. 17.

281bid., comm. on verse 2.4.

29Delambre Historie de I' Astronomie Ancienné 1, Paris 1817, pp. 457, 459f, cited from B. B. Datta
and A. N. Singh, ‘Hindu Trigonometry’, Ind. Jour. Hist. Sk8, 39-108, 1983, p. 77.
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5.4 The Rsine-table ofAryabhata

In the Gitika-pada of Aryabhatiya, Aryabhata has given a table of Rsine-differenc¥s:

Afy 1T vy ufe ufe 7fg

&9 g¥er Thi [hoT Tie e

(% [y g i (Y

WG FHF G FANAT: |

225,224,222, 219, 215, 210, 205, 199, 191, 183, 174, 1641484131,

119, 106, 93, 79, 65, 51, 37, 22, and 7—these are the Rsifexatites
[at intervals of 225’ of arc] in terms of the minutes of arc.

The above values follow directly fromryabhata’s relation(39) for the second or-
der Rsine-differences. To start with; = B; = Rsin(225') =~ 225'. Then we
get,Ay, = By — % = 224’ and so on.

The Rsine-table oAryabhata®! (see Table 1), obtained this way, is accurate up to
minutes. In this table, we also give the Rsine values give@dyindasvamin (c. 825)

in his commentary o/ahabhaskariya of Bhaskara I, and byMadhava (c. 1340—
1420) as recorded in th@ryabhatiya-bhasya (c. 1502) ofNilakantha Somayajt.
ThoughGovindasvamin gives the Rsine values up to the thirds, his values are accu-
rate only up to the seconds; thoseMdfidhava are accurate up to the thirds.

5.5 Brahmagupta’s second-order interpolation formula

The Rsine table oAryabhata gives only the Rsine values for the twenty-four mul-
tiples of225’. The Rsines for arbitrary arc-lengths have to be found bsrpulation
only. In his Khandakhadyaka (c. 665),Brahmagupta gives a second-order interpo-
lation formula for the computation of Rsines for arbitrargsa In this work, which is
in the form of a manualkarana) for astronomical calculationBrahmagupta uses a
simpler Rsine-table which gives Rsines only at intervalsisfor 900”:32

TGS NG & [ & AU, Ta=afere |

TRIee g Heag=Tee Jas |

Multiply the residual arc after division b§00’ by half the difference of
the tabular Rsine difference passed oveit¢-khanda) and to be passed
over (bhogya-khanda) and divide byd00’. The result is to be added to or
subtracted from half the sum of the same tabular sine differe accord-

ing as this [half-sum] is less than or equal to the Rsine tatuifference
to be passed. What results is the true Rsine-difference pabsed over.

30 Aryabhatiya, cited aboveGitikapada 12, p. 29.
31See, for instance, A. K. Bafylathematics in Ancient and Medieval Indiéaranasi 1979, pp. 247-48.
32 Khandakhadyaka of Brahmagupta, Ed. by P. C. Sengupta, Calcutta 1941, p. 151.
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Table 1: Rsine-table okryabhata, Govindasvamin andMadhava.

Aryabhata (c. 499) | Govindasvamin (c. 825) | Madhava (c. 1375)

3045 225 224" 50" 23" 224’ 50”7 22"

7°30 449’ 448" 42" 53" 448" 42" 58"
11°15 671’ 670" 40" 117 670" 40" 16"
15°00’ 890/ 889" 45" 08" 889" 45" 15"
18°45’ 1105 11057 01" 30" 1105’ 01" 39"
22°30’ 1315 1315’ 33" 56" 1315’ 34” 07"
26°15’ 1520 15207 28" 22" 15207 28" 35"
30°00/ 1719 1718 52" 10" 1718 52" 24"
33°45 1910 1909’ 54" 19" 1909’ 54" 35"
37°30/ 2093’ 2092 45" 46" 2092’ 46" 03"
41°15 2267 2266’ 38" 44" 2266’ 39” 50"
45°00/ 2431’ 2430’ 50" 54" 2430 51”7 15"
48°45 2585 2584’ 37" 43" 2584' 38" 06"
52°30 2728’ 2727 20" 29" 2727 20" 52"
56°15 2859’ 2858 22" 31" 2858’ 22" 55"
60°00’ 2978’ 2977 10" 09" 2977 10" 34"
63°45 3084’ 3083" 12" 51" 3083" 13" 17"
67°30/ 3177 3176’ 03" 23" 3176" 03" 50"
71°15 3256 3255" 17" 54" 3255" 18" 22"
75°00 3321’ 3320 36” 02" 3320" 36" 30"
78°45' 3372 3371" 41”7 01" 3371 41”7 29"
82°30/ 3409 3408" 19" 42" 3408" 20" 11"
86°15 3431 3430 22" 42" 3430" 23" 11"
90°00’ 3438’ 3437 44" 19" 3437 44" 48"

Let i be the basic unit of arc in terms of which the Rsine-table isstwicted,
which happens to b&25’ in the case ofAryabhatiya, and 900’ in the case of
Khandakhadyaka. Let the arc for which Rsine is to be found be given by

s=jh+e forsomej =0,1,... (49)

Now Rsin(jh) = B; are the tabulated Rsines. Then, a simple interpolatiaii@sika)
would yield
. . e
Rsin(jh+¢€¢) = Bj+ (E) (Bj+1 — Bj)
—  Rsin(jh) + %AJ»H. (50)

Instead of the above simple interpolati®rahmagupta prescribes

oy € 1 e\ (A; ~Ajiq)
Rsin(jh+ ¢) = B; + (ﬁ) Ki) (A +A )+ (ﬁ) SLESIU L (51)
Here, the sign is chosen to be positiveNf < Aj;1, and negative it\; > A, (as
in the case of Rsine). S8rahmagupta’s rule is actually the second-order interpola-
tion formula

Rsin(jh+¢) = Rsin(jh)+ (%) [(%) (A +Aj) — (%) (A, —2Aj+l)}
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= Rsin(jh) + (%) w n (%)2 w
- rann+ () () -1 42

6 Instantaneous velocity of a planettatkalika-gati)

6.1 True daily motion of a planet

In Indian Astronomy, the motion of a planetis computed by imgkise of two correc-
tions: themanda-samskara which essentially corresponds to the equation of centre
and thesighra-samskara which corresponds to the conversion of the heliocentrie lon
gitudes to geocentric longitudes. Theinda correction for planets is given in terms
of an epicycle of variable radius which varies in such a way that
T To
K R’
where K is the karna (hypotenuse) or the (variable) distance of the planet frioen t
centre of the concentric ang is the tabulated (or mean) radius of the epicycle in the
measure of the concentric circle of radilis

(53)

U

Figure 4: Manda correction.

In Figure 4,C'is the centre of concentric on which the mean pldaReis located CU

is the direction of theucca (aphelion or apogee as the case may b@)is the true
planet which lies on the epicycle of (variable) radiusentered af,, such that?, P

is parallel toCU. If M is the mean longitude of a planetthe longitude of theicca,

then the correctionfanda-phala) Ay is given by

Rsin(Ap) = (%) Rsin(M — «)

(%) Rsin(M — a). (54)
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For smallr, the left hand side is usually approximated by the arc itSefe manda-
correction is to be applied to the mean longitutde to obtain the true ormanda-
corrected longitude given by

= (MY (LY peinir —
uw=M (R) (R) Rsin(M — a). (55)
If n,, andn, are the mean daily motions of the planet and thea, then the true
longitude on the next day is given by

/L—i—n:(M—i-nm)—(%) (}%) Rsin (M + 1y — a0 — ny,). (56)

The true daily motion is thus given by

n =N — (%) (%) [Rsin{(M — &) + (nm —ny)} — Rsin (M — a)]. (57)

The second term in the above is the correction to mean daitiomyati-phala). An
expression for this was given Whaskara | (c. 629) in Mahabhaskariya, where he
makes use of the approximatiéh:

Rsin{(M —a) + (nm —nu)} | _ | (M —nu) X
— Rsin(M — a) } - { (535) Rsine-difference atM — ).
(58)
In the above approximatiorirn,, — n,,) is multiplied by tabular Rsine-difference at
the 225’ arc-bit in which (the tip of the arc)\( — «) is located. Therefore, under this
approximation, as long as the anomaly«{dra), (M — «), is in the same multiple of
225, there will be no change in thgiti-phala or the correction to the mean velocity.

This defect was noticed Bghaskara also in his later workLaghubhaskariya:3*

AAFETAT A FTIHRII=RT: |

AR A AHERERE |

TGN San]fEEead |

Whilst the Sun or the Moon moves in the [same] element of dreret
is no change in the rate of motiobiuktz), because the Rsine-difference

does not increase or decrease; viewed thus, the rate ofmesagiven
above] is defective.

The correct formula for the true daily motion of a planet, éoging the Rcosine as
the ‘rate of change’ of Rsine, seems to have been first giveMyjala (c. 932) in
his short manuaLaghumanasa ° and also byAryabhata Il (c. 950) in his Maha-
siddhanta:3®

FCHEY HFITE FAREFAT |

The kotiphala multiplied by the [mean] daily motion and divided by the
radius gives the minutes of the correction [to the rate oftiogion].

33 Mahabhaskariya of Bhaskara |, Ed. by K. S. Shukla, Lucknow 1960, verse 4.14, p. 120.

34 Laghubhaskarzya of Bhaskara |, Ed. by K. S. Shukla, Lucknow 1963, verses 2.14-5, p. 6.

35 Laghumanasa of Muiijala, Ed. by K. S. Shukla, New Delhi 1990, verse 3.4, p. 125.

36 Mahasiddhanta of Aryabhata Il, Ed. by Sudhakara Dvivedi, Varanasi 1910, verse 3.158p. 5
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This gives the true daily motion in the form

n = i — (T — ) (%S) (%) Reos(M — a). (59)

6.2 The notion of instantaneous velocitytatkalikagati) according
to Bhaskaracarya |l

Bhaskaracarya Il (c. 1150) in hisSiddhantasiromani clearly distinguishes the true
daily motion from the instantaneous rate of motion. And heegithe Rcosine cor-
rection to the mean rate of motion as the instantaneous fatetion. He further
emphasizes the fact that the velocity is changing evergimstnd this is particularly
important in the case of Moon because of its rapid motfon.

AT ETE G =R &g T el chHm«cwm I
FICTRAE J-ldohr;e'-ﬂ%wu-ﬂwlgdl FiFMREHS |

T4 AT JeFe e mqﬁw =
S S e P ey aerTaeTad goaa)
TEOHIGTARTA A W& T 7 T AE: |

The true daily motion of a planet is the difference betweertihe planets
on successive days. And it is accuratghluta) over that period. The
kotiphala (Rcosine of anomaly) is multiplied by the rate of motion af th
manda-anomaly (nrdu-kendra-bhukti) and divided by the radius. The
result added or subtracted from the mean rate of motion oplheet,
depending on whether the anomaly isAfarkyadi or Mrgadi, gives the
true instantaneous rate of motiotufkaliki manda-sphutagati) of the
planet.

In the case of the Moon, the ending moment af*® which is about
to end or the beginning time ofth: which is about to begin, are to be
computed with the instantaneous rate of motion at the giastant of
time. The beginning moment ofith: which is far away can be calcu-
lated with the earlier [daily] rate of motion. This is becaldoon’s rate
of motion is large and varies from moment to moment.

Here, Bhaskara explains the distinction between the true daily rate of otnd
the true instantaneous rate of motion. The former is theifice between the true
longitudes on successive days and it is accurate as thefratetion, on the average,
for the entire period. The true instantaneous rate of masdo be calculated from
the Rcosine of the anomal¥dtiphala) for each relevant moment.

Thus ifw,, andw,, are the rates of the motion of the mean planet andithee, then
wm —wy, IS the rate of motion of the anomaly, and the true instantaseate of motion

37Siddhantasiromani of Bhaskaracarya, Ed. by Muralidhara Chaturvedi, Varanasi 1981,
verses 2.36-8, p. 119.
38Tithi is the time taken by the Moon to lead the Sun exactly by ibdongitude.
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of the planet at any instant is given Bjaskara to be

W= W + (W — wy) (%J) (%) Rcos(M — a), (60)

where (M — «) is the anomaly of the planet at that instant.

