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Theorem 3. Let f = a0 + a1x + · · · + an xn
∈ Z[x] be such that a0 ≥ a1 ≥ · · · ≥

an > 0 and γ ( f ) = 1. Let ν be the number of prime divisors counted with their mul-
tiplicities of a0. Then for any s ≥ 1 we have that f (x s) is the product of at most ν
nonunit polynomials in Z[x].

Proof. By the first lemma, any root θ satisfies θ = 1 or |θ | > 1. Since f (1) = a0 +

a1 + · · · + an > 0, every root θ of f satisfies |θ | > 1. Let s ≥ 1 and let α be a root of
f (x s). Thus αs is a root of f , so |αs

| > 1 and hence |α| > 1. Now our result follows
from the second lemma.

We conclude with the following corollary.

Corollary 4. Let f = p + a1x + · · · + an xn
∈ Z[x], where p is a prime and p ≥

a1 ≥ · · · ≥ an ≥ 1. The following statements are equivalent:

1. f = p + a1x + · · · + an xn is irreducible in Z[x];
2. for any s ≥ 1, f (x s) = p + a1x s

+ · · · + an xns is irreducible in Z[x];
3. the list (p, a1, . . . , an) does not consist of (n + 1)/d consecutive constant lists

of length d > 1; and

4. γ ( f ) = 1.

Proof. (3) and (4) are plainly equivalent. (4)⇒ (2) is a consequence of our theorem.
(2)⇒ (1) is a fortiori. We noted earlier that if d = γ ( f ) > 1, then f would factor as

f = (xd−1
+ . . .+ 1)(p + · · · + bt x

td).

Since p is a prime, this would give a nontrivial factorization of f . Hence (1)⇒ (4).
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Ramanujan’s Proof of Bertrand’s Postulate

Jaban Meher and M. Ram Murty

Abstract. We present Ramanujan’s proof of Bertrand’s postulate and in the process, eliminate
his use of Stirling’s formula. The revised proof is elegant and elementary so as to be accessible
to a wider audience.

1. INTRODUCTION. In 1845, Joseph Bertrand conjectured that between x and 2x ,
there is always a prime number for every x > 1. Chebyshev proved this in 1850, and
his proof is often presented in introductory courses after deriving some standard tools
of analytic number theory. An excellent historical account can be found in [2]. A proof
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by Erdős, which is calculus-free, is given in the celebrated “Proofs from The Book”
[1]. In 1919, Ramanujan [3] gave a short and elegant proof of Bertrand’s postulate,
which uses Stirling’s formula. We are unable to find a calculus-free derivation of Stir-
ling’s formula. The purpose of this note is to eliminate the use of Stirling’s formula
from his proof. The revised proof now is so elegant that it qualifies to be included
in “Proofs from The Book”. We hope that our presentation and arrangement makes
Ramanujan’s proof more widely known and accessible to a larger community.

We replace Ramanujan’s use of Stirling’s formula with the following lemmas.

Lemma 1. For x > 1, let R(x) = [x]!/[x/2]!2. Then

2x−1

x + 1
≤ R(x) ≤ 2x−1(x + 1).

Proof. If [x] = 2k is even, then

R(x) =

(
2k

k

)
is the largest binomial coefficient in the expansion of (1+ 1)2k . So

22k

2k + 1
≤ R(x) ≤ 22k, (1)

from which the stated inequality is immediate. If [x] = 2k + 1 is odd, then

R(x) =

(
2k + 1

k

)
(k + 1).

Now,

2

(
2k + 1

k

)
=

(
2k + 1

k

)
+

(
2k + 1

k + 1

)
≤ 22k+1,

so that

22k
≤ R(x) ≤ 22k(k + 1),

and the result is now immediate.

As pointed out by the referee, a result similar to Lemma 1 can be found in [1].

Lemma 2. R(x) ≤ 6x/2 for all x ≥ 1.

