Erdős's proof of Bertrand's postulate

David Galvin*

April 21, 2006

Abstract

In 1845 Bertrand postulated that there is always a prime between n and 2n, and he verified this for n < 3,000,000. Tchebychev gave an analytic proof of the postulate in 1850. In 1932, in his first paper, Erdős gave a beautiful elementary proof using nothing more than a few easily verified facts about the middle binomial coefficient. We describe Erdős's proof and make a few additional comments, including a discussion of how the two main lemmas used in the proof very quickly give an approximate prime number theorem. We also describe a result of Greenfield and Greenfield that links Bertrand's postulate to the statement that $\{1, \ldots, 2n\}$ can always be decomposed into n pairs such that the sum of each pair is a prime.

1 Introduction

Write $\pi(x)$ for the number of primes less than or equal to x. The Prime Number Theorem (PNT), first proved by Hadamard [4] and de la Vallée-Poussin [7] in 1896, is the statement that

$$\pi(x) \sim \frac{x}{\ln x} \quad \text{as } x \to \infty.$$
 (1)

A consequence of the PNT is that

$$\forall \epsilon > 0 \ \exists n(\epsilon) > 0 : \ n > n(\epsilon) \Rightarrow \exists p \text{ prime}, \ n
(2)$$

Indeed, by (1) we have

$$\pi((1+\epsilon)n) - \pi(n) \sim \frac{(1+\epsilon)n}{\ln(1+\epsilon)n} - \frac{n}{\ln n} \to \infty \text{ as } n \to \infty.$$

Using a more refined version of the PNT with an error estimate, we may prove the following theorem.

Theorem 1.1 For all n > 0 there is a prime p such that n .

^{*}Dept of Mathematics, University of Pennsylvania, Philadelphia, PA 19104; dgalvin@math.upenn.edu.

This is Bertrand's postulate, conjectured in the 1845, verified by Bertrand for all $N < 3\,000\,000$, and first proved by Tchebychev in 1850. (See [5, p. 25] for a discussion of the original references).

In his first paper Erdős [2] gave a beautiful elementary proof of Bertrand's postulate which uses nothing more than some easily verified facts about the middle binomial coefficient $\binom{2n}{n}$. We describe this proof in Section 2 and present some comments, conjectures and a consequence in Section 3. One consequence is the following lovely theorem of Greenfield and Greenfield [3].

Theorem 1.2 For n > 0, the set $\{1, \ldots, 2n\}$ can be partitioned into pairs

 $\{a_1, b_1\}, \ldots, \{a_n, b_n\}$

such that for each $1 \le i \le n$, $a_i + b_i$ is a prime.

Another is an approximate version of (1).

Theorem 1.3 *There are constants* c, C > 0 *such that for all* x

$$\frac{c\ln x}{x} \le \pi(x) \le \frac{C\ln x}{x}.$$

2 Erdős's proof

We consider the middle binomial coefficient $\binom{2n}{n} = (2n)!/(n!)^2$. An easy lower bound is

$$\binom{2n}{n} \ge \frac{4^n}{2n+1}.$$
(3)

Indeed, $\binom{2n}{n}$ is the largest term in the 2n+1-term sum $\sum_{i=0}^{2n} \binom{2n}{n} = (1+1)^{2n} = 4^n$. Erdős's proof proceeds by showing that if there is no prime p with $n then we can put an upper bound on <math>\binom{2n}{n}$ that is *smaller* than $4^n/(2n+1)$ unless n is small. This verifies Bertrand's postulate for all sufficiently large n, and we deal with small n by hand.

For a prime p and an integer n we define $o_p(n)$ to be the largest exponent of p that divides n. Note that $o_p(ab) = o_p(a) + o_p(b)$ and $o_p(a/b) = o_p(a) - o_p(n)$. The heart of the whole proof is the following simple observation.

If
$$\frac{2}{3}n then $o_p\left(\binom{2n}{n}\right) = 0$ (i.e., $p \not| \binom{2n}{n}$). (4)$$

Indeed, for such a p

$$o_p\left(\binom{2n}{n}\right) = o_p((2n)!) - 2o_p(n!) = 2 - 2.1 = 0.$$

So if n is such that there is no prime p with $n , then all of the prime factors of <math>\binom{2n}{n}$ lie between 2 and 2n/3. We will show that each of these factors appears only to a small exponent, forcing $\binom{2n}{n}$ to be small. The following is the claim we need in this direction.