Bhaskara explains the idea of the instantaneous velocity even magarlgl in his
Vasana:>°

T TEF T ﬁ?ﬁﬁﬁmﬁaﬁﬁmﬂw
TR FRE T T R | FRJTAERT  THTRIaar|
THHANG S| T FGE TASTA T TG
WS’%IS’UWW@IWF&WW
m‘q%h | TG TG ST | A TETOT e
FHIM: | JIHFFRICHES Fedl O wegaadoar  Bezar
WIS @l FeliRey JevREET @ g q G
FTAT| YT ACHIorRl H-GUNEFET HIe | dTedhios el e
T fafae wae= | qee gk AT g
FapTich o F-g T THT] FIGTG a1 T & TR A —<T&Ta]
repliorerlT Tear ffaas & godel | o JHee 7
g TR A T qAA G Fq
I3 | DIGHG AN | TTFSAHEa e T T Hafy
TR EE fadrs-fafa |

Y AR | HRTTT T ATE AR I | 3T 7T TEFe-
WW@W@%I I TEEH | AR5
T FegTier: | AT ZJ@TQ'@T&' a9 1 uar aRfgEa:

(2QY) AN TF TqEq dlmhumhmwnﬂmw | afe
[ESRIGGRR AT HivaEs SR S (] Fm:l% aeEar
frfires Fifesarr: siesr TUITEISAT &0 | 6 Al
W%Ww@aﬁn@rlmm

AN T F AR . g AT

SR || ORI aNR. HaR | deher

Wﬁ@ﬂ?{mﬂwnﬁ‘ (380) WA | U4 e Turen:
Ffesar OT ara IR qua A B aaeiewes STad

T 'FICFAH JIh-FH e Nedlle | TIHIIAa-7e-
FAIN Agad: T Falihs IRUha g -
TR YT EIRIGH@ET U | e § YThea=id-
AT HRIGUIh e =g HcgUH §gquaH |

iy

The true daily velocity is the difference in minutes etctvien the true
planets of today and tomorrow, either at the time of sunosenid-day

39Siddhantasiromani, cited aboveVasana on 2.36-38, p. 119-20.
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or sunset. If tomorrow’s longitude is smaller than that afay, then we
should understand the motion to be retrograde. It is sai@ér‘tvat pe-
riod”. This only means that, during that intervening peritiie planet
is to move with this rate [on the average]. This is only a rooglap-
proximate rate of motion. Now we shall discuss the instagnas rate
of motion... In this way, thenanda-corrected true instantaneous rate of
motion (tatkaliki manda-parisphutagati) is calculated. In the case of
Moon, this instantaneous rate of motion is especially uséBecause of
its largeness, the rate of motion of Moon is not the same ewstant.
Hence, in the case of Moon, the special [instantaneouspfatetion is
stated.

Then, the justification for the correction to the rate of ropti(gati-
phala-vasana)...The rate of motion of the anomaly is the difference in the
anomalies of today and tomorrow. That should be multipligthie [cur-
rent] Rsine-difference used in the computation of Rsinesdivided by
225. Now, the following rule of three to obtain the instantane&sine-
difference: If the first Rsine-differenc5 results when the Rcosine is
equal to the radius, then how much is it for the given Rcodiméhis way,
the Rcosine is to be multiplied 325 and divided by the radius. The re-
sult is the instantaneous Rsine-difference and that shoailchultiplied

by the rate of motion in the anomaly and divided22p...

Thus,Bhaskara is here conceiving also of an instantaneous Rsine-diftergthough
his derivation of the instantaneous velocity is somewhatabke. These ideas are more
clearly set forth in thedryabhatiya-bhasya (c. 1502) ofNilakantha Somayaji and
other works of the Kerala School.

6.3 Theé@hra correction to the velocity and the condition for ret-
rograde motion

Bhaskara then goes on to derive the correct expression for the treeofahotion as
corrected by th&ighra-correction. In the language of modern astronomystiglra-
correction converts the heliocentric longitude of the plarto the geocentric longi-
tudes. Here also, the Indian astronomers employ an epjdyatevith a fixed radius,
unlike in the case of theranda-correction.

If 1 is themanda-corrected fnanda-sphuta) longitude of the planet; is the longitude
of the $ighrocca, andr, the radius of th&ighra-epicycle, then the correctiodighra-
phala) Ao is given by

. Ts .
Rsin(Ao) = (?) Rsin (u — (), (61)
where(u — () is theighrakendra and K is the hypotenuse{ghrakarna) given by
K?=R?+72 —2Rr,cos (u— Q). (62)

The calculation of th&ighra-correction to the velocity is indeed much more difficult
as the denominator in (61), which is the hypotenuse whictedeég on the anomaly,
also varies with time in a complex way. This has been noteBlyskara who was
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able to obtain the correct form of th&ghra-correction to the velocitysghra-gati-
phala) in an ingenious was®

W@ﬂ@@ﬁﬁw gefgamar)
FATHE: THeWeHT: ﬁwamﬁuﬂwﬁr I

The Rsme of ninety degrees, less the degre&gata-correction for the
longitude @ighra-phala), should be multiplied by the rate of motion of
the sighra-anomaly (rak-kendra-bhukti) and divided by the hypotenuse
($rghra-karna). This, subtracted from the rate of motion of thehrocca,
gives the true velocity of the planet. If this is negative, hanet’'s motion
is retrograde.

If w is the rate of motion of thenanda-corrected planet and; is the rate of motion
of the dighrocca, then the rate of motion of théghra-anomaly is(w — w;), and the
true velocity of the planet;, is given by

(ws —w)Rcos(Ao)
K

Wt = Wg — (63)
The details of the ingenious argument giverBiyaskara for deriving the correct form
(63) of thesighra-correction to the velocity has been outlined by D. Arkasgaijian
his translation ofSiddhantasiromani.**

SinceBhaskara’s derivation is somewhat long-winded, here we shall preaenod-
ern derivation of the result just to demonstrate that theesgion given byBhaskara
is indeed exact.

In Figure &, S, E and P represent the positions of the Sun, Earth and an exterior
planet respectively. Let andw, be the linear velocities of the planet and the Earth
with respect to the Sun? P’ and EE’ are lines perpendicular to the lideP joining

the Earth to the planet. L&?, » represent the radii of the orbits of the planet and the
Earth (assumed to be cicular) around the Sun respectivelysarihe distance of the
planet from the Earth. For an exterior planet, fiigira-correctionAo is given by the
angleSPE.

If v, be the linear velocity of the planet as seen from the Eartbn thhe angular
velocity is given by

do V¢
i K
The magnitude of, in terms ofv andv; (for the situation depicted in the figure) is

(64)

Wt =

vy = vcos Ao + v, cosb. (65)

Also from the triangleSE P, the distance of the planet from the Earth—known as
karna, and denoted( in the figure—may be expressed as

K = RcosAoc +rcosb,

or cosf = m. (66)

r

408iddhantasiromani, cited above, verse 2.39, p. 121.
41D, Arkasomayaii,Siddhantasiromani of Bhaskaracarya, Tirupati 1980, pp. 157-161.
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Figure % Velocity of a planet as seen from the Earth.

Using (66) in (65) we have

vy = wcosAo + 2 (K Rcos Ao)
(=)
= V= Vg—
T
Vg vy cosAc (v — vsﬁ)
2t - = r/. 67
o = —+ I (67)

Making use of (64) and the fact that= Rw andvs = rws, the above equation

reduces to
[(ws — w)Rcos Aa}
Wt = Wg — )

K
which is same as the expression given by Bhaskara (63).
Bhaskara in his Vasana:*? justifies as to why in theighra process a different proce-

dure for finding the rate of motion of the planet has to be eggiddhan the one used
in the manda process:

FAURT: | HJTTIETTNAF S A T MRS T | T
WWWMWW@%@W
WWIWQ@@%IG’%W@HWW

fh=a=g<m &IQJCHHQ'M(‘)H*CHHJM(‘MCI*\ [ESRINEMNARER
FUET AT F& A QA STETTHURY | EeursTT or

42|pid., Vasana on 2.39.
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WA TEg TG =N Hiecdda=a- fRear=d Jerafaarg:
F{eUTH | T...

Here is the justification. The&ighra-correction to the rate of motion is
the difference between th&ghra-phalas of today and tomorrow. If that
is derived in the same way as thesnda-correction to the rate of mo-
tion, the result will be incorrect even if it were to be divitlby the hy-
potenuse {ighra-karna)... The difference is not just due to the change
in the anomaly [which is the argument of the Rsine] but al$etise...
The result of dividing by today’s hypotenuse is differemrfr that of di-
viding by that of tomorrow. Even if the hypotenuses turn audiffer by
small amount, since the quantities they divide are largethusl a large
difference could result. Hence, this way of approach [whiels adopted

in the case ofnanda-correction to the rate of the motion] has been for-
saken and another has been devised by the great intellebtt isTas
follows...

6.4 The equation of centre is extremum when the velocity costc-
tion vanishes

Later, in the Goladhyaya of Siddhantasiromani, Bhaskara considers the situation
when the correction to the velocitydti-phala) vanishes?

F EATTAT AT g T |
AT T T W F 7 Te |
Where the [North-South] line perpendicular to the [Easttjéine of

apsides through the centre of the concentric meets the incdinere the
mean velocity itself is true and the equation of centre isegwtim.

In his Vasana, Bhaskara explains this relation between vanishing of the velocity
correction and the extrema of the correction to the plagdtagitude*

FeagTEA a1 fadver e wigae 9 : quass AT
Tfer: TR TAwGRTER | fFe a7 T W %6 @Id ) 37
TEE W o) T3 TAReTHRE HRTeaT | g SaIasaeT=-
TEARR Tfel: | BN Tethes 7 | TEET il FearHTeTedT-
:rﬁa'mvh:rfit | a8 qAGEE T TR FRg AN
R ﬁdﬂdl?%gﬂgqul TEH WH FGH |

The mean rate of motion itself is exact at the points wherditigeper-
pendicular [to the line of apsides], at the middle of the @mrc circle,
meets the eccentric circle. Because, there is no corretditime rate of
motion [at those points]. Also, because there the equafi@ematre [or

43Siddhantasiromani, cited aboveGoladhyaya 4.39, p. 393.
“bid., Vasana on Goladhyaya 4.39.
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correction to the planetary longitudes] is extreme. Wherdkie equa-
tion of centre is maximum, there the correction to the vajoshould be
absent. Because, the rate of motion is the difference bettreeplan-

etary longitudes of today and tomorrow. The correction ® \tblocity

is the difference between the equations of centre. The pldiege the
correction to the velocity vanishes, there is a change owven positive to

the negative. And, what has been stated hiia, “the mean rate of mo-
tion is itself true when the planet is on the intersectionhef two circles
[concentric and eccentric]”, that is incorrect. The pladeés not have
maximum equation of centre at the confluence of the two d@rcle

Figure %: Equation of centre is extremum where the correction tocigiwvanishes.

Bhaskara explains that when the anomaly is ninety degrees, or the pleaiet is at
N along the lineC'N perpendicular to the line of apsidésy (see Figure b), the
equation of centre is maximum. It is precisely then that theexction to the velocity
vanishes, as it changes sign from positive to negative.iticisrrect to state (as Lalla
did in his Sisyadhivrddhida-tantra) that the correction to the velocity is zero at the
point where the concentric and eccentric meet.

7 Surface area and volume of a sphere

In Aryabhatiya (Golapada 7), the volume of a sphere has been incorrectly estimated
as the product of the area of a great circle by its square-foathara (c. 750) seems

to have given the correct expression for the volume of a spietisatika 56), though

his estimate ofr is fairly off the mark.Bhaskaracarya (c. 1150) has given the correct
relation between the diameter, the surface area and theneobf a sphere in his
Lilavatz.*®

45 Lilavatr, cited above (fn. 5), verse 203, p. 79-80.
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In a circle, the circumference multiplied by one-fourth thameter is the
area, which, multiplied by four, is its surface area goinguad it like
a net around a ball. This [surface area] multiplied by thevditer and
divided by six is the volume of the sphere.

The surface area and volume of a sphere have been discusgeghiar detail in the
Siddhantasiromani (Goladhyaya 2.53-61), wheréBhaskara has also presented the
upapatti or justification for the results in his commentalasana. As regards the
surface area of the sphei@haskara argues as follow&®
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In order to make the point clear to a beginner, the teachardliemon-
strate it on the surface of a sphere. Make a model of the eaxtlay or
wood and let its circumference Ré, 600 minutes. From the point at the
top of the sphere at an arc-distancel ¢96t" of the circumference, i.e.,
225, draw a circle. Similarly draw circles with twice, thrice,twenty-
four times225’ [as the arc-distances] so that there will be twenty-four
circles. These circles will have as there radii Rsinesisgftom 225’.
The measure [circumference] of the circle will be in proportto these
radii. Here, the last circle has a circumfererxde600’ and its radius

is 3,438'. The Rsines multiplied b1, 600 and divided by the radius
[3, 438] will give the measure of the circles. Between any two circles
there is an annular region and there are twenty-four of th&hmore
[than 24] Rsines are used, then there will be as many regibneach
figure [if it is cut and spread across as a trapezium] the tdogeer circle
may be taken as the base and the smaller upper circle as tharfe225’

46Siddhantasiromani, cited aboveVasana on Goladhyaya 2.57, p. 362.
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as the altitude and the area calculated by the usual rulea[#si altitude
multiplied by half the sum of the base and face. The sum ohali¢ areas
is the area of half the sphere. Twice that will be the surfaea af the
entire sphere. That will always be equal to the product ofdiaeneter
and the circumference.

HereBhaskara is taking the circumference to li¢ = 21600, and the corresponding
radius is approximated d ~ 3438’. As shown in Figure 6, circles are drawn parallel

to the equator of the sphere, each separated in latitud€2®y This divides the
northern hemisphere int! strips, each of which can be cut and spread across as a
trapezium. If we denote th24 tabulated Rsines b§g:, Bs,... Bag, then the area;

of j-th trapezium will be

Aj= (Q) Byt Byin) yos,

R 2
Therefore, the surface aréeof the sphere is estimated to be
C B
5 =2 (E) [Bl + By + ..Bas + (%)] (225). (68)

S

Figure 6: Surface area of a sphere.