Proof. If [x] is even, the result is clear from (1). If [x] = 2k + 1 is odd, we need only
to check that

2x(1+ k)/2 ≤ 2x

(
1+

1

2

)k

< 6x/2.
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The von Mangoldt function 3 is defined by

3(n) =

{
log p if n = pk for some k ≥ 1, p prime
0 otherwise.

The unique factorization property of the natural numbers implies

log n =
∑
d|n

3(d).

Let θ be the function, defined by

θ(x) =
∑
p≤x

log p, where the sum is over primes p ≤ x .

To prove Bertrand’s postulate, it suffices to show that θ(x) − θ(x/2) > 0, for any
x ≥ 2.

Theorem 3. For x > 1, there is at least one prime between x and 2x.

Proof. As in Ramanujan [3], we have

log [x]! =
∑
n≤x

log n =
∑
de≤x

3(d) =
∑
e≤x

ψ(x/e), where ψ(x) =
∑
n≤x

3(n). (2)

The above equation implies that

log [x]! − 2 log [x/2]! = ψ(x)− ψ(x/2)+ ψ(x/3)− ψ(x/4)+ · · · .

Since the right-hand side is an alternating series of a decreasing function, we deduce,
using the notation of the lemma,

ψ(x)− ψ(x/2) ≤ log R(x) ≤ ψ(x)− ψ(x/2)+ ψ(x/3), (3)

which implies, by Lemma 2,

ψ(x)− ψ(x/2) ≤
x

2
log 6. (4)

Changing x to x/2, x/4, x/8, . . . in the above equation and adding up all the inequal-
ities, we get

ψ(x) < x log 6. (5)

Then using (3) and Lemma 1, we obtain

(x − 1) log 2− log (x + 1) ≤ ψ(x)− ψ(x/2)+ ψ(x/3).

Using (5) in the above inequality, we get

ψ(x)− ψ(x/2) ≥ (x/3) log (4/3)− log 2(x + 1). (6)
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It is easy to see that the relation between the functions ψ and θ is given by

ψ(x) = θ(x)+ θ(x1/2)+ θ(x1/3)+ · · · , (7)

so that

ψ(x)− 2ψ(x1/2) = θ(x)− θ(x1/2)+ θ(x1/3)− θ(x1/4)+ · · · .

Since the right-hand side is an alternating series of a decreasing function, we deduce
as before,

ψ(x) < θ(x)+ 2ψ(x1/2).

Now using (5) and the fact that θ(x) ≤ ψ(x), we get

ψ(x)− ψ(x/2) ≤ θ(x)+ 2ψ(x1/2)− θ(x/2) < θ(x)− θ(x/2)+ 2
√

x log 6.

Using (6) we get, with A = 1
3 log(4/3), B = −2 log 6, and C = − log 2, that

θ(x)− θ(x/2) > (Ax + B
√

x + C)− log (x + 1).

We can write (Ax + B
√

x +C) = A(
√

x + a)(
√

x − b)with a and b positive and b
.
=

37.562. Thus, for
√

x > b + 1/A
.
= 47.98, we need only to check that e

√
x > 1+ x .

But this is evidently the case for x > 36, since e
√

x > 1+
√

x + x/2+ x3/2/6. This es-
tablishes the result for x > 1151. For smaller values of x , we need only to observe that

2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259

is a sequence of primes in which each member is less than twice its predecessor. From
this, Bertrand’s postulate is easily verified for x ≤ 1151. This completes the proof.

Ramanujan uses Stirling’s formula to show that R(x) < e3x/4 for all x ≥ 1, and for
x > 300, R(x) > e2x/3. Using basic calculus, we can show that R(x) < e.93x for all
x ≥ 1 and for x ≥ 450, R(x) > e.69x , and this leads to a more streamlined proof more
in line with Ramanujan’s proof. Our approach above was motivated by the desire to
show that Ramanujan’s method leads to a calculus-free “bare hands” derivation of the
result. We also remark that his proof gives Chebyshev-type upper and lower bounds
of the right order for the functions ψ(x), θ(x), as well as the prime counting function
π(x).
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