Claim 2.1 If $p \mid \binom{2n}{n}$ then

$$p^{o_p\left(\binom{2n}{n}\right)} \le 2n.$$

 $\textit{Proof:} \ \ \text{Let} \ r(p) \ \text{be such that} \ p^{r(p)} \leq 2n < p^{r(p)+1}. \ \text{We have}$

$$o_p\left(\binom{2n}{n}\right) = o_p((2n)!) - 2o_p(n!)$$

$$= \sum_{i=1}^{r(p)} \left[\frac{2n}{p^i}\right] - 2\sum_{i=1}^{r(p)} \left[\frac{n}{p^i}\right]$$

$$= \sum_{i=1}^{r(p)} \left(\left[\frac{2n}{p^i}\right] - 2\left[\frac{n}{p^i}\right]\right)$$

$$\leq r(p), \qquad (5)$$

and so

$$p^{o_p\left(\binom{2n}{n}\right)} \le p^{r(p)} \le 2n.$$

In (5) we use the easily verified fact that for integers a and b, $0 \le \lfloor 2a/b \rfloor - 2\lfloor a/b \rfloor \le 1$. \Box

Before writing down the estimates that upper bound $\binom{2n}{n}$, we need one more simple result.

Claim 2.2 $\forall n \prod_{p \le n} p \le 4^n$ (where the product is over primes).

Proof: We proceed by induction on n. For small values of n, the claim is easily verified. For larger even n, we have

$$\prod_{p \le n} p = \prod_{p \le n-1} p \le 4^{n-1} \le 4^n,$$

the equality following from the fact that n is even an so not a prime and the first inequality following from the inductive hypothesis. For larger odd n, say n = 2m + 1, we have

$$\prod_{p \le n} p = \prod_{p \le m+1} p \prod_{m+2 \le p \le 2m+1} p$$

$$\le 4^{m+1} \binom{2m+1}{m}$$
(6)

$$\leq 4^{m+1}2^{2m}$$
(7)
= 4^{2m+1} = 4ⁿ.

In (6) we use the induction hypothesis to bound $\prod_{p \le m+1} p$ and we bound $\prod_{m+2 \le p \le 2m+1} p$ by observing that all primes between m+2 and 2m+1 divide $\binom{2m+1}{m}$. In (7) we bound

 $\binom{2m+1}{m} \leq 2^{2m}$ by noting that $\sum_{i=0}^{2m+1} \binom{2m+1}{i} = 2^{2m+1}$ and $\binom{2m+1}{m} = \binom{2m+1}{m+1}$ and so the contribution to the sum from $\binom{2m+1}{m}$ is at most 2^{2m} .

We are now ready to prove Bertrand's postulate. Let n be such that there is no prime p with n . Then we have

$$\begin{pmatrix} 2n \\ n \end{pmatrix} \leq (2n)^{\sqrt{2n}} \prod_{\substack{\sqrt{2n}
$$\leq (2n)^{\sqrt{2n}} \prod_{\substack{p \le 2n/3}} p$$

$$\leq (2n)^{\sqrt{2n}} 4^{2n/3}.$$
(8)
(9)$$

The main point is (8). We have first used the simple fact that $\binom{2n}{n}$ has at most $\sqrt{2n}$ prime factors that are smaller than $\sqrt{2n}$, and, by Claim 2.1, each of these prime factors contributes at most 2n to $\binom{2n}{n}$; this accounts for the factor $(2n)^{\sqrt{2n}}$. Next, we have used that by hypothesis and by (4) all of the prime factors p of $\binom{2n}{n}$ satisfy $p \leq 2n/3$, and the fact that each such p with $p > \sqrt{2n}$ appears in $\binom{2n}{n}$ with exponent 1 (this is again by Claim 2.1); these two observations together account for the factor $\prod_{\sqrt{2n} . In (9) we have used Claim 2.2.$

Combining (9) with (3) we obtain the inequality

$$\frac{4^n}{2n+1} \le (2n)^{\sqrt{2n}} 4^{2n/3}.$$
(10)

This inequality can hold only for small values of n. Indeed, for any $\epsilon > 0$ the left-hand side of (10) grows faster than $(4 - \epsilon)^n$ whereas the right-hand side grows more slowly than $(4^{2/3} + \epsilon)^n$. We may check that in fact (10) fails for all $n \ge 468$ (Maple calculation), verifying Bertrand's postulate for all n in this range. To verify Bertrand's postulate for all n < 468, it suffices to check that

$$2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631.$$

$$(11)$$

is a sequence of primes, each term of which is less than twice the term preceding it; it follows that every interval $\{n + 1, ..., 2n\}$ with n < 486 contains one of these 11 primes. This concludes the proof of Theorem 1.1.