Now, Bhaskara states that the right hand side of the above equation redo@ésR.
This can be checked by usifhaskara’s Rsine-table Bhaskara himself has done the
summation of the Rsines in higasana on the succeeding vers&swhere he gives
another method of derivation of the area of the sphere, lyjnguthe surface of the
sphere into lunes. In that context, he computes the sum

B R
By + Bo.... + Bos + (%) = B+ Bs....+ By + Boy — <5>

54233 — 1719 = 52514. (69)

47Siddhantasiromani, cited aboveVasana on Goladhyaya 2.58-61, p. 364.

Q

29



Thus, according t®haskara’s Rsine table

Baa
Bi+ By + ...+ Bog + ( 5 )] (225) = 52514 x (225)

11815650
(3437.39)2. (70)

Q

Taking this ask? = (3438)2, we obtain the surface area of the sphere t?be
S =2 (%) R*=2CR. (71)

Of course, the grossness of the result (70) is due to theHatthe quadrant of the
circumference was divided into onB4 bits. Bhaskara also mentions that we may
consider dividing the circumference into many more ars;hitstead of the usualt
divisions which are made for computing Rsine-tables. Téithe approach taken in
Yuktibhasa, where the circumference of the circle is divided into a¢éangimbery,
of equal arc-bits. IfA is the Rsine of each arc-bit, the surface area is estimatee to

§=2 (%) (Bi + B2 + ....By)(A). (72)

Then it is shown that in the limit of large,
(By + By + ...B,)(A) =~ R?, (73)
which leads to the resultC'R for the surface are®.

As regards the volume of a spheBhaskara’s justification is much simplet®

U | JAIT “rerat ¥TQTH‘I g ;Fér¢ﬁ?n:w et -
WﬁﬁWWI aq_ I éawﬁr—r TR e R T
@Tﬁlﬁﬂﬁw TFaeEd: WHATIEET |

The surface area of a sphere multiplied by its diameter avidetl by
six is its volume. Here is the justification. As many pyramidsthere
are units in the surface area with bases of unit side andadtiequal to
the semi-diameter should be imagined on the surface of thersp The
apices of the pyramids meet at the centre of the sphere. Tiearotume
of the sphere is the sum of the volumes of the pyramids andbtihugsult

is justified. The view that the volume is the product of theadimes its
own root, is perhaps an alien viewdramata) that has been presented by
Caturavedacarya [Prthudakasvamin].

48As has been remarked by one of the reviewers, it is indeeigimg theBhaskara chose to sum the
tabular Rsines numerically, instead of making use of thaticel between Rsines and Rcosine-differences
which was well known since the time éfryabhata. In fact, the proof given invuktibhasa (cited below
in fn. 49) makes use of the relation between the Rsines anskttend order Rsine-diffferences to estimate
this sum.

49 Ganita-yukti-bhasa, cited above, Section 7.18, pp. 14042, 261-63, 465—67 otfenm terminology,

this amounts to the evaluation of the |nteng RsinORd0 = R2.
50Siddhantasiromani, cited aboveVasana on Goladhyaya 2.61, p. 364.
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We may note that it is thelryabhatiya rule which is referred to aparamata in
the above passageéBhaskara’s derivation of the volume of a sphere is similar to
that of the area of a circle by approximating it as the sum efdheas of a large
numbers of triangles with their vertices at the centre, Widactually the proof given
in Yuktibhasa. In the case of the volume of a sphetéiktibhasa, however, gives the
more “standard” derivation, where the sphere is divided atarge number of slices
and the volume is found as the sum of the volumes of the sliegsich ultimately
involves estimating the sum of squares of natural numbers;¢-sarikalita), 12 +

22 + 32 + ... 4+ n?, for largen.>!

51 Ganita-yukti-bhasa, cited above, Section 7.19, pp. 142-45, 263-66, 468-70.
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PART Il : WORK OF THEKERALA SCHOOL

Madhava to Sankara V ariyar (c. 1350-1550CE)

8 Kerala School of Astronomy

The Kerala School of Astronomy in the medieval period, pemed byMadhava

(c. 1340-1420) oSangamagrama, extended well into the 19th century as exempli-
fied in the work ofSankaravarman (c. 1830),Raja of Kadattanadu. Only a couple

of astronomical works oMadhava (Vepvaroha and Sphutacandrapti) seem to be
extant now. Most of his celebrated mathematical discoseriguch as the infinite se-
ries form and the sine and cosine functions—are available only indhma bf citations

in later works.

Madhava’s disciple Paramesvara (c. 1380—-1460) oiVatasseri, is reputed to have
carried out detailed observations for over 50 years. A lawgaber of original works
and commentaries written by him have been published. Howkigemost important
work on mathematics, the commentaryvarana on Lilavati of Bhaskara Il, is yet
to be published.

Nilakantha Somayajt (c. 1444—-1550) oiKundagrama, disciple ofParamesvara’s

son Damodara (c. 1410-1520), is the most celebrated member of Kerala @&cho
after Madhava. Nilakantha has cited several important results fadhava in

his various works, the most prominent of them beifigntrasargraha (c. 1500)
and Aryabhatiya-bhasya. In the latter work, while commenting o@anitapada of
Aryabhatiya, Nilakantha has also dealt extensively with many important mathemat-
ical issues.

However, the most detailed exposition of the work of the ke&chool, starting from
Madhava, and including the seminal contributionsi®dramesvara, Damodara and
Nilakantha, is to be found in the famous Malayalam wokkktibhasa (c. 1530) of
Jyesthadeva (c. 1500-1610).Jyesthadeva was also a disciple oDamodara but
junior toNilakantha. The direct lineage frovladhava continued at least tilhcyuta
Pigarati (c. 1550-1621), a disciple dfesthadeva, who wrote many important works
and a couple of commentaries in Malayalam also.

At the very beginning ofYuktibhasa, Jyesthadeva states that he intends to present
the rationale of the mathematical and astronomical reamiésprocedures which are
to be found inTantrasarigraha of Nilakantha. Yuktibhasa, comprising 15 chapters,
is naturally divided into two parts, Mathematics and Astimy. Topics in astronomy
proper, so to say, are taken up for consideration only fraretghth chapter onwards,
starting with a discussion on mean and true planets.

The first seven chapters dfuktibhasa are in fact in the nature of an independent trea-
tise on mathematics and deal with various topics which arelefance to astronomy.

It is here that one finds detailed demonstrations of the tesdlMadhava such as
the infinite series forr, the arc-tangent, sine and the cosine functions, the estima
tion of correction terms and their use in the generation sfefaconvergent series.
Demonstrations are also provided for the classical resilfsryabhata (c. 499) on
kuttakara (linear indeterminate equations), of Brahmagupta (c. ®8he diagonals
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and the area of a cyclic quadrilateral, anddfaskara Il (c. 1150) on the surface area
and volume of a sphere. Many of these rationales have alsogresented mostly in
the form of Sanskrit verses Wankara Variyar (c. 1500-1560) ofir -ikkutaveli in
his commentarie&riyakramakari (c. 1535) onLilavati of Bhaskara Il and Yukti-
dipika on Tantrasangraha of Nilakantha. In fact, Sankara Variyar ends his com-
menatary on the first chapter @tntrasangraha with the acknowledgemenit:

FE WFISAgsTaaaiRar arsy: |
U  TUgesd TIHSAE Ja1 FE: |

Whatever has been the meaning as expounded by the rofjle of
Parakroda [Jyesthadeva] the same has now been stated by me for the
first chapter ofTantrasangraha.

In the following sections we shall present an overview ofdbatribution of the Ker-
ala School to the development of calculus (during the petigid—-1500), following
essentially the exposition given ifiuktibhasa. In order to indicate some of the con-
cepts and methods developed by the Kerala astronomers, si¢afie up the issue
of irrationality of 7 and the summation of infinite geometric series as discusged b
Nilakantha Somayajt in his Aryabhatiya-bhasya. We then cosider the derivation
of binomial series expansion and the estimation of the sumtefiral powers of in-
tegers,1¥ + 2F 4 ... + nk for largen, as presented irYuktibhasa. These results
constitute the basis for the derivation of the infinite sefa 7 due toMadhava. We
shall outline this as also the very interesting work\M&dhava on the estimation of
the end-correction terms and the transformation ofrtferies to achieve faster con-
vergence. Finally we shall summarize the derivation of tifamite series for Rsine
and Rcosine due thladhava.

In the final section, we shall deal with another topic whick h@earing on calculus,
butis not dealt with inYuktibhasa, namely the evaluation of the instantaneous velocity
of a planet. Here, we shall present the resulbafnodara, as cited byNilakantha,

on the instantaneous velocity of a planet which involvesiiévative of the arc-sine
function. There are indeed many works and commentarieséydatronomers of the
Kerala School, whose mathematical contributions are ybetetudied in detail. We
shall here cite only one result due A@yuta Pisarati (c. 1550-1621), a disciple of
Jyesthadeva, on the instantaneous velocity of a planet, which involtxesdvaluation

of the derivative of the ratio of two functions.

9 Nilakantha’s discussion of irrationality of 7

In the context of discussing the procedure for finding thaaximate square root of a
non-square number, by multiplying it by a large square nur(the method given in
Triatika of Sridhara referred to earlier in Section 3.3Yilakantha observes in his
Aryabhatiya-bhasya:>3

52 Tantrasangraha of Nilakantha Somayaji, Ed. with Yukti-dipika of Sankara Variyar by
K. V. Sarma, Hoshiarpur 1977, p. 77. The same acknowledgeappears at the end of the subsequent
chapters also.

58 Aryabhatiya of Aryabhata, Ed. with Aryabhatzya-bhasya of Nilakantha Somayaji by K. Sam-
basiva Sastr1, Trivandrum Sanskrit Series 101, Trivandrum 1930, commGaemitapada 4, p. 14.
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Even if we were to proceed this way, the square root obtairtamly
be approximate. The idea [that is being conveyed] is, thigtatctually
not possible to exactly de-limitpgricchedah) the square root of a non-
square number. Precisely for this reason, multiplicatipa karge square
was stated (recommended) in order to get as much accuraegasadl

Regarding the choice of the large nhumber that must be made hientioned that

one may choose any number—as large a number as possiblegitbathe desired
accuracy?

T graar Hedn o= EI;.QIOI(*;HI'EI': T dATdel g1 | HgTaed
Fufgrard FERT T IRTHTHNT HE: |

You can multiply by whichever large number you want upto ysatisfac-
tion (buddhavalambhavah). Since largeness is a relative notion, it may
be understood that the process is an unending one.

In this contextNilakantha cites the verse given bryabhata specifying the ratio
of the circumference to the diameter of a circle (valuepfparticularly drawing our
attention to the fact thakryabhata refers to this value as “approximate”.

T T — ' AGAGIAAH R HTA JAUROTE: Sl | T
ha¥ ha¥ C . o
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As will be stated [by the author himself] — ‘this is [only] ap@roxi-
mate measure of the circumferene of the circle whose diansdigenty-
thousand.” In finding the circumference from the diametesgdes of
inferences are involved. The approximate nature of this stems from

the fact that it involves finding square roots. All this wik kexplained
later at the appropriate context.

Addressing the issue—Iater in his commentary, as promigdige—while discussing
the value ofr Nilakantha observes®

IR T WEfad: | e, AaHaad 31ga-
FaU g R g4 IR I F: I arEqar TgH
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S1bid.
SSibid.

56lbid., comm. onGanitapada 10, p. 41.
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The relation between the circumference and the diametebéas pre-
sented. ...Approximate: This value (62,832) has beendstenly an
aproximation to the circumference of a circle having a diemnef 20,000.
“Why then has an approximate value been mentioned hereathstethe
actual value?” It is explained [as follows]. Because it (&xact value)
cannot be expressed. Why?

Explaining as to why the exact value cannot be preseiNédkantha continues’’

AT A A e e e, S S o
U OE9d 49 Ea ) 39 F A ok feee: a9
Hgaer sararsio o g9 gfd ed aee S
IFA: F T fREgeE wq) #@eaH A Ty
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H: |

Given a certain unit of measurememtdna) in terms of which the di-
ameter {yasa) specified [is just an integer and] has no [fractional] part
(niravayava), the same measure when employed to specify the circum-
ference paridhi) will certainly have a [fractional] partsguayava) [and
cannot be just an integer]. Again if in terms of certain [oihreeasure
the circumference has no [fractional] part, then employitegsame mea-
sure the diameter will certainly have a [fractional] paridaannot be an
integer]. Thus when both [the diameter and the circumferbare mea-
sured by the same unit, they cannot both be specified [asirgpgithout
[fractional] parts. Even if you go a long way (i.e., keep odueing the
measure of the unit employed), the fractional part [in Sfyéaj one of
them] will only become very small. A situation in which thexdl be no
[fractional] part (i.e, both the diameter and circumfer@gean be speci-
fied in terms of integers) is impossible, and this is what éithport [of
the expressioasannal.

