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Abstract

In 1845 Bertrand postulated that there is always a prime between n and 2n, and he
verified this for n < 3,000, 000. Tchebychev gave an analytic proof of the postulate
in 1850. In 1932, in his first paper, Erd6s gave a beautiful elementary proof using
nothing more than a few easily verified facts about the middle binomial coefficient. We
describe Erdds’s proof and make a few additional comments, including a discussion of
how the two main lemmas used in the proof very quickly give an approximate prime
number theorem. We also describe a result of Greenfield and Greenfield that links
Bertrand’s postulate to the statement that {1, ..., 2n} can always be decomposed into
n pairs such that the sum of each pair is a prime.

1 Introduction

Write 7 (z) for the number of primes less than or equal to x. The Prime Number Theorem
(PNT), first proved by Hadamard [4] and de la Vallée-Poussin [7] in 1896, is the statement
that

m(x) ~ ﬁ as r — 00. (1)

A consequence of the PNT is that
Ve > 03dn(e) >0: n>n(e) = Ipprime, n < p < (1+€)n. 2)
Indeed, by (1) we have

(1+e)n n

(1 +€e)n) —m(n) ~ In(l1+en Inn

— OO asn — oQ.

Using a more refined version of the PNT with an error estimate, we may prove the following
theorem.

Theorem 1.1 For all n > 0 there is a prime p such thatn < p < 2n.
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This is Bertrand’s postulate, conjectured in the 1845, verified by Bertrand for all N <
3 000 000, and first proved by Tchebychev in 1850. (See [5, p. 25] for a discussion of the
original references).

In his first paper ErdGs [2] gave a beautiful elementary proof of Bertrand’s postulate
which uses nothing more than some easily verified facts about the middle binomial coeffi-
cient (27?) . We describe this proof in Section 2 and present some comments, conjectures and
a consequence in Section 3. One consequence is the following lovely theorem of Greenfield
and Greenfield [3].

Theorem 1.2 Forn > 0, the set {1, ...,2n} can be partitioned into pairs

{alabl}a sy {anvbn}

such that for each 1 < i <n, a; + b; is a prime.
Another is an approximate version of (1).

Theorem 1.3 There are constants ¢, C' > 0 such that for all x

clnzx Clnzx
<m(z) < .

x - x

2 Erdos’s proof

We consider the middle binomial coefficient (**) = (2n)!/(n!)?. An easy lower bound is

(2n> > 4 ' 3)
n 2n+1
Indeed, (*") is the largest term in the 2n+ 1-term sum S (®") = (14+1)* = 4" Erdés’s
proof proceeds by showing that if there is no prime p with n < p < 2n then we can put
an upper bound on (*") that is smaller than 4"/(2n + 1) unless n is small. This verifies
Bertrand’s postulate for all sufficiently large n, and we deal with small »n by hand.

For a prime p and an integer n we define 0,(n) to be the largest exponent of p that
divides n. Note that o,(ab) = o,(a) + 0,(b) and o,(a/b) = 0,(a) — 0,(n). The heart of the
whole proof is the following simple observation.

If 2n < p < ntheno, ((*")) = 0G.e., p J(*7)). @)

Indeed, for such a p

0, ((2">) = 0,((2n)!) — 20,(n!) =2 — 2.1 = 0.

n

So if n is such that there is no prime p with n < p < 2n, then all of the prime factors of (2:)
lie between 2 and 2n/3. We will show that each of these factors appears only to a small
exponent, forcing (2:) to be small. The following is the claim we need in this direction.
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Claim 2.1 Ifp|(*") then
pop((%:l)) < 2n.

Proof: Let r(p) be such that p"®) < 2n < p"®+! We have

o (%) = oz — 20,000

- S [E] %[
- 2 ([F]-215))
< r(p), &)

and so ,
pop((:)) < pr(p) < 2n.

In (5) we use the easily verified fact that for integers a and b, 0 < [2a/b] — 2[a/b] < 1. O

Before writing down the estimates that upper bound (277), we need one more simple
result.

Claim 2.2 Vn Hpgn p < 4™ (where the product is over primes).