(If a Maple calculation is not satisfactory, it is easy to check that (10) reduces to $n/3 \le \log_2(2n+1) + \sqrt{2n}\log_2 2n$. The left hand side of this inequality is increasing faster than the right, and the inequality is easily seen to fail for $n = 2^{10} = 1024$, so to complete the proof in this case we need only add the prime 1259 to the list in (11)).

3 Comments, conjectures and consequences

A stronger result than (2) is known (due to Lou and Yao [6]):

$$\forall \epsilon > 0 \ \exists n(\epsilon) > 0 : n > n(\epsilon) \Rightarrow \exists p \text{ prime}, n$$

The Riemann hypothesis would imply

$$\forall \epsilon > 0 \; \exists n(\epsilon) > 0 : \; n > n(\epsilon) \Rightarrow \exists p \text{ prime}, \; n$$

There is a very strong conjecture of Cramér [1] that would imply

$$\forall \epsilon > 0 \exists n_0 > 0 : n > n_0 \Rightarrow \exists p \text{ prime}, n$$

And here is a very lovely open question much in the spirit of Bertrand's postulate.

Question 3.1 Is it true that for all n > 1, there is always a prime p with $n^2 ?$

As mentioned in the introduction, a consequence of Bertrand's postulate is the appealing Theorem 1.2. We give the proof here.

Proof of Theorem 1.2: We proceed by induction on n. For n = 1 the result is trivial. For n > 1, let p be a prime satisfying 2n . Since <math>4n is not prime we have p = 2n + m for $1 \le m < 2k$. Pair 2n with m, 2n-1 with m+1, and continue up to $n+\lceil k \rceil$ with $n+\lfloor k \rfloor$ (this last a valid pair since m is odd). This deals with all of the numbers in $\{m, \ldots, 2n\}$; the inductive hypothesis deals with $\{1, \ldots, m-1\}$ (again since m is odd). \Box

Finally, we turn to the proof of Theorem 1.3. The upper bound will follow from Claim 2.2 while the lower bound will follow from Claim 2.1.

Proof of Theorem 1.3: For the lower bound on $\pi(x)$ choose n such that

$$\binom{2n}{n} \le x < \binom{2n+2}{n+1}$$

For sufficiently large *n* we have $\ln \binom{2n}{n} > n$ (from (3)) and for all *n* we have $\binom{2n}{n} / \binom{2n+2}{n+1} \ge 1/4$ and so

$$\frac{\pi(x)\ln x}{x} \ge \frac{\pi\left(\binom{2n}{n}\right)\ln\binom{2n}{n}}{\binom{2n+2}{n+1}} \ge \frac{n\pi\left(\binom{2n}{n}\right)}{4\binom{2n}{n}} \tag{12}$$

We lower bound the number of primes at most $\binom{2n}{n}$ by counting those which divide $\binom{2n}{n}$. By Claim 2.1 each such prime contributes at most 2n to $\binom{2n}{n}$ and so $\pi\left(\binom{2n}{n}\right) \ge \binom{2n}{n}/2n$. Combining this with (12) we obtain (for sufficiently large x)

$$\pi(x) \ge \frac{x}{8\ln x}$$

For the upper bound we use Claim 2.2 to get (for $x \ge 4$)

$$4^x \ge \prod_{p \le x} p \ge \sqrt{x}^{\pi(x) - \pi(x/2)}$$

and so

$$\pi(x) \le \frac{4x \ln 2}{\log x} + \pi(x/2).$$

Repeating this procedure $\lfloor \log_2 x \rfloor$ times we reach (for sufficiently large x)

$$\pi(x) \leq \frac{8x \ln 2}{\log x} + \pi(2)$$
$$\leq \frac{9x \ln 2}{\log x}.$$

References

- [1] Cramér, H., On the Order of Magnitude of the Difference Between Consecutive Prime Numbers, *Acta Arith.* **2** (1936) 23–46. 1936.
- [2] Erdős, P., Beweis eines Satzes von Tschebyschef, Acta Sci. Math. (Szeged) 5 (1930– 1932), 194–198.
- [3] Greenfield, L. and Greenfield, S., Some problems of combinatorial number theory related to Bertrand's postulate, *J. Integer Seq.* **1** (1998), Article 98.1.2.
- [4] Hadamard, J., Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques, *Bull. Soc. math. France* **24** (1896), 199–220.
- [5] Havil, J., Gamma: Exploring Euler's Constant, Princeton University Press (2003).
- [6] Lou, S. and Yau, Q., A Chebyshev's Type of Prime Number Theorem in a Short Interval (II), *Hardy-Ramanujan J.* **15** (1992), 1–33.
- [7] Poussin, C. de la Vallée, Recherces analytiques sur la théorie des nombres premiers, *Ann. Soc. Sci. Bruxells* (1897).