Evidently, whatNilakantha is trying to explain here is the incommensurability of
the circumference and the diameter of a circle. Particyltre last line of the above
quote—wher&ilakantha clearly mentions that, however small you may choose your
unit of measurement to be, the two quantities will never bee@ommensurate—is
noteworthy.

10 Nilakantha’s discussion of the sum of an infinite ge-
ometric series

In his Aryabhatiya-bhasya, while deriving an interesting approximation for the arc
of a circle in terms of thgya (Rsine) and th&ara (Rversine) Nilakantha presents

*"bid., pp. 41-42.
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a detailed demonstration of how to sum an infinite geomesites. The specific
geometric series that arises in this context is:

Loy, oy, 1
T

We shall now present an outline Nfilakantha’s argument that gives an idea of how
the notion of limit was understood in the Indian matheméatiealition.

10.1 Nlakantha's approximate formula for the arc in terms of jya
and sara

Figure 7: Arc-length in terms gfya andsara.

In Figure 7,AB is the arc whose length (assumed to be small) is to be detedmin
in terms of the chord lengthd D and BD. In the Indian mathematical literature,
the arcAB, the semi-chorddD and the segmenBD are referred to as theapa,
jyardha andsara respectively. As can be easily seen from the figure, thisitesiogy
arises from the fact that these geometrical objects loak $ilkbow, a string and an
arrow respectively. Denoting them by j, ands, the expression for the arc given by
Nilakantha may be written as:

cz\/<1+%) 52 4 2, (74)

Nilakantha's proof of the above equation has been discussed in detsSadbgsvati
Amma>® It may also be mentioned that the above approximation dgtdaks not
form a part of the textdryabhatiya; but nevertheless it is introduced biflakantha
while commenting upon a verse iiryabhatiya that gives the arc in terms of the
chords in a circlé® The verse that succinctly presents the above equation goes a

%8T. A. Sarasvati Amma, cited above (fn. 21), pp. 179-182.
ST SWHAN: JFUSATET: T @} U | (Aryabhatiye, Gapitapada, verse 17).
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follows:®0

TR SN I8 I W4 |
The arc is nearly frayah) equal to the square root of the sum of the
square of th&ara added to one-thirds of it, and the square of the

The proof of (74) given bNilakantha involves:

1. Repeated halving of the arc-hizpa cto gete; ...c;... .
2. Finding the corresponding semi-chorglg; (j;) and the Rversinegara (s;).

3. Estimating the difference between thea andjya at each step.

If §; denotes the difference between #hga andjya at thei’” step, that is,
0 = ¢i — Ji,

then it is seen that this difference decreases as the sibe ofita decreases. Having
made this observatioiNilakantha proceeds with the argument that

e Generating successive values of thes ands;-s is an ‘unending’ processi
kvacidapi paryavasyati) as one can keep on dividing th@pa into half ad
infinitum(anantyat vibhagasya).

¢ It would therefore be appropriate to proceed upto a stageenthe difference
0; becomes negligiblesinyapraya) and make an ‘intelligent approximation’,
to obtain the value of the difference betweeand; approximately.

The original passage iAryabhatiya-bhasya which presents the above argument reads
as follows®!

T SR O I A aqINATITeq @ HoTfT
TR 3MGATIER QRO & AT T Fief
Thaefe =g e

eTe: TeRareileye] e et AU Sy Aedr AT A9
AT F TAUT AT T FeAHTHH AFTHY

FraAT 39|

60 Aryabhatiya-bhasya on Aryabhatiya, cited above (fn. 50), comm. offanitapada 12 and 17,
p. 63 and p. 110. That the verse cited is from another workfidmelyGolasara, has been alluded to
by Nilakantha in both the instances of citation.

61lbid., comm. onGanitapada 17, pp. 104-05.
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10.2 N_Iakar_lt_ha’s summation of the infinite geometric series

The question thaNilakantha poses as he commences his detailed discussion on the
sum of geometric series is very important and arises quiterally whenever one
encounters the sum of an infinite serfés:

FY U qaed add qragad I ?

How do you know that [the sum of the series] increases only tipat
[limiting value] and that it certainly increases upto thahjting value]?

Proceeding to answer the above questiitagkantha first states the general result
1 1N /1\°
all-)+{(—-) +{—-) +...
T T T

Here, the left hand side is an infinite geometric series withsuccessive terms be-
ing obtained by dividing by a common divisor, known ascheda whose value is
assumed to be greater than 1. He further notes that thig refidst demonstrated by
considering a particular case, say- 4. In his own word$?®

IATI §F F: TR IR FF-aar: AT g
T 3|=-|r(‘|l=-|l4-lll4 FOAA Wmmﬁ:r Wﬁlﬁ

&ld L{'il"l'-hthﬂEIIHI‘H‘I HGI?I {-IJ-IHJ-IOI | &l — ﬂd{QIQ{HiIQIHq
arad T iR |

It is being explained. Thus, in an infiniten{anta) geometrical series
(tulyaccheda-parabhaga-parampara) the sum of all the infinite number
of terms considered will always be equal to the value obthinyadividing
by a factor which is one less than the common factor of thesefihat
this is so will be demonstrated by first considering the seadbktained
with one-fourth ¢aturamsa-parampara).

r—1"

What is intended to be demonstrated is

N, (1 ? e s N
Besides the multiplying factar, it is noted that, one-fourth and one-third are the only
terms appearing in the above equatiaNilakantha first defines these numbers in

terms of one-twelfth of the multiplies referred to by the wordasi. For the sake of
simplicity we take the-asi to be unity.

(75)

g .

- 1 1
12 4’ 12 3

62bid., p. 106.
53|pid., pp. 106-07.
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Having defined theniyilakantha first obtains the sequence of results,

11
3 7 173
11 1

@3 ~ @4 Taaz)
T 1

@43)  (@44) @44z’

and so on, which leads to the general result,

O IR O RO

Nilakantha then goes on to present the following crucial argument toveéhe sum
of the infinite geometric series: As we sum more terms, therdihce betweeé and
sum of powers of: (as given by the right hand side of the above equation), besom
extremely small, but never zero. Only when we take all theseof the infinite series
together do we obtain the equality

1 /1)’ 1\" 1
Z+(Z) ++(Z) +...—§. (77)
A brief extract from the text presenting the above argumeghien belowf*

i“rmh@hsrrsrr aur B o o | aqs T | TEged
FAHE HHT Wﬁﬁmﬁﬁlq ECE Waﬂ%ﬁm ey
AT I Wﬁﬁmﬁnlmw

T I TRIOgeH@ad 7 Hac A er‘l?lehl{ -
U T RaHere ar A=A | AT=<AT<d ﬁ?mmq
FHUETE ANyl | g gaery QRO F O T
FIeE Sl aRaR: ek free S
ORI MO sTy|

Three times one-twelfth of easi is one-fourth ¢aturamsa) [of that rasi].
Four times that is one-thirdifyamsa). [Considering] four times that
[one-twelfth of therasi] which is one-third, three by fourth of that falls
short by one-fourth [of one-third of theisi]. Three-fourths of that [i.e.,

of i of the rasi] which is one-fourth of thattfyamsa), again falls short
[of the same] by one-fourth of one-fourth [of one-third oé thas7] . .

Since the result to be demonstrated or the process to bedauti is never
ending @rantyat) and the difference though very smatk{suksmatvat)
[still exists and the sum of the series] cannot be simplyrakebe one-
third. It seems that the process is incomplete since alwaggething
remains because of its never ending nature. In fact, sinat the prob-
lems involving [infinite] series, by bringing in all the tesnand placing
them together, the process would [in principle] become detaphere, in
the mathematics involving repeated multiplication of doerth, a simi-
lar conclusion may be drawn.

1
3

841bid., p. 107.
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11 Derivation of binomial series expansion

Yuktibhasa presents a very interesting derivation of the binomialkesefor(1 + x)~*
by making iterative substitutions in an algebric identitiie method given in the text
may be summarized as follows.

Consider the produet (g) where some quantity is multiplied by the multiplier,
and divided by the divisob. Here,a is calledgunya, ¢ the gunaka andb the hara,
which are all assumed to be positive. Now the above producbeaewritten as:

a(g):a—a(bgc). (78)

In the expressiom@ in (78) above, if we want to replace the division bythe
divisor) by division by (the multiplier), then we have to make a subtractive coiect
(called$odhya-phala) which amounts to the following equation.

(b—o) (b—c)_(a(b—c> x<b—0>), (79)

a =a
c b

b c

Now, in the second term (inside parenthesis) in (79)—wtlschhat we referred to as
Sodhya-phala, which literally means a quantity to be subtracted—if weiagaplace
the division by the divisob by the multiplierc, then we have to employ the relation
(79) once again to get another subtractive term

c [ (b—2c) a(b—c)x(b—c)]

@B T YT T c b
o[-0 -9 b0

L
N o [a(b_c)2 - (a(bil X (bgc))” (80)

c? c?

Here, the quantityb(b;?)2 is calleddvitiya-phala or simply dvitiya and the one sub-

tracted from that islvitiya-Sodhya-phala. 1f we carry out the same set of operations,
them!” sodhya-phala subtracted from the:*” term will be of the form

c c b

R

Since the successiadhya-phalas are subtracted from their immediately preceding
term, we will end up with a series in which all the odd termsyieg out thegunya,
a) are negative and the even ones positive. Thus, after takisiglhya-phalas we get

ol = “‘“(b_c)+a{(b_c)r—...+(—1)ma [Mr

b c c c

Hopya (L2929 61)
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Regarding the question of termination of the process, buhexts Yuktibhasa and
Kriyakramakari clearly mention that logically there is no end to the proadsgen-
eratingsodhya-phalas. \We may thus write our result &8:

"% = a—aum[MF_...ﬂ—nm—la[(b—c)r‘l

: : o,

+(-1)"a [ (82)

It is also noted that the process may be terminated aftengaitained the desired
accuracy by neglecting the subsequ@ntlas as their magnitudes become smaller and
smaller. In fact,Kriyakramakari explicitly mentions the condition under which the
succeedinghalas will become smaller and small&?:

: wOEES FAsy giEd: Fiw T ogae: | qu
m?ﬁﬁa AT THEAYET FAAAT GHOEH |
QSI‘(‘I{I‘(‘I'{WWHI -44=-|(0| (—‘|"‘|U|6|‘\I='d{ *‘IUIGI"I{I%H uq ‘:“Ildl

Thus, even if we keep finding theghalas repeatedly, logically there is
no end to the process. Even then, having carried on the acdbe
desired accuracyy@uadapeksam suksmatamapadya), one should ter-
minate computing thehalas by [simply] neglecting the terms that may
be obtained furtherpgascatyanyupeksya). Here, the succeedinghalas
will become smaller and smaller only when the differencevieen the
gunaka andhara is smaller tharyunaka, [thatis(b ~ ¢) < ¢].

12 Estimation of sums ofl* + 2F 4+ .. . n* for
large n

As mentioned in section 4. Aryabhata has given the explicit formula for the sum-
mation of squares and cubes of integers. The word employteilmdian mathemat-
ical literature for summation isarikalita. The formulae given byAryabhata for the
sankalitas are as follows:

S(l) = 1+2+...+nzm
" 2
g2 _ 12+22+_”+n2:n(n+1)(2n+1)
" 6
1 2
S 134234 4nd= {L"; )] . (83)

651t may be noted that if we sélb;—c) =z, then§ = ﬁ
the well known binomial series
4 =a—azr+az?—. . +(-DMaz™ +...,
1+z
which is convergent for-1 < =z < 1.
6 Kriyakramakari on Lilavati, cited above (fn. 14), comm. on verse 199, p. 385.

Hence, the series (82) is none other than
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From these, it is easy to estimate these sums whenlarge. Yuktibhasa gives a
general method of estimating thema-ghata-sarikalita %7

Sk) — 1k Lok 4 4k, (84)

whenn is large. Actually the text presents a general method afnedgion, which does
not make use of the actual value of the sum. In fact, the samerant is repeated
even fork = 1,2, 3, although the result of summation is well known in these cases

12.1 The sum of natural numbers (ula-sankalita)

Yuktibhasa takes up the discussion amrikalitas in the context of evaluating the
circumference of a circle which is conceived to be inscrilvea square. It is half the
side of this square that is being referred to by the wigrdja in both the citations as
well as explanations offered below. Half of the side of theasg (equal to the radius)
is divided inton equal bits, known a$huja-khandas. It is thesebhuja-khandas
(£), 2(%)--- whose powers are summed.

n

To start with, Yuktibhasa discusses just the basic summatiodija-khandas called
Mala-sarkalita. We now cite the following from the translation afuktibhasa:58

Now is described the methods of making the summations (exfdo in

the earlier sections). At first, the simple arithmeticalgression kevala-
sankalita) is described. This is followed by the summation of the prod-
ucts of equal numbers (squares). ...