Proof: We proceed by induction on n. For small values of n, the claim is easily verified.
For larger even n, we have

[Ir= [ psa<am
p<n p<n—1

the equality following from the fact that n is even an so not a prime and the first inequality
following from the inductive hypothesis. For larger odd n, say n = 2m + 1, we have

IIr = II» I »

p<n p<m+1  m+2<p<2m+1
< 4m+1 (2m + 1) (6)
m
< 4t )
_ 42m+1 — 4"

In (6) we use the induction hypothesis to bound [] ..., p and we bound [ [, »cpcomi1 P
by observing that all primes between m + 2 and 2m + 1 divide (2m+1) In (7) we bound



(*™*+1) < 22 by noting that 3 7ot (*H) = 22m+1 and (P = (*™*!) and so the

(*™+1) is at most 2%™. O

We are now ready to prove Bertrand’s postulate. Let n be such that there is no prime p
with n < p < 2n. Then we have

(2”) < @ [ » ®)

contribution to the sum from

" V2n<p<2n/3
< @2V T »
p<2n/3
< (2n)V2rg23, 9)

The main point is (8). We have first used the simple fact that (2:) has at most v/2n prime
factors that are smaller than v/2n, and, by Claim 2.1, each of these prime factors contributes
at most 2n to (2:); this accounts for the factor (Qn)m Next, we have used that by hy-
pothesis and by (4) all of the prime factors p of (2:) satisfy p < 2n/3, and the fact that
each such p with p > +/2n appears in (2:) with exponent 1 (this is again by Claim 2.1);
these two observations together account for the factor [ | Van<p<an)3 P- In (9) we have used
Claim 2.2.
Combining (9) with (3) we obtain the inequality
4n
< (2n)V2r42n/3, 10
g s @) (10)

This inequality can hold only for small values of n. Indeed, for any € > 0 the left-hand
side of (10) grows faster than (4 — €)™ whereas the right-hand side grows more slowly than
(42/ 3 + €)". We may check that in fact (10) fails for all n > 468 (Maple calculation),
verifying Bertrand’s postulate for all n in this range. To verify Bertrand’s postulate for all
n < 468, it suffices to check that

2,3,5,7,13,23,43,83,163, 317, 631. 11)

is a sequence of primes, each term of which is less than twice the term preceding it; it
follows that every interval {n + 1,...,2n} with n < 486 contains one of these 11 primes.
This concludes the proof of Theorem 1.1.

(If a Maple calculation is not satisfactory, it is easy to check that (10) reduces to n/3 <
log,(2n + 1) + v/2nlog, 2n. The left hand side of this inequality is increasing faster than
the right, and the inequality is easily seen to fail for n = 2!° = 1024, so to complete the
proof in this case we need only add the prime 1259 to the list in (11)).

3 Comments, conjectures and consequences

A stronger result than (2) is known (due to Lou and Yao [6]):

Ve >03n(e) >0: n > n(e) = Ipprime, n < p < n+nztamte
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The Riemann hypothesis would imply
Ve >03n(e) > 0: n>n(c) = Ipprime, n < p <n+nzte
There is a very strong conjecture of Cramér [1] that would imply
VYe>03ng>0:n>ng= Ipprime, n <p <n+(1+¢)ln’n.
And here is a very lovely open question much in the spirit of Bertrand’s postulate.

Question 3.1 Is it true that for alln > 1, there is always a prime p withn? < p < (n+1)%?

As mentioned in the introduction, a consequence of Bertrand’s postulate is the appeal-
ing Theorem 1.2. We give the proof here.

Proof of Theorem 1.2: We proceed by induction on n. For n = 1 the result is trivial. For
n > 1, let p be a prime satisfying 2n < p < 4n. Since 4n is not prime we have p = 2n+m
for 1 < m < 2k. Pair 2n with m, 2n—1 with m+1, and continue up to n+ [ k] with n+ | k|
(this last a valid pair since m is odd). This deals with all of the numbers in {m, ..., 2n};
the inductive hypothesis deals with {1,...,m — 1} (again since m is odd). O

Finally, we turn to the proof of Theorem 1.3. The upper bound will follow from Claim
2.2 while the lower bound will follow from Claim 2.1.

Proof of Theorem 1.3: For the lower bound on 7(z) choose n such that

(Qn) <2n + 2)

<z < .

n n+1

For sufficiently large n we have In (*') > n (from (3)) and for all n we have (*")/ (2::12) >
1/4 and so

o) 7 () () | o ()
E I “2)

We lower bound the number of primes at most (*") by counting those which divide (*").
By Claim 2.1 each such prime contributes at most 2n to (*") and so 7 ((*")) > (*")/2n.
Combining this with (12) we obtain (for sufficiently large x)

T
> .
m(z) = 8Inzx

For the upper bound we use Claim 2.2 to get (for x > 4)

T m(x)—m(x/2
4 Eszx/E() (2/2)

p<z

and so




Repeating this procedure |log, x| times we reach (for sufficiently large x)

8rIn2
log

9z 1n2
logz

()

m(2)
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