Here, in thismala-sankalita (basic arithmetical progression), the final
bhuja is equal to the radius. The term before that will be one segmen
(khanda) less. The next one will be two segments less. Here, if all the
terms phujas) had been equal to the radius, the result of the summation
would be obtained by multiplying the radius by the numbebdjas.
However, here, only onéhuja is equal to the radius. And, from that
bhuja, those associated with the smaller hypotenuses are lessetseg-
ment each, in order. Now, suppose the radius to be of the samber

of units as the number of segments to which it has been diyvidaxtder

to facilitate remembering (their number). Then, the nunds=ociated
with the penultimatéhuja will be less by one (from the number of units
in the radius); the number of the next one, will be less by twonfthe
number of units in the radius. This reduction (in the numbesegments)
will increase by one (at each step). The last reduction witpcally be
equal to the measure of the radius, for it will be less only bg segment.

In other words, when the reductions are all added, the suredhevill
practically prayena) be equal to the summation of the series from 1 to
the number of units in the radius; it will be less only by onéiua length.
Hence, the summation will be equal to the product of the nurabenits

in the radius with the number of segments plus one, and divije2.

87The compoundsama-ghata in this context means product of a number with itself same emof
times.
68 Qanita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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The summation of all théhujas of the different hypotenuses is called
bhuja-sankalita.

Now, the smaller the segments, the more accuratksfna) will be the
result. Hence, do the summation also by taking each segreemall as
an atom ¢nu). Here, if it (namely, théhuja or the radius) is divided into
parardha (a very large number) parts, to theuja obtained by multiply-
ing by parardha add one part imarardha and multiply by the radius and
divide by 2, and then divide byarardha. For, the result will practically
be the square of the radius divided by two. ...

The first summation, théhuja-sankalita, may be written in the reverse order from
the finalbhuja to the firstbhuja as

s = (M) 4 (@) s (D). (85)

Now, conceive of theébhuja-khanda - as being infinitesimaldnu) and at the same
time as of unit-measure-{pa), so that the radius will be the measurengtthe pada,
or the number of terms. Then

SH =n4+mn—1)+..+1. (86)

If each of the terms were of the measure of radiusthen the sum would be nothing
butn?, the square of the radius. But only the first term is of the memasf radius, the
next is deficient by one segmeih@nda), the next by two segments and so on till the
last term which is deficient by an amount equal to radius-stome segment. In other
words,

SH = pniamn—-14+n—-2..4+n—m-2)]+[n—(n—-1)
= nn—[142+..+(n-1). (87)
Whenn is very large, the quantity to be subtracted frafis practically prayena)
the same aS’,(ll), thus leading to the estimate
S~ p? — 5 (88)
or, equivalently
S = (89)

Itis stated that the result is more accurate, when the siteedfegments are small (or
equivalently, the value of is large)%°

If instead of making the approximation as in (88), we proce@h (87) as it is, we
getSt) = n2 — (S§Y — n), which leads to the well-known exact value of the sum of
the firstn natural numbers

S1(Zl) - @, (90)
With the convention that thé is of unit-measure, the above estimate (89) is stated in
the form that thebhuja-sankalita is half the square of the radius.

69Gankara Variyar also emphasizes the same idea, in his discussion of theagistinof sarikalita-s
in his commentanyKriyakramakari on Lilavatz (cited above (fn. 14), comm. on verse 199, p. 382.):

QUSHITIE edd Goded Yaud I & |

Only when the segment is smallii{andasyalpatve) the result obtained would be accurate.
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12.2 Summation of squares Varga-sankalita)
We now cite the following from the translation dfuktibhasa:’®

Now is explained the summation of squaresrga-sarikalita). Obvi-
ously, the squares of thighujas, which are summed up above, are the
bhujas each multiplied by itself. Here, if théhujas which are all mul-
tipliers, had all been equal to the radius, their susasifalita derived
above), multiplied by the radius would have been the sunomatf their
squares. Here, however, only one multiplier happens to baldq the
radius, and that is the last one. The one before that will fee@umber

of segments one less than in the radius. (Hence) if that, {he second
one), is multiplied by the radius, it would mean that one ipligd by

the penultimatéhuja would have been the increase in the summation of
the squares. Then (the segment) next below is the third. Witldie less
than the radius by two segments. If that is multiplied by gwius, it will
mean that, the summation of the squares will increase byritugt of
the bhuja by two (segments). In this manner, the summation in which
the multiplication is done by the radius (instead of thhejas) would be
larger than the summation of squares by terms which invéilgesticces-
sively smallerbhugjas multiplied by successively higher numbers. If (all
these additions) are duly subtracted from the summatiomenthe radius

is used as the multiplier, the summation of squaresya-sarnkalita) will
result.

Now, the bhuja next to the east-west line is less than the radius by one
(segment). So if all the excesses are summed up and addedulid w
be the summation of the basic summatiemua-sarikalita-sankalita).
Because, the sums of the summations is verily the ‘summafi@um-
mations’ (sanikalita-sankalita). There, the last sum has (the summation
of) all the bhujas. The penultimate sum is next lower summation to the
last. This penultimate sum is the summation of all thejas except the
last bhuja. Next to it is the third sum which is the sum of all theujas
except the last two. Thus, each sum of thejas commencing from any
bhuja which is taken to be the last one in the series, will be lessr®y o
bhuja from the sum (of théhujas) before that.

Thus, the longesihuja is included only in one sum. But théuja next
lower than the lastipuja) is included both in the last sum and also in the
next lower sum. Théhujas below that are included in the three, four etc.
sums below it. Hence, it would result that the successiveller bhujas
commencing from the one next to the last, which have beeniptiat

by numbers commencing from 1 and added together, would bensam
tion of summationsdarikalita-sarikalita). Now, it has been stated earlier
that the summationsgrikalita) of (the segments constituting) i&uja
which has been very minutely divided, will be equal to ha#f #yjuare of
the lastbhuja. Hence, it follows that, in order to obtain the summation
(sankalita) of the bhujas ending in any particulabhuja, we will have to
square each of thehujas and halve it. Thus, the summation of summa-
tions (sankalita-sankalita) would be half the summation of the squares

0 Ganita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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of all the bhujas. In other words, half the summation of the squares is the
summation of the basic summation. So, when the summatioruig-m
plied by the radius, it would be one and a half times the suritmatf the
squares. This fact can be expressed by stating that thiaiosritalf more

of the summation of squares. Therefore, when the squaresafattius
divided by two is multiplied by the radius and one-third o$itbtracted
from it, the remainder will be one-third of the whole. Thudatlows
that one-third of the cube of the radius will be the summatibsquares
(varga-sarnkalita).

With the same convention thgtis the measure of the unit, théuja-varga-sarikalita
(the sum of the squares of thgujas) will be

S@ =p2 4 (n—1)2 4. +12% (91)

In above expression, eadhuja is multiplied by itself. If instead, we consider that
eachbhuga is multiplied by the radiusr( in our units), then that would give raise to
the sum
nn+n—-1)+..4+1=nS". (92)
This sum is exceeds théuja-varga-sankalita by the amount
nSM -8 —1.(n-1)+2.(n—-2)+3.(n—3)+...+ (n—1).1.

This may be written as

S —SP =m-1)+m-2)+n-3) +... +1
+(n—-2)+(n-3) + +1
+(n-3) + +1
+ (93)
Thus,
S =8P =S + S, + 505+ (94)

The right hand side of (94) is called therkalita-sankalita (Or sankalitaikya), the
repeated sum of the surﬁél) (here taken in the ordér=n—1, n—2,...1). These
are defined also byankara Variyar in Kriyakramakari as follows?!

o T Tglorar et fe agformagloadsad | T F=avg-
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The sum of the summations is called @asikalita-sarikalita. Of them
the lastsarikalita is the sum all théhuja-s. The penultimatearikalita
is the sum of all thehuja-s other than the last one. Therkalita of
the one preceding the penultimate is the sum oftthea-s ending with
that. Thus, all the precedingiikalita-s will fall short by abhuja from
the succeedingarikalita.

6

"1 Kriyakramakari on Lilavats, cited above (fn. 14), comm. on verse 199, pp. 382-83.
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For largen, we have already estimated in (89) tisat) ~ "72 Thus, for largen

_12 _22 _32
nsth - s & DD BT oS (95)

Thus, the right hand side of (94) (tkerikalita-sankalita or the excess oﬁS,(f) over
Sff)) is essentiall@ for largen, so that we obtain

(2)
S — @ ST (96)

Again, using the earlier estimate (89) 65", we obtain the result

S2) = (97)

Thusbhuja-varga-sankalita is one-third the cube of the radius.

12.3 Sama-glata-saikalita

We now cite the following from the translation dfuktibhasa:’?

Now, the square of the square (of a number) is multiplied gsifit it is
called sama-panca-ghata (number multiplied by itself five times). The
successive higher order summations are calledba-parncadi-ghata-
sankalita (and will be the summations of powers of five and above).
Among them if the summatiors{rikalita) of powers of some order is
multiplied by the radius, then the productis the summati@ummations
(sankalita-sankalita) of the (powers of the) multiplicand (of the given or-
der), together with the summation of powess(a-ghata-sankalita) of
the next order. Hence, to derive the summation of the suiveeligher
powers: Multiply each summation by the radius. Divide it by next
higher number and subtract the result from the summatiorbgfure.
The result will be the required summation to the higher arder

Thus, divide by two the square of the radius. If it is the culb¢he
radius, divide by three. If it is the radius raised to the powkfour,
divide by four. If it is (the radius) raised to the power of fivdivide by
five. In this manner, for powers rising one by one, divide bynbers
increasing one by one. The results will be, in order, the sations of
powers of numberss¢ma-ghata-sankalita). Here, the basic summation
is obtained from the square, the summation of squares frerauthe, the
summation of cubes from the square of the square. In this eraifn
the numbers are multiplied by themselves a certain numhtmnes (i.e.,
raised to a certain degree) and divided by the same numlaénvith be
the summation of the order one below that. Thus (has beesd3ttte
method of deriving the summations of (hatural) numbergittsquares
etc.

72 Qanita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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In the case of a generadmaghata-sarkalita, (Summation of equal powers) given by
SK) = pk 4 (n—1)F + . 41k, (98)

the procedure followed to estimate its behavior for latgs essentially the same as
that followed in the case afargasarkalita. We first compute the excess mS,(f’l)

over S to be asarikalita-sarikalita or repeated sum of the lower orderikalitas
Sk=1)

nSk-D — gk — gk gkl | gUmh) (99)
If the lower ordersarikalita S~ has already been estimated to be, say,
nk
SkE=1) ~ - (100)

then, the above relation (99) lead$%o
(n-1)% (-2 (n-3)"

(k=1) _ a(k)
S S, 3 + B + B + ...
1
~ (=) s, 101
(7) 5 (101)
Rewriting the above equation we hate
S~ pSk=1) _ (%) Sk, (102)
Using (100), we obtain the estimate
Sk ~ i 103
T (k1) (103)

12.4 Repeated summationsankalita-sankalita)

After having estimated the sum of powers of natural numbensaghata-sarkalita
Yuktibhasa goes on to derive an estimate for the repeated summatioikdlita-
sankalita or sankalitaikya or varasarikalita) of the natural numbet, 2, - - -, n.”®

73As one of the reviewers has pointed out, this argument lgaif101) is indeed similar to the deriva-
tion of the following relation, which is based on the inteanlye of order in iterated integrals:

1
/(l—mxk Ydx / / dydm—/ / k— 1d:vdy—/ —dy
0

74As Sankara Variyar states in hiskriyakramakari on Lilavatz (cited above (fn. 14), p. 383):

I ITRRRHG AT TIeHg (5 aed AU Jhaaage-
e 9 FHH gfa )

Therefore it is established that, for obtaining the sum efrtbxt order, the previous sum, has
to be multiplied by the radius and the present sum, dividedri®ymore than the previous
[order], has to be diminished [from that product].

75 GQanita-yukti-bhasa, cited above, Section 6.4, pp. 61-67, 192-97, 382-88.
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Now, are explained the first, second and further summatidhg first
summation {dya-sarikalita) is the basic summation(ala-sankalita)
itself. It has already been stated (that this is) half thedpob of the
square of the number of termgalda-vargardha). The seconddvitiya-
sankalita) is the summation of the basic summatienda-sankalitaikya).
It has been stated earlier that it is equal to half the sunmmati squares.
And that will be one-sixth of the cube of the number of terms.

Now, the third summation: For this, take the second summat®the
last term @ntya); subtract one from the number of terms, and calculate
the summation of summations as before. Treat this as theltpeate.
Then subtract two from the number of terms and calculateuhergation
of summations. That will be the next lower term. In order técakate
the summation of summations of numbers in the descendingr,otfte
sums of one-sixths of the cubes of numbers in descending araigd
have to be calculated. That will be the summation of onehsiftthe
cubes. And that will be one-sixth of the summation of cubes. has
been enunciated earlier, the summation of cubes is on¢hfthe square
of the square. Hence, one-sixth of one-fourth the squatedsgquare will
be the summation of one-sixth of the cubes. Hence, one-ywfentth of
the square of the square will be the summation of one-sixthetubes.
Then, the fourth summation will be, according to the aboweqiple, the
summation of one-twenty-fourths of the square of squarks Will also
be equal to one-twenty-fourth of one-fifth of the fifth powldence, when
the number of terms has been multiplied by itself a certaimber of
times, (i.e., raised to a certain degree), and divided byptbduct of one,
two, three etc. up to that index number, the result will besthiamation
up to that index number amongst the first, second etc. suransatidya-
dvitryadi-sarnkalita).

The first summationddya-sankalita) vV s just themala-sankalita or the basic
summation of natural numbers, which has already been dsiihira (89)

VD =5 = n4m-1)+n-2)+...+1
TL2
~ —. 104
5 (104)

The second summatiot{itiya-sarikalita or sankalita-sarikalita or sankalitaikya)
is given by

1 1
Ve = vy rvi
SW 4 sM 45, 4 (105)

As was done earlier, this second summation can be estimated the estimate for
s

2 _1)2 _9)2
V,§2>x%+(”2) +(”2) o (106)

Therefore )
V2 <§) 52), (107)
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Using the earlier estimate (97) f6‘r£2), we get an estimate for th&vitiya-sankalita

n3

V) - (108)

Now the next repeated summation can be found in the same way
2 2
D4V +vP+
n—1)>3 n—2)3
(n-1*, (n-2)

+ 6
s

Itis noted that proceeding this way we can estimate repesanmdnatlorvn of order
k, for largen, to be’®

|74

=

Q

+...

2
%o el

Q

(109)

()
g

v = ykh gyt Dy
nk+1
N o 110
123 . (k+ 1) (110)

13 Derivation of the Madhava series forr

The following accurate value af (correct to 11 decimal places), glven biadhava,
has been cited lelakantha in his Aryabhatiya-bhasya and bySankara Variyar
in his Kriyakramakarz.””

[REREERSI SN R ENUEEREILE IR
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Ther value given above is:

2827433388233
TR o = 3.141592653592... (111)
The 13 digit number appearing in the numerator has beenfiabcising bhuta-
sanikhya System, whereas the denominator is specified by word nusiéral

"6These are again estimates for largeAs mentioned in Section 4, exact expressions for the first tw
summations,V,il) and Vf), are given inAryabhatiya, Ganitapada 21; and the exact expression for
the k-th order repeated summatidl’;fk) has been given (under the nam@ra-sarikalita), by Narayan
Pardita (c. 1350) in hisGanitakaumudz, 3.19. This exact expression fM;gk) is also noted in section
7.5.3 of Yuktibhasa.

77 Aryabhatiya-bhasya on Aryabhatiya, cited above (fn. 53), comm. offanitapada 10, p. 42;
Kriyakramakari on Lilavati, cited above (fn. 14), comm. on verse 199, p. 377.

78|n the bhuta-sankhya systemuyibudha =33, netra =2, gaja =8, ahi =8, hutasana =3, triguna =3,
veda =4, bha =27, varana =8, bahu =2. In word numeralspikharva representd0''. Hence,nava-
nikharva =9 x 1011,
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13.1 Infinite series forr

The infinite series forr attributed to Madhava is cited Byuikara Variyar in his
commentaried(riyakramakar: and Yukti-dipika. Madhava's verse quoted runs as
follows:"®

Y ARHET TIEd SHAEERNHE |
PR @ uE FA Al

The diameter multiplied by four and divided by unity [is faland saved].
Again the products of the diameter and four are divided byoth& num-
bers like three, five, etc., and the results are subtractéddaied in order
[to the earlier result saved].

The series given by the verse may be represented as

1 1 1
Paridhi=4 x Vyasax (1— =4+ —-—=+...... . (112)
3 5 7
The wordsparidhi andvyasaf® in the above equation refer to the circumference and
diameter respectively. Hence the equation may be rewditen

1 1 1
e e . 113
4 ( s3T5 7 ) (113)

We shall now present the derivation of the above result ainedtin Yuktibhasa

of Jyesthadeva and Kriyakramakari of Sankara Variyar. For this purpose, let us
consider the quadrar® P FP,,S of the square circumscribing the given circle (see
Figure 8). Divide the sidé’ P, into n equal parts+#{ very large). Py P;'s are the
bhujas andOP;'s are thekarnas denoted byk;. The points of intersection of these
karnas and the circle are marked ass.

Thebhujas Py P;, thekarnas k; and the east-west lin@ P, form right-angled triangles
whose hypotenuses are given by

. 2
k2 =12 + (ﬁ) : (114)
n
wherer is the radius of the circle.

The feet of perpendiculars from the poims_; and P,_, along thei!” karna are
denoted byB; andC;. The triangle®) P;,_1C; andOA;_; B; are similar. Hence,

Ai 1B PG

= ) 115
OA;—4 OP;_4 (115)
Similarly trianglesP;_; C; P, and PO P; are similar. Hence,
P_.C; OF
= . 116

"op. cit., p.379.
80NT1lakantha, in his Aryabhatiya-bhasya, presents the etymological derivation of the woygdisa as

‘the one which splits the circle into two halvessaTE=T % qa S | (Aryabhatiya-bhasya, cited
above (fn. 53), comm. oFanitapada 11, p. 43).
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E
%
Blown up version
of this quadrant
Py Ry P A\ R
AiC
Aj
B
Ki-1
ki
o) S

Figure 8: Geometrical construction used in the proof of ttimite series forr.

From these two relations we have,

OAi_l .OP().Pi_l P;

Ai1B; =

OP,_1.0P;
OA;_1 OPF,
= PP
1 OP;_, x OP;

) 5s %
- () (&5) a1)

It is then noted that when is large, the Rsinedl; | B; can be taken as the arc-bits
themselves.

TRETsENE - g

ie., A,_1B;, — A:l\Al

Thus,%th of the circumference of the circle can be written as surhetontributions
given by (117). Thatis

C r r? r? r? r?
37 (5) Kkokl) - (k1k2> " (k2/€3> A (knlknﬂ ' (118)
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Though this is the expression that actually needs to be ateduthe text mentions
that there may not be much difference in approximating it itlyee of the following
expressions:

9., -B16) () 6] o
9.0 6) () () @) oo

It can be easily seen that

C C C
[—} <2< [—} . (121)
8 right 8 8 left

In other words, though the actual value of the circumferdiesanbetween the values
given by (120) and (119) what is being said is that there vatl lme much difference
if we divide by the square of either of thierna-s rather than by the product of two
successive ones. Actually, the difference between (120) B19) is given by

DG - Q-0 wensera
-6

Evidently this difference approaches zerorabecomes very large, as noted in both
the textsYuktibhasa and Kriyakramakari.

The terms in (120) are evaluated using théhya-phala technique (binomial series,
discussed earlier in Section 11) and each one of them mayWéitten in the forn$!

T T2 T ' 7;2—7’2 ' 7:2—7"2 2

)i () () - e
Using (114) and (123) in (120), we obtain:

n 2
S - ()
,,,2
=) -
<@)+£<(@2>2_.,.1 (125)
(%) I+1+...+1]
2

O EN GG ]

. o . i\ 2
811t may be noted that this series is convergent sihge= r? + (%) and0 < (k2 — r?) < r?
fori < n.
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T (126)

Each of the terms in (126) is a sum of resuliB{la-yoga) which we need to estimate
whenn is very large, and we have a series of themala-parampara) which are
alternatively positive and negative. Clearly the first tésrjust the sum of théhuja-
khandas.

The bhujas themselves are given by the integral multiple®bfja-khanda, namely,
-, 2—7:, ... ==, Inthe series expression for the circumference given abwee¢hus have
the sarkalitas or summations of even powers of thieujas, such as théhuja-varga-
sankalita, (%)2 + (2—7:)24— et (%) 2, bhuja-varga-varga-sankalita, ( )4—i— (&)44—

: £ (2
..... + (2£)", and so on.

n

If we take out the powers dfhuja-khanda -, the summations involved are that of
even powers of the natural numbers, namelydyekottara-varga-sankalita, 12 +
22 4 . +n?, edadyekottara-varga-varga-sankalita, 14+ 24+ ...+ n* andsoon.

Now, recalling the estimates that were obtained earliettfesesarikalita-s, whenn

is large,
n k1
.k n
~ 127
;Z k1 (127)
we arrive at the resift
C 1 1 1
g—r(1—§+g—?+'“)’ (128)

which is same as (112).

14 Derivation of end-correction terms (Antya-samskara)

Itis well known that the series given by (112) fris an extremely slowly converging
series. It is so slow that even for obtaining the valuer @brrect to 2 decimal places
one has to find the sum of hundreds of terms and for gettingiecoto 4-5 decimal
places we need to consider millions of termsladhava seems to have found an
ingenious way to circumvent this problem. The techniqueleyga byMadhava is
known asantya-samskara. The nomenclature stems from the fact that a correction
(samskara) is applied towards the end«{ta) of the series, when it is terminated after
considering only a certain number of terms from the begignin

82In modern terminology, the above derivation amounts to taéuation of the following integral

c - r r2 _ ! dx
g_nli»mooz 5 2 ir 2 =T 1+(E2.
i=1 e+ (7) 0
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14.1 The criterion for antya-samskara to yield accurate result

The discussion omantya-samskara in both Yuktibhasa and Kriyakramakari com-
mences with the question:

How is it that one obtains the value of the circumference nagirately
by doing antya-samskara, instead of repeatedly dividing by odd num-
bers?3

The argument adduced in favor of terminating the series ntdasired term, still
ensuring the accuracy, is as follows. Let the seriesiftie written as

™ 1 1 1 p—3 1 p—1 1
—=l—-=4+—-——...+ (-1 1) = 129
TTlm3tE o P CVT ST 29

whereap#i2 is the correction term applied after odd denominater 2. On the other
hand, if the correction ternj;, is applied after the odd denominaggithen

p+1 1
3

1
» +(-1) o (130)

If the correction terms indeed lead to the exact result, tiwth the series (129) and
(130) should yield the same result. Thatis,
1 ::1 — j; or 1 +.;L = 1’ (131)

ap—2 P ap ap—2 ap p

is the criterion that must be satisfied for the end-corredii@tya-samskara) to lead
to the exact result.

14.2 Successive approximations to get more accurate cortem-
terms

The criterion given by (131) is trivially satisfied when weodsea,_> = a, = 2p.
However, this valu@p cannot be assigned to both the correction-div%’m§,2 and
a, because both the corrections should follow the same rulat iSh

ap—2 =2p, = ap =2(p+2)

or, ap =2p, = ap—2=2(p—2).
We can, however, have both_, anda, close to2p by takinga,—» = 2p — 2 and
ap = 2p + 2, as there will always persist this much difference between2 andp

when they are doubled. Hence, the first (order) estimateeotdhrection divisor is
given as, “double the even number above the last odd-nuniasodp”,

ap =2(p+1). (132)

ST T HEATHAUEe #ed URY: AeEH AT AR |

I ... (Kriyakramakarz on Lilavati, cited above (fn. 14), comm. on verse 199, p. 386.)
84By the term correction-divisors@mskara-haraka) is meant the divisor of the correction term.
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But, it can be seen right away that, with this value of theeation divisor, the condi-
tion for accuracy (131), stated above, is not exactly satisfTherefore a measure of
inaccuracy {thaulya) E(p) is introduced

1 1 1

E(p) = [ + —] -=. (133)
CLP,Q CLp P

Now, since the error cannot be eliminated, the objectiveoidirtd the correction

denominators:, such that the inaccuracy(p) is minimised. When we set, =

2(p + 1), the inaccuracy will be

1 1 1
Be) = {<2p—2> * <2p+2>} )

1
=7 (134)
This estimate of the inaccurady, being positive, shows that the correction has been
over done and hence there has to be a reduction in the comecthis means that
the correction-divisor has to be increased. If we take= 2p + 3, thereby leading to

ap—2 = 2p — 1, we have

1 1 1
E = + i
) @r—1) " @+3)] »
(—2p+3)
= — = 135
(4p* + 4p* — 3p) (135)
Now, the inaccuracy happens to be negative. But, more iraptyt it has a term
proportional top in the numerator. Hence, for large E(p) given by (135) varies
inversely ag?, while for the divisor given by (132)E(p) as given by (134) varied

inversely ag?.8°

From (134) and (135) it is obvious that, if we want to reduce imaccuracy and
thereby obtain a better correction, then a number less tHeas 1o be added to the
correction-divisor (132) given above. If we try addingpa (unity) divided by the

correction divisor itself, i.e., if we set, = 2p + 2 + (2p—l+2)’ the contributions from

the correction-divisors get multiplied essentially 2% . Hence, to get rid of the

higher order contributions, we need an extra factor of 4cwhiill be achieved if we
take the correction divisor to be

_ 4 (2p+2)°+4
ap_(2p+2)+(2p+2) =@y (136)
Then, correspondingly, we have
4 (2p—2)2+4
o=(2p—2 = . 137
We can then calculate the inaccuracy to be
E(p) - 1 n 1 (1)
- 4 4 \p
(2p—2)+m (2p+2)+m

851t may be noted that among all possible correction diviséthe typea, = 2p + m, wherem is an
integer, the choice af» = 2 is optimal, as in all other cases there will arise a term pridgaal top in the
numerator of the inaccurady(p).

55



7 (4p®) 1 (16p* +64)
| (4pt+16)|  4p(4p* +16)
—4
= —. 138
(P + 4p) (138)
Clearly, thesthaulya with this (second order) correction divisor has improvedsid-
erably, in that it is now proportional to the inverse fifth pavef the odd numbé®

At this stage, we may display the result obtained for theucnference with the cor-
rection term as follows. If only the first order correctior3g) is employed, we have

e R I S I | B
If the second order correction (136) is taken into accousthewe
C o= ad|1— iy (sl 1 1
L p (2p+2)+ T
_ 1 o 1 . (p—; 1)
= dd|1-s+. 4 (=) 5+(—1)T(p+1)2+1 (140)

The verse due tdladhava that we cited earlier as defining the infinite seriesas,
in fact, the first of a group of four verses that present theeserlong with the above
end-correctior¥’

JeAGASH &0 Fal g gloeq Stfear|

T FATAA THUEN T&e OIS T |
Tl EULT &R SATfGTT: Wa|

TR ST Fd U &7 YT FOE: 13 1

FeT: R o qEeed FUTSTogeR: Feie |

The diameter multiplied by four and divided by unity. Agaietproducts
of the diameter and four are divided by the odd numbers likeethfive,
etc., and the results are subtracted and added in order.

Take half of the succeeding even number as the multipler ahglier
[odd] number the division process is stopped, because @doon. The

861t may be noted that if we take any other correction-divispr= 2p + 2 + (2];12) , wherem is an

integer, we will end up having a contribution proportionapf in the numerator of the inaccurady(p),
unlessm = 4. Thus the above form (136) is the optimal second order cHoicthe correction-divisor.
87 Kriyakramakari on lilavatz, cited above (fn. 14), comm. on verse 199, p. 379.
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square of that [even number] added to unity is the divisoeifiatio has
to be multiplied by the product of the diameter and four atiexar

The result obtained has to be added if the earlier term [irsénies] has
been subtracted and subtracted if the earlier term has luskrda The
resulting circumference is very accurate; in fact more eateuthan the
one which may be obtained by continuing the division prof&gh large

number of terms in the series].

Continuing this process furthetbuktibhasa presents the next order correction-term
which is said to be even more accuréfe:

I GHOgEGEaT: Ja 0 T 9F g |
IO €9 HAGRGed Hdg &' |
At the end, [i.e., after terminating the series at some papply the
correction term with] the multiplier being square of half thie [next]

even number plus 1, and the divisor being four times the sauitjhier
with 1 added and multiplied by half the even number.

In other word<®

p+1\°
N (?> i
p+1
[(p+1)2+4+1] (T)
- L T . (141)
(2p+2)+

16
W2
Pt

SgGanita—yukti—bhdsﬁ, cited above, p. 82; Also cited iYukti-dipika on Tantrasangraha, cited
above (fn. 49), comm. on verse 2.1, p. 103.
89The inaccuracy osthaulya associated with this correction can be calculated to be

2304
(64p7 + 448p> + 1792p3 — 2304p)

The inaccuracy now is proportional to the inverse seventtepof the odd-number. Again it can be shown
that the number 16 in (141) is optimally chosen, in that ahgothoice would introduce a term proportional
to p2 in the numerator ofZ(p), given above.

In fact, it has been noted by C. T. Rajagopal and M. S. Rangathat D. T. Whiteside has shown
(personal communication of D. T. Whiteside cited in C. T.&g@jpal and M. S. Rangachari, ‘On an untapped
source of medieval Kerala mathematics’, Arch. for Hist. 38(2), 89-102, 1978), that the end correction-
term can be exactly represented by the following continuactibn

1 1

E(p) =

ap

= >
2p+2)+

42

2p+2)+ &

(Gp+ 2+ (2p+2)+...
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Hence, a much better approximation #is:*

2
(1%1) 1
(142)

™
4 35 7T T pT N
b [(p+1)2+4+1]<1%)

15 Transforming the Madhava series for better con-
vergence

After the estimation of end-correction termisyktibhasa goes on to outline a method
of transforming theMadhava series (by making use of the above end-correction
terms) to obtain new series that have much better conveegemperties. We now
reproduce the following from the English translationYafktibhasa:%*

Therefore, the circumference (of a circle) can be derivethling into
consideration what has been stated above. A method forslstédted in
the verse

qHIFETA a1 TURES TqaHGI: - |

S IEIOIATC SATHE TRy fawHga: |
THFGGOHIETT HIREeAETHa: qrE: 1| ()

The fifth powers of the odd numbers (1, 3, 5 etc.) are increased
by 4 times themselves. The diameter is multiplied by 16 and it
is successively divided by the (series of) numbers obtajasd
above). The odd (first, third etc.) quotients obtained ackedd
and are subtracted from the sum of the even (the secondhfourt
etc.) quotients. The result is the circumference corregdipon

to the given diameter.

Herein above is stated a method for deriving the circumfazeH the cor-
rection term is applied to an approximate circumferencetheacdmount
of inaccuracy §thaulya) is found, and if it is additive, then the result is
higher. Then it will become more accurate when the corradgom ob-
tained from the next higher odd number is subtracted. Sinkaegpens
that (an approximate circumference) becomes more and noorgae
by making corrections in succeeding terms, if the correct@re applied
right from the beginning itself, then the circumferenced wilme out ac-
curate. This is the rationale for this (above-stated risult

When it is presumed that the correction-divisor is just deuhe odd
number, the following is a method to obtain the (accuratgjuenfer-
ence by a correction for the corresponding inaccurag¢yaflyamsa-
parihara), which is given by the verse:

901t may be noted that this correction term leads to a value,ofvhich is accurate up to 11 decimal
places, when we merely evaluate terms up te: 50 in the series (142). Incidentally the valuemfgiven
in the rule vibudhanetra..., attributed to Madhava that was cited in the beginninBeation 13, is also
accurate up to 11 decimal places.

91 Ganita-yukti-bhasa, cited above, Section 6.9, pp. 80-82, 205-07, 402-04.

58



SOTE aRRAET T SR feageEa-: |

P @ FHS: Fear TRETEE: ()

The diameter is multiplied by 4 and is divided, successively
by the cubes of the odd numbers beginning from 3, which
are diminished by these numbers themselves. The diameter is
now multiplied by three, and the quotients obtained aboree, a
added to or subtracted from, alternatively. The circumfeee

is to be obtained thus.

If, however, it is taken that half the result (of dividing) kiye last even
number is taken as the correction, there is a method to digréveircum-
ference by that way also, as given by the verse

RS a Fadl: AT R fgfaiasmay |
Y U= S anATAST R g aie el eCeam T Il (1)

The squares of even numbers commencing from 2, diminished
by one, are the divisors for four times the diameter. (Make
the several divisions). The quotients got by (the divisiarg
alternately added to or subtracted from twice the diaméter.
the end, divide four times the diameter by twice the result of
squaring the odd number following the last even number to
which is added 2.

The method okthaulya-parihara, outlined above, essentially involves incorporating
the correction terms into the series from the beginnindfitdeet us recall that inac-
curacy orsthaulya at each stage is given by

1 1 1
E(p) = + — - <—> . (143)
ap_g ap P
The series for the circumference (112) can be expressedns tef thesesthaulyas
as follows:
C = 4d 1—i + iJri—l - iJri—1 -
ay ay a3 3 as as b
= 4d Kl — i) +EB)-EGB)+ E(7)—.. } . (144)
ai

Now, by choosing different correction-divisarsin (144), we get several transformed
series which have better convergence properties. If weidenthe correction-divisor
(136), then using the expression (138) for thkaulyas, we get

Ad (1 - é) — 16d [(35+14.3) G j4.5) + (75i4.7) - }

= 16d ! ! + !
B (1544.1) (3°+4.3) (55+45) |’

C

(145)

The above series is given in the versgnapancahatayoh . . .(I). Note that each term
in the above series involves the fifth power of the odd numbéré denominator, un-
like the original series which only involved the first powétlee odd number. Clearly,
this transformed series gives more accurate results witarfeerms.
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If we had used only the lowest order correction (132) and Ssoe@atedsthaulya
(134), instead of the correction employed above, then tesformed series is the
one given in the verseyasad varidhinihatat. . .(Il)

3 1 1 1

C=4d |- — — ... 146

N Ry s S R (146)
Note that the denominators in the above transformed seréepraportional to the
third power of the odd number.

Even if we take non-optimal correction-divisors, we ofted-@ip obtaining interesting
series. For instance, if we take a non-optimal correctiivisdr, say of the formu, =
2p, then thesthaulya is given by

1 1 1
O = men Ty
1
~ P -2p)
1

Then, the transformed series will be the one given in theevétgadiyujam va
Ekrtayo. . .(11) 92

1 1 1 1
C=ds+m T @ ote (148)

16 Derivation of the Madhava series for Rsine and Rver-
sine

16.1 First and second order differences of Rsines

We shall now outline the derivation dfladhava series for Rsine lpuja-jya) and
Rversine {ara), as given inYuktibhasa.*® Yuktibhasa begins with a discussion of
the first and second order Rsine-differences and derivesaat érm of the result
of Aryabhata that the second-order Rsine-differences are proporttonthle Rsines
themselves. We had briefly indicated this proof in Secti@ 5.

Here we are interested in obtaining thiadhava series for thgya andsara of an arc
of length s indicated byEC' in Figure 9. This arc is divided inte equal arc bits,
wheren is large. If the arc length = R0, then thej-th pinda-jya, B; is given by*

B; = jya (E) — Rsin (ﬁ) . (149)
n n

92The verse Il in fact presents the series (148) along with ad eorrection-term of the form

(17 sy

98 Yuktibhasa, cited earlier, Vol. | Section 16.5, pp. 94-103, 221-233-407.

94Figure 9 is essentialy the same as Figure 3 considered iinsécexcept that theindajyas B; are
Rsines assotiated with multiples of the arc-itinto which the arcEC' = s is divided. In Figure 3, the
Bj's are the tabular Rsines associated with multiplie823'.
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The correspondingoti-jya K ;, and thesara S;, are given by

K; = koti (E) = Rcos (ﬁ) , (150)
n n
S; sara (%) =R [1 — cos (%)} . (151)

Now, C;C;1 represents thgj + 1)-th arc bit. Then, for the arEC; = 22, its pinda-
Jyais B; = C;P;, and the correspondingti-jya and sara are K; = C;1;, S; =
EP;. Similarly we have

Bjt1 = CjPip1, Kjp1 = CiaTjp and Sjpq = EPj. (152)

E
E S
o Qj
J Pj
G

Qj+l

= I:>]+1

T Y T Y, o

Figure 9: Computation ofya and Sara by Sarikalitas.

Let M4, be the mid-point of the arc-b®; C;+: and similarly; the mid-point of
the previous {-th) arc-bit. We shall denote theénda-jya of the arcEM; 14 asBjJr%
and clearly

B =Mj11Qj41

The correspondingoti-jya andsara are
Kjp 1 =MjUjpr and Sj 1 = EQj i

Similarly,

Bj 1 =M;Q;, K; 1 =M;U; and S; 1 = EQ; . (153)

Leta be the chord corresponding to the equal arc-pits indicated in Figure 9. That
is, CjCj+1 = MijJrl = Q.
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Let F' be the intersection of';7; andC;1 Pj+1, andG of M;U; andM;41Q 1.
The triangles”; 1 F'C; andOQ,HM;ﬂ are similar, as their S|des are mutually per-

pendicular. Thus we have

CinGj _ CinF _ FC;
OMji1 OQjp1 QjiMjn

Hence we obtain
(0%
(67
Kj—Kjpn = Sjn— 9= (}—3) Bjy-
Similarly, the triangles\/; . GM; andOP;C; are similar and we get
Mj+1Mj - MjJrlG . GMJ

oc; — OP PGy
Thus we obtain
@]
By = By = (R) %
«
Kj s — Kj1=5,1- Sj,%z(}—%)Bj.

We define the Rsine-differencesiinda-jya) A; by
Aj = Bj - Bj,1 5

with the convention thaf\; = B;. From (155), we have

8 =(5) Kiy

(154)

(155)

(156)

(157)

(158)

(159)

(160)

(161)

From (159) and (161), we also get the second order Rsinerdiftes (the differences

of the Rsine-differences callétanda-jyantara):

Aj — Aj-i—l =

=

— Bj-1) = (Bj+1 — Bj)

= () (Kis 1)
- (%)2(Sj+% =5,4)
- ()

(162)

Now, if the sum of the second-order Rsine-differences, ragted from the first

Rsine-difference, then we get any desired Rsine-diffexefbat is
Ay — [(Al - Ag) + (AQ - Ag) + ...+ (Aj_l — Aj)] = Aj .

From (162) and (163) we conclude that

a2
Al—(ﬁ) (Bi+Ba+...+Bj 1) =A; .
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16.2 Rsines and Rversines fromiya-sarnikalita

We can sum up the Rversine-differences (159), to obtairsthe Rversine, at the
midpoint of the last arc-bit as follows:

Suy =83 = (Sucgy—Sug) (S5 -5y)
- (%)(Bn,l+3n,2+...+31). (165)

Using (162), the right hand side of (165) can also be expdeasea summation of
the second order differences. From (164) and (165) it fadltvat the Rversine at the
midpoint of the last arc-bit is also given by

(}%) (Sn—% - 5%) = (A1 = An). (166)

Now, since the first Rsine-differene®; = B;, any desired Rsine can be obtained
by adding the Rsine-differences; these Rsine-differehags been obtained in (164).
Now, by making use of (164), the lagtnda-jya can be expressed as follows:

B,=A,+A, 1+ ...+4
a2
:nAl—(}—z) [(Bl+BQ...+Bn_1)+(Bl+BQ...+Bn_2)+...+Bl]

—nB, — (%)2 [Bu_1 +2Bn_o+ ...+ (n—1)Bi]. (167)

The results (158) — (167), obtained so far, involve no apipnaxions. It is now shown
how better and better approximations to the Rsine and Rwesan be obtained by
takingn to be very large or, equivalently, the arc-Bito be very small. Then, we can
approximate the full-chord and the Rsine of the arc-bit keyléngth of the arc-bif
itself. Also, as a first approximation, we can approximaeinda-jyas B; in the
equations (164), (165) or (167) by the corresponding amsifielves. That is

By~ (168)
n

The result for the Rsine obtained this way is again used taioktbetter approxima-
tion for thepinda-jyas B; which is again substituted back into the equations (165) and
(167) and thus by a process of iteration successive befpeogimations are obtained
for the Rsine and Rversine. Now, once we tdke~ % we will be led to estimate
the sums and repeated sums of natural numbérgl{ckottara-sankalita), when the
number of terms is very large.

16.3 Derivation of Madhava series by iterative corrections toJya
and Sara

As we noted earlier, these relations given by (165) and (46& exact. But now we
shall show how better and better approximations to the RaiteRversine of any
desired arc can be obtained by takindo be very large or, equivalently, taking the
arc-bit = to be very small. Then both the full-chord and the first Rsing3; (the
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Rsine of the arc-bit), can be approximated by the arc’bitself, and the Rversine
S, _1 can be taken a$,, and the Rversiné‘% may be treated as negligible. Thus the

n—3

above relations (165), (167) becotne

S
S=8, ~ (ﬁ)(Bn,H—Bn,ﬂ—..A—Bl), (169)
S 2
B=B, =~ s—(ﬁ) [(Bi+Ba+t...+ Bu_y)

+(B1+By...+By_2)+...+ By, (170)

whereB andS are the Rsine and Rversine of the desired arc of lengtid the results
will be more accurate, larger the valuerof

Now, as a first approximation, we take eaehda-jya B; in (169) and (170) to be
equal to the corresponding arc itself, that is

B, ~ % . (171)

Then we obtain for the Rversine

s = ()0 () 0-n()r ]

1 5\2
- (E) (ﬁ) (n—1)+ (-2 +..] (172)
For largen, we can use the estimate (89) for the sum of integers. Hef7@&) (@duces
to
1Y\ s2
S R 173
s~(%)3 173

Equation (173) is the firstara-samskara, correction to the Rversine. We now sub-
stitute our first approximation (171) to thenda-jyas B; in (170), which gives the
Rsine of the desired are as a second order repeated sum pfifejyas B;. We
then obtain

Bas— (%)2 (%)3[(1+2+...+(n—1))—|—(1+2—|—...(n—2))+...]. (174)

The second term in (174) is&vitiya-sarikalita, the second order repeated sum, and
using the estimate (108), we obtain

1\? &3
B~s— (}—3) 123" (175)

Thus we see that the first correction obtained in (175) to thimdRarc-difference
(jya-capantara-samskara), is equal to the earlier correction to the Rversider(-
samskara) given in (173) multiplied by the arc and divided by the ragiéund 3.

95As has been pointed out by one of the reveiwers, in the fotigwierivation instead of using the relation
(170), which involves repeated summationpef.dajyas, one could use the much simpler relation

S
B:Bn%s——(Sn,1+Sn,2+...+S1),
nR

which essentially follows from (165) and (170). Then we danate between the above equation and (169)
which involve considering only sums of powers of integel&.ktibhasa, however, employes successive
iteration between (169) and (170), which involves consitlen of repeated sums of integers.
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It is noted that the results (173) and (175) are only appraténtrayika), since,
instead of thesankalita of the pinda-jyas in (169) and (170), we have only carried
out sankalita of the arc-bits. Now that (175) gives a correction to thealdhce
btween the Rsine and the argd-capantara-samskara), we can use that to correct
the values of theinda-jyas and thus obtain the next corrections to the Rversine and
Rsine.

Following (175), thepinda-jyas may now be taken as

. 2 [ (js)\3
s (1Y (R)
Bi=7 <R> 1.2.3] ' (176)
If we introduce (176) in (169), we obtain

S ~ (%) ) -+ m-2+.]

- () (}%)2(%)3(%3) (n—1P+(n—2P%+.. ] @77)

The first term in (177) was already evaluated while derivibg3). The second term
in (177) can either be estimated as a summation of cules.¢-sarikalita), or as
a trtiya-sankalita, third order (repeated) summation, because each individua
there has been obtained by doing a second-order (repeatad)aion. Hence, recol-
lecting our earlier estimate (110) for thesgikalitas, we get

1\ s2 1\* &4
~(=) (= ) 178
o <R) 1.2 (R> 1.2.3.4 (178)
Equation (178) gives a correctiodafa-samskara) to the earlier value (173) of the
Rversine, which is nothing but the earlier correction toRsine-arc differencejfa-

capantara-samskara) given in (175) multiplied by the arc and divided by the ragdiu
and 4.

Again, if we use the correctegdnda-jyas (176) in the expression (170) for the Rsine,
we obtain

B =~ s—(%)2(2)3[(1+2+ D)+ (L4240t (n—2)+.]
4
*(%) (5)5
x(l%g (P+22+ .+ -1+ (1% +2°+ ..+ (n—2)°) +..]
2 3 4 s
~ —(%) 1.2.3+(%) 12345 (179)

The above process can be repeated to obtain successive trigaecorrections for the
Rversine and Rsine: By first finding a correctignd-capantara-samskara) for the
difference between the Rsine and the arc, using this cooretd correct thepinda-
Jyas Bj;, and using them in equations (169) and (170) get the nexécton (ara-
samskara) for the Rversines, and the next correctiggat capantara-samskara) for
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the Rsine-arc-difference itself, which is then employedeaofurther corrections iter-
atively. In this way we are led to thdadhava series forjya andsara given by

B =Rsin(s) = s- (}%)2 (1%;.3) + (%)40.%5.4.5)
1\° s’
_(}_z) Tt

S = Rvergs) = (%) % - <%>3 (12574;4) + <%>5 (1257;46) — .. (180)

03 65 o7
sinf = 60— -
i (123) " (12345) (1234567
62 o 6
(1.2)  (1.2.3.4) + (1.2.456)

(181)

17 Instantaneous velocity and derivatives

As we saw in Section 6.1, theandaphala or the equation of centre for a plan&j:
is given by

Rsin(Ap) = (%J) Rsin(M — «), (182)

wherer is the mean epicycle radiug/ is the mean longitude of the planet and
the longitude of the apogee. Further as we noted ealliefijala, Aryabhata Il and
Bhaskara Il used the approximation

Rsin(Ap) = Ap, (183)

in (182) and obtained the following expression as corrediiothe instantaneous ve-
locity of the planet:

d

= (M — ). (184)

%(A,u) = (%) Rcos(M — «)

Actually the instantaneous velocity of the planet has to\@uated from the more
accurate relation ’
Ap = Rsin™! [(ES) Rsin(M — oz)} . (185)

The correct expression for the instantaneous velocity lvimeolves the derivative of
arc-sine function has been given Nylakantha in his Tantrasargraha.%®

TFaEFG aIEARARE Te T e |
T FICFAOHTFET Fs P NE T B+ |

96 Tantrasangraha, cited above (fn. 52), verses 2.53-54, pp.169-170. Elsmyh&lakantha has
ascribed these verses to his teadb@modara (Jyotirmimamsa, Ed. by K. V. Sarma, VVRI, Hoshiarpur
1977, p. 40).
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Let the product of théotiphala [rg cos(M — «)] in minutes and the
daily motion of themanda-kendra W) be divided by the square
root of the square of théahuphala subtracted from the square tfijya

\/R2 —r3sin’(M — ) ). The result thus obtained has to be sub-

tracted form the daily motion of the Moon if theanda-kendra lies
within six signs beginning from/rga and added if it lies within six signs
beginning fromKarkataka. The result gives a more accurate value of the
Moon'’s angular velocity. In fact, the procedure for findimg tinstanta-
neous velocity of the Sun is same as this.

If (M —«) be themanda-kendra, then the content of the above verse can be expressed

as d(M
rocos(M — a) dM =)
- dt___ (186)

\/R2 —r3sin®(M — «)

The instantaneous velocity of the planet is given by

d(M — «)

¢ (187)
\/R2 —r2sin®(M — «)

d d ro cos(M — a)

Here, the first term in the RHS represents the mean velocithefplanet and the
second term the rate of change in thendaphala given by (186).

In his Aryabhatiya-bhasya, Nilakantha explains how his result is more correct than
the traditional result oMuiijala andBhaskaracarya:®’

I FEUAT Fa:? . A0 & 8T a7 e
Bl R, € ATt el 8w
Wamsﬁnaﬁwmwﬁ =

WW@WWW%W SN AT
TA qlgT FH FAF| T T FA0 JulRrEgaT @
- FeATier: W & ST Zedl A FoHeT Fel quT-
SIRTS P ARSI

Hence, how can the results be equal? ...Again the distimdi&ing:
there it was prescribed that the multipliesti-jya was to be divided by
trijya, [but] here it has been prescribed that the produckdaiphala

97Aryabhaﬁy,a of Aryabhata, Ed. with Aryabhatiya-bhasya of Nilakantha Somayaji by
K. Sambasiva Sastr1, Trivandrum Sanskrit Series 110, Trivandrum 1931, comm. Katlakriyapada
22-25, pp. 62-63.
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and the rate of change dfndra be divided bykoti of the dohphala
(dohphalakotya).®® ...

17.1 Acyuta’s expression for instantaneous velocity inveing the
derivative of ratio of two functions

In the third chapter of hi$phutanirnayatantra, Acyuta Pisarati (c. 1550-1621),

a disciple ofJyesthadeva, discusses various results for the instantaneous velocity
of a planet depending on the form of equation of centier{da-samskara). He first
presents the formula involving the derivative of arc-simedtion given byNilakantha

(in the name ofhanda-sphutagati) as follows®®

haV [d

[N ha¥l N ha¥
@lic ‘h(‘)lﬁldqﬂ*;“l(‘qui A FHPICHATHAT |
AN

<

AT e e IHeTaHatT FFeHfE: |

Acyuta also gives the formula for the instantaneous velaifia planet if one were to
follow a different model proposed byfunjala for the equation of centre, according
to which mandaphala is given by

% sin(M — «)

Ap = (188)

(1 - %J cos(M — a)) ’

instead of (182), wherAp is small. If one were to use this formula forandaphala
for finding the true longitude of the planet, then it may besdlahat the instantaneous
velocity will involve the derivative of the ratio of two futions both varying with
time. Taking note of thisAcyuta observes®

FEE ARURUTASTRUITear Jigaramate oo #d: FEsae|
I F=URY: HAGGUE, I rarey airarars: |

The procedure that was prescribed earlier is with referemtiee School
that conceives of the increase and decrease in the circentferof the
manda-vrtta in accordance with thearna. With reference to the School
that conceives of increase and decrease only to the half][afdw we
prescribe the appropriate procedure to be adopted.

Acyuta then proceeds to give the correct expression forrtsi@mntaneous velocity of
a planet inMunjala’s model10t

W%mﬁsﬁwﬁga%wﬁawm|

Jj_"ld"d"C*llGd"BH*ll q(‘lﬁilvl ‘*’(‘)Hﬂ*IIC@IJ—I I

98The termsdohphala andkotiphala refer to 58 sin(M — a) and 3¢ cos(M — ) respectively. Hence,

the termdohphalakoti refers to\/l — (5B sin(M — o))
9 Sphutanirnayatantra of Acyuta Pisarati, Ed. by K. V. Sarma, VVRI, Hoshiarpur 1974, p. 19.
100ypid., p. 20.
104pid., p. 21.
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[R5 ALHgq FaRcwadr Beiaar!

FATAFRGFA 6 QT TERfa |

Having applied theotiphala to trijya [positively or negatively depend-
ing upon thenandakendra), et the square of théohphala be divided by
that. This may be added to or subtracted from thgphala depending
on ifitis Mrgadi or Karkyadi. The product of this [result thus obtained]
and the daily motion of thewanda-kendra divided by thekotiphala and
applied totrijya will be the correction to the daily motion.

Thus according to Acyuta, the correction to the mean vejaiit planet to obtain its
instantaneous velocity is given by

(im0t o)
(1_% cos(M — a)) d(M — «)

(1 - % cos(M — a)) dt ’

(%) cos(M — a)) +
(189)

which is nothing but the derivative of the expression give(ili88